[llvm] [ELFObject] Added conditions to print removed symbols and removed sections (PR #124692)

Kshitij Paranjape via llvm-commits llvm-commits at lists.llvm.org
Thu May 15 21:40:06 PDT 2025


https://github.com/kshitijvp updated https://github.com/llvm/llvm-project/pull/124692

>From 718edfee71e995ab4fbee442af7b92a0c15cee65 Mon Sep 17 00:00:00 2001
From: Kshitij Paranjape <kshitijvparanjape at gmail.com>
Date: Mon, 27 Jan 2025 21:19:33 +0530
Subject: [PATCH 1/5] [ELFObject] Added dbgs() statement in removeSections()

This patch adds dbgs() statement inside removeSections()
and removeSymbol() function to print the removed sections
and symbols.

Fixes: #123041
---
 llvm/lib/ObjCopy/ELF/ELFObject.cpp    | 26 ++++++++++++++++++++------
 llvm/tools/llvm-objcopy/CommonOpts.td |  2 ++
 2 files changed, 22 insertions(+), 6 deletions(-)

diff --git a/llvm/lib/ObjCopy/ELF/ELFObject.cpp b/llvm/lib/ObjCopy/ELF/ELFObject.cpp
index 45c7ea49b5d93..94c73b62de12e 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObject.cpp
+++ b/llvm/lib/ObjCopy/ELF/ELFObject.cpp
@@ -766,8 +766,14 @@ Error SymbolTableSection::removeSymbols(
     function_ref<bool(const Symbol &)> ToRemove) {
   Symbols.erase(
       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
-                     [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
-      std::end(Symbols));
+               [ToRemove](const SymPtr &Sym) {
+                   if (ToRemove(*Sym)) {
+                       dbgs()<<"Symbols Removed:"<<Sym->Name<< "\n";
+                       return true;
+                   }
+                   return false;
+               }));
+
   auto PrevSize = Size;
   Size = Symbols.size() * EntrySize;
   if (Size < PrevSize)
@@ -2249,10 +2255,18 @@ Error Object::removeSections(
 
   // Transfer removed sections into the Object RemovedSections container for use
   // later.
-  std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
-  // Now finally get rid of them all together.
-  Sections.erase(Iter, std::end(Sections));
-  return Error::success();
+  for(auto &KeepSec : make_range(std::begin(Sections) , Iter))
+  {
+    
+    if (Error E = KeepSec->removeSectionReferences(
+            AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
+              return RemoveSections.find(Sec) != RemoveSections.end();
+            }))
+      std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
+      dbgs()<<"Sections Removed:"<<KeepSec->Name<<'\n';
+      Sections.erase(Iter, std::end(Sections));
+      return Error::success();
+  }
 }
 
 Error Object::replaceSections(
diff --git a/llvm/tools/llvm-objcopy/CommonOpts.td b/llvm/tools/llvm-objcopy/CommonOpts.td
index c247c93f6e0f2..5b15191f54605 100644
--- a/llvm/tools/llvm-objcopy/CommonOpts.td
+++ b/llvm/tools/llvm-objcopy/CommonOpts.td
@@ -117,6 +117,8 @@ def regex
 
 def version : Flag<["--"], "version">,
               HelpText<"Print the version and exit.">;
+def verbose : Flag<["--"], "verbose">,
+              HelpText<"Prints the removed symbols and sections">;
 def V : Flag<["-"], "V">,
         Alias<version>,
         HelpText<"Alias for --version">;

>From 02fb5c0b003a99cdbd36c47c2ffd1ca95ab5db85 Mon Sep 17 00:00:00 2001
From: Kshitij Paranjape <kshitijvparanjape at gmail.com>
Date: Sat, 8 Feb 2025 14:59:42 +0530
Subject: [PATCH 2/5] Made Changes

---
 llvm/include/llvm/ObjCopy/CommonConfig.h   |  1 +
 llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp        |  1 +
 llvm/lib/ObjCopy/ELF/ELFObject.cpp         | 27 +++++++++++-----------
 llvm/lib/ObjCopy/ELF/ELFObject.h           |  1 +
 llvm/tools/llvm-objcopy/ObjcopyOptions.cpp |  2 ++
 5 files changed, 18 insertions(+), 14 deletions(-)

diff --git a/llvm/include/llvm/ObjCopy/CommonConfig.h b/llvm/include/llvm/ObjCopy/CommonConfig.h
index aea9cd6f9a9c7..83ad4590d9c72 100644
--- a/llvm/include/llvm/ObjCopy/CommonConfig.h
+++ b/llvm/include/llvm/ObjCopy/CommonConfig.h
@@ -274,6 +274,7 @@ struct CommonConfig {
   bool StripNonAlloc = false;
   bool StripSections = false;
   bool StripUnneeded = false;
+  bool Verbose = false;
   bool Weaken = false;
   bool DecompressDebugSections = false;
 
diff --git a/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp b/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp
index 5aa0079f3fbc7..ad3a2135d23a7 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp
+++ b/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp
@@ -782,6 +782,7 @@ static Error verifyNoteSection(StringRef Name, endianness Endianness,
 // system. The only priority is that keeps/copies overrule removes.
 static Error handleArgs(const CommonConfig &Config, const ELFConfig &ELFConfig,
                         ElfType OutputElfType, Object &Obj) {
+  Obj.isVerboseEnabled = Config.Verbose;
   if (Config.OutputArch) {
     Obj.Machine = Config.OutputArch->EMachine;
     Obj.OSABI = Config.OutputArch->OSABI;
diff --git a/llvm/lib/ObjCopy/ELF/ELFObject.cpp b/llvm/lib/ObjCopy/ELF/ELFObject.cpp
index 94c73b62de12e..c9a090cdea517 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObject.cpp
+++ b/llvm/lib/ObjCopy/ELF/ELFObject.cpp
@@ -768,7 +768,7 @@ Error SymbolTableSection::removeSymbols(
       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
                [ToRemove](const SymPtr &Sym) {
                    if (ToRemove(*Sym)) {
-                       dbgs()<<"Symbols Removed:"<<Sym->Name<< "\n";
+                       llvm::outs() << "Symbols Removed:" << Sym->Name<< "\n";
                        return true;
                    }
                    return false;
@@ -2236,6 +2236,9 @@ Error Object::removeSections(
   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
     for (auto &Segment : Segments)
       Segment->removeSection(RemoveSec.get());
+    if (isVerboseEnabled) {
+      llvm::outs() << "Removed Section: " << (RemoveSec.get()->Name);
+    }
     RemoveSec->onRemove();
     RemoveSections.insert(RemoveSec.get());
   }
@@ -2255,18 +2258,10 @@ Error Object::removeSections(
 
   // Transfer removed sections into the Object RemovedSections container for use
   // later.
-  for(auto &KeepSec : make_range(std::begin(Sections) , Iter))
-  {
-    
-    if (Error E = KeepSec->removeSectionReferences(
-            AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
-              return RemoveSections.find(Sec) != RemoveSections.end();
-            }))
-      std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
-      dbgs()<<"Sections Removed:"<<KeepSec->Name<<'\n';
-      Sections.erase(Iter, std::end(Sections));
-      return Error::success();
-  }
+  std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
+  // Now finally get rid of them all together.
+  Sections.erase(Iter, std::end(Sections));
+  return Error::success();
 }
 
 Error Object::replaceSections(
@@ -2296,8 +2291,12 @@ Error Object::replaceSections(
 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
   if (SymbolTable)
     for (const SecPtr &Sec : Sections)
-      if (Error E = Sec->removeSymbols(ToRemove))
+      if (Error E = Sec->removeSymbols(ToRemove)){
+        if (isVerboseEnabled){
+          llvm::outs() << "Removed Symbols:" << Sec->Name;
+        }
         return E;
+      }
   return Error::success();
 }
 
diff --git a/llvm/lib/ObjCopy/ELF/ELFObject.h b/llvm/lib/ObjCopy/ELF/ELFObject.h
index d8f79a4b1a3cc..4ec1f7188ef88 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObject.h
+++ b/llvm/lib/ObjCopy/ELF/ELFObject.h
@@ -1195,6 +1195,7 @@ class Object {
   uint32_t Flags;
 
   bool HadShdrs = true;
+  bool isVerboseEnabled = true;
   bool MustBeRelocatable = false;
   StringTableSection *SectionNames = nullptr;
   SymbolTableSection *SymbolTable = nullptr;
diff --git a/llvm/tools/llvm-objcopy/ObjcopyOptions.cpp b/llvm/tools/llvm-objcopy/ObjcopyOptions.cpp
index 0d209590655ef..7a0d719756081 100644
--- a/llvm/tools/llvm-objcopy/ObjcopyOptions.cpp
+++ b/llvm/tools/llvm-objcopy/ObjcopyOptions.cpp
@@ -1103,6 +1103,7 @@ objcopy::parseObjcopyOptions(ArrayRef<const char *> ArgsArr,
       OBJCOPY_verify_note_sections, OBJCOPY_no_verify_note_sections, true);
 
   Config.OnlyKeepDebug = InputArgs.hasArg(OBJCOPY_only_keep_debug);
+  Config.Verbose = InputArgs.hasArg(OBJCOPY_verbose);
   ELFConfig.KeepFileSymbols = InputArgs.hasArg(OBJCOPY_keep_file_symbols);
   MachOConfig.KeepUndefined = InputArgs.hasArg(OBJCOPY_keep_undefined);
   Config.DecompressDebugSections =
@@ -1586,6 +1587,7 @@ objcopy::parseStripOptions(ArrayRef<const char *> RawArgsArr,
   Config.StripAllGNU = InputArgs.hasArg(STRIP_strip_all_gnu);
   MachOConfig.StripSwiftSymbols = InputArgs.hasArg(STRIP_strip_swift_symbols);
   Config.OnlyKeepDebug = InputArgs.hasArg(STRIP_only_keep_debug);
+  Config.Verbose = InputArgs.hasArg(STRIP_verbose);
   ELFConfig.KeepFileSymbols = InputArgs.hasArg(STRIP_keep_file_symbols);
   MachOConfig.KeepUndefined = InputArgs.hasArg(STRIP_keep_undefined);
 

>From 76ccb5731498b389f6c3511dfd0ec09eae36505b Mon Sep 17 00:00:00 2001
From: Kshitij Paranjape <kshitijvparanjape at gmail.com>
Date: Tue, 11 Mar 2025 12:29:29 +0530
Subject: [PATCH 3/5] Made Changes

---
 llvm/docs/CommandGuide/llvm-objcopy.rst |  4 +++
 llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp     |  6 ++---
 llvm/lib/ObjCopy/ELF/ELFObject.cpp      | 33 ++++++++++++-------------
 llvm/lib/ObjCopy/ELF/ELFObject.h        |  7 ++++--
 4 files changed, 28 insertions(+), 22 deletions(-)

diff --git a/llvm/docs/CommandGuide/llvm-objcopy.rst b/llvm/docs/CommandGuide/llvm-objcopy.rst
index 8dc1357635e1b..b90a5a4ddb0b5 100644
--- a/llvm/docs/CommandGuide/llvm-objcopy.rst
+++ b/llvm/docs/CommandGuide/llvm-objcopy.rst
@@ -178,6 +178,10 @@ multiple file formats.
  specified ``<flag>`` values. Can be specified multiple times to update multiple
  sections.
 
+.. option:: --verbose
+
+  List all object files modified.
+
  Supported flag names are `alloc`, `load`, `noload`, `readonly`, `exclude`,
  `debug`, `code`, `data`, `rom`, `share`, `contents`, `merge`, `strings`, and
  `large`. Not all flags are meaningful for all object file formats or target
diff --git a/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp b/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp
index ad3a2135d23a7..6cf42ea0e0303 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp
+++ b/llvm/lib/ObjCopy/ELF/ELFObjcopy.cpp
@@ -546,7 +546,7 @@ static Error replaceAndRemoveSections(const CommonConfig &Config,
     };
   }
 
-  if (Error E = Obj.removeSections(ELFConfig.AllowBrokenLinks, RemovePred))
+  if (Error E = Obj.removeSections(ELFConfig.AllowBrokenLinks, RemovePred, Config.Verbose))
     return E;
 
   if (Error E = Obj.compressOrDecompressSections(Config))
@@ -782,7 +782,7 @@ static Error verifyNoteSection(StringRef Name, endianness Endianness,
 // system. The only priority is that keeps/copies overrule removes.
 static Error handleArgs(const CommonConfig &Config, const ELFConfig &ELFConfig,
                         ElfType OutputElfType, Object &Obj) {
-  Obj.isVerboseEnabled = Config.Verbose;
+  Obj.VerboseOutput = Config.Verbose;
   if (Config.OutputArch) {
     Obj.Machine = Config.OutputArch->EMachine;
     Obj.OSABI = Config.OutputArch->OSABI;
@@ -791,7 +791,7 @@ static Error handleArgs(const CommonConfig &Config, const ELFConfig &ELFConfig,
   if (!Config.SplitDWO.empty() && Config.ExtractDWO) {
     return Obj.removeSections(
         ELFConfig.AllowBrokenLinks,
-        [&Obj](const SectionBase &Sec) { return onlyKeepDWOPred(Obj, Sec); });
+        [&Obj](const SectionBase &Sec) { return onlyKeepDWOPred(Obj, Sec); }, Config.Verbose);
   }
 
   // Dump sections before add/remove for compatibility with GNU objcopy.
diff --git a/llvm/lib/ObjCopy/ELF/ELFObject.cpp b/llvm/lib/ObjCopy/ELF/ELFObject.cpp
index c9a090cdea517..8976612d5e67e 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObject.cpp
+++ b/llvm/lib/ObjCopy/ELF/ELFObject.cpp
@@ -766,10 +766,11 @@ Error SymbolTableSection::removeSymbols(
     function_ref<bool(const Symbol &)> ToRemove) {
   Symbols.erase(
       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
-               [ToRemove](const SymPtr &Sym) {
+               [&](const SymPtr &Sym) {
                    if (ToRemove(*Sym)) {
-                       llvm::outs() << "Symbols Removed:" << Sym->Name<< "\n";
-                       return true;
+                    if(VerboseOutput)
+                      outs() << "Symbols Removed:" << Sym->Name<< "\n";
+                    return true;
                    }
                    return false;
                }));
@@ -779,7 +780,6 @@ Error SymbolTableSection::removeSymbols(
   if (Size < PrevSize)
     IndicesChanged = true;
   assignIndices();
-  return Error::success();
 }
 
 void SymbolTableSection::replaceSectionReferences(
@@ -2201,7 +2201,7 @@ Error Object::updateSectionData(SectionBase &S, ArrayRef<uint8_t> Data) {
 }
 
 Error Object::removeSections(
-    bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
+    bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove, bool VerboseOutput) {
 
   auto Iter = std::stable_partition(
       std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
@@ -2236,8 +2236,8 @@ Error Object::removeSections(
   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
     for (auto &Segment : Segments)
       Segment->removeSection(RemoveSec.get());
-    if (isVerboseEnabled) {
-      llvm::outs() << "Removed Section: " << (RemoveSec.get()->Name);
+    if (VerboseOutput) {
+      outs() << "removed section: " << (RemoveSec.get()->Name);
     }
     RemoveSec->onRemove();
     RemoveSections.insert(RemoveSec.get());
@@ -2282,21 +2282,20 @@ Error Object::replaceSections(
 
   if (Error E = removeSections(
           /*AllowBrokenLinks=*/false,
-          [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
+          [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }, false))
     return E;
   llvm::sort(Sections, SectionIndexLess);
   return Error::success();
 }
 
 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
-  if (SymbolTable)
-    for (const SecPtr &Sec : Sections)
-      if (Error E = Sec->removeSymbols(ToRemove)){
-        if (isVerboseEnabled){
-          llvm::outs() << "Removed Symbols:" << Sec->Name;
-        }
+  if (SymbolTable){
+    for (const SecPtr &Sec : Sections){
+      if (Error E = Sec->removeSymbols(ToRemove))
         return E;
-      }
+      outs() << "removed symbols:" << Sec->Name;
+    }
+  }
   return Error::success();
 }
 
@@ -2583,7 +2582,7 @@ static Error removeUnneededSections(Object &Obj) {
                      : Obj.SymbolTable->getStrTab();
   return Obj.removeSections(false, [&](const SectionBase &Sec) {
     return &Sec == Obj.SymbolTable || &Sec == StrTab;
-  });
+  }, false);
 }
 
 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
@@ -2637,7 +2636,7 @@ template <class ELFT> Error ELFWriter<ELFT>::finalize() {
       if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
                                        [this](const SectionBase &Sec) {
                                          return &Sec == Obj.SectionIndexTable;
-                                       }))
+                                       }, false))
         return E;
     }
   }
diff --git a/llvm/lib/ObjCopy/ELF/ELFObject.h b/llvm/lib/ObjCopy/ELF/ELFObject.h
index 4ec1f7188ef88..bcda100343813 100644
--- a/llvm/lib/ObjCopy/ELF/ELFObject.h
+++ b/llvm/lib/ObjCopy/ELF/ELFObject.h
@@ -814,6 +814,8 @@ class SymbolTableSection : public SectionBase {
   void setStrTab(StringTableSection *StrTab) { SymbolNames = StrTab; }
   void assignIndices();
 
+private:
+  bool VerboseOutput;
 protected:
   std::vector<std::unique_ptr<Symbol>> Symbols;
   StringTableSection *SymbolNames = nullptr;
@@ -856,6 +858,7 @@ class SymbolTableSection : public SectionBase {
   static bool classof(const SectionBase *S) {
     return S->OriginalType == ELF::SHT_SYMTAB;
   }
+  bool getVerboseOutput() { return VerboseOutput; }
 };
 
 struct Relocation {
@@ -1195,7 +1198,7 @@ class Object {
   uint32_t Flags;
 
   bool HadShdrs = true;
-  bool isVerboseEnabled = true;
+  bool VerboseOutput;
   bool MustBeRelocatable = false;
   StringTableSection *SectionNames = nullptr;
   SymbolTableSection *SymbolTable = nullptr;
@@ -1225,7 +1228,7 @@ class Object {
   ConstRange<Segment> segments() const { return make_pointee_range(Segments); }
 
   Error removeSections(bool AllowBrokenLinks,
-                       std::function<bool(const SectionBase &)> ToRemove);
+                       std::function<bool(const SectionBase &)> ToRemove, bool VerboseOutput);
   Error compressOrDecompressSections(const CommonConfig &Config);
   Error replaceSections(const DenseMap<SectionBase *, SectionBase *> &FromTo);
   Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove);

>From 378fadbfe355d61b0fd538346fbf758244ff1433 Mon Sep 17 00:00:00 2001
From: Kshitij Paranjape <kshitijvparanjape at gmail.com>
Date: Sat, 12 Apr 2025 23:18:56 +0530
Subject: [PATCH 4/5] Informal Change(Testing)

---
 .../InstCombine/InstCombineAndOrXor.cpp       | 28 ++++++++++++++++++-
 1 file changed, 27 insertions(+), 1 deletion(-)

diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index ca8a20b4b7312..6feadb5f2a3eb 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -2854,7 +2854,33 @@ Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
           simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getAllOnesValue(Ty),
                                       /*SimplifyOnly*/ false, *this))
     return BinaryOperator::CreateAnd(Op0, V);
-
+  // I is the 'and' instruction
+if (auto *Add = dyn_cast<BinaryOperator>(I.getOperand(0))) {
+  if (Add->getOpcode() == Instruction::Add) {
+      Value *LHS = Add->getOperand(0); // should be shl
+      ConstantInt *AddConst = dyn_cast<ConstantInt>(Add->getOperand(1));
+      ConstantInt *AndConst = dyn_cast<ConstantInt>(I.getOperand(1));
+      if (AddConst && AndConst) {
+          // check if AddConst is 47 and AndConst is -32
+          if (AddConst->equalsInt(47) && AndConst->getSExtValue() == -32) {
+              // Check if LHS is shl i64 %a, 5
+              if (auto *Shl = dyn_cast<BinaryOperator>(LHS)) {
+                  if (Shl->getOpcode() == Instruction::Shl) {
+                      ConstantInt *ShlConst = dyn_cast<ConstantInt>(Shl->getOperand(1));
+                      if (ShlConst && ShlConst->equalsInt(5)) {
+                          // You've matched the pattern!
+                          // Replace with: shl i64 (add i64 %a, 1), 5
+                          IRBuilder<> Builder(&I);
+                          Value *NewAdd = Builder.CreateAdd(Shl->getOperand(0), ConstantInt::get(I.getType(), 1));
+                          Value *NewShl = Builder.CreateShl(NewAdd, ShlConst);
+                          I.replaceAllUsesWith(NewShl);
+                      }
+                  }
+              }
+          }
+      }
+  }
+}
   return nullptr;
 }
 

>From ac9040802ce64ae7eb7ca4e56129837f88ed5340 Mon Sep 17 00:00:00 2001
From: Kshitij Paranjape <kshitijvparanjape at gmail.com>
Date: Fri, 16 May 2025 10:09:56 +0530
Subject: [PATCH 5/5] Delete
 llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp

