[Mlir-commits] [mlir] 3e7433d - [mlir][linalg] Fix to Elementwise Fusion when preserving results (#149843)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue Jul 22 02:17:03 PDT 2025


Author: fabrizio-indirli
Date: 2025-07-22T10:16:59+01:00
New Revision: 3e7433d75a0c03a84e6b1c8e5e5eda347d72a8ff

URL: https://github.com/llvm/llvm-project/commit/3e7433d75a0c03a84e6b1c8e5e5eda347d72a8ff
DIFF: https://github.com/llvm/llvm-project/commit/3e7433d75a0c03a84e6b1c8e5e5eda347d72a8ff.diff

LOG: [mlir][linalg] Fix to Elementwise Fusion when preserving results (#149843)

In the linalg ElementwiseOpFusion transform, a pre-requisite for the
fusion between a producer and consumer op is that the producer's output
indexing map associated to the result to be fused must be invertible
(e.g. a simple permutation).
Before this patch, only the first output indexing map was being checked;
this bug produced issues when the operand to fuse was not the 1st result
of the producer op. For example, this situation arises when the producer
op has multiple results because it's the result of previous fusions
where the original result had been preserved: in these cases, the pass
ought to check the indexing map of the result being fused, which is not
necessarily the 1st one.

Signed-off-by: Fabrizio Indirli <Fabrizio.Indirli at arm.com>

Added: 
    

Modified: 
    mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
    mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index 9c0f6e5d6469e..8a5c138304d5b 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -172,8 +172,9 @@ bool mlir::linalg::areElementwiseOpsFusable(OpOperand *fusedOperand) {
 
   // Finally the index_map for the result must be invertible. For now just
   // verify it is a permutation.
+  auto producerResult = cast<OpResult>(fusedOperand->get());
   AffineMap producerResultIndexMap =
-      producer.getMatchingIndexingMap(producer.getDpsInitOperand(0));
+      producer.getIndexingMapMatchingResult(producerResult);
   if (!producerResultIndexMap.isPermutation())
     return false;
 

diff  --git a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
index 66fc55fadf8fa..bc55c12c02f29 100644
--- a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
@@ -1014,3 +1014,69 @@ module {
 //   CHECK-DAG:     %[[T3:.+]] = arith.addf %[[T2]], %[[B1]]
 //       CHECK:     linalg.yield %[[T3]] : f32
 //       CHECK:   return %[[GENERIC]]
+
+// -----
+
+// In this test we expect the first two linalg.generic operations to be fused into one, but the third one (the matmul) to remain separate. 
+// The reason is that when the pattern is applied the 1st time, the fusion of the first two operations produces a fused operation with 
+// an additional result and ana dditional output indexing map that is not a permutation / not invertible. 
+// The fused op will still produce also the original result (and its output indexing map), which is preserved because the new indexing map 
+// is not invertible. Thus the fused op will have 2 results, but only the 2nd one will be used by the following matmul op as an input argument.
+// When trying to apply the fusion pattern again, the matmul op won't be fused because the operand to fuse was not produced with an invertible indexing map.
+
+#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+#map1 = affine_map<(d0, d1, d2, d3) -> (d0 * 4 + d1 * 2 + d2 + d3, 0, 0, 0)>
+#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d6)>
+#map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d3, d4, d5, d6)>
+#map4 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3, d4, d5)>
+module {
+  func.func @fuse_only_as_long_as_result_map_is_permutation(%arg0: tensor<1x1x2x1xf32>, %arg1: tensor<1x1x2x1xf32>) -> tensor<1x1x2x4xf32> {
+    %c2 = arith.constant 2 : index
+    %c1 = arith.constant 1 : index
+    %cst = arith.constant 0.000000e+00 : f32
+    %c0 = arith.constant 0 : index
+    %0 = tensor.empty() : tensor<1x2x2x1xf32>
+    %1 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%0 : tensor<1x2x2x1xf32>) {
+    ^bb0(%out: f32):
+      %6 = linalg.index 1 : index
+      %7 = linalg.index 2 : index
+      %8 = arith.cmpi ult, %6, %c1 : index
+      %9 = arith.cmpi ult, %7, %c2 : index
+      %10 = arith.andi %8, %9 : i1
+      %11 = scf.if %10 -> (f32) {
+        %extracted = tensor.extract %arg1[%c0, %6, %7, %c0] : tensor<1x1x2x1xf32>
+        scf.yield %extracted : f32
+      } else {
+        scf.yield %cst : f32
+      }
+      linalg.yield %11 : f32
+    } -> tensor<1x2x2x1xf32>
+    %2 = tensor.empty() : tensor<4x1x1x1xf32>
+    %3 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1 : tensor<1x2x2x1xf32>) outs(%2 : tensor<4x1x1x1xf32>) {
+    ^bb0(%in: f32, %out: f32):
+      linalg.yield %in : f32
+    } -> tensor<4x1x1x1xf32>
+    %4 = tensor.empty() : tensor<1x1x2x4xf32>
+    %expanded = tensor.expand_shape %4 [[0], [1], [2], [3, 4, 5]] output_shape [1, 1, 2, 4, 1, 1] : tensor<1x1x2x4xf32> into tensor<1x1x2x4x1x1xf32>
+    %5 = linalg.generic {indexing_maps = [#map2, #map3, #map4], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]} ins(%arg0, %3 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>) outs(%expanded : tensor<1x1x2x4x1x1xf32>) {
+    ^bb0(%in: f32, %in_0: f32, %out: f32):
+      %6 = arith.mulf %in, %in_0 : f32
+      %7 = arith.addf %6, %out : f32
+      linalg.yield %7 : f32
+    } -> tensor<1x1x2x4x1x1xf32>
+    %collapsed = tensor.collapse_shape %5 [[0], [1], [2], [3, 4, 5]] : tensor<1x1x2x4x1x1xf32> into tensor<1x1x2x4xf32>
+    return %collapsed : tensor<1x1x2x4xf32>
+  }
+}
+// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0 * 4 + d1 * 2 + d2 + d3, 0, 0, 0)>
+// CHECK:     func.func @fuse_only_as_long_as_result_map_is_permutation
+// CHECK-SAME:  (%[[ARG0:.*]]: tensor<1x1x2x1xf32>, %[[ARG1:.*]]: tensor<1x1x2x1xf32>) -> tensor<1x1x2x4xf32> {
+// CHECK-DAG:     %[[OUT0:.+]] = tensor.empty() : tensor<1x2x2x1xf32>
+// CHECK-DAG:     %[[OUT1:.+]] = tensor.empty() : tensor<4x1x1x1xf32>
+// CHECK:         %[[FUSED:.+]]:2 = linalg.generic {indexing_maps = [#[[MAP0]], #[[MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
+// CHECK-SAME:     outs(%[[OUT0]], %[[OUT1]] : tensor<1x2x2x1xf32>, tensor<4x1x1x1xf32>)
+// CHECK-NOT:     linalg.generic
+// CHECK:         tensor.expand_shape
+// CHECK:         linalg.generic {{.*}}, iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]}
+// CHECK-SAME:     ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
\ No newline at end of file


        


More information about the Mlir-commits mailing list