[Mlir-commits] [mlir] 75ac294 - [mlir][sparse] support parallel for/reduction in sparsification.
Peiming Liu
llvmlistbot at llvm.org
Mon Nov 7 10:04:52 PST 2022
Author: Peiming Liu
Date: 2022-11-07T18:04:46Z
New Revision: 75ac294b35edd0efeb2f69005e4ccdff95604fdf
URL: https://github.com/llvm/llvm-project/commit/75ac294b35edd0efeb2f69005e4ccdff95604fdf
DIFF: https://github.com/llvm/llvm-project/commit/75ac294b35edd0efeb2f69005e4ccdff95604fdf.diff
LOG: [mlir][sparse] support parallel for/reduction in sparsification.
This patch fix the re-revert D135927 (which caused a windows build failure) to re-enable parallel for/reduction. It also fix a warning caused by D137442.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D137565
Added:
mlir/test/Dialect/SparseTensor/sparse_parallel_reduce.mlir
Modified:
mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.h
mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
mlir/test/Dialect/SparseTensor/sparse_parallel.mlir
mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
index 1e9cadd13e156..fc240b0b10c08 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
@@ -219,9 +219,12 @@ Operation *SparseTensorLoopEmitter::enterLoopOverTensorAtDim(
OpBuilder &builder, Location loc, size_t tid, size_t dim,
MutableArrayRef<Value> reduc, bool isParallel, ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
+
assert(dimTypes[tid].size() > dim);
// We can not re-enter the same level.
assert(!coord[tid][dim]);
+ // TODO: support multiple return on parallel for?
+ assert(!isParallel || reduc.size() <= 1);
Value step = constantIndex(builder, loc, 1);
auto dimType = dimTypes[tid][dim];
@@ -232,11 +235,38 @@ Operation *SparseTensorLoopEmitter::enterLoopOverTensorAtDim(
Value lo = isSparseInput ? pidxs[tid][dim] // current offset
: loopSeqStack.back(); // univeral tid
Value hi = highs[tid][dim];
+ Operation *loop = nullptr;
+ Value iv;
+ if (isParallel) {
+ scf::ParallelOp parOp =
+ builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
+ builder.setInsertionPointToStart(parOp.getBody());
+ assert(parOp.getNumReductions() == reduc.size());
+ iv = parOp.getInductionVars()[0];
+
+ // In-place update on the reduction variable vector.
+ // Note that the init vals is not the actual reduction variables but instead
+ // used as a `special handle` to (temporarily) represent them. The
+ // expression on init vals will be moved into scf.reduce and replaced with
+ // the block arguments when exiting the loop (see exitForLoop). This is
+ // needed as we can not build the actual reduction block and get the actual
+ // reduction varaible before users fill parallel loop body.
+ for (int i = 0, e = reduc.size(); i < e; i++)
+ reduc[i] = parOp.getInitVals()[i];
+ loop = parOp;
+ } else {
+ scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
+ builder.setInsertionPointToStart(forOp.getBody());
+ iv = forOp.getInductionVar();
+
+ // In-place update on the reduction variable vector.
+ assert(forOp.getNumRegionIterArgs() == reduc.size());
+ for (int i = 0, e = reduc.size(); i < e; i++)
+ reduc[i] = forOp.getRegionIterArg(i);
+ loop = forOp;
+ }
+ assert(loop && iv);
- scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
- builder.setInsertionPointToStart(forOp.getBody());
- Value iv = forOp.getInductionVar();
- assert(iv);
if (isSparseInput) {
pidxs[tid][dim] = iv;
// Generating a load on the indices array yields the coordinate.
@@ -253,16 +283,12 @@ Operation *SparseTensorLoopEmitter::enterLoopOverTensorAtDim(
// NOTE: we can also prepares for next dim here in advance
// Push the loop into stack
- loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), forOp,
+ loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), loop,
coord[tid][dim]);
// Emit extra locals.
emitExtraLocalsForTensorsAtDenseDims(builder, loc, extraTids, extraDims);
- // In-place update on the reduction variable vector.