---
 .../InstCombine/InstCombineAndOrXor.cpp       | 5023 -----------------
 1 file changed, 5023 deletions(-)
 delete mode 100644 llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp

diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
deleted file mode 100644
index 6feadb5f2a3eb..0000000000000
--- a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ /dev/null
@@ -1,5023 +0,0 @@
-//===- InstCombineAndOrXor.cpp --------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visitAnd, visitOr, and visitXor functions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/Analysis/CmpInstAnalysis.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Transforms/InstCombine/InstCombiner.h"
-#include "llvm/Transforms/Utils/Local.h"
-
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-/// This is the complement of getICmpCode, which turns an opcode and two
-/// operands into either a constant true or false, or a brand new ICmp
-/// instruction. The sign is passed in to determine which kind of predicate to
-/// use in the new icmp instruction.
-static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
-                              InstCombiner::BuilderTy &Builder) {
-  ICmpInst::Predicate NewPred;
-  if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
-    return TorF;
-  return Builder.CreateICmp(NewPred, LHS, RHS);
-}
-
-/// This is the complement of getFCmpCode, which turns an opcode and two
-/// operands into either a FCmp instruction, or a true/false constant.
-static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
-                           InstCombiner::BuilderTy &Builder, FMFSource FMF) {
-  FCmpInst::Predicate NewPred;
-  if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
-    return TorF;
-  return Builder.CreateFCmpFMF(NewPred, LHS, RHS, FMF);
-}
-
-/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
-/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
-/// whether to treat V, Lo, and Hi as signed or not.
-Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
-                                         const APInt &Hi, bool isSigned,
-                                         bool Inside) {
-  assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
-         "Lo is not < Hi in range emission code!");
-
-  Type *Ty = V->getType();
-
-  // V >= Min && V <  Hi --> V <  Hi
-  // V <  Min || V >= Hi --> V >= Hi
-  ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
-  if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
-    Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
-    return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
-  }
-
-  // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
-  // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
-  Value *VMinusLo =
-      Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
-  Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
-  return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
-}
-
-/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
-/// that can be simplified.
-/// One of A and B is considered the mask. The other is the value. This is
-/// described as the "AMask" or "BMask" part of the enum. If the enum contains
-/// only "Mask", then both A and B can be considered masks. If A is the mask,
-/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
-/// If both A and C are constants, this proof is also easy.
-/// For the following explanations, we assume that A is the mask.
-///
-/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
-/// bits of A are set in B.
-///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
-///
-/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
-/// bits of A are cleared in B.
-///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
-///
-/// "Mixed" declares that (A & B) == C and C might or might not contain any
-/// number of one bits and zero bits.
-///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
-///
-/// "Not" means that in above descriptions "==" should be replaced by "!=".
-///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
-///
-/// If the mask A contains a single bit, then the following is equivalent:
-///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
-///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
-enum MaskedICmpType {
-  AMask_AllOnes           =     1,
-  AMask_NotAllOnes        =     2,
-  BMask_AllOnes           =     4,
-  BMask_NotAllOnes        =     8,
-  Mask_AllZeros           =    16,
-  Mask_NotAllZeros        =    32,
-  AMask_Mixed             =    64,
-  AMask_NotMixed          =   128,
-  BMask_Mixed             =   256,
-  BMask_NotMixed          =   512
-};
-
-/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
-/// satisfies.
-static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
-                                  ICmpInst::Predicate Pred) {
-  const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
-  match(A, m_APInt(ConstA));
-  match(B, m_APInt(ConstB));
-  match(C, m_APInt(ConstC));
-  bool IsEq = (Pred == ICmpInst::ICMP_EQ);
-  bool IsAPow2 = ConstA && ConstA->isPowerOf2();
-  bool IsBPow2 = ConstB && ConstB->isPowerOf2();
-  unsigned MaskVal = 0;
-  if (ConstC && ConstC->isZero()) {
-    // if C is zero, then both A and B qualify as mask
-    MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
-                     : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
-    if (IsAPow2)
-      MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
-                       : (AMask_AllOnes | AMask_Mixed));
-    if (IsBPow2)
-      MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
-                       : (BMask_AllOnes | BMask_Mixed));
-    return MaskVal;
-  }
-
-  if (A == C) {
-    MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
-                     : (AMask_NotAllOnes | AMask_NotMixed));
-    if (IsAPow2)
-      MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
-                       : (Mask_AllZeros | AMask_Mixed));
-  } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
-    MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
-  }
-
-  if (B == C) {
-    MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
-                     : (BMask_NotAllOnes | BMask_NotMixed));
-    if (IsBPow2)
-      MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
-                       : (Mask_AllZeros | BMask_Mixed));
-  } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
-    MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
-  }
-
-  return MaskVal;
-}
-
-/// Convert an analysis of a masked ICmp into its equivalent if all boolean
-/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
-/// is adjacent to the corresponding normal flag (recording ==), this just
-/// involves swapping those bits over.
-static unsigned conjugateICmpMask(unsigned Mask) {
-  unsigned NewMask;
-  NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
-                     AMask_Mixed | BMask_Mixed))
-            << 1;
-
-  NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
-                      AMask_NotMixed | BMask_NotMixed))
-             >> 1;
-
-  return NewMask;
-}
-
-// Adapts the external decomposeBitTestICmp for local use.
-static bool decomposeBitTestICmp(Value *Cond, CmpInst::Predicate &Pred,
-                                 Value *&X, Value *&Y, Value *&Z) {
-  auto Res = llvm::decomposeBitTest(Cond, /*LookThroughTrunc=*/true,
-                                    /*AllowNonZeroC=*/true);
-  if (!Res)
-    return false;
-
-  Pred = Res->Pred;
-  X = Res->X;
-  Y = ConstantInt::get(X->getType(), Res->Mask);
-  Z = ConstantInt::get(X->getType(), Res->C);
-  return true;
-}
-
-/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
-/// Return the pattern classes (from MaskedICmpType) for the left hand side and
-/// the right hand side as a pair.
-/// LHS and RHS are the left hand side and the right hand side ICmps and PredL
-/// and PredR are their predicates, respectively.
-static std::optional<std::pair<unsigned, unsigned>>
-getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E,
-                         Value *LHS, Value *RHS, ICmpInst::Predicate &PredL,
-                         ICmpInst::Predicate &PredR) {
-
-  // Here comes the tricky part:
-  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
-  // and L11 & L12 == L21 & L22. The same goes for RHS.
-  // Now we must find those components L** and R**, that are equal, so
-  // that we can extract the parameters A, B, C, D, and E for the canonical
-  // above.
-
-  // Check whether the icmp can be decomposed into a bit test.
-  Value *L1, *L11, *L12, *L2, *L21, *L22;
-  if (decomposeBitTestICmp(LHS, PredL, L11, L12, L2)) {
-    L21 = L22 = L1 = nullptr;
-  } else {
-    auto *LHSCMP = dyn_cast<ICmpInst>(LHS);
-    if (!LHSCMP)
-      return std::nullopt;
-
-    // Don't allow pointers. Splat vectors are fine.
-    if (!LHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
-      return std::nullopt;
-
-    PredL = LHSCMP->getPredicate();
-    L1 = LHSCMP->getOperand(0);
-    L2 = LHSCMP->getOperand(1);
-    // Look for ANDs in the LHS icmp.
-    if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
-      // Any icmp can be viewed as being trivially masked; if it allows us to
-      // remove one, it's worth it.
-      L11 = L1;
-      L12 = Constant::getAllOnesValue(L1->getType());
-    }
-
-    if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
-      L21 = L2;
-      L22 = Constant::getAllOnesValue(L2->getType());
-    }
-  }
-
-  // Bail if LHS was a icmp that can't be decomposed into an equality.
-  if (!ICmpInst::isEquality(PredL))
-    return std::nullopt;
-
-  Value *R11, *R12, *R2;
-  if (decomposeBitTestICmp(RHS, PredR, R11, R12, R2)) {
-    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
-      A = R11;
-      D = R12;
-    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
-      A = R12;
-      D = R11;
-    } else {
-      return std::nullopt;
-    }
-    E = R2;
-  } else {
-    auto *RHSCMP = dyn_cast<ICmpInst>(RHS);
-    if (!RHSCMP)
-      return std::nullopt;
-    // Don't allow pointers. Splat vectors are fine.
-    if (!RHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
-      return std::nullopt;
-
-    PredR = RHSCMP->getPredicate();
-
-    Value *R1 = RHSCMP->getOperand(0);
-    R2 = RHSCMP->getOperand(1);
-    bool Ok = false;
-    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
-      // As before, model no mask as a trivial mask if it'll let us do an
-      // optimization.
-      R11 = R1;
-      R12 = Constant::getAllOnesValue(R1->getType());
-    }
-
-    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
-      A = R11;
-      D = R12;
-      E = R2;
-      Ok = true;
-    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
-      A = R12;
-      D = R11;
-      E = R2;
-      Ok = true;
-    }
-
-    // Avoid matching against the -1 value we created for unmasked operand.
-    if (Ok && match(A, m_AllOnes()))
-      Ok = false;
-
-    // Look for ANDs on the right side of the RHS icmp.
-    if (!Ok) {
-      if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
-        R11 = R2;
-        R12 = Constant::getAllOnesValue(R2->getType());
-      }
-
-      if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
-        A = R11;
-        D = R12;
-        E = R1;
-      } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
-        A = R12;
-        D = R11;
-        E = R1;
-      } else {
-        return std::nullopt;
-      }
-    }
-  }
-
-  // Bail if RHS was a icmp that can't be decomposed into an equality.
-  if (!ICmpInst::isEquality(PredR))
-    return std::nullopt;
-
-  if (L11 == A) {
-    B = L12;
-    C = L2;
-  } else if (L12 == A) {
-    B = L11;
-    C = L2;
-  } else if (L21 == A) {
-    B = L22;
-    C = L1;
-  } else if (L22 == A) {
-    B = L21;
-    C = L1;
-  }
-
-  unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
-  unsigned RightType = getMaskedICmpType(A, D, E, PredR);
-  return std::optional<std::pair<unsigned, unsigned>>(
-      std::make_pair(LeftType, RightType));
-}
-
-/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
-/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
-/// and the right hand side is of type BMask_Mixed. For example,
-/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
-/// Also used for logical and/or, must be poison safe.
-static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
-    Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E,
-    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
-    InstCombiner::BuilderTy &Builder) {
-  // We are given the canonical form:
-  //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
-  // where D & E == E.
-  //
-  // If IsAnd is false, we get it in negated form:
-  //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
-  //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
-  //
-  // We currently handle the case of B, C, D, E are constant.
-  //
-  const APInt *BCst, *DCst, *OrigECst;
-  if (!match(B, m_APInt(BCst)) || !match(D, m_APInt(DCst)) ||
-      !match(E, m_APInt(OrigECst)))
-    return nullptr;
-
-  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
-
-  // Update E to the canonical form when D is a power of two and RHS is
-  // canonicalized as,
-  // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
-  // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
-  APInt ECst = *OrigECst;
-  if (PredR != NewCC)
-    ECst ^= *DCst;
-
-  // If B or D is zero, skip because if LHS or RHS can be trivially folded by
-  // other folding rules and this pattern won't apply any more.
-  if (*BCst == 0 || *DCst == 0)
-    return nullptr;
-
-  // If B and D don't intersect, ie. (B & D) == 0, try to fold isNaN idiom:
-  // (icmp ne (A & FractionBits), 0) & (icmp eq (A & ExpBits), ExpBits)
-  // -> isNaN(A)
-  // Otherwise, we cannot deduce anything from it.
-  if (!BCst->intersects(*DCst)) {
-    Value *Src;
-    if (*DCst == ECst && match(A, m_ElementWiseBitCast(m_Value(Src))) &&
-        !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
-            Attribute::StrictFP)) {
-      Type *Ty = Src->getType()->getScalarType();
-      if (!Ty->isIEEELikeFPTy())
-        return nullptr;
-
-      APInt ExpBits = APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt();
-      if (ECst != ExpBits)
-        return nullptr;
-      APInt FractionBits = ~ExpBits;
-      FractionBits.clearSignBit();
-      if (*BCst != FractionBits)
-        return nullptr;
-
-      return Builder.CreateFCmp(IsAnd ? FCmpInst::FCMP_UNO : FCmpInst::FCMP_ORD,
-                                Src, ConstantFP::getZero(Src->getType()));
-    }
-    return nullptr;
-  }
-
-  // If the following two conditions are met:
-  //
-  // 1. mask B covers only a single bit that's not covered by mask D, that is,
-  // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
-  // B and D has only one bit set) and,
-  //
-  // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
-  // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
-  //
-  // then that single bit in B must be one and thus the whole expression can be
-  // folded to
-  //   (A & (B | D)) == (B & (B ^ D)) | E.
-  //
-  // For example,
-  // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
-  // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
-  if ((((*BCst & *DCst) & ECst) == 0) &&
-      (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
-    APInt BorD = *BCst | *DCst;
-    APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
-    Value *NewMask = ConstantInt::get(A->getType(), BorD);
-    Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
-    Value *NewAnd = Builder.CreateAnd(A, NewMask);
-    return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
-  }
-
-  auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
-    return (*C1 & *C2) == *C1;
-  };
-  auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
-    return (*C1 & *C2) == *C2;
-  };
-
-  // In the following, we consider only the cases where B is a superset of D, B
-  // is a subset of D, or B == D because otherwise there's at least one bit
-  // covered by B but not D, in which case we can't deduce much from it, so
-  // no folding (aside from the single must-be-one bit case right above.)
-  // For example,
-  // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
-  if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
-    return nullptr;
-
-  // At this point, either B is a superset of D, B is a subset of D or B == D.
-
-  // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
-  // and the whole expression becomes false (or true if negated), otherwise, no
-  // folding.
-  // For example,
-  // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
-  // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
-  if (ECst.isZero()) {
-    if (IsSubSetOrEqual(BCst, DCst))
-      return ConstantInt::get(LHS->getType(), !IsAnd);
-    return nullptr;
-  }
-
-  // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
-  // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
-  // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
-  // RHS. For example,
-  // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
-  // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
-  if (IsSuperSetOrEqual(BCst, DCst)) {
-    // We can't guarantee that samesign hold after this fold.
-    if (auto *ICmp = dyn_cast<ICmpInst>(RHS))
-      ICmp->setSameSign(false);
-    return RHS;
-  }
-  // Otherwise, B is a subset of D. If B and E have a common bit set,
-  // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
-  // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
-  assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
-  if ((*BCst & ECst) != 0) {
-    // We can't guarantee that samesign hold after this fold.
-    if (auto *ICmp = dyn_cast<ICmpInst>(RHS))
-      ICmp->setSameSign(false);
-    return RHS;
-  }
-  // Otherwise, LHS and RHS contradict and the whole expression becomes false
-  // (or true if negated.) For example,
-  // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
-  // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
-  return ConstantInt::get(LHS->getType(), !IsAnd);
-}
-
-/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
-/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
-/// aren't of the common mask pattern type.
-/// Also used for logical and/or, must be poison safe.
-static Value *foldLogOpOfMaskedICmpsAsymmetric(
-    Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D,
-    Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
-    unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
-  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
-         "Expected equality predicates for masked type of icmps.");
-  // Handle Mask_NotAllZeros-BMask_Mixed cases.
-  // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
-  // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
-  //    which gets swapped to
-  //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
-  if (!IsAnd) {
-    LHSMask = conjugateICmpMask(LHSMask);
-    RHSMask = conjugateICmpMask(RHSMask);
-  }
-  if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
-    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
-            LHS, RHS, IsAnd, A, B, D, E, PredL, PredR, Builder)) {
-      return V;
-    }
-  } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
-    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
-            RHS, LHS, IsAnd, A, D, B, C, PredR, PredL, Builder)) {
-      return V;
-    }
-  }
-  return nullptr;
-}
-
-/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
-/// into a single (icmp(A & X) ==/!= Y).
-static Value *foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd,
-                                     bool IsLogical,
-                                     InstCombiner::BuilderTy &Builder,
-                                     const SimplifyQuery &Q) {
-  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
-  ICmpInst::Predicate PredL, PredR;
-  std::optional<std::pair<unsigned, unsigned>> MaskPair =
-      getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
-  if (!MaskPair)
-    return nullptr;
-  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
-         "Expected equality predicates for masked type of icmps.");
-  unsigned LHSMask = MaskPair->first;
-  unsigned RHSMask = MaskPair->second;
-  unsigned Mask = LHSMask & RHSMask;
-  if (Mask == 0) {
-    // Even if the two sides don't share a common pattern, check if folding can
-    // still happen.
-    if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
-            LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
-            Builder))
-      return V;
-    return nullptr;
-  }
-
-  // In full generality:
-  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
-  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
-  //
-  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
-  // equivalent to (icmp (A & X) !Op Y).
-  //
-  // Therefore, we can pretend for the rest of this function that we're dealing
-  // with the conjunction, provided we flip the sense of any comparisons (both
-  // input and output).
-
-  // In most cases we're going to produce an EQ for the "&&" case.
-  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
-  if (!IsAnd) {
-    // Convert the masking analysis into its equivalent with negated
-    // comparisons.
-    Mask = conjugateICmpMask(Mask);
-  }
-
-  if (Mask & Mask_AllZeros) {
-    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
-    // -> (icmp eq (A & (B|D)), 0)
-    if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
-      return nullptr; // TODO: Use freeze?
-    Value *NewOr = Builder.CreateOr(B, D);
-    Value *NewAnd = Builder.CreateAnd(A, NewOr);
-    // We can't use C as zero because we might actually handle
-    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
-    // with B and D, having a single bit set.
-    Value *Zero = Constant::getNullValue(A->getType());
-    return Builder.CreateICmp(NewCC, NewAnd, Zero);
-  }
-  if (Mask & BMask_AllOnes) {
-    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
-    // -> (icmp eq (A & (B|D)), (B|D))
-    if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
-      return nullptr; // TODO: Use freeze?
-    Value *NewOr = Builder.CreateOr(B, D);
-    Value *NewAnd = Builder.CreateAnd(A, NewOr);
-    return Builder.CreateICmp(NewCC, NewAnd, NewOr);
-  }
-  if (Mask & AMask_AllOnes) {
-    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
-    // -> (icmp eq (A & (B&D)), A)
-    if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
-      return nullptr; // TODO: Use freeze?
-    Value *NewAnd1 = Builder.CreateAnd(B, D);
-    Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
-    return Builder.CreateICmp(NewCC, NewAnd2, A);
-  }
-
-  const APInt *ConstB, *ConstD;
-  if (match(B, m_APInt(ConstB)) && match(D, m_APInt(ConstD))) {
-    if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
-      // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
-      // (icmp ne (A & B), B) & (icmp ne (A & D), D)
-      //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
-      // Only valid if one of the masks is a superset of the other (check "B&D"
-      // is the same as either B or D).
-      APInt NewMask = *ConstB & *ConstD;
-      if (NewMask == *ConstB)
-        return LHS;
-      if (NewMask == *ConstD)
-        return RHS;
-    }
-
-    if (Mask & AMask_NotAllOnes) {
-      // (icmp ne (A & B), B) & (icmp ne (A & D), D)
-      //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
-      // Only valid if one of the masks is a superset of the other (check "B|D"
-      // is the same as either B or D).
-      APInt NewMask = *ConstB | *ConstD;
-      if (NewMask == *ConstB)
-        return LHS;
-      if (NewMask == *ConstD)
-        return RHS;
-    }
-
-    if (Mask & (BMask_Mixed | BMask_NotMixed)) {
-      // Mixed:
-      // (icmp eq (A & B), C) & (icmp eq (A & D), E)
-      // We already know that B & C == C && D & E == E.
-      // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
-      // C and E, which are shared by both the mask B and the mask D, don't
-      // contradict, then we can transform to
-      // -> (icmp eq (A & (B|D)), (C|E))
-      // Currently, we only handle the case of B, C, D, and E being constant.
-      // We can't simply use C and E because we might actually handle
-      //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
-      // with B and D, having a single bit set.
-
-      // NotMixed:
-      // (icmp ne (A & B), C) & (icmp ne (A & D), E)
-      // -> (icmp ne (A & (B & D)), (C & E))
-      // Check the intersection (B & D) for inequality.
-      // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B
-      // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both
-      // the B and the D, don't contradict. Note that we can assume (~B & C) ==
-      // 0 && (~D & E) == 0, previous operation should delete these icmps if it
-      // hadn't been met.
-
-      const APInt *OldConstC, *OldConstE;
-      if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
-        return nullptr;
-
-      auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * {
-        CC = IsNot ? CmpInst::getInversePredicate(CC) : CC;
-        const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
-        const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
-
-        if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
-          return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd);
-
-        if (IsNot && !ConstB->isSubsetOf(*ConstD) &&
-            !ConstD->isSubsetOf(*ConstB))
-          return nullptr;
-
-        APInt BD, CE;
-        if (IsNot) {
-          BD = *ConstB & *ConstD;
-          CE = ConstC & ConstE;
-        } else {
-          BD = *ConstB | *ConstD;
-          CE = ConstC | ConstE;
-        }
-        Value *NewAnd = Builder.CreateAnd(A, BD);
-        Value *CEVal = ConstantInt::get(A->getType(), CE);
-        return Builder.CreateICmp(CC, CEVal, NewAnd);
-      };
-
-      if (Mask & BMask_Mixed)
-        return FoldBMixed(NewCC, false);
-      if (Mask & BMask_NotMixed) // can be else also
-        return FoldBMixed(NewCC, true);
-    }
-  }
-
-  // (icmp eq (A & B), 0) | (icmp eq (A & D), 0)
-  // -> (icmp ne (A & (B|D)), (B|D))
-  // (icmp ne (A & B), 0) & (icmp ne (A & D), 0)
-  // -> (icmp eq (A & (B|D)), (B|D))
-  // iff B and D is known to be a power of two
-  if (Mask & Mask_NotAllZeros &&
-      isKnownToBeAPowerOfTwo(B, /*OrZero=*/false, /*Depth=*/0, Q) &&
-      isKnownToBeAPowerOfTwo(D, /*OrZero=*/false, /*Depth=*/0, Q)) {
-    // If this is a logical and/or, then we must prevent propagation of a
-    // poison value from the RHS by inserting freeze.
-    if (IsLogical)
-      D = Builder.CreateFreeze(D);
-    Value *Mask = Builder.CreateOr(B, D);
-    Value *Masked = Builder.CreateAnd(A, Mask);
-    return Builder.CreateICmp(NewCC, Masked, Mask);
-  }
-  return nullptr;
-}
-
-/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
-/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
-/// If \p Inverted is true then the check is for the inverted range, e.g.
-/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
-Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
-                                            bool Inverted) {
-  // Check the lower range comparison, e.g. x >= 0
-  // InstCombine already ensured that if there is a constant it's on the RHS.
-  ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
-  if (!RangeStart)
-    return nullptr;
-
-  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
-                               Cmp0->getPredicate());
-
-  // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
-  if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
-        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
-    return nullptr;
-
-  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
-                               Cmp1->getPredicate());
-
-  Value *Input = Cmp0->getOperand(0);
-  Value *Cmp1Op0 = Cmp1->getOperand(0);
-  Value *Cmp1Op1 = Cmp1->getOperand(1);
-  Value *RangeEnd;
-  if (match(Cmp1Op0, m_SExtOrSelf(m_Specific(Input)))) {
-    // For the upper range compare we have: icmp x, n
-    Input = Cmp1Op0;
-    RangeEnd = Cmp1Op1;
-  } else if (match(Cmp1Op1, m_SExtOrSelf(m_Specific(Input)))) {
-    // For the upper range compare we have: icmp n, x
-    Input = Cmp1Op1;
-    RangeEnd = Cmp1Op0;
-    Pred1 = ICmpInst::getSwappedPredicate(Pred1);
-  } else {
-    return nullptr;
-  }
-
-  // Check the upper range comparison, e.g. x < n
-  ICmpInst::Predicate NewPred;
-  switch (Pred1) {
