[llvm] [Attributor] Fix Load/Store offsets in case of multiple access bins when an allocation size is changed. (PR #72029)

Vidush Singhal via llvm-commits llvm-commits at lists.llvm.org
Thu May 23 16:00:43 PDT 2024


https://github.com/vidsinghal updated https://github.com/llvm/llvm-project/pull/72029

>From 8ed28c44beb589e4a8c4368f4f68b06197443f1e Mon Sep 17 00:00:00 2001
From: vidsinghal <vidush.sl at gmail.com>
Date: Sun, 5 Nov 2023 22:30:42 -0500
Subject: [PATCH 1/3] [Attributor] Fix Load/Store Offsets if multiple bins are
 present for a pointer allocation.

---
 llvm/include/llvm/Transforms/IPO/Attributor.h |   5 +
 .../Transforms/IPO/AttributorAttributes.cpp   | 181 ++++++--
 .../2008-02-01-ReturnAttrs.ll                 |   8 +-
 .../ArgumentPromotion/X86/attributes.ll       |  28 +-
 .../X86/min-legal-vector-width.ll             | 128 +++---
 .../Attributor/ArgumentPromotion/alignment.ll |   6 +-
 .../Attributor/ArgumentPromotion/alloca-as.ll |  10 +-
 .../Attributor/ArgumentPromotion/array.ll     |  26 +-
 .../Attributor/ArgumentPromotion/attrs.ll     |  22 +-
 .../Attributor/ArgumentPromotion/basictest.ll |   2 +-
 .../Attributor/ArgumentPromotion/byval-2.ll   |  22 +-
 .../Attributor/ArgumentPromotion/byval.ll     |  38 +-
 .../ArgumentPromotion/control-flow2.ll        |   2 +-
 .../Attributor/ArgumentPromotion/crash.ll     |   2 +
 .../Attributor/ArgumentPromotion/fp80.ll      |   2 +-
 .../Attributor/ArgumentPromotion/inalloca.ll  |  28 +-
 .../live_called_from_dead.ll                  |  10 +-
 .../live_called_from_dead_2.ll                |  12 +-
 .../pr33641_remove_arg_dbgvalue.ll            |   2 +-
 .../Attributor/ArgumentPromotion/profile.ll   |   6 +-
 .../Attributor/ArgumentPromotion/sret.ll      |   5 +-
 .../IPConstantProp/openmp_parallel_for.ll     |  16 +-
 .../IPConstantProp/return-argument.ll         |   4 +-
 llvm/test/Transforms/Attributor/align.ll      |  16 +-
 llvm/test/Transforms/Attributor/allocator.ll  | 165 ++++---
 .../Attributor/call-simplify-pointer-info.ll  |  72 ++-
 llvm/test/Transforms/Attributor/callbacks.ll  |  70 +--
 .../Transforms/Attributor/heap_to_stack.ll    |  10 +-
 .../Attributor/heap_to_stack_gpu.ll           |  10 +-
 .../Transforms/Attributor/internal-noalias.ll |  14 +-
 llvm/test/Transforms/Attributor/noalias.ll    |  38 +-
 .../test/Transforms/Attributor/nocapture-2.ll |  52 ++-
 llvm/test/Transforms/Attributor/nofpclass.ll  |  84 +++-
 llvm/test/Transforms/Attributor/norecurse.ll  |   6 +-
 .../Transforms/Attributor/openmp_parallel.ll  |  12 +-
 .../Transforms/Attributor/pointer-info.ll     |   8 +-
 .../Attributor/value-simplify-assume.ll       | 220 ++++-----
 .../Attributor/value-simplify-dominance.ll    |  24 +-
 .../Attributor/value-simplify-gpu.ll          |   6 +-
 .../Attributor/value-simplify-local-remote.ll |  16 +-
 .../Transforms/Attributor/value-simplify.ll   |  30 +-
 .../Transforms/OpenMP/parallel_deletion.ll    |  67 ++-
 .../OpenMP/parallel_region_merging.ll         | 422 ++++++++++--------
 43 files changed, 1149 insertions(+), 758 deletions(-)

diff --git a/llvm/include/llvm/Transforms/IPO/Attributor.h b/llvm/include/llvm/Transforms/IPO/Attributor.h
index 30c51250af61c..fb96e52121f82 100644
--- a/llvm/include/llvm/Transforms/IPO/Attributor.h
+++ b/llvm/include/llvm/Transforms/IPO/Attributor.h
@@ -6122,6 +6122,8 @@ struct AAPointerInfo : public AbstractAttribute {
   virtual const_bin_iterator begin() const = 0;
   virtual const_bin_iterator end() const = 0;
   virtual int64_t numOffsetBins() const = 0;
+  virtual void dumpState(raw_ostream &O) const = 0;
+  virtual const Access &getBinAccess(unsigned Index) const = 0;
 
   /// Call \p CB on all accesses that might interfere with \p Range and return
   /// true if all such accesses were known and the callback returned true for
@@ -6293,6 +6295,9 @@ struct AAAllocationInfo : public StateWrapper<BooleanState, AbstractAttribute> {
 
   virtual std::optional<TypeSize> getAllocatedSize() const = 0;
 
+  using NewOffsetsTy = DenseMap<AA::RangeTy, AA::RangeTy>;
+  virtual const NewOffsetsTy &getNewOffsets() const = 0;
+
   /// See AbstractAttribute::getName()
   const std::string getName() const override { return "AAAllocationInfo"; }
 
diff --git a/llvm/lib/Transforms/IPO/AttributorAttributes.cpp b/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
index 41b66aafe7d34..dc985261ca7c6 100644
--- a/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
+++ b/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
@@ -1083,6 +1083,10 @@ struct AAPointerInfoImpl
     return State::numOffsetBins();
   }
 
+  virtual const Access &getBinAccess(unsigned Index) const override {
+    return getAccess(Index);
+  }
+
   bool forallInterferingAccesses(
       AA::RangeTy Range,
       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
@@ -1429,7 +1433,7 @@ struct AAPointerInfoImpl
   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
 
   /// Dump the state into \p O.
-  void dumpState(raw_ostream &O) {
+  virtual void dumpState(raw_ostream &O) const override {
     for (auto &It : OffsetBins) {
       O << "[" << It.first.Offset << "-" << It.first.Offset + It.first.Size
         << "] : " << It.getSecond().size() << "\n";
@@ -12686,6 +12690,11 @@ struct AAAllocationInfoImpl : public AAAllocationInfo {
     return AssumedAllocatedSize;
   }
 
+  const NewOffsetsTy &getNewOffsets() const override {
+    assert(isValidState() && "the AA is invalid");
+    return NewComputedOffsets;
+  }
+
   std::optional<TypeSize> findInitialAllocationSize(Instruction *I,
                                                     const DataLayout &DL) {
 
@@ -12735,37 +12744,42 @@ struct AAAllocationInfoImpl : public AAAllocationInfo {
     if (*AllocationSize == 0)
       return indicatePessimisticFixpoint();
 
-    int64_t BinSize = PI->numOffsetBins();
-
-    // TODO: implement for multiple bins
-    if (BinSize > 1)
-      return indicatePessimisticFixpoint();
+    int64_t NumBins = PI->numOffsetBins();
 
-    if (BinSize == 0) {
+    if (NumBins == 0) {
       auto NewAllocationSize = std::optional<TypeSize>(TypeSize(0, false));
       if (!changeAllocationSize(NewAllocationSize))
         return ChangeStatus::UNCHANGED;
       return ChangeStatus::CHANGED;
     }
 
-    // TODO: refactor this to be part of multiple bin case
-    const auto &It = PI->begin();
+    // For each access bin
+    // Compute its new start Offset and store the results in a new map
+    // (NewOffsetBins).
+    int64_t PrevBinEndOffset = 0;
+    bool ChangedOffsets = false;
+    for (AAPointerInfo::OffsetBinsTy::const_iterator It = PI->begin();
+         It != PI->end(); It++) {
+      const AA::RangeTy &OldRange = It->getFirst();
+      int64_t NewStartOffset = PrevBinEndOffset;
+      int64_t NewEndOffset = NewStartOffset + OldRange.Size;
+      PrevBinEndOffset = NewEndOffset;
 
-    // TODO: handle if Offset is not zero
-    if (It->first.Offset != 0)
-      return indicatePessimisticFixpoint();
-
-    uint64_t SizeOfBin = It->first.Offset + It->first.Size;
-
-    if (SizeOfBin >= *AllocationSize)
-      return indicatePessimisticFixpoint();
+      ChangedOffsets |= setNewOffsets(OldRange, OldRange.Offset, NewStartOffset,
+                                      OldRange.Size);
+    }
 
+    // Set the new size of the allocation, the new size of the Allocation should
+    // be the size of NewEndOffset * 8, in bits.
     auto NewAllocationSize =
-        std::optional<TypeSize>(TypeSize(SizeOfBin * 8, false));
+        std::optional<TypeSize>(TypeSize(PrevBinEndOffset * 8, false));
 
     if (!changeAllocationSize(NewAllocationSize))
       return ChangeStatus::UNCHANGED;
 
+    if (!ChangedOffsets)
+      return ChangeStatus::UNCHANGED;
+
     return ChangeStatus::CHANGED;
   }
 
@@ -12775,12 +12789,13 @@ struct AAAllocationInfoImpl : public AAAllocationInfo {
     assert(isValidState() &&
            "Manifest should only be called if the state is valid.");
 
-    Instruction *I = getIRPosition().getCtxI();
+    bool Changed = false;
+    const IRPosition &IRP = getIRPosition();
+    Instruction *I = IRP.getCtxI();
 
     auto FixedAllocatedSizeInBits = getAllocatedSize()->getFixedValue();
 
     unsigned long NumBytesToAllocate = (FixedAllocatedSizeInBits + 7) / 8;
-
     switch (I->getOpcode()) {
     // TODO: add case for malloc like calls
     case Instruction::Alloca: {
@@ -12789,25 +12804,98 @@ struct AAAllocationInfoImpl : public AAAllocationInfo {
 
       Type *CharType = Type::getInt8Ty(I->getContext());
 
-      auto *NumBytesToValue =
-          ConstantInt::get(I->getContext(), APInt(32, NumBytesToAllocate));
+      Type *CharArrayType = ArrayType::get(CharType, NumBytesToAllocate);
 
       BasicBlock::iterator insertPt = AI->getIterator();
       insertPt = std::next(insertPt);
-      AllocaInst *NewAllocaInst =
-          new AllocaInst(CharType, AI->getAddressSpace(), NumBytesToValue,
-                         AI->getAlign(), AI->getName(), insertPt);
-
-      if (A.changeAfterManifest(IRPosition::inst(*AI), *NewAllocaInst))
-        return ChangeStatus::CHANGED;
+      AllocaInst *NewAllocaInst = new AllocaInst(
+          CharArrayType, AI->getAddressSpace(), AI->getName(), insertPt);
 
+      Changed |= A.changeAfterManifest(IRPosition::inst(*AI), *NewAllocaInst);
       break;
     }
     default:
       break;
     }
 
-    return ChangeStatus::UNCHANGED;
+    const AAPointerInfo *PI =
+        A.getOrCreateAAFor<AAPointerInfo>(IRP, *this, DepClassTy::REQUIRED);
+
+    if (!PI)
+      return ChangeStatus::UNCHANGED;
+
+    if (!PI->getState().isValidState())
+      return ChangeStatus::UNCHANGED;
+
+    const auto &NewOffsetsMap = getNewOffsets();
+    for (AAPointerInfo::OffsetBinsTy::const_iterator It = PI->begin();
+         It != PI->end(); It++) {
+
+      const auto &OldOffsetRange = It->getFirst();
+
+      // If the OldOffsetRange is not in the map, offsets for that bin did not
+      // change We should just continue and skip changing the offsets in that
+      // case
+      if (!NewOffsetsMap.contains(OldOffsetRange))
+        continue;
+
+      const auto &NewOffsetRange = NewOffsetsMap.lookup(OldOffsetRange);
+      for (const auto AccIndex : It->getSecond()) {
+
+        const auto &AccessInstruction = PI->getBinAccess(AccIndex);
+        auto *LocalInst = AccessInstruction.getLocalInst();
+
+        switch (LocalInst->getOpcode()) {
+        case Instruction::Load: {
+          LoadInst *OldLoadInst = cast<LoadInst>(LocalInst);
+          Value *PointerOperand = OldLoadInst->getPointerOperand();
+
+          IntegerType *Int8TyInteger =
+              IntegerType::get(LocalInst->getContext(), 8);
+          IntegerType *Int64TyInteger =
+              IntegerType::get(LocalInst->getContext(), 64);
+          Value *indexList[2] = {
+              ConstantInt::get(Int64TyInteger, 0),
+              ConstantInt::get(Int64TyInteger,
+                               NewOffsetRange.Offset - OldOffsetRange.Offset)};
+          Value *GepToNewAddress = GetElementPtrInst::Create(
+              Int8TyInteger, PointerOperand, indexList, "NewGep", OldLoadInst);
+
+          LoadInst *NewLoadInst =
+              new LoadInst(OldLoadInst->getType(), GepToNewAddress,
+                           OldLoadInst->getName(), OldLoadInst);
+          Changed |= A.changeAfterManifest(IRPosition::inst(*OldLoadInst),
+                                           *NewLoadInst);
+          break;
+        }
+        case Instruction::Store: {
+          StoreInst *OldStoreInst = cast<StoreInst>(LocalInst);
+          Value *PointerOperand = OldStoreInst->getPointerOperand();
+
+          IntegerType *Int8TyInteger =
+              IntegerType::get(LocalInst->getContext(), 8);
+          IntegerType *Int64TyInteger =
+              IntegerType::get(LocalInst->getContext(), 64);
+          Value *indexList[2] = {
+              ConstantInt::get(Int64TyInteger, 0),
+              ConstantInt::get(Int64TyInteger,
+                               NewOffsetRange.Offset - OldOffsetRange.Offset)};
+          Value *GepToNewAddress = GetElementPtrInst::Create(
+              Int8TyInteger, PointerOperand, indexList, "NewGep", OldStoreInst);
+
+          StoreInst *NewStoreInst = new StoreInst(
+              OldStoreInst->getValueOperand(), GepToNewAddress, OldStoreInst);
+          Changed |= A.changeAfterManifest(IRPosition::inst(*OldStoreInst),
+                                           *NewStoreInst);
+          break;
+        }
+        }
+      }
+    }
+
+    if (!Changed)
+      return ChangeStatus::UNCHANGED;
+    return ChangeStatus::CHANGED;
   }
 
   /// See AbstractAttribute::getAsStr().
@@ -12821,8 +12909,28 @@ struct AAAllocationInfoImpl : public AAAllocationInfo {
            ")";
   }
 
+  void dumpNewOffsetBins(raw_ostream &O) {
+
+    O << "Printing Map from [OldOffsetsRange] : [NewOffsetsRange] if the "
+         "offsets changed."
+      << "\n";
+    const auto &NewOffsetsMap = getNewOffsets();
+    for (auto It = NewOffsetsMap.begin(); It != NewOffsetsMap.end(); It++) {
+
+      const auto &OldRange = It->getFirst();
+      const auto &NewRange = It->getSecond();
+
+      O << "[" << OldRange.Offset << "," << OldRange.Offset + OldRange.Size
+        << "] : ";
+      O << "[" << NewRange.Offset << "," << NewRange.Offset + NewRange.Size
+        << "]";
+      O << "\n";
+    }
+  }
+
 private:
   std::optional<TypeSize> AssumedAllocatedSize = HasNoAllocationSize;
+  NewOffsetsTy NewComputedOffsets;
 
   // Maintain the computed allocation size of the object.
   // Returns (bool) weather the size of the allocation was modified or not.
@@ -12834,6 +12942,21 @@ struct AAAllocationInfoImpl : public AAAllocationInfo {
     }
     return false;
   }
+
+  // Maps an old byte range to its new Offset range in the new allocation.
+  // Returns (bool) weather the old byte range's offsets changed or not.
+  bool setNewOffsets(const AA::RangeTy &OldRange, int64_t OldOffset,
+                     int64_t NewComputedOffset, int64_t Size) {
+
+    if (OldOffset == NewComputedOffset)
+      return false;
+
+    AA::RangeTy &NewRange = NewComputedOffsets.getOrInsertDefault(OldRange);
+    NewRange.Offset = NewComputedOffset;
+    NewRange.Size = Size;
+
+    return true;
+  }
 };
 
 struct AAAllocationInfoFloating : AAAllocationInfoImpl {
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/2008-02-01-ReturnAttrs.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/2008-02-01-ReturnAttrs.ll
index adac17e62807c..e6062da1d1457 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/2008-02-01-ReturnAttrs.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/2008-02-01-ReturnAttrs.ll
@@ -22,16 +22,16 @@ define i32 @f(i32 %x) {
 ; TUNIT-LABEL: define {{[^@]+}}@f
 ; TUNIT-SAME: (i32 returned [[X:%.*]]) #[[ATTR0:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[X_ADDR:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store i32 [[X]], ptr [[X_ADDR]], align 4
+; TUNIT-NEXT:    [[X_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store i32 [[X]], ptr [[X_ADDR1]], align 4
 ; TUNIT-NEXT:    ret i32 [[X]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@f
 ; CGSCC-SAME: (i32 [[X:%.*]]) #[[ATTR1:[0-9]+]] {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[X_ADDR:%.*]] = alloca i32, align 4
-; CGSCC-NEXT:    store i32 [[X]], ptr [[X_ADDR]], align 4
+; CGSCC-NEXT:    [[X_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    store i32 [[X]], ptr [[X_ADDR1]], align 4
 ; CGSCC-NEXT:    [[TMP1:%.*]] = call i32 @deref(i32 [[X]]) #[[ATTR2:[0-9]+]]
 ; CGSCC-NEXT:    ret i32 [[TMP1]]
 ;
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/attributes.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/attributes.ll
index 23415d3d3262b..7dfe6ef96a691 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/attributes.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/attributes.ll
@@ -26,11 +26,11 @@ define void @no_promote(ptr %arg) #1 {
 ; TUNIT-LABEL: define {{[^@]+}}@no_promote
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR1:[0-9]+]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <4 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <4 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR3:[0-9]+]]
-; TUNIT-NEXT:    call fastcc void @no_promote_avx2(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP2]], ptr noalias nocapture nofree noundef nonnull readonly align 32 dereferenceable(32) [[TMP]]) #[[ATTR4:[0-9]+]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <4 x i64>, ptr [[TMP2]], align 32
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 32, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 32, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR3:[0-9]+]]
+; TUNIT-NEXT:    call fastcc void @no_promote_avx2(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP22]], ptr noalias nocapture nofree noundef nonnull readonly align 32 dereferenceable(32) [[TMP1]]) #[[ATTR4:[0-9]+]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <4 x i64>, ptr [[TMP22]], align 32
 ; TUNIT-NEXT:    store <4 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -78,12 +78,12 @@ define void @promote(ptr %arg) #0 {
 ; TUNIT-LABEL: define {{[^@]+}}@promote
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR0]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <4 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <4 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR3]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <4 x i64>, ptr [[TMP]], align 32
-; TUNIT-NEXT:    call fastcc void @promote_avx2(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP2]], <4 x i64> [[TMP0]]) #[[ATTR4]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <4 x i64>, ptr [[TMP2]], align 32
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 32, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 32, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR3]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <4 x i64>, ptr [[TMP1]], align 32
+; TUNIT-NEXT:    call fastcc void @promote_avx2(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP22]], <4 x i64> [[TMP0]]) #[[ATTR4]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <4 x i64>, ptr [[TMP22]], align 32
 ; TUNIT-NEXT:    store <4 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -91,10 +91,10 @@ define void @promote(ptr %arg) #0 {
 ; CGSCC-LABEL: define {{[^@]+}}@promote
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(32) [[ARG:%.*]]) #[[ATTR0]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <4 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 32, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <4 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR3]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <4 x i64>, ptr [[TMP]], align 32
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR3]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <4 x i64>, ptr [[TMP1]], align 32
 ; CGSCC-NEXT:    call fastcc void @promote_avx2(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(32) [[TMP2]], <4 x i64> [[TMP0]]) #[[ATTR4]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <4 x i64>, ptr [[TMP2]], align 32
 ; CGSCC-NEXT:    store <4 x i64> [[TMP4]], ptr [[ARG]], align 2
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/min-legal-vector-width.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/min-legal-vector-width.ll
index f0bcf68b6444b..2b755b53604f4 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/min-legal-vector-width.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/X86/min-legal-vector-width.ll
@@ -31,12 +31,12 @@ define void @avx512_legal512_prefer512_call_avx512_legal512_prefer512(ptr %arg)
 ; TUNIT-LABEL: define {{[^@]+}}@avx512_legal512_prefer512_call_avx512_legal512_prefer512
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR0]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5:[0-9]+]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
-; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer512_call_avx512_legal512_prefer512(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6:[0-9]+]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5:[0-9]+]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
+; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer512_call_avx512_legal512_prefer512(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], <8 x i64> [[TMP0]]) #[[ATTR6:[0-9]+]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -44,10 +44,10 @@ define void @avx512_legal512_prefer512_call_avx512_legal512_prefer512(ptr %arg)
 ; CGSCC-LABEL: define {{[^@]+}}@avx512_legal512_prefer512_call_avx512_legal512_prefer512
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(64) [[ARG:%.*]]) #[[ATTR0]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5:[0-9]+]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5:[0-9]+]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
 ; CGSCC-NEXT:    call fastcc void @callee_avx512_legal512_prefer512_call_avx512_legal512_prefer512(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6:[0-9]+]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
 ; CGSCC-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
@@ -88,12 +88,12 @@ define void @avx512_legal512_prefer256_call_avx512_legal512_prefer256(ptr %arg)
 ; TUNIT-LABEL: define {{[^@]+}}@avx512_legal512_prefer256_call_avx512_legal512_prefer256
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR1]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
-; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
+; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], <8 x i64> [[TMP0]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -101,10 +101,10 @@ define void @avx512_legal512_prefer256_call_avx512_legal512_prefer256(ptr %arg)
 ; CGSCC-LABEL: define {{[^@]+}}@avx512_legal512_prefer256_call_avx512_legal512_prefer256
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(64) [[ARG:%.*]]) #[[ATTR1]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
 ; CGSCC-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
 ; CGSCC-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
@@ -145,12 +145,12 @@ define void @avx512_legal512_prefer512_call_avx512_legal512_prefer256(ptr %arg)
 ; TUNIT-LABEL: define {{[^@]+}}@avx512_legal512_prefer512_call_avx512_legal512_prefer256
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR0]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
-; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer512_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
+; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer512_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], <8 x i64> [[TMP0]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -158,10 +158,10 @@ define void @avx512_legal512_prefer512_call_avx512_legal512_prefer256(ptr %arg)
 ; CGSCC-LABEL: define {{[^@]+}}@avx512_legal512_prefer512_call_avx512_legal512_prefer256
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(64) [[ARG:%.*]]) #[[ATTR0]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
 ; CGSCC-NEXT:    call fastcc void @callee_avx512_legal512_prefer512_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
 ; CGSCC-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
@@ -202,12 +202,12 @@ define void @avx512_legal512_prefer256_call_avx512_legal512_prefer512(ptr %arg)
 ; TUNIT-LABEL: define {{[^@]+}}@avx512_legal512_prefer256_call_avx512_legal512_prefer512
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR1]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
-; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal512_prefer512(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
+; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal512_prefer512(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], <8 x i64> [[TMP0]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -215,10 +215,10 @@ define void @avx512_legal512_prefer256_call_avx512_legal512_prefer512(ptr %arg)
 ; CGSCC-LABEL: define {{[^@]+}}@avx512_legal512_prefer256_call_avx512_legal512_prefer512
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(64) [[ARG:%.*]]) #[[ATTR1]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
 ; CGSCC-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal512_prefer512(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
 ; CGSCC-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
@@ -257,11 +257,11 @@ define void @avx512_legal256_prefer256_call_avx512_legal512_prefer256(ptr %arg)
 ; TUNIT-LABEL: define {{[^@]+}}@avx512_legal256_prefer256_call_avx512_legal512_prefer256
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR2:[0-9]+]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    call fastcc void @callee_avx512_legal256_prefer256_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(64) [[TMP]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    call fastcc void @callee_avx512_legal256_prefer256_call_avx512_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(64) [[TMP1]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -310,11 +310,11 @@ define void @avx512_legal512_prefer256_call_avx512_legal256_prefer256(ptr %arg)
 ; TUNIT-LABEL: define {{[^@]+}}@avx512_legal512_prefer256_call_avx512_legal256_prefer256
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR1]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal256_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(64) [[TMP]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    call fastcc void @callee_avx512_legal512_prefer256_call_avx512_legal256_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(64) [[TMP1]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -365,12 +365,12 @@ define void @avx2_legal256_prefer256_call_avx2_legal512_prefer256(ptr %arg) #4 {
 ; TUNIT-LABEL: define {{[^@]+}}@avx2_legal256_prefer256_call_avx2_legal512_prefer256
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR3]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
-; TUNIT-NEXT:    call fastcc void @callee_avx2_legal256_prefer256_call_avx2_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
+; TUNIT-NEXT:    call fastcc void @callee_avx2_legal256_prefer256_call_avx2_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], <8 x i64> [[TMP0]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -378,10 +378,10 @@ define void @avx2_legal256_prefer256_call_avx2_legal512_prefer256(ptr %arg) #4 {
 ; CGSCC-LABEL: define {{[^@]+}}@avx2_legal256_prefer256_call_avx2_legal512_prefer256
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(64) [[ARG:%.*]]) #[[ATTR3]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
 ; CGSCC-NEXT:    call fastcc void @callee_avx2_legal256_prefer256_call_avx2_legal512_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
 ; CGSCC-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
@@ -422,12 +422,12 @@ define void @avx2_legal512_prefer256_call_avx2_legal256_prefer256(ptr %arg) #3 {
 ; TUNIT-LABEL: define {{[^@]+}}@avx2_legal512_prefer256_call_avx2_legal256_prefer256
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[ARG:%.*]]) #[[ATTR3]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
-; TUNIT-NEXT:    call fastcc void @callee_avx2_legal512_prefer256_call_avx2_legal256_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
-; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
+; TUNIT-NEXT:    [[TMP22:%.*]] = alloca i8, i32 64, align 32
+; TUNIT-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 32 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; TUNIT-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
+; TUNIT-NEXT:    call fastcc void @callee_avx2_legal512_prefer256_call_avx2_legal256_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP22]], <8 x i64> [[TMP0]]) #[[ATTR6]]
+; TUNIT-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP22]], align 64
 ; TUNIT-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
 ; TUNIT-NEXT:    ret void
 ;
@@ -435,10 +435,10 @@ define void @avx2_legal512_prefer256_call_avx2_legal256_prefer256(ptr %arg) #3 {
 ; CGSCC-LABEL: define {{[^@]+}}@avx2_legal512_prefer256_call_avx2_legal256_prefer256
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull writeonly align 2 dereferenceable(64) [[ARG:%.*]]) #[[ATTR3]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca <8 x i64>, align 32
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 96, align 32
 ; CGSCC-NEXT:    [[TMP2:%.*]] = alloca <8 x i64>, align 32
-; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
-; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP]], align 64
+; CGSCC-NEXT:    call void @llvm.memset.p0.i64(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP1]], i8 noundef 0, i64 noundef 32, i1 noundef false) #[[ATTR5]]
+; CGSCC-NEXT:    [[TMP0:%.*]] = load <8 x i64>, ptr [[TMP1]], align 64
 ; CGSCC-NEXT:    call fastcc void @callee_avx2_legal512_prefer256_call_avx2_legal256_prefer256(ptr noalias nocapture nofree noundef nonnull writeonly align 64 dereferenceable(64) [[TMP2]], <8 x i64> [[TMP0]]) #[[ATTR6]]
 ; CGSCC-NEXT:    [[TMP4:%.*]] = load <8 x i64>, ptr [[TMP2]], align 64
 ; CGSCC-NEXT:    store <8 x i64> [[TMP4]], ptr [[ARG]], align 2
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/alignment.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/alignment.ll
index 54a5b8c564077..541c3ddafa953 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/alignment.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/alignment.ll
@@ -9,8 +9,8 @@
 define void @f() {
 ; TUNIT-LABEL: define {{[^@]+}}@f() {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[A:%.*]] = alloca i32, align 1
-; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A]], align 1
+; TUNIT-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 1
+; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A1]], align 1
 ; TUNIT-NEXT:    call void @g(i32 [[TMP0]])
 ; TUNIT-NEXT:    ret void
 ;
@@ -92,7 +92,7 @@ define i32 @callercaller() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@callercaller
 ; TUNIT-SAME: () #[[ATTR1:[0-9]+]] {
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    ret i32 3
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/alloca-as.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/alloca-as.ll
index 9e2cd06d26ea9..633dabfc9be1d 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/alloca-as.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/alloca-as.ll
@@ -10,17 +10,17 @@ define i32 @bar(i32 %arg) {
 ; TUNIT-LABEL: define {{[^@]+}}@bar
 ; TUNIT-SAME: (i32 [[ARG:%.*]]) {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store i32 [[ARG]], ptr [[STACK]], align 4
-; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[STACK]], align 4
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store i32 [[ARG]], ptr [[STACK1]], align 4
+; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[STACK1]], align 4
 ; TUNIT-NEXT:    [[CALL:%.*]] = call i32 @foo(i32 [[TMP0]])
 ; TUNIT-NEXT:    ret i32 [[CALL]]
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@bar
 ; CGSCC-SAME: (i32 [[ARG:%.*]]) {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i32, align 4
-; CGSCC-NEXT:    store i32 [[ARG]], ptr [[STACK]], align 4
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    store i32 [[ARG]], ptr [[STACK1]], align 4
 ; CGSCC-NEXT:    [[CALL:%.*]] = call i32 @foo(i32 [[ARG]])
 ; CGSCC-NEXT:    ret i32 [[CALL]]
 ;
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/array.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/array.ll
index a52bbfbe1a346..e8ed3b0788105 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/array.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/array.ll
@@ -11,10 +11,10 @@ define void @caller() {
 ; TUNIT-NEXT:  entry:
 ; TUNIT-NEXT:    [[LEFT:%.*]] = alloca [3 x i32], align 4
 ; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[LEFT]], align 4
-; TUNIT-NEXT:    [[LEFT_B4:%.*]] = getelementptr i8, ptr [[LEFT]], i64 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load i32, ptr [[LEFT_B4]], align 4
-; TUNIT-NEXT:    [[LEFT_B8:%.*]] = getelementptr i8, ptr [[LEFT]], i64 8
-; TUNIT-NEXT:    [[TMP2:%.*]] = load i32, ptr [[LEFT_B8]], align 4
+; TUNIT-NEXT:    [[LEFT_0_1:%.*]] = getelementptr [3 x i32], ptr [[LEFT]], i64 0, i64 1
+; TUNIT-NEXT:    [[TMP1:%.*]] = load i32, ptr [[LEFT_0_1]], align 4
+; TUNIT-NEXT:    [[LEFT_0_2:%.*]] = getelementptr [3 x i32], ptr [[LEFT]], i64 0, i64 2
+; TUNIT-NEXT:    [[TMP2:%.*]] = load i32, ptr [[LEFT_0_2]], align 4
 ; TUNIT-NEXT:    call void @callee(i32 [[TMP0]], i32 [[TMP1]], i32 [[TMP2]])
 ; TUNIT-NEXT:    ret void
 ;
@@ -30,25 +30,19 @@ entry:
 }
 