- assert(forOp.getNumRegionIterArgs() == reduc.size());
- for (int i = 0, e = reduc.size(); i < e; i++)
- reduc[i] = forOp.getRegionIterArg(i);
- return forOp;
+ return loop;
}
Operation *SparseTensorLoopEmitter::enterCoIterationOverTensorsAtDims(
@@ -434,17 +460,73 @@ void SparseTensorLoopEmitter::emitExtraLocalsForTensorsAtDenseDims(
}
}
-SmallVector<Value, 2>
-SparseTensorLoopEmitter::exitForLoop(OpBuilder &builder, Location loc,
- ArrayRef<Value> reduc) {
+void SparseTensorLoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
+ MutableArrayRef<Value> reduc) {
LoopLevelInfo &loopInfo = loopStack.back();
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
- auto forOp = llvm::cast<scf::ForOp>(loopInfo.loop);
- if (!reduc.empty()) {
- assert(reduc.size() == forOp.getNumResults());
- builder.setInsertionPointToEnd(forOp.getBody());
- builder.create<scf::YieldOp>(loc, reduc);
+ auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop);
+ if (forOp) {
+ if (!reduc.empty()) {
+ assert(reduc.size() == forOp.getNumResults());
+ rewriter.setInsertionPointToEnd(forOp.getBody());
+ rewriter.create<scf::YieldOp>(loc, reduc);
+ }
+ // Exit the loop.
+ rewriter.setInsertionPointAfter(forOp);
+ // In-place update reduction variables.
+ for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
+ reduc[i] = forOp.getResult(i);
+ } else {
+ auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
+ if (!reduc.empty()) {
+ assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
+ Operation *redExp = reduc.front().getDefiningOp();
+ // Reduction expression should have no use.
+ assert(redExp->getUses().empty());
+ // This must be a binary operation.
+ // NOTE: This is users' responsibilty to ensure the operation are
+ // commutative.
+ assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
+
+ Value redVal = parOp.getInitVals().front();
+ Value curVal;
+ if (redExp->getOperand(0) == redVal)
+ curVal = redExp->getOperand(1);
+ else if (redExp->getOperand(1) == redVal)
+ curVal = redExp->getOperand(0);
+ // One of the operands must be the init value (which is also the
+ // previous reduction value).
+ assert(curVal);
+ // The reduction expression should be the only user of the reduction val
+ // inside the parallel for.
+ unsigned numUsers = 0;
+ for (Operation *op : redVal.getUsers()) {
+ if (op->getParentOp() == parOp)
+ numUsers++;
+ }
+ assert(numUsers == 1);
+ (void)numUsers; // to silence unused variable warning in release build
+
+ rewriter.setInsertionPointAfter(redExp);
+ auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
+ // Attach to the reduction op.
+ Block *redBlock = &redOp.getRegion().getBlocks().front();
+ rewriter.setInsertionPointToEnd(redBlock);
+ Operation *newRed = rewriter.clone(*redExp);
+ // Replaces arguments of the reduction expression by using the block
+ // arguments from scf.reduce.
+ rewriter.updateRootInPlace(
+ newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
+ // Erases the out-dated reduction expression.
+ rewriter.eraseOp(redExp);
+ rewriter.setInsertionPointToEnd(redBlock);
+ rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
+ }
+ rewriter.setInsertionPointAfter(parOp);
+ // In-place update reduction variables.
+ for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
+ reduc[i] = parOp.getResult(i);
}
// Finished iterating a tensor, clean up
@@ -458,14 +540,10 @@ SparseTensorLoopEmitter::exitForLoop(OpBuilder &builder, Location loc,
if (!isDenseDLT(dimTypes[tid][dim]))
highs[tid][dim] = Value();
}
- // exit the loop
- builder.setInsertionPointAfter(forOp);
- return forOp.getResults();
}
-SmallVector<Value, 2>
-SparseTensorLoopEmitter::exitCoiterationLoop(OpBuilder &builder, Location loc,
- ArrayRef<Value> reduc) {
+void SparseTensorLoopEmitter::exitCoIterationLoop(
+ OpBuilder &builder, Location loc, MutableArrayRef<Value> reduc) {
auto whileOp = llvm::cast<scf::WhileOp>(loopStack.back().loop);
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
@@ -499,10 +577,10 @@ SparseTensorLoopEmitter::exitCoiterationLoop(OpBuilder &builder, Location loc,
}
// Reduction value from users.
- SmallVector<Value, 2> ret;
- for (auto red : reduc) {
- operands.push_back(red);
- ret.push_back(whileOp->getResult(o++));
+ for (unsigned i = 0, e = reduc.size(); i < e; i++) {
+ operands.push_back(reduc[i]);
+ // In place update reduction variable.
+ reduc[i] = whileOp->getResult(o++);
}
// An (optional) universal index.