-    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
-    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
-    default: return nullptr;
-  }
-
-  // This simplification is only valid if the upper range is not negative.
-  KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
-  if (!Known.isNonNegative())
-    return nullptr;
-
-  if (Inverted)
-    NewPred = ICmpInst::getInversePredicate(NewPred);
-
-  return Builder.CreateICmp(NewPred, Input, RangeEnd);
-}
-
-// (or (icmp eq X, 0), (icmp eq X, Pow2OrZero))
-//      -> (icmp eq (and X, Pow2OrZero), X)
-// (and (icmp ne X, 0), (icmp ne X, Pow2OrZero))
-//      -> (icmp ne (and X, Pow2OrZero), X)
-static Value *
-foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder,
-                                    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
-                                    const SimplifyQuery &Q) {
-  CmpPredicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
-  // Make sure we have right compares for our op.
-  if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
-    return nullptr;
-
-  // Make it so we can match LHS against the (icmp eq/ne X, 0) just for
-  // simplicity.
-  if (match(RHS->getOperand(1), m_Zero()))
-    std::swap(LHS, RHS);
-
-  Value *Pow2, *Op;
-  // Match the desired pattern:
-  // LHS: (icmp eq/ne X, 0)
-  // RHS: (icmp eq/ne X, Pow2OrZero)
-  // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but
-  // this form ends up slightly less canonical.
-  // We could potentially be more sophisticated than requiring LHS/RHS
-  // be one-use. We don't create additional instructions if only one
-  // of them is one-use. So cases where one is one-use and the other
-  // is two-use might be profitable.
-  if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) ||
-      !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) ||
-      match(Pow2, m_One()) ||
-      !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, /*Depth=*/0, Q.AC,
-                              Q.CxtI, Q.DT))
-    return nullptr;
-
-  Value *And = Builder.CreateAnd(Op, Pow2);
-  return Builder.CreateICmp(Pred, And, Op);
-}
-
-/// General pattern:
-///   X & Y
-///
-/// Where Y is checking that all the high bits (covered by a mask 4294967168)
-/// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
-/// Pattern can be one of:
-///   %t = add        i32 %arg,    128
-///   %r = icmp   ult i32 %t,      256
-/// Or
-///   %t0 = shl       i32 %arg,    24
-///   %t1 = ashr      i32 %t0,     24
-///   %r  = icmp  eq  i32 %t1,     %arg
-/// Or
-///   %t0 = trunc     i32 %arg  to i8
-///   %t1 = sext      i8  %t0   to i32
-///   %r  = icmp  eq  i32 %t1,     %arg
-/// This pattern is a signed truncation check.
-///
-/// And X is checking that some bit in that same mask is zero.
-/// I.e. can be one of:
-///   %r = icmp sgt i32   %arg,    -1
-/// Or
-///   %t = and      i32   %arg,    2147483648
-///   %r = icmp eq  i32   %t,      0
-///
-/// Since we are checking that all the bits in that mask are the same,
-/// and a particular bit is zero, what we are really checking is that all the
-/// masked bits are zero.
-/// So this should be transformed to:
-///   %r = icmp ult i32 %arg, 128
-static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
-                                        Instruction &CxtI,
-                                        InstCombiner::BuilderTy &Builder) {
-  assert(CxtI.getOpcode() == Instruction::And);
-
-  // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
-  auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
-                                            APInt &SignBitMask) -> bool {
-    const APInt *I01, *I1; // powers of two; I1 == I01 << 1
-    if (!(match(ICmp, m_SpecificICmp(ICmpInst::ICMP_ULT,
-                                     m_Add(m_Value(X), m_Power2(I01)),
-                                     m_Power2(I1))) &&
-          I1->ugt(*I01) && I01->shl(1) == *I1))
-      return false;
-    // Which bit is the new sign bit as per the 'signed truncation' pattern?
-    SignBitMask = *I01;
-    return true;
-  };
-
-  // One icmp needs to be 'signed truncation check'.
-  // We need to match this first, else we will mismatch commutative cases.
-  Value *X1;
-  APInt HighestBit;
-  ICmpInst *OtherICmp;
-  if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
-    OtherICmp = ICmp0;
-  else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
-    OtherICmp = ICmp1;
-  else
-    return nullptr;
-
-  assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
-
-  // Try to match/decompose into:  icmp eq (X & Mask), 0
-  auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
-                           APInt &UnsetBitsMask) -> bool {
-    CmpPredicate Pred = ICmp->getPredicate();
-    // Can it be decomposed into  icmp eq (X & Mask), 0  ?
-    auto Res =
-        llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
-                                   Pred, /*LookThroughTrunc=*/false);
-    if (Res && Res->Pred == ICmpInst::ICMP_EQ) {
-      X = Res->X;
-      UnsetBitsMask = Res->Mask;
-      return true;
-    }
-
-    // Is it  icmp eq (X & Mask), 0  already?
-    const APInt *Mask;
-    if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
-        Pred == ICmpInst::ICMP_EQ) {
-      UnsetBitsMask = *Mask;
-      return true;
-    }
-    return false;
-  };
-
-  // And the other icmp needs to be decomposable into a bit test.
-  Value *X0;
-  APInt UnsetBitsMask;
-  if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
-    return nullptr;
-
-  assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
-
-  // Are they working on the same value?
-  Value *X;
-  if (X1 == X0) {
-    // Ok as is.
-    X = X1;
-  } else if (match(X0, m_Trunc(m_Specific(X1)))) {
-    UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
-    X = X1;
-  } else
-    return nullptr;
-
-  // So which bits should be uniform as per the 'signed truncation check'?
-  // (all the bits starting with (i.e. including) HighestBit)
-  APInt SignBitsMask = ~(HighestBit - 1U);
-
-  // UnsetBitsMask must have some common bits with SignBitsMask,
-  if (!UnsetBitsMask.intersects(SignBitsMask))
-    return nullptr;
-
-  // Does UnsetBitsMask contain any bits outside of SignBitsMask?
-  if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
-    APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
-    if (!OtherHighestBit.isPowerOf2())
-      return nullptr;
-    HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
-  }
-  // Else, if it does not, then all is ok as-is.
-
-  // %r = icmp ult %X, SignBit
-  return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
-                               CxtI.getName() + ".simplified");
-}
-
-/// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
-/// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
-/// Also used for logical and/or, must be poison safe if range attributes are
-/// dropped.
-static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
-                                   InstCombiner::BuilderTy &Builder,
-                                   InstCombinerImpl &IC) {
-  CmpPredicate Pred0, Pred1;
-  Value *X;
-  if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
-                          m_SpecificInt(1))) ||
-      !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
-    return nullptr;
-
-  auto *CtPop = cast<Instruction>(Cmp0->getOperand(0));
-  if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) {
-    // Drop range attributes and re-infer them in the next iteration.
-    CtPop->dropPoisonGeneratingAnnotations();
-    IC.addToWorklist(CtPop);
-    return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
-  }
-  if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) {
-    // Drop range attributes and re-infer them in the next iteration.
-    CtPop->dropPoisonGeneratingAnnotations();
-    IC.addToWorklist(CtPop);
-    return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
-  }
-
-  return nullptr;
-}
-
-/// Reduce a pair of compares that check if a value has exactly 1 bit set.
-/// Also used for logical and/or, must be poison safe if range attributes are
-/// dropped.
-static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
-                             InstCombiner::BuilderTy &Builder,
-                             InstCombinerImpl &IC) {
-  // Handle 'and' / 'or' commutation: make the equality check the first operand.
-  if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
-    std::swap(Cmp0, Cmp1);
-  else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
-    std::swap(Cmp0, Cmp1);
-
-  // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
-  Value *X;
-  if (JoinedByAnd &&
-      match(Cmp0, m_SpecificICmp(ICmpInst::ICMP_NE, m_Value(X), m_ZeroInt())) &&
-      match(Cmp1, m_SpecificICmp(ICmpInst::ICMP_ULT,
-                                 m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
-                                 m_SpecificInt(2)))) {
-    auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
-    // Drop range attributes and re-infer them in the next iteration.
-    CtPop->dropPoisonGeneratingAnnotations();
-    IC.addToWorklist(CtPop);
-    return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
-  }
-  // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
-  if (!JoinedByAnd &&
-      match(Cmp0, m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(X), m_ZeroInt())) &&
-      match(Cmp1, m_SpecificICmp(ICmpInst::ICMP_UGT,
-                                 m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
-                                 m_SpecificInt(1)))) {
-    auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
-    // Drop range attributes and re-infer them in the next iteration.
-    CtPop->dropPoisonGeneratingAnnotations();
-    IC.addToWorklist(CtPop);
-    return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
-  }
-  return nullptr;
-}
-
-/// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff
-/// B is a contiguous set of ones starting from the most significant bit
-/// (negative power of 2), D and E are equal, and D is a contiguous set of ones
-/// starting at the most significant zero bit in B. Parameter B supports masking
-/// using undef/poison in either scalar or vector values.
-static Value *foldNegativePower2AndShiftedMask(
-    Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL,
-    ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) {
-  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
-         "Expected equality predicates for masked type of icmps.");
-  if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE)
-    return nullptr;
-
-  if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) ||
-      !match(E, m_ShiftedMask()))
-    return nullptr;
-
-  // Test scalar arguments for conversion. B has been validated earlier to be a
-  // negative power of two and thus is guaranteed to have one or more contiguous
-  // ones starting from the MSB followed by zero or more contiguous zeros. D has
-  // been validated earlier to be a shifted set of one or more contiguous ones.
-  // In order to match, B leading ones and D leading zeros should be equal. The
-  // predicate that B be a negative power of 2 prevents the condition of there
-  // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that
-  // D always be a shifted mask prevents the condition of D equaling 0. This
-  // prevents matching the condition where B contains the maximum number of
-  // leading one bits (-1) and D contains the maximum number of leading zero
-  // bits (0).
-  auto isReducible = [](const Value *B, const Value *D, const Value *E) {
-    const APInt *BCst, *DCst, *ECst;
-    return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) &&
-           match(E, m_APInt(ECst)) && *DCst == *ECst &&
-           (isa<PoisonValue>(B) ||
-            (BCst->countLeadingOnes() == DCst->countLeadingZeros()));
-  };
-
-  // Test vector type arguments for conversion.
-  if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) {
-    const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy);
-    const auto *BConst = dyn_cast<Constant>(B);
-    const auto *DConst = dyn_cast<Constant>(D);
-    const auto *EConst = dyn_cast<Constant>(E);
-
-    if (!BFVTy || !BConst || !DConst || !EConst)
-      return nullptr;
-
-    for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) {
-      const auto *BElt = BConst->getAggregateElement(I);
-      const auto *DElt = DConst->getAggregateElement(I);
-      const auto *EElt = EConst->getAggregateElement(I);
-
-      if (!BElt || !DElt || !EElt)
-        return nullptr;
-      if (!isReducible(BElt, DElt, EElt))
-        return nullptr;
-    }
-  } else {
-    // Test scalar type arguments for conversion.
-    if (!isReducible(B, D, E))
-      return nullptr;
-  }
-  return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D);
-}
-
-/// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) &
-/// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and
-/// M is a contiguous shifted mask starting at the right most significant zero
-/// bit in P. SGT is supported as when P is the largest representable power of
-/// 2, an earlier optimization converts the expression into (icmp X s> -1).
-/// Parameter P supports masking using undef/poison in either scalar or vector
-/// values.
-static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1,
-                                         bool JoinedByAnd,
-                                         InstCombiner::BuilderTy &Builder) {
-  if (!JoinedByAnd)
-    return nullptr;
-  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
-  ICmpInst::Predicate CmpPred0, CmpPred1;
-  // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u<
-  // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X &
-  // SignMask) == 0).
-  std::optional<std::pair<unsigned, unsigned>> MaskPair =
-      getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1);
-  if (!MaskPair)
-    return nullptr;
-
-  const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes;
-  unsigned CmpMask0 = MaskPair->first;
-  unsigned CmpMask1 = MaskPair->second;
-  if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) {
-    if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0,
-                                                    CmpPred1, Builder))
-      return V;
-  } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) {
-    if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1,
-                                                    CmpPred0, Builder))
-      return V;
-  }
-  return nullptr;
-}
-
-/// Commuted variants are assumed to be handled by calling this function again
-/// with the parameters swapped.
-static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
-                                         ICmpInst *UnsignedICmp, bool IsAnd,
-                                         const SimplifyQuery &Q,
-                                         InstCombiner::BuilderTy &Builder) {
-  Value *ZeroCmpOp;
-  CmpPredicate EqPred;
-  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
-      !ICmpInst::isEquality(EqPred))
-    return nullptr;
-
-  CmpPredicate UnsignedPred;
-
-  Value *A, *B;
-  if (match(UnsignedICmp,
-            m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
-      match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
-      (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
-    auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
-      if (!isKnownNonZero(NonZero, Q))
-        std::swap(NonZero, Other);
-      return isKnownNonZero(NonZero, Q);
-    };
-
-    // Given  ZeroCmpOp = (A + B)
-    //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
-    //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
-    //     with X being the value (A/B) that is known to be non-zero,
-    //     and Y being remaining value.
-    if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
-        IsAnd && GetKnownNonZeroAndOther(B, A))
-      return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
-    if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
-        !IsAnd && GetKnownNonZeroAndOther(B, A))
-      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
-  }
-
-  return nullptr;
-}
-
-struct IntPart {
-  Value *From;
-  unsigned StartBit;
-  unsigned NumBits;
-};
-
-/// Match an extraction of bits from an integer.
-static std::optional<IntPart> matchIntPart(Value *V) {
-  Value *X;
-  if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
-    return std::nullopt;
-
-  unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
-  unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
-  Value *Y;
-  const APInt *Shift;
-  // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
-  // from Y, not any shifted-in zeroes.
-  if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
-      Shift->ule(NumOriginalBits - NumExtractedBits))
-    return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
-  return {{X, 0, NumExtractedBits}};
-}
-
-/// Materialize an extraction of bits from an integer in IR.
-static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
-  Value *V = P.From;
-  if (P.StartBit)
-    V = Builder.CreateLShr(V, P.StartBit);
-  Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
-  if (TruncTy != V->getType())
-    V = Builder.CreateTrunc(V, TruncTy);
-  return V;
-}
-
-/// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
-/// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
-/// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
-Value *InstCombinerImpl::foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd) {
-  if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
-    return nullptr;
-
-  CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
-  auto GetMatchPart = [&](Value *CmpV,
-                          unsigned OpNo) -> std::optional<IntPart> {
-    assert(CmpV->getType()->isIntOrIntVectorTy(1) && "Must be bool");
-
-    Value *X, *Y;
-    // icmp ne (and x, 1), (and y, 1) <=> trunc (xor x, y) to i1
-    // icmp eq (and x, 1), (and y, 1) <=> not (trunc (xor x, y) to i1)
-    if (Pred == CmpInst::ICMP_NE
-            ? match(CmpV, m_Trunc(m_Xor(m_Value(X), m_Value(Y))))
-            : match(CmpV, m_Not(m_Trunc(m_Xor(m_Value(X), m_Value(Y))))))
-      return {{OpNo == 0 ? X : Y, 0, 1}};
-
-    auto *Cmp = dyn_cast<ICmpInst>(CmpV);
-    if (!Cmp)
-      return std::nullopt;
-
-    if (Pred == Cmp->getPredicate())
-      return matchIntPart(Cmp->getOperand(OpNo));
-
-    const APInt *C;
-    // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to:
-    // (icmp ult (xor x, y), 1 << C) so also look for that.
-    if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) {
-      if (!match(Cmp->getOperand(1), m_Power2(C)) ||
-          !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
-        return std::nullopt;
-    }
-
-    // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to:
-    // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that.
-    else if (Pred == CmpInst::ICMP_NE &&
-             Cmp->getPredicate() == CmpInst::ICMP_UGT) {
-      if (!match(Cmp->getOperand(1), m_LowBitMask(C)) ||
-          !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
-        return std::nullopt;
-    } else {
-      return std::nullopt;
-    }
-
-    unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero();
-    Instruction *I = cast<Instruction>(Cmp->getOperand(0));
-    return {{I->getOperand(OpNo), From, C->getBitWidth() - From}};
-  };
-
-  std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
-  std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
-  std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
-  std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
-  if (!L0 || !R0 || !L1 || !R1)
-    return nullptr;
-
-  // Make sure the LHS/RHS compare a part of the same value, possibly after
-  // an operand swap.
-  if (L0->From != L1->From || R0->From != R1->From) {
-    if (L0->From != R1->From || R0->From != L1->From)
-      return nullptr;
-    std::swap(L1, R1);
-  }
-
-  // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
-  // the low part and L1/R1 being the high part.
-  if (L0->StartBit + L0->NumBits != L1->StartBit ||
-      R0->StartBit + R0->NumBits != R1->StartBit) {
-    if (L1->StartBit + L1->NumBits != L0->StartBit ||
-        R1->StartBit + R1->NumBits != R0->StartBit)
-      return nullptr;
-    std::swap(L0, L1);
-    std::swap(R0, R1);
-  }
-
-  // We can simplify to a comparison of these larger parts of the integers.
-  IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
-  IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
-  Value *LValue = extractIntPart(L, Builder);
-  Value *RValue = extractIntPart(R, Builder);
-  return Builder.CreateICmp(Pred, LValue, RValue);
-}
-
-/// Reduce logic-of-compares with equality to a constant by substituting a
-/// common operand with the constant. Callers are expected to call this with
-/// Cmp0/Cmp1 switched to handle logic op commutativity.
-static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
-                                          bool IsAnd, bool IsLogical,
-                                          InstCombiner::BuilderTy &Builder,
-                                          const SimplifyQuery &Q) {
-  // Match an equality compare with a non-poison constant as Cmp0.
-  // Also, give up if the compare can be constant-folded to avoid looping.
-  CmpPredicate Pred0;
-  Value *X;
-  Constant *C;
-  if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
-      !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
-    return nullptr;
-  if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
-      (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
-    return nullptr;
-
-  // The other compare must include a common operand (X). Canonicalize the
-  // common operand as operand 1 (Pred1 is swapped if the common operand was
-  // operand 0).
-  Value *Y;
-  CmpPredicate Pred1;
-  if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X))))
-    return nullptr;
-
-  // Replace variable with constant value equivalence to remove a variable use:
-  // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
-  // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
-  // Can think of the 'or' substitution with the 'and' bool equivalent:
-  // A || B --> A || (!A && B)
-  Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
-  if (!SubstituteCmp) {
-    // If we need to create a new instruction, require that the old compare can
-    // be removed.
-    if (!Cmp1->hasOneUse())
-      return nullptr;
-    SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
-  }
-  if (IsLogical)
-    return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
-                 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
-  return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
-                             SubstituteCmp);
-}
-
-/// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
-/// or   (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
-/// into a single comparison using range-based reasoning.
-/// NOTE: This is also used for logical and/or, must be poison-safe!
-Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
-                                                     ICmpInst *ICmp2,
-                                                     bool IsAnd) {
-  CmpPredicate Pred1, Pred2;
-  Value *V1, *V2;
-  const APInt *C1, *C2;
-  if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
-      !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
-    return nullptr;
-
-  // Look through add of a constant offset on V1, V2, or both operands. This
-  // allows us to interpret the V + C' < C'' range idiom into a proper range.
-  const APInt *Offset1 = nullptr, *Offset2 = nullptr;
-  if (V1 != V2) {
-    Value *X;
-    if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
-      V1 = X;
-    if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
-      V2 = X;
-  }
-
-  if (V1 != V2)
-    return nullptr;
-
-  ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
-      IsAnd ? ICmpInst::getInverseCmpPredicate(Pred1) : Pred1, *C1);
-  if (Offset1)
-    CR1 = CR1.subtract(*Offset1);
-
-  ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
-      IsAnd ? ICmpInst::getInverseCmpPredicate(Pred2) : Pred2, *C2);
-  if (Offset2)
-    CR2 = CR2.subtract(*Offset2);
-
-  Type *Ty = V1->getType();
-  Value *NewV = V1;
-  std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
-  if (!CR) {
-    if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
-        CR2.isWrappedSet())
-      return nullptr;
-
-    // Check whether we have equal-size ranges that only differ by one bit.
-    // In that case we can apply a mask to map one range onto the other.
-    APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
-    APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
-    APInt CR1Size = CR1.getUpper() - CR1.getLower();
-    if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
-        CR1Size != CR2.getUpper() - CR2.getLower())
-      return nullptr;
-
-    CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
-    NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
-  }
-
-  if (IsAnd)
-    CR = CR->inverse();
-
-  CmpInst::Predicate NewPred;
-  APInt NewC, Offset;
-  CR->getEquivalentICmp(NewPred, NewC, Offset);
-
-  if (Offset != 0)
-    NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
-  return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
-}
-
-/// Ignore all operations which only change the sign of a value, returning the
-/// underlying magnitude value.
-static Value *stripSignOnlyFPOps(Value *Val) {
-  match(Val, m_FNeg(m_Value(Val)));
-  match(Val, m_FAbs(m_Value(Val)));
-  match(Val, m_CopySign(m_Value(Val), m_Value()));
-  return Val;
-}
-
-/// Matches canonical form of isnan, fcmp ord x, 0
-static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) {
-  return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP());
-}
-
-/// Matches fcmp u__ x, +/-inf
-static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS,
-                                     Value *RHS) {
-  return FCmpInst::isUnordered(P) && match(RHS, m_Inf());
-}
-
-/// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
-///
-/// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
-static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS,
-                                FCmpInst *RHS) {
-  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
-  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
-  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
-
-  if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
-      !matchUnorderedInfCompare(PredR, RHS0, RHS1))
-    return nullptr;
-
-  return Builder.CreateFCmpFMF(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1,
-                               FMFSource::intersect(LHS, RHS));
-}
-
-Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
-                                          bool IsAnd, bool IsLogicalSelect) {
-  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
-  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
-  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
-
-  if (LHS0 == RHS1 && RHS0 == LHS1) {
-    // Swap RHS operands to match LHS.
-    PredR = FCmpInst::getSwappedPredicate(PredR);
-    std::swap(RHS0, RHS1);
-  }
-
-  // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
-  // Suppose the relation between x and y is R, where R is one of
-  // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
-  // testing the desired relations.
-  //
-  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
-  //    bool(R & CC0) && bool(R & CC1)
-  //  = bool((R & CC0) & (R & CC1))
-  //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
-  //
-  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
-  //    bool(R & CC0) || bool(R & CC1)
-  //  = bool((R & CC0) | (R & CC1))
-  //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
-  if (LHS0 == RHS0 && LHS1 == RHS1) {
-    unsigned FCmpCodeL = getFCmpCode(PredL);
-    unsigned FCmpCodeR = getFCmpCode(PredR);
-    unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
-
-    // Intersect the fast math flags.
-    // TODO: We can union the fast math flags unless this is a logical select.
-    return getFCmpValue(NewPred, LHS0, LHS1, Builder,
-                        FMFSource::intersect(LHS, RHS));
-  }
-
-  // This transform is not valid for a logical select.
-  if (!IsLogicalSelect &&
-      ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
-       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
-        !IsAnd))) {
