[clang] [flang] [llvm] [openmp] [Clang][OpenMP][LoopTransformations] Add support for "#pragma omp fuse" loop transformation directive and "looprange" clause (PR #139293)
Alexey Bataev via llvm-commits
llvm-commits at lists.llvm.org
Fri Jun 20 11:19:12 PDT 2025
================
@@ -15499,6 +15836,496 @@ StmtResult SemaOpenMP::ActOnOpenMPInterchangeDirective(
buildPreInits(Context, PreInits));
}
+StmtResult SemaOpenMP::ActOnOpenMPFuseDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+
+ ASTContext &Context = getASTContext();
+ DeclContext *CurrContext = SemaRef.CurContext;
+ Scope *CurScope = SemaRef.getCurScope();
+ CaptureVars CopyTransformer(SemaRef);
+
+ // Ensure the structured block is not empty
+ if (!AStmt)
+ return StmtError();
+
+ unsigned NumLoops = 1;
+ unsigned LoopSeqSize = 1;
+
+ // Defer transformation in dependent contexts
+ // The NumLoopNests argument is set to a placeholder 1 (even though
+ // using looprange fuse could yield up to 3 top level loop nests)
+ // because a dependent context could prevent determining its true value
+ if (CurrContext->isDependentContext()) {
+ return OMPFuseDirective::Create(Context, StartLoc, EndLoc, Clauses,
+ NumLoops, LoopSeqSize, AStmt, nullptr,
+ nullptr);
+ }
+
+ // Validate that the potential loop sequence is transformable for fusion
+ // Also collect the HelperExprs, Loop Stmts, Inits, and Number of loops
+ SmallVector<OMPLoopBasedDirective::HelperExprs, 4> LoopHelpers;
+ SmallVector<Stmt *> LoopStmts;
+ SmallVector<SmallVector<Stmt *>> OriginalInits;
+ SmallVector<SmallVector<Stmt *>> TransformsPreInits;
+ SmallVector<SmallVector<Stmt *>> LoopSequencePreInits;
+ SmallVector<OMPLoopCategory, 0> LoopCategories;
+ if (!checkTransformableLoopSequence(OMPD_fuse, AStmt, LoopSeqSize, NumLoops,
+ LoopHelpers, LoopStmts, OriginalInits,
+ TransformsPreInits, LoopSequencePreInits,
+ LoopCategories, Context))
+ return StmtError();
+
+ // Handle clauses, which can be any of the following: [looprange, apply]
+ const OMPLoopRangeClause *LRC =
+ OMPExecutableDirective::getSingleClause<OMPLoopRangeClause>(Clauses);
+
+ // The clause arguments are invalidated if any error arises
+ // such as non-constant or non-positive arguments
+ if (LRC && (!LRC->getFirst() || !LRC->getCount()))
+ return StmtError();
+
+ // Delayed semantic check of LoopRange constraint
+ // Evaluates the loop range arguments and returns the first and count values
+ auto EvaluateLoopRangeArguments = [&Context](Expr *First, Expr *Count,
+ uint64_t &FirstVal,
+ uint64_t &CountVal) {
+ llvm::APSInt FirstInt = First->EvaluateKnownConstInt(Context);
+ llvm::APSInt CountInt = Count->EvaluateKnownConstInt(Context);
+ FirstVal = FirstInt.getZExtValue();
+ CountVal = CountInt.getZExtValue();
+ };
+
+ // OpenMP [6.0, Restrictions]
+ // first + count - 1 must not evaluate to a value greater than the
+ // loop sequence length of the associated canonical loop sequence.
+ auto ValidLoopRange = [](uint64_t FirstVal, uint64_t CountVal,
+ unsigned NumLoops) -> bool {
+ return FirstVal + CountVal - 1 <= NumLoops;
+ };
+ uint64_t FirstVal = 1, CountVal = 0, LastVal = LoopSeqSize;
+
+ // Validates the loop range after evaluating the semantic information
+ // and ensures that the range is valid for the given loop sequence size.