@@ -517,26 +595,24 @@ SparseTensorLoopEmitter::exitCoiterationLoop(OpBuilder &builder, Location loc,
assert(o == operands.size());
builder.create<scf::YieldOp>(loc, operands);
builder.setInsertionPointAfter(whileOp);
- return ret;
}
-SmallVector<Value, 2>
-SparseTensorLoopEmitter::exitCurrentLoop(OpBuilder &builder, Location loc,
- ArrayRef<Value> reduc) {
+void SparseTensorLoopEmitter::exitCurrentLoop(RewriterBase &rewriter,
+ Location loc,
+ MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
LoopLevelInfo &loopInfo = loopStack.back();
assert(loopInfo.tids.size() == loopInfo.dims.size());
SmallVector<Value, 2> red;
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
- red = exitCoiterationLoop(builder, loc, reduc);
+ exitCoIterationLoop(rewriter, loc, reduc);
} else {
- red = exitForLoop(builder, loc, reduc);
+ exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
- return red;
}
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.h b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.h
index 3228eb4c79cb2..a75d3920a4d55 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.h
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.h
@@ -380,8 +380,8 @@ class SparseTensorLoopEmitter {
ArrayRef<size_t> dims, bool needsUniv, MutableArrayRef<Value> reduc = {},
ArrayRef<size_t> extraTids = {}, ArrayRef<size_t> extraDims = {});
- SmallVector<Value, 2> exitCurrentLoop(OpBuilder &builder, Location loc,
- ArrayRef<Value> reduc = {});
+ void exitCurrentLoop(RewriterBase &rewriter, Location loc,
+ MutableArrayRef<Value> reduc = {});
/// Returns the array of coordinate for all the loop generated till now.
void getCoordinateArray(SmallVectorImpl<Value> &coords) const {
@@ -452,17 +452,35 @@ class SparseTensorLoopEmitter {
ArrayRef<size_t> dims);
/// Exits a for loop, returns the reduction results, e.g.,
+ /// For sequential for loops:
/// %ret = for () {
/// ...
+ /// %val = addi %args, %c
/// yield %val
/// }
- /// Return %ret to user, while %val is provided by users (`reduc`)
- SmallVector<Value, 2> exitForLoop(OpBuilder &builder, Location loc,
- ArrayRef<Value> reduc);
+ /// For parallel loops, the following generated code by users:
+ /// %ret = parallel () init(%args) {
+ /// ...
+ /// %val = op %args, %c
+ /// }
+ /// will be transformed into
+ /// %ret = parallel () init(%args) {
+ /// ...
+ /// scf.reduce(%c) bb0(%0, %1){
+ /// %val = op %0, %1
+ /// scf.reduce.return %val
+ /// }
+ /// }
+ /// NOTE: only one instruction will be moved into reduce block, transformation
+ /// will fail if multiple instructions are used to compute the reduction
+ /// value.
+ /// Return %ret to user, while %val is provided by users (`reduc`).
+ void exitForLoop(RewriterBase &rewriter, Location loc,
+ MutableArrayRef<Value> reduc);
/// Exits a while loop, returns the reduction results.
- SmallVector<Value, 2> exitCoiterationLoop(OpBuilder &builder, Location loc,
- ArrayRef<Value> reduc);
+ void exitCoIterationLoop(OpBuilder &builder, Location loc,
+ MutableArrayRef<Value> reduc);
// Whether the loop emitter needs to treat the last tensor as the output
// tensor.
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
index 9f01731a34d4c..533d31fdb5536 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
@@ -410,6 +410,34 @@ static Value getCustomRedId(Operation *op) {
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//
+/// Generates loop boundary statements (entering/exiting loops). The function
+/// passes and updates the reduction value.
+static Optional<Operation *> genLoopBoundary(
+ CodeGen &codegen, Merger &merger,
+ function_ref<Optional<Operation *>(MutableArrayRef<Value> reduc)>
+ callback) {
+ SmallVector<Value, 4> reduc;
+ if (codegen.redVal)
+ reduc.push_back(codegen.redVal);
+ if (codegen.expValues)
+ reduc.push_back(codegen.expCount);
+ if (codegen.insChain)
+ reduc.push_back(codegen.insChain);
+
+ auto r = callback(reduc);
+
+ // Callback should do in-place update on reduction value vector.