-    if (LHS0->getType() != RHS0->getType())
-      return nullptr;
-
-    // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
-    // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
-    if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) {
-      // Ignore the constants because they are obviously not NANs:
-      // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
-      // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
-      return Builder.CreateFCmpFMF(PredL, LHS0, RHS0,
-                                   FMFSource::intersect(LHS, RHS));
-    }
-  }
-
-  if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
-    // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
-    // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
-    if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS))
-      return Left;
-    if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS))
-      return Right;
-  }
-
-  // Turn at least two fcmps with constants into llvm.is.fpclass.
-  //
-  // If we can represent a combined value test with one class call, we can
-  // potentially eliminate 4-6 instructions. If we can represent a test with a
-  // single fcmp with fneg and fabs, that's likely a better canonical form.
-  if (LHS->hasOneUse() && RHS->hasOneUse()) {
-    auto [ClassValRHS, ClassMaskRHS] =
-        fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1);
-    if (ClassValRHS) {
-      auto [ClassValLHS, ClassMaskLHS] =
-          fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1);
-      if (ClassValLHS == ClassValRHS) {
-        unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
-                                      : (ClassMaskLHS | ClassMaskRHS);
-        return Builder.CreateIntrinsic(
-            Intrinsic::is_fpclass, {ClassValLHS->getType()},
-            {ClassValLHS, Builder.getInt32(CombinedMask)});
-      }
-    }
-  }
-
-  // Canonicalize the range check idiom:
-  // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C)
-  // --> fabs(x) olt/ole/ult/ule C
-  // or  (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C)
-  // --> fabs(x) ogt/oge/ugt/uge C
-  // TODO: Generalize to handle a negated variable operand?
-  const APFloat *LHSC, *RHSC;
-  if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() &&
-      FCmpInst::getSwappedPredicate(PredL) == PredR &&
-      match(LHS1, m_APFloatAllowPoison(LHSC)) &&
-      match(RHS1, m_APFloatAllowPoison(RHSC)) &&
-      LHSC->bitwiseIsEqual(neg(*RHSC))) {
-    auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) {
-      switch (Pred) {
-      case FCmpInst::FCMP_OLT:
-      case FCmpInst::FCMP_OLE:
-      case FCmpInst::FCMP_ULT:
-      case FCmpInst::FCMP_ULE:
-        return true;
-      default:
-        return false;
-      }
-    };
-    if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) {
-      std::swap(LHSC, RHSC);
-      std::swap(PredL, PredR);
-    }
-    if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) {
-      FastMathFlags NewFlag = LHS->getFastMathFlags();
-      if (!IsLogicalSelect)
-        NewFlag |= RHS->getFastMathFlags();
-
-      Value *FAbs =
-          Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0, NewFlag);
-      return Builder.CreateFCmpFMF(
-          PredL, FAbs, ConstantFP::get(LHS0->getType(), *LHSC), NewFlag);
-    }
-  }
-
-  return nullptr;
-}
-
-/// Match an fcmp against a special value that performs a test possible by
-/// llvm.is.fpclass.
-static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal,
-                                   uint64_t &ClassMask) {
-  auto *FCmp = dyn_cast<FCmpInst>(Op);
-  if (!FCmp || !FCmp->hasOneUse())
-    return false;
-
-  std::tie(ClassVal, ClassMask) =
-      fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
-                      FCmp->getOperand(0), FCmp->getOperand(1));
-  return ClassVal != nullptr;
-}
-
-/// or (is_fpclass x, mask0), (is_fpclass x, mask1)
-///     -> is_fpclass x, (mask0 | mask1)
-/// and (is_fpclass x, mask0), (is_fpclass x, mask1)
-///     -> is_fpclass x, (mask0 & mask1)
-/// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
-///     -> is_fpclass x, (mask0 ^ mask1)
-Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
-                                                    Value *Op0, Value *Op1) {
-  Value *ClassVal0 = nullptr;
-  Value *ClassVal1 = nullptr;
-  uint64_t ClassMask0, ClassMask1;
-
-  // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a
-  // new class.
-  //
-  // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is
-  // better.
-
-  bool IsLHSClass =
-      match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
-                     m_Value(ClassVal0), m_ConstantInt(ClassMask0))));
-  bool IsRHSClass =
-      match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
-                     m_Value(ClassVal1), m_ConstantInt(ClassMask1))));
-  if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) &&
-        (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) &&
-      ClassVal0 == ClassVal1) {
-    unsigned NewClassMask;
-    switch (BO.getOpcode()) {
-    case Instruction::And:
-      NewClassMask = ClassMask0 & ClassMask1;
-      break;
-    case Instruction::Or:
-      NewClassMask = ClassMask0 | ClassMask1;
-      break;
-    case Instruction::Xor:
-      NewClassMask = ClassMask0 ^ ClassMask1;
-      break;
-    default:
-      llvm_unreachable("not a binary logic operator");
-    }
-
-    if (IsLHSClass) {
-      auto *II = cast<IntrinsicInst>(Op0);
-      II->setArgOperand(
-          1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
-      return replaceInstUsesWith(BO, II);
-    }
-
-    if (IsRHSClass) {
-      auto *II = cast<IntrinsicInst>(Op1);
-      II->setArgOperand(
-          1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
-      return replaceInstUsesWith(BO, II);
-    }
-
-    CallInst *NewClass =
-        Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()},
-                                {ClassVal0, Builder.getInt32(NewClassMask)});
-    return replaceInstUsesWith(BO, NewClass);
-  }
-
-  return nullptr;
-}
-
-/// Look for the pattern that conditionally negates a value via math operations:
-///   cond.splat = sext i1 cond
-///   sub = add cond.splat, x
-///   xor = xor sub, cond.splat
-/// and rewrite it to do the same, but via logical operations:
-///   value.neg = sub 0, value
-///   cond = select i1 neg, value.neg, value
-Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
-    BinaryOperator &I) {
-  assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
-  Value *Cond, *X;
-  // As per complexity ordering, `xor` is not commutative here.
-  if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
-      !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
-      !Cond->getType()->isIntOrIntVectorTy(1) ||
-      !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X))))
-    return nullptr;
-  return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
-                            X);
-}
-
-/// This a limited reassociation for a special case (see above) where we are
-/// checking if two values are either both NAN (unordered) or not-NAN (ordered).
-/// This could be handled more generally in '-reassociation', but it seems like
-/// an unlikely pattern for a large number of logic ops and fcmps.
-static Instruction *reassociateFCmps(BinaryOperator &BO,
-                                     InstCombiner::BuilderTy &Builder) {
-  Instruction::BinaryOps Opcode = BO.getOpcode();
-  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
-         "Expecting and/or op for fcmp transform");
-
-  // There are 4 commuted variants of the pattern. Canonicalize operands of this
-  // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
-  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
-  if (match(Op1, m_FCmp(m_Value(), m_AnyZeroFP())))
-    std::swap(Op0, Op1);
-
-  // Match inner binop and the predicate for combining 2 NAN checks into 1.
-  Value *BO10, *BO11;
-  FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
-                                                           : FCmpInst::FCMP_UNO;
-  if (!match(Op0, m_SpecificFCmp(NanPred, m_Value(X), m_AnyZeroFP())) ||
-      !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
-    return nullptr;
-
-  // The inner logic op must have a matching fcmp operand.
-  Value *Y;
-  if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) ||
-      X->getType() != Y->getType())
-    std::swap(BO10, BO11);
-
-  if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) ||
-      X->getType() != Y->getType())
-    return nullptr;
-
-  // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
-  // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
-  // Intersect FMF from the 2 source fcmps.
-  Value *NewFCmp =
-      Builder.CreateFCmpFMF(NanPred, X, Y, FMFSource::intersect(Op0, BO10));
-  return BinaryOperator::Create(Opcode, NewFCmp, BO11);
-}
-
-/// Match variations of De Morgan's Laws:
-/// (~A & ~B) == (~(A | B))
-/// (~A | ~B) == (~(A & B))
-static Instruction *matchDeMorgansLaws(BinaryOperator &I,
-                                       InstCombiner &IC) {
-  const Instruction::BinaryOps Opcode = I.getOpcode();
-  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
-         "Trying to match De Morgan's Laws with something other than and/or");
-
-  // Flip the logic operation.
-  const Instruction::BinaryOps FlippedOpcode =
-      (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
-
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-  Value *A, *B;
-  if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
-      match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
-      !IC.isFreeToInvert(A, A->hasOneUse()) &&
-      !IC.isFreeToInvert(B, B->hasOneUse())) {
-    Value *AndOr =
-        IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
-    return BinaryOperator::CreateNot(AndOr);
-  }
-
-  // The 'not' ops may require reassociation.
-  // (A & ~B) & ~C --> A & ~(B | C)
-  // (~B & A) & ~C --> A & ~(B | C)
-  // (A | ~B) | ~C --> A | ~(B & C)
-  // (~B | A) | ~C --> A | ~(B & C)
-  Value *C;
-  if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
-      match(Op1, m_Not(m_Value(C)))) {
-    Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C);
-    return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO));
-  }
-
-  return nullptr;
-}
-
-bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
-  Value *CastSrc = CI->getOperand(0);
-
-  // Noop casts and casts of constants should be eliminated trivially.
-  if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
-    return false;
-
-  // If this cast is paired with another cast that can be eliminated, we prefer
-  // to have it eliminated.
-  if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
-    if (isEliminableCastPair(PrecedingCI, CI))
-      return false;
-
-  return true;
-}
-
-/// Fold {and,or,xor} (cast X), C.
-static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
-                                          InstCombinerImpl &IC) {
-  Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
-  if (!C)
-    return nullptr;
-
-  auto LogicOpc = Logic.getOpcode();
-  Type *DestTy = Logic.getType();
-  Type *SrcTy = Cast->getSrcTy();
-
-  // Move the logic operation ahead of a zext or sext if the constant is
-  // unchanged in the smaller source type. Performing the logic in a smaller
-  // type may provide more information to later folds, and the smaller logic
-  // instruction may be cheaper (particularly in the case of vectors).
-  Value *X;
-  if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
-    if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, SrcTy)) {
-      // LogicOpc (zext X), C --> zext (LogicOpc X, C)
-      Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
-      return new ZExtInst(NewOp, DestTy);
-    }
-  }
-
-  if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) {
-    if (Constant *TruncC = IC.getLosslessSignedTrunc(C, SrcTy)) {
-      // LogicOpc (sext X), C --> sext (LogicOpc X, C)
-      Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
-      return new SExtInst(NewOp, DestTy);
-    }
-  }
-
-  return nullptr;
-}
-
-/// Fold {and,or,xor} (cast X), Y.
-Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
-  auto LogicOpc = I.getOpcode();
-  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
-
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  // fold bitwise(A >> BW - 1, zext(icmp))     (BW is the scalar bits of the
-  // type of A)
-  //   -> bitwise(zext(A < 0), zext(icmp))
-  //   -> zext(bitwise(A < 0, icmp))
-  auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0,
-                                         Value *Op1) -> Instruction * {
-    Value *A;
-    bool IsMatched =
-        match(Op0,
-              m_OneUse(m_LShr(
-                  m_Value(A),
-                  m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) &&
-        match(Op1, m_OneUse(m_ZExt(m_ICmp(m_Value(), m_Value()))));
-
-    if (!IsMatched)
-      return nullptr;
-
-    auto *ICmpL =
-        Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType()));
-    auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0);
-    auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
-
-    return new ZExtInst(BitwiseOp, Op0->getType());
-  };
-
-  if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
-    return Ret;
-
-  if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
-    return Ret;
-
-  CastInst *Cast0 = dyn_cast<CastInst>(Op0);
-  if (!Cast0)
-    return nullptr;
-
-  // This must be a cast from an integer or integer vector source type to allow
-  // transformation of the logic operation to the source type.
-  Type *DestTy = I.getType();
-  Type *SrcTy = Cast0->getSrcTy();
-  if (!SrcTy->isIntOrIntVectorTy())
-    return nullptr;
-
-  if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this))
-    return Ret;
-
-  CastInst *Cast1 = dyn_cast<CastInst>(Op1);
-  if (!Cast1)
-    return nullptr;
-
-  // Both operands of the logic operation are casts. The casts must be the
-  // same kind for reduction.
-  Instruction::CastOps CastOpcode = Cast0->getOpcode();
-  if (CastOpcode != Cast1->getOpcode())
-    return nullptr;
-
-  // If the source types do not match, but the casts are matching extends, we
-  // can still narrow the logic op.
-  if (SrcTy != Cast1->getSrcTy()) {
-    Value *X, *Y;
-    if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) &&
-        match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) {
-      // Cast the narrower source to the wider source type.
-      unsigned XNumBits = X->getType()->getScalarSizeInBits();
-      unsigned YNumBits = Y->getType()->getScalarSizeInBits();
-      if (XNumBits < YNumBits)
-        X = Builder.CreateCast(CastOpcode, X, Y->getType());
-      else
-        Y = Builder.CreateCast(CastOpcode, Y, X->getType());
-      // Do the logic op in the intermediate width, then widen more.
-      Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y);
-      return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
-    }
-
-    // Give up for other cast opcodes.
-    return nullptr;
-  }
-
-  Value *Cast0Src = Cast0->getOperand(0);
-  Value *Cast1Src = Cast1->getOperand(0);
-
-  // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
-  if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
-      shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
-    Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
-                                       I.getName());
-    return CastInst::Create(CastOpcode, NewOp, DestTy);
-  }
-
-  return nullptr;
-}
-
-static Instruction *foldAndToXor(BinaryOperator &I,
-                                 InstCombiner::BuilderTy &Builder) {
-  assert(I.getOpcode() == Instruction::And);
-  Value *Op0 = I.getOperand(0);
-  Value *Op1 = I.getOperand(1);
-  Value *A, *B;
-
-  // Operand complexity canonicalization guarantees that the 'or' is Op0.
-  // (A | B) & ~(A & B) --> A ^ B
-  // (A | B) & ~(B & A) --> A ^ B
-  if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
-                        m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
-    return BinaryOperator::CreateXor(A, B);
-
-  // (A | ~B) & (~A | B) --> ~(A ^ B)
-  // (A | ~B) & (B | ~A) --> ~(A ^ B)
-  // (~B | A) & (~A | B) --> ~(A ^ B)
-  // (~B | A) & (B | ~A) --> ~(A ^ B)
-  if (Op0->hasOneUse() || Op1->hasOneUse())
-    if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
-                          m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
-      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
-
-  return nullptr;
-}
-
-static Instruction *foldOrToXor(BinaryOperator &I,
-                                InstCombiner::BuilderTy &Builder) {
-  assert(I.getOpcode() == Instruction::Or);
-  Value *Op0 = I.getOperand(0);
-  Value *Op1 = I.getOperand(1);
-  Value *A, *B;
-
-  // Operand complexity canonicalization guarantees that the 'and' is Op0.
-  // (A & B) | ~(A | B) --> ~(A ^ B)
-  // (A & B) | ~(B | A) --> ~(A ^ B)
-  if (Op0->hasOneUse() || Op1->hasOneUse())
-    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
-        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
-      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
-
-  // Operand complexity canonicalization guarantees that the 'xor' is Op0.
-  // (A ^ B) | ~(A | B) --> ~(A & B)
-  // (A ^ B) | ~(B | A) --> ~(A & B)
-  if (Op0->hasOneUse() || Op1->hasOneUse())
-    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
-        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
-      return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
-
-  // (A & ~B) | (~A & B) --> A ^ B
-  // (A & ~B) | (B & ~A) --> A ^ B
-  // (~B & A) | (~A & B) --> A ^ B
-  // (~B & A) | (B & ~A) --> A ^ B
-  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
-      match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
-    return BinaryOperator::CreateXor(A, B);
-
-  return nullptr;
-}
-
-/// Return true if a constant shift amount is always less than the specified
-/// bit-width. If not, the shift could create poison in the narrower type.
-static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
-  APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
-  return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
-}
-
-/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
-/// a common zext operand: and (binop (zext X), C), (zext X).
-Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
-  // This transform could also apply to {or, and, xor}, but there are better
-  // folds for those cases, so we don't expect those patterns here. AShr is not
-  // handled because it should always be transformed to LShr in this sequence.
-  // The subtract transform is different because it has a constant on the left.
-  // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
-  Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
-  Constant *C;
-  if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
-      !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
-      !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
-      !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
-      !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
-    return nullptr;
-
-  Value *X;
-  if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
-    return nullptr;
-
-  Type *Ty = And.getType();
-  if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
-    return nullptr;
-
-  // If we're narrowing a shift, the shift amount must be safe (less than the
-  // width) in the narrower type. If the shift amount is greater, instsimplify
-  // usually handles that case, but we can't guarantee/assert it.
-  Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
-  if (Opc == Instruction::LShr || Opc == Instruction::Shl)
-    if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
-      return nullptr;
-
-  // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
-  // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
-  Value *NewC = ConstantExpr::getTrunc(C, X->getType());
-  Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
-                                         : Builder.CreateBinOp(Opc, X, NewC);
-  return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
-}
-
-/// Try folding relatively complex patterns for both And and Or operations
-/// with all And and Or swapped.
-static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
-                                             InstCombiner::BuilderTy &Builder) {
-  const Instruction::BinaryOps Opcode = I.getOpcode();
-  assert(Opcode == Instruction::And || Opcode == Instruction::Or);
-
-  // Flip the logic operation.
-  const Instruction::BinaryOps FlippedOpcode =
-      (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
-
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-  Value *A, *B, *C, *X, *Y, *Dummy;
-
-  // Match following expressions:
-  // (~(A | B) & C)
-  // (~(A & B) | C)
-  // Captures X = ~(A | B) or ~(A & B)
-  const auto matchNotOrAnd =
-      [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
-                              Value *&X, bool CountUses = false) -> bool {
-    if (CountUses && !Op->hasOneUse())
-      return false;
-
-    if (match(Op, m_c_BinOp(FlippedOpcode,
-                            m_CombineAnd(m_Value(X),
-                                         m_Not(m_c_BinOp(Opcode, m_A, m_B))),
-                            m_C)))
-      return !CountUses || X->hasOneUse();
-
-    return false;
-  };
-
-  // (~(A | B) & C) | ... --> ...
-  // (~(A & B) | C) & ... --> ...
-  // TODO: One use checks are conservative. We just need to check that a total
-  //       number of multiple used values does not exceed reduction
-  //       in operations.
-  if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
-    // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
-    // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
-    if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
-                      true)) {
-      Value *Xor = Builder.CreateXor(B, C);
-      return (Opcode == Instruction::Or)
-                 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
-                 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
-    }
-
-    // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
-    // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
-    if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
-                      true)) {
-      Value *Xor = Builder.CreateXor(A, C);
-      return (Opcode == Instruction::Or)
-                 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
-                 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
-    }
-
-    // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
-    // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
-    if (match(Op1, m_OneUse(m_Not(m_OneUse(
-                       m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
-      return BinaryOperator::CreateNot(Builder.CreateBinOp(
-          Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
-
-    // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
-    // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
-    if (match(Op1, m_OneUse(m_Not(m_OneUse(
-                       m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
-      return BinaryOperator::CreateNot(Builder.CreateBinOp(
-          Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
-
-    // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
-    // Note, the pattern with swapped and/or is not handled because the
-    // result is more undefined than a source:
-    // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
-    if (Opcode == Instruction::Or && Op0->hasOneUse() &&
-        match(Op1, m_OneUse(m_Not(m_CombineAnd(
-                       m_Value(Y),
-                       m_c_BinOp(Opcode, m_Specific(C),
-                                 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
-      // X = ~(A | B)
-      // Y = (C | (A ^ B)
-      Value *Or = cast<BinaryOperator>(X)->getOperand(0);
-      return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
-    }
-  }
-
-  // (~A & B & C) | ... --> ...
-  // (~A | B | C) | ... --> ...
-  // TODO: One use checks are conservative. We just need to check that a total
-  //       number of multiple used values does not exceed reduction
-  //       in operations.
-  if (match(Op0,
-            m_OneUse(m_c_BinOp(FlippedOpcode,
-                               m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
-                               m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
-      match(Op0, m_OneUse(m_c_BinOp(
-                     FlippedOpcode,
-                     m_c_BinOp(FlippedOpcode, m_Value(C),
-                               m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
-                     m_Value(B))))) {
-    // X = ~A
-    // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
-    // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
-    if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
-                       Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
-                       m_Specific(C))))) ||
-        match(Op1, m_OneUse(m_Not(m_c_BinOp(
-                       Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
-                       m_Specific(A))))) ||
-        match(Op1, m_OneUse(m_Not(m_c_BinOp(
-                       Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
-                       m_Specific(B)))))) {
-      Value *Xor = Builder.CreateXor(B, C);
-      return (Opcode == Instruction::Or)
-                 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
-                 : BinaryOperator::CreateOr(Xor, X);
-    }
-
-    // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
-    // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
-    if (match(Op1, m_OneUse(m_Not(m_OneUse(
-                       m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
-      return BinaryOperator::Create(
-          FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
-          X);
-
-    // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
-    // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
-    if (match(Op1, m_OneUse(m_Not(m_OneUse(
-                       m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
-      return BinaryOperator::Create(
-          FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
-          X);
-  }
-
-  return nullptr;
-}
-
-/// Try to reassociate a pair of binops so that values with one use only are
-/// part of the same instruction. This may enable folds that are limited with
-/// multi-use restrictions and makes it more likely to match other patterns that
-/// are looking for a common operand.
-static Instruction *reassociateForUses(BinaryOperator &BO,
-                                       InstCombinerImpl::BuilderTy &Builder) {
-  Instruction::BinaryOps Opcode = BO.getOpcode();
-  Value *X, *Y, *Z;
-  if (match(&BO,
-            m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
-                      m_OneUse(m_Value(Z))))) {
-    if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
-      // (X op Y) op Z --> (Y op Z) op X
-      if (!X->hasOneUse()) {
-        Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
-        return BinaryOperator::Create(Opcode, YZ, X);
-      }
-      // (X op Y) op Z --> (X op Z) op Y
-      if (!Y->hasOneUse()) {
-        Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
-        return BinaryOperator::Create(Opcode, XZ, Y);
-      }
-    }
-  }
-
-  return nullptr;
-}
-
-// Match
-// (X + C2) | C
-// (X + C2) ^ C
-// (X + C2) & C
-// and convert to do the bitwise logic first:
-// (X | C) + C2
-// (X ^ C) + C2
-// (X & C) + C2
-// iff bits affected by logic op are lower than last bit affected by math op
-static Instruction *canonicalizeLogicFirst(BinaryOperator &I,
-                                           InstCombiner::BuilderTy &Builder) {
-  Type *Ty = I.getType();
-  Instruction::BinaryOps OpC = I.getOpcode();
-  Value *Op0 = I.getOperand(0);
-  Value *Op1 = I.getOperand(1);
-  Value *X;
-  const APInt *C, *C2;
-
-  if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
-        match(Op1, m_APInt(C))))
-    return nullptr;
-
-  unsigned Width = Ty->getScalarSizeInBits();
-  unsigned LastOneMath = Width - C2->countr_zero();
-
-  switch (OpC) {
-  case Instruction::And:
-    if (C->countl_one() < LastOneMath)
-      return nullptr;
-    break;
-  case Instruction::Xor:
-  case Instruction::Or:
-    if (C->countl_zero() < LastOneMath)
-      return nullptr;