+ // Expressions are evaluated at compile time to obtain constant values.
+ if (LRC) {
+ EvaluateLoopRangeArguments(LRC->getFirst(), LRC->getCount(), FirstVal,
+ CountVal);
+ if (CountVal == 1)
+ SemaRef.Diag(LRC->getCountLoc(), diag::warn_omp_redundant_fusion)
+ << getOpenMPDirectiveName(OMPD_fuse);
+
+ if (!ValidLoopRange(FirstVal, CountVal, LoopSeqSize)) {
+ SemaRef.Diag(LRC->getFirstLoc(), diag::err_omp_invalid_looprange)
+ << getOpenMPDirectiveName(OMPD_fuse) << (FirstVal + CountVal - 1)
+ << LoopSeqSize;
+ return StmtError();
+ }
+
+ LastVal = FirstVal + CountVal - 1;
+ }
+
+ // Complete fusion generates a single canonical loop nest
+ // However looprange clause generates several loop nests
+ unsigned NumLoopNests = LRC ? LoopSeqSize - CountVal + 1 : 1;
+
+ // Emit a warning for redundant loop fusion when the sequence contains only
+ // one loop.
+ if (LoopSeqSize == 1)
+ SemaRef.Diag(AStmt->getBeginLoc(), diag::warn_omp_redundant_fusion)
+ << getOpenMPDirectiveName(OMPD_fuse);
+
+ assert(LoopHelpers.size() == LoopSeqSize &&
+ "Expecting loop iteration space dimensionality to match number of "
+ "affected loops");
+ assert(OriginalInits.size() == LoopSeqSize &&
+ "Expecting loop iteration space dimensionality to match number of "
+ "affected loops");
+
+ // Select the type with the largest bit width among all induction variables
+ QualType IVType = LoopHelpers[FirstVal - 1].IterationVarRef->getType();
+ for (unsigned int I = FirstVal; I < LastVal; ++I) {
+ QualType CurrentIVType = LoopHelpers[I].IterationVarRef->getType();
+ if (Context.getTypeSize(CurrentIVType) > Context.getTypeSize(IVType)) {
+ IVType = CurrentIVType;
+ }
+ }
+ uint64_t IVBitWidth = Context.getIntWidth(IVType);
+
+ // Create pre-init declarations for all loops lower bounds, upper bounds,
+ // strides and num-iterations for every top level loop in the fusion
+ SmallVector<VarDecl *, 4> LBVarDecls;
+ SmallVector<VarDecl *, 4> STVarDecls;
+ SmallVector<VarDecl *, 4> NIVarDecls;
+ SmallVector<VarDecl *, 4> UBVarDecls;
+ SmallVector<VarDecl *, 4> IVVarDecls;
+
+ // Helper lambda to create variables for bounds, strides, and other
+ // expressions. Generates both the variable declaration and the corresponding
+ // initialization statement.