 define internal void @callee(ptr noalias %arg) {
-; CHECK: Function Attrs: memory(readwrite, argmem: none)
 ; CHECK-LABEL: define {{[^@]+}}@callee
-; CHECK-SAME: (i32 [[TMP0:%.*]], i32 [[TMP1:%.*]], i32 [[TMP2:%.*]]) #[[ATTR0:[0-9]+]] {
+; CHECK-SAME: (i32 [[TMP0:%.*]], i32 [[TMP1:%.*]], i32 [[TMP2:%.*]]) {
 ; CHECK-NEXT:  entry:
 ; CHECK-NEXT:    [[ARG_PRIV:%.*]] = alloca [3 x i32], align 4
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[ARG_PRIV]], align 4
-; CHECK-NEXT:    [[ARG_PRIV_B4:%.*]] = getelementptr i8, ptr [[ARG_PRIV]], i64 4
-; CHECK-NEXT:    store i32 [[TMP1]], ptr [[ARG_PRIV_B4]], align 4
-; CHECK-NEXT:    [[ARG_PRIV_B8:%.*]] = getelementptr i8, ptr [[ARG_PRIV]], i64 8
-; CHECK-NEXT:    store i32 [[TMP2]], ptr [[ARG_PRIV_B8]], align 4
-; CHECK-NEXT:    call void @use(ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(12) [[ARG_PRIV]])
+; CHECK-NEXT:    [[ARG_PRIV_0_1:%.*]] = getelementptr [3 x i32], ptr [[ARG_PRIV]], i64 0, i64 1
+; CHECK-NEXT:    store i32 [[TMP1]], ptr [[ARG_PRIV_0_1]], align 4
+; CHECK-NEXT:    [[ARG_PRIV_0_2:%.*]] = getelementptr [3 x i32], ptr [[ARG_PRIV]], i64 0, i64 2
+; CHECK-NEXT:    store i32 [[TMP2]], ptr [[ARG_PRIV_0_2]], align 4
+; CHECK-NEXT:    call void @use(ptr noalias nocapture noundef nonnull readonly align 4 dereferenceable(12) [[ARG_PRIV]])
 ; CHECK-NEXT:    ret void
 ;
 entry:
   call void @use(ptr %arg)
   ret void
 }
-;.
-; TUNIT: attributes #[[ATTR0]] = { memory(readwrite, argmem: none) }
-;.
-; CGSCC: attributes #[[ATTR0]] = { memory(readwrite, argmem: none) }
-;.
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/attrs.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/attrs.ll
index 9ce752aa95ee8..88ee234a1aa99 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/attrs.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/attrs.ll
@@ -17,9 +17,9 @@ define internal i32 @f(ptr byval(%struct.ss) %b, ptr byval(i32) %X, i32 %i) noun
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[B_PRIV]], align 4
 ; CHECK-NEXT:    [[B_PRIV_B4:%.*]] = getelementptr i8, ptr [[B_PRIV]], i64 4
 ; CHECK-NEXT:    store i64 [[TMP1]], ptr [[B_PRIV_B4]], align 4
-; CHECK-NEXT:    [[VAL1:%.*]] = load i32, ptr [[B_PRIV]], align 8
-; CHECK-NEXT:    [[VAL2:%.*]] = add i32 [[VAL1]], 1
-; CHECK-NEXT:    store i32 [[VAL2]], ptr [[B_PRIV]], align 8
+; CHECK-NEXT:    [[TMP1]] = load i32, ptr [[B_PRIV]], align 8
+; CHECK-NEXT:    [[TMP2]] = add i32 [[TMP1]], 1
+; CHECK-NEXT:    store i32 [[TMP2]], ptr [[B_PRIV]], align 8
 ; CHECK-NEXT:    store i32 0, ptr [[X_PRIV]], align 4
 ; CHECK-NEXT:    [[L:%.*]] = load i32, ptr [[X_PRIV]], align 4
 ; CHECK-NEXT:    [[A:%.*]] = add i32 [[L]], [[VAL2]]
@@ -44,12 +44,12 @@ define i32 @test(ptr %X) {
 ; TUNIT-LABEL: define {{[^@]+}}@test
 ; TUNIT-SAME: (ptr nocapture nofree nonnull readonly [[X:%.*]]) #[[ATTR1:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[S:%.*]] = alloca [[STRUCT_SS:%.*]], align 8
-; TUNIT-NEXT:    store i32 1, ptr [[S]], align 8
-; TUNIT-NEXT:    [[VAL4:%.*]] = getelementptr [[STRUCT_SS]], ptr [[S]], i32 0, i32 1
-; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[S]], align 8
-; TUNIT-NEXT:    [[S_B4:%.*]] = getelementptr i8, ptr [[S]], i64 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load i64, ptr [[S_B4]], align 8
+; TUNIT-NEXT:    [[S1:%.*]] = alloca i8, i32 12, align 8
+; TUNIT-NEXT:    store i32 1, ptr [[S1]], align 8
+; TUNIT-NEXT:    [[TMP4:%.*]] = getelementptr [[STRUCT_SS:%.*]], ptr [[S1]], i32 0, i32 1
+; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[S1]], align 8
+; TUNIT-NEXT:    [[S1_B4:%.*]] = getelementptr i8, ptr [[S1]], i64 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load i64, ptr [[S1_B4]], align 8
 ; TUNIT-NEXT:    [[TMP2:%.*]] = load i32, ptr [[X]], align 4
 ; TUNIT-NEXT:    [[C:%.*]] = call i32 @f(i32 [[TMP0]], i64 [[TMP1]], i32 [[TMP2]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    ret i32 [[C]]
@@ -58,8 +58,8 @@ define i32 @test(ptr %X) {
 ; CGSCC-LABEL: define {{[^@]+}}@test
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[X:%.*]]) #[[ATTR1:[0-9]+]] {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[S:%.*]] = alloca [[STRUCT_SS:%.*]], align 8
-; CGSCC-NEXT:    [[VAL4:%.*]] = getelementptr [[STRUCT_SS]], ptr [[S]], i32 0, i32 1
+; CGSCC-NEXT:    [[S1:%.*]] = alloca i8, i32 12, align 8
+; CGSCC-NEXT:    [[TMP4:%.*]] = getelementptr [[STRUCT_SS:%.*]], ptr [[S1]], i32 0, i32 1
 ; CGSCC-NEXT:    [[TMP0:%.*]] = load i32, ptr [[X]], align 4
 ; CGSCC-NEXT:    [[C:%.*]] = call i32 @f(i32 noundef 1, i64 noundef 2, i32 [[TMP0]]) #[[ATTR2:[0-9]+]]
 ; CGSCC-NEXT:    ret i32 [[C]]
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll
index 7f8aeb59fd151..e6b21b9f4ab04 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll
@@ -39,7 +39,7 @@ define i32 @callercaller() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@callercaller
 ; TUNIT-SAME: () #[[ATTR0:[0-9]+]] {
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    ret i32 3
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/byval-2.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/byval-2.ll
index 9f7acd579b274..f494ebc2dcd03 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/byval-2.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/byval-2.ll
@@ -15,9 +15,9 @@ define internal void @f(ptr byval(%struct.ss)  %b, ptr byval(i32) %X) nounwind
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[B_PRIV]], align 4
 ; CHECK-NEXT:    [[B_PRIV_B4:%.*]] = getelementptr i8, ptr [[B_PRIV]], i64 4
 ; CHECK-NEXT:    store i64 [[TMP1]], ptr [[B_PRIV_B4]], align 4
-; CHECK-NEXT:    [[VAL1:%.*]] = load i32, ptr [[B_PRIV]], align 8
-; CHECK-NEXT:    [[VAL2:%.*]] = add i32 [[VAL1]], 1
-; CHECK-NEXT:    store i32 [[VAL2]], ptr [[B_PRIV]], align 8
+; CHECK-NEXT:    [[TMP1]] = load i32, ptr [[B_PRIV]], align 8
+; CHECK-NEXT:    [[TMP2]] = add i32 [[TMP1]], 1
+; CHECK-NEXT:    store i32 [[TMP2]], ptr [[B_PRIV]], align 8
 ; CHECK-NEXT:    store i32 0, ptr [[X_PRIV]], align 4
 ; CHECK-NEXT:    ret void
 ;
@@ -36,12 +36,12 @@ define i32 @test(ptr %X) {
 ; TUNIT-LABEL: define {{[^@]+}}@test
 ; TUNIT-SAME: (ptr nocapture nofree nonnull readonly [[X:%.*]]) #[[ATTR1:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[S:%.*]] = alloca [[STRUCT_SS:%.*]], align 8
-; TUNIT-NEXT:    store i32 1, ptr [[S]], align 8
-; TUNIT-NEXT:    [[VAL4:%.*]] = getelementptr [[STRUCT_SS]], ptr [[S]], i32 0, i32 1
-; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[S]], align 8
-; TUNIT-NEXT:    [[S_B4:%.*]] = getelementptr i8, ptr [[S]], i64 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load i64, ptr [[S_B4]], align 8
+; TUNIT-NEXT:    [[S1:%.*]] = alloca i8, i32 12, align 8
+; TUNIT-NEXT:    store i32 1, ptr [[S1]], align 8
+; TUNIT-NEXT:    [[TMP4:%.*]] = getelementptr [[STRUCT_SS:%.*]], ptr [[S1]], i32 0, i32 1
+; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[S1]], align 8
+; TUNIT-NEXT:    [[S1_B4:%.*]] = getelementptr i8, ptr [[S1]], i64 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load i64, ptr [[S1_B4]], align 8
 ; TUNIT-NEXT:    [[TMP2:%.*]] = load i32, ptr [[X]], align 4
 ; TUNIT-NEXT:    call void @f(i32 [[TMP0]], i64 [[TMP1]], i32 [[TMP2]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    ret i32 0
@@ -50,8 +50,8 @@ define i32 @test(ptr %X) {
 ; CGSCC-LABEL: define {{[^@]+}}@test
 ; CGSCC-SAME: (ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[X:%.*]]) #[[ATTR1:[0-9]+]] {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[S:%.*]] = alloca [[STRUCT_SS:%.*]], align 8
-; CGSCC-NEXT:    [[VAL4:%.*]] = getelementptr [[STRUCT_SS]], ptr [[S]], i32 0, i32 1
+; CGSCC-NEXT:    [[S1:%.*]] = alloca i8, i32 12, align 8
+; CGSCC-NEXT:    [[TMP4:%.*]] = getelementptr [[STRUCT_SS:%.*]], ptr [[S1]], i32 0, i32 1
 ; CGSCC-NEXT:    ret i32 0
 ;
 entry:
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/byval.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/byval.ll
index 621c6cf94313e..52474170ea5db 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/byval.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/byval.ll
@@ -15,10 +15,10 @@ define internal i32 @f(ptr byval(%struct.ss)  %b) nounwind  {
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[B_PRIV]], align 4
 ; CHECK-NEXT:    [[B_PRIV_B4:%.*]] = getelementptr i8, ptr [[B_PRIV]], i64 4
 ; CHECK-NEXT:    store i64 [[TMP1]], ptr [[B_PRIV_B4]], align 4
-; CHECK-NEXT:    [[VAL1:%.*]] = load i32, ptr [[B_PRIV]], align 8
-; CHECK-NEXT:    [[VAL2:%.*]] = add i32 [[VAL1]], 1
-; CHECK-NEXT:    store i32 [[VAL2]], ptr [[B_PRIV]], align 8
-; CHECK-NEXT:    ret i32 [[VAL1]]
+; CHECK-NEXT:    [[TMP1]] = load i32, ptr [[B_PRIV]], align 8
+; CHECK-NEXT:    [[TMP2:%.*]] = add i32 [[TMP1]], 1
+; CHECK-NEXT:    store i32 [[TMP2]], ptr [[B_PRIV]], align 8
+; CHECK-NEXT:    ret i32 [[TMP1]]
 ;
 entry:
   %val1 = load i32, ptr %b, align 4
@@ -37,10 +37,10 @@ define internal i32 @g(ptr byval(%struct.ss) align 32 %b) nounwind {
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[B_PRIV]], align 4
 ; CHECK-NEXT:    [[B_PRIV_B4:%.*]] = getelementptr i8, ptr [[B_PRIV]], i64 4
 ; CHECK-NEXT:    store i64 [[TMP1]], ptr [[B_PRIV_B4]], align 4
-; CHECK-NEXT:    [[VAL1:%.*]] = load i32, ptr [[B_PRIV]], align 32
-; CHECK-NEXT:    [[VAL2:%.*]] = add i32 [[VAL1]], 1
-; CHECK-NEXT:    store i32 [[VAL2]], ptr [[B_PRIV]], align 32
-; CHECK-NEXT:    ret i32 [[VAL2]]
+; CHECK-NEXT:    [[TMP1]] = load i32, ptr [[B_PRIV]], align 32
+; CHECK-NEXT:    [[TMP2:%.*]] = add i32 [[TMP1]], 1
+; CHECK-NEXT:    store i32 [[TMP2]], ptr [[B_PRIV]], align 32
+; CHECK-NEXT:    ret i32 [[TMP2]]
 ;
 entry:
   %val1 = load i32, ptr %b, align 4
@@ -55,16 +55,16 @@ define i32 @main() nounwind  {
 ; TUNIT-LABEL: define {{[^@]+}}@main
 ; TUNIT-SAME: () #[[ATTR0]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[S:%.*]] = alloca [[STRUCT_SS:%.*]], align 4
-; TUNIT-NEXT:    store i32 1, ptr [[S]], align 32
-; TUNIT-NEXT:    [[VAL4:%.*]] = getelementptr [[STRUCT_SS]], ptr [[S]], i32 0, i32 1
-; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[S]], align 8
-; TUNIT-NEXT:    [[S_B41:%.*]] = getelementptr i8, ptr [[S]], i64 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load i64, ptr [[S_B41]], align 8
+; TUNIT-NEXT:    [[S1:%.*]] = alloca i8, i32 12, align 4
+; TUNIT-NEXT:    store i32 1, ptr [[S1]], align 32
+; TUNIT-NEXT:    [[TMP4:%.*]] = getelementptr [[STRUCT_SS:%.*]], ptr [[S1]], i32 0, i32 1
+; TUNIT-NEXT:    [[TMP0:%.*]] = load i32, ptr [[S1]], align 8
+; TUNIT-NEXT:    [[S1_B42:%.*]] = getelementptr i8, ptr [[S1]], i64 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load i64, ptr [[S1_B42]], align 8
 ; TUNIT-NEXT:    [[C0:%.*]] = call i32 @f(i32 [[TMP0]], i64 [[TMP1]]) #[[ATTR1:[0-9]+]]
-; TUNIT-NEXT:    [[TMP2:%.*]] = load i32, ptr [[S]], align 32
-; TUNIT-NEXT:    [[S_B4:%.*]] = getelementptr i8, ptr [[S]], i64 4
-; TUNIT-NEXT:    [[TMP3:%.*]] = load i64, ptr [[S_B4]], align 32
+; TUNIT-NEXT:    [[TMP2:%.*]] = load i32, ptr [[S1]], align 32
+; TUNIT-NEXT:    [[S1_B4:%.*]] = getelementptr i8, ptr [[S1]], i64 4
+; TUNIT-NEXT:    [[TMP3:%.*]] = load i64, ptr [[S1_B4]], align 32
 ; TUNIT-NEXT:    [[C1:%.*]] = call i32 @g(i32 [[TMP2]], i64 [[TMP3]]) #[[ATTR1]]
 ; TUNIT-NEXT:    [[A:%.*]] = add i32 [[C0]], [[C1]]
 ; TUNIT-NEXT:    ret i32 [[A]]
@@ -73,8 +73,8 @@ define i32 @main() nounwind  {
 ; CGSCC-LABEL: define {{[^@]+}}@main
 ; CGSCC-SAME: () #[[ATTR1:[0-9]+]] {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[S:%.*]] = alloca [[STRUCT_SS:%.*]], align 4
-; CGSCC-NEXT:    [[VAL4:%.*]] = getelementptr [[STRUCT_SS]], ptr [[S]], i32 0, i32 1
+; CGSCC-NEXT:    [[S2:%.*]] = alloca i8, i32 12, align 4
+; CGSCC-NEXT:    [[TMP4:%.*]] = getelementptr [[STRUCT_SS:%.*]], ptr [[S2]], i32 0, i32 1
 ; CGSCC-NEXT:    [[C0:%.*]] = call i32 @f(i32 noundef 1, i64 noundef 2) #[[ATTR2:[0-9]+]]
 ; CGSCC-NEXT:    [[C1:%.*]] = call i32 @g(i32 noundef 1, i64 noundef 2) #[[ATTR2]]
 ; CGSCC-NEXT:    [[A:%.*]] = add i32 [[C0]], [[C1]]
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/control-flow2.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/control-flow2.ll
index ebeb24d374728..08bb7c68ca1c1 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/control-flow2.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/control-flow2.ll
@@ -31,7 +31,7 @@ define i32 @foo() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@foo
 ; TUNIT-SAME: () #[[ATTR0:[0-9]+]] {
-; TUNIT-NEXT:    [[A:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    ret i32 17
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/crash.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/crash.ll
index 595cb37c6c93e..2ad8ef403d88c 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/crash.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/crash.ll
@@ -100,6 +100,8 @@ define i32 @test_inf_promote_caller(i32 %arg) {
 ; TUNIT-LABEL: define {{[^@]+}}@test_inf_promote_caller
 ; TUNIT-SAME: (i32 [[ARG:%.*]]) #[[ATTR1:[0-9]+]] {
 ; TUNIT-NEXT:  bb:
+; TUNIT-NEXT:    [[TMP3:%.*]] = alloca i8, i32 8, align 8
+; TUNIT-NEXT:    [[TMP14:%.*]] = alloca i8, i32 8, align 8
 ; TUNIT-NEXT:    ret i32 0
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/fp80.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/fp80.ll
index 274181fa8b9ef..101850f464c41 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/fp80.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/fp80.ll
@@ -84,7 +84,7 @@ define internal i64 @CaptureAStruct(ptr byval(%struct.Foo) %a) {
 ; CGSCC-NEXT:    store i32 [[TMP0]], ptr [[A_PRIV]], align 4
 ; CGSCC-NEXT:    [[A_PRIV_B8:%.*]] = getelementptr i8, ptr [[A_PRIV]], i64 8
 ; CGSCC-NEXT:    store i64 [[TMP1]], ptr [[A_PRIV_B8]], align 8
-; CGSCC-NEXT:    [[A_PTR:%.*]] = alloca ptr, align 8
+; CGSCC-NEXT:    [[A_PTR1:%.*]] = alloca i8, i32 8, align 8
 ; CGSCC-NEXT:    br label [[LOOP:%.*]]
 ; CGSCC:       loop:
 ; CGSCC-NEXT:    [[PHI:%.*]] = phi ptr [ null, [[ENTRY:%.*]] ], [ [[A_PRIV]], [[LOOP]] ]
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/inalloca.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/inalloca.ll
index 957a26ff7176b..fd16e665dba42 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/inalloca.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/inalloca.ll
@@ -8,7 +8,7 @@ target datalayout = "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:1
 
 ; Argpromote + sroa should change this to passing the two integers by value.
 define internal i32 @f(ptr inalloca(%struct.ss) %s) {
-; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: read)
+; CHECK: Function Attrs: nofree norecurse nosync nounwind willreturn memory(argmem: read)
 ; CHECK-LABEL: define {{[^@]+}}@f
 ; CHECK-SAME: (ptr noalias nocapture nofree noundef nonnull inalloca([[STRUCT_SS:%.*]]) align 4 dereferenceable(8) [[S:%.*]]) #[[ATTR0:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -27,7 +27,7 @@ entry:
 }
 
 define i32 @main() {
-; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
+; TUNIT: Function Attrs: nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@main
 ; TUNIT-SAME: () #[[ATTR1:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
@@ -38,7 +38,7 @@ define i32 @main() {
 ; TUNIT-NEXT:    [[R:%.*]] = call i32 @f(ptr noalias nocapture nofree noundef nonnull inalloca([[STRUCT_SS]]) align 4 dereferenceable(8) [[S]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    ret i32 [[R]]
 ;
-; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
+; CGSCC: Function Attrs: nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@main
 ; CGSCC-SAME: () #[[ATTR1:[0-9]+]] {
 ; CGSCC-NEXT:  entry:
@@ -60,9 +60,9 @@ entry:
 
 ; Argpromote can't promote %a because of the icmp use.
 define internal i1 @g(ptr %a, ptr inalloca(%struct.ss) %b) nounwind  {
-; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
+; CGSCC: Function Attrs: nofree norecurse nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@g
-; CGSCC-SAME: (ptr noalias nocapture nofree noundef nonnull readnone align 4 dereferenceable(8) [[A:%.*]], ptr noalias nocapture nofree noundef nonnull writeonly inalloca([[STRUCT_SS:%.*]]) align 4 dereferenceable(8) [[B:%.*]]) #[[ATTR2:[0-9]+]] {
+; CGSCC-SAME: (ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(8) [[A:%.*]], ptr noalias nocapture nofree nonnull writeonly inalloca([[STRUCT_SS:%.*]]) align 4 dereferenceable(8) [[B:%.*]]) #[[ATTR2:[0-9]+]] {
 ; CGSCC-NEXT:  entry:
 ; CGSCC-NEXT:    ret i1 undef
 ;
@@ -72,13 +72,13 @@ entry:
 }
 
 define i32 @test() {
-; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
+; TUNIT: Function Attrs: nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@test
 ; TUNIT-SAME: () #[[ATTR1]] {
 ; TUNIT-NEXT:  entry:
 ; TUNIT-NEXT:    ret i32 0
 ;
-; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
+; CGSCC: Function Attrs: nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@test
 ; CGSCC-SAME: () #[[ATTR1]] {
 ; CGSCC-NEXT:  entry:
@@ -90,12 +90,12 @@ entry:
   ret i32 0
 }
 ;.
-; TUNIT: attributes #[[ATTR0]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: read) }
-; TUNIT: attributes #[[ATTR1]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
-; TUNIT: attributes #[[ATTR2]] = { nofree nosync nounwind willreturn memory(read) }
+; TUNIT: attributes #[[ATTR0]] = { nofree norecurse nosync nounwind willreturn memory(argmem: read) }
+; TUNIT: attributes #[[ATTR1]] = { nofree norecurse nosync nounwind willreturn memory(none) }
+; TUNIT: attributes #[[ATTR2]] = { nofree nosync nounwind willreturn }
 ;.
-; CGSCC: attributes #[[ATTR0]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: read) }
-; CGSCC: attributes #[[ATTR1]] = { mustprogress nofree nosync nounwind willreturn memory(none) }
-; CGSCC: attributes #[[ATTR2]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
-; CGSCC: attributes #[[ATTR3]] = { nofree willreturn memory(read) }
+; CGSCC: attributes #[[ATTR0]] = { nofree norecurse nosync nounwind willreturn memory(argmem: read) }
+; CGSCC: attributes #[[ATTR1]] = { nofree nosync nounwind willreturn memory(none) }
+; CGSCC: attributes #[[ATTR2]] = { nofree norecurse nosync nounwind willreturn memory(none) }
+; CGSCC: attributes #[[ATTR3]] = { willreturn }
 ;.
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead.ll
index 2df81d6cb1832..b3704c203d896 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead.ll
@@ -36,9 +36,9 @@ define internal i32 @caller(ptr %B) {
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@caller
 ; CGSCC-SAME: () #[[ATTR0]] {
-; CGSCC-NEXT:    [[A:%.*]] = alloca i32, align 4
-; CGSCC-NEXT:    [[A2:%.*]] = alloca i8, i32 0, align 4
-; CGSCC-NEXT:    [[A1:%.*]] = alloca i8, i32 0, align 4
+; CGSCC-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    [[A12:%.*]] = alloca i8, i32 0, align 4
+; CGSCC-NEXT:    [[A11:%.*]] = alloca i8, i32 0, align 4
 ; CGSCC-NEXT:    ret i32 0
 ;
   %A = alloca i32
@@ -51,13 +51,13 @@ define i32 @callercaller() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@callercaller
 ; TUNIT-SAME: () #[[ATTR0:[0-9]+]] {
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    ret i32 0
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@callercaller
 ; CGSCC-SAME: () #[[ATTR1:[0-9]+]] {
-; CGSCC-NEXT:    [[B:%.*]] = alloca i32, align 4
+; CGSCC-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
 ; CGSCC-NEXT:    [[X:%.*]] = call noundef i32 @caller() #[[ATTR2:[0-9]+]]
 ; CGSCC-NEXT:    ret i32 [[X]]
 ;
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead_2.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead_2.ll
index 7c28de24beea2..716e5f426bbc8 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead_2.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/live_called_from_dead_2.ll
@@ -46,16 +46,16 @@ define internal i32 @caller(ptr %B) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: write)
 ; TUNIT-LABEL: define {{[^@]+}}@caller
 ; TUNIT-SAME: (ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B:%.*]]) #[[ATTR0]] {
-; TUNIT-NEXT:    [[A:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    [[C:%.*]] = call i32 @test(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    ret i32 undef
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: write)
 ; CGSCC-LABEL: define {{[^@]+}}@caller
 ; CGSCC-SAME: (ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B:%.*]]) #[[ATTR0]] {
-; CGSCC-NEXT:    [[A:%.*]] = alloca i32, align 4
-; CGSCC-NEXT:    [[A2:%.*]] = alloca i8, i32 0, align 4
-; CGSCC-NEXT:    [[A1:%.*]] = alloca i8, i32 0, align 4
+; CGSCC-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    [[A13:%.*]] = alloca i8, i32 0, align 4
+; CGSCC-NEXT:    [[A12:%.*]] = alloca i8, i32 0, align 4
 ; CGSCC-NEXT:    [[C:%.*]] = call i32 @test(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B]]) #[[ATTR2:[0-9]+]]
 ; CGSCC-NEXT:    ret i32 0
 ;
@@ -69,8 +69,8 @@ define i32 @callercaller() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@callercaller
 ; TUNIT-SAME: () #[[ATTR1:[0-9]+]] {
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    [[X:%.*]] = call i32 @caller(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B]]) #[[ATTR2]]
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    [[X:%.*]] = call i32 @caller(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B1]]) #[[ATTR2]]
 ; TUNIT-NEXT:    ret i32 0
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/pr33641_remove_arg_dbgvalue.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/pr33641_remove_arg_dbgvalue.ll
index 8c02ca4e86608..4a9d8694a1e82 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/pr33641_remove_arg_dbgvalue.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/pr33641_remove_arg_dbgvalue.ll
@@ -18,7 +18,7 @@ define void @foo() {
 ; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CHECK-LABEL: define {{[^@]+}}@foo
 ; CHECK-SAME: () #[[ATTR0:[0-9]+]] {
-; CHECK-NEXT:    [[TMP:%.*]] = alloca ptr, align 8
+; CHECK-NEXT:    [[TMP1:%.*]] = alloca i8, i32 8, align 8
 ; CHECK-NEXT:    ret void
 ;
   %tmp = alloca %fun_t
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/profile.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/profile.ll
index 4074fcb743232..506119661e86a 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/profile.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/profile.ll
@@ -7,9 +7,9 @@ target datalayout = "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:1
 
