[llvm] [LV] Fold isPredicatedInst into isMaskRequired (PR #134261)

via llvm-commits llvm-commits at lists.llvm.org
Thu Apr 3 08:36:29 PDT 2025


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-vectorizers

Author: Ramkumar Ramachandra (artagnon)

<details>
<summary>Changes</summary>

Fold LoopVectorizationCostModel::isPredicatedInst into LoopVectorizationLegality::isMaskRequired, fixing a pending TODO item. Note that we still need to pass whether or not we're tail-folding by masking from the cost-model into isMaskRequired.

---

Patch is 134.44 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/134261.diff


6 Files Affected:

- (modified) llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h (+1-3) 
- (modified) llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp (+51) 
- (modified) llvm/lib/Transforms/Vectorize/LoopVectorize.cpp (+24-78) 
- (modified) llvm/test/Transforms/LoopVectorize/AArch64/masked-call-scalarize.ll (+7-12) 
- (modified) llvm/test/Transforms/LoopVectorize/AArch64/masked-call.ll (+137-41) 
- (modified) llvm/test/Transforms/LoopVectorize/AArch64/veclib-intrinsic-calls.ll (+232-232) 


``````````diff
diff --git a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
index d654ac3ec9273..00f31df1b62cb 100644
--- a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
+++ b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
@@ -420,9 +420,7 @@ class LoopVectorizationLegality {
 
   /// Returns true if vector representation of the instruction \p I
   /// requires mask.
-  bool isMaskRequired(const Instruction *I) const {
-    return MaskedOp.contains(I);
-  }
+  bool isMaskRequired(Instruction *I, bool FoldTailByMasking) const;
 
   /// Returns true if there is at least one function call in the loop which
   /// has a vectorized variant available.
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
index 3ec6850d6f685..8f18e2d099751 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
@@ -1408,6 +1408,57 @@ bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
 }
 
+bool LoopVectorizationLegality::isMaskRequired(Instruction *I,
+                                               bool FoldTailByMasking) const {
+  if (isSafeToSpeculativelyExecute(I, TheLoop->getLatchCmpInst()) ||
+      (isa<LoadInst, StoreInst, CallInst>(I) && !MaskedOp.contains(I)) ||
+      isa<BranchInst, SwitchInst, PHINode, AllocaInst>(I))
+    return false;
+
+  // If the instruction was executed conditionally in the original scalar loop,
+  // predication is needed with a mask whose lanes are all possibly inactive.
+  if (blockNeedsPredication(I->getParent()))
+    return true;
+
+  // If we're not folding tail by masking, bail out now.
+  if (!FoldTailByMasking)
+    return false;
+
+  // All that remain are instructions with side-effects originally executed in
+  // the loop unconditionally, but now execute under a tail-fold mask (only)
+  // having at least one active lane (the first). If the side-effects of the
+  // instruction are invariant, executing it w/o (the tail-folding) mask is safe
+  // - it will cause the same side-effects as when masked.
+  switch (I->getOpcode()) {
+  default:
+    llvm_unreachable(
+        "instruction should have been considered by earlier checks");
+  case Instruction::Call:
+    // Side-effects of a Call are assumed to be non-invariant, needing a
+    // (fold-tail) mask.
+    assert(MaskedOp.contains(I) &&
+           "should have returned earlier for calls not needing a mask");
+    return true;
+  case Instruction::Load:
+    // If the address is loop invariant no predication is needed.
+    return !isInvariant(getLoadStorePointerOperand(I));
+  case Instruction::Store: {
+    // For stores, we need to prove both speculation safety (which follows from
+    // the same argument as loads), but also must prove the value being stored
+    // is correct.  The easiest form of the later is to require that all values
+    // stored are the same.
+    return !(isInvariant(getLoadStorePointerOperand(I)) &&
+             TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
+  }
+  case Instruction::UDiv:
+  case Instruction::SDiv:
