[llvm] 877cb9a - [KnownBits] Make `{s, u}{add, sub}_sat` optimal (#113096)

via llvm-commits llvm-commits at lists.llvm.org
Tue Nov 5 07:03:42 PST 2024


Author: goldsteinn
Date: 2024-11-05T09:03:37-06:00
New Revision: 877cb9a2edc9057d70321e436e5ea8ccc1a87140

URL: https://github.com/llvm/llvm-project/commit/877cb9a2edc9057d70321e436e5ea8ccc1a87140
DIFF: https://github.com/llvm/llvm-project/commit/877cb9a2edc9057d70321e436e5ea8ccc1a87140.diff

LOG: [KnownBits] Make `{s,u}{add,sub}_sat` optimal (#113096)

Changes are:
    1) Make signed-overflow detection optimal
    2) For signed-overflow, try to rule out direction even if we can't
       totally rule out overflow.
    3) Intersect add/sub assuming no overflow with possible overflow
       clamping values as opposed to add/sub without the assumption.

Added: 
    

Modified: 
    llvm/lib/Support/KnownBits.cpp
    llvm/test/Analysis/ValueTracking/knownbits-sat-addsub.ll
    llvm/unittests/Support/KnownBitsTest.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Support/KnownBits.cpp b/llvm/lib/Support/KnownBits.cpp
index 89668af378070b..16229598b612a5 100644
--- a/llvm/lib/Support/KnownBits.cpp
+++ b/llvm/lib/Support/KnownBits.cpp
@@ -610,28 +610,82 @@ static KnownBits computeForSatAddSub(bool Add, bool Signed,
                                      const KnownBits &RHS) {
   // We don't see NSW even for sadd/ssub as we want to check if the result has
   // signed overflow.
-  KnownBits Res =
-      KnownBits::computeForAddSub(Add, /*NSW=*/false, /*NUW=*/false, LHS, RHS);
-  unsigned BitWidth = Res.getBitWidth();
-  auto SignBitKnown = [&](const KnownBits &K) {
-    return K.Zero[BitWidth - 1] || K.One[BitWidth - 1];
-  };
-  std::optional<bool> Overflow;
+  unsigned BitWidth = LHS.getBitWidth();
 