 define void @caller() #0 {
 ; TUNIT-LABEL: define {{[^@]+}}@caller() {
-; TUNIT-NEXT:    [[X:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store i32 42, ptr [[X]], align 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load i32, ptr [[X]], align 4
+; TUNIT-NEXT:    [[X1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store i32 42, ptr [[X1]], align 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load i32, ptr [[X1]], align 4
 ; TUNIT-NEXT:    call void @promote_i32_ptr(i32 [[TMP1]]), !prof [[PROF0:![0-9]+]]
 ; TUNIT-NEXT:    ret void
 ;
diff --git a/llvm/test/Transforms/Attributor/ArgumentPromotion/sret.ll b/llvm/test/Transforms/Attributor/ArgumentPromotion/sret.ll
index cb5b01750aaf0..39de5947d3411 100644
--- a/llvm/test/Transforms/Attributor/ArgumentPromotion/sret.ll
+++ b/llvm/test/Transforms/Attributor/ArgumentPromotion/sret.ll
@@ -36,8 +36,9 @@ define void @f() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@f
 ; TUNIT-SAME: () #[[ATTR1:[0-9]+]] {
-; TUNIT-NEXT:    [[R:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    call void @add(ptr noalias nocapture nofree nonnull readnone align 8 dereferenceable(8) undef, ptr noalias nocapture nofree noundef nonnull writeonly sret(i32) align 4 dereferenceable(4) [[R]]) #[[ATTR2:[0-9]+]]
+; TUNIT-NEXT:    [[R1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    [[PAIR2:%.*]] = alloca i8, i32 8, align 8
+; TUNIT-NEXT:    call void @add(ptr noalias nocapture nofree nonnull readnone align 8 dereferenceable(8) undef, ptr noalias nocapture nofree noundef nonnull writeonly sret(i32) align 4 dereferenceable(4) [[R1]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/IPConstantProp/openmp_parallel_for.ll b/llvm/test/Transforms/Attributor/IPConstantProp/openmp_parallel_for.ll
index 683da42b64811..ef1b961c13652 100644
--- a/llvm/test/Transforms/Attributor/IPConstantProp/openmp_parallel_for.ll
+++ b/llvm/test/Transforms/Attributor/IPConstantProp/openmp_parallel_for.ll
@@ -34,8 +34,8 @@ define dso_local void @foo(i32 %N) {
 ; TUNIT-LABEL: define {{[^@]+}}@foo
 ; TUNIT-SAME: (i32 [[N:%.*]]) {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[N_ADDR:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    [[P:%.*]] = alloca float, align 4
+; TUNIT-NEXT:    [[N_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    [[P2:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 3, ptr noundef nonnull @.omp_outlined., ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(4) undef, ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(4) undef, i64 undef)
 ; TUNIT-NEXT:    ret void
 ;
@@ -64,12 +64,12 @@ define internal void @.omp_outlined.(ptr noalias %.global_tid., ptr noalias %.bo
 ; TUNIT-LABEL: define {{[^@]+}}@.omp_outlined.
 ; TUNIT-SAME: (ptr noalias nocapture nofree readonly [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]], ptr noalias nocapture nofree noundef nonnull readnone align 4 dereferenceable(4) [[N:%.*]], ptr noalias nocapture nofree noundef nonnull readnone align 4 dereferenceable(4) [[P:%.*]], i64 [[Q:%.*]]) {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[Q_ADDR:%.*]] = alloca i64, align 8
+; TUNIT-NEXT:    [[Q_ADDR1:%.*]] = alloca i8, i32 8, align 8
 ; TUNIT-NEXT:    [[DOTOMP_LB:%.*]] = alloca i32, align 4
 ; TUNIT-NEXT:    [[DOTOMP_UB:%.*]] = alloca i32, align 4
 ; TUNIT-NEXT:    [[DOTOMP_STRIDE:%.*]] = alloca i32, align 4
 ; TUNIT-NEXT:    [[DOTOMP_IS_LAST:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store i64 4617315517961601024, ptr [[Q_ADDR]], align 8
+; TUNIT-NEXT:    store i64 4617315517961601024, ptr [[Q_ADDR1]], align 8
 ; TUNIT-NEXT:    br label [[OMP_PRECOND_THEN:%.*]]
 ; TUNIT:       omp.precond.then:
 ; TUNIT-NEXT:    store i32 0, ptr [[DOTOMP_LB]], align 4
@@ -100,7 +100,7 @@ define internal void @.omp_outlined.(ptr noalias %.global_tid., ptr noalias %.bo
 ; TUNIT-NEXT:    br label [[OMP_INNER_FOR_END:%.*]]
 ; TUNIT:       omp.inner.for.body:
 ; TUNIT-NEXT:    [[ADD10:%.*]] = add nsw i32 [[DOTOMP_IV_0]], 2
-; TUNIT-NEXT:    [[TMP11:%.*]] = load double, ptr [[Q_ADDR]], align 8
+; TUNIT-NEXT:    [[TMP11:%.*]] = load double, ptr [[Q_ADDR1]], align 8
 ; TUNIT-NEXT:    call void @bar(i32 [[ADD10]], float nofpclass(nan inf zero sub nnorm) 3.000000e+00, double [[TMP11]])
 ; TUNIT-NEXT:    br label [[OMP_BODY_CONTINUE:%.*]]
 ; TUNIT:       omp.body.continue:
@@ -120,12 +120,12 @@ define internal void @.omp_outlined.(ptr noalias %.global_tid., ptr noalias %.bo
 ; CGSCC-LABEL: define {{[^@]+}}@.omp_outlined.
 ; CGSCC-SAME: (ptr noalias nocapture nofree readonly [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]], ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[N:%.*]], ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[P:%.*]], i64 [[Q:%.*]]) {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[Q_ADDR:%.*]] = alloca i64, align 8
+; CGSCC-NEXT:    [[Q_ADDR1:%.*]] = alloca i8, i32 8, align 8
 ; CGSCC-NEXT:    [[DOTOMP_LB:%.*]] = alloca i32, align 4
 ; CGSCC-NEXT:    [[DOTOMP_UB:%.*]] = alloca i32, align 4
 ; CGSCC-NEXT:    [[DOTOMP_STRIDE:%.*]] = alloca i32, align 4
 ; CGSCC-NEXT:    [[DOTOMP_IS_LAST:%.*]] = alloca i32, align 4
-; CGSCC-NEXT:    store i64 4617315517961601024, ptr [[Q_ADDR]], align 8
+; CGSCC-NEXT:    store i64 4617315517961601024, ptr [[Q_ADDR1]], align 8
 ; CGSCC-NEXT:    [[TMP:%.*]] = load i32, ptr [[N]], align 4
 ; CGSCC-NEXT:    [[SUB3:%.*]] = add nsw i32 [[TMP]], -3
 ; CGSCC-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[TMP]], 2
@@ -160,7 +160,7 @@ define internal void @.omp_outlined.(ptr noalias %.global_tid., ptr noalias %.bo
 ; CGSCC:       omp.inner.for.body:
 ; CGSCC-NEXT:    [[ADD10:%.*]] = add nsw i32 [[DOTOMP_IV_0]], 2
 ; CGSCC-NEXT:    [[TMP10:%.*]] = load float, ptr [[P]], align 4
-; CGSCC-NEXT:    [[TMP11:%.*]] = load double, ptr [[Q_ADDR]], align 8
+; CGSCC-NEXT:    [[TMP11:%.*]] = load double, ptr [[Q_ADDR1]], align 8
 ; CGSCC-NEXT:    call void @bar(i32 [[ADD10]], float [[TMP10]], double [[TMP11]])
 ; CGSCC-NEXT:    br label [[OMP_BODY_CONTINUE:%.*]]
 ; CGSCC:       omp.body.continue:
diff --git a/llvm/test/Transforms/Attributor/IPConstantProp/return-argument.ll b/llvm/test/Transforms/Attributor/IPConstantProp/return-argument.ll
index 15a1ed0e62763..10fa92d17eb3b 100644
--- a/llvm/test/Transforms/Attributor/IPConstantProp/return-argument.ll
+++ b/llvm/test/Transforms/Attributor/IPConstantProp/return-argument.ll
@@ -62,8 +62,8 @@ define void @caller(i1 %C) personality ptr @__gxx_personality_v0 {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@caller
 ; TUNIT-SAME: (i1 [[C:%.*]]) #[[ATTR1:[0-9]+]] personality ptr @__gxx_personality_v0 {
-; TUNIT-NEXT:    [[Q:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    [[W:%.*]] = call align 4 ptr @incdec(i1 noundef [[C]], ptr noalias nofree noundef nonnull writeonly align 4 dereferenceable(4) "no-capture-maybe-returned" [[Q]]) #[[ATTR2:[0-9]+]]
+; TUNIT-NEXT:    [[Q1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    [[W:%.*]] = call align 4 ptr @incdec(i1 noundef [[C]], ptr noalias nofree noundef nonnull writeonly align 4 dereferenceable(4) "no-capture-maybe-returned" [[Q1]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    br label [[OK:%.*]]
 ; TUNIT:       OK:
 ; TUNIT-NEXT:    br label [[RET:%.*]]
diff --git a/llvm/test/Transforms/Attributor/align.ll b/llvm/test/Transforms/Attributor/align.ll
index 9880e53fd43a5..4480dd6d71427 100644
--- a/llvm/test/Transforms/Attributor/align.ll
+++ b/llvm/test/Transforms/Attributor/align.ll
@@ -1039,35 +1039,35 @@ define internal ptr @aligned_8_return(ptr %a, i1 %c1, i1 %c2) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@aligned_8_return
 ; TUNIT-SAME: (ptr noalias nofree readnone align 16 "no-capture-maybe-returned" [[A:%.*]], i1 noundef [[C1:%.*]], i1 [[C2:%.*]]) #[[ATTR10]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca ptr, align 8
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 8, align 8
 ; TUNIT-NEXT:    br i1 [[C1]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
 ; TUNIT-NEXT:    [[GEP:%.*]] = getelementptr i8, ptr @G, i32 8
 ; TUNIT-NEXT:    [[SEL:%.*]] = select i1 [[C2]], ptr [[A]], ptr [[GEP]]
-; TUNIT-NEXT:    store ptr [[SEL]], ptr [[STACK]], align 8
+; TUNIT-NEXT:    store ptr [[SEL]], ptr [[STACK1]], align 8
 ; TUNIT-NEXT:    br label [[END:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store ptr @G, ptr [[STACK]], align 8
+; TUNIT-NEXT:    store ptr @G, ptr [[STACK1]], align 8
 ; TUNIT-NEXT:    br label [[END]]
 ; TUNIT:       end:
-; TUNIT-NEXT:    [[L:%.*]] = load ptr, ptr [[STACK]], align 8
+; TUNIT-NEXT:    [[L:%.*]] = load ptr, ptr [[STACK1]], align 8
 ; TUNIT-NEXT:    ret ptr [[L]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@aligned_8_return
 ; CGSCC-SAME: (ptr noalias nofree readnone align 16 "no-capture-maybe-returned" [[A:%.*]], i1 noundef [[C1:%.*]], i1 [[C2:%.*]]) #[[ATTR11]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca ptr, align 8
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 8, align 8
 ; CGSCC-NEXT:    br i1 [[C1]], label [[T:%.*]], label [[F:%.*]]
 ; CGSCC:       t:
 ; CGSCC-NEXT:    [[GEP:%.*]] = getelementptr i8, ptr @G, i32 8
 ; CGSCC-NEXT:    [[SEL:%.*]] = select i1 [[C2]], ptr [[A]], ptr [[GEP]]
-; CGSCC-NEXT:    store ptr [[SEL]], ptr [[STACK]], align 8
+; CGSCC-NEXT:    store ptr [[SEL]], ptr [[STACK1]], align 8
 ; CGSCC-NEXT:    br label [[END:%.*]]
 ; CGSCC:       f:
-; CGSCC-NEXT:    store ptr @G, ptr [[STACK]], align 8
+; CGSCC-NEXT:    store ptr @G, ptr [[STACK1]], align 8
 ; CGSCC-NEXT:    br label [[END]]
 ; CGSCC:       end:
-; CGSCC-NEXT:    [[L:%.*]] = load ptr, ptr [[STACK]], align 8
+; CGSCC-NEXT:    [[L:%.*]] = load ptr, ptr [[STACK1]], align 8
 ; CGSCC-NEXT:    ret ptr [[L]]
 ;
   %stack = alloca ptr
diff --git a/llvm/test/Transforms/Attributor/allocator.ll b/llvm/test/Transforms/Attributor/allocator.ll
index f2d9ecd1d8fa4..860f4a63e6754 100644
--- a/llvm/test/Transforms/Attributor/allocator.ll
+++ b/llvm/test/Transforms/Attributor/allocator.ll
@@ -1,6 +1,6 @@
 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --check-attributes --check-globals --version 2
-; RUN: opt -aa-pipeline=basic-aa -passes=attributor -attributor-manifest-internal -attributor-annotate-decl-cs  -S < %s | FileCheck %s --check-prefixes=CHECK,TUNIT
-; RUN: opt -aa-pipeline=basic-aa -passes=attributor-cgscc -attributor-manifest-internal -attributor-annotate-decl-cs -S < %s | FileCheck %s --check-prefixes=CHECK,CGSCC
+; RUN: opt -aa-pipeline=basic-aa -passes=attributor -attributor-manifest-internal -debug-only=attributor -attributor-annotate-decl-cs  -S < %s | FileCheck %s --check-prefixes=CHECK,TUNIT
+; RUN: opt -aa-pipeline=basic-aa -passes=attributor-cgscc -attributor-manifest-internal -debug-only=attributor -attributor-annotate-decl-cs -S < %s | FileCheck %s --check-prefixes=CHECK,CGSCC
 
 %struct.Foo = type { i32, i32, i8 }
 
@@ -13,14 +13,14 @@ define dso_local void @positive_alloca_1(i32 noundef %val) #0 {
 ; CHECK-LABEL: define dso_local void @positive_alloca_1
 ; CHECK-SAME: (i32 noundef [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca i8, i32 4, align 4
-; CHECK-NEXT:    [[F2:%.*]] = alloca i8, i32 4, align 4
-; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR1]], align 4
-; CHECK-NEXT:    store i32 10, ptr [[F2]], align 4
-; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[F2]], align 4
+; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca i64, align 4
+; CHECK-NEXT:    [[F:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
+; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR]], align 4
+; CHECK-NEXT:    store i32 10, ptr [[F]], align 4
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[F]], align 4
 ; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP0]], 1
-; CHECK-NEXT:    store i32 [[ADD]], ptr [[F2]], align 4
-; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[F2]], align 4
+; CHECK-NEXT:    store i32 [[ADD]], ptr [[F]], align 4
+; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[F]], align 4
 ; CHECK-NEXT:    [[ADD3:%.*]] = add nsw i32 [[TMP1]], [[VAL]]
 ; CHECK-NEXT:    [[CALL:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[ADD3]])
 ; CHECK-NEXT:    ret void
@@ -164,37 +164,45 @@ entry:
 ;TODO: The allocation can be reduced here.
 ;However, the offsets (load/store etc.) Need to be changed.
 ; Function Attrs: noinline nounwind uwtable
-define dso_local { i64, ptr } @positive_test_not_a_single_start_offset(i32 noundef %val) #0 {
-; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
-; CHECK-LABEL: define dso_local { i64, ptr } @positive_test_not_a_single_start_offset
-; CHECK-SAME: (i32 noundef [[VAL:%.*]]) #[[ATTR0:[0-9]+]] {
+define dso_local void @positive_test_not_a_single_start_offset(i32 noundef %val) #0 {
+; CHECK-LABEL: define dso_local void @positive_test_not_a_single_start_offset
+; CHECK-SAME: (i32 noundef [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[RETVAL:%.*]] = alloca [[STRUCT_FOO:%.*]], align 8
 ; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[F:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
 ; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR]], align 4
-; CHECK-NEXT:    store i32 2, ptr [[RETVAL]], align 8
-; CHECK-NEXT:    [[FIELD3:%.*]] = getelementptr inbounds [[STRUCT_FOO]], ptr [[RETVAL]], i32 0, i32 2
-; CHECK-NEXT:    store ptr [[VAL_ADDR]], ptr [[FIELD3]], align 8
-; CHECK-NEXT:    [[TMP0:%.*]] = load { i64, ptr }, ptr [[RETVAL]], align 8
-; CHECK-NEXT:    ret { i64, ptr } [[TMP0]]
+; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 2, [[VAL]]
+; CHECK-NEXT:    store i32 [[MUL]], ptr [[F]], align 4
+; CHECK-NEXT:    [[CALL:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[MUL]])
+; CHECK-NEXT:    [[C:%.*]] = getelementptr inbounds [[STRUCT_FOO]], ptr [[F]], i32 0, i32 2
+; CHECK-NEXT:    [[CALL3:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef 67)
+; CHECK-NEXT:    ret void
 ;
 entry:
-  %retval = alloca %struct.Foo, align 8
   %val.addr = alloca i32, align 4
+  %f = alloca %struct.Foo, align 4
   store i32 %val, ptr %val.addr, align 4
-  %field1 = getelementptr inbounds %struct.Foo, ptr %retval, i32 0, i32 0
-  store i32 2, ptr %field1, align 8
-  %field3 = getelementptr inbounds %struct.Foo, ptr %retval, i32 0, i32 2
-  store ptr %val.addr, ptr %field3, align 8
-  %0 = load { i64, ptr }, ptr %retval, align 8
-  ret { i64, ptr } %0
+  %0 = load i32, ptr %val.addr, align 4
+  %mul = mul nsw i32 2, %0
+  %a = getelementptr inbounds %struct.Foo, ptr %f, i32 0, i32 0
+  store i32 %mul, ptr %a, align 4
+  %a1 = getelementptr inbounds %struct.Foo, ptr %f, i32 0, i32 0
+  %1 = load i32, ptr %a1, align 4
+  %call = call i32 (ptr, ...) @printf(ptr noundef @.str, i32 noundef %1)
+  %c = getelementptr inbounds %struct.Foo, ptr %f, i32 0, i32 2
+  store i8 67, ptr %c, align 4
+  %c2 = getelementptr inbounds %struct.Foo, ptr %f, i32 0, i32 2
+  %2 = load i8, ptr %c2, align 4
+  %conv = sext i8 %2 to i32
+  %call3 = call i32 (ptr, ...) @printf(ptr noundef @.str, i32 noundef %conv)
+  ret void
 }
 
 ; Function Attrs: noinline nounwind uwtable
 define dso_local void @positive_test_reduce_array_allocation_1() {
 ; CHECK-LABEL: define dso_local void @positive_test_reduce_array_allocation_1() {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca i8, i32 4, align 8
+; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca ptr, i32 10, align 8
 ; CHECK-NEXT:    store i32 0, ptr [[ARRAY1]], align 8
 ; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[ARRAY1]], align 8
 ; CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[TMP0]], 2
@@ -275,37 +283,37 @@ entry:
 define dso_local void @positive_test_reduce_array_allocation_2() #0 {
 ; CHECK-LABEL: define dso_local void @positive_test_reduce_array_allocation_2() {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[ARRAY:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca ptr, align 8
+; CHECK-NEXT:    [[I2:%.*]] = alloca i32, align 4
 ; CHECK-NEXT:    [[CALL:%.*]] = call noalias ptr @malloc(i64 noundef 40000)
-; CHECK-NEXT:    store ptr [[CALL]], ptr [[ARRAY]], align 8
-; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
+; CHECK-NEXT:    store ptr [[CALL]], ptr [[ARRAY1]], align 8
+; CHECK-NEXT:    store i32 0, ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND:%.*]]
 ; CHECK:       for.cond:
-; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[TMP0]], 10000
 ; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY:%.*]], label [[FOR_END:%.*]]
 ; CHECK:       for.body:
-; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[I]], align 4
-; CHECK-NEXT:    [[TMP2:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[I2]], align 4
+; CHECK-NEXT:    [[TMP2:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[TMP2]] to i64
 ; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[CALL]], i64 [[IDXPROM]]
 ; CHECK-NEXT:    store i32 [[TMP1]], ptr [[ARRAYIDX]], align 4
 ; CHECK-NEXT:    br label [[FOR_INC:%.*]]
 ; CHECK:       for.inc:
-; CHECK-NEXT:    [[TMP3:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP3:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP3]], 2
-; CHECK-NEXT:    store i32 [[ADD]], ptr [[I]], align 4
+; CHECK-NEXT:    store i32 [[ADD]], ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND]]
 ; CHECK:       for.end:
-; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
+; CHECK-NEXT:    store i32 0, ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND1:%.*]]
 ; CHECK:       for.cond1:
-; CHECK-NEXT:    [[TMP4:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP4:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[CMP2:%.*]] = icmp slt i32 [[TMP4]], 10000
 ; CHECK-NEXT:    br i1 [[CMP2]], label [[FOR_BODY3:%.*]], label [[FOR_END9:%.*]]
 ; CHECK:       for.body3:
-; CHECK-NEXT:    [[TMP5:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP5:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[IDXPROM4:%.*]] = sext i32 [[TMP5]] to i64
 ; CHECK-NEXT:    [[ARRAYIDX5:%.*]] = getelementptr inbounds i32, ptr [[CALL]], i64 [[IDXPROM4]]
 ; CHECK-NEXT:    [[TMP6:%.*]] = load i32, ptr [[ARRAYIDX5]], align 4
@@ -313,28 +321,28 @@ define dso_local void @positive_test_reduce_array_allocation_2() #0 {
 ; CHECK-NEXT:    store i32 [[ADD6]], ptr [[ARRAYIDX5]], align 4
 ; CHECK-NEXT:    br label [[FOR_INC7:%.*]]
 ; CHECK:       for.inc7:
-; CHECK-NEXT:    [[TMP7:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP7:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[ADD8:%.*]] = add nsw i32 [[TMP7]], 2
-; CHECK-NEXT:    store i32 [[ADD8]], ptr [[I]], align 4
+; CHECK-NEXT:    store i32 [[ADD8]], ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND1]]
 ; CHECK:       for.end9:
-; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
+; CHECK-NEXT:    store i32 0, ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND10:%.*]]
 ; CHECK:       for.cond10:
-; CHECK-NEXT:    [[TMP8:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP8:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[CMP11:%.*]] = icmp slt i32 [[TMP8]], 10000
 ; CHECK-NEXT:    br i1 [[CMP11]], label [[FOR_BODY12:%.*]], label [[FOR_END18:%.*]]
 ; CHECK:       for.body12:
-; CHECK-NEXT:    [[TMP9:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP9:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[IDXPROM13:%.*]] = sext i32 [[TMP9]] to i64
 ; CHECK-NEXT:    [[ARRAYIDX14:%.*]] = getelementptr inbounds i32, ptr [[CALL]], i64 [[IDXPROM13]]
 ; CHECK-NEXT:    [[TMP10:%.*]] = load i32, ptr [[ARRAYIDX14]], align 4
 ; CHECK-NEXT:    [[CALL15:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[TMP10]])
 ; CHECK-NEXT:    br label [[FOR_INC16:%.*]]
 ; CHECK:       for.inc16:
-; CHECK-NEXT:    [[TMP11:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP11:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[ADD17:%.*]] = add nsw i32 [[TMP11]], 2
-; CHECK-NEXT:    store i32 [[ADD17]], ptr [[I]], align 4
+; CHECK-NEXT:    store i32 [[ADD17]], ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND10]]
 ; CHECK:       for.end18:
 ; CHECK-NEXT:    ret void
@@ -425,21 +433,20 @@ define dso_local void @pthread_test(){
 ; TUNIT-LABEL: define dso_local void @pthread_test() {
 ; TUNIT-NEXT:    [[ARG1:%.*]] = alloca i8, align 8
 ; TUNIT-NEXT:    [[THREAD:%.*]] = alloca i64, align 8
-; TUNIT-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
-; TUNIT-NEXT:    [[F1:%.*]] = alloca i8, i32 4, align 4
-; TUNIT-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(12) undef)
+; TUNIT-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
+; TUNIT-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(12) undef)
 ; TUNIT-NEXT:    [[F2:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
-; TUNIT-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
+; TUNIT-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC-LABEL: define dso_local void @pthread_test() {
 ; CGSCC-NEXT:    [[ARG1:%.*]] = alloca i8, align 8
 ; CGSCC-NEXT:    [[THREAD:%.*]] = alloca i64, align 8
-; CGSCC-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
+; CGSCC-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
 ; CGSCC-NEXT:    [[F:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
-; CGSCC-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(12) [[F]])
+; CGSCC-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr nofree noundef nonnull readonly align 4 dereferenceable(12) [[F]])
 ; CGSCC-NEXT:    [[F2:%.*]] = alloca [[STRUCT_FOO]], align 4
-; CGSCC-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
+; CGSCC-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
 ; CGSCC-NEXT:    ret void
 ;
   %arg1 = alloca i8, align 8
@@ -499,6 +506,58 @@ entry:
   ret void
 }
 