+  case Instruction::SRem:
+  case Instruction::URem:
+    // If the divisor is loop-invariant no predication is needed.
+    return !TheLoop->isLoopInvariant(I->getOperand(1));
+  }
+}
+
 bool LoopVectorizationLegality::blockCanBePredicated(
     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
     SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 55cc801e91452..8028829ee6810 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1313,11 +1313,6 @@ class LoopVectorizationCostModel {
   /// \p VF is the vectorization factor that will be used to vectorize \p I.
   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
 
-  /// Returns true if \p I is an instruction that needs to be predicated
-  /// at runtime.  The result is independent of the predication mechanism.
-  /// Superset of instructions that return true for isScalarWithPredication.
-  bool isPredicatedInst(Instruction *I) const;
-
   /// Return the costs for our two available strategies for lowering a
   /// div/rem operation which requires speculating at least one lane.
   /// First result is for scalarization (will be invalid for scalable
@@ -3203,7 +3198,7 @@ void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
 
 bool LoopVectorizationCostModel::isScalarWithPredication(
     Instruction *I, ElementCount VF) const {
-  if (!isPredicatedInst(I))
+  if (!Legal->isMaskRequired(I, foldTailByMasking()))
     return false;
 
   // Do we have a non-scalar lowering for this predicated
@@ -3242,57 +3237,6 @@ bool LoopVectorizationCostModel::isScalarWithPredication(
   }
 }
 
-// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
-bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const {
-  // If predication is not needed, avoid it.
-  // TODO: We can use the loop-preheader as context point here and get
-  // context sensitive reasoning for isSafeToSpeculativelyExecute.
-  if (!blockNeedsPredicationForAnyReason(I->getParent()) ||
-      isSafeToSpeculativelyExecute(I) ||
-      (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
-      isa<BranchInst, SwitchInst, PHINode, AllocaInst>(I))
-    return false;
-
-  // If the instruction was executed conditionally in the original scalar loop,
-  // predication is needed with a mask whose lanes are all possibly inactive.
-  if (Legal->blockNeedsPredication(I->getParent()))
-    return true;
-
-  // All that remain are instructions with side-effects originally executed in
-  // the loop unconditionally, but now execute under a tail-fold mask (only)
-  // having at least one active lane (the first). If the side-effects of the
-  // instruction are invariant, executing it w/o (the tail-folding) mask is safe
-  // - it will cause the same side-effects as when masked.
-  switch(I->getOpcode()) {
-  default:
-    llvm_unreachable(
-        "instruction should have been considered by earlier checks");
-  case Instruction::Call:
-    // Side-effects of a Call are assumed to be non-invariant, needing a
-    // (fold-tail) mask.
-    assert(Legal->isMaskRequired(I) &&
-           "should have returned earlier for calls not needing a mask");
-    return true;
-  case Instruction::Load:
-    // If the address is loop invariant no predication is needed.
-    return !Legal->isInvariant(getLoadStorePointerOperand(I));
-  case Instruction::Store: {
-    // For stores, we need to prove both speculation safety (which follows from
-    // the same argument as loads), but also must prove the value being stored
-    // is correct.  The easiest form of the later is to require that all values
-    // stored are the same.
-    return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
-             TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
-  }
-  case Instruction::UDiv:
-  case Instruction::SDiv:
-  case Instruction::SRem:
-  case Instruction::URem:
-    // If the divisor is loop-invariant no predication is needed.
-    return !TheLoop->isLoopInvariant(I->getOperand(1));
-  }
-}
-
 std::pair<InstructionCost, InstructionCost>
 LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I,
                                                     ElementCount VF) const {