+ unsigned i = 0;
+ if (codegen.redVal)
+ updateReduc(merger, codegen, reduc[i++]);
+ if (codegen.expValues)
+ codegen.expCount = reduc[i++];
+ if (codegen.insChain)
+ codegen.insChain = reduc[i];
+
+ return r;
+}
+
/// Local bufferization of all dense and sparse data structures.
static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op) {
@@ -869,23 +897,25 @@ static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
-static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
- bool isSparse) {
+static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isSparse) {
// Reject parallelization of sparse output.
if (codegen.sparseOut)
return false;
+ // Parallel loops on tensor expansion can cause data races.
+ if (codegen.expCount)
+ return false;
// Inspect strategy.
switch (codegen.options.parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
- return isOuter && !isSparse && !isReduction;
+ return isOuter && !isSparse;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
- return isOuter && !isReduction;
+ return isOuter;
case SparseParallelizationStrategy::kDenseAnyLoop:
- return !isSparse && !isReduction;
+ return !isSparse;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
- return !isReduction;
+ return true;
}
llvm_unreachable("unexpected parallelization strategy");
}
@@ -898,33 +928,16 @@ static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
ArrayRef<size_t> extraDims) {
Location loc = op.getLoc();
auto iteratorTypes = op.getIteratorTypesArray();
- bool isReduction = linalg::isReductionIterator(iteratorTypes[idx]);
bool isSparse = isCompressedDLT(merger.getDimLevelType(tid, idx)) ||
isSingletonDLT(merger.getDimLevelType(tid, idx));
- bool isParallel = isParallelFor(codegen, isOuter, isReduction, isSparse);
- assert(!isParallel);
-
- // Emit a sequential for loop.
- SmallVector<Value, 4> operands;
- if (codegen.redVal)
- operands.push_back(codegen.redVal);
- if (codegen.expValues)
- operands.push_back(codegen.expCount);
- if (codegen.insChain)
- operands.push_back(codegen.insChain);
-
- Operation *loop = codegen.loopEmitter.enterLoopOverTensorAtDim(
- builder, loc, tid, dim, operands, isParallel, extraTids, extraDims);
-
- unsigned o = 0;
- if (codegen.redVal)
- updateReduc(merger, codegen, operands[o++]);
- if (codegen.expValues)
- codegen.expCount = operands[o++];
- if (codegen.insChain)
- codegen.insChain = operands[o++];
- assert(o == operands.size());
-
+ bool isParallel = isParallelFor(codegen, isOuter, isSparse);
+
+ Operation *loop =
+ genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
+ return codegen.loopEmitter.enterLoopOverTensorAtDim(
+ builder, loc, tid, dim, reduc, isParallel, extraTids, extraDims);
+ }).value();
+ assert(loop);
return loop;
}
@@ -934,29 +947,15 @@ static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
ArrayRef<size_t> condTids, ArrayRef<size_t> condDims,
ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
- SmallVector<Value, 4> operands;
-
- // Construct the while-loop with a parameter for each index.
- if (codegen.redVal)
- operands.push_back(codegen.redVal);
- if (codegen.expValues)
- operands.push_back(codegen.expCount);
- if (codegen.insChain)
- operands.push_back(codegen.insChain);
-
- Operation *loop = codegen.loopEmitter.enterCoIterationOverTensorsAtDims(
- builder, op.getLoc(), condTids, condDims, needsUniv, operands, extraTids,
- extraDims);
-
- unsigned o = 0;
- if (codegen.redVal)
- updateReduc(merger, codegen, operands[o++]);
- if (codegen.expValues)
- codegen.expCount = operands[o++];
- if (codegen.insChain)
- codegen.insChain = operands[o++];
- assert(o == operands.size());
+ Operation *loop =
+ genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
+ // Construct the while-loop with a parameter for each index.
+ return codegen.loopEmitter.enterCoIterationOverTensorsAtDims(
+ builder, op.getLoc(), condTids, condDims, needsUniv, reduc,
+ extraTids, extraDims);
+ }).value();
+ assert(loop);
return loop;
}
@@ -1186,37 +1185,21 @@ static Operation *startLoop(Merger &merger, CodeGen &codegen,
}
/// Ends a single loop in current sequence. Returns new values for needsUniv.
-static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
+static bool endLoop(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
linalg::GenericOp op, Operation *loop, unsigned idx,
unsigned li, bool needsUniv) {
// End a while-loop.