+  std::optional<bool> Overflow;
+  // Even if we can't entirely rule out overflow, we may be able to rule out
+  // overflow in one direction. This allows us to potentially keep some of the
+  // add/sub bits. I.e if we can't overflow in the positive direction we won't
+  // clamp to INT_MAX so we can keep low 0s from the add/sub result.
+  bool MayNegClamp = true;
+  bool MayPosClamp = true;
   if (Signed) {
-    // If we can actually detect overflow do so. Otherwise leave Overflow as
-    // nullopt (we assume it may have happened).
-    if (SignBitKnown(LHS) && SignBitKnown(RHS) && SignBitKnown(Res)) {
+    // Easy cases we can rule out any overflow.
+    if (Add && ((LHS.isNegative() && RHS.isNonNegative()) ||
+                (LHS.isNonNegative() && RHS.isNegative())))
+      Overflow = false;
+    else if (!Add && (((LHS.isNegative() && RHS.isNegative()) ||
+                       (LHS.isNonNegative() && RHS.isNonNegative()))))
+      Overflow = false;
+    else {
+      // Check if we may overflow. If we can't rule out overflow then check if
+      // we can rule out a direction at least.
+      KnownBits UnsignedLHS = LHS;
+      KnownBits UnsignedRHS = RHS;
+      // Get version of LHS/RHS with clearer signbit. This allows us to detect
+      // how the addition/subtraction might overflow into the signbit. Then
+      // using the actual known signbits of LHS/RHS, we can figure out which
+      // overflows are/aren't possible.
+      UnsignedLHS.One.clearSignBit();
+      UnsignedLHS.Zero.setSignBit();
+      UnsignedRHS.One.clearSignBit();
+      UnsignedRHS.Zero.setSignBit();
+      KnownBits Res =
+          KnownBits::computeForAddSub(Add, /*NSW=*/false,
+                                      /*NUW=*/false, UnsignedLHS, UnsignedRHS);
       if (Add) {
-        // sadd.sat
-        Overflow = (LHS.isNonNegative() == RHS.isNonNegative() &&
-                    Res.isNonNegative() != LHS.isNonNegative());
+        if (Res.isNegative()) {
+          // Only overflow scenario is Pos + Pos.
+          MayNegClamp = false;
+          // Pos + Pos will overflow with extra signbit.
+          if (LHS.isNonNegative() && RHS.isNonNegative())
+            Overflow = true;
+        } else if (Res.isNonNegative()) {
+          // Only overflow scenario is Neg + Neg
+          MayPosClamp = false;
+          // Neg + Neg will overflow without extra signbit.
+          if (LHS.isNegative() && RHS.isNegative())
+            Overflow = true;
+        }
+        // We will never clamp to the opposite sign of N-bit result.
+        if (LHS.isNegative() || RHS.isNegative())
+          MayPosClamp = false;
+        if (LHS.isNonNegative() || RHS.isNonNegative())
+          MayNegClamp = false;
       } else {
-        // ssub.sat
-        Overflow = (LHS.isNonNegative() != RHS.isNonNegative() &&
-                    Res.isNonNegative() != LHS.isNonNegative());
+        if (Res.isNegative()) {
+          // Only overflow scenario is Neg - Pos.
+          MayPosClamp = false;
+          // Neg - Pos will overflow with extra signbit.
+          if (LHS.isNegative() && RHS.isNonNegative())
+            Overflow = true;
+        } else if (Res.isNonNegative()) {
+          // Only overflow scenario is Pos - Neg.
+          MayNegClamp = false;
+          // Pos - Neg will overflow without extra signbit.
+          if (LHS.isNonNegative() && RHS.isNegative())
+            Overflow = true;
+        }
+        // We will never clamp to the opposite sign of N-bit result.
+        if (LHS.isNegative() || RHS.isNonNegative())
+          MayPosClamp = false;
+        if (LHS.isNonNegative() || RHS.isNegative())
+          MayNegClamp = false;
       }
     }
+    // If we have ruled out all clamping, we will never overflow.
+    if (!MayNegClamp && !MayPosClamp)
+      Overflow = false;
   } else if (Add) {
     // uadd.sat
     bool Of;
@@ -656,52 +710,8 @@ static KnownBits computeForSatAddSub(bool Add, bool Signed,
     }
   }
 
-  if (Signed) {
-    if (Add) {
-      if (LHS.isNonNegative() && RHS.isNonNegative()) {
-        // Pos + Pos -> Pos
-        Res.One.clearSignBit();
-        Res.Zero.setSignBit();
-      }
-      if (LHS.isNegative() && RHS.isNegative()) {
-        // Neg + Neg -> Neg
-        Res.One.setSignBit();
-        Res.Zero.clearSignBit();
-      }
-    } else {
-      if (LHS.isNegative() && RHS.isNonNegative()) {
-        // Neg - Pos -> Neg
-        Res.One.setSignBit();
-        Res.Zero.clearSignBit();
-      } else if (LHS.isNonNegative() && RHS.isNegative()) {
-        // Pos - Neg -> Pos
-        Res.One.clearSignBit();
-        Res.Zero.setSignBit();
-      }
-    }
-  } else {
-    // Add: Leading ones of either operand are preserved.
-    // Sub: Leading zeros of LHS and leading ones of RHS are preserved
-    // as leading zeros in the result.
-    unsigned LeadingKnown;
-    if (Add)
-      LeadingKnown =
-          std::max(LHS.countMinLeadingOnes(), RHS.countMinLeadingOnes());
-    else
-      LeadingKnown =
-          std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingOnes());
-
-    // We select between the operation result and all-ones/zero
-    // respectively, so we can preserve known ones/zeros.
-    APInt Mask = APInt::getHighBitsSet(BitWidth, LeadingKnown);
-    if (Add) {
-      Res.One |= Mask;
-      Res.Zero &= ~Mask;
-    } else {
-      Res.Zero |= Mask;
-      Res.One &= ~Mask;
-    }
-  }
+  KnownBits Res = KnownBits::computeForAddSub(Add, /*NSW=*/Signed,
+                                              /*NUW=*/!Signed, LHS, RHS);
 