+define dso_local void @alloca_array_multi_offset(){
+; CHECK: Function Attrs: nofree norecurse nosync nounwind memory(none)
+; CHECK-LABEL: define dso_local void @alloca_array_multi_offset
+; CHECK-SAME: () #[[ATTR0:[0-9]+]] {
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
+; CHECK-NEXT:    br label [[FOR_COND:%.*]]
+; CHECK:       for.cond:
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[TMP0]], 10
+; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY:%.*]], label [[FOR_END:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    br label [[FOR_INC:%.*]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP1]], 2
+; CHECK-NEXT:    store i32 [[ADD]], ptr [[I]], align 4
+; CHECK-NEXT:    br label [[FOR_COND]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret void
+;
+entry:
+  %arr = alloca i8, i32 10, align 4
+  %i = alloca i32, align 4
+  store i32 0, ptr %i, align 4
+  br label %for.cond
+
+for.cond:
+  %0 = load i32, ptr %i, align 4
+  %cmp = icmp slt i32 %0, 10
+  br i1 %cmp, label %for.body, label %for.end
+
+for.body:
+  %1 = load i32, ptr %i, align 4
+  %2 = load ptr, ptr %arr, align 8
+  %3 = load i32, ptr %i, align 4
+  %arrayidx = getelementptr inbounds i32, ptr %2, i32 %3
+  store i32 %1, ptr %arrayidx, align 4
+  br label %for.inc
+
+for.inc:
+  %4 = load i32, ptr %i, align 4
+  %add = add nsw i32 %4, 2
+  store i32 %add, ptr %i, align 4
+  br label %for.cond
+
+for.end:
+  ret void
+
+}
+
 
 declare external void @external_call(ptr)
 
diff --git a/llvm/test/Transforms/Attributor/call-simplify-pointer-info.ll b/llvm/test/Transforms/Attributor/call-simplify-pointer-info.ll
index 5bb795911ce40..b145c3b720186 100644
--- a/llvm/test/Transforms/Attributor/call-simplify-pointer-info.ll
+++ b/llvm/test/Transforms/Attributor/call-simplify-pointer-info.ll
@@ -36,8 +36,12 @@ define i8 @call_simplifiable_1() {
 ; TUNIT-LABEL: define {{[^@]+}}@call_simplifiable_1
 ; TUNIT-SAME: () #[[ATTR0:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[BYTES:%.*]] = alloca [1024 x i8], align 16
-; TUNIT-NEXT:    [[I0:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 2
+; TUNIT-NEXT:    [[BYTES1:%.*]] = alloca i8, align 16
+; TUNIT-NEXT:    [[I0:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 2
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[I0]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], 2
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i8 2, ptr [[TMP2]], align 1
 ; TUNIT-NEXT:    ret i8 2
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
@@ -93,9 +97,17 @@ define i8 @call_simplifiable_2() {
 ; TUNIT-LABEL: define {{[^@]+}}@call_simplifiable_2
 ; TUNIT-SAME: () #[[ATTR0]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[BYTES:%.*]] = alloca [1024 x i8], align 16
-; TUNIT-NEXT:    [[I0:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 2
-; TUNIT-NEXT:    [[I1:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 3
+; TUNIT-NEXT:    [[BYTES1:%.*]] = alloca i8, i32 2, align 16
+; TUNIT-NEXT:    [[I0:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 2
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[I0]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], 2
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i8 2, ptr [[TMP2]], align 1
+; TUNIT-NEXT:    [[I1:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 3
+; TUNIT-NEXT:    [[TMP3:%.*]] = ptrtoint ptr [[I1]] to i32
+; TUNIT-NEXT:    [[TMP4:%.*]] = sub i32 [[TMP3]], 2
+; TUNIT-NEXT:    [[TMP5:%.*]] = inttoptr i32 [[TMP4]] to ptr
+; TUNIT-NEXT:    store i8 3, ptr [[TMP5]], align 1
 ; TUNIT-NEXT:    ret i8 4
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
@@ -125,8 +137,12 @@ define i8 @call_simplifiable_3() {
 ; TUNIT-LABEL: define {{[^@]+}}@call_simplifiable_3
 ; TUNIT-SAME: () #[[ATTR0]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[BYTES:%.*]] = alloca [1024 x i8], align 16
-; TUNIT-NEXT:    [[I2:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 2
+; TUNIT-NEXT:    [[BYTES1:%.*]] = alloca i8, align 16
+; TUNIT-NEXT:    [[I2:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 2
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[I2]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], 2
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i8 2, ptr [[TMP2]], align 1
 ; TUNIT-NEXT:    ret i8 2
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
@@ -198,12 +214,24 @@ define i8 @call_partially_simplifiable_1() {
 ; TUNIT-LABEL: define {{[^@]+}}@call_partially_simplifiable_1
 ; TUNIT-SAME: () #[[ATTR0]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[BYTES:%.*]] = alloca [1024 x i8], align 16
-; TUNIT-NEXT:    [[I2:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 2
+; TUNIT-NEXT:    [[BYTES1:%.*]] = alloca i8, i32 3, align 16
+; TUNIT-NEXT:    [[I2:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 2
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[I2]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], 2
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i8 2, ptr [[TMP2]], align 1
 ; TUNIT-NEXT:    store i8 2, ptr [[I2]], align 2
-; TUNIT-NEXT:    [[I3:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 3
+; TUNIT-NEXT:    [[I3:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 3
+; TUNIT-NEXT:    [[TMP3:%.*]] = ptrtoint ptr [[I3]] to i32
+; TUNIT-NEXT:    [[TMP4:%.*]] = sub i32 [[TMP3]], 1
+; TUNIT-NEXT:    [[TMP5:%.*]] = inttoptr i32 [[TMP4]] to ptr
+; TUNIT-NEXT:    store i8 3, ptr [[TMP5]], align 1
 ; TUNIT-NEXT:    store i8 3, ptr [[I3]], align 1
-; TUNIT-NEXT:    [[I4:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 4
+; TUNIT-NEXT:    [[I4:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 4
+; TUNIT-NEXT:    [[TMP6:%.*]] = ptrtoint ptr [[I4]] to i32
+; TUNIT-NEXT:    [[TMP7:%.*]] = sub i32 [[TMP6]], 3
+; TUNIT-NEXT:    [[TMP8:%.*]] = inttoptr i32 [[TMP7]] to ptr
+; TUNIT-NEXT:    store i8 4, ptr [[TMP8]], align 1
 ; TUNIT-NEXT:    [[R:%.*]] = call i8 @sum_two_different_loads(ptr nocapture nofree noundef nonnull readonly align 2 dereferenceable(1022) [[I2]], ptr nocapture nofree noundef nonnull readonly dereferenceable(1021) [[I3]]) #[[ATTR3]]
 ; TUNIT-NEXT:    ret i8 [[R]]
 ;
@@ -239,13 +267,25 @@ define i8 @call_partially_simplifiable_2(i1 %cond) {
 ; TUNIT-LABEL: define {{[^@]+}}@call_partially_simplifiable_2
 ; TUNIT-SAME: (i1 [[COND:%.*]]) #[[ATTR2:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[BYTES:%.*]] = alloca [1024 x i8], align 16
-; TUNIT-NEXT:    [[I51:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 51
-; TUNIT-NEXT:    [[I52:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 52
+; TUNIT-NEXT:    [[BYTES1:%.*]] = alloca i8, i32 4, align 16
+; TUNIT-NEXT:    [[I51:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 51
+; TUNIT-NEXT:    [[I52:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 52
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[I52]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], 52
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i8 2, ptr [[TMP2]], align 1
 ; TUNIT-NEXT:    store i8 2, ptr [[I52]], align 4
-; TUNIT-NEXT:    [[I53:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 53
+; TUNIT-NEXT:    [[I53:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 53
+; TUNIT-NEXT:    [[TMP3:%.*]] = ptrtoint ptr [[I53]] to i32
+; TUNIT-NEXT:    [[TMP4:%.*]] = sub i32 [[TMP3]], 50
+; TUNIT-NEXT:    [[TMP5:%.*]] = inttoptr i32 [[TMP4]] to ptr
+; TUNIT-NEXT:    store i8 3, ptr [[TMP5]], align 1
 ; TUNIT-NEXT:    store i8 3, ptr [[I53]], align 1
-; TUNIT-NEXT:    [[I54:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES]], i64 0, i64 54
+; TUNIT-NEXT:    [[I54:%.*]] = getelementptr inbounds [1024 x i8], ptr [[BYTES1]], i64 0, i64 54
+; TUNIT-NEXT:    [[TMP6:%.*]] = ptrtoint ptr [[I54]] to i32
+; TUNIT-NEXT:    [[TMP7:%.*]] = sub i32 [[TMP6]], 53
+; TUNIT-NEXT:    [[TMP8:%.*]] = inttoptr i32 [[TMP7]] to ptr
+; TUNIT-NEXT:    store i8 4, ptr [[TMP8]], align 1
 ; TUNIT-NEXT:    [[SEL:%.*]] = select i1 [[COND]], ptr [[I51]], ptr [[I52]]
 ; TUNIT-NEXT:    [[R:%.*]] = call i8 @sum_two_different_loads(ptr nocapture nofree nonnull readonly dereferenceable(972) [[SEL]], ptr nocapture nofree noundef nonnull readonly dereferenceable(971) [[I53]]) #[[ATTR3]]
 ; TUNIT-NEXT:    ret i8 [[R]]
diff --git a/llvm/test/Transforms/Attributor/callbacks.ll b/llvm/test/Transforms/Attributor/callbacks.ll
index dd5cbbc9e271e..d5f7d09b2c8d8 100644
--- a/llvm/test/Transforms/Attributor/callbacks.ll
+++ b/llvm/test/Transforms/Attributor/callbacks.ll
@@ -18,11 +18,11 @@ define void @t0_caller(ptr %a) {
 ; TUNIT-SAME: (ptr align 256 [[A:%.*]]) {
 ; TUNIT-NEXT:  entry:
 ; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 32
-; TUNIT-NEXT:    [[C:%.*]] = alloca ptr, align 64
+; TUNIT-NEXT:    [[C1:%.*]] = alloca i8, i32 8, align 64
 ; TUNIT-NEXT:    [[PTR:%.*]] = alloca i32, align 128
 ; TUNIT-NEXT:    store i32 42, ptr [[B]], align 32
-; TUNIT-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t0_callback_broker(ptr noundef align 4294967296 null, ptr noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr noundef nonnull @t0_callback_callee, ptr align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; TUNIT-NEXT:    store ptr [[B]], ptr [[C1]], align 64
+; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t0_callback_broker(ptr noundef align 4294967296 null, ptr noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr noundef nonnull @t0_callback_callee, ptr align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C1]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@t0_caller
@@ -90,12 +90,16 @@ define void @t1_caller(ptr noalias %a) {
 ; TUNIT-LABEL: define {{[^@]+}}@t1_caller
 ; TUNIT-SAME: (ptr noalias nocapture align 256 [[A:%.*]]) {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 32
-; TUNIT-NEXT:    [[C:%.*]] = alloca ptr, align 64
-; TUNIT-NEXT:    [[PTR:%.*]] = alloca i32, align 128
-; TUNIT-NEXT:    store i32 42, ptr [[B]], align 32
-; TUNIT-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t1_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t1_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 -2147483645, align 32
+; TUNIT-NEXT:    [[C2:%.*]] = alloca i8, i32 8, align 64
+; TUNIT-NEXT:    [[PTR3:%.*]] = alloca i8, i32 2147483647, align 128
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[B1]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], -2147483647
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i32 42, ptr [[TMP2]], align 4
+; TUNIT-NEXT:    store i32 42, ptr [[B1]], align 32
+; TUNIT-NEXT:    store ptr [[B1]], ptr [[C2]], align 64
+; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t1_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR3]], ptr nocapture noundef nonnull @t1_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C2]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@t1_caller
@@ -103,10 +107,10 @@ define void @t1_caller(ptr noalias %a) {
 ; CGSCC-NEXT:  entry:
 ; CGSCC-NEXT:    [[B:%.*]] = alloca i32, align 32
 ; CGSCC-NEXT:    [[C:%.*]] = alloca ptr, align 64
-; CGSCC-NEXT:    [[PTR:%.*]] = alloca i32, align 128
+; CGSCC-NEXT:    [[PTR1:%.*]] = alloca i8, i32 2147483647, align 128
 ; CGSCC-NEXT:    store i32 42, ptr [[B]], align 32
 ; CGSCC-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t1_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t1_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t1_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR1]], ptr nocapture noundef nonnull @t1_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
 ; CGSCC-NEXT:    ret void
 ;
 entry:
@@ -163,12 +167,16 @@ define void @t2_caller(ptr noalias %a) {
 ; TUNIT-LABEL: define {{[^@]+}}@t2_caller
 ; TUNIT-SAME: (ptr noalias nocapture align 256 [[A:%.*]]) {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 32
-; TUNIT-NEXT:    [[C:%.*]] = alloca ptr, align 64
-; TUNIT-NEXT:    [[PTR:%.*]] = alloca i32, align 128
-; TUNIT-NEXT:    store i32 42, ptr [[B]], align 32
-; TUNIT-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t2_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t2_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 -2147483645, align 32
+; TUNIT-NEXT:    [[C2:%.*]] = alloca i8, i32 8, align 64
+; TUNIT-NEXT:    [[PTR3:%.*]] = alloca i8, i32 2147483647, align 128
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[B1]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], -2147483647
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i32 42, ptr [[TMP2]], align 4
+; TUNIT-NEXT:    store i32 42, ptr [[B1]], align 32
+; TUNIT-NEXT:    store ptr [[B1]], ptr [[C2]], align 64
+; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t2_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR3]], ptr nocapture noundef nonnull @t2_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C2]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@t2_caller
@@ -176,10 +184,10 @@ define void @t2_caller(ptr noalias %a) {
 ; CGSCC-NEXT:  entry:
 ; CGSCC-NEXT:    [[B:%.*]] = alloca i32, align 32
 ; CGSCC-NEXT:    [[C:%.*]] = alloca ptr, align 64
-; CGSCC-NEXT:    [[PTR:%.*]] = alloca i32, align 128
+; CGSCC-NEXT:    [[PTR1:%.*]] = alloca i8, i32 2147483647, align 128
 ; CGSCC-NEXT:    store i32 42, ptr [[B]], align 32
 ; CGSCC-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t2_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t2_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t2_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR1]], ptr nocapture noundef nonnull @t2_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
 ; CGSCC-NEXT:    ret void
 ;
 entry:
@@ -236,13 +244,17 @@ define void @t3_caller(ptr noalias %a) {
 ; TUNIT-LABEL: define {{[^@]+}}@t3_caller
 ; TUNIT-SAME: (ptr noalias nocapture align 256 [[A:%.*]]) {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 32
-; TUNIT-NEXT:    [[C:%.*]] = alloca ptr, align 64
-; TUNIT-NEXT:    [[PTR:%.*]] = alloca i32, align 128
-; TUNIT-NEXT:    store i32 42, ptr [[B]], align 32
-; TUNIT-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
-; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 -2147483645, align 32
+; TUNIT-NEXT:    [[C2:%.*]] = alloca i8, i32 8, align 64
+; TUNIT-NEXT:    [[PTR3:%.*]] = alloca i8, i32 2147483647, align 128
+; TUNIT-NEXT:    [[TMP0:%.*]] = ptrtoint ptr [[B1]] to i32
+; TUNIT-NEXT:    [[TMP1:%.*]] = sub i32 [[TMP0]], -2147483647
+; TUNIT-NEXT:    [[TMP2:%.*]] = inttoptr i32 [[TMP1]] to ptr
+; TUNIT-NEXT:    store i32 42, ptr [[TMP2]], align 4
+; TUNIT-NEXT:    store i32 42, ptr [[B1]], align 32
+; TUNIT-NEXT:    store ptr [[B1]], ptr [[C2]], align 64
+; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR3]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C2]])
+; TUNIT-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR3]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 undef, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C2]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@t3_caller
@@ -250,11 +262,11 @@ define void @t3_caller(ptr noalias %a) {
 ; CGSCC-NEXT:  entry:
 ; CGSCC-NEXT:    [[B:%.*]] = alloca i32, align 32
 ; CGSCC-NEXT:    [[C:%.*]] = alloca ptr, align 64
-; CGSCC-NEXT:    [[PTR:%.*]] = alloca i32, align 128
+; CGSCC-NEXT:    [[PTR1:%.*]] = alloca i8, i32 2147483647, align 128
 ; CGSCC-NEXT:    store i32 42, ptr [[B]], align 32
 ; CGSCC-NEXT:    store ptr [[B]], ptr [[C]], align 64
-; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
-; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR1]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
+; CGSCC-NEXT:    call void (ptr, ptr, ptr, ...) @t3_callback_broker(ptr noundef align 4294967296 null, ptr noalias nocapture noundef nonnull align 128 dereferenceable(4) [[PTR1]], ptr nocapture noundef nonnull @t3_callback_callee, ptr nocapture align 256 [[A]], i64 noundef 99, ptr noalias nocapture nofree noundef nonnull readonly align 64 dereferenceable(8) [[C]])
 ; CGSCC-NEXT:    ret void
 ;
 entry:
diff --git a/llvm/test/Transforms/Attributor/heap_to_stack.ll b/llvm/test/Transforms/Attributor/heap_to_stack.ll
index 33ac066e43d09..8ea7923f0dc77 100644
--- a/llvm/test/Transforms/Attributor/heap_to_stack.ll
+++ b/llvm/test/Transforms/Attributor/heap_to_stack.ll
@@ -501,15 +501,15 @@ define i32 @malloc_in_loop(i32 %arg) {
 ; CHECK-LABEL: define {{[^@]+}}@malloc_in_loop
 ; CHECK-SAME: (i32 [[ARG:%.*]]) {
 ; CHECK-NEXT:  bb:
-; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[I2:%.*]] = alloca i8, i32 4, align 4
 ; CHECK-NEXT:    [[I1:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[I11:%.*]] = alloca i8, i32 0, align 8
-; CHECK-NEXT:    store i32 [[ARG]], ptr [[I]], align 4
+; CHECK-NEXT:    [[I13:%.*]] = alloca i8, i32 0, align 8
+; CHECK-NEXT:    store i32 [[ARG]], ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[BB2:%.*]]
 ; CHECK:       bb2:
-; CHECK-NEXT:    [[I3:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[I3:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[I4:%.*]] = add nsw i32 [[I3]], -1
-; CHECK-NEXT:    store i32 [[I4]], ptr [[I]], align 4
+; CHECK-NEXT:    store i32 [[I4]], ptr [[I2]], align 4
 ; CHECK-NEXT:    [[I5:%.*]] = icmp sgt i32 [[I4]], 0
 ; CHECK-NEXT:    br i1 [[I5]], label [[BB6:%.*]], label [[BB9:%.*]]
 ; CHECK:       bb6:
diff --git a/llvm/test/Transforms/Attributor/heap_to_stack_gpu.ll b/llvm/test/Transforms/Attributor/heap_to_stack_gpu.ll
index 2a5b3e94291a2..57f36a05e30b8 100644
--- a/llvm/test/Transforms/Attributor/heap_to_stack_gpu.ll
+++ b/llvm/test/Transforms/Attributor/heap_to_stack_gpu.ll
@@ -451,15 +451,15 @@ define i32 @malloc_in_loop(i32 %arg) {
 ; CHECK-LABEL: define {{[^@]+}}@malloc_in_loop
 ; CHECK-SAME: (i32 [[ARG:%.*]]) {
 ; CHECK-NEXT:  bb:
-; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[I2:%.*]] = alloca i8, i32 4, align 4
 ; CHECK-NEXT:    [[I1:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[I11:%.*]] = alloca i8, i32 0, align 8
-; CHECK-NEXT:    store i32 [[ARG]], ptr [[I]], align 4
+; CHECK-NEXT:    [[I13:%.*]] = alloca i8, i32 0, align 8
+; CHECK-NEXT:    store i32 [[ARG]], ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[BB2:%.*]]
 ; CHECK:       bb2:
-; CHECK-NEXT:    [[I3:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[I3:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[I4:%.*]] = add nsw i32 [[I3]], -1
-; CHECK-NEXT:    store i32 [[I4]], ptr [[I]], align 4
+; CHECK-NEXT:    store i32 [[I4]], ptr [[I2]], align 4
 ; CHECK-NEXT:    [[I5:%.*]] = icmp sgt i32 [[I4]], 0
 ; CHECK-NEXT:    br i1 [[I5]], label [[BB6:%.*]], label [[BB9:%.*]]
 ; CHECK:       bb6:
diff --git a/llvm/test/Transforms/Attributor/internal-noalias.ll b/llvm/test/Transforms/Attributor/internal-noalias.ll
index 0dba6853e0c8f..62048de8d0c1d 100644
--- a/llvm/test/Transforms/Attributor/internal-noalias.ll
+++ b/llvm/test/Transforms/Attributor/internal-noalias.ll
@@ -92,10 +92,10 @@ define dso_local i32 @visible_local(ptr %A) #0 {
 ; TUNIT-LABEL: define {{[^@]+}}@visible_local
 ; TUNIT-SAME: (ptr nocapture nofree readonly [[A:%.*]]) #[[ATTR1:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store i32 5, ptr [[B]], align 4
-; TUNIT-NEXT:    [[CALL1:%.*]] = call i32 @noalias_args(ptr nocapture nofree noundef readonly align 4 [[A]], ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[B]]) #[[ATTR4]]
-; TUNIT-NEXT:    [[CALL2:%.*]] = call i32 @noalias_args_argmem(ptr nocapture nofree noundef readonly align 4 [[A]], ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[B]]) #[[ATTR4]]
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store i32 5, ptr [[B1]], align 4
+; TUNIT-NEXT:    [[CALL1:%.*]] = call i32 @noalias_args(ptr nocapture nofree noundef readonly align 4 [[A]], ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[B1]]) #[[ATTR4]]
+; TUNIT-NEXT:    [[CALL2:%.*]] = call i32 @noalias_args_argmem(ptr nocapture nofree noundef readonly align 4 [[A]], ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[B1]]) #[[ATTR4]]
 ; TUNIT-NEXT:    [[ADD:%.*]] = add nsw i32 [[CALL1]], [[CALL2]]
 ; TUNIT-NEXT:    ret i32 [[ADD]]
 ;
@@ -142,7 +142,7 @@ define i32 @visible_local_2() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@visible_local_2
 ; TUNIT-SAME: () #[[ATTR2:[0-9]+]] {
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    ret i32 10
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
@@ -179,8 +179,8 @@ define i32 @visible_local_3() {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@visible_local_3
 ; TUNIT-SAME: () #[[ATTR2]] {
-; TUNIT-NEXT:    [[B:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    [[CALL:%.*]] = call i32 @noalias_args_argmem_rn(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B]]) #[[ATTR5:[0-9]+]]
+; TUNIT-NEXT:    [[B1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    [[CALL:%.*]] = call i32 @noalias_args_argmem_rn(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[B1]]) #[[ATTR5:[0-9]+]]
 ; TUNIT-NEXT:    ret i32 5
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
diff --git a/llvm/test/Transforms/Attributor/noalias.ll b/llvm/test/Transforms/Attributor/noalias.ll
index c63d81878f535..759e8f0ba42d3 100644
--- a/llvm/test/Transforms/Attributor/noalias.ll
+++ b/llvm/test/Transforms/Attributor/noalias.ll
@@ -189,21 +189,37 @@ define ptr @test6() nounwind uwtable ssp {
 ; TUNIT: Function Attrs: nounwind ssp uwtable
 ; TUNIT-LABEL: define {{[^@]+}}@test6
 ; TUNIT-SAME: () #[[ATTR3:[0-9]+]] {
-; TUNIT-NEXT:    [[X:%.*]] = alloca [2 x i8], align 1
-; TUNIT-NEXT:    store i8 97, ptr [[X]], align 1
-; TUNIT-NEXT:    [[ARRAYIDX1:%.*]] = getelementptr inbounds [2 x i8], ptr [[X]], i64 0, i64 1
+; TUNIT-NEXT:    [[X1:%.*]] = alloca i8, i32 -2147483647, align 1
+; TUNIT-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[X1]] to i32
+; TUNIT-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], -2147483647
+; TUNIT-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; TUNIT-NEXT:    store i8 97, ptr [[TMP3]], align 1
+; TUNIT-NEXT:    store i8 97, ptr [[X1]], align 1
+; TUNIT-NEXT:    [[ARRAYIDX1:%.*]] = getelementptr inbounds [2 x i8], ptr [[X1]], i64 0, i64 1
+; TUNIT-NEXT:    [[TMP4:%.*]] = ptrtoint ptr [[ARRAYIDX1]] to i32
+; TUNIT-NEXT:    [[TMP5:%.*]] = sub i32 [[TMP4]], -2147483647
+; TUNIT-NEXT:    [[TMP6:%.*]] = inttoptr i32 [[TMP5]] to ptr
+; TUNIT-NEXT:    store i8 0, ptr [[TMP6]], align 1
 ; TUNIT-NEXT:    store i8 0, ptr [[ARRAYIDX1]], align 1
-; TUNIT-NEXT:    [[CALL:%.*]] = call noalias ptr @strdup(ptr noalias nocapture noundef nonnull dereferenceable(2) [[X]]) #[[ATTR2]]
+; TUNIT-NEXT:    [[CALL:%.*]] = call noalias ptr @strdup(ptr noalias nocapture noundef nonnull dereferenceable(2) [[X1]]) #[[ATTR2]]
 ; TUNIT-NEXT:    ret ptr [[CALL]]
 ;
 ; CGSCC: Function Attrs: nounwind ssp uwtable
 ; CGSCC-LABEL: define {{[^@]+}}@test6
 ; CGSCC-SAME: () #[[ATTR4:[0-9]+]] {
-; CGSCC-NEXT:    [[X:%.*]] = alloca [2 x i8], align 1
-; CGSCC-NEXT:    store i8 97, ptr [[X]], align 1
-; CGSCC-NEXT:    [[ARRAYIDX1:%.*]] = getelementptr inbounds [2 x i8], ptr [[X]], i64 0, i64 1
+; CGSCC-NEXT:    [[X1:%.*]] = alloca i8, i32 -2147483647, align 1
+; CGSCC-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[X1]] to i32
+; CGSCC-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], -2147483647
+; CGSCC-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; CGSCC-NEXT:    store i8 97, ptr [[TMP3]], align 1
+; CGSCC-NEXT:    store i8 97, ptr [[X1]], align 1
+; CGSCC-NEXT:    [[ARRAYIDX1:%.*]] = getelementptr inbounds [2 x i8], ptr [[X1]], i64 0, i64 1
+; CGSCC-NEXT:    [[TMP4:%.*]] = ptrtoint ptr [[ARRAYIDX1]] to i32
+; CGSCC-NEXT:    [[TMP5:%.*]] = sub i32 [[TMP4]], -2147483647
+; CGSCC-NEXT:    [[TMP6:%.*]] = inttoptr i32 [[TMP5]] to ptr
+; CGSCC-NEXT:    store i8 0, ptr [[TMP6]], align 1
 ; CGSCC-NEXT:    store i8 0, ptr [[ARRAYIDX1]], align 1
-; CGSCC-NEXT:    [[CALL:%.*]] = call noalias ptr @strdup(ptr noalias nocapture noundef nonnull dereferenceable(2) [[X]]) #[[ATTR3]]
+; CGSCC-NEXT:    [[CALL:%.*]] = call noalias ptr @strdup(ptr noalias nocapture noundef nonnull dereferenceable(2) [[X1]]) #[[ATTR3]]
 ; CGSCC-NEXT:    ret ptr [[CALL]]
 ;
   %x = alloca [2 x i8], align 1
@@ -399,10 +415,10 @@ declare void @use_nocapture(ptr nocapture)
 declare void @use(ptr)
 define void @test12_1() {
 ; CHECK-LABEL: define {{[^@]+}}@test12_1() {
-; CHECK-NEXT:    [[A:%.*]] = alloca i8, align 4
+; CHECK-NEXT:    [[A1:%.*]] = alloca i8, i32 2147483647, align 4
 ; CHECK-NEXT:    [[B:%.*]] = tail call noalias ptr @malloc(i64 noundef 4)
-; CHECK-NEXT:    tail call void @use_nocapture(ptr noalias nocapture noundef nonnull align 4 dereferenceable(1) [[A]])
-; CHECK-NEXT:    tail call void @use_nocapture(ptr noalias nocapture noundef nonnull align 4 dereferenceable(1) [[A]])
+; CHECK-NEXT:    tail call void @use_nocapture(ptr noalias nocapture noundef nonnull align 4 dereferenceable(1) [[A1]])
+; CHECK-NEXT:    tail call void @use_nocapture(ptr noalias nocapture noundef nonnull align 4 dereferenceable(1) [[A1]])
 ; CHECK-NEXT:    tail call void @use_nocapture(ptr noalias nocapture [[B]])
 ; CHECK-NEXT:    tail call void @use_nocapture(ptr noalias nocapture [[B]])
 ; CHECK-NEXT:    ret void
diff --git a/llvm/test/Transforms/Attributor/nocapture-2.ll b/llvm/test/Transforms/Attributor/nocapture-2.ll
index 1e5e9da19909f..96fd887f75fac 100644
--- a/llvm/test/Transforms/Attributor/nocapture-2.ll
+++ b/llvm/test/Transforms/Attributor/nocapture-2.ll
@@ -46,21 +46,21 @@ define i32 @is_null_control(ptr %p) #0 {
 ; CHECK-LABEL: define i32 @is_null_control
 ; CHECK-SAME: (ptr nofree [[P:%.*]]) #[[ATTR0]] {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[RETVAL:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[RETVAL1:%.*]] = alloca i8, i32 4, align 4
 ; CHECK-NEXT:    [[CMP:%.*]] = icmp eq ptr [[P]], null
 ; CHECK-NEXT:    br i1 [[CMP]], label [[IF_THEN:%.*]], label [[IF_END:%.*]]
 ; CHECK:       if.then:
-; CHECK-NEXT:    store i32 1, ptr [[RETVAL]], align 4
+; CHECK-NEXT:    store i32 1, ptr [[RETVAL1]], align 4
 ; CHECK-NEXT:    br label [[RETURN:%.*]]
 ; CHECK:       if.end:
 ; CHECK-NEXT:    br label [[IF_END3:%.*]]
 ; CHECK:       if.then2:
 ; CHECK-NEXT:    unreachable
 ; CHECK:       if.end3:
-; CHECK-NEXT:    store i32 0, ptr [[RETVAL]], align 4
+; CHECK-NEXT:    store i32 0, ptr [[RETVAL1]], align 4
 ; CHECK-NEXT:    br label [[RETURN]]
 ; CHECK:       return:
-; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[RETVAL]], align 4
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[RETVAL1]], align 4
 ; CHECK-NEXT:    ret i32 [[TMP0]]
 ;
 entry:
@@ -737,15 +737,15 @@ define ptr @b64613_a(ptr noundef %p) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define noundef ptr @b64613_a
 ; TUNIT-SAME: (ptr nofree noundef readnone returned "no-capture-maybe-returned" [[P:%.*]]) #[[ATTR11:[0-9]+]] {
-; TUNIT-NEXT:    [[P_ADDR:%.*]] = alloca ptr, align 1
-; TUNIT-NEXT:    store ptr [[P]], ptr [[P_ADDR]], align 1
+; TUNIT-NEXT:    [[P_ADDR1:%.*]] = alloca i8, i32 8, align 1
+; TUNIT-NEXT:    store ptr [[P]], ptr [[P_ADDR1]], align 1
 ; TUNIT-NEXT:    ret ptr [[P]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define noundef ptr @b64613_a
 ; CGSCC-SAME: (ptr nofree noundef readnone returned "no-capture-maybe-returned" [[P:%.*]]) #[[ATTR12:[0-9]+]] {
-; CGSCC-NEXT:    [[P_ADDR:%.*]] = alloca ptr, align 1
-; CGSCC-NEXT:    store ptr [[P]], ptr [[P_ADDR]], align 1
+; CGSCC-NEXT:    [[P_ADDR1:%.*]] = alloca i8, i32 8, align 1
+; CGSCC-NEXT:    store ptr [[P]], ptr [[P_ADDR1]], align 1
 ; CGSCC-NEXT:    ret ptr [[P]]
 ;
   %p.addr = alloca ptr, align 1
@@ -757,19 +757,27 @@ define ptr @b64613_b(ptr noundef %p, i32 %i) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define ptr @b64613_b
 ; TUNIT-SAME: (ptr nofree noundef [[P:%.*]], i32 [[I:%.*]]) #[[ATTR11]] {
-; TUNIT-NEXT:    [[P_ADDR:%.*]] = alloca <2 x ptr>, align 1
-; TUNIT-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR]], i32 [[I]]
+; TUNIT-NEXT:    [[P_ADDR1:%.*]] = alloca i8, i32 16, align 1
+; TUNIT-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR1]], i32 [[I]]
+; TUNIT-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[G]] to i32
+; TUNIT-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], 2147483639
+; TUNIT-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; TUNIT-NEXT:    store ptr [[P]], ptr [[TMP3]], align 8
 ; TUNIT-NEXT:    store ptr [[P]], ptr [[G]], align 1
-; TUNIT-NEXT:    [[R:%.*]] = load ptr, ptr [[P_ADDR]], align 1
+; TUNIT-NEXT:    [[R:%.*]] = load ptr, ptr [[P_ADDR1]], align 1
 ; TUNIT-NEXT:    ret ptr [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define ptr @b64613_b
 ; CGSCC-SAME: (ptr nofree noundef [[P:%.*]], i32 [[I:%.*]]) #[[ATTR12]] {
-; CGSCC-NEXT:    [[P_ADDR:%.*]] = alloca <2 x ptr>, align 1
-; CGSCC-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR]], i32 [[I]]
+; CGSCC-NEXT:    [[P_ADDR1:%.*]] = alloca i8, i32 16, align 1
+; CGSCC-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR1]], i32 [[I]]
+; CGSCC-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[G]] to i32
+; CGSCC-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], 2147483639
+; CGSCC-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; CGSCC-NEXT:    store ptr [[P]], ptr [[TMP3]], align 8
 ; CGSCC-NEXT:    store ptr [[P]], ptr [[G]], align 1
-; CGSCC-NEXT:    [[R:%.*]] = load ptr, ptr [[P_ADDR]], align 1
+; CGSCC-NEXT:    [[R:%.*]] = load ptr, ptr [[P_ADDR1]], align 1
 ; CGSCC-NEXT:    ret ptr [[R]]
 ;
   %p.addr = alloca <2 x ptr>, align 1
@@ -782,16 +790,24 @@ define void @b64613_positive(ptr noundef %p, i32 %i) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define void @b64613_positive
 ; TUNIT-SAME: (ptr nocapture nofree noundef [[P:%.*]], i32 [[I:%.*]]) #[[ATTR11]] {
-; TUNIT-NEXT:    [[P_ADDR:%.*]] = alloca <2 x ptr>, align 1
-; TUNIT-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR]], i32 [[I]]
+; TUNIT-NEXT:    [[P_ADDR1:%.*]] = alloca i8, i32 16, align 1
+; TUNIT-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR1]], i32 [[I]]
+; TUNIT-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[G]] to i32
+; TUNIT-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], 2147483639
+; TUNIT-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; TUNIT-NEXT:    store ptr [[P]], ptr [[TMP3]], align 8
 ; TUNIT-NEXT:    store ptr [[P]], ptr [[G]], align 1
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define void @b64613_positive
 ; CGSCC-SAME: (ptr nocapture nofree noundef [[P:%.*]], i32 [[I:%.*]]) #[[ATTR13:[0-9]+]] {
-; CGSCC-NEXT:    [[P_ADDR:%.*]] = alloca <2 x ptr>, align 1
-; CGSCC-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR]], i32 [[I]]
+; CGSCC-NEXT:    [[P_ADDR1:%.*]] = alloca i8, i32 16, align 1
+; CGSCC-NEXT:    [[G:%.*]] = getelementptr i8, ptr [[P_ADDR1]], i32 [[I]]
+; CGSCC-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[G]] to i32
+; CGSCC-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], 2147483639
+; CGSCC-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; CGSCC-NEXT:    store ptr [[P]], ptr [[TMP3]], align 8
 ; CGSCC-NEXT:    store ptr [[P]], ptr [[G]], align 1
 ; CGSCC-NEXT:    ret void
 ;
diff --git a/llvm/test/Transforms/Attributor/nofpclass.ll b/llvm/test/Transforms/Attributor/nofpclass.ll
index b38f9bae50ccc..caa784b85d3d9 100644
--- a/llvm/test/Transforms/Attributor/nofpclass.ll
+++ b/llvm/test/Transforms/Attributor/nofpclass.ll
@@ -1,4 +1,4 @@
-; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --check-attributes --version 2
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --check-attributes --check-globals --version 2
 ; RUN: opt -aa-pipeline=basic-aa -passes=attributor -attributor-manifest-internal  -attributor-annotate-decl-cs  -S < %s | FileCheck %s --check-prefixes=CHECK,TUNIT
 ; RUN: opt -aa-pipeline=basic-aa -passes=attributor-cgscc -attributor-manifest-internal  -attributor-annotate-decl-cs -S < %s | FileCheck %s --check-prefixes=CHECK,CGSCC
 