@@ -3405,7 +3349,7 @@ bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
   // load, or any gaps in a store-access).
   bool PredicatedAccessRequiresMasking =
       blockNeedsPredicationForAnyReason(I->getParent()) &&
-      Legal->isMaskRequired(I);
+      Legal->isMaskRequired(I, foldTailByMasking());
   bool LoadAccessWithGapsRequiresEpilogMasking =
       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
       !isScalarEpilogueAllowed();
@@ -3494,7 +3438,7 @@ void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
                         << *I << "\n");
       return;
     }
-    if (isPredicatedInst(I)) {
+    if (Legal->isMaskRequired(I, foldTailByMasking())) {
       LLVM_DEBUG(
           dbgs() << "LV: Found not uniform due to requiring predication: " << *I
                  << "\n");
@@ -5379,7 +5323,7 @@ bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
   // from moving "masked load/store" check from legality to cost model.
   // Masked Load/Gather emulation was previously never allowed.
   // Limited number of Masked Store/Scatter emulation was allowed.
-  assert((isPredicatedInst(I)) &&
+  assert((Legal->isMaskRequired(I, foldTailByMasking())) &&
          "Expecting a scalar emulated instruction");
   return isa<LoadInst>(I) ||
          (isa<StoreInst>(I) &&
@@ -5677,7 +5621,7 @@ LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
   // If we have a predicated load/store, it will need extra i1 extracts and
   // conditional branches, but may not be executed for each vector lane. Scale
   // the cost by the probability of executing the predicated block.
-  if (isPredicatedInst(I)) {
+  if (Legal->isMaskRequired(I, foldTailByMasking())) {
     Cost /= getPredBlockCostDivisor(CostKind);
 
     // Add the cost of an i1 extract and a branch
@@ -5710,7 +5654,7 @@ LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
          "Stride should be 1 or -1 for consecutive memory access");
   const Align Alignment = getLoadStoreAlignment(I);
   InstructionCost Cost = 0;
-  if (Legal->isMaskRequired(I)) {
+  if (Legal->isMaskRequired(I, foldTailByMasking())) {
     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
                                       CostKind);
   } else {
@@ -5763,9 +5707,10 @@ LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
   const Value *Ptr = getLoadStorePointerOperand(I);
 
   return TTI.getAddressComputationCost(VectorTy) +
-         TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
-                                    Legal->isMaskRequired(I), Alignment,
-                                    CostKind, I);
+         TTI.getGatherScatterOpCost(
+             I->getOpcode(), VectorTy, Ptr,
+             Legal->isMaskRequired(I, foldTailByMasking()), Alignment, CostKind,
+             I);
 }
 
 InstructionCost
@@ -5794,12 +5739,12 @@ LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
       InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
-      Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
-      UseMaskForGaps);
+      Group->getAlign(), AS, CostKind,
+      Legal->isMaskRequired(I, foldTailByMasking()), UseMaskForGaps);
 
   if (Group->isReverse()) {
     // TODO: Add support for reversed masked interleaved access.
-    assert(!Legal->isMaskRequired(I) &&
+    assert(!Legal->isMaskRequired(I, foldTailByMasking()) &&
            "Reverse masked interleaved access not supported.");
     Cost += Group->getNumMembers() *
             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, {},
@@ -6287,7 +6232,7 @@ void LoopVectorizationCostModel::setVectorizedCallDecision(ElementCount VF) {
         continue;
       }
 
-      bool MaskRequired = Legal->isMaskRequired(CI);
+      bool MaskRequired = Legal->isMaskRequired(CI, foldTailByMasking());
       // Compute corresponding vector type for return value and arguments.
       Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
       for (Type *ScalarTy : ScalarTys)
@@ -6407,7 +6352,7 @@ bool LoopVectorizationCostModel::shouldConsiderInvariant(Value *Op) {
   // instruction in the loop. In that case, it is not trivially hoistable.