-    break;
-  default:
-    llvm_unreachable("Unexpected BinaryOp!");
-  }
-
-  Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
-  return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp,
-                                               ConstantInt::get(Ty, *C2), Op0);
-}
-
-// binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) ->
-// shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt)
-// where both shifts are the same and AddC is a valid shift amount.
-Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) {
-  assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) &&
-         "Unexpected opcode");
-
-  Value *ShAmt;
-  Constant *ShiftedC1, *ShiftedC2, *AddC;
-  Type *Ty = I.getType();
-  unsigned BitWidth = Ty->getScalarSizeInBits();
-  if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)),
-                           m_Shift(m_ImmConstant(ShiftedC2),
-                                   m_AddLike(m_Deferred(ShAmt),
-                                             m_ImmConstant(AddC))))))
-    return nullptr;
-
-  // Make sure the add constant is a valid shift amount.
-  if (!match(AddC,
-             m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth))))
-    return nullptr;
-
-  // Avoid constant expressions.
-  auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0));
-  auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1));
-  if (!Op0Inst || !Op1Inst)
-    return nullptr;
-
-  // Both shifts must be the same.
-  Instruction::BinaryOps ShiftOp =
-      static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode());
-  if (ShiftOp != Op1Inst->getOpcode())
-    return nullptr;
-
-  // For adds, only left shifts are supported.
-  if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
-    return nullptr;
-
-  Value *NewC = Builder.CreateBinOp(
-      I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
-  return BinaryOperator::Create(ShiftOp, NewC, ShAmt);
-}
-
-// Fold and/or/xor with two equal intrinsic IDs:
-// bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt))
-// -> fshl(bitwise(A, C), bitwise(B, D), ShAmt)
-// bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt))
-// -> fshr(bitwise(A, C), bitwise(B, D), ShAmt)
-// bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B))
-// bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C)))
-// bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B))
-// bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C)))
-static Instruction *
-foldBitwiseLogicWithIntrinsics(BinaryOperator &I,
-                               InstCombiner::BuilderTy &Builder) {
-  assert(I.isBitwiseLogicOp() && "Should and/or/xor");
-  if (!I.getOperand(0)->hasOneUse())
-    return nullptr;
-  IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0));
-  if (!X)
-    return nullptr;
-
-  IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1));
-  if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID()))
-    return nullptr;
-
-  Intrinsic::ID IID = X->getIntrinsicID();
-  const APInt *RHSC;
-  // Try to match constant RHS.
-  if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
-             !match(I.getOperand(1), m_APInt(RHSC))))
-    return nullptr;
-
-  switch (IID) {
-  case Intrinsic::fshl:
-  case Intrinsic::fshr: {
-    if (X->getOperand(2) != Y->getOperand(2))
-      return nullptr;
-    Value *NewOp0 =
-        Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0));
-    Value *NewOp1 =
-        Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1));
-    Function *F =
-        Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType());
-    return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)});
-  }
-  case Intrinsic::bswap:
-  case Intrinsic::bitreverse: {
-    Value *NewOp0 = Builder.CreateBinOp(
-        I.getOpcode(), X->getOperand(0),
-        Y ? Y->getOperand(0)
-          : ConstantInt::get(I.getType(), IID == Intrinsic::bswap
-                                              ? RHSC->byteSwap()
-                                              : RHSC->reverseBits()));
-    Function *F =
-        Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType());
-    return CallInst::Create(F, {NewOp0});
-  }
-  default:
-    return nullptr;
-  }
-}
-
-// Try to simplify V by replacing occurrences of Op with RepOp, but only look
-// through bitwise operations. In particular, for X | Y we try to replace Y with
-// 0 inside X and for X & Y we try to replace Y with -1 inside X.
-// Return the simplified result of X if successful, and nullptr otherwise.
-// If SimplifyOnly is true, no new instructions will be created.
-static Value *simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp,
-                                          bool SimplifyOnly,
-                                          InstCombinerImpl &IC,
-                                          unsigned Depth = 0) {
-  if (Op == RepOp)
-    return nullptr;
-
-  if (V == Op)
-    return RepOp;
-
-  auto *I = dyn_cast<BinaryOperator>(V);
-  if (!I || !I->isBitwiseLogicOp() || Depth >= 3)
-    return nullptr;
-
-  if (!I->hasOneUse())
-    SimplifyOnly = true;
-
-  Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp,
-                                              SimplifyOnly, IC, Depth + 1);
-  Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp,
-                                              SimplifyOnly, IC, Depth + 1);
-  if (!NewOp0 && !NewOp1)
-    return nullptr;
-
-  if (!NewOp0)
-    NewOp0 = I->getOperand(0);
-  if (!NewOp1)
-    NewOp1 = I->getOperand(1);
-
-  if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1,
-                                 IC.getSimplifyQuery().getWithInstruction(I)))
-    return Res;
-
-  if (SimplifyOnly)
-    return nullptr;
-  return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1);
-}
-
-/// Reassociate and/or expressions to see if we can fold the inner and/or ops.
-/// TODO: Make this recursive; it's a little tricky because an arbitrary
-/// number of and/or instructions might have to be created.
-Value *InstCombinerImpl::reassociateBooleanAndOr(Value *LHS, Value *X, Value *Y,
-                                                 Instruction &I, bool IsAnd,
-                                                 bool RHSIsLogical) {
-  Instruction::BinaryOps Opcode = IsAnd ? Instruction::And : Instruction::Or;
-  // LHS bop (X lop Y) --> (LHS bop X) lop Y
-  // LHS bop (X bop Y) --> (LHS bop X) bop Y
-  if (Value *Res = foldBooleanAndOr(LHS, X, I, IsAnd, /*IsLogical=*/false))
-    return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, Res, Y)
-                        : Builder.CreateBinOp(Opcode, Res, Y);
-  // LHS bop (X bop Y) --> X bop (LHS bop Y)
-  // LHS bop (X lop Y) --> X lop (LHS bop Y)
-  if (Value *Res = foldBooleanAndOr(LHS, Y, I, IsAnd, /*IsLogical=*/false))
-    return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, X, Res)
-                        : Builder.CreateBinOp(Opcode, X, Res);
-  return nullptr;
-}
-
-// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
-// here. We should standardize that construct where it is needed or choose some
-// other way to ensure that commutated variants of patterns are not missed.
-Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
-  Type *Ty = I.getType();
-
-  if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
-                                 SQ.getWithInstruction(&I)))
-    return replaceInstUsesWith(I, V);
-
-  if (SimplifyAssociativeOrCommutative(I))
-    return &I;
-
-  if (Instruction *X = foldVectorBinop(I))
-    return X;
-
-  if (Instruction *Phi = foldBinopWithPhiOperands(I))
-    return Phi;
-
-  // See if we can simplify any instructions used by the instruction whose sole
-  // purpose is to compute bits we don't care about.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;
-
-  // Do this before using distributive laws to catch simple and/or/not patterns.
-  if (Instruction *Xor = foldAndToXor(I, Builder))
-    return Xor;
-
-  if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
-    return X;
-
-  // (A|B)&(A|C) -> A|(B&C) etc
-  if (Value *V = foldUsingDistributiveLaws(I))
-    return replaceInstUsesWith(I, V);
-
-  if (Instruction *R = foldBinOpShiftWithShift(I))
-    return R;
-
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  Value *X, *Y;
-  const APInt *C;
-  if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) ||
-       (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) &&
-      match(Op1, m_One())) {
-    // (1 >> X) & 1 --> zext(X == 0)
-    // (C << X) & 1 --> zext(X == 0), when C is odd
-    Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
-    return new ZExtInst(IsZero, Ty);
-  }
-
-  // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
-  Value *Neg;
-  if (match(&I,
-            m_c_And(m_CombineAnd(m_Value(Neg),
-                                 m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
-                    m_Value(Y)))) {
-    Value *Cmp = Builder.CreateIsNull(Neg);
-    return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
-  }
-
-  // Canonicalize:
-  // (X +/- Y) & Y --> ~X & Y when Y is a power of 2.
-  if (match(&I, m_c_And(m_Value(Y), m_OneUse(m_CombineOr(
-                                        m_c_Add(m_Value(X), m_Deferred(Y)),
-                                        m_Sub(m_Value(X), m_Deferred(Y)))))) &&
-      isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, /*Depth*/ 0, &I))
-    return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y);
-
-  if (match(Op1, m_APInt(C))) {
-    const APInt *XorC;
-    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
-      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
-      Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
-      Value *And = Builder.CreateAnd(X, Op1);
-      And->takeName(Op0);
-      return BinaryOperator::CreateXor(And, NewC);
-    }
-
-    const APInt *OrC;
-    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
-      // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
-      // NOTE: This reduces the number of bits set in the & mask, which
-      // can expose opportunities for store narrowing for scalars.
-      // NOTE: SimplifyDemandedBits should have already removed bits from C1
-      // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
-      // above, but this feels safer.
-      APInt Together = *C & *OrC;
-      Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
-      And->takeName(Op0);
-      return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
-    }
-
-    unsigned Width = Ty->getScalarSizeInBits();
-    const APInt *ShiftC;
-    if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
-        ShiftC->ult(Width)) {
-      if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
-        // We are clearing high bits that were potentially set by sext+ashr:
-        // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
-        Value *Sext = Builder.CreateSExt(X, Ty);
-        Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
-        return BinaryOperator::CreateLShr(Sext, ShAmtC);
-      }
-    }
-
-    // If this 'and' clears the sign-bits added by ashr, replace with lshr:
-    // and (ashr X, ShiftC), C --> lshr X, ShiftC
-    if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
-        C->isMask(Width - ShiftC->getZExtValue()))
-      return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
-
-    const APInt *AddC;
-    if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
-      // If we are masking the result of the add down to exactly one bit and
-      // the constant we are adding has no bits set below that bit, then the
-      // add is flipping a single bit. Example:
-      // (X + 4) & 4 --> (X & 4) ^ 4
-      if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
-        assert((*C & *AddC) != 0 && "Expected common bit");
-        Value *NewAnd = Builder.CreateAnd(X, Op1);
-        return BinaryOperator::CreateXor(NewAnd, Op1);
-      }
-    }
-
-    // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
-    // bitwidth of X and OP behaves well when given trunc(C1) and X.
-    auto isNarrowableBinOpcode = [](BinaryOperator *B) {
-      switch (B->getOpcode()) {
-      case Instruction::Xor:
-      case Instruction::Or:
-      case Instruction::Mul:
-      case Instruction::Add:
-      case Instruction::Sub:
-        return true;
-      default:
-        return false;
-      }
-    };
-    BinaryOperator *BO;
-    if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
-      Instruction::BinaryOps BOpcode = BO->getOpcode();
-      Value *X;
-      const APInt *C1;
-      // TODO: The one-use restrictions could be relaxed a little if the AND
-      // is going to be removed.
-      // Try to narrow the 'and' and a binop with constant operand:
-      // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
-      if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
-          C->isIntN(X->getType()->getScalarSizeInBits())) {
-        unsigned XWidth = X->getType()->getScalarSizeInBits();
-        Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
-        Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
-                           ? Builder.CreateBinOp(BOpcode, X, TruncC1)
-                           : Builder.CreateBinOp(BOpcode, TruncC1, X);
-        Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
-        Value *And = Builder.CreateAnd(BinOp, TruncC);
-        return new ZExtInst(And, Ty);
-      }
-
-      // Similar to above: if the mask matches the zext input width, then the
-      // 'and' can be eliminated, so we can truncate the other variable op:
-      // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
-      if (isa<Instruction>(BO->getOperand(0)) &&
-          match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
-          C->isMask(X->getType()->getScalarSizeInBits())) {
-        Y = BO->getOperand(1);
-        Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
-        Value *NewBO =
-            Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
-        return new ZExtInst(NewBO, Ty);
-      }
-      // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
-      if (isa<Instruction>(BO->getOperand(1)) &&
-          match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
-          C->isMask(X->getType()->getScalarSizeInBits())) {
-        Y = BO->getOperand(0);
-        Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
-        Value *NewBO =
-            Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
-        return new ZExtInst(NewBO, Ty);
-      }
-    }
-
-    // This is intentionally placed after the narrowing transforms for
-    // efficiency (transform directly to the narrow logic op if possible).
-    // If the mask is only needed on one incoming arm, push the 'and' op up.
-    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
-        match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
-      APInt NotAndMask(~(*C));
-      BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
-      if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
-        // Not masking anything out for the LHS, move mask to RHS.
-        // and ({x}or X, Y), C --> {x}or X, (and Y, C)
-        Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
-        return BinaryOperator::Create(BinOp, X, NewRHS);
-      }
-      if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
-        // Not masking anything out for the RHS, move mask to LHS.
-        // and ({x}or X, Y), C --> {x}or (and X, C), Y
-        Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
-        return BinaryOperator::Create(BinOp, NewLHS, Y);
-      }
-    }
-
-    // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
-    // constant, test if the shift amount equals the offset bit index:
-    // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
-    // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
-    if (C->isPowerOf2() &&
-        match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
-      int Log2ShiftC = ShiftC->exactLogBase2();
-      int Log2C = C->exactLogBase2();
-      bool IsShiftLeft =
-         cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
-      int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
-      assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
-      Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
-      return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
-                                ConstantInt::getNullValue(Ty));
-    }
-
-    Constant *C1, *C2;
-    const APInt *C3 = C;
-    Value *X;
-    if (C3->isPowerOf2()) {
-      Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero());
-      if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
-                                     m_ImmConstant(C2)))) &&
-          match(C1, m_Power2())) {
-        Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
-        Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
-        KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
-        if (KnownLShrc.getMaxValue().ult(Width)) {
-          // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
-          // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
-          Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
-          Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
-          return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
-                                    ConstantInt::getNullValue(Ty));
-        }
-      }
-
-      if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
-                                    m_ImmConstant(C2)))) &&
-          match(C1, m_Power2())) {
-        Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
-        Constant *Cmp =
-            ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, Log2C3, C2, DL);
-        if (Cmp && Cmp->isZeroValue()) {
-          // iff C1,C3 is pow2 and Log2(C3) >= C2:
-          // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
-          Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
-          Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
-          Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
-          return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
-                                    ConstantInt::getNullValue(Ty));
-        }
-      }
-    }
-  }
-
-  // If we are clearing the sign bit of a floating-point value, convert this to
-  // fabs, then cast back to integer.
-  //
-  // This is a generous interpretation for noimplicitfloat, this is not a true
-  // floating-point operation.
-  //
-  // Assumes any IEEE-represented type has the sign bit in the high bit.
-  // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
-  Value *CastOp;
-  if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
-      match(Op1, m_MaxSignedValue()) &&
-      !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
-          Attribute::NoImplicitFloat)) {
-    Type *EltTy = CastOp->getType()->getScalarType();
-    if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) {
-      Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
-      return new BitCastInst(FAbs, I.getType());
-    }
-  }
-
-  // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask)
-  // where Y is a valid shift amount.
-  if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
-                      m_SignMask())) &&
-      match(Y, m_SpecificInt_ICMP(
-                   ICmpInst::Predicate::ICMP_EQ,
-                   APInt(Ty->getScalarSizeInBits(),
-                         Ty->getScalarSizeInBits() -
-                             X->getType()->getScalarSizeInBits())))) {
-    auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
-    return BinaryOperator::CreateAnd(SExt, Op1);
-  }
-
-  if (Instruction *Z = narrowMaskedBinOp(I))
-    return Z;
-
-  if (I.getType()->isIntOrIntVectorTy(1)) {
-    if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
-      if (auto *R =
-              foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
-        return R;
-    }
-    if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
-      if (auto *R =
-              foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
-        return R;
-    }
-  }
-
-  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
-    return FoldedLogic;
-
-  if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
-    return DeMorgan;
-
-  {
-    Value *A, *B, *C;
-    // A & ~(A ^ B) --> A & B
-    if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
-      return BinaryOperator::CreateAnd(Op0, B);
-    // ~(A ^ B) & A --> A & B
-    if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
-      return BinaryOperator::CreateAnd(Op1, B);
-
-    // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
-    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
-        match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) {
-      Value *NotC = Op1->hasOneUse()
-                        ? Builder.CreateNot(C)
-                        : getFreelyInverted(C, C->hasOneUse(), &Builder);
-      if (NotC != nullptr)
-        return BinaryOperator::CreateAnd(Op0, NotC);
-    }
-
-    // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
-    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) &&
-        match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) {
-      Value *NotC = Op0->hasOneUse()
-                        ? Builder.CreateNot(C)
-                        : getFreelyInverted(C, C->hasOneUse(), &Builder);
-      if (NotC != nullptr)
-        return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
-    }
-
-    // (A | B) & (~A ^ B) -> A & B
-    // (A | B) & (B ^ ~A) -> A & B
-    // (B | A) & (~A ^ B) -> A & B
-    // (B | A) & (B ^ ~A) -> A & B
-    if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
-        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
-      return BinaryOperator::CreateAnd(A, B);
-
-    // (~A ^ B) & (A | B) -> A & B
-    // (~A ^ B) & (B | A) -> A & B
-    // (B ^ ~A) & (A | B) -> A & B
-    // (B ^ ~A) & (B | A) -> A & B
-    if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
-        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
-      return BinaryOperator::CreateAnd(A, B);
-
-    // (~A | B) & (A ^ B) -> ~A & B
-    // (~A | B) & (B ^ A) -> ~A & B
-    // (B | ~A) & (A ^ B) -> ~A & B
-    // (B | ~A) & (B ^ A) -> ~A & B
-    if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
-        match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
-      return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
-
-    // (A ^ B) & (~A | B) -> ~A & B
-    // (B ^ A) & (~A | B) -> ~A & B
-    // (A ^ B) & (B | ~A) -> ~A & B
-    // (B ^ A) & (B | ~A) -> ~A & B
-    if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
-        match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
-      return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
-  }
-
-  if (Value *Res =
-          foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/true, /*IsLogical=*/false))
-    return replaceInstUsesWith(I, Res);
-
-  if (match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
-    bool IsLogical = isa<SelectInst>(Op1);
-    if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/true,
-                                          /*RHSIsLogical=*/IsLogical))
-      return replaceInstUsesWith(I, V);
-  }
-  if (match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
-    bool IsLogical = isa<SelectInst>(Op0);
-    if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/true,
-                                          /*RHSIsLogical=*/IsLogical))
-      return replaceInstUsesWith(I, V);
-  }
-
-  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
-    return FoldedFCmps;
-
-  if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
-    return CastedAnd;
-
-  if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
-    return Sel;
-
-  // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
-  // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
-  //       with binop identity constant. But creating a select with non-constant
-  //       arm may not be reversible due to poison semantics. Is that a good
-  //       canonicalization?
-  Value *A, *B;
-  if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) &&
-      A->getType()->isIntOrIntVectorTy(1))
-    return SelectInst::Create(A, B, Constant::getNullValue(Ty));
-
-  // Similarly, a 'not' of the bool translates to a swap of the select arms:
-  // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B
-  if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) &&
-      A->getType()->isIntOrIntVectorTy(1))
-    return SelectInst::Create(A, Constant::getNullValue(Ty), B);
-
-  // and(zext(A), B) -> A ? (B & 1) : 0
-  if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) &&
-      A->getType()->isIntOrIntVectorTy(1))
-    return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)),
-                              Constant::getNullValue(Ty));
-
-  // (-1 + A) & B --> A ? 0 : B where A is 0/1.
-  if (match(&I, m_c_And(m_OneUse(m_Add(m_ZExtOrSelf(m_Value(A)), m_AllOnes())),
-                        m_Value(B)))) {
-    if (A->getType()->isIntOrIntVectorTy(1))
-      return SelectInst::Create(A, Constant::getNullValue(Ty), B);
-    if (computeKnownBits(A, /* Depth */ 0, &I).countMaxActiveBits() <= 1) {
-      return SelectInst::Create(
-          Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B,
-          Constant::getNullValue(Ty));
-    }
-  }
-
-  // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
-  if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
-                            m_AShr(m_Value(X), m_APIntAllowPoison(C)))),
-                        m_Value(Y))) &&
-      *C == X->getType()->getScalarSizeInBits() - 1) {
-    Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
-    return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
-  }
-  // If there's a 'not' of the shifted value, swap the select operands:
-  // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
-  if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
-                            m_Not(m_AShr(m_Value(X), m_APIntAllowPoison(C))))),
-                        m_Value(Y))) &&
-      *C == X->getType()->getScalarSizeInBits() - 1) {
-    Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
-    return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
-  }
-
-  // (~x) & y  -->  ~(x | (~y))  iff that gets rid of inversions
-  if (sinkNotIntoOtherHandOfLogicalOp(I))
-    return &I;
-
-  // An and recurrence w/loop invariant step is equivelent to (and start, step)
-  PHINode *PN = nullptr;
-  Value *Start = nullptr, *Step = nullptr;
-  if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
-    return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
-
-  if (Instruction *R = reassociateForUses(I, Builder))
-    return R;
-
-  if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
-    return Canonicalized;
-
-  if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
-    return Folded;
-
-  if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
-    return Res;
-
-  if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
-    return Res;
-
-  if (Value *V =
-          simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getAllOnesValue(Ty),
-                                      /*SimplifyOnly*/ false, *this))
-    return BinaryOperator::CreateAnd(V, Op1);
-  if (Value *V =
-          simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getAllOnesValue(Ty),
-                                      /*SimplifyOnly*/ false, *this))
-    return BinaryOperator::CreateAnd(Op0, V);
-  // I is the 'and' instruction
-if (auto *Add = dyn_cast<BinaryOperator>(I.getOperand(0))) {
-  if (Add->getOpcode() == Instruction::Add) {
-      Value *LHS = Add->getOperand(0); // should be shl
-      ConstantInt *AddConst = dyn_cast<ConstantInt>(Add->getOperand(1));
-      ConstantInt *AndConst = dyn_cast<ConstantInt>(I.getOperand(1));
-      if (AddConst && AndConst) {
-          // check if AddConst is 47 and AndConst is -32
-          if (AddConst->equalsInt(47) && AndConst->getSExtValue() == -32) {
-              // Check if LHS is shl i64 %a, 5
-              if (auto *Shl = dyn_cast<BinaryOperator>(LHS)) {
-                  if (Shl->getOpcode() == Instruction::Shl) {
-                      ConstantInt *ShlConst = dyn_cast<ConstantInt>(Shl->getOperand(1));
-                      if (ShlConst && ShlConst->equalsInt(5)) {
-                          // You've matched the pattern!
-                          // Replace with: shl i64 (add i64 %a, 1), 5