@@ -687,9 +687,9 @@ define float @pass_nofpclass_inf_through_memory(float nofpclass(inf) %arg) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define float @pass_nofpclass_inf_through_memory
 ; TUNIT-SAME: (float nofpclass(inf) [[ARG:%.*]]) #[[ATTR3]] {
-; TUNIT-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; TUNIT-NEXT:    store float [[ARG]], ptr [[ALLOCA]], align 4
-; TUNIT-NEXT:    [[RET:%.*]] = call float @returned_load(ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[ALLOCA]]) #[[ATTR21:[0-9]+]]
+; TUNIT-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store float [[ARG]], ptr [[ALLOCA1]], align 4
+; TUNIT-NEXT:    [[RET:%.*]] = call float @returned_load(ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[ALLOCA1]]) #[[ATTR21:[0-9]+]]
 ; TUNIT-NEXT:    ret float [[RET]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
@@ -2520,15 +2520,15 @@ define float @call_through_memory0(float nofpclass(nan) %val) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define nofpclass(nan) float @call_through_memory0
 ; TUNIT-SAME: (float returned nofpclass(nan) [[VAL:%.*]]) #[[ATTR3]] {
-; TUNIT-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; TUNIT-NEXT:    store float [[VAL]], ptr [[ALLOCA]], align 4
+; TUNIT-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store float [[VAL]], ptr [[ALLOCA1]], align 4
 ; TUNIT-NEXT:    ret float [[VAL]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define float @call_through_memory0
 ; CGSCC-SAME: (float nofpclass(nan) [[VAL:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; CGSCC-NEXT:    store float [[VAL]], ptr [[ALLOCA]], align 4
+; CGSCC-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    store float [[VAL]], ptr [[ALLOCA1]], align 4
 ; CGSCC-NEXT:    [[THROUGH_MEMORY:%.*]] = call float @through_memory0(float nofpclass(nan) [[VAL]]) #[[ATTR19]]
 ; CGSCC-NEXT:    ret float [[THROUGH_MEMORY]]
 ;
@@ -2542,17 +2542,17 @@ define float @call_through_memory1(float nofpclass(nan) %val) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define float @call_through_memory1
 ; TUNIT-SAME: (float nofpclass(nan) [[VAL:%.*]]) #[[ATTR3]] {
-; TUNIT-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; TUNIT-NEXT:    store float [[VAL]], ptr [[ALLOCA]], align 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load float, ptr [[ALLOCA]], align 4
+; TUNIT-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store float [[VAL]], ptr [[ALLOCA1]], align 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load float, ptr [[ALLOCA1]], align 4
 ; TUNIT-NEXT:    [[THROUGH_MEMORY:%.*]] = call float @through_memory1(float [[TMP1]]) #[[ATTR21]]
 ; TUNIT-NEXT:    ret float [[THROUGH_MEMORY]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define float @call_through_memory1
 ; CGSCC-SAME: (float nofpclass(nan) [[VAL:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; CGSCC-NEXT:    store float [[VAL]], ptr [[ALLOCA]], align 4
+; CGSCC-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    store float [[VAL]], ptr [[ALLOCA1]], align 4
 ; CGSCC-NEXT:    [[THROUGH_MEMORY:%.*]] = call float @through_memory1(float nofpclass(nan) [[VAL]]) #[[ATTR19]]
 ; CGSCC-NEXT:    ret float [[THROUGH_MEMORY]]
 ;
@@ -2565,16 +2565,16 @@ define float @call_through_memory1(float nofpclass(nan) %val) {
 define float @call_through_memory2(float nofpclass(nan) %val) {
 ; TUNIT-LABEL: define float @call_through_memory2
 ; TUNIT-SAME: (float nofpclass(nan) [[VAL:%.*]]) {
-; TUNIT-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; TUNIT-NEXT:    store float [[VAL]], ptr [[ALLOCA]], align 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load float, ptr [[ALLOCA]], align 4
+; TUNIT-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store float [[VAL]], ptr [[ALLOCA1]], align 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load float, ptr [[ALLOCA1]], align 4
 ; TUNIT-NEXT:    [[THROUGH_MEMORY:%.*]] = call float @through_memory2(float [[TMP1]])
 ; TUNIT-NEXT:    ret float [[THROUGH_MEMORY]]
 ;
 ; CGSCC-LABEL: define float @call_through_memory2
 ; CGSCC-SAME: (float nofpclass(nan) [[VAL:%.*]]) {
-; CGSCC-NEXT:    [[ALLOCA:%.*]] = alloca float, align 4
-; CGSCC-NEXT:    store float [[VAL]], ptr [[ALLOCA]], align 4
+; CGSCC-NEXT:    [[ALLOCA1:%.*]] = alloca i8, i32 4, align 4
+; CGSCC-NEXT:    store float [[VAL]], ptr [[ALLOCA1]], align 4
 ; CGSCC-NEXT:    [[THROUGH_MEMORY:%.*]] = call float @through_memory2(float nofpclass(nan) [[VAL]])
 ; CGSCC-NEXT:    ret float [[THROUGH_MEMORY]]
 ;
@@ -2689,3 +2689,51 @@ attributes #2 = { "denormal-fp-math"="ieee,preserve-sign" }
 attributes #3 = { "denormal-fp-math"="positive-zero,positive-zero" }
 attributes #4 = { "denormal-fp-math"="positive-zero,ieee" }
 attributes #5 = { "denormal-fp-math"="ieee,positive-zero" }
+;.
+; TUNIT: attributes #[[ATTR0:[0-9]+]] = { nocallback nofree nosync nounwind willreturn memory(inaccessiblemem: write) }
+; TUNIT: attributes #[[ATTR1:[0-9]+]] = { nocallback nofree nosync nounwind speculatable willreturn memory(none) }
+; TUNIT: attributes #[[ATTR2:[0-9]+]] = { nocallback nofree nosync nounwind strictfp willreturn memory(inaccessiblemem: readwrite) }
+; TUNIT: attributes #[[ATTR3]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
+; TUNIT: attributes #[[ATTR4]] = { mustprogress nofree nosync nounwind willreturn memory(none) }
+; TUNIT: attributes #[[ATTR5]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: read) }
+; TUNIT: attributes #[[ATTR6]] = { mustprogress nofree norecurse nounwind willreturn memory(argmem: readwrite) }
+; TUNIT: attributes #[[ATTR7]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: readwrite) }
+; TUNIT: attributes #[[ATTR8]] = { mustprogress nofree norecurse nosync nounwind strictfp willreturn memory(inaccessiblemem: readwrite) }
+; TUNIT: attributes #[[ATTR9]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="positive-zero,positive-zero" }
+; TUNIT: attributes #[[ATTR10]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="preserve-sign,preserve-sign" }
+; TUNIT: attributes #[[ATTR11]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="ieee,preserve-sign" }
+; TUNIT: attributes #[[ATTR12]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="positive-zero,ieee" }
+; TUNIT: attributes #[[ATTR13]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="preserve-sign,ieee" }
+; TUNIT: attributes #[[ATTR14]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="ieee,positive-zero" }
+; TUNIT: attributes #[[ATTR15]] = { memory(readwrite, argmem: none) }
+; TUNIT: attributes #[[ATTR16]] = { norecurse }
+; TUNIT: attributes #[[ATTR17]] = { nounwind willreturn }
+; TUNIT: attributes #[[ATTR18]] = { nofree willreturn memory(write) }
+; TUNIT: attributes #[[ATTR19]] = { nofree nosync nounwind willreturn memory(none) }
+; TUNIT: attributes #[[ATTR20]] = { nofree willreturn }
+; TUNIT: attributes #[[ATTR21]] = { nofree nosync nounwind willreturn memory(read) }
+; TUNIT: attributes #[[ATTR22]] = { nofree nosync willreturn }
+;.
+; CGSCC: attributes #[[ATTR0:[0-9]+]] = { nocallback nofree nosync nounwind willreturn memory(inaccessiblemem: write) }
+; CGSCC: attributes #[[ATTR1:[0-9]+]] = { nocallback nofree nosync nounwind speculatable willreturn memory(none) }
+; CGSCC: attributes #[[ATTR2:[0-9]+]] = { nocallback nofree nosync nounwind strictfp willreturn memory(inaccessiblemem: readwrite) }
+; CGSCC: attributes #[[ATTR3]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
+; CGSCC: attributes #[[ATTR4]] = { mustprogress nofree nosync nounwind willreturn memory(none) }
+; CGSCC: attributes #[[ATTR5]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: read) }
+; CGSCC: attributes #[[ATTR6]] = { mustprogress nofree norecurse nounwind willreturn memory(argmem: readwrite) }
+; CGSCC: attributes #[[ATTR7]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: readwrite) }
+; CGSCC: attributes #[[ATTR8]] = { mustprogress nofree norecurse nosync nounwind strictfp willreturn memory(inaccessiblemem: readwrite) }
+; CGSCC: attributes #[[ATTR9]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="positive-zero,positive-zero" }
+; CGSCC: attributes #[[ATTR10]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="preserve-sign,preserve-sign" }
+; CGSCC: attributes #[[ATTR11]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="ieee,preserve-sign" }
+; CGSCC: attributes #[[ATTR12]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="positive-zero,ieee" }
+; CGSCC: attributes #[[ATTR13]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="preserve-sign,ieee" }
+; CGSCC: attributes #[[ATTR14]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) "denormal-fp-math"="ieee,positive-zero" }
+; CGSCC: attributes #[[ATTR15]] = { memory(readwrite, argmem: none) }
+; CGSCC: attributes #[[ATTR16]] = { norecurse }
+; CGSCC: attributes #[[ATTR17]] = { nounwind willreturn }
+; CGSCC: attributes #[[ATTR18]] = { nofree willreturn memory(write) }
+; CGSCC: attributes #[[ATTR19]] = { nofree nosync willreturn }
+; CGSCC: attributes #[[ATTR20]] = { nofree willreturn }
+; CGSCC: attributes #[[ATTR21]] = { nofree willreturn memory(read) }
+;.
diff --git a/llvm/test/Transforms/Attributor/norecurse.ll b/llvm/test/Transforms/Attributor/norecurse.ll
index f139f193f10de..f2730594b2c16 100644
--- a/llvm/test/Transforms/Attributor/norecurse.ll
+++ b/llvm/test/Transforms/Attributor/norecurse.ll
@@ -159,8 +159,8 @@ define void @f(i32 %x)  {
 ; TUNIT-LABEL: define {{[^@]+}}@f
 ; TUNIT-SAME: (i32 [[X:%.*]]) #[[ATTR1]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[X_ADDR:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store i32 [[X]], ptr [[X_ADDR]], align 4
+; TUNIT-NEXT:    [[X_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store i32 [[X]], ptr [[X_ADDR1]], align 4
 ; TUNIT-NEXT:    [[TOBOOL:%.*]] = icmp ne i32 [[X]], 0
 ; TUNIT-NEXT:    br i1 [[TOBOOL]], label [[IF_THEN:%.*]], label [[IF_END:%.*]]
 ; TUNIT:       if.then:
@@ -172,7 +172,7 @@ define void @f(i32 %x)  {
 ; CGSCC-LABEL: define {{[^@]+}}@f
 ; CGSCC-SAME: (i32 [[X:%.*]]) #[[ATTR0]] {
 ; CGSCC-NEXT:  entry:
-; CGSCC-NEXT:    [[X_ADDR:%.*]] = alloca i32, align 4
+; CGSCC-NEXT:    [[X_ADDR12:%.*]] = alloca i8, i32 4, align 4
 ; CGSCC-NEXT:    [[TOBOOL:%.*]] = icmp ne i32 [[X]], 0
 ; CGSCC-NEXT:    br i1 [[TOBOOL]], label [[IF_THEN:%.*]], label [[IF_END:%.*]]
 ; CGSCC:       if.then:
diff --git a/llvm/test/Transforms/Attributor/openmp_parallel.ll b/llvm/test/Transforms/Attributor/openmp_parallel.ll
index 02636ab926dde..aecedbe8ac34f 100644
--- a/llvm/test/Transforms/Attributor/openmp_parallel.ll
+++ b/llvm/test/Transforms/Attributor/openmp_parallel.ll
@@ -23,12 +23,12 @@ define dso_local void @func(ptr nocapture %a, ptr %b, i32 %N) local_unnamed_addr
 ; TUNIT-LABEL: define {{[^@]+}}@func
 ; TUNIT-SAME: (ptr nocapture nofree writeonly [[A:%.*]], ptr nocapture nofree readonly [[B:%.*]], i32 [[N:%.*]]) local_unnamed_addr #[[ATTR0:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[A_ADDR:%.*]] = alloca ptr, align 8
-; TUNIT-NEXT:    [[B_ADDR:%.*]] = alloca ptr, align 8
-; TUNIT-NEXT:    [[N_ADDR:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    store ptr [[A]], ptr [[A_ADDR]], align 8
-; TUNIT-NEXT:    store ptr [[B]], ptr [[B_ADDR]], align 8
-; TUNIT-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB2]], i32 noundef 3, ptr noundef nonnull @.omp_outlined., ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(4) undef, ptr noalias nocapture nofree noundef nonnull readonly align 8 dereferenceable(8) [[A_ADDR]], ptr noalias nocapture nofree noundef nonnull readonly align 8 dereferenceable(8) [[B_ADDR]])
+; TUNIT-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 8, align 8
+; TUNIT-NEXT:    [[B_ADDR2:%.*]] = alloca i8, i32 8, align 8
+; TUNIT-NEXT:    [[N_ADDR3:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    store ptr [[A]], ptr [[A_ADDR1]], align 8
+; TUNIT-NEXT:    store ptr [[B]], ptr [[B_ADDR2]], align 8
+; TUNIT-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB2]], i32 noundef 3, ptr noundef nonnull @.omp_outlined., ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(4) undef, ptr noalias nocapture nofree noundef nonnull readonly align 8 dereferenceable(8) [[A_ADDR1]], ptr noalias nocapture nofree noundef nonnull readonly align 8 dereferenceable(8) [[B_ADDR2]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC: Function Attrs: nounwind uwtable
diff --git a/llvm/test/Transforms/Attributor/pointer-info.ll b/llvm/test/Transforms/Attributor/pointer-info.ll
index 6afdbdaee317c..9406c7b2efc48 100644
--- a/llvm/test/Transforms/Attributor/pointer-info.ll
+++ b/llvm/test/Transforms/Attributor/pointer-info.ll
@@ -10,10 +10,14 @@ define void @foo(ptr %ptr) {
 ; TUNIT-LABEL: define {{[^@]+}}@foo
 ; TUNIT-SAME: (ptr nocapture nofree readnone [[PTR:%.*]]) #[[ATTR0:[0-9]+]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[TMP0:%.*]] = alloca [[STRUCT_TEST_A:%.*]], align 8
+; TUNIT-NEXT:    [[TMP0:%.*]] = alloca i8, i32 8, align 8
 ; TUNIT-NEXT:    br label [[CALL_BR:%.*]]
 ; TUNIT:       call.br:
-; TUNIT-NEXT:    [[TMP1:%.*]] = getelementptr inbounds [[STRUCT_TEST_A]], ptr [[TMP0]], i64 0, i32 2
+; TUNIT-NEXT:    [[TMP1:%.*]] = getelementptr inbounds [[STRUCT_TEST_A:%.*]], ptr [[TMP0]], i64 0, i32 2
+; TUNIT-NEXT:    [[TMP2:%.*]] = ptrtoint ptr [[TMP1]] to i32
+; TUNIT-NEXT:    [[TMP3:%.*]] = sub i32 [[TMP2]], 16
+; TUNIT-NEXT:    [[TMP4:%.*]] = inttoptr i32 [[TMP3]] to ptr
+; TUNIT-NEXT:    store ptr [[PTR]], ptr [[TMP4]], align 8
 ; TUNIT-NEXT:    tail call void @bar(ptr noalias nocapture nofree noundef nonnull readonly byval([[STRUCT_TEST_A]]) align 8 dereferenceable(24) [[TMP0]]) #[[ATTR2:[0-9]+]]
 ; TUNIT-NEXT:    ret void
 ;
diff --git a/llvm/test/Transforms/Attributor/value-simplify-assume.ll b/llvm/test/Transforms/Attributor/value-simplify-assume.ll
index b01a43e3ec758..d3e67b0cee80f 100644
--- a/llvm/test/Transforms/Attributor/value-simplify-assume.ll
+++ b/llvm/test/Transforms/Attributor/value-simplify-assume.ll
@@ -120,19 +120,19 @@ define i1 @keep_assume_4c_nr() norecurse {
 ; TUNIT: Function Attrs: norecurse
 ; TUNIT-LABEL: define {{[^@]+}}@keep_assume_4c_nr
 ; TUNIT-SAME: () #[[ATTR2]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef true) #[[ATTR7]]
-; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; TUNIT-NEXT:    ret i1 true
 ;
 ; CGSCC: Function Attrs: norecurse
 ; CGSCC-LABEL: define {{[^@]+}}@keep_assume_4c_nr
 ; CGSCC-SAME: () #[[ATTR2]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 true, ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; CGSCC-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef true) #[[ATTR8]]
-; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; CGSCC-NEXT:    ret i1 true
 ;
   %stack = alloca i1
@@ -166,16 +166,16 @@ define i1 @drop_assume_1_nr(i1 %arg) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@drop_assume_1_nr
 ; TUNIT-SAME: (i1 returned [[ARG:%.*]]) #[[ATTR4:[0-9]+]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR7]]
 ; TUNIT-NEXT:    ret i1 [[ARG]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CGSCC-LABEL: define {{[^@]+}}@drop_assume_1_nr
 ; CGSCC-SAME: (i1 returned [[ARG:%.*]]) #[[ATTR4:[0-9]+]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR8]]
 ; CGSCC-NEXT:    ret i1 [[ARG]]
 ;
@@ -244,19 +244,19 @@ define i1 @keep_assume_4_nr(i1 %arg) norecurse {
 ; TUNIT: Function Attrs: norecurse
 ; TUNIT-LABEL: define {{[^@]+}}@keep_assume_4_nr
 ; TUNIT-SAME: (i1 returned [[ARG:%.*]]) #[[ATTR2]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR7]]
-; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; TUNIT-NEXT:    ret i1 [[ARG]]
 ;
 ; CGSCC: Function Attrs: norecurse
 ; CGSCC-LABEL: define {{[^@]+}}@keep_assume_4_nr
 ; CGSCC-SAME: (i1 returned [[ARG:%.*]]) #[[ATTR2]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR8]]
-; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; CGSCC-NEXT:    ret i1 [[ARG]]
 ;
   %stack = alloca i1
@@ -271,8 +271,8 @@ define i1 @assume_1_nr(i1 %arg, i1 %cond) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_1_nr
 ; TUNIT-SAME: (i1 returned [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
@@ -285,8 +285,8 @@ define i1 @assume_1_nr(i1 %arg, i1 %cond) norecurse {
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CGSCC-LABEL: define {{[^@]+}}@assume_1_nr
 ; CGSCC-SAME: (i1 returned [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR8]]
 ; CGSCC-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; CGSCC:       t:
@@ -342,32 +342,32 @@ define i1 @assume_2_nr(i1 %arg, i1 %cond) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_2_nr
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR7]]
 ; TUNIT-NEXT:    ret i1 [[L]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CGSCC-LABEL: define {{[^@]+}}@assume_2_nr
 ; CGSCC-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; CGSCC-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; CGSCC:       t:
-; CGSCC-NEXT:    store i1 true, ptr [[STACK]], align 1
+; CGSCC-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    br label [[M:%.*]]
 ; CGSCC:       f:
-; CGSCC-NEXT:    store i1 false, ptr [[STACK]], align 1
+; CGSCC-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    br label [[M]]
 ; CGSCC:       m:
-; CGSCC-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR8]]
 ; CGSCC-NEXT:    ret i1 [[L]]
 ;
@@ -390,14 +390,14 @@ define void @assume_2b_nr(i1 %arg, i1 %cond) norecurse {
 ; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CHECK-LABEL: define {{[^@]+}}@assume_2b_nr
 ; CHECK-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; CHECK-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; CHECK-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; CHECK-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; CHECK:       t:
 ; CHECK-NEXT:    br label [[M:%.*]]
 ; CHECK:       f:
 ; CHECK-NEXT:    br label [[M]]
 ; CHECK:       m:
-; CHECK-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; CHECK-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; CHECK-NEXT:    ret void
 ;
   %stack = alloca i1
@@ -419,16 +419,16 @@ define i1 @assume_3_nr(i1 %arg, i1 %cond) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_3_nr
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8:[0-9]+]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8:[0-9]+]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -469,18 +469,18 @@ define i1 @assume_4_nr(i1 %arg, i1 %cond) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_4_nr
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR7]]
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -521,22 +521,22 @@ define i1 @assume_5_nr(i1 %arg, i1 %cond) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_5_nr
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L2]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L3]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L4]]) #[[ATTR9:[0-9]+]]
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -589,23 +589,23 @@ define i1 @assume_5c_nr(i1 %cond) norecurse {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_5c_nr
 ; TUNIT-SAME: (i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef true) #[[ATTR7]]
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L2]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L3]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L4]]) #[[ATTR9]]
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -741,19 +741,19 @@ define i1 @keep_assume_3c() {
 define i1 @keep_assume_4c() {
 ;
 ; TUNIT-LABEL: define {{[^@]+}}@keep_assume_4c() {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L4]]) #[[ATTR7]]
-; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; TUNIT-NEXT:    ret i1 [[L4]]
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@keep_assume_4c() {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 true, ptr [[STACK]], align 1
-; CGSCC-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; CGSCC-NEXT:    store i1 true, ptr [[STACK1]], align 1
+; CGSCC-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[L4]]) #[[ATTR8]]
-; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; CGSCC-NEXT:    ret i1 [[L4]]
 ;
   %stack = alloca i1
@@ -786,16 +786,16 @@ define i1 @drop_assume_1(i1 %arg) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@drop_assume_1
 ; TUNIT-SAME: (i1 returned [[ARG:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR7]]
 ; TUNIT-NEXT:    ret i1 [[ARG]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CGSCC-LABEL: define {{[^@]+}}@drop_assume_1
 ; CGSCC-SAME: (i1 returned [[ARG:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR8]]
 ; CGSCC-NEXT:    ret i1 [[ARG]]
 ;
@@ -860,20 +860,20 @@ define i1 @keep_assume_4(i1 %arg) {
 ;
 ; TUNIT-LABEL: define {{[^@]+}}@keep_assume_4
 ; TUNIT-SAME: (i1 [[ARG:%.*]]) {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR7]]
-; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; TUNIT-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; TUNIT-NEXT:    ret i1 [[L]]
 ;
 ; CGSCC-LABEL: define {{[^@]+}}@keep_assume_4
 ; CGSCC-SAME: (i1 [[ARG:%.*]]) {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
-; CGSCC-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 -2147483648, align 1
+; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
+; CGSCC-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR8]]
-; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK]])
+; CGSCC-NEXT:    call void @useI1p(ptr noalias nocapture noundef nonnull dereferenceable(1) [[STACK1]])
 ; CGSCC-NEXT:    ret i1 [[L]]
 ;
   %stack = alloca i1
@@ -888,8 +888,8 @@ define i1 @assume_1(i1 %arg, i1 %cond) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_1
 ; TUNIT-SAME: (i1 returned [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; TUNIT-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
@@ -902,8 +902,8 @@ define i1 @assume_1(i1 %arg, i1 %cond) {
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CGSCC-LABEL: define {{[^@]+}}@assume_1
 ; CGSCC-SAME: (i1 returned [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
-; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
+; CGSCC-NEXT:    store i1 [[ARG]], ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[ARG]]) #[[ATTR8]]
 ; CGSCC-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; CGSCC:       t:
@@ -959,32 +959,32 @@ define i1 @assume_2(i1 %arg, i1 %cond) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_2
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR7]]
 ; TUNIT-NEXT:    ret i1 [[L]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CGSCC-LABEL: define {{[^@]+}}@assume_2
 ; CGSCC-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; CGSCC-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; CGSCC:       t:
-; CGSCC-NEXT:    store i1 true, ptr [[STACK]], align 1
+; CGSCC-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    br label [[M:%.*]]
 ; CGSCC:       f:
-; CGSCC-NEXT:    store i1 false, ptr [[STACK]], align 1
+; CGSCC-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    br label [[M]]
 ; CGSCC:       m:
-; CGSCC-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; CGSCC-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; CGSCC-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR8]]
 ; CGSCC-NEXT:    ret i1 [[L]]
 ;
@@ -1007,14 +1007,14 @@ define void @assume_2b(i1 %arg, i1 %cond) {
 ; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; CHECK-LABEL: define {{[^@]+}}@assume_2b
 ; CHECK-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; CHECK-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; CHECK-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; CHECK-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; CHECK:       t:
 ; CHECK-NEXT:    br label [[M:%.*]]
 ; CHECK:       f:
 ; CHECK-NEXT:    br label [[M]]
 ; CHECK:       m:
-; CHECK-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; CHECK-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; CHECK-NEXT:    ret void
 ;
   %stack = alloca i1
@@ -1036,16 +1036,16 @@ define i1 @assume_3(i1 %arg, i1 %cond) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_3
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -1086,18 +1086,18 @@ define i1 @assume_4(i1 %arg, i1 %cond) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_4
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L]]) #[[ATTR7]]
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -1138,22 +1138,22 @@ define i1 @assume_5(i1 %arg, i1 %cond) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_5
 ; TUNIT-SAME: (i1 [[ARG:%.*]], i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L2]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L3]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L4]]) #[[ATTR9]]
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(inaccessiblemem: readwrite)
@@ -1206,23 +1206,23 @@ define i1 @assume_5c(i1 %cond) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(inaccessiblemem: readwrite)
 ; TUNIT-LABEL: define {{[^@]+}}@assume_5c
 ; TUNIT-SAME: (i1 noundef [[COND:%.*]]) #[[ATTR4]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i1, align 1
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef true) #[[ATTR7]]
 ; TUNIT-NEXT:    br i1 [[COND]], label [[T:%.*]], label [[F:%.*]]
 ; TUNIT:       t:
-; TUNIT-NEXT:    store i1 true, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 true, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L2:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L2]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M:%.*]]
 ; TUNIT:       f:
-; TUNIT-NEXT:    store i1 false, ptr [[STACK]], align 1
-; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    store i1 false, ptr [[STACK1]], align 1
+; TUNIT-NEXT:    [[L3:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L3]]) #[[ATTR7]]
 ; TUNIT-NEXT:    br label [[M]]
 ; TUNIT:       m:
-; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK]], align 1
+; TUNIT-NEXT:    [[L4:%.*]] = load i1, ptr [[STACK1]], align 1
 ; TUNIT-NEXT:    call void @llvm.assume(i1 noundef [[L4]]) #[[ATTR9]]
-; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK]]) #[[ATTR8]]
+; TUNIT-NEXT:    [[R:%.*]] = call i1 @readI1p(ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[STACK1]]) #[[ATTR8]]
 ; TUNIT-NEXT:    ret i1 [[R]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree nosync nounwind willreturn memory(inaccessiblemem: readwrite)
diff --git a/llvm/test/Transforms/Attributor/value-simplify-dominance.ll b/llvm/test/Transforms/Attributor/value-simplify-dominance.ll
index 7d95f35b24fd0..a0409eb4a83ca 100644
--- a/llvm/test/Transforms/Attributor/value-simplify-dominance.ll
+++ b/llvm/test/Transforms/Attributor/value-simplify-dominance.ll
@@ -8,7 +8,7 @@ define i32 @many_writes_nosycn(i1 %c0, i1 %c1, i1 %c2) nosync {
 ; CHECK: Function Attrs: norecurse nosync
 ; CHECK-LABEL: define {{[^@]+}}@many_writes_nosycn
 ; CHECK-SAME: (i1 [[C0:%.*]], i1 [[C1:%.*]], i1 [[C2:%.*]]) #[[ATTR1:[0-9]+]] {
-; CHECK-NEXT:    [[P:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[P1:%.*]] = alloca i8, i32 4, align 4
 ; CHECK-NEXT:    call void @unknown()
 ; CHECK-NEXT:    br i1 [[C0]], label [[T0:%.*]], label [[F0:%.*]]
 ; CHECK:       t0:
@@ -19,19 +19,19 @@ define i32 @many_writes_nosycn(i1 %c0, i1 %c1, i1 %c2) nosync {
 ; CHECK-NEXT:    br i1 [[C2]], label [[F1:%.*]], label [[M1]]
 ; CHECK:       t1:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    store i32 7, ptr [[P]], align 4
+; CHECK-NEXT:    store i32 7, ptr [[P1]], align 4
 ; CHECK-NEXT:    br label [[M2:%.*]]
 ; CHECK:       f1:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    store i32 9, ptr [[P]], align 4
+; CHECK-NEXT:    store i32 9, ptr [[P1]], align 4
 ; CHECK-NEXT:    br label [[M2]]
 ; CHECK:       m1:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    store i32 11, ptr [[P]], align 4
+; CHECK-NEXT:    store i32 11, ptr [[P1]], align 4
 ; CHECK-NEXT:    br label [[M2]]
 ; CHECK:       m2:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    [[L:%.*]] = load i32, ptr [[P]], align 4
+; CHECK-NEXT:    [[L:%.*]] = load i32, ptr [[P1]], align 4
 ; CHECK-NEXT:    ret i32 [[L]]
 ;
   %p = alloca i32
@@ -74,7 +74,7 @@ define i32 @many_writes(i1 %c0, i1 %c1, i1 %c2) {
 ; CHECK: Function Attrs: norecurse
 ; CHECK-LABEL: define {{[^@]+}}@many_writes
 ; CHECK-SAME: (i1 [[C0:%.*]], i1 [[C1:%.*]], i1 [[C2:%.*]]) #[[ATTR2:[0-9]+]] {
-; CHECK-NEXT:    [[P:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[P1:%.*]] = alloca i8, i32 4, align 4
 ; CHECK-NEXT:    call void @unknown()
 ; CHECK-NEXT:    br i1 [[C0]], label [[T0:%.*]], label [[F0:%.*]]
 ; CHECK:       t0:
@@ -85,19 +85,19 @@ define i32 @many_writes(i1 %c0, i1 %c1, i1 %c2) {
 ; CHECK-NEXT:    br i1 [[C2]], label [[F1:%.*]], label [[M1]]
 ; CHECK:       t1:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    store i32 7, ptr [[P]], align 4
+; CHECK-NEXT:    store i32 7, ptr [[P1]], align 4
 ; CHECK-NEXT:    br label [[M2:%.*]]
 ; CHECK:       f1:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    store i32 9, ptr [[P]], align 4
+; CHECK-NEXT:    store i32 9, ptr [[P1]], align 4
 ; CHECK-NEXT:    br label [[M2]]
 ; CHECK:       m1:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    store i32 11, ptr [[P]], align 4
+; CHECK-NEXT:    store i32 11, ptr [[P1]], align 4
 ; CHECK-NEXT:    br label [[M2]]
 ; CHECK:       m2:
 ; CHECK-NEXT:    call void @unknown()
-; CHECK-NEXT:    [[L:%.*]] = load i32, ptr [[P]], align 4
+; CHECK-NEXT:    [[L:%.*]] = load i32, ptr [[P1]], align 4
 ; CHECK-NEXT:    ret i32 [[L]]
 ;
   %p = alloca i32
@@ -163,8 +163,8 @@ define i32 @local_stack_remote_write_and_read() norecurse {
 ; TUNIT: Function Attrs: norecurse
 ; TUNIT-LABEL: define {{[^@]+}}@local_stack_remote_write_and_read
 ; TUNIT-SAME: () #[[ATTR2]] {
-; TUNIT-NEXT:    [[A:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    [[R:%.*]] = call i32 @remote_write_and_read(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[A]])
+; TUNIT-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    [[R:%.*]] = call i32 @remote_write_and_read(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[A1]])
 ; TUNIT-NEXT:    ret i32 42
 ;
 ; CGSCC: Function Attrs: norecurse
diff --git a/llvm/test/Transforms/Attributor/value-simplify-gpu.ll b/llvm/test/Transforms/Attributor/value-simplify-gpu.ll
index 04ba6e2dc5f90..1f614f2043d9b 100644
--- a/llvm/test/Transforms/Attributor/value-simplify-gpu.ll
+++ b/llvm/test/Transforms/Attributor/value-simplify-gpu.ll
@@ -205,8 +205,8 @@ define internal void @level1(i32 %C) {
 ; TUNIT-LABEL: define {{[^@]+}}@level1
 ; TUNIT-SAME: (i32 [[C:%.*]]) #[[ATTR1]] {
 ; TUNIT-NEXT:  entry:
-; TUNIT-NEXT:    [[LOCAL:%.*]] = alloca i32, align 4
-; TUNIT-NEXT:    call void @level2all_early(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[LOCAL]]) #[[ATTR4]]
+; TUNIT-NEXT:    [[LOCAL1:%.*]] = alloca i8, i32 4, align 4
+; TUNIT-NEXT:    call void @level2all_early(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[LOCAL1]]) #[[ATTR4]]
 ; TUNIT-NEXT:    [[TOBOOL:%.*]] = icmp ne i32 [[C]], 0
 ; TUNIT-NEXT:    br i1 [[TOBOOL]], label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]]
 ; TUNIT:       if.then:
@@ -216,7 +216,7 @@ define internal void @level1(i32 %C) {
 ; TUNIT-NEXT:    call void @level2b() #[[ATTR5]]
 ; TUNIT-NEXT:    br label [[IF_END]]
 ; TUNIT:       if.end:
-; TUNIT-NEXT:    call void @level2all_late(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[LOCAL]]) #[[ATTR6]]
+; TUNIT-NEXT:    call void @level2all_late(ptr noalias nocapture nofree noundef nonnull writeonly align 4 dereferenceable(4) [[LOCAL1]]) #[[ATTR6]]
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC: Function Attrs: norecurse nosync nounwind
diff --git a/llvm/test/Transforms/Attributor/value-simplify-local-remote.ll b/llvm/test/Transforms/Attributor/value-simplify-local-remote.ll
index 20b52c3fcd85a..ed56bfa4f575d 100644
--- a/llvm/test/Transforms/Attributor/value-simplify-local-remote.ll
+++ b/llvm/test/Transforms/Attributor/value-simplify-local-remote.ll
@@ -375,13 +375,13 @@ define dso_local void @spam() {
 ; TUNIT-LABEL: define {{[^@]+}}@spam
 ; TUNIT-SAME: () #[[ATTR2:[0-9]+]] {
 ; TUNIT-NEXT:  bb:
-; TUNIT-NEXT:    [[TMP:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    [[X:%.*]] = fptosi float undef to i32
-; TUNIT-NEXT:    store i32 [[X]], ptr [[TMP]], align 4
+; TUNIT-NEXT:    store i32 [[X]], ptr [[TMP1]], align 4
 ; TUNIT-NEXT:    br label [[BB16:%.*]]
 ; TUNIT:       bb16:
-; TUNIT-NEXT:    [[TRUETMP18:%.*]] = icmp eq i32 [[X]], 0
-; TUNIT-NEXT:    br i1 [[TRUETMP18]], label [[BB35:%.*]], label [[BB19:%.*]]
+; TUNIT-NEXT:    [[TMP18:%.*]] = icmp eq i32 [[X]], 0
+; TUNIT-NEXT:    br i1 [[TMP18]], label [[BB35:%.*]], label [[BB19:%.*]]
 ; TUNIT:       bb19:
 ; TUNIT-NEXT:    br label [[BB23:%.*]]
 ; TUNIT:       bb23:
@@ -399,13 +399,13 @@ define dso_local void @spam() {
 ; CGSCC-LABEL: define {{[^@]+}}@spam
 ; CGSCC-SAME: () #[[ATTR5:[0-9]+]] {
 ; CGSCC-NEXT:  bb:
-; CGSCC-NEXT:    [[TMP:%.*]] = alloca i32, align 4
+; CGSCC-NEXT:    [[TMP1:%.*]] = alloca i8, i32 4, align 4
 ; CGSCC-NEXT:    [[X:%.*]] = fptosi float undef to i32
-; CGSCC-NEXT:    store i32 [[X]], ptr [[TMP]], align 4
+; CGSCC-NEXT:    store i32 [[X]], ptr [[TMP1]], align 4
 ; CGSCC-NEXT:    br label [[BB16:%.*]]
 ; CGSCC:       bb16:
-; CGSCC-NEXT:    [[TRUETMP18:%.*]] = icmp eq i32 [[X]], 0
-; CGSCC-NEXT:    br i1 [[TRUETMP18]], label [[BB35:%.*]], label [[BB19:%.*]]
+; CGSCC-NEXT:    [[TMP18:%.*]] = icmp eq i32 [[X]], 0
+; CGSCC-NEXT:    br i1 [[TMP18]], label [[BB35:%.*]], label [[BB19:%.*]]
 ; CGSCC:       bb19:
 ; CGSCC-NEXT:    br label [[BB23:%.*]]
 ; CGSCC:       bb23:
diff --git a/llvm/test/Transforms/Attributor/value-simplify.ll b/llvm/test/Transforms/Attributor/value-simplify.ll
index 62d4f63677df6..b1782bca83dda 100644
--- a/llvm/test/Transforms/Attributor/value-simplify.ll
+++ b/llvm/test/Transforms/Attributor/value-simplify.ll
@@ -1267,21 +1267,21 @@ define internal i8 @memcpy_uses_store(i8 %arg) {
 ; TUNIT: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@memcpy_uses_store
 ; TUNIT-SAME: (i8 [[ARG:%.*]]) #[[ATTR2]] {
-; TUNIT-NEXT:    [[SRC:%.*]] = alloca i8, align 1
-; TUNIT-NEXT:    [[DST:%.*]] = alloca i8, align 1
-; TUNIT-NEXT:    store i8 [[ARG]], ptr [[SRC]], align 1
-; TUNIT-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr noalias nocapture nofree noundef nonnull writeonly dereferenceable(1) [[DST]], ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[SRC]], i32 noundef 1, i1 noundef false) #[[ATTR12:[0-9]+]]
-; TUNIT-NEXT:    [[L:%.*]] = load i8, ptr [[DST]], align 1
+; TUNIT-NEXT:    [[SRC1:%.*]] = alloca i8, align 1
+; TUNIT-NEXT:    [[DST2:%.*]] = alloca i8, align 1
+; TUNIT-NEXT:    store i8 [[ARG]], ptr [[SRC1]], align 1
+; TUNIT-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr noalias nocapture nofree noundef nonnull writeonly dereferenceable(1) [[DST2]], ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[SRC1]], i32 noundef 1, i1 noundef false) #[[ATTR12:[0-9]+]]
+; TUNIT-NEXT:    [[L:%.*]] = load i8, ptr [[DST2]], align 1
 ; TUNIT-NEXT:    ret i8 [[L]]
 ;
 ; CGSCC: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@memcpy_uses_store
 ; CGSCC-SAME: (i8 [[ARG:%.*]]) #[[ATTR1]] {
-; CGSCC-NEXT:    [[SRC:%.*]] = alloca i8, align 1
-; CGSCC-NEXT:    [[DST:%.*]] = alloca i8, align 1
-; CGSCC-NEXT:    store i8 [[ARG]], ptr [[SRC]], align 1
-; CGSCC-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr noalias nocapture nofree noundef nonnull writeonly dereferenceable(1) [[DST]], ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[SRC]], i32 noundef 1, i1 noundef false) #[[ATTR16:[0-9]+]]
-; CGSCC-NEXT:    [[L:%.*]] = load i8, ptr [[DST]], align 1
+; CGSCC-NEXT:    [[SRC1:%.*]] = alloca i8, align 1
+; CGSCC-NEXT:    [[DST2:%.*]] = alloca i8, align 1
+; CGSCC-NEXT:    store i8 [[ARG]], ptr [[SRC1]], align 1
+; CGSCC-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr noalias nocapture nofree noundef nonnull writeonly dereferenceable(1) [[DST2]], ptr noalias nocapture nofree noundef nonnull readonly dereferenceable(1) [[SRC1]], i32 noundef 1, i1 noundef false) #[[ATTR16:[0-9]+]]
+; CGSCC-NEXT:    [[L:%.*]] = load i8, ptr [[DST2]], align 1
 ; CGSCC-NEXT:    ret i8 [[L]]
 ;
   %src = alloca i8
@@ -1316,21 +1316,21 @@ define i32 @test_speculatable_expr() norecurse {
 ; TUNIT: Function Attrs: norecurse nosync memory(none)
 ; TUNIT-LABEL: define {{[^@]+}}@test_speculatable_expr
 ; TUNIT-SAME: () #[[ATTR7:[0-9]+]] {
-; TUNIT-NEXT:    [[STACK:%.*]] = alloca i32, align 4
+; TUNIT-NEXT:    [[STACK1:%.*]] = alloca i8, i32 4, align 4
 ; TUNIT-NEXT:    [[SPEC_RESULT:%.*]] = call i32 @speculatable() #[[ATTR14:[0-9]+]]
 ; TUNIT-NEXT:    [[PLUS1:%.*]] = add i32 [[SPEC_RESULT]], 1
-; TUNIT-NEXT:    store i32 [[PLUS1]], ptr [[STACK]], align 4
-; TUNIT-NEXT:    [[TMP1:%.*]] = load i32, ptr [[STACK]], align 4
+; TUNIT-NEXT:    store i32 [[PLUS1]], ptr [[STACK1]], align 4
+; TUNIT-NEXT:    [[TMP1:%.*]] = load i32, ptr [[STACK1]], align 4
 ; TUNIT-NEXT:    [[RSPEC:%.*]] = call i32 @ret_speculatable_expr(i32 [[TMP1]]) #[[ATTR15:[0-9]+]]
 ; TUNIT-NEXT:    ret i32 [[RSPEC]]
 ;
 ; CGSCC: Function Attrs: norecurse nosync memory(none)
 ; CGSCC-LABEL: define {{[^@]+}}@test_speculatable_expr
 ; CGSCC-SAME: () #[[ATTR9:[0-9]+]] {
-; CGSCC-NEXT:    [[STACK:%.*]] = alloca i32, align 4
+; CGSCC-NEXT:    [[STACK1:%.*]] = alloca i8, i32 4, align 4
 ; CGSCC-NEXT:    [[SPEC_RESULT:%.*]] = call i32 @speculatable() #[[ATTR17:[0-9]+]]
 ; CGSCC-NEXT:    [[PLUS1:%.*]] = add i32 [[SPEC_RESULT]], 1
-; CGSCC-NEXT:    store i32 [[PLUS1]], ptr [[STACK]], align 4
+; CGSCC-NEXT:    store i32 [[PLUS1]], ptr [[STACK1]], align 4
 ; CGSCC-NEXT:    [[RSPEC:%.*]] = call i32 @ret_speculatable_expr(i32 [[PLUS1]]) #[[ATTR17]]
 ; CGSCC-NEXT:    ret i32 [[RSPEC]]
 ;
diff --git a/llvm/test/Transforms/OpenMP/parallel_deletion.ll b/llvm/test/Transforms/OpenMP/parallel_deletion.ll
index 4619da1206092..ffb86971d1a7e 100644
--- a/llvm/test/Transforms/OpenMP/parallel_deletion.ll
+++ b/llvm/test/Transforms/OpenMP/parallel_deletion.ll
@@ -1,4 +1,4 @@
-; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --function-signature
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --function-signature --check-attributes --check-globals
 ; RUN: opt -S -passes='attributor,cgscc(openmp-opt-cgscc)'  < %s | FileCheck %s
 ;
 target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
@@ -23,10 +23,17 @@ target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16
 ;    }
 ;
 ; We delete all but the first of the parallel regions in this test.
+;.
+; CHECK: @[[_STR:[a-zA-Z0-9_$"\\.-]+]] = private unnamed_addr constant [23 x i8] c"
+; CHECK: @[[GLOB0:[0-9]+]] = private unnamed_addr global [[STRUCT_IDENT_T:%.*]] { i32 0, i32 2, i32 0, i32 0, ptr @.str }, align 8
+; CHECK: @[[GLOB1:[0-9]+]] = private unnamed_addr global [[STRUCT_IDENT_T:%.*]] { i32 0, i32 322, i32 0, i32 0, ptr @.str }, align 8
+; CHECK: @[[_GOMP_CRITICAL_USER__REDUCTION_VAR:[a-zA-Z0-9_$"\\.-]+]] = common global [8 x i32] zeroinitializer
+; CHECK: @[[GLOB2:[0-9]+]] = private unnamed_addr global [[STRUCT_IDENT_T:%.*]] { i32 0, i32 18, i32 0, i32 0, ptr @.str }, align 8
+;.
 define void @delete_parallel_0() {
 ; CHECK-LABEL: define {{[^@]+}}@delete_parallel_0() {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0:[0-9]+]], i32 noundef 0, ptr noundef nonnull @.omp_outlined.willreturn)
+; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 0, ptr noundef nonnull @.omp_outlined.willreturn)
 ; CHECK-NEXT:    ret void
 ;
 ; CHECK1-LABEL: define {{[^@]+}}@delete_parallel_0() {
@@ -46,6 +53,7 @@ entry:
 }
 