+ auto CreateHelperVarAndStmt =
+ [&, &SemaRef = SemaRef](Expr *ExprToCopy, const std::string &BaseName,
+ unsigned I, bool NeedsNewVD = false) {
+ Expr *TransformedExpr =
+ AssertSuccess(CopyTransformer.TransformExpr(ExprToCopy));
+ if (!TransformedExpr)
+ return std::pair<VarDecl *, StmtResult>(nullptr, StmtError());
+
+ auto Name = (Twine(".omp.") + BaseName + std::to_string(I)).str();
+
+ VarDecl *VD;
+ if (NeedsNewVD) {
+ VD = buildVarDecl(SemaRef, SourceLocation(), IVType, Name);
+ SemaRef.AddInitializerToDecl(VD, TransformedExpr, false);
+
+ } else {
+ // Create a unique variable name
+ DeclRefExpr *DRE = cast<DeclRefExpr>(TransformedExpr);
+ VD = cast<VarDecl>(DRE->getDecl());
+ VD->setDeclName(&SemaRef.PP.getIdentifierTable().get(Name));
+ }
+ // Create the corresponding declaration statement
+ StmtResult DeclStmt = new (Context) class DeclStmt(
+ DeclGroupRef(VD), SourceLocation(), SourceLocation());
+ return std::make_pair(VD, DeclStmt);
+ };
+
+ // PreInits hold a sequence of variable declarations that must be executed
+ // before the fused loop begins. These include bounds, strides, and other
+ // helper variables required for the transformation. Other loop transforms
+ // also contain their own preinits
+ SmallVector<Stmt *> PreInits;
+ // Iterator to keep track of loop transformations
+ unsigned int TransformIndex = 0;
+
+ // Update the general preinits using the preinits generated by loop sequence
+ // generating loop transformations. These preinits differ slightly from
+ // single-loop transformation preinits, as they can be detached from a
+ // specific loop inside the multiple generated loop nests. This happens
+ // because certain helper variables, like '.omp.fuse.max', are introduced to
+ // handle fused iteration spaces and may not be directly tied to a single
+ // original loop. the preinit structure must ensure that hidden variables
+ // like '.omp.fuse.max' are still properly handled.
+ // Transformations that apply this concept: Loopranged Fuse, Split
+ if (!LoopSequencePreInits.empty()) {
+ for (const auto <PreInits : LoopSequencePreInits) {
+ if (!LTPreInits.empty())
+ llvm::append_range(PreInits, LTPreInits);
+ }
+ }
+
+ // Process each single loop to generate and collect declarations
+ // and statements for all helper expressions related to
+ // particular single loop nests
+
+ // Also In the case of the fused loops, we keep track of their original
+ // inits by appending them to their preinits statement, and in the case of
+ // transformations, also append their preinits (which contain the original
+ // loop initialization statement or other statements)
+
+ // Firstly we need to update TransformIndex to match the begining of the
+ // looprange section
+ for (unsigned int I = 0; I < FirstVal - 1; ++I) {
+ if (LoopCategories[I] == OMPLoopCategory::TransformSingleLoop)
+ ++TransformIndex;
+ }
+ for (unsigned int I = FirstVal - 1, J = 0; I < LastVal; ++I, ++J) {
+
+ if (LoopCategories[I] == OMPLoopCategory::RegularLoop) {
+ addLoopPreInits(Context, LoopHelpers[I], LoopStmts[I], OriginalInits[I],
+ PreInits);
+ } else if (LoopCategories[I] == OMPLoopCategory::TransformSingleLoop) {
+ // For transformed loops, insert both pre-inits and original inits.
+ // Order matters: pre-inits may define variables used in the original
+ // inits such as upper bounds...
+ auto TransformPreInit = TransformsPreInits[TransformIndex++];
+ if (!TransformPreInit.empty())
+ llvm::append_range(PreInits, TransformPreInit);
+
+ addLoopPreInits(Context, LoopHelpers[I], LoopStmts[I], OriginalInits[I],
+ PreInits);
+ }
+ auto [UBVD, UBDStmt] = CreateHelperVarAndStmt(LoopHelpers[I].UB, "ub", J);
+ auto [LBVD, LBDStmt] = CreateHelperVarAndStmt(LoopHelpers[I].LB, "lb", J);
+ auto [STVD, STDStmt] = CreateHelperVarAndStmt(LoopHelpers[I].ST, "st", J);
+ auto [NIVD, NIDStmt] =
+ CreateHelperVarAndStmt(LoopHelpers[I].NumIterations, "ni", J, true);
+ auto [IVVD, IVDStmt] =
+ CreateHelperVarAndStmt(LoopHelpers[I].IterationVarRef, "iv", J);
+
+ if (!LBVD || !STVD || !NIVD || !IVVD)
+ assert(LBVD && STVD && NIVD && IVVD &&
+ "OpenMP Fuse Helper variables creation failed");
+
+ UBVarDecls.push_back(UBVD);
+ LBVarDecls.push_back(LBVD);
+ STVarDecls.push_back(STVD);
+ NIVarDecls.push_back(NIVD);
+ IVVarDecls.push_back(IVVD);
+
+ PreInits.push_back(LBDStmt.get());
+ PreInits.push_back(STDStmt.get());
+ PreInits.push_back(NIDStmt.get());
+ PreInits.push_back(IVDStmt.get());
+ }
+
+ auto MakeVarDeclRef = [&SemaRef = this->SemaRef](VarDecl *VD) {
+ return buildDeclRefExpr(SemaRef, VD, VD->getType(), VD->getLocation(),
+ false);
+ };
+
+ // Following up the creation of the final fused loop will be performed
+ // which has the following shape (considering the selected loops):
+ //
+ // for (fuse.index = 0; fuse.index < max(ni0, ni1..., nik); ++fuse.index) {
+ // if (fuse.index < ni0){
+ // iv0 = lb0 + st0 * fuse.index;
+ // original.index0 = iv0
+ // body(0);
+ // }
+ // if (fuse.index < ni1){
+ // iv1 = lb1 + st1 * fuse.index;
+ // original.index1 = iv1
+ // body(1);
+ // }
+ //
+ // ...