-                          IRBuilder<> Builder(&I);
-                          Value *NewAdd = Builder.CreateAdd(Shl->getOperand(0), ConstantInt::get(I.getType(), 1));
-                          Value *NewShl = Builder.CreateShl(NewAdd, ShlConst);
-                          I.replaceAllUsesWith(NewShl);
-                      }
-                  }
-              }
-          }
-      }
-  }
-}
-  return nullptr;
-}
-
-Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
-                                                      bool MatchBSwaps,
-                                                      bool MatchBitReversals) {
-  SmallVector<Instruction *, 4> Insts;
-  if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
-                                       Insts))
-    return nullptr;
-  Instruction *LastInst = Insts.pop_back_val();
-  LastInst->removeFromParent();
-
-  for (auto *Inst : Insts) {
-    Inst->setDebugLoc(I.getDebugLoc());
-    Worklist.push(Inst);
-  }
-  return LastInst;
-}
-
-std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
-InstCombinerImpl::convertOrOfShiftsToFunnelShift(Instruction &Or) {
-  // TODO: Can we reduce the code duplication between this and the related
-  // rotate matching code under visitSelect and visitTrunc?
-  assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction");
-
-  unsigned Width = Or.getType()->getScalarSizeInBits();
-
-  Instruction *Or0, *Or1;
-  if (!match(Or.getOperand(0), m_Instruction(Or0)) ||
-      !match(Or.getOperand(1), m_Instruction(Or1)))
-    return std::nullopt;
-
-  bool IsFshl = true; // Sub on LSHR.
-  SmallVector<Value *, 3> FShiftArgs;
-
-  // First, find an or'd pair of opposite shifts:
-  // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
-  if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) {
-    Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
-    if (!match(Or0,
-               m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
-        !match(Or1,
-               m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
-        Or0->getOpcode() == Or1->getOpcode())
-      return std::nullopt;
-
-    // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
-    if (Or0->getOpcode() == BinaryOperator::LShr) {
-      std::swap(Or0, Or1);
-      std::swap(ShVal0, ShVal1);
-      std::swap(ShAmt0, ShAmt1);
-    }
-    assert(Or0->getOpcode() == BinaryOperator::Shl &&
-           Or1->getOpcode() == BinaryOperator::LShr &&
-           "Illegal or(shift,shift) pair");
-
-    // Match the shift amount operands for a funnel shift pattern. This always
-    // matches a subtraction on the R operand.
-    auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
-      // Check for constant shift amounts that sum to the bitwidth.
-      const APInt *LI, *RI;
-      if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI)))
-        if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
-          return ConstantInt::get(L->getType(), *LI);
-
-      Constant *LC, *RC;
-      if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
-          match(L,
-                m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
-          match(R,
-                m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
-          match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowPoison(Width)))
-        return ConstantExpr::mergeUndefsWith(LC, RC);
-
-      // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
-      // We limit this to X < Width in case the backend re-expands the
-      // intrinsic, and has to reintroduce a shift modulo operation (InstCombine
-      // might remove it after this fold). This still doesn't guarantee that the
-      // final codegen will match this original pattern.
-      if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
-        KnownBits KnownL = computeKnownBits(L, /*Depth*/ 0, &Or);
-        return KnownL.getMaxValue().ult(Width) ? L : nullptr;
-      }
-
-      // For non-constant cases, the following patterns currently only work for
-      // rotation patterns.
-      // TODO: Add general funnel-shift compatible patterns.
-      if (ShVal0 != ShVal1)
-        return nullptr;
-
-      // For non-constant cases we don't support non-pow2 shift masks.
-      // TODO: Is it worth matching urem as well?
-      if (!isPowerOf2_32(Width))
-        return nullptr;
-
-      // The shift amount may be masked with negation:
-      // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
-      Value *X;
-      unsigned Mask = Width - 1;
-      if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
-          match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
-        return X;
-
-      // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1)))
-      if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask))))
-        return L;
-
-      // Similar to above, but the shift amount may be extended after masking,
-      // so return the extended value as the parameter for the intrinsic.
-      if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
-          match(R,
-                m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
-                      m_SpecificInt(Mask))))
-        return L;
-
-      if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
-          match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
-        return L;
-
-      return nullptr;
-    };
-
-    Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
-    if (!ShAmt) {
-      ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
-      IsFshl = false; // Sub on SHL.
-    }
-    if (!ShAmt)
-      return std::nullopt;
-
-    FShiftArgs = {ShVal0, ShVal1, ShAmt};
-  } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) {
-    // If there are two 'or' instructions concat variables in opposite order:
-    //
-    // Slot1 and Slot2 are all zero bits.
-    // | Slot1 | Low | Slot2 | High |
-    // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High)
-    // | Slot2 | High | Slot1 | Low |
-    // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low)
-    //
-    // the latter 'or' can be safely convert to
-    // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt
-    // if ZextLowShlAmt + ZextHighShlAmt == Width.
-    if (!isa<ZExtInst>(Or1))
-      std::swap(Or0, Or1);
-
-    Value *High, *ZextHigh, *Low;
-    const APInt *ZextHighShlAmt;
-    if (!match(Or0,
-               m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt)))))
-      return std::nullopt;
-
-    if (!match(Or1, m_ZExt(m_Value(Low))) ||
-        !match(ZextHigh, m_ZExt(m_Value(High))))
-      return std::nullopt;
-
-    unsigned HighSize = High->getType()->getScalarSizeInBits();
-    unsigned LowSize = Low->getType()->getScalarSizeInBits();
-    // Make sure High does not overlap with Low and most significant bits of
-    // High aren't shifted out.
-    if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize))
-      return std::nullopt;
-
-    for (User *U : ZextHigh->users()) {
-      Value *X, *Y;
-      if (!match(U, m_Or(m_Value(X), m_Value(Y))))
-        continue;
-
-      if (!isa<ZExtInst>(Y))
-        std::swap(X, Y);
-
-      const APInt *ZextLowShlAmt;
-      if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) ||
-          !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or))
-        continue;
-
-      // HighLow is good concat. If sum of two shifts amount equals to Width,
-      // LowHigh must also be a good concat.
-      if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
-        continue;
-
-      // Low must not overlap with High and most significant bits of Low must
-      // not be shifted out.
-      assert(ZextLowShlAmt->uge(HighSize) &&
-             ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat");
-
-      FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)};
-      break;
-    }
-  }
-
-  if (FShiftArgs.empty())
-    return std::nullopt;
-
-  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
-  return std::make_pair(IID, FShiftArgs);
-}
-
-/// Match UB-safe variants of the funnel shift intrinsic.
-static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
-  if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) {
-    auto [IID, FShiftArgs] = *Opt;
-    Function *F =
-        Intrinsic::getOrInsertDeclaration(Or.getModule(), IID, Or.getType());
-    return CallInst::Create(F, FShiftArgs);
-  }
-
-  return nullptr;
-}
-
-/// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
-static Instruction *matchOrConcat(Instruction &Or,
-                                  InstCombiner::BuilderTy &Builder) {
-  assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
-  Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
-  Type *Ty = Or.getType();
-
-  unsigned Width = Ty->getScalarSizeInBits();
-  if ((Width & 1) != 0)
-    return nullptr;
-  unsigned HalfWidth = Width / 2;
-
-  // Canonicalize zext (lower half) to LHS.
-  if (!isa<ZExtInst>(Op0))
-    std::swap(Op0, Op1);
-
-  // Find lower/upper half.
-  Value *LowerSrc, *ShlVal, *UpperSrc;
-  const APInt *C;
-  if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
-      !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
-      !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
-    return nullptr;
-  if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
-      LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
-    return nullptr;
-
-  auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
-    Value *NewLower = Builder.CreateZExt(Lo, Ty);
-    Value *NewUpper = Builder.CreateZExt(Hi, Ty);
-    NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
-    Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
-    return Builder.CreateIntrinsic(id, Ty, BinOp);
-  };
-
-  // BSWAP: Push the concat down, swapping the lower/upper sources.
-  // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
-  Value *LowerBSwap, *UpperBSwap;
-  if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
-      match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
-    return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
-
-  // BITREVERSE: Push the concat down, swapping the lower/upper sources.
-  // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
-  Value *LowerBRev, *UpperBRev;
-  if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
-      match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
-    return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
-
-  return nullptr;
-}
-
-/// If all elements of two constant vectors are 0/-1 and inverses, return true.
-static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
-  unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
-  for (unsigned i = 0; i != NumElts; ++i) {
-    Constant *EltC1 = C1->getAggregateElement(i);
-    Constant *EltC2 = C2->getAggregateElement(i);
-    if (!EltC1 || !EltC2)
-      return false;
-
-    // One element must be all ones, and the other must be all zeros.
-    if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
-          (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
-      return false;
-  }
-  return true;
-}
-
-/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
-/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
-/// B, it can be used as the condition operand of a select instruction.
-/// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
-Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
-                                            bool ABIsTheSame) {
-  // We may have peeked through bitcasts in the caller.
-  // Exit immediately if we don't have (vector) integer types.
-  Type *Ty = A->getType();
-  if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
-    return nullptr;
-
-  // If A is the 'not' operand of B and has enough signbits, we have our answer.
-  if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
-    // If these are scalars or vectors of i1, A can be used directly.
-    if (Ty->isIntOrIntVectorTy(1))
-      return A;
-
-    // If we look through a vector bitcast, the caller will bitcast the operands
-    // to match the condition's number of bits (N x i1).
-    // To make this poison-safe, disallow bitcast from wide element to narrow
-    // element. That could allow poison in lanes where it was not present in the
-    // original code.
-    A = peekThroughBitcast(A);
-    if (A->getType()->isIntOrIntVectorTy()) {
-      unsigned NumSignBits = ComputeNumSignBits(A);
-      if (NumSignBits == A->getType()->getScalarSizeInBits() &&
-          NumSignBits <= Ty->getScalarSizeInBits())
-        return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
-    }
-    return nullptr;
-  }
-
-  // TODO: add support for sext and constant case
-  if (ABIsTheSame)
-    return nullptr;
-
-  // If both operands are constants, see if the constants are inverse bitmasks.
-  Constant *AConst, *BConst;
-  if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
-    if (AConst == ConstantExpr::getNot(BConst) &&
-        ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
-      return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
-
-  // Look for more complex patterns. The 'not' op may be hidden behind various
-  // casts. Look through sexts and bitcasts to find the booleans.
-  Value *Cond;
-  Value *NotB;
-  if (match(A, m_SExt(m_Value(Cond))) &&
-      Cond->getType()->isIntOrIntVectorTy(1)) {
-    // A = sext i1 Cond; B = sext (not (i1 Cond))
-    if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
-      return Cond;
-
-    // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
-    // TODO: The one-use checks are unnecessary or misplaced. If the caller
-    //       checked for uses on logic ops/casts, that should be enough to
-    //       make this transform worthwhile.
-    if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
-      NotB = peekThroughBitcast(NotB, true);
-      if (match(NotB, m_SExt(m_Specific(Cond))))
-        return Cond;
-    }
-  }
-
-  // All scalar (and most vector) possibilities should be handled now.
-  // Try more matches that only apply to non-splat constant vectors.
-  if (!Ty->isVectorTy())
-    return nullptr;
-
-  // If both operands are xor'd with constants using the same sexted boolean
-  // operand, see if the constants are inverse bitmasks.
-  // TODO: Use ConstantExpr::getNot()?
-  if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
-      match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
-      Cond->getType()->isIntOrIntVectorTy(1) &&
-      areInverseVectorBitmasks(AConst, BConst)) {
-    AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
-    return Builder.CreateXor(Cond, AConst);
-  }
-  return nullptr;
-}
-
-/// We have an expression of the form (A & B) | (C & D). Try to simplify this
-/// to "A' ? B : D", where A' is a boolean or vector of booleans.
-/// When InvertFalseVal is set to true, we try to match the pattern
-/// where we have peeked through a 'not' op and A and C are the same:
-/// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D
-Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C,
-                                              Value *D, bool InvertFalseVal) {
-  // The potential condition of the select may be bitcasted. In that case, look
-  // through its bitcast and the corresponding bitcast of the 'not' condition.
-  Type *OrigType = A->getType();
-  A = peekThroughBitcast(A, true);
-  C = peekThroughBitcast(C, true);
-  if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) {
-    // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D))
-    // If this is a vector, we may need to cast to match the condition's length.
-    // The bitcasts will either all exist or all not exist. The builder will
-    // not create unnecessary casts if the types already match.
-    Type *SelTy = A->getType();
-    if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
-      // For a fixed or scalable vector get N from <{vscale x} N x iM>
-      unsigned Elts = VecTy->getElementCount().getKnownMinValue();
-      // For a fixed or scalable vector, get the size in bits of N x iM; for a
-      // scalar this is just M.
-      unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
-      Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
-      SelTy = VectorType::get(EltTy, VecTy->getElementCount());
-    }
-    Value *BitcastB = Builder.CreateBitCast(B, SelTy);
-    if (InvertFalseVal)
-      D = Builder.CreateNot(D);
-    Value *BitcastD = Builder.CreateBitCast(D, SelTy);
-    Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD);
-    return Builder.CreateBitCast(Select, OrigType);
-  }
-
-  return nullptr;
-}
-
-// (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1)))
-// (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1)))
-static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS,
-                                               bool IsAnd, bool IsLogical,
-                                               IRBuilderBase &Builder) {
-  Value *LHS0 = LHS->getOperand(0);
-  Value *RHS0 = RHS->getOperand(0);
-  Value *RHS1 = RHS->getOperand(1);
-
-  ICmpInst::Predicate LPred =
-      IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
-  ICmpInst::Predicate RPred =
-      IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
-
-  const APInt *CInt;
-  if (LPred != ICmpInst::ICMP_EQ ||
-      !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) ||
-      !LHS0->getType()->isIntOrIntVectorTy() ||
-      !(LHS->hasOneUse() || RHS->hasOneUse()))
-    return nullptr;
-
-  auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) {
-    return match(RHSOp,
-                 m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) ||
-           (CInt->isZero() && RHSOp == LHS0);
-  };
-
-  Value *Other;
-  if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1))
-    Other = RHS0;
-  else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0))
-    Other = RHS1;
-  else
-    return nullptr;
-
-  if (IsLogical)
-    Other = Builder.CreateFreeze(Other);
-
-  return Builder.CreateICmp(
-      IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
-      Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)),
-      Other);
-}
-
-/// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
-/// If IsLogical is true, then the and/or is in select form and the transform
-/// must be poison-safe.
-Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
-                                          Instruction &I, bool IsAnd,
-                                          bool IsLogical) {
-  const SimplifyQuery Q = SQ.getWithInstruction(&I);
-
-  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
-  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
-  Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
-
-  const APInt *LHSC = nullptr, *RHSC = nullptr;
-  match(LHS1, m_APInt(LHSC));
-  match(RHS1, m_APInt(RHSC));
-
-  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
-  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
-  if (predicatesFoldable(PredL, PredR)) {
-    if (LHS0 == RHS1 && LHS1 == RHS0) {
-      PredL = ICmpInst::getSwappedPredicate(PredL);
-      std::swap(LHS0, LHS1);
-    }
-    if (LHS0 == RHS0 && LHS1 == RHS1) {
-      unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
-                            : getICmpCode(PredL) | getICmpCode(PredR);
-      bool IsSigned = LHS->isSigned() || RHS->isSigned();
-      return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
-    }
-  }
-
-  // handle (roughly):
-  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
-  // (icmp eq (A & B), C) & (icmp eq (A & D), E)
-  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder, Q))
-    return V;
-
-  if (Value *V =
-          foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
-    return V;
-  // We can treat logical like bitwise here, because both operands are used on
-  // the LHS, and as such poison from both will propagate.
-  if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd,
-                                                  /*IsLogical*/ false, Builder))
-    return V;
-
-  if (Value *V =
-          foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
-    return V;
-  // We can convert this case to bitwise and, because both operands are used
-  // on the LHS, and as such poison from both will propagate.
-  if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
-                                             /*IsLogical=*/false, Builder, Q)) {
-    // If RHS is still used, we should drop samesign flag.
-    if (IsLogical && RHS->hasSameSign() && !RHS->use_empty()) {
-      RHS->setSameSign(false);
-      addToWorklist(RHS);
-    }
-    return V;
-  }
-
-  if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder, *this))
-    return V;
-  if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder, *this))
-    return V;
-
-  // TODO: One of these directions is fine with logical and/or, the other could
-  // be supported by inserting freeze.
-  if (!IsLogical) {
-    // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
-    // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
-    if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
-      return V;
-
-    // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
-    // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
-    if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
-      return V;
-  }
-
-  // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
-  if (IsAnd && !IsLogical)
-    if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
-      return V;
-
-  if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this))
-    return V;
-
-  if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder))
-    return V;
-
-  // TODO: Verify whether this is safe for logical and/or.
-  if (!IsLogical) {
-    if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
-      return X;
-    if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
-      return X;
-  }
-
-  // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
-  // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
-  // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs.
-  if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
-      PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
-      LHS0->getType() == RHS0->getType() &&
-      (!IsLogical || isGuaranteedNotToBePoison(RHS0))) {
-    Value *NewOr = Builder.CreateOr(LHS0, RHS0);
-    return Builder.CreateICmp(PredL, NewOr,
-                              Constant::getNullValue(NewOr->getType()));
-  }
-
-  // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1)
-  // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1)
-  if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
-      PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) &&
-      LHS0->getType() == RHS0->getType() &&
-      (!IsLogical || isGuaranteedNotToBePoison(RHS0))) {
-    Value *NewAnd = Builder.CreateAnd(LHS0, RHS0);
-    return Builder.CreateICmp(PredL, NewAnd,
-                              Constant::getAllOnesValue(LHS0->getType()));
-  }
-
-  if (!IsLogical)
-    if (Value *V =
-            foldAndOrOfICmpsWithPow2AndWithZero(Builder, LHS, RHS, IsAnd, Q))
-      return V;
-
-  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
-  if (!LHSC || !RHSC)
-    return nullptr;
-
-  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
-  // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
-  // where CMAX is the all ones value for the truncated type,
-  // iff the lower bits of C2 and CA are zero.
-  if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
-      PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
-    Value *V;
-    const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
-
-    // (trunc x) == C1 & (and x, CA) == C2
-    // (and x, CA) == C2 & (trunc x) == C1
-    if (match(RHS0, m_Trunc(m_Value(V))) &&
-        match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
-      SmallC = RHSC;
-      BigC = LHSC;
-    } else if (match(LHS0, m_Trunc(m_Value(V))) &&
-               match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
-      SmallC = LHSC;
-      BigC = RHSC;
-    }
-
-    if (SmallC && BigC) {
-      unsigned BigBitSize = BigC->getBitWidth();
-      unsigned SmallBitSize = SmallC->getBitWidth();
-
-      // Check that the low bits are zero.
-      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
-      if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
-        Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
-        APInt N = SmallC->zext(BigBitSize) | *BigC;
-        Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
-        return Builder.CreateICmp(PredL, NewAnd, NewVal);
-      }
-    }
-  }
-
-  // Match naive pattern (and its inverted form) for checking if two values
-  // share same sign. An example of the pattern:
-  // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
-  // Inverted form (example):
-  // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
-  bool TrueIfSignedL, TrueIfSignedR;
-  if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
-      isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
-      (RHS->hasOneUse() || LHS->hasOneUse())) {
-    Value *X, *Y;
-    if (IsAnd) {
-      if ((TrueIfSignedL && !TrueIfSignedR &&
-           match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
-           match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
-          (!TrueIfSignedL && TrueIfSignedR &&
-           match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
-           match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
-        Value *NewXor = Builder.CreateXor(X, Y);
-        return Builder.CreateIsNeg(NewXor);
-      }
-    } else {
-      if ((TrueIfSignedL && !TrueIfSignedR &&
-            match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
-            match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
-          (!TrueIfSignedL && TrueIfSignedR &&
-           match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
-           match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
-        Value *NewXor = Builder.CreateXor(X, Y);
-        return Builder.CreateIsNotNeg(NewXor);
-      }
-    }
-  }
-
-  return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
-}
-
-/// If IsLogical is true, then the and/or is in select form and the transform
-/// must be poison-safe.
-Value *InstCombinerImpl::foldBooleanAndOr(Value *LHS, Value *RHS,
-                                          Instruction &I, bool IsAnd,
-                                          bool IsLogical) {
-  if (!LHS->getType()->isIntOrIntVectorTy(1))
-    return nullptr;
-
-  if (auto *LHSCmp = dyn_cast<ICmpInst>(LHS))
-    if (auto *RHSCmp = dyn_cast<ICmpInst>(RHS))
-      if (Value *Res = foldAndOrOfICmps(LHSCmp, RHSCmp, I, IsAnd, IsLogical))
-        return Res;
-
-  if (auto *LHSCmp = dyn_cast<FCmpInst>(LHS))
-    if (auto *RHSCmp = dyn_cast<FCmpInst>(RHS))
-      if (Value *Res = foldLogicOfFCmps(LHSCmp, RHSCmp, IsAnd, IsLogical))
-        return Res;
-
-  if (Value *Res = foldEqOfParts(LHS, RHS, IsAnd))
-    return Res;
-
-  return nullptr;
-}
-
-static Value *foldOrOfInversions(BinaryOperator &I,
-                                 InstCombiner::BuilderTy &Builder) {
-  assert(I.getOpcode() == Instruction::Or &&
-         "Simplification only supports or at the moment.");
-
-  Value *Cmp1, *Cmp2, *Cmp3, *Cmp4;
-  if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) ||
-      !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4))))
-    return nullptr;
-
-  // Check if any two pairs of the and operations are inversions of each other.
-  if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4))
-    return Builder.CreateXor(Cmp1, Cmp4);
-  if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3))
-    return Builder.CreateXor(Cmp1, Cmp3);
-
-  return nullptr;
-}
-
-// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
-// here. We should standardize that construct where it is needed or choose some
-// other way to ensure that commutated variants of patterns are not missed.
-Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
-  if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
-                                SQ.getWithInstruction(&I)))
-    return replaceInstUsesWith(I, V);
-
-  if (SimplifyAssociativeOrCommutative(I))
-    return &I;
-
-  if (Instruction *X = foldVectorBinop(I))
-    return X;
-
-  if (Instruction *Phi = foldBinopWithPhiOperands(I))
-    return Phi;
-
-  // See if we can simplify any instructions used by the instruction whose sole
-  // purpose is to compute bits we don't care about.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;
-