   auto *OpI = dyn_cast<Instruction>(Op);
   return !OpI || !TheLoop->contains(OpI) ||
-         (!isPredicatedInst(OpI) &&
+         (!Legal->isMaskRequired(OpI, foldTailByMasking()) &&
           (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
           all_of(OpI->operands(),
                  [this](Value *Op) { return shouldConsiderInvariant(Op); }));
@@ -6595,7 +6540,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I,
   case Instruction::SDiv:
   case Instruction::URem:
   case Instruction::SRem:
-    if (VF.isVector() && isPredicatedInst(I)) {
+    if (VF.isVector() && Legal->isMaskRequired(I, foldTailByMasking())) {
       const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
       return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
         ScalarCost : SafeDivisorCost;
@@ -6779,8 +6724,9 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I,
         return TTI::CastContextHint::Interleave;
       case LoopVectorizationCostModel::CM_Scalarize:
       case LoopVectorizationCostModel::CM_Widen:
-        return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
-                                        : TTI::CastContextHint::Normal;
+        return Legal->isMaskRequired(I, foldTailByMasking())
+                   ? TTI::CastContextHint::Masked
+                   : TTI::CastContextHint::Normal;
       case LoopVectorizationCostModel::CM_Widen_Reverse:
         return TTI::CastContextHint::Reversed;
       case LoopVectorizationCostModel::CM_Unknown:
@@ -8317,7 +8263,7 @@ VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands,
     return nullptr;
 
   VPValue *Mask = nullptr;
-  if (Legal->isMaskRequired(I))
+  if (Legal->isMaskRequired(I, CM.foldTailByMasking()))
     Mask = getBlockInMask(I->getParent());
 
   // Determine if the pointer operand of the access is either consecutive or
@@ -8543,7 +8489,7 @@ VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
       //      vector variant at this VF requires a mask, so we synthesize an
       //      all-true mask.
       VPValue *Mask = nullptr;
-      if (Legal->isMaskRequired(CI))
+      if (Legal->isMaskRequired(CI, CM.foldTailByMasking()))
         Mask = getBlockInMask(CI->getParent());
       else
         Mask = Plan.getOrAddLiveIn(
@@ -8584,7 +8530,7 @@ VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
   case Instruction::URem: {
     // If not provably safe, use a select to form a safe divisor before widening the
     // div/rem operation itself.  Otherwise fall through to general handling below.
-    if (CM.isPredicatedInst(I)) {
+    if (Legal->isMaskRequired(I, CM.foldTailByMasking())) {
       SmallVector<VPValue *> Ops(Operands);
       VPValue *Mask = getBlockInMask(I->getParent());
       VPValue *One =
@@ -8667,7 +8613,7 @@ VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
 
   // In case of predicated execution (due to tail-folding, or conditional
   // execution, or both), pass the relevant mask.
-  if (Legal->isMaskRequired(HI->Store))
+  if (Legal->isMaskRequired(HI->Store, CM.foldTailByMasking()))
     HGramOps.push_back(getBlockInMask(HI->Store->getParent()));
 
   return new VPHistogramRecipe(Opcode,
@@ -8682,7 +8628,7 @@ VPRecipeBuilder::handleReplication(Instruction *I, ArrayRef<VPValue *> Operands,
       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
       Range);
 
-  bool IsPredicated = CM.isPredicatedInst(I);
+  bool IsPredicated = Legal->isMaskRequired(I, CM.foldTailByMasking());
 
   // Even if the instruction is not marked as uniform, there are certain
   // intrinsic calls that can be effectively treated as such, so we check for
diff --git a/llvm/test/Transforms/LoopVectorize/AArch64/masked-call-scalarize.ll b/llvm/test/Transforms/LoopVectorize/AArch64/masked-call-scalarize.ll
index 121a6ed53309e..4e79965420ab1 100644
--- a/llvm/test/Transforms/LoopVectorize/AArch64/masked-call-scalarize.ll
+++ b/llvm/test/Transforms/LoopVectorize/AArch64/masked-call-scalarize.ll
@@ -67,10 +67,9 @@ define void @test_widen_exp_v2(ptr noalias %p2, ptr noalias %p, i64 %n) #5 {
 ; TFCOMMON-NEXT:    [[INDEX:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[INDEX_NEXT:%.*]], [[PRED_STORE_CONTINUE6:%.*]] ]