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
- finalizeWhileOp(merger, codegen, builder, op, idx, needsUniv,
+ finalizeWhileOp(merger, codegen, rewriter, op, idx, needsUniv,
merger.lat(li).bits, whileOp);
} else {
needsUniv = false;
}
- SmallVector<Value, 2> reduc;
- if (codegen.redVal)
- reduc.push_back(codegen.redVal);
- if (codegen.expValues)
- reduc.push_back(codegen.expCount);
- if (codegen.insChain)
- reduc.push_back(codegen.insChain);
-
- auto loopRet =
- codegen.loopEmitter.exitCurrentLoop(builder, op.getLoc(), reduc);
- assert(reduc.size() == loopRet.size());
-
- unsigned o = 0;
- if (codegen.redVal)
- updateReduc(merger, codegen, loopRet[o++]);
- if (codegen.expValues)
- codegen.expCount = loopRet[o++];
- if (codegen.insChain)
- codegen.insChain = loopRet[o++];
- assert(o == loopRet.size());
+ genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
+ codegen.loopEmitter.exitCurrentLoop(rewriter, op.getLoc(), reduc);
+ return llvm::None;
+ });
return needsUniv;
}
diff --git a/mlir/test/Dialect/SparseTensor/sparse_parallel.mlir b/mlir/test/Dialect/SparseTensor/sparse_parallel.mlir
index 38766b08ccab8..f38865c5e2a4f 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_parallel.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_parallel.mlir
@@ -1,14 +1,13 @@
// RUN: mlir-opt %s -sparsification="parallelization-strategy=none" | \
// RUN: FileCheck %s --check-prefix=CHECK-PAR0
-// FIXME: we do not support vectorization/parallel loops in loop emitter right now
-// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=dense-outer-loop" | \
-// R_U_N: FileCheck %s --check-prefix=CHECK-PAR1
-// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=any-storage-outer-loop" | \
-// R_U_N: FileCheck %s --check-prefix=CHECK-PAR2
-// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=dense-any-loop" | \
-// R_U_N: FileCheck %s --check-prefix=CHECK-PAR3
-// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
-// R_U_N: FileCheck %s --check-prefix=CHECK-PAR4
+// RUN: mlir-opt %s -sparsification="parallelization-strategy=dense-outer-loop" | \
+// RUN: FileCheck %s --check-prefix=CHECK-PAR1
+// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-outer-loop" | \
+// RUN: FileCheck %s --check-prefix=CHECK-PAR2
+// RUN: mlir-opt %s -sparsification="parallelization-strategy=dense-any-loop" | \
+// RUN: FileCheck %s --check-prefix=CHECK-PAR3
+// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
+// RUN: FileCheck %s --check-prefix=CHECK-PAR4
#DenseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "dense" ]
@@ -151,7 +150,8 @@ func.func @scale_ss(%scale: f32,
//
// CHECK-PAR4-LABEL: func @matvec
// CHECK-PAR4: scf.parallel
-// CHECK-PAR4: scf.for
+// CHECK-PAR4: scf.parallel
+// CHECK-PAR4: scf.reduce
// CHECK-PAR4: return
//
func.func @matvec(%arga: tensor<16x32xf32, #CSR>,
diff --git a/mlir/test/Dialect/SparseTensor/sparse_parallel_reduce.mlir b/mlir/test/Dialect/SparseTensor/sparse_parallel_reduce.mlir
new file mode 100644
index 0000000000000..8ba66d2c92ae1
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/sparse_parallel_reduce.mlir
@@ -0,0 +1,63 @@
+// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
+// RUN: FileCheck %s
+
+#CSR = #sparse_tensor.encoding<{
+ dimLevelType = [ "dense", "compressed" ]
+}>
+
+#trait_matvec = {
+ indexing_maps = [
+ affine_map<(i,j) -> (i,j)>, // A
+ affine_map<(i,j) -> (j)>, // b
+ affine_map<(i,j) -> (i)> // x (out)
+ ],
+ iterator_types = ["parallel", "reduction"],
+ doc = "x(i) += A(i,j) * b(j)"
+}
+// CHECK-LABEL: func.func @matvec(
+// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>>,