-  // Do this before using distributive laws to catch simple and/or/not patterns.
-  if (Instruction *Xor = foldOrToXor(I, Builder))
-    return Xor;
-
-  if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
-    return X;
-
-  // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D
-  // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C
-  if (Value *V = foldOrOfInversions(I, Builder))
-    return replaceInstUsesWith(I, V);
-
-  // (A&B)|(A&C) -> A&(B|C) etc
-  if (Value *V = foldUsingDistributiveLaws(I))
-    return replaceInstUsesWith(I, V);
-
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-  Type *Ty = I.getType();
-  if (Ty->isIntOrIntVectorTy(1)) {
-    if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
-      if (auto *R =
-              foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
-        return R;
-    }
-    if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
-      if (auto *R =
-              foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
-        return R;
-    }
-  }
-
-  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
-    return FoldedLogic;
-
-  if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
-                                                  /*MatchBitReversals*/ true))
-    return BitOp;
-
-  if (Instruction *Funnel = matchFunnelShift(I, *this))
-    return Funnel;
-
-  if (Instruction *Concat = matchOrConcat(I, Builder))
-    return replaceInstUsesWith(I, Concat);
-
-  if (Instruction *R = foldBinOpShiftWithShift(I))
-    return R;
-
-  if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
-    return R;
-
-  if (cast<PossiblyDisjointInst>(I).isDisjoint()) {
-    if (Instruction *R =
-            foldAddLikeCommutative(I.getOperand(0), I.getOperand(1),
-                                   /*NSW=*/true, /*NUW=*/true))
-      return R;
-    if (Instruction *R =
-            foldAddLikeCommutative(I.getOperand(1), I.getOperand(0),
-                                   /*NSW=*/true, /*NUW=*/true))
-      return R;
-  }
-
-  Value *X, *Y;
-  const APInt *CV;
-  if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
-      !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
-    // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
-    // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
-    Value *Or = Builder.CreateOr(X, Y);
-    return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
-  }
-
-  // If the operands have no common bits set:
-  // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
-  if (match(&I, m_c_DisjointOr(m_OneUse(m_Mul(m_Value(X), m_Value(Y))),
-                               m_Deferred(X)))) {
-    Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
-    return BinaryOperator::CreateMul(X, IncrementY);
-  }
-
-  // (A & C) | (B & D)
-  Value *A, *B, *C, *D;
-  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
-      match(Op1, m_And(m_Value(B), m_Value(D)))) {
-
-    // (A & C0) | (B & C1)
-    const APInt *C0, *C1;
-    if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
-      Value *X;
-      if (*C0 == ~*C1) {
-        // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
-        if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
-          return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
-        // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
-        if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
-          return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
-
-        // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
-        if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
-          return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
-        // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
-        if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
-          return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
-      }
-
-      if ((*C0 & *C1).isZero()) {
-        // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
-        // iff (C0 & C1) == 0 and (X & ~C0) == 0
-        if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
-            MaskedValueIsZero(X, ~*C0, 0, &I)) {
-          Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
-          return BinaryOperator::CreateAnd(A, C01);
-        }
-        // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
-        // iff (C0 & C1) == 0 and (X & ~C1) == 0
-        if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
-            MaskedValueIsZero(X, ~*C1, 0, &I)) {
-          Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
-          return BinaryOperator::CreateAnd(B, C01);
-        }
-        // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
-        // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
-        const APInt *C2, *C3;
-        if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
-            match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
-            (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
-          Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
-          Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
-          return BinaryOperator::CreateAnd(Or, C01);
-        }
-      }
-    }
-
-    // Don't try to form a select if it's unlikely that we'll get rid of at
-    // least one of the operands. A select is generally more expensive than the
-    // 'or' that it is replacing.
-    if (Op0->hasOneUse() || Op1->hasOneUse()) {
-      // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
-      if (Value *V = matchSelectFromAndOr(A, C, B, D))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(A, C, D, B))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(C, A, B, D))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(C, A, D, B))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(B, D, A, C))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(B, D, C, A))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(D, B, A, C))
-        return replaceInstUsesWith(I, V);
-      if (Value *V = matchSelectFromAndOr(D, B, C, A))
-        return replaceInstUsesWith(I, V);
-    }
-  }
-
-  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
-      match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
-      (Op0->hasOneUse() || Op1->hasOneUse())) {
-    // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
-    if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
-      return replaceInstUsesWith(I, V);
-    if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
-      return replaceInstUsesWith(I, V);
-    if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
-      return replaceInstUsesWith(I, V);
-    if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
-      return replaceInstUsesWith(I, V);
-  }
-
-  // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
-  if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
-    if (match(Op1,
-              m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) ||
-        match(Op1, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B))))
-      return BinaryOperator::CreateOr(Op0, C);
-
-  // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C
-  if (match(Op1, m_Xor(m_Value(A), m_Value(B))))
-    if (match(Op0,
-              m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) ||
-        match(Op0, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B))))
-      return BinaryOperator::CreateOr(Op1, C);
-
-  if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
-    return DeMorgan;
-
-  // Canonicalize xor to the RHS.
-  bool SwappedForXor = false;
-  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
-    std::swap(Op0, Op1);
-    SwappedForXor = true;
-  }
-
-  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
-    // (A | ?) | (A ^ B) --> (A | ?) | B
-    // (B | ?) | (A ^ B) --> (B | ?) | A
-    if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
-      return BinaryOperator::CreateOr(Op0, B);
-    if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
-      return BinaryOperator::CreateOr(Op0, A);
-
-    // (A & B) | (A ^ B) --> A | B
-    // (B & A) | (A ^ B) --> A | B
-    if (match(Op0, m_c_And(m_Specific(A), m_Specific(B))))
-      return BinaryOperator::CreateOr(A, B);
-
-    // ~A | (A ^ B) --> ~(A & B)
-    // ~B | (A ^ B) --> ~(A & B)
-    // The swap above should always make Op0 the 'not'.
-    if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
-        (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
-      return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
-
-    // Same as above, but peek through an 'and' to the common operand:
-    // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
-    // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
-    Instruction *And;
-    if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
-        match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
-                                      m_c_And(m_Specific(A), m_Value())))))
-      return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
-    if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
-        match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
-                                      m_c_And(m_Specific(B), m_Value())))))
-      return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
-
-    // (~A | C) | (A ^ B) --> ~(A & B) | C
-    // (~B | C) | (A ^ B) --> ~(A & B) | C
-    if (Op0->hasOneUse() && Op1->hasOneUse() &&
-        (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
-         match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
-      Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
-      return BinaryOperator::CreateOr(Nand, C);
-    }
-  }
-
-  if (SwappedForXor)
-    std::swap(Op0, Op1);
-
-  if (Value *Res =
-          foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/false, /*IsLogical=*/false))
-    return replaceInstUsesWith(I, Res);
-
-  if (match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
-    bool IsLogical = isa<SelectInst>(Op1);
-    if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/false,
-                                          /*RHSIsLogical=*/IsLogical))
-      return replaceInstUsesWith(I, V);
-  }
-  if (match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
-    bool IsLogical = isa<SelectInst>(Op0);
-    if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/false,
-                                          /*RHSIsLogical=*/IsLogical))
-      return replaceInstUsesWith(I, V);
-  }
-
-  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
-    return FoldedFCmps;
-
-  if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
-    return CastedOr;
-
-  if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
-    return Sel;
-
-  // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
-  // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
-  //       with binop identity constant. But creating a select with non-constant
-  //       arm may not be reversible due to poison semantics. Is that a good
-  //       canonicalization?
-  if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
-      A->getType()->isIntOrIntVectorTy(1))
-    return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B);
-
-  // Note: If we've gotten to the point of visiting the outer OR, then the
-  // inner one couldn't be simplified.  If it was a constant, then it won't
-  // be simplified by a later pass either, so we try swapping the inner/outer
-  // ORs in the hopes that we'll be able to simplify it this way.
-  // (X|C) | V --> (X|V) | C
-  ConstantInt *CI;
-  if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
-      match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
-    Value *Inner = Builder.CreateOr(A, Op1);
-    Inner->takeName(Op0);
-    return BinaryOperator::CreateOr(Inner, CI);
-  }
-
-  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
-  // Since this OR statement hasn't been optimized further yet, we hope
-  // that this transformation will allow the new ORs to be optimized.
-  {
-    Value *X = nullptr, *Y = nullptr;
-    if (Op0->hasOneUse() && Op1->hasOneUse() &&
-        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
-        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
-      Value *orTrue = Builder.CreateOr(A, C);
-      Value *orFalse = Builder.CreateOr(B, D);
-      return SelectInst::Create(X, orTrue, orFalse);
-    }
-  }
-
-  // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X)  --> X s> Y ? -1 : X.
-  {
-    Value *X, *Y;
-    if (match(&I, m_c_Or(m_OneUse(m_AShr(
-                             m_NSWSub(m_Value(Y), m_Value(X)),
-                             m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
-                         m_Deferred(X)))) {
-      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
-      Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
-      return SelectInst::Create(NewICmpInst, AllOnes, X);
-    }
-  }
-
-  {
-    // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B
-    // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B
-    // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B
-    // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B
-    const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * {
-      if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) &&
-          match(Rhs,
-                m_c_Xor(m_And(m_Specific(A), m_Specific(B)), m_Specific(B)))) {
-        return BinaryOperator::CreateXor(A, B);
-      }
-      return nullptr;
-    };
-
-    if (Instruction *Result = TryXorOpt(Op0, Op1))
-      return Result;
-    if (Instruction *Result = TryXorOpt(Op1, Op0))
-      return Result;
-  }
-
-  if (Instruction *V =
-          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
-    return V;
-
-  CmpPredicate Pred;
-  Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
-  // Check if the OR weakens the overflow condition for umul.with.overflow by
-  // treating any non-zero result as overflow. In that case, we overflow if both
-  // umul.with.overflow operands are != 0, as in that case the result can only
-  // be 0, iff the multiplication overflows.
-  if (match(&I,
-            m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
-                                m_Value(Ov)),
-                   m_CombineAnd(
-                       m_SpecificICmp(ICmpInst::ICMP_NE,
-                                      m_CombineAnd(m_ExtractValue<0>(
-                                                       m_Deferred(UMulWithOv)),
-                                                   m_Value(Mul)),
-                                      m_ZeroInt()),
-                       m_Value(MulIsNotZero)))) &&
-      (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse()))) {
-    Value *A, *B;
-    if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
-                              m_Value(A), m_Value(B)))) {
-      Value *NotNullA = Builder.CreateIsNotNull(A);
-      Value *NotNullB = Builder.CreateIsNotNull(B);
-      return BinaryOperator::CreateAnd(NotNullA, NotNullB);
-    }
-  }
-
-  /// Res, Overflow = xxx_with_overflow X, C1
-  /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into
-  /// "Overflow | icmp pred X, C2 +/- C1".
-  const WithOverflowInst *WO;
-  const Value *WOV;
-  const APInt *C1, *C2;
-  if (match(&I, m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_CombineAnd(
-                                        m_WithOverflowInst(WO), m_Value(WOV))),
-                                    m_Value(Ov)),
-                       m_OneUse(m_ICmp(Pred, m_ExtractValue<0>(m_Deferred(WOV)),
-                                       m_APInt(C2))))) &&
-      (WO->getBinaryOp() == Instruction::Add ||
-       WO->getBinaryOp() == Instruction::Sub) &&
-      (ICmpInst::isEquality(Pred) ||
-       WO->isSigned() == ICmpInst::isSigned(Pred)) &&
-      match(WO->getRHS(), m_APInt(C1))) {
-    bool Overflow;
-    APInt NewC = WO->getBinaryOp() == Instruction::Add
-                     ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow)
-                                                 : C2->usub_ov(*C1, Overflow))
-                     : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow)
-                                                 : C2->uadd_ov(*C1, Overflow));
-    if (!Overflow || ICmpInst::isEquality(Pred)) {
-      Value *NewCmp = Builder.CreateICmp(
-          Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC));
-      return BinaryOperator::CreateOr(Ov, NewCmp);
-    }
-  }
-
-  // (~x) | y  -->  ~(x & (~y))  iff that gets rid of inversions
-  if (sinkNotIntoOtherHandOfLogicalOp(I))
-    return &I;
-
-  // Improve "get low bit mask up to and including bit X" pattern:
-  //   (1 << X) | ((1 << X) + -1)  -->  -1 l>> (bitwidth(x) - 1 - X)
-  if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
-                       m_Shl(m_One(), m_Deferred(X)))) &&
-      match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
-    Value *Sub = Builder.CreateSub(
-        ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
-    return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
-  }
-
-  // An or recurrence w/loop invariant step is equivelent to (or start, step)
-  PHINode *PN = nullptr;
-  Value *Start = nullptr, *Step = nullptr;
-  if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
-    return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
-
-  // (A & B) | (C | D) or (C | D) | (A & B)
-  // Can be combined if C or D is of type (A/B & X)
-  if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
-                       m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
-    // (A & B) | (C | ?) -> C | (? | (A & B))
-    // (A & B) | (C | ?) -> C | (? | (A & B))
-    // (A & B) | (C | ?) -> C | (? | (A & B))
-    // (A & B) | (C | ?) -> C | (? | (A & B))
-    // (C | ?) | (A & B) -> C | (? | (A & B))
-    // (C | ?) | (A & B) -> C | (? | (A & B))
-    // (C | ?) | (A & B) -> C | (? | (A & B))
-    // (C | ?) | (A & B) -> C | (? | (A & B))
-    if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
-        match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
-      return BinaryOperator::CreateOr(
-          C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
-    // (A & B) | (? | D) -> (? | (A & B)) | D
-    // (A & B) | (? | D) -> (? | (A & B)) | D
-    // (A & B) | (? | D) -> (? | (A & B)) | D
-    // (A & B) | (? | D) -> (? | (A & B)) | D
-    // (? | D) | (A & B) -> (? | (A & B)) | D
-    // (? | D) | (A & B) -> (? | (A & B)) | D
-    // (? | D) | (A & B) -> (? | (A & B)) | D
-    // (? | D) | (A & B) -> (? | (A & B)) | D
-    if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
-        match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
-      return BinaryOperator::CreateOr(
-          Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
-  }
-
-  if (Instruction *R = reassociateForUses(I, Builder))
-    return R;
-
-  if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
-    return Canonicalized;
-
-  if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
-    return Folded;
-
-  if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
-    return Res;
-
-  // If we are setting the sign bit of a floating-point value, convert
-  // this to fneg(fabs), then cast back to integer.
-  //
-  // If the result isn't immediately cast back to a float, this will increase
-  // the number of instructions. This is still probably a better canonical form
-  // as it enables FP value tracking.
-  //
-  // Assumes any IEEE-represented type has the sign bit in the high bit.
-  //
-  // This is generous interpretation of noimplicitfloat, this is not a true
-  // floating-point operation.
-  Value *CastOp;
-  if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
-      match(Op1, m_SignMask()) &&
-      !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
-          Attribute::NoImplicitFloat)) {
-    Type *EltTy = CastOp->getType()->getScalarType();
-    if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) {
-      Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
-      Value *FNegFAbs = Builder.CreateFNeg(FAbs);
-      return new BitCastInst(FNegFAbs, I.getType());
-    }
-  }
-
-  // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2
-  if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) &&
-      match(Op1, m_APInt(C2))) {
-    KnownBits KnownX = computeKnownBits(X, /*Depth*/ 0, &I);
-    if ((KnownX.One & *C2) == *C2)
-      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2));
-  }
-
-  if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
-    return Res;
-
-  if (Value *V =
-          simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getNullValue(Ty),
-                                      /*SimplifyOnly*/ false, *this))
-    return BinaryOperator::CreateOr(V, Op1);
-  if (Value *V =
-          simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getNullValue(Ty),
-                                      /*SimplifyOnly*/ false, *this))
-    return BinaryOperator::CreateOr(Op0, V);
-
-  if (cast<PossiblyDisjointInst>(I).isDisjoint())
-    if (Value *V = SimplifyAddWithRemainder(I))
-      return replaceInstUsesWith(I, V);
-
-  return nullptr;
-}
-
-/// A ^ B can be specified using other logic ops in a variety of patterns. We
-/// can fold these early and efficiently by morphing an existing instruction.
-static Instruction *foldXorToXor(BinaryOperator &I,
-                                 InstCombiner::BuilderTy &Builder) {
-  assert(I.getOpcode() == Instruction::Xor);
-  Value *Op0 = I.getOperand(0);
-  Value *Op1 = I.getOperand(1);
-  Value *A, *B;
-
-  // There are 4 commuted variants for each of the basic patterns.
-
-  // (A & B) ^ (A | B) -> A ^ B
-  // (A & B) ^ (B | A) -> A ^ B
-  // (A | B) ^ (A & B) -> A ^ B
-  // (A | B) ^ (B & A) -> A ^ B
-  if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
-                        m_c_Or(m_Deferred(A), m_Deferred(B)))))
-    return BinaryOperator::CreateXor(A, B);
-
-  // (A | ~B) ^ (~A | B) -> A ^ B
-  // (~B | A) ^ (~A | B) -> A ^ B
-  // (~A | B) ^ (A | ~B) -> A ^ B
-  // (B | ~A) ^ (A | ~B) -> A ^ B
-  if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
-                      m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
-    return BinaryOperator::CreateXor(A, B);
-
-  // (A & ~B) ^ (~A & B) -> A ^ B
-  // (~B & A) ^ (~A & B) -> A ^ B
-  // (~A & B) ^ (A & ~B) -> A ^ B
-  // (B & ~A) ^ (A & ~B) -> A ^ B
-  if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
-                      m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
-    return BinaryOperator::CreateXor(A, B);
-
-  // For the remaining cases we need to get rid of one of the operands.
-  if (!Op0->hasOneUse() && !Op1->hasOneUse())
-    return nullptr;
-
-  // (A | B) ^ ~(A & B) -> ~(A ^ B)
-  // (A | B) ^ ~(B & A) -> ~(A ^ B)
-  // (A & B) ^ ~(A | B) -> ~(A ^ B)
-  // (A & B) ^ ~(B | A) -> ~(A ^ B)
-  // Complexity sorting ensures the not will be on the right side.
-  if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
-       match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
-      (match(Op0, m_And(m_Value(A), m_Value(B))) &&
-       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
-    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
-
-  return nullptr;
-}
-
-Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
-                                        BinaryOperator &I) {
-  assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
-         I.getOperand(1) == RHS && "Should be 'xor' with these operands");
-
-  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
-  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
-  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
-
-  if (predicatesFoldable(PredL, PredR)) {
-    if (LHS0 == RHS1 && LHS1 == RHS0) {
-      std::swap(LHS0, LHS1);
-      PredL = ICmpInst::getSwappedPredicate(PredL);
-    }
-    if (LHS0 == RHS0 && LHS1 == RHS1) {
-      // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
-      unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
-      bool IsSigned = LHS->isSigned() || RHS->isSigned();
-      return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
-    }
-  }
-
-  // TODO: This can be generalized to compares of non-signbits using
-  // decomposeBitTestICmp(). It could be enhanced more by using (something like)
-  // foldLogOpOfMaskedICmps().
-  const APInt *LC, *RC;
-  if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
-      LHS0->getType() == RHS0->getType() &&
-      LHS0->getType()->isIntOrIntVectorTy()) {
-    // Convert xor of signbit tests to signbit test of xor'd values:
-    // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
-    // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
-    // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
-    // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
-    bool TrueIfSignedL, TrueIfSignedR;
-    if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
-        isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
-        isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
-      Value *XorLR = Builder.CreateXor(LHS0, RHS0);
-      return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
-                                              Builder.CreateIsNotNeg(XorLR);
-    }
-
-    // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2)
-    // into a single comparison using range-based reasoning.
-    if (LHS0 == RHS0) {
-      ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC);
-      ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC);
-      auto CRUnion = CR1.exactUnionWith(CR2);
-      auto CRIntersect = CR1.exactIntersectWith(CR2);
-      if (CRUnion && CRIntersect)
-        if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
-          if (CR->isFullSet())
-            return ConstantInt::getTrue(I.getType());
-          if (CR->isEmptySet())
-            return ConstantInt::getFalse(I.getType());
-
-          CmpInst::Predicate NewPred;
-          APInt NewC, Offset;
-          CR->getEquivalentICmp(NewPred, NewC, Offset);
-
-          if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) ||
-              (LHS->hasOneUse() && RHS->hasOneUse())) {
-            Value *NewV = LHS0;
-            Type *Ty = LHS0->getType();
-            if (!Offset.isZero())
-              NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
-            return Builder.CreateICmp(NewPred, NewV,
-                                      ConstantInt::get(Ty, NewC));
-          }
-        }
-    }
-  }
-
-  // Instead of trying to imitate the folds for and/or, decompose this 'xor'
-  // into those logic ops. That is, try to turn this into an and-of-icmps
-  // because we have many folds for that pattern.
-  //
-  // This is based on a truth table definition of xor:
-  // X ^ Y --> (X | Y) & !(X & Y)
-  if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
-    // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
-    // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
-    if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
-      // TODO: Independently handle cases where the 'and' side is a constant.
-      ICmpInst *X = nullptr, *Y = nullptr;
-      if (OrICmp == LHS && AndICmp == RHS) {
-        // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
-        X = LHS;
-        Y = RHS;
-      }
-      if (OrICmp == RHS && AndICmp == LHS) {
-        // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
-        X = RHS;
-        Y = LHS;
-      }
-      if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
-        // Invert the predicate of 'Y', thus inverting its output.
-        Y->setPredicate(Y->getInversePredicate());
-        // So, are there other uses of Y?
-        if (!Y->hasOneUse()) {
-          // We need to adapt other uses of Y though. Get a value that matches
-          // the original value of Y before inversion. While this increases
-          // immediate instruction count, we have just ensured that all the
-          // users are freely-invertible, so that 'not' *will* get folded away.
-          BuilderTy::InsertPointGuard Guard(Builder);
-          // Set insertion point to right after the Y.
-          Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
-          Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
-          // Replace all uses of Y (excluding the one in NotY!) with NotY.
-          Worklist.pushUsersToWorkList(*Y);
-          Y->replaceUsesWithIf(NotY,
-                               [NotY](Use &U) { return U.getUser() != NotY; });
-        }
-        // All done.
-        return Builder.CreateAnd(LHS, RHS);