 define internal void @.omp_outlined.willreturn(ptr noalias %.global_tid., ptr noalias %.bound_tid.) {
+; CHECK: Function Attrs: mustprogress willreturn
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined.willreturn
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR0:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -68,6 +76,7 @@ entry:
 }
 
 define internal void @.omp_outlined.willreturn.0(ptr noalias %.global_tid., ptr noalias %.bound_tid.) willreturn {
+; CHECK: Function Attrs: mustprogress nosync willreturn memory(read)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined.willreturn.0
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR1:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -90,6 +99,7 @@ entry:
 }
 
 define internal void @.omp_outlined.willreturn.1(ptr noalias %.global_tid., ptr noalias %.bound_tid.) {
+; CHECK: Function Attrs: mustprogress nosync willreturn memory(none)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined.willreturn.1
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR2:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -112,6 +122,7 @@ entry:
 }
 
 define internal void @.omp_outlined.willreturn.2(ptr noalias %.global_tid., ptr noalias %.bound_tid.) {
+; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined.willreturn.2
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR3:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -192,6 +203,7 @@ entry:
 }
 
 define internal void @.omp_outlined..0(ptr noalias %.global_tid., ptr noalias %.bound_tid.) {
+; CHECK: Function Attrs: nosync memory(read)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined..0
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR4]] {
 ; CHECK-NEXT:  entry:
@@ -214,6 +226,7 @@ entry:
 }
 
 define internal void @.omp_outlined..1(ptr noalias %.global_tid., ptr noalias %.bound_tid.) {
+; CHECK: Function Attrs: nosync memory(none)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined..1
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR5:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -236,6 +249,7 @@ entry:
 }
 
 define internal void @.omp_outlined..2(ptr noalias %.global_tid., ptr noalias %.bound_tid.) {
+; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined..2
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]]) #[[ATTR3]] {
 ; CHECK-NEXT:  entry:
@@ -281,14 +295,14 @@ entry:
 define void @delete_parallel_2() {
 ; CHECK-LABEL: define {{[^@]+}}@delete_parallel_2() {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[A:%.*]] = alloca i32, align 4
-; CHECK-NEXT:    call void @llvm.lifetime.start.p0(i64 noundef 4, ptr noundef nonnull align 4 dereferenceable(4) [[A]]) #[[ATTR18:[0-9]+]]
-; CHECK-NEXT:    store i32 0, ptr [[A]], align 4
-; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..3, ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A]])
-; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..4, ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A]])
-; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..5, ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A]])
-; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..6, ptr nocapture noundef nonnull align 4 dereferenceable(4) [[A]])
-; CHECK-NEXT:    call void @llvm.lifetime.end.p0(i64 noundef 4, ptr noundef nonnull [[A]])
+; CHECK-NEXT:    [[A1:%.*]] = alloca i8, i32 4, align 4
+; CHECK-NEXT:    call void @llvm.lifetime.start.p0(i64 noundef 4, ptr noundef nonnull align 4 dereferenceable(4) [[A1]]) #[[ATTR18:[0-9]+]]
+; CHECK-NEXT:    store i32 0, ptr [[A1]], align 4
+; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..3, ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A1]])
+; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..4, ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A1]])
+; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..5, ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A1]])
+; CHECK-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB0]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..6, ptr nocapture noundef nonnull align 4 dereferenceable(4) [[A1]])
+; CHECK-NEXT:    call void @llvm.lifetime.end.p0(i64 noundef 4, ptr noundef nonnull [[A1]])
 ; CHECK-NEXT:    ret void
 ;
 ; CHECK1-LABEL: define {{[^@]+}}@delete_parallel_2() {
@@ -326,6 +340,7 @@ entry:
 }
 
