[all-commits] [llvm/llvm-project] 238822: [MLIR][NVGPU] Adding `nvgpu.warpgroup.mma` Op for ...
Guray Ozen via All-commits
all-commits at lists.llvm.org
Fri Sep 22 02:46:43 PDT 2023
Branch: refs/heads/main
Home: https://github.com/llvm/llvm-project
Commit: 2388222695d25639cf3a2e08b4a8e97da4d55313
https://github.com/llvm/llvm-project/commit/2388222695d25639cf3a2e08b4a8e97da4d55313
Author: Guray Ozen <guray.ozen at gmail.com>
Date: 2023-09-22 (Fri, 22 Sep 2023)
Changed paths:
M mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td
M mlir/include/mlir/Dialect/NVGPU/IR/NVGPU.td
M mlir/include/mlir/Dialect/NVGPU/IR/NVGPUDialect.h
M mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
M mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
M mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
M mlir/test/Conversion/NVGPUToNVVM/nvgpu-to-nvvm.mlir
M mlir/test/Dialect/NVGPU/invalid.mlir
Log Message:
-----------
[MLIR][NVGPU] Adding `nvgpu.warpgroup.mma` Op for Hopper GPUs (#65440)
This work introduces a new operation called `warpgroup.mma` to the NVGPU
dialect of MLIR. The purpose of this operation is to facilitate
warpgroup-level matrix multiply and accumulate (WGMMA) operations on
Hopper GPUs with sm_90a architecture.
Previously, the `nvvm.wgmma.mma_async` operation was introduced to
support warpgroup-level matrix operations in NVVM dialect. This op is
used multiple instances of `nvvm.wgmma.mma_async` to achieve the desired
shape. The new `nvgpu.warpgroup.mma` operation abstracts this complexity
and provides a higher-level interface for performing warpgroup-level
matrix operations.
The `nvgpu.warpgroup.mma` does followings:
1) Corresponds multiple `wgmma` instructions.
2) Iterates input matrix descriptors to achieve the desired computation
shape. 3) Groups and runs `wgmma` instructions asynchronously, and
eventually waits them. This are done by `wgmma.fence.aligned`,
`wgmma.commit.group.sync.aligned`, and `wgmma.wait.group.sync.aligned`
4) Results fragmented matrices
Here's an example usage of the `nvgpu.warpgroup.mma` operation:
```
%wgmmaResult, %wgmmaResult2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc2 {transposeB}:
!nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>,
!nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>,
!nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>,
!nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>
->
!nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>,
!nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>
```
The op will result following PTX:
```
wgmma.fence.sync.aligned;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2, 62 more registers}, %descA, %descB, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2, 62 more registers}, %descA+2, %descB+128, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2, 62 more registers}, %descA+4, %descB+256, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2, 62 more registers}, %descA+8, %descB+348, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+512, %descB, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+514, %descB+128, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+516, %descB+256, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+518, %descB+348, p, 1, 1, 0, 1;
wgmma.commit_group.sync.aligned;
wgmma.wait_group.sync.aligned 1;
```
The Op keeps
- first 64 registers (`{%f1, %f2, 62 more registers}`) -> `%acc1`
- second 64 registers (`{%f500,%f501, 62 more registers}`) -> `%acc2`.
More information about the All-commits
mailing list