   if (Overflow) {
     // We know whether or not we overflowed.
@@ -714,7 +724,7 @@ static KnownBits computeForSatAddSub(bool Add, bool Signed,
     APInt C;
     if (Signed) {
       // sadd.sat / ssub.sat
-      assert(SignBitKnown(LHS) &&
+      assert(!LHS.isSignUnknown() &&
              "We somehow know overflow without knowing input sign");
       C = LHS.isNegative() ? APInt::getSignedMinValue(BitWidth)
                            : APInt::getSignedMaxValue(BitWidth);
@@ -735,8 +745,10 @@ static KnownBits computeForSatAddSub(bool Add, bool Signed,
   if (Signed) {
     // sadd.sat/ssub.sat
     // We can keep our information about the sign bits.
-    Res.Zero.clearLowBits(BitWidth - 1);
-    Res.One.clearLowBits(BitWidth - 1);
+    if (MayPosClamp)
+      Res.Zero.clearLowBits(BitWidth - 1);
+    if (MayNegClamp)
+      Res.One.clearLowBits(BitWidth - 1);
   } else if (Add) {
     // uadd.sat
     // We need to clear all the known zeros as we can only use the leading ones.

diff  --git a/llvm/test/Analysis/ValueTracking/knownbits-sat-addsub.ll b/llvm/test/Analysis/ValueTracking/knownbits-sat-addsub.ll
index c2926eaffa58c5..f9618e1ddbc022 100644
--- a/llvm/test/Analysis/ValueTracking/knownbits-sat-addsub.ll
+++ b/llvm/test/Analysis/ValueTracking/knownbits-sat-addsub.ll
@@ -142,14 +142,7 @@ define i1 @ssub_sat_low_bits(i8 %x, i8 %y) {
 
 define i1 @ssub_sat_fail_may_overflow(i8 %x, i8 %y) {
 ; CHECK-LABEL: @ssub_sat_fail_may_overflow(
-; CHECK-NEXT:    [[XX:%.*]] = and i8 [[X:%.*]], 15
-; CHECK-NEXT:    [[YY:%.*]] = and i8 [[Y:%.*]], 15
-; CHECK-NEXT:    [[LHS:%.*]] = or i8 [[XX]], 1
-; CHECK-NEXT:    [[RHS:%.*]] = and i8 [[YY]], -2
-; CHECK-NEXT:    [[EXP:%.*]] = call i8 @llvm.ssub.sat.i8(i8 [[LHS]], i8 [[RHS]])
-; CHECK-NEXT:    [[AND:%.*]] = and i8 [[EXP]], 1
-; CHECK-NEXT:    [[R:%.*]] = icmp eq i8 [[AND]], 0
-; CHECK-NEXT:    ret i1 [[R]]
+; CHECK-NEXT:    ret i1 false
 ;
   %xx = and i8 %x, 15
   %yy = and i8 %y, 15

diff  --git a/llvm/unittests/Support/KnownBitsTest.cpp b/llvm/unittests/Support/KnownBitsTest.cpp
index b16368de176481..ce0bf86e39dd7b 100644
--- a/llvm/unittests/Support/KnownBitsTest.cpp
+++ b/llvm/unittests/Support/KnownBitsTest.cpp
@@ -383,26 +383,22 @@ TEST(KnownBitsTest, BinaryExhaustive) {
       "sadd_sat", KnownBits::sadd_sat,
       [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
         return N1.sadd_sat(N2);
-      },
-      /*CheckOptimality=*/false);
+      });
   testBinaryOpExhaustive(
       "uadd_sat", KnownBits::uadd_sat,
       [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
         return N1.uadd_sat(N2);
-      },
-      /*CheckOptimality=*/false);
+      });
   testBinaryOpExhaustive(
       "ssub_sat", KnownBits::ssub_sat,
       [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
         return N1.ssub_sat(N2);
-      },
-      /*CheckOptimality=*/false);
+      });
   testBinaryOpExhaustive(
       "usub_sat", KnownBits::usub_sat,
       [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
         return N1.usub_sat(N2);
-      },
-      /*CheckOptimality=*/false);
+      });
   testBinaryOpExhaustive(
       "shl",
       [](const KnownBits &Known1, const KnownBits &Known2) {


        


More information about the llvm-commits mailing list