 define internal void @.omp_outlined..3(ptr noalias %.global_tid., ptr noalias %.bound_tid., ptr dereferenceable(4) %a) {
+; CHECK: Function Attrs: nofree nosync nounwind memory(argmem: readwrite, inaccessiblemem: readwrite)
 ; CHECK-LABEL: define {{[^@]+}}@.omp_outlined..3
 ; CHECK-SAME: (ptr noalias nocapture nofree readnone [[DOTGLOBAL_TID_:%.*]], ptr noalias nocapture nofree readnone [[DOTBOUND_TID_:%.*]], ptr nocapture nofree noundef nonnull align 4 dereferenceable(4) [[A:%.*]]) #[[ATTR6:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -469,7 +484,7 @@ define internal void @.omp_outlined..5(ptr noalias %.global_tid., ptr noalias %.
 ; CHECK-NEXT:    call void @__kmpc_end_single(ptr noundef nonnull @[[GLOB0]], i32 [[TMP]])
 ; CHECK-NEXT:    br label [[OMP_IF_END]]
 ; CHECK:       omp_if.end:
-; CHECK-NEXT:    call void @__kmpc_barrier(ptr noundef nonnull @[[GLOB1:[0-9]+]], i32 [[OMP_GLOBAL_THREAD_NUM]])
+; CHECK-NEXT:    call void @__kmpc_barrier(ptr noundef nonnull @[[GLOB1]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK-NEXT:    ret void
 ;
 ; CHECK1-LABEL: define {{[^@]+}}@.omp_outlined..5
@@ -535,7 +550,7 @@ define internal void @.omp_outlined..6(ptr noalias %.global_tid., ptr noalias %.
 ; CHECK-NEXT:    store i32 1, ptr [[A1]], align 4
 ; CHECK-NEXT:    store ptr [[A1]], ptr [[DOTOMP_REDUCTION_RED_LIST]], align 8
 ; CHECK-NEXT:    [[TMP2:%.*]] = load i32, ptr [[DOTGLOBAL_TID_]], align 4
-; CHECK-NEXT:    [[TMP4:%.*]] = call i32 @__kmpc_reduce_nowait(ptr noundef nonnull @[[GLOB2:[0-9]+]], i32 [[TMP2]], i32 noundef 1, i64 noundef 8, ptr noundef nonnull align 8 [[DOTOMP_REDUCTION_RED_LIST]], ptr noundef nonnull @.omp.reduction.reduction_func, ptr noundef nonnull @.gomp_critical_user_.reduction.var)
+; CHECK-NEXT:    [[TMP4:%.*]] = call i32 @__kmpc_reduce_nowait(ptr noundef nonnull @[[GLOB2]], i32 [[TMP2]], i32 noundef 1, i64 noundef 8, ptr noundef nonnull align 8 [[DOTOMP_REDUCTION_RED_LIST]], ptr noundef nonnull @.omp.reduction.reduction_func, ptr noundef nonnull @.gomp_critical_user_.reduction.var)
 ; CHECK-NEXT:    switch i32 [[TMP4]], label [[DOTOMP_REDUCTION_DEFAULT:%.*]] [
 ; CHECK-NEXT:      i32 1, label [[DOTOMP_REDUCTION_CASE1:%.*]]
 ; CHECK-NEXT:      i32 2, label [[DOTOMP_REDUCTION_CASE2:%.*]]
@@ -643,6 +658,7 @@ entry:
 }
 
 define internal void @.omp.reduction.reduction_func(ptr %arg, ptr %arg1) {
+; CHECK: Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn
 ; CHECK-LABEL: define {{[^@]+}}@.omp.reduction.reduction_func
 ; CHECK-SAME: (ptr nocapture nofree noundef nonnull readonly align 8 dereferenceable(8) [[ARG:%.*]], ptr nocapture nofree noundef nonnull readonly align 8 dereferenceable(8) [[ARG1:%.*]]) #[[ATTR10:[0-9]+]] {
 ; CHECK-NEXT:  entry:
@@ -717,3 +733,30 @@ declare void @readnone() readnone
 !6 = !{!"omnipotent char", !7, i64 0}
 !7 = !{!"Simple C/C++ TBAA"}
 !8 = !{i32 7, !"openmp", i32 50}
+;.
+; CHECK: attributes #[[ATTR0]] = { mustprogress willreturn }
+; CHECK: attributes #[[ATTR1]] = { mustprogress nosync willreturn memory(read) }
+; CHECK: attributes #[[ATTR2]] = { mustprogress nosync willreturn memory(none) }
+; CHECK: attributes #[[ATTR3]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
+; CHECK: attributes #[[ATTR4]] = { nosync memory(read) }
+; CHECK: attributes #[[ATTR5]] = { nosync memory(none) }
+; CHECK: attributes #[[ATTR6]] = { nofree nosync nounwind memory(argmem: readwrite, inaccessiblemem: readwrite) }
+; CHECK: attributes #[[ATTR7:[0-9]+]] = { nocallback nofree nosync nounwind willreturn memory(argmem: readwrite) }
+; CHECK: attributes #[[ATTR8:[0-9]+]] = { nofree nosync nounwind memory(inaccessiblemem: read) }
+; CHECK: attributes #[[ATTR9:[0-9]+]] = { nounwind }
+; CHECK: attributes #[[ATTR10]] = { mustprogress nofree norecurse nosync nounwind willreturn }
+; CHECK: attributes #[[ATTR11:[0-9]+]] = { convergent nounwind }
+; CHECK: attributes #[[ATTR12:[0-9]+]] = { nofree nosync nounwind memory(read) }
+; CHECK: attributes #[[ATTR13:[0-9]+]] = { memory(read) }
+; CHECK: attributes #[[ATTR14:[0-9]+]] = { memory(none) }
+; CHECK: attributes #[[ATTR15]] = { willreturn }
+; CHECK: attributes #[[ATTR16]] = { nosync willreturn }
+; CHECK: attributes #[[ATTR17]] = { nosync }
+; CHECK: attributes #[[ATTR18]] = { nofree willreturn }
+; CHECK: attributes #[[ATTR19]] = { nofree nounwind memory(read) }
+; CHECK: attributes #[[ATTR20]] = { nofree willreturn memory(readwrite) }
+;.
+; CHECK: [[META0:![0-9]+]] = !{i32 7, !"openmp", i32 50}
+; CHECK: [[META1:![0-9]+]] = !{!2}
+; CHECK: [[META2:![0-9]+]] = !{i64 2, i64 -1, i64 -1, i1 true}
+;.
diff --git a/llvm/test/Transforms/OpenMP/parallel_region_merging.ll b/llvm/test/Transforms/OpenMP/parallel_region_merging.ll
index f169fea09d0ea..d31f28382e7ee 100644
--- a/llvm/test/Transforms/OpenMP/parallel_region_merging.ll
+++ b/llvm/test/Transforms/OpenMP/parallel_region_merging.ll
@@ -1,4 +1,4 @@
-; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --function-signature --include-generated-funcs
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --function-signature --check-attributes --check-globals --include-generated-funcs
 ; RUN: opt -S -aa-pipeline= -passes='attributor,cgscc(openmp-opt-cgscc)' -openmp-opt-enable-merging  < %s | FileCheck %s --check-prefix=CHECK2
 ; #include <omp.h>
 ; void foo();
@@ -4670,17 +4670,23 @@ entry:
 ; CHECK-NEXT:    call void @use(i32 [[TMP0]])
 ; CHECK-NEXT:    ret void
 
+;.
+; CHECK2: @[[GLOB0:[0-9]+]] = private unnamed_addr constant [23 x i8] c"
+; CHECK2: @[[GLOB1:[0-9]+]] = private unnamed_addr constant [[STRUCT_IDENT_T:%.*]] { i32 0, i32 2, i32 0, i32 0, ptr @[[GLOB0]] }, align 8
+; CHECK2: @[[GLOB2:[0-9]+]] = private unnamed_addr constant [[STRUCT_IDENT_T:%.*]] { i32 0, i32 2, i32 0, i32 22, ptr @[[GLOB0]] }, align 8
+; CHECK2: @[[GLOB3:[0-9]+]] = private unnamed_addr constant [[STRUCT_IDENT_T:%.*]] { i32 0, i32 66, i32 0, i32 22, ptr @[[GLOB0]] }, align 8
+;.
 ; CHECK2-LABEL: define {{[^@]+}}@merge
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr }, align 8
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2:[0-9]+]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -4691,11 +4697,12 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0:[0-9]+]] {
 ; CHECK2-NEXT:  omp.par.entry:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -4704,10 +4711,10 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined.(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined.(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3:[0-9]+]], i32 [[OMP_GLOBAL_THREAD_NUM]])
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..1(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..1(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -4738,12 +4745,12 @@ entry:
 ; CHECK2-LABEL: define {{[^@]+}}@unmergable_proc_bind
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[TMP0:%.*]] = call i32 @__kmpc_global_thread_num(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1:[0-9]+]])
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    [[TMP0:%.*]] = call i32 @__kmpc_global_thread_num(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]])
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
 ; CHECK2-NEXT:    call void @__kmpc_push_proc_bind(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 [[TMP0]], i32 noundef 3)
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..2, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..3, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..2, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..3, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
@@ -4766,12 +4773,12 @@ entry:
 ; CHECK2-LABEL: define {{[^@]+}}@unmergable_num_threads
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
 ; CHECK2-NEXT:    [[TMP0:%.*]] = call i32 @__kmpc_global_thread_num(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]])
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
 ; CHECK2-NEXT:    call void @__kmpc_push_num_threads(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 [[TMP0]], i32 [[A]])
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..4, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..5, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..4, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..5, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
@@ -4794,11 +4801,11 @@ entry:
 ; CHECK2-LABEL: define {{[^@]+}}@unmergable_seq_call
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..6, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..6, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    call void (...) @foo()
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..7, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..7, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
@@ -4822,13 +4829,13 @@ entry:
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr }, align 8
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_seq..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -4836,16 +4843,17 @@ entry:
 ; CHECK2:       omp.par.exit.split:
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT_SPLIT:%.*]]
 ; CHECK2:       entry.split.split:
-; CHECK2-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
+; CHECK2-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR1]], align 4
 ; CHECK2-NEXT:    call void @use(i32 [[TMP0]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_seq..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -4854,19 +4862,19 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..8(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..8(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP2:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = icmp ne i32 [[TMP2]], 0
 ; CHECK2-NEXT:    br i1 [[TMP3]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..9(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..9(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -4877,9 +4885,9 @@ entry:
 ; CHECK2:       omp_region.body:
 ; CHECK2-NEXT:    br label [[SEQ_PAR_MERGED:%.*]]
 ; CHECK2:       seq.par.merged:
-; CHECK2-NEXT:    [[TMP4:%.*]] = load i32, ptr [[LOADGEP_A_ADDR]], align 4
+; CHECK2-NEXT:    [[TMP4:%.*]] = load i32, ptr [[LOADGEP_A_ADDR1]], align 4
 ; CHECK2-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP4]], 1
-; CHECK2-NEXT:    store i32 [[ADD]], ptr [[LOADGEP_A_ADDR]], align 4
+; CHECK2-NEXT:    store i32 [[ADD]], ptr [[LOADGEP_A_ADDR1]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split:
 ; CHECK2-NEXT:    br label [[OMP_REGION_BODY_SPLIT:%.*]]
@@ -4911,16 +4919,16 @@ entry:
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr, ptr, ptr }, align 8
 ; CHECK2-NEXT:    [[F_RELOADED:%.*]] = alloca float, align 4
-; CHECK2-NEXT:    [[F_ADDR:%.*]] = alloca float, align 4
-; CHECK2-NEXT:    store float [[F]], ptr [[F_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[F_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store float [[F]], ptr [[F_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    store float [[F]], ptr [[F_RELOADED]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
 ; CHECK2-NEXT:    [[GEP_F_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
 ; CHECK2-NEXT:    store ptr [[F_RELOADED]], ptr [[GEP_F_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_F_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
-; CHECK2-NEXT:    store ptr [[F_ADDR]], ptr [[GEP_F_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_F_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
+; CHECK2-NEXT:    store ptr [[F_ADDR1]], ptr [[GEP_F_ADDR1]], align 8
 ; CHECK2-NEXT:    [[GEP_P:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 2
 ; CHECK2-NEXT:    store ptr [[P]], ptr [[GEP_P]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_seq_float..omp_par, ptr [[STRUCTARG]])
@@ -4933,13 +4941,14 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_seq_float..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
 ; CHECK2-NEXT:    [[GEP_F_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
 ; CHECK2-NEXT:    [[LOADGEP_F_RELOADED:%.*]] = load ptr, ptr [[GEP_F_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_F_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
-; CHECK2-NEXT:    [[LOADGEP_F_ADDR:%.*]] = load ptr, ptr [[GEP_F_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_F_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
+; CHECK2-NEXT:    [[LOADGEP_F_ADDR1:%.*]] = load ptr, ptr [[GEP_F_ADDR1]], align 8
 ; CHECK2-NEXT:    [[GEP_P:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 2
 ; CHECK2-NEXT:    [[LOADGEP_P:%.*]] = load ptr, ptr [[GEP_P]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
@@ -4951,19 +4960,19 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..10(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_F_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..10(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_F_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
 ; CHECK2-NEXT:    br i1 [[TMP4]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..11(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_F_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..11(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_F_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5009,13 +5018,13 @@ entry:
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr, ptr }, align 8
 ; CHECK2-NEXT:    [[A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC:%.*]] = alloca i64, align 8
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[GEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
 ; CHECK2-NEXT:    store ptr [[A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC]], ptr [[GEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_seq_firstprivate..omp_par, ptr [[STRUCTARG]])
@@ -5025,16 +5034,17 @@ entry:
 ; CHECK2:       omp.par.exit.split:
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT_SPLIT:%.*]]
 ; CHECK2:       entry.split.split:
-; CHECK2-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
+; CHECK2-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR1]], align 4
 ; CHECK2-NEXT:    call void @use(i32 [[TMP0]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_seq_firstprivate..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[GEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
 ; CHECK2-NEXT:    [[LOADGEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC:%.*]] = load ptr, ptr [[GEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
@@ -5045,16 +5055,16 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..12(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..12(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP2:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = icmp ne i32 [[TMP2]], 0
 ; CHECK2-NEXT:    br i1 [[TMP3]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
 ; CHECK2-NEXT:    [[A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_LOAD:%.*]] = load i64, ptr [[LOADGEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC]], align 8
@@ -5069,9 +5079,9 @@ entry:
 ; CHECK2:       omp_region.body:
 ; CHECK2-NEXT:    br label [[SEQ_PAR_MERGED:%.*]]
 ; CHECK2:       seq.par.merged:
-; CHECK2-NEXT:    [[TMP4:%.*]] = load i32, ptr [[LOADGEP_A_ADDR]], align 4
+; CHECK2-NEXT:    [[TMP4:%.*]] = load i32, ptr [[LOADGEP_A_ADDR1]], align 4
 ; CHECK2-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP4]], 1
-; CHECK2-NEXT:    store i32 [[ADD]], ptr [[LOADGEP_A_ADDR]], align 4
+; CHECK2-NEXT:    store i32 [[ADD]], ptr [[LOADGEP_A_ADDR1]], align 4
 ; CHECK2-NEXT:    [[A_CASTED_SROA_0_0_INSERT_EXT:%.*]] = zext i32 [[ADD]] to i64
 ; CHECK2-NEXT:    store i64 [[A_CASTED_SROA_0_0_INSERT_EXT]], ptr [[LOADGEP_A_CASTED_SROA_0_0_INSERT_EXT_SEQ_OUTPUT_ALLOC]], align 8
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT:%.*]]
@@ -5104,13 +5114,13 @@ entry:
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr }, align 8
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_seq_sink_lt..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -5121,12 +5131,13 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_seq_sink_lt..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
 ; CHECK2-NEXT:    [[B:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -5135,19 +5146,19 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..14(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..14(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP2:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = icmp ne i32 [[TMP2]], 0
 ; CHECK2-NEXT:    br i1 [[TMP3]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..15(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..15(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5194,20 +5205,20 @@ entry:
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr, ptr, ptr }, align 8
 ; CHECK2-NEXT:    [[A_RELOADED:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[B:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    [[B2:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM4:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    store i32 [[A]], ptr [[A_RELOADED]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
 ; CHECK2-NEXT:    [[GEP_A_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
 ; CHECK2-NEXT:    store ptr [[A_RELOADED]], ptr [[GEP_A_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
-; CHECK2-NEXT:    [[GEP_B:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 2
-; CHECK2-NEXT:    store ptr [[B]], ptr [[GEP_B]], align 8
-; CHECK2-NEXT:    call void @llvm.lifetime.start.p0(i64 -1, ptr [[B]])
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
+; CHECK2-NEXT:    [[GEP_B2:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 2
+; CHECK2-NEXT:    store ptr [[B2]], ptr [[GEP_B2]], align 8
+; CHECK2-NEXT:    call void @llvm.lifetime.start.p0(i64 -1, ptr [[B2]])
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_seq_par_use..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -5215,19 +5226,20 @@ entry:
 ; CHECK2:       omp.par.exit.split:
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT_SPLIT:%.*]]
 ; CHECK2:       entry.split.split:
-; CHECK2-NEXT:    call void @llvm.lifetime.end.p0(i64 noundef 4, ptr noundef nonnull [[B]])
+; CHECK2-NEXT:    call void @llvm.lifetime.end.p0(i64 noundef 4, ptr noundef nonnull [[B2]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_seq_par_use..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
 ; CHECK2-NEXT:    [[GEP_A_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
 ; CHECK2-NEXT:    [[LOADGEP_A_RELOADED:%.*]] = load ptr, ptr [[GEP_A_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
-; CHECK2-NEXT:    [[GEP_B:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 2
-; CHECK2-NEXT:    [[LOADGEP_B:%.*]] = load ptr, ptr [[GEP_B]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
+; CHECK2-NEXT:    [[GEP_B2:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 2
+; CHECK2-NEXT:    [[LOADGEP_B2:%.*]] = load ptr, ptr [[GEP_B2]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -5237,19 +5249,19 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..16(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..16(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
 ; CHECK2-NEXT:    br i1 [[TMP4]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM3]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..17(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_B]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..17(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_B2]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5261,7 +5273,7 @@ entry:
 ; CHECK2-NEXT:    br label [[SEQ_PAR_MERGED:%.*]]
 ; CHECK2:       seq.par.merged:
 ; CHECK2-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP2]], 1
-; CHECK2-NEXT:    store i32 [[ADD]], ptr [[LOADGEP_B]], align 4
+; CHECK2-NEXT:    store i32 [[ADD]], ptr [[LOADGEP_B2]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split:
 ; CHECK2-NEXT:    br label [[OMP_REGION_BODY_SPLIT:%.*]]
@@ -5294,17 +5306,17 @@ entry:
 ; CHECK2-SAME: (i32 [[CANCEL1:%.*]], i32 [[CANCEL2:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr, ptr }, align 8
-; CHECK2-NEXT:    [[CANCEL1_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[CANCEL2_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[CANCEL1]], ptr [[CANCEL1_ADDR]], align 4
-; CHECK2-NEXT:    store i32 [[CANCEL2]], ptr [[CANCEL2_ADDR]], align 4
+; CHECK2-NEXT:    [[CANCEL1_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    [[CANCEL2_ADDR2:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[CANCEL1]], ptr [[CANCEL1_ADDR1]], align 4
+; CHECK2-NEXT:    store i32 [[CANCEL2]], ptr [[CANCEL2_ADDR2]], align 4
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[CANCEL1_ADDR]], ptr [[GEP_CANCEL1_ADDR]], align 8
-; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
-; CHECK2-NEXT:    store ptr [[CANCEL2_ADDR]], ptr [[GEP_CANCEL2_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR1:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[CANCEL1_ADDR1]], ptr [[GEP_CANCEL1_ADDR1]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR2:%.*]] = getelementptr { ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
+; CHECK2-NEXT:    store ptr [[CANCEL2_ADDR2]], ptr [[GEP_CANCEL2_ADDR2]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_cancellable_regions..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -5315,13 +5327,14 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_cancellable_regions..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
-; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_CANCEL1_ADDR:%.*]] = load ptr, ptr [[GEP_CANCEL1_ADDR]], align 8
-; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
-; CHECK2-NEXT:    [[LOADGEP_CANCEL2_ADDR:%.*]] = load ptr, ptr [[GEP_CANCEL2_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR1:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_CANCEL1_ADDR1:%.*]] = load ptr, ptr [[GEP_CANCEL1_ADDR1]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR2:%.*]] = getelementptr { ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
+; CHECK2-NEXT:    [[LOADGEP_CANCEL2_ADDR2:%.*]] = load ptr, ptr [[GEP_CANCEL2_ADDR2]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -5330,10 +5343,10 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..18(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL1_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..18(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL1_ADDR1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM]])
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..19(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL2_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..19(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL2_ADDR2]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5378,20 +5391,20 @@ entry:
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr, ptr, ptr }, align 8
 ; CHECK2-NEXT:    [[CANCEL1_RELOADED:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[CANCEL1_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[CANCEL2_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[CANCEL1]], ptr [[CANCEL1_ADDR]], align 4
-; CHECK2-NEXT:    store i32 [[CANCEL2]], ptr [[CANCEL2_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[CANCEL1_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    [[CANCEL2_ADDR2:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[CANCEL1]], ptr [[CANCEL1_ADDR1]], align 4
+; CHECK2-NEXT:    store i32 [[CANCEL2]], ptr [[CANCEL2_ADDR2]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM4:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    store i32 [[CANCEL1]], ptr [[CANCEL1_RELOADED]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
 ; CHECK2-NEXT:    [[GEP_CANCEL1_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
 ; CHECK2-NEXT:    store ptr [[CANCEL1_RELOADED]], ptr [[GEP_CANCEL1_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
-; CHECK2-NEXT:    store ptr [[CANCEL1_ADDR]], ptr [[GEP_CANCEL1_ADDR]], align 8
-; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 2
-; CHECK2-NEXT:    store ptr [[CANCEL2_ADDR]], ptr [[GEP_CANCEL2_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
+; CHECK2-NEXT:    store ptr [[CANCEL1_ADDR1]], ptr [[GEP_CANCEL1_ADDR1]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR2:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 2
+; CHECK2-NEXT:    store ptr [[CANCEL2_ADDR2]], ptr [[GEP_CANCEL2_ADDR2]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_cancellable_regions_seq..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -5402,15 +5415,16 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_cancellable_regions_seq..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
 ; CHECK2-NEXT:    [[GEP_CANCEL1_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
 ; CHECK2-NEXT:    [[LOADGEP_CANCEL1_RELOADED:%.*]] = load ptr, ptr [[GEP_CANCEL1_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
-; CHECK2-NEXT:    [[LOADGEP_CANCEL1_ADDR:%.*]] = load ptr, ptr [[GEP_CANCEL1_ADDR]], align 8
-; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 2
-; CHECK2-NEXT:    [[LOADGEP_CANCEL2_ADDR:%.*]] = load ptr, ptr [[GEP_CANCEL2_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL1_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
+; CHECK2-NEXT:    [[LOADGEP_CANCEL1_ADDR1:%.*]] = load ptr, ptr [[GEP_CANCEL1_ADDR1]], align 8
+; CHECK2-NEXT:    [[GEP_CANCEL2_ADDR2:%.*]] = getelementptr { ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 2
+; CHECK2-NEXT:    [[LOADGEP_CANCEL2_ADDR2:%.*]] = load ptr, ptr [[GEP_CANCEL2_ADDR2]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -5420,19 +5434,19 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..20(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL1_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..20(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL1_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
 ; CHECK2-NEXT:    br i1 [[TMP4]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM3]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..21(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL2_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..21(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_CANCEL2_ADDR2]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5445,7 +5459,7 @@ entry:
 ; CHECK2:       seq.par.merged:
 ; CHECK2-NEXT:    [[TOBOOL_NOT:%.*]] = icmp eq i32 [[TMP2]], 0
 ; CHECK2-NEXT:    [[LNOT_EXT:%.*]] = zext i1 [[TOBOOL_NOT]] to i32
-; CHECK2-NEXT:    store i32 [[LNOT_EXT]], ptr [[LOADGEP_CANCEL2_ADDR]], align 4
+; CHECK2-NEXT:    store i32 [[LNOT_EXT]], ptr [[LOADGEP_CANCEL2_ADDR2]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split:
 ; CHECK2-NEXT:    br label [[OMP_REGION_BODY_SPLIT:%.*]]
@@ -5488,13 +5502,13 @@ entry:
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr }, align 8
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_3..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -5505,11 +5519,12 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_3..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -5518,13 +5533,13 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..22(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..22(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM]])
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..23(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..23(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..24(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..24(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5567,16 +5582,16 @@ entry:
 ; CHECK2-NEXT:    [[A_RELOADED:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[ADD1_SEQ_OUTPUT_ALLOC:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[ADD_SEQ_OUTPUT_ALLOC:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM7:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM8:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    store i32 [[A]], ptr [[A_RELOADED]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
 ; CHECK2-NEXT:    [[GEP_A_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 0
 ; CHECK2-NEXT:    store ptr [[A_RELOADED]], ptr [[GEP_A_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 1
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[GEP_ADD_SEQ_OUTPUT_ALLOC:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 2
 ; CHECK2-NEXT:    store ptr [[ADD_SEQ_OUTPUT_ALLOC]], ptr [[GEP_ADD_SEQ_OUTPUT_ALLOC]], align 8
 ; CHECK2-NEXT:    [[GEP_ADD1_SEQ_OUTPUT_ALLOC:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[STRUCTARG]], i32 0, i32 3
@@ -5593,13 +5608,14 @@ entry:
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_3_seq..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
 ; CHECK2-NEXT:    [[GEP_A_RELOADED:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 0
 ; CHECK2-NEXT:    [[LOADGEP_A_RELOADED:%.*]] = load ptr, ptr [[GEP_A_RELOADED]], align 8
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 1
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[GEP_ADD_SEQ_OUTPUT_ALLOC:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 2
 ; CHECK2-NEXT:    [[LOADGEP_ADD_SEQ_OUTPUT_ALLOC:%.*]] = load ptr, ptr [[GEP_ADD_SEQ_OUTPUT_ALLOC]], align 8
 ; CHECK2-NEXT:    [[GEP_ADD1_SEQ_OUTPUT_ALLOC:%.*]] = getelementptr { ptr, ptr, ptr, ptr }, ptr [[TMP0]], i32 0, i32 3
@@ -5613,31 +5629,31 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..25(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..25(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    [[TMP3:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM]])
 ; CHECK2-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
 ; CHECK2-NEXT:    br i1 [[TMP4]], label [[OMP_REGION_BODY:%.*]], label [[OMP_REGION_END:%.*]]
 ; CHECK2:       omp_region.end:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM1:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM1]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM2:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM2]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..26(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM4:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM4]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..26(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM3:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    [[TMP5:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM3]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM3]])
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM4:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    [[TMP5:%.*]] = call i32 @__kmpc_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM4]])
 ; CHECK2-NEXT:    [[TMP6:%.*]] = icmp ne i32 [[TMP5]], 0
-; CHECK2-NEXT:    br i1 [[TMP6]], label [[OMP_REGION_BODY5:%.*]], label [[OMP_REGION_END4:%.*]]
-; CHECK2:       omp_region.end4:
-; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM6:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
-; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM6]])
+; CHECK2-NEXT:    br i1 [[TMP6]], label [[OMP_REGION_BODY6:%.*]], label [[OMP_REGION_END5:%.*]]
+; CHECK2:       omp_region.end5:
+; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM7:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
+; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM7]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split.split.split:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..27(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..27(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5645,18 +5661,18 @@ entry:
 ; CHECK2-NEXT:    br label [[OMP_PAR_PRE_FINALIZE:%.*]]
 ; CHECK2:       omp.par.pre_finalize:
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT_EXITSTUB:%.*]]
-; CHECK2:       omp_region.body5:
-; CHECK2-NEXT:    br label [[SEQ_PAR_MERGED2:%.*]]
-; CHECK2:       seq.par.merged2:
+; CHECK2:       omp_region.body6:
+; CHECK2-NEXT:    br label [[SEQ_PAR_MERGED3:%.*]]
+; CHECK2:       seq.par.merged3:
 ; CHECK2-NEXT:    [[ADD_SEQ_OUTPUT_LOAD:%.*]] = load i32, ptr [[LOADGEP_ADD_SEQ_OUTPUT_ALLOC]], align 4
 ; CHECK2-NEXT:    [[ADD1:%.*]] = add nsw i32 [[ADD_SEQ_OUTPUT_LOAD]], [[TMP2]]
 ; CHECK2-NEXT:    store i32 [[ADD1]], ptr [[LOADGEP_ADD1_SEQ_OUTPUT_ALLOC]], align 4
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED_SPLIT_SPLIT_SPLIT:%.*]]
 ; CHECK2:       omp.par.merged.split.split.split:
-; CHECK2-NEXT:    br label [[OMP_REGION_BODY5_SPLIT:%.*]]
-; CHECK2:       omp_region.body5.split:
-; CHECK2-NEXT:    call void @__kmpc_end_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM3]])
-; CHECK2-NEXT:    br label [[OMP_REGION_END4]]
+; CHECK2-NEXT:    br label [[OMP_REGION_BODY6_SPLIT:%.*]]
+; CHECK2:       omp_region.body6.split:
+; CHECK2-NEXT:    call void @__kmpc_end_master(ptr @[[GLOB2]], i32 [[OMP_GLOBAL_THREAD_NUM4]])
+; CHECK2-NEXT:    br label [[OMP_REGION_END5]]
 ; CHECK2:       omp_region.body:
 ; CHECK2-NEXT:    br label [[SEQ_PAR_MERGED:%.*]]
 ; CHECK2:       seq.par.merged:
@@ -5699,13 +5715,13 @@ entry:
 ; CHECK2-LABEL: define {{[^@]+}}@unmergable_3_seq_call
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..28, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..28, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    call void (...) @foo()
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..29, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..29, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    call void (...) @foo()
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..30, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..30, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
@@ -5736,13 +5752,13 @@ entry:
 ; CHECK2-LABEL: define {{[^@]+}}@unmergable_3_proc_bind
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
 ; CHECK2-NEXT:    [[TMP0:%.*]] = call i32 @__kmpc_global_thread_num(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]])
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..31, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..31, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    call void @__kmpc_push_proc_bind(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 [[TMP0]], i32 noundef 3)
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..32, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..33, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..32, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..33, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
@@ -5773,13 +5789,13 @@ entry:
 ; CHECK2-LABEL: define {{[^@]+}}@unmergable_3_num_threads
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
 ; CHECK2-NEXT:    [[TMP0:%.*]] = call i32 @__kmpc_global_thread_num(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]])
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..34, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..34, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    call void @__kmpc_push_num_threads(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 [[TMP0]], i32 [[A]])
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..35, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..36, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..35, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..36, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
@@ -5811,13 +5827,13 @@ entry:
 ; CHECK2-SAME: (i32 [[A:%.*]]) local_unnamed_addr {
 ; CHECK2-NEXT:  entry:
 ; CHECK2-NEXT:    [[STRUCTARG:%.*]] = alloca { ptr }, align 8
-; CHECK2-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
-; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR]], align 4
+; CHECK2-NEXT:    [[A_ADDR1:%.*]] = alloca i8, i32 4, align 4
+; CHECK2-NEXT:    store i32 [[A]], ptr [[A_ADDR1]], align 4
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    br label [[OMP_PARALLEL:%.*]]
 ; CHECK2:       omp_parallel:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
-; CHECK2-NEXT:    store ptr [[A_ADDR]], ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[STRUCTARG]], i32 0, i32 0
+; CHECK2-NEXT:    store ptr [[A_ADDR1]], ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @[[GLOB2]], i32 1, ptr @merge_2_unmergable_1..omp_par, ptr [[STRUCTARG]])
 ; CHECK2-NEXT:    br label [[OMP_PAR_OUTLINED_EXIT:%.*]]
 ; CHECK2:       omp.par.outlined.exit:
@@ -5826,15 +5842,16 @@ entry:
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT_SPLIT:%.*]]
 ; CHECK2:       entry.split.split:
 ; CHECK2-NEXT:    call void (...) @foo()
-; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..39, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr noundef nonnull align 8 dereferenceable(24) @[[GLOB1]], i32 noundef 1, ptr noundef nonnull @.omp_outlined..39, ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[A_ADDR1]])
 ; CHECK2-NEXT:    ret void
 ;
 ;
+; CHECK2: Function Attrs: norecurse nounwind
 ; CHECK2-LABEL: define {{[^@]+}}@merge_2_unmergable_1..omp_par
 ; CHECK2-SAME: (ptr noalias [[TID_ADDR:%.*]], ptr noalias [[ZERO_ADDR:%.*]], ptr [[TMP0:%.*]]) #[[ATTR0]] {
 ; CHECK2-NEXT:  omp.par.entry:
-; CHECK2-NEXT:    [[GEP_A_ADDR:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
-; CHECK2-NEXT:    [[LOADGEP_A_ADDR:%.*]] = load ptr, ptr [[GEP_A_ADDR]], align 8
+; CHECK2-NEXT:    [[GEP_A_ADDR1:%.*]] = getelementptr { ptr }, ptr [[TMP0]], i32 0, i32 0
+; CHECK2-NEXT:    [[LOADGEP_A_ADDR1:%.*]] = load ptr, ptr [[GEP_A_ADDR1]], align 8
 ; CHECK2-NEXT:    [[TID_ADDR_LOCAL:%.*]] = alloca i32, align 4
 ; CHECK2-NEXT:    [[TMP1:%.*]] = load i32, ptr [[TID_ADDR]], align 4
 ; CHECK2-NEXT:    store i32 [[TMP1]], ptr [[TID_ADDR_LOCAL]], align 4
@@ -5843,10 +5860,10 @@ entry:
 ; CHECK2:       omp.par.region:
 ; CHECK2-NEXT:    br label [[OMP_PAR_MERGED:%.*]]
 ; CHECK2:       omp.par.merged:
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..37(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..37(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(ptr @[[GLOB2]])
 ; CHECK2-NEXT:    call void @__kmpc_barrier(ptr @[[GLOB3]], i32 [[OMP_GLOBAL_THREAD_NUM]])
-; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..38(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR]])
+; CHECK2-NEXT:    call void (ptr, ptr, ...) @.omp_outlined..38(ptr [[TID_ADDR]], ptr [[ZERO_ADDR]], ptr nocapture nofree noundef nonnull readonly align 4 dereferenceable(4) [[LOADGEP_A_ADDR1]])
 ; CHECK2-NEXT:    br label [[ENTRY_SPLIT:%.*]]
 ; CHECK2:       entry.split:
 ; CHECK2-NEXT:    br label [[OMP_PAR_REGION_SPLIT:%.*]]
@@ -5881,3 +5898,14 @@ entry:
 ; CHECK2-NEXT:    call void @use(i32 [[TMP0]])
 ; CHECK2-NEXT:    ret void
 ;
+;.
+; CHECK2: attributes #[[ATTR0]] = { norecurse nounwind }
+; CHECK2: attributes #[[ATTR1:[0-9]+]] = { nounwind }
+; CHECK2: attributes #[[ATTR2:[0-9]+]] = { nocallback nofree nosync nounwind willreturn memory(argmem: readwrite) }
+; CHECK2: attributes #[[ATTR3:[0-9]+]] = { convergent nounwind }
+;.
+; CHECK2: [[META0:![0-9]+]] = !{i32 1, !"wchar_size", i32 4}
+; CHECK2: [[META1:![0-9]+]] = !{i32 7, !"openmp", i32 50}
+; CHECK2: [[META2:![0-9]+]] = !{!3}
+; CHECK2: [[META3:![0-9]+]] = !{i64 2, i64 -1, i64 -1, i1 true}
+;.