+ //
+ // if (fuse.index < nik){
+ // ivk = lbk + stk * fuse.index;
+ // original.indexk = ivk
+ // body(k); Expr *InitVal = IntegerLiteral::Create(Context,
+ // llvm::APInt(IVWidth, 0),
+
+ // }
+
+ // 1. Create the initialized fuse index
+ const std::string IndexName = Twine(".omp.fuse.index").str();
+ Expr *InitVal = IntegerLiteral::Create(Context, llvm::APInt(IVBitWidth, 0),
+ IVType, SourceLocation());
+ VarDecl *IndexDecl =
+ buildVarDecl(SemaRef, {}, IVType, IndexName, nullptr, nullptr);
+ SemaRef.AddInitializerToDecl(IndexDecl, InitVal, false);
+ StmtResult InitStmt = new (Context)
+ DeclStmt(DeclGroupRef(IndexDecl), SourceLocation(), SourceLocation());
+
+ if (!InitStmt.isUsable())
+ return StmtError();
+
+ auto MakeIVRef = [&SemaRef = this->SemaRef, IndexDecl, IVType,
+ Loc = InitVal->getExprLoc()]() {
+ return buildDeclRefExpr(SemaRef, IndexDecl, IVType, Loc, false);
+ };
+
+ // 2. Iteratively compute the max number of logical iterations Max(NI_1, NI_2,
+ // ..., NI_k)
+ //
+ // This loop accumulates the maximum value across multiple expressions,
+ // ensuring each step constructs a unique AST node for correctness. By using
+ // intermediate temporary variables and conditional operators, we maintain
+ // distinct nodes and avoid duplicating subtrees, For instance, max(a,b,c):
+ // omp.temp0 = max(a, b)
+ // omp.temp1 = max(omp.temp0, c)
+ // omp.fuse.max = max(omp.temp1, omp.temp0)
+
+ ExprResult MaxExpr;
+ // I is the true
+ for (unsigned I = FirstVal - 1, J = 0; I < LastVal; ++I, ++J) {
+ DeclRefExpr *NIRef = MakeVarDeclRef(NIVarDecls[J]);
+ QualType NITy = NIRef->getType();
+
+ if (MaxExpr.isUnset()) {
+ // Initialize MaxExpr with the first NI expression
+ MaxExpr = NIRef;
+ } else {
+ // Create a new acummulator variable t_i = MaxExpr
+ std::string TempName = (Twine(".omp.temp.") + Twine(J)).str();
+ VarDecl *TempDecl =
+ buildVarDecl(SemaRef, {}, NITy, TempName, nullptr, nullptr);
+ TempDecl->setInit(MaxExpr.get());
+ DeclRefExpr *TempRef =
+ buildDeclRefExpr(SemaRef, TempDecl, NITy, SourceLocation(), false);
+ DeclRefExpr *TempRef2 =
+ buildDeclRefExpr(SemaRef, TempDecl, NITy, SourceLocation(), false);
+ // Add a DeclStmt to PreInits to ensure the variable is declared.