+// CHECK-SAME: %[[TMP_arg1:.*]]: tensor<32xf32>,
+// CHECK-SAME: %[[TMP_arg2:.*]]: tensor<16xf32>) -> tensor<16xf32> {
+// CHECK-DAG: %[[TMP_c16:.*]] = arith.constant 16 : index
+// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
+// CHECK: %[[TMP_0:.*]] = sparse_tensor.pointers %[[TMP_arg0]] {dimension = 1 : index}
+// CHECK: %[[TMP_1:.*]] = sparse_tensor.indices %[[TMP_arg0]] {dimension = 1 : index}
+// CHECK: %[[TMP_2:.*]] = sparse_tensor.values %[[TMP_arg0]]
+// CHECK: %[[TMP_3:.*]] = bufferization.to_memref %[[TMP_arg1]] : memref<32xf32>
+// CHECK: %[[TMP_4:.*]] = bufferization.to_memref %[[TMP_arg2]] : memref<16xf32>
+// CHECK: scf.parallel (%[[TMP_arg3:.*]]) = (%[[TMP_c0]]) to (%[[TMP_c16]]) step (%[[TMP_c1]]) {
+// CHECK: %[[TMP_6:.*]] = memref.load %[[TMP_4]][%[[TMP_arg3]]] : memref<16xf32>
+// CHECK: %[[TMP_7:.*]] = memref.load %[[TMP_0]][%[[TMP_arg3]]] : memref<?xindex>
+// CHECK: %[[TMP_8:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
+// CHECK: %[[TMP_9:.*]] = memref.load %[[TMP_0]][%[[TMP_8]]] : memref<?xindex>
+// CHECK: %[[TMP_10:.*]] = scf.parallel (%[[TMP_arg4:.*]]) = (%[[TMP_7]]) to (%[[TMP_9]]) step (%[[TMP_c1]]) init (%[[TMP_6]]) -> f32 {
+// CHECK: %[[TMP_11:.*]] = memref.load %[[TMP_1]][%[[TMP_arg4]]] : memref<?xindex>
+// CHECK: %[[TMP_12:.*]] = memref.load %[[TMP_2]][%[[TMP_arg4]]] : memref<?xf32>
+// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_3]][%[[TMP_11]]] : memref<32xf32>
+// CHECK: %[[TMP_14:.*]] = arith.mulf %[[TMP_12]], %[[TMP_13]] : f32
+// CHECK: scf.reduce(%[[TMP_14]]) : f32 {
+// CHECK: ^bb0(%[[TMP_arg5:.*]]: f32, %[[TMP_arg6:.*]]: f32):
+// CHECK: %[[TMP_15:.*]] = arith.addf %[[TMP_arg5]], %[[TMP_arg6]] : f32
+// CHECK: scf.reduce.return %[[TMP_15]] : f32
+// CHECK: }
+// CHECK: scf.yield
+// CHECK: }
+// CHECK: memref.store %[[TMP_10]], %[[TMP_4]][%[[TMP_arg3]]] : memref<16xf32>
+// CHECK: scf.yield
+// CHECK: }
+// CHECK: %[[TMP_5:.*]] = bufferization.to_tensor %[[TMP_4]] : memref<16xf32>
+// CHECK: return %[[TMP_5]] : tensor<16xf32>
+func.func @matvec(%arga: tensor<16x32xf32, #CSR>,
+ %argb: tensor<32xf32>,
+ %argx: tensor<16xf32>) -> tensor<16xf32> {
+ %0 = linalg.generic #trait_matvec
+ ins(%arga, %argb : tensor<16x32xf32, #CSR>, tensor<32xf32>)
+ outs(%argx: tensor<16xf32>) {
+ ^bb(%A: f32, %b: f32, %x: f32):
+ %0 = arith.mulf %A, %b : f32
+ %1 = arith.addf %0, %x : f32
+ linalg.yield %1 : f32
+ } -> tensor<16xf32>
+ return %0 : tensor<16xf32>
+}
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
index c12d2b9b913e4..459b0e13667f6 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
@@ -2,6 +2,14 @@
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
+//
+// Do the same run, but now with parallelization.
+//
+// RUN: mlir-opt %s --sparse-compiler="parallelization-strategy=any-storage-any-loop" | \
+// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
+// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
+// RUN: FileCheck %s
+
#CSR = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir
index 59e7f33c22c88..adc0b261f04d3 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir
@@ -4,6 +4,16 @@
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
+//
+// Do the same run, but now with parallelization.
+//
+// RUN: mlir-opt %s \
+// RUN: --sparse-compiler="parallelization-strategy=any-storage-any-loop" | \
+// RUN: TENSOR0="%mlir_src_dir/test/Integration/data/wide.mtx" \
+// RUN: mlir-cpu-runner \
+// RUN: -e entry -entry-point-result=void \
+// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
+// RUN: FileCheck %s
!Filename = !llvm.ptr<i8>
More information about the Mlir-commits
mailing list