>From 1133675c5decfb67a66aa01a784773af8959dcfc Mon Sep 17 00:00:00 2001
From: Vidush Singhal <singhal2 at quartz770.llnl.gov>
Date: Thu, 23 May 2024 15:32:52 -0700
Subject: [PATCH 2/3] use ptrtoint + sub + inttoptr

---
 llvm/include/llvm/Transforms/IPO/Attributor.h |  6483 --------
 .../Transforms/IPO/AttributorAttributes.cpp   | 13216 ----------------
 llvm/test/Transforms/Attributor/allocator.ll  |   119 +-
 3 files changed, 67 insertions(+), 19751 deletions(-)

diff --git a/llvm/include/llvm/Transforms/IPO/Attributor.h b/llvm/include/llvm/Transforms/IPO/Attributor.h
index fb96e52121f82..e69de29bb2d1d 100644
--- a/llvm/include/llvm/Transforms/IPO/Attributor.h
+++ b/llvm/include/llvm/Transforms/IPO/Attributor.h
@@ -1,6483 +0,0 @@
-//===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// Attributor: An inter procedural (abstract) "attribute" deduction framework.
-//
-// The Attributor framework is an inter procedural abstract analysis (fixpoint
-// iteration analysis). The goal is to allow easy deduction of new attributes as
-// well as information exchange between abstract attributes in-flight.
-//
-// The Attributor class is the driver and the link between the various abstract
-// attributes. The Attributor will iterate until a fixpoint state is reached by
-// all abstract attributes in-flight, or until it will enforce a pessimistic fix
-// point because an iteration limit is reached.
-//
-// Abstract attributes, derived from the AbstractAttribute class, actually
-// describe properties of the code. They can correspond to actual LLVM-IR
-// attributes, or they can be more general, ultimately unrelated to LLVM-IR
-// attributes. The latter is useful when an abstract attributes provides
-// information to other abstract attributes in-flight but we might not want to
-// manifest the information. The Attributor allows to query in-flight abstract
-// attributes through the `Attributor::getAAFor` method (see the method
-// description for an example). If the method is used by an abstract attribute
-// P, and it results in an abstract attribute Q, the Attributor will
-// automatically capture a potential dependence from Q to P. This dependence
-// will cause P to be reevaluated whenever Q changes in the future.
-//
-// The Attributor will only reevaluate abstract attributes that might have
-// changed since the last iteration. That means that the Attribute will not
-// revisit all instructions/blocks/functions in the module but only query
-// an update from a subset of the abstract attributes.
-//
-// The update method `AbstractAttribute::updateImpl` is implemented by the
-// specific "abstract attribute" subclasses. The method is invoked whenever the
-// currently assumed state (see the AbstractState class) might not be valid
-// anymore. This can, for example, happen if the state was dependent on another
-// abstract attribute that changed. In every invocation, the update method has
-// to adjust the internal state of an abstract attribute to a point that is
-// justifiable by the underlying IR and the current state of abstract attributes
-// in-flight. Since the IR is given and assumed to be valid, the information
-// derived from it can be assumed to hold. However, information derived from
-// other abstract attributes is conditional on various things. If the justifying
-// state changed, the `updateImpl` has to revisit the situation and potentially
-// find another justification or limit the optimistic assumes made.
-//
-// Change is the key in this framework. Until a state of no-change, thus a
-// fixpoint, is reached, the Attributor will query the abstract attributes
-// in-flight to re-evaluate their state. If the (current) state is too
-// optimistic, hence it cannot be justified anymore through other abstract
-// attributes or the state of the IR, the state of the abstract attribute will
-// have to change. Generally, we assume abstract attribute state to be a finite
-// height lattice and the update function to be monotone. However, these
-// conditions are not enforced because the iteration limit will guarantee
-// termination. If an optimistic fixpoint is reached, or a pessimistic fix
-// point is enforced after a timeout, the abstract attributes are tasked to
-// manifest their result in the IR for passes to come.
-//
-// Attribute manifestation is not mandatory. If desired, there is support to
-// generate a single or multiple LLVM-IR attributes already in the helper struct
-// IRAttribute. In the simplest case, a subclass inherits from IRAttribute with
-// a proper Attribute::AttrKind as template parameter. The Attributor
-// manifestation framework will then create and place a new attribute if it is
-// allowed to do so (based on the abstract state). Other use cases can be
-// achieved by overloading AbstractAttribute or IRAttribute methods.
-//
-//
-// The "mechanics" of adding a new "abstract attribute":
-// - Define a class (transitively) inheriting from AbstractAttribute and one
-//   (which could be the same) that (transitively) inherits from AbstractState.
-//   For the latter, consider the already available BooleanState and
-//   {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a
-//   number tracking or bit-encoding.
-// - Implement all pure methods. Also use overloading if the attribute is not
-//   conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for
-//   an argument, call site argument, function return value, or function. See
-//   the class and method descriptions for more information on the two
-//   "Abstract" classes and their respective methods.
-// - Register opportunities for the new abstract attribute in the
-//   `Attributor::identifyDefaultAbstractAttributes` method if it should be
-//   counted as a 'default' attribute.
-// - Add sufficient tests.
-// - Add a Statistics object for bookkeeping. If it is a simple (set of)
-//   attribute(s) manifested through the Attributor manifestation framework, see
-//   the bookkeeping function in Attributor.cpp.
-// - If instructions with a certain opcode are interesting to the attribute, add
-//   that opcode to the switch in `Attributor::identifyAbstractAttributes`. This
-//   will make it possible to query all those instructions through the
-//   `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the
-//   need to traverse the IR repeatedly.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
-#define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
-
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/iterator.h"
-#include "llvm/Analysis/AssumeBundleQueries.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/CGSCCPassManager.h"
-#include "llvm/Analysis/LazyCallGraph.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/MustExecute.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/IR/AbstractCallSite.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Alignment.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/DOTGraphTraits.h"
-#include "llvm/Support/DebugCounter.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/ModRef.h"
-#include "llvm/Support/TimeProfiler.h"
-#include "llvm/Support/TypeSize.h"
-#include "llvm/TargetParser/Triple.h"
-#include "llvm/Transforms/Utils/CallGraphUpdater.h"
-
-#include <limits>
-#include <map>
-#include <optional>
-
-namespace llvm {
-
-class DataLayout;
-class LLVMContext;
-class Pass;
-template <typename Fn> class function_ref;
-struct AADepGraphNode;
-struct AADepGraph;
-struct Attributor;
-struct AbstractAttribute;
-struct InformationCache;
-struct AAIsDead;
-struct AttributorCallGraph;
-struct IRPosition;
-
-class Function;
-
-/// Abstract Attribute helper functions.
-namespace AA {
-using InstExclusionSetTy = SmallPtrSet<Instruction *, 4>;
-
-enum class GPUAddressSpace : unsigned {
-  Generic = 0,
-  Global = 1,
-  Shared = 3,
-  Constant = 4,
-  Local = 5,
-};
-
-/// Return true iff \p M target a GPU (and we can use GPU AS reasoning).
-bool isGPU(const Module &M);
-
-/// Flags to distinguish intra-procedural queries from *potentially*
-/// inter-procedural queries. Not that information can be valid for both and
-/// therefore both bits might be set.
-enum ValueScope : uint8_t {
-  Intraprocedural = 1,
-  Interprocedural = 2,
-  AnyScope = Intraprocedural | Interprocedural,
-};
-
-struct ValueAndContext : public std::pair<Value *, const Instruction *> {
-  using Base = std::pair<Value *, const Instruction *>;
-  ValueAndContext(const Base &B) : Base(B) {}
-  ValueAndContext(Value &V, const Instruction *CtxI) : Base(&V, CtxI) {}
-  ValueAndContext(Value &V, const Instruction &CtxI) : Base(&V, &CtxI) {}
-
-  Value *getValue() const { return this->first; }
-  const Instruction *getCtxI() const { return this->second; }
-};
-
-/// Return true if \p I is a `nosync` instruction. Use generic reasoning and
-/// potentially the corresponding AANoSync.
-bool isNoSyncInst(Attributor &A, const Instruction &I,
-                  const AbstractAttribute &QueryingAA);
-
-/// Return true if \p V is dynamically unique, that is, there are no two
-/// "instances" of \p V at runtime with different values.
-/// Note: If \p ForAnalysisOnly is set we only check that the Attributor will
-/// never use \p V to represent two "instances" not that \p V could not
-/// technically represent them.
-bool isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
-                         const Value &V, bool ForAnalysisOnly = true);
-
-/// Return true if \p V is a valid value in \p Scope, that is a constant or an
-/// instruction/argument of \p Scope.
-bool isValidInScope(const Value &V, const Function *Scope);
-
-/// Return true if the value of \p VAC is a valid at the position of \p VAC,
-/// that is a constant, an argument of the same function, or an instruction in
-/// that function that dominates the position.
-bool isValidAtPosition(const ValueAndContext &VAC, InformationCache &InfoCache);
-
-/// Try to convert \p V to type \p Ty without introducing new instructions. If
-/// this is not possible return `nullptr`. Note: this function basically knows
-/// how to cast various constants.
-Value *getWithType(Value &V, Type &Ty);
-
-/// Return the combination of \p A and \p B such that the result is a possible
-/// value of both. \p B is potentially casted to match the type \p Ty or the
-/// type of \p A if \p Ty is null.
-///
-/// Examples:
-///        X + none  => X
-/// not_none + undef => not_none
-///          V1 + V2 => nullptr
-std::optional<Value *>
-combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A,
-                                     const std::optional<Value *> &B, Type *Ty);
-
-/// Helper to represent an access offset and size, with logic to deal with
-/// uncertainty and check for overlapping accesses.
-struct RangeTy {
-  int64_t Offset = Unassigned;
-  int64_t Size = Unassigned;
-
-  RangeTy(int64_t Offset, int64_t Size) : Offset(Offset), Size(Size) {}
-  RangeTy() = default;
-  static RangeTy getUnknown() { return RangeTy{Unknown, Unknown}; }
-
-  /// Return true if offset or size are unknown.
-  bool offsetOrSizeAreUnknown() const {
-    return Offset == RangeTy::Unknown || Size == RangeTy::Unknown;
-  }
-
-  /// Return true if offset and size are unknown, thus this is the default
-  /// unknown object.
-  bool offsetAndSizeAreUnknown() const {
-    return Offset == RangeTy::Unknown && Size == RangeTy::Unknown;
-  }
-
-  /// Return true if the offset and size are unassigned.
-  bool isUnassigned() const {
-    assert((Offset == RangeTy::Unassigned) == (Size == RangeTy::Unassigned) &&
-           "Inconsistent state!");
-    return Offset == RangeTy::Unassigned;
-  }
-
-  /// Return true if this offset and size pair might describe an address that
-  /// overlaps with \p Range.
-  bool mayOverlap(const RangeTy &Range) const {
-    // Any unknown value and we are giving up -> overlap.
-    if (offsetOrSizeAreUnknown() || Range.offsetOrSizeAreUnknown())
-      return true;
-
-    // Check if one offset point is in the other interval [offset,
-    // offset+size].
-    return Range.Offset + Range.Size > Offset && Range.Offset < Offset + Size;
-  }
-
-  RangeTy &operator&=(const RangeTy &R) {
-    if (R.isUnassigned())
-      return *this;
-    if (isUnassigned())
-      return *this = R;
-    if (Offset == Unknown || R.Offset == Unknown)
-      Offset = Unknown;
-    if (Size == Unknown || R.Size == Unknown)
-      Size = Unknown;
-    if (offsetAndSizeAreUnknown())
-      return *this;
-    if (Offset == Unknown) {
-      Size = std::max(Size, R.Size);
-    } else if (Size == Unknown) {
-      Offset = std::min(Offset, R.Offset);
-    } else {
-      Offset = std::min(Offset, R.Offset);
-      Size = std::max(Offset + Size, R.Offset + R.Size) - Offset;
-    }
-    return *this;
-  }
-
-  /// Comparison for sorting ranges by offset.
-  ///
-  /// Returns true if the offset \p L is less than that of \p R.
-  inline static bool OffsetLessThan(const RangeTy &L, const RangeTy &R) {
-    return L.Offset < R.Offset;
-  }
-
-  /// Constants used to represent special offsets or sizes.
-  /// - We cannot assume that Offsets and Size are non-negative.
-  /// - The constants should not clash with DenseMapInfo, such as EmptyKey
-  ///   (INT64_MAX) and TombstoneKey (INT64_MIN).
-  /// We use values "in the middle" of the 64 bit range to represent these
-  /// special cases.
-  static constexpr int64_t Unassigned = std::numeric_limits<int32_t>::min();
-  static constexpr int64_t Unknown = std::numeric_limits<int32_t>::max();
-};
-
-inline raw_ostream &operator<<(raw_ostream &OS, const RangeTy &R) {
-  OS << "[" << R.Offset << ", " << R.Size << "]";
-  return OS;
-}
-
-inline bool operator==(const RangeTy &A, const RangeTy &B) {
-  return A.Offset == B.Offset && A.Size == B.Size;
-}
-
-inline bool operator!=(const RangeTy &A, const RangeTy &B) { return !(A == B); }
-
-/// Return the initial value of \p Obj with type \p Ty if that is a constant.
-Constant *getInitialValueForObj(Attributor &A,
-                                const AbstractAttribute &QueryingAA, Value &Obj,
-                                Type &Ty, const TargetLibraryInfo *TLI,
-                                const DataLayout &DL,
-                                RangeTy *RangePtr = nullptr);
-
-/// Collect all potential values \p LI could read into \p PotentialValues. That
-/// is, the only values read by \p LI are assumed to be known and all are in
-/// \p PotentialValues. \p PotentialValueOrigins will contain all the
-/// instructions that might have put a potential value into \p PotentialValues.
-/// Dependences onto \p QueryingAA are properly tracked, \p
-/// UsedAssumedInformation will inform the caller if assumed information was
-/// used.
-///
-/// \returns True if the assumed potential copies are all in \p PotentialValues,
-///          false if something went wrong and the copies could not be
-///          determined.
-bool getPotentiallyLoadedValues(
-    Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
-    SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
-    const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
-    bool OnlyExact = false);
-
-/// Collect all potential values of the one stored by \p SI into
-/// \p PotentialCopies. That is, the only copies that were made via the
-/// store are assumed to be known and all are in \p PotentialCopies. Dependences
-/// onto \p QueryingAA are properly tracked, \p UsedAssumedInformation will
-/// inform the caller if assumed information was used.
-///
-/// \returns True if the assumed potential copies are all in \p PotentialCopies,
-///          false if something went wrong and the copies could not be
-///          determined.
-bool getPotentialCopiesOfStoredValue(
-    Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
-    const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
-    bool OnlyExact = false);
-
-/// Return true if \p IRP is readonly. This will query respective AAs that
-/// deduce the information and introduce dependences for \p QueryingAA.
-bool isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
-                       const AbstractAttribute &QueryingAA, bool &IsKnown);
-
-/// Return true if \p IRP is readnone. This will query respective AAs that
-/// deduce the information and introduce dependences for \p QueryingAA.
-bool isAssumedReadNone(Attributor &A, const IRPosition &IRP,
-                       const AbstractAttribute &QueryingAA, bool &IsKnown);
-
-/// Return true if \p ToI is potentially reachable from \p FromI without running
-/// into any instruction in \p ExclusionSet The two instructions do not need to
-/// be in the same function. \p GoBackwardsCB can be provided to convey domain
-/// knowledge about the "lifespan" the user is interested in. By default, the
-/// callers of \p FromI are checked as well to determine if \p ToI can be
-/// reached. If the query is not interested in callers beyond a certain point,
-/// e.g., a GPU kernel entry or the function containing an alloca, the
-/// \p GoBackwardsCB should return false.
-bool isPotentiallyReachable(
-    Attributor &A, const Instruction &FromI, const Instruction &ToI,
-    const AbstractAttribute &QueryingAA,
-    const AA::InstExclusionSetTy *ExclusionSet = nullptr,
-    std::function<bool(const Function &F)> GoBackwardsCB = nullptr);
-
-/// Same as above but it is sufficient to reach any instruction in \p ToFn.
-bool isPotentiallyReachable(
-    Attributor &A, const Instruction &FromI, const Function &ToFn,
-    const AbstractAttribute &QueryingAA,
-    const AA::InstExclusionSetTy *ExclusionSet = nullptr,
-    std::function<bool(const Function &F)> GoBackwardsCB = nullptr);
-
-/// Return true if \p Obj is assumed to be a thread local object.
-bool isAssumedThreadLocalObject(Attributor &A, Value &Obj,
-                                const AbstractAttribute &QueryingAA);
-
-/// Return true if \p I is potentially affected by a barrier.
-bool isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I,
-                                    const AbstractAttribute &QueryingAA);
-bool isPotentiallyAffectedByBarrier(Attributor &A, ArrayRef<const Value *> Ptrs,
-                                    const AbstractAttribute &QueryingAA,
-                                    const Instruction *CtxI);
-} // namespace AA
-
-template <>
-struct DenseMapInfo<AA::ValueAndContext>
-    : public DenseMapInfo<AA::ValueAndContext::Base> {
-  using Base = DenseMapInfo<AA::ValueAndContext::Base>;
-  static inline AA::ValueAndContext getEmptyKey() {
-    return Base::getEmptyKey();
-  }
-  static inline AA::ValueAndContext getTombstoneKey() {
-    return Base::getTombstoneKey();
-  }
-  static unsigned getHashValue(const AA::ValueAndContext &VAC) {
-    return Base::getHashValue(VAC);
-  }
-
-  static bool isEqual(const AA::ValueAndContext &LHS,
-                      const AA::ValueAndContext &RHS) {
-    return Base::isEqual(LHS, RHS);
-  }
-};
-
-template <>
-struct DenseMapInfo<AA::ValueScope> : public DenseMapInfo<unsigned char> {
-  using Base = DenseMapInfo<unsigned char>;
-  static inline AA::ValueScope getEmptyKey() {
-    return AA::ValueScope(Base::getEmptyKey());
-  }
-  static inline AA::ValueScope getTombstoneKey() {
-    return AA::ValueScope(Base::getTombstoneKey());
-  }
-  static unsigned getHashValue(const AA::ValueScope &S) {
-    return Base::getHashValue(S);
-  }
-
-  static bool isEqual(const AA::ValueScope &LHS, const AA::ValueScope &RHS) {
-    return Base::isEqual(LHS, RHS);
-  }
-};
-
-template <>
-struct DenseMapInfo<const AA::InstExclusionSetTy *>
-    : public DenseMapInfo<void *> {
-  using super = DenseMapInfo<void *>;
-  static inline const AA::InstExclusionSetTy *getEmptyKey() {
-    return static_cast<const AA::InstExclusionSetTy *>(super::getEmptyKey());
-  }
-  static inline const AA::InstExclusionSetTy *getTombstoneKey() {
-    return static_cast<const AA::InstExclusionSetTy *>(
-        super::getTombstoneKey());
-  }
-  static unsigned getHashValue(const AA::InstExclusionSetTy *BES) {
-    unsigned H = 0;
-    if (BES)
-      for (const auto *II : *BES)
-        H += DenseMapInfo<const Instruction *>::getHashValue(II);
-    return H;
-  }
-  static bool isEqual(const AA::InstExclusionSetTy *LHS,
-                      const AA::InstExclusionSetTy *RHS) {
-    if (LHS == RHS)
-      return true;
-    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
-        LHS == getTombstoneKey() || RHS == getTombstoneKey())
-      return false;
-    auto SizeLHS = LHS ? LHS->size() : 0;
-    auto SizeRHS = RHS ? RHS->size() : 0;
-    if (SizeLHS != SizeRHS)
-      return false;
-    if (SizeRHS == 0)
-      return true;
-    return llvm::set_is_subset(*LHS, *RHS);
-  }
-};
-
-/// The value passed to the line option that defines the maximal initialization
-/// chain length.
-extern unsigned MaxInitializationChainLength;
-
-///{
-enum class ChangeStatus {
-  CHANGED,
-  UNCHANGED,
-};
-
-ChangeStatus operator|(ChangeStatus l, ChangeStatus r);
-ChangeStatus &operator|=(ChangeStatus &l, ChangeStatus r);
-ChangeStatus operator&(ChangeStatus l, ChangeStatus r);
-ChangeStatus &operator&=(ChangeStatus &l, ChangeStatus r);
-
-enum class DepClassTy {
-  REQUIRED, ///< The target cannot be valid if the source is not.
-  OPTIONAL, ///< The target may be valid if the source is not.
-  NONE,     ///< Do not track a dependence between source and target.
-};
-///}
-
-/// The data structure for the nodes of a dependency graph
-struct AADepGraphNode {
-public:
-  virtual ~AADepGraphNode() = default;
-  using DepTy = PointerIntPair<AADepGraphNode *, 1>;
-  using DepSetTy = SmallSetVector<DepTy, 2>;
-
-protected:
-  /// Set of dependency graph nodes which should be updated if this one
-  /// is updated. The bit encodes if it is optional.
-  DepSetTy Deps;
-
-  static AADepGraphNode *DepGetVal(const DepTy &DT) { return DT.getPointer(); }
-  static AbstractAttribute *DepGetValAA(const DepTy &DT) {
-    return cast<AbstractAttribute>(DT.getPointer());
-  }
-
-  operator AbstractAttribute *() { return cast<AbstractAttribute>(this); }
-
-public:
-  using iterator = mapped_iterator<DepSetTy::iterator, decltype(&DepGetVal)>;
-  using aaiterator =
-      mapped_iterator<DepSetTy::iterator, decltype(&DepGetValAA)>;
-
-  aaiterator begin() { return aaiterator(Deps.begin(), &DepGetValAA); }
-  aaiterator end() { return aaiterator(Deps.end(), &DepGetValAA); }
-  iterator child_begin() { return iterator(Deps.begin(), &DepGetVal); }
-  iterator child_end() { return iterator(Deps.end(), &DepGetVal); }
-
-  void print(raw_ostream &OS) const { print(nullptr, OS); }
-  virtual void print(Attributor *, raw_ostream &OS) const {
-    OS << "AADepNode Impl\n";
-  }
-  DepSetTy &getDeps() { return Deps; }
-
-  friend struct Attributor;
-  friend struct AADepGraph;
-};
-
-/// The data structure for the dependency graph
-///
-/// Note that in this graph if there is an edge from A to B (A -> B),
-/// then it means that B depends on A, and when the state of A is
-/// updated, node B should also be updated
-struct AADepGraph {
-  AADepGraph() = default;
-  ~AADepGraph() = default;
-
-  using DepTy = AADepGraphNode::DepTy;
-  static AADepGraphNode *DepGetVal(const DepTy &DT) { return DT.getPointer(); }
-  using iterator =
-      mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>;
-
-  /// There is no root node for the dependency graph. But the SCCIterator
-  /// requires a single entry point, so we maintain a fake("synthetic") root
-  /// node that depends on every node.
-  AADepGraphNode