+ StmtResult TempStmt = new (Context)
+ DeclStmt(DeclGroupRef(TempDecl), SourceLocation(), SourceLocation());
+
+ if (!TempStmt.isUsable())
+ return StmtError();
+ PreInits.push_back(TempStmt.get());
+
+ // Build MaxExpr <-(MaxExpr > NIRef ? MaxExpr : NIRef)
+ ExprResult Comparison =
+ SemaRef.BuildBinOp(nullptr, SourceLocation(), BO_GT, TempRef, NIRef);
+ // Handle any errors in Comparison creation
+ if (!Comparison.isUsable())
+ return StmtError();
+
+ DeclRefExpr *NIRef2 = MakeVarDeclRef(NIVarDecls[J]);
+ // Update MaxExpr using a conditional expression to hold the max value
+ MaxExpr = new (Context) ConditionalOperator(
+ Comparison.get(), SourceLocation(), TempRef2, SourceLocation(),
+ NIRef2->getExprStmt(), NITy, VK_LValue, OK_Ordinary);
+
+ if (!MaxExpr.isUsable())
+ return StmtError();
+ }
+ }
+ if (!MaxExpr.isUsable())
+ return StmtError();
+
+ // 3. Declare the max variable
+ const std::string MaxName = Twine(".omp.fuse.max").str();
+ VarDecl *MaxDecl =
+ buildVarDecl(SemaRef, {}, IVType, MaxName, nullptr, nullptr);
+ MaxDecl->setInit(MaxExpr.get());
+ DeclRefExpr *MaxRef = buildDeclRefExpr(SemaRef, MaxDecl, IVType, {}, false);
+ StmtResult MaxStmt = new (Context)
+ DeclStmt(DeclGroupRef(MaxDecl), SourceLocation(), SourceLocation());
+
+ if (MaxStmt.isInvalid())
+ return StmtError();
+ PreInits.push_back(MaxStmt.get());
+
+ // 4. Create condition Expr: index < n_max
+ ExprResult CondExpr = SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_LT,
+ MakeIVRef(), MaxRef);
+ if (!CondExpr.isUsable())
+ return StmtError();
+ // 5. Increment Expr: ++index
+ ExprResult IncrExpr =
+ SemaRef.BuildUnaryOp(CurScope, SourceLocation(), UO_PreInc, MakeIVRef());
+ if (!IncrExpr.isUsable())
+ return StmtError();
+
+ // 6. Build the Fused Loop Body
+ // The final fused loop iterates over the maximum logical range. Inside the
+ // loop, each original loop's index is calculated dynamically, and its body
+ // is executed conditionally.
+ //
+ // Each sub-loop's body is guarded by a conditional statement to ensure
+ // it executes only within its logical iteration range:
+ //
+ // if (fuse.index < ni_k){
+ // iv_k = lb_k + st_k * fuse.index;
+ // original.index = iv_k
+ // body(k);
+ // }
+
+ CompoundStmt *FusedBody = nullptr;
+ SmallVector<Stmt *, 4> FusedBodyStmts;
+ for (unsigned I = FirstVal - 1, J = 0; I < LastVal; ++I, ++J) {
+ // Assingment of the original sub-loop index to compute the logical index
+ // IV_k = LB_k + omp.fuse.index * ST_k
+ ExprResult IdxExpr =
+ SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_Mul,
+ MakeVarDeclRef(STVarDecls[J]), MakeIVRef());
+ if (!IdxExpr.isUsable())
+ return StmtError();
+ IdxExpr = SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_Add,
+ MakeVarDeclRef(LBVarDecls[J]), IdxExpr.get());
+
+ if (!IdxExpr.isUsable())
+ return StmtError();
+ IdxExpr = SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_Assign,
+ MakeVarDeclRef(IVVarDecls[J]), IdxExpr.get());
+ if (!IdxExpr.isUsable())
+ return StmtError();
+
+ // Update the original i_k = IV_k
+ SmallVector<Stmt *, 4> BodyStmts;
+ BodyStmts.push_back(IdxExpr.get());
+ llvm::append_range(BodyStmts, LoopHelpers[I].Updates);
+
+ // If the loop is a CXXForRangeStmt then the iterator variable is needed
+ if (auto *SourceCXXFor = dyn_cast<CXXForRangeStmt>(LoopStmts[I]))
+ BodyStmts.push_back(SourceCXXFor->getLoopVarStmt());
+
+ Stmt *Body = (isa<ForStmt>(LoopStmts[I]))
+ ? cast<ForStmt>(LoopStmts[I])->getBody()
+ : cast<CXXForRangeStmt>(LoopStmts[I])->getBody();
+ BodyStmts.push_back(Body);
+
+ CompoundStmt *CombinedBody =
+ CompoundStmt::Create(Context, BodyStmts, FPOptionsOverride(),
+ SourceLocation(), SourceLocation());
+ ExprResult Condition =
+ SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_LT, MakeIVRef(),
+ MakeVarDeclRef(NIVarDecls[J]));
+
+ if (!Condition.isUsable())
+ return StmtError();
+
+ IfStmt *IfStatement = IfStmt::Create(
+ Context, SourceLocation(), IfStatementKind::Ordinary, nullptr, nullptr,
+ Condition.get(), SourceLocation(), SourceLocation(), CombinedBody,
+ SourceLocation(), nullptr);
+
+ FusedBodyStmts.push_back(IfStatement);
+ }
+ FusedBody = CompoundStmt::Create(Context, FusedBodyStmts, FPOptionsOverride(),
+ SourceLocation(), SourceLocation());
+
+ // 7. Construct the final fused loop
+ ForStmt *FusedForStmt = new (Context)
+ ForStmt(Context, InitStmt.get(), CondExpr.get(), nullptr, IncrExpr.get(),
+ FusedBody, InitStmt.get()->getBeginLoc(), SourceLocation(),
+ IncrExpr.get()->getEndLoc());
+
+ // In the case of looprange, the result of fuse won't simply
+ // be a single loop (ForStmt), but rather a loop sequence
+ // (CompoundStmt) of 3 parts: the pre-fusion loops, the fused loop
+ // and the post-fusion loops, preserving its original order.
+ //
+ // Note: If looprange clause produces a single fused loop nest then
+ // this compound statement wrapper is unnecessary (Therefore this
+ // treatment is skipped)
+
+ Stmt *FusionStmt = FusedForStmt;
+ if (LRC && CountVal != LoopSeqSize) {
+ SmallVector<Stmt *, 4> FinalLoops;
+ // Reset the transform index
+ TransformIndex = 0;
+
+ // Collect all non-fused loops before and after the fused region.
+ // Pre-fusion and post-fusion loops are inserted in order exploiting their
+ // symmetry, along with their corresponding transformation pre-inits if
+ // needed. The fused loop is added between the two regions.
+ for (unsigned I = 0; I < LoopSeqSize; ++I) {
+ if (I >= FirstVal - 1 && I < FirstVal + CountVal - 1) {
+ // Update the Transformation counter to skip already treated
+ // loop transformations
+ if (LoopCategories[I] != OMPLoopCategory::TransformSingleLoop)
+ ++TransformIndex;
+ continue;
+ }
+
+ // No need to handle:
+ // Regular loops: they are kept intact as-is.
+ // Loop-sequence-generating transformations: already handled earlier.
+ // Only TransformSingleLoop requires inserting pre-inits here
+
+ if (LoopCategories[I] == OMPLoopCategory::TransformSingleLoop) {
+ auto TransformPreInit = TransformsPreInits[TransformIndex++];
----------------
alexey-bataev wrote:
Better to use ArrayRef
https://github.com/llvm/llvm-project/pull/139293
More information about the llvm-commits
mailing list