-      }
-    }
-  }
-
-  return nullptr;
-}
-
-/// If we have a masked merge, in the canonical form of:
-/// (assuming that A only has one use.)
-///   |        A  |  |B|
-///   ((x ^ y) & M) ^ y
-///    |  D  |
-/// * If M is inverted:
-///      |  D  |
-///     ((x ^ y) & ~M) ^ y
-///   We can canonicalize by swapping the final xor operand
-///   to eliminate the 'not' of the mask.
-///     ((x ^ y) & M) ^ x
-/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
-///   because that shortens the dependency chain and improves analysis:
-///     (x & M) | (y & ~M)
-static Instruction *visitMaskedMerge(BinaryOperator &I,
-                                     InstCombiner::BuilderTy &Builder) {
-  Value *B, *X, *D;
-  Value *M;
-  if (!match(&I, m_c_Xor(m_Value(B),
-                         m_OneUse(m_c_And(
-                             m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
-                                          m_Value(D)),
-                             m_Value(M))))))
-    return nullptr;
-
-  Value *NotM;
-  if (match(M, m_Not(m_Value(NotM)))) {
-    // De-invert the mask and swap the value in B part.
-    Value *NewA = Builder.CreateAnd(D, NotM);
-    return BinaryOperator::CreateXor(NewA, X);
-  }
-
-  Constant *C;
-  if (D->hasOneUse() && match(M, m_Constant(C))) {
-    // Propagating undef is unsafe. Clamp undef elements to -1.
-    Type *EltTy = C->getType()->getScalarType();
-    C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
-    // Unfold.
-    Value *LHS = Builder.CreateAnd(X, C);
-    Value *NotC = Builder.CreateNot(C);
-    Value *RHS = Builder.CreateAnd(B, NotC);
-    return BinaryOperator::CreateOr(LHS, RHS);
-  }
-
-  return nullptr;
-}
-
-static Instruction *foldNotXor(BinaryOperator &I,
-                               InstCombiner::BuilderTy &Builder) {
-  Value *X, *Y;
-  // FIXME: one-use check is not needed in general, but currently we are unable
-  // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
-  if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
-    return nullptr;
-
-  auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
-    return A == C || A == D || B == C || B == D;
-  };
-
-  Value *A, *B, *C, *D;
-  // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
-  // 4 commuted variants
-  if (match(X, m_And(m_Value(A), m_Value(B))) &&
-      match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
-    Value *NotY = Builder.CreateNot(Y);
-    return BinaryOperator::CreateOr(X, NotY);
-  };
-
-  // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
-  // 4 commuted variants
-  if (match(Y, m_And(m_Value(A), m_Value(B))) &&
-      match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
-    Value *NotX = Builder.CreateNot(X);
-    return BinaryOperator::CreateOr(Y, NotX);
-  };
-
-  return nullptr;
-}
-
-/// Canonicalize a shifty way to code absolute value to the more common pattern
-/// that uses negation and select.
-static Instruction *canonicalizeAbs(BinaryOperator &Xor,
-                                    InstCombiner::BuilderTy &Builder) {
-  assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
-
-  // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
-  // We're relying on the fact that we only do this transform when the shift has
-  // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
-  // instructions).
-  Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
-  if (Op0->hasNUses(2))
-    std::swap(Op0, Op1);
-
-  Type *Ty = Xor.getType();
-  Value *A;
-  const APInt *ShAmt;
-  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
-      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
-      match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
-    // Op1 = ashr i32 A, 31   ; smear the sign bit
-    // xor (add A, Op1), Op1  ; add -1 and flip bits if negative
-    // --> (A < 0) ? -A : A
-    Value *IsNeg = Builder.CreateIsNeg(A);
-    // Copy the nsw flags from the add to the negate.
-    auto *Add = cast<BinaryOperator>(Op0);
-    Value *NegA = Add->hasNoUnsignedWrap()
-                      ? Constant::getNullValue(A->getType())
-                      : Builder.CreateNeg(A, "", Add->hasNoSignedWrap());
-    return SelectInst::Create(IsNeg, NegA, A);
-  }
-  return nullptr;
-}
-
-static bool canFreelyInvert(InstCombiner &IC, Value *Op,
-                            Instruction *IgnoredUser) {
-  auto *I = dyn_cast<Instruction>(Op);
-  return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) &&
-         IC.canFreelyInvertAllUsersOf(I, IgnoredUser);
-}
-
-static Value *freelyInvert(InstCombinerImpl &IC, Value *Op,
-                           Instruction *IgnoredUser) {
-  auto *I = cast<Instruction>(Op);
-  IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef());
-  Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not");
-  Op->replaceUsesWithIf(NotOp,
-                        [NotOp](Use &U) { return U.getUser() != NotOp; });
-  IC.freelyInvertAllUsersOf(NotOp, IgnoredUser);
-  return NotOp;
-}
-
-// Transform
-//   z = ~(x &/| y)
-// into:
-//   z = ((~x) |/& (~y))
-// iff both x and y are free to invert and all uses of z can be freely updated.
-bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) {
-  Value *Op0, *Op1;
-  if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
-    return false;
-
-  // If this logic op has not been simplified yet, just bail out and let that
-  // happen first. Otherwise, the code below may wrongly invert.
-  if (Op0 == Op1)
-    return false;
-
-  Instruction::BinaryOps NewOpc =
-      match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
-  bool IsBinaryOp = isa<BinaryOperator>(I);
-
-  // Can our users be adapted?
-  if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
-    return false;
-
-  // And can the operands be adapted?
-  if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I))
-    return false;
-
-  Op0 = freelyInvert(*this, Op0, &I);
-  Op1 = freelyInvert(*this, Op1, &I);
-
-  Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
-  Value *NewLogicOp;
-  if (IsBinaryOp)
-    NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
-  else
-    NewLogicOp =
-        Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
-
-  replaceInstUsesWith(I, NewLogicOp);
-  // We can not just create an outer `not`, it will most likely be immediately
-  // folded back, reconstructing our initial pattern, and causing an
-  // infinite combine loop, so immediately manually fold it away.
-  freelyInvertAllUsersOf(NewLogicOp);
-  return true;
-}
-
-// Transform
-//   z = (~x) &/| y
-// into:
-//   z = ~(x |/& (~y))
-// iff y is free to invert and all uses of z can be freely updated.
-bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) {
-  Value *Op0, *Op1;
-  if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
-    return false;
-  Instruction::BinaryOps NewOpc =
-      match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
-  bool IsBinaryOp = isa<BinaryOperator>(I);
-
-  Value *NotOp0 = nullptr;
-  Value *NotOp1 = nullptr;
-  Value **OpToInvert = nullptr;
-  if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) {
-    Op0 = NotOp0;
-    OpToInvert = &Op1;
-  } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
-             canFreelyInvert(*this, Op0, &I)) {
-    Op1 = NotOp1;
-    OpToInvert = &Op0;
-  } else
-    return false;
-
-  // And can our users be adapted?
-  if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
-    return false;
-
-  *OpToInvert = freelyInvert(*this, *OpToInvert, &I);
-
-  Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
-  Value *NewBinOp;
-  if (IsBinaryOp)
-    NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
-  else
-    NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
-  replaceInstUsesWith(I, NewBinOp);
-  // We can not just create an outer `not`, it will most likely be immediately
-  // folded back, reconstructing our initial pattern, and causing an
-  // infinite combine loop, so immediately manually fold it away.
-  freelyInvertAllUsersOf(NewBinOp);
-  return true;
-}
-
-Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
-  Value *NotOp;
-  if (!match(&I, m_Not(m_Value(NotOp))))
-    return nullptr;
-
-  // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
-  // We must eliminate the and/or (one-use) for these transforms to not increase
-  // the instruction count.
-  //
-  // ~(~X & Y) --> (X | ~Y)
-  // ~(Y & ~X) --> (X | ~Y)
-  //
-  // Note: The logical matches do not check for the commuted patterns because
-  //       those are handled via SimplifySelectsFeedingBinaryOp().
-  Type *Ty = I.getType();
-  Value *X, *Y;
-  if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
-    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
-    return BinaryOperator::CreateOr(X, NotY);
-  }
-  if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
-    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
-    return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
-  }
-
-  // ~(~X | Y) --> (X & ~Y)
-  // ~(Y | ~X) --> (X & ~Y)
-  if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
-    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
-    return BinaryOperator::CreateAnd(X, NotY);
-  }
-  if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
-    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
-    return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
-  }
-
-  // Is this a 'not' (~) fed by a binary operator?
-  BinaryOperator *NotVal;
-  if (match(NotOp, m_BinOp(NotVal))) {
-    // ~((-X) | Y) --> (X - 1) & (~Y)
-    if (match(NotVal,
-              m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
-      Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
-      Value *NotY = Builder.CreateNot(Y);
-      return BinaryOperator::CreateAnd(DecX, NotY);
-    }
-
-    // ~(~X >>s Y) --> (X >>s Y)
-    if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
-      return BinaryOperator::CreateAShr(X, Y);
-
-    // Treat lshr with non-negative operand as ashr.
-    // ~(~X >>u Y) --> (X >>s Y) iff X is known negative
-    if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) &&
-        isKnownNegative(X, SQ.getWithInstruction(NotVal)))
-      return BinaryOperator::CreateAShr(X, Y);
-
-    // Bit-hack form of a signbit test for iN type:
-    // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN
-    unsigned FullShift = Ty->getScalarSizeInBits() - 1;
-    if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
-      Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
-      return new SExtInst(IsNotNeg, Ty);
-    }
-
-    // If we are inverting a right-shifted constant, we may be able to eliminate
-    // the 'not' by inverting the constant and using the opposite shift type.
-    // Canonicalization rules ensure that only a negative constant uses 'ashr',
-    // but we must check that in case that transform has not fired yet.
-
-    // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
-    Constant *C;
-    if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
-        match(C, m_Negative()))
-      return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
-
-    // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
-    if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
-        match(C, m_NonNegative()))
-      return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
-
-    // ~(X + C) --> ~C - X
-    if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C))))
-      return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
-
-    // ~(X - Y) --> ~X + Y
-    // FIXME: is it really beneficial to sink the `not` here?
-    if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
-      if (isa<Constant>(X) || NotVal->hasOneUse())
-        return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
-
-    // ~(~X + Y) --> X - Y
-    if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
-      return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
-                                                   NotVal);
-  }
-
-  // not (cmp A, B) = !cmp A, B
-  CmpPredicate Pred;
-  if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
-      (NotOp->hasOneUse() ||
-       InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp),
-                                               /*IgnoredUser=*/nullptr))) {
-    cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
-    freelyInvertAllUsersOf(NotOp);
-    return &I;
-  }
-
-  // Move a 'not' ahead of casts of a bool to enable logic reduction:
-  // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
-  if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
-    Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
-    Value *NotX = Builder.CreateNot(X);
-    Value *Sext = Builder.CreateSExt(NotX, SextTy);
-    return new BitCastInst(Sext, Ty);
-  }
-
-  if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
-    if (sinkNotIntoLogicalOp(*NotOpI))
-      return &I;
-
-  // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
-  // ~min(~X, ~Y) --> max(X, Y)
-  // ~max(~X, Y) --> min(X, ~Y)
-  auto *II = dyn_cast<IntrinsicInst>(NotOp);
-  if (II && II->hasOneUse()) {
-    if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
-      Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
-      Value *NotY = Builder.CreateNot(Y);
-      Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
-      return replaceInstUsesWith(I, InvMaxMin);
-    }
-
-    if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
-      ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
-      II->setArgOperand(
-          1, ConstantInt::get(ClassMask->getType(),
-                              ~ClassMask->getZExtValue() & fcAllFlags));
-      return replaceInstUsesWith(I, II);
-    }
-  }
-
-  if (NotOp->hasOneUse()) {
-    // Pull 'not' into operands of select if both operands are one-use compares
-    // or one is one-use compare and the other one is a constant.
-    // Inverting the predicates eliminates the 'not' operation.
-    // Example:
-    //   not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
-    //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
-    //   not (select ?, (cmp TPred, ?, ?), true -->
-    //     select ?, (cmp InvTPred, ?, ?), false
-    if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
-      Value *TV = Sel->getTrueValue();
-      Value *FV = Sel->getFalseValue();
-      auto *CmpT = dyn_cast<CmpInst>(TV);
-      auto *CmpF = dyn_cast<CmpInst>(FV);
-      bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
-      bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
-      if (InvertibleT && InvertibleF) {
-        if (CmpT)
-          CmpT->setPredicate(CmpT->getInversePredicate());
-        else
-          Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
-        if (CmpF)
-          CmpF->setPredicate(CmpF->getInversePredicate());
-        else
-          Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
-        return replaceInstUsesWith(I, Sel);
-      }
-    }
-  }
-
-  if (Instruction *NewXor = foldNotXor(I, Builder))
-    return NewXor;
-
-  // TODO: Could handle multi-use better by checking if all uses of NotOp (other
-  // than I) can be inverted.
-  if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder))
-    return replaceInstUsesWith(I, R);
-
-  return nullptr;
-}
-
-// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
-// here. We should standardize that construct where it is needed or choose some
-// other way to ensure that commutated variants of patterns are not missed.
-Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
-  if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
-                                 SQ.getWithInstruction(&I)))
-    return replaceInstUsesWith(I, V);
-
-  if (SimplifyAssociativeOrCommutative(I))
-    return &I;
-
-  if (Instruction *X = foldVectorBinop(I))
-    return X;
-
-  if (Instruction *Phi = foldBinopWithPhiOperands(I))
-    return Phi;
-
-  if (Instruction *NewXor = foldXorToXor(I, Builder))
-    return NewXor;
-
-  // (A&B)^(A&C) -> A&(B^C) etc
-  if (Value *V = foldUsingDistributiveLaws(I))
-    return replaceInstUsesWith(I, V);
-
-  // See if we can simplify any instructions used by the instruction whose sole
-  // purpose is to compute bits we don't care about.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;
-
-  if (Instruction *R = foldNot(I))
-    return R;
-
-  if (Instruction *R = foldBinOpShiftWithShift(I))
-    return R;
-
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-  Value *X, *Y, *M;
-
-  // (X | Y) ^ M -> (X ^ M) ^ Y
-  // (X | Y) ^ M -> (Y ^ M) ^ X
-  if (match(&I, m_c_Xor(m_OneUse(m_DisjointOr(m_Value(X), m_Value(Y))),
-                        m_Value(M)))) {
-    if (Value *XorAC = simplifyXorInst(X, M, SQ.getWithInstruction(&I)))
-      return BinaryOperator::CreateXor(XorAC, Y);
-
-    if (Value *XorBC = simplifyXorInst(Y, M, SQ.getWithInstruction(&I)))
-      return BinaryOperator::CreateXor(XorBC, X);
-  }
-
-  // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
-  // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
-  // calls in there are unnecessary as SimplifyDemandedInstructionBits should
-  // have already taken care of those cases.
-  if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
-                        m_c_And(m_Deferred(M), m_Value())))) {
-    if (isGuaranteedNotToBeUndef(M))
-      return BinaryOperator::CreateDisjointOr(Op0, Op1);
-    else
-      return BinaryOperator::CreateOr(Op0, Op1);
-  }
-
-  if (Instruction *Xor = visitMaskedMerge(I, Builder))
-    return Xor;
-
-  Constant *C1;
-  if (match(Op1, m_Constant(C1))) {
-    Constant *C2;
-
-    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
-        match(C1, m_ImmConstant())) {
-      // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
-      C2 = Constant::replaceUndefsWith(
-          C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
-      Value *And = Builder.CreateAnd(
-          X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
-      return BinaryOperator::CreateXor(
-          And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
-    }
-
-    // Use DeMorgan and reassociation to eliminate a 'not' op.
-    if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
-      // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
-      Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
-      return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
-    }
-    if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
-      // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
-      Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
-      return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
-    }
-
-    // Convert xor ([trunc] (ashr X, BW-1)), C =>
-    //   select(X >s -1, C, ~C)
-    // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
-    // constant depending on whether this input is less than 0.
-    const APInt *CA;
-    if (match(Op0, m_OneUse(m_TruncOrSelf(
-                       m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) &&
-        *CA == X->getType()->getScalarSizeInBits() - 1 &&
-        !match(C1, m_AllOnes())) {
-      assert(!C1->isZeroValue() && "Unexpected xor with 0");
-      Value *IsNotNeg = Builder.CreateIsNotNeg(X);
-      return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
-    }
-  }
-
-  Type *Ty = I.getType();
-  {
-    const APInt *RHSC;
-    if (match(Op1, m_APInt(RHSC))) {
-      Value *X;
-      const APInt *C;
-      // (C - X) ^ signmaskC --> (C + signmaskC) - X
-      if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
-        return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
-
-      // (X + C) ^ signmaskC --> X + (C + signmaskC)
-      if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
-        return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
-
-      // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
-      if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
-          MaskedValueIsZero(X, *C, 0, &I))
-        return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
-
-      // When X is a power-of-two or zero and zero input is poison:
-      // ctlz(i32 X) ^ 31 --> cttz(X)
-      // cttz(i32 X) ^ 31 --> ctlz(X)
-      auto *II = dyn_cast<IntrinsicInst>(Op0);
-      if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
-        Intrinsic::ID IID = II->getIntrinsicID();
-        if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
-            match(II->getArgOperand(1), m_One()) &&
-            isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
-          IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
-          Function *F =
-              Intrinsic::getOrInsertDeclaration(II->getModule(), IID, Ty);
-          return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
-        }
-      }
-
-      // If RHSC is inverting the remaining bits of shifted X,
-      // canonicalize to a 'not' before the shift to help SCEV and codegen:
-      // (X << C) ^ RHSC --> ~X << C
-      if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
-          *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
-        Value *NotX = Builder.CreateNot(X);
-        return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
-      }
-      // (X >>u C) ^ RHSC --> ~X >>u C
-      if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
-          *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
-        Value *NotX = Builder.CreateNot(X);
-        return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
-      }
-      // TODO: We could handle 'ashr' here as well. That would be matching
-      //       a 'not' op and moving it before the shift. Doing that requires
-      //       preventing the inverse fold in canShiftBinOpWithConstantRHS().
-    }
-
-    // If we are XORing the sign bit of a floating-point value, convert
-    // this to fneg, then cast back to integer.
-    //
-    // This is generous interpretation of noimplicitfloat, this is not a true
-    // floating-point operation.
-    //
-    // Assumes any IEEE-represented type has the sign bit in the high bit.
-    // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
-    Value *CastOp;
-    if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
-        match(Op1, m_SignMask()) &&
-        !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
-            Attribute::NoImplicitFloat)) {
-      Type *EltTy = CastOp->getType()->getScalarType();
-      if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) {
-        Value *FNeg = Builder.CreateFNeg(CastOp);
-        return new BitCastInst(FNeg, I.getType());
-      }
-    }
-  }
-
-  // FIXME: This should not be limited to scalar (pull into APInt match above).
-  {
-    Value *X;
-    ConstantInt *C1, *C2, *C3;
-    // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
-    if (match(Op1, m_ConstantInt(C3)) &&
-        match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
-                          m_ConstantInt(C2))) &&
-        Op0->hasOneUse()) {
-      // fold (C1 >> C2) ^ C3
-      APInt FoldConst = C1->getValue().lshr(C2->getValue());
-      FoldConst ^= C3->getValue();
-      // Prepare the two operands.
-      auto *Opnd0 = Builder.CreateLShr(X, C2);
-      Opnd0->takeName(Op0);
-      return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
-    }
-  }
-
-  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
-    return FoldedLogic;
-
-  // Y ^ (X | Y) --> X & ~Y
-  // Y ^ (Y | X) --> X & ~Y
-  if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
-    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
-  // (X | Y) ^ Y --> X & ~Y
-  // (Y | X) ^ Y --> X & ~Y
-  if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
-    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
-
-  // Y ^ (X & Y) --> ~X & Y
-  // Y ^ (Y & X) --> ~X & Y
-  if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
-    return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
-  // (X & Y) ^ Y --> ~X & Y
-  // (Y & X) ^ Y --> ~X & Y
-  // Canonical form is (X & C) ^ C; don't touch that.
-  // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
-  //       be fixed to prefer that (otherwise we get infinite looping).
-  if (!match(Op1, m_Constant()) &&
-      match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
-    return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
-
-  Value *A, *B, *C;
-  // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
-  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
-                        m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
-      return BinaryOperator::CreateXor(
-          Builder.CreateAnd(Builder.CreateNot(A), C), B);
-
-  // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
-  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
-                        m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
-      return BinaryOperator::CreateXor(
-          Builder.CreateAnd(Builder.CreateNot(B), C), A);
-
-  // (A & B) ^ (A ^ B) -> (A | B)
-  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
-      match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
-    return BinaryOperator::CreateOr(A, B);
-  // (A ^ B) ^ (A & B) -> (A | B)
-  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
-      match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
-    return BinaryOperator::CreateOr(A, B);
-
-  // (A & ~B) ^ ~A -> ~(A & B)
-  // (~B & A) ^ ~A -> ~(A & B)
-  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
-      match(Op1, m_Not(m_Specific(A))))
-    return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
-
-  // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
-  if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
-    return BinaryOperator::CreateOr(A, B);
-
-  // (~A | B) ^ A --> ~(A & B)
-  if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
-    return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
-
-  // A ^ (~A | B) --> ~(A & B)
-  if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
-    return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
-
-  // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
-  // TODO: Loosen one-use restriction if common operand is a constant.
-  Value *D;
-  if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
-      match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
-    if (B == C || B == D)
-      std::swap(A, B);
-    if (A == C)
-      std::swap(C, D);
-    if (A == D) {
-      Value *NotA = Builder.CreateNot(A);
-      return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
-    }
-  }
-
-  // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants.
-  if (I.getType()->isIntOrIntVectorTy(1) &&
-      match(&I, m_c_Xor(m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B))),
-                        m_OneUse(m_LogicalOr(m_Value(C), m_Value(D)))))) {
-    bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D;
-    if (B == C || B == D)
-      std::swap(A, B);
-    if (A == C)
-      std::swap(C, D);
-    if (A == D) {
-      if (NeedFreeze)
-        A = Builder.CreateFreeze(A);
-      Value *NotB = Builder.CreateNot(B);
-      return SelectInst::Create(A, NotB, C);
-    }
-  }
-
-  if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
-    if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
-      if (Value *V = foldXorOfICmps(LHS, RHS, I))
-        return replaceInstUsesWith(I, V);
-
-  if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
-    return CastedXor;
-
-  if (Instruction *Abs = canonicalizeAbs(I, Builder))
-    return Abs;
-
-  // Otherwise, if all else failed, try to hoist the xor-by-constant:
-  //   (X ^ C) ^ Y --> (X ^ Y) ^ C
-  // Just like we do in other places, we completely avoid the fold
-  // for constantexprs, at least to avoid endless combine loop.
-  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
-                                                    m_Unless(m_ConstantExpr())),
-                                       m_ImmConstant(C1))),
-                        m_Value(Y))))
-    return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
-
-  if (Instruction *R = reassociateForUses(I, Builder))
-    return R;
-
-  if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
-    return Canonicalized;
-
-  if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
-    return Folded;
-
-  if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
-    return Folded;
-
-  if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
-    return Res;
-
-  if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
-    return Res;
-
-  return nullptr;
-}



More information about the llvm-commits mailing list