 ; TFCOMMON-NEXT:    [[ACTIVE_LANE_MASK:%.*]] = phi <2 x i1> [ [[ACTIVE_LANE_MASK_ENTRY]], [[ENTRY]] ], [ [[ACTIVE_LANE_MASK_NEXT:%.*]], [[PRED_STORE_CONTINUE6]] ]
 ; TFCOMMON-NEXT:    [[LD:%.*]] = load double, ptr [[P2:%.*]], align 8
-; TFCOMMON-NEXT:    [[TMP5:%.*]] = tail call double @llvm.exp.f64(double [[LD]]) #[[ATTR3:[0-9]+]]
-; TFCOMMON-NEXT:    [[TMP6:%.*]] = tail call double @llvm.exp.f64(double [[LD]]) #[[ATTR3]]
-; TFCOMMON-NEXT:    [[TMP7:%.*]] = insertelement <2 x double> poison, double [[TMP5]], i32 0
-; TFCOMMON-NEXT:    [[TMP8:%.*]] = insertelement <2 x double> [[TMP7]], double [[TMP6]], i32 1
+; TFCOMMON-NEXT:    [[BROADCAST_SPLATINSERT:%.*]] = insertelement <2 x double> poison, double [[LD]], i64 0
+; TFCOMMON-NEXT:    [[BROADCAST_SPLAT:%.*]] = shufflevector <2 x double> [[BROADCAST_SPLATINSERT]], <2 x double> poison, <2 x i32> zeroinitializer
+; TFCOMMON-NEXT:    [[TMP8:%.*]] = call <2 x double> @exp_fixed(<2 x double> [[BROADCAST_SPLAT]])
 ; TFCOMMON-NEXT:    [[TMP9:%.*]] = fcmp ogt <2 x double> [[TMP8]], zeroinitializer
 ; TFCOMMON-NEXT:    [[TMP10:%.*]] = xor <2 x i1> [[TMP9]], splat (i1 true)
 ; TFCOMMON-NEXT:    [[TMP11:%.*]] = select <2 x i1> [[ACTIVE_LANE_MASK]], <2 x i1> [[TMP10]], <2 x i1> zeroinitializer
@@ -114,14 +113,10 @@ define void @test_widen_exp_v2(ptr noalias %p2, ptr noalias %p, i64 %n) #5 {
 ; TFA_INTERLEAVE-NEXT:    [[ACTIVE_LANE_MASK:%.*]] = phi <2 x i1> [ [[ACTIVE_LANE_MASK_ENTRY]], [[ENTRY]] ], [ [[ACTIVE_LANE_MASK_NEXT:%.*]], [[PRED_STORE_CONTINUE9]] ]
 ; TFA_INTERLEAVE-NEXT:    [[ACTIVE_LANE_MASK2:%.*]] = phi <2 x i1> [ [[ACTIVE_LANE_MASK_ENTRY1]], [[ENTRY]] ], [ [[ACTIVE_LANE_MASK_NEXT10:%.*]], [[PRED_STORE_CONTINUE9]] ]
 ; TFA_INTERLEAVE-NEXT:    [[TMP4:%.*]] = load double, ptr [[P2:%.*]], align 8
-; TFA_INTERLEAVE-NEXT:    [[TMP5:%.*]] = tail call double @llvm.exp.f64(double [[TMP4]]) #[[ATTR3:[0-9]+]]
-; TFA_INTERLEAVE-NEXT:    [[TMP6:%.*]] = tail call double @llvm.exp.f64(double [[TMP4]]) #[[ATTR3]]
-; TFA_INTERLEAVE-NEXT:    [[TMP7:%.*]] = insertelement <2 x double> poison, double [[TMP5]], i32 0
-; TFA_INTERLEAVE-NEXT:    [[TMP8:%.*]] = insertelement <2 x double> [[TMP7]], double [[TMP6]], i32 1
-; TFA_INTERLEAVE-NEXT:    [[TMP9:%.*]] = tail call double @llvm.exp.f64(double [[TMP4]]) #[[ATTR3]]
-; TFA_INTERLEAVE-NEXT:    [[TMP10:%.*]] = tail call double @llvm.exp.f64(double [[TMP4]]) #[[ATTR3]]
-; TFA_INTERLEAVE-NEXT:    [[TMP11:%.*]] = insertelement <2 x double> poison, double [[TMP9]], i32 0
-; TFA_INTERLEAVE-NEXT:    [[TMP12:%.*]] = insertelement <2 x double> [[TMP11]], double [[TMP10]], i32 1
+; TFA_INTERLEAVE-NEXT:    [[BROADCAST_SPLATINSERT:%.*]] = insertelement <2 x double> poison, double [[TMP4]], i64 0
+; TFA_INTERLEAVE-NEXT:    [[BROADCAST_SPLAT:%.*]] = shufflevector <2 x double> [[BROADCAST_SPLATINSERT]], <2 x double> poison, <2 x i32> zeroinitializer
+; TFA_INTERLEAVE-NEXT:    [[TMP8:%.*]] = call <2 x double> @exp_fixed(<2 x double> [[BROADCAST_SPLAT]])
+; TFA_INTERLEAVE-NEXT:    [[TMP12:%.*]] = call <2 x double> @exp_fixed(<2 x double> [[BROADCAST_SPLAT]])
 ; TFA_INTERLEAVE-NEXT:    [[TMP13:%.*]] = fcmp ogt <2 x double> [[TMP8]], zeroinitializer
 ; TFA_INTERLEAVE-NEXT:    [[TMP14:%.*]] = fcmp ogt <2 x double> [[TMP12]], zeroinitializer
 ; TFA_INTERLEAVE-NEXT:    [[TMP15:%.*]] = xor <2 x i1> [[TMP13]], splat (i1 true)
diff --git a/llvm/test/Transforms/LoopVectorize/AArch64/masked-call.ll b/llvm/test/Transforms/LoopVectorize/AArch64/masked-call.ll
index 36c3a4a2b4e43..9ff4da28c6a5c 100644
--- a/llvm/test/Transforms/LoopVectorize/AArch64/masked-call.ll
+++ b/llvm/test/Transforms/LoopVectorize/AArch64/masked-call.ll
@@ -1040,65 +1040,161 @@ define void @test_widen_exp_v2(ptr noalias %p2, ptr noalias %p, i64 %n) #5 {
 ; TFNONE:       [[END]]:
 ; TFNONE-NEXT:    ret void
 ;
-; TFCOMMON-LABEL: define void @test_widen_exp_v2(
-; TFCOMMON-SAME: ptr noalias [[P2:%.*]], ptr noalias [[P:%.*]], i64 [[N:%.*]]) #[[ATTR1:[0-9]+]] {
-; TFCOMMO...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/134261


More information about the llvm-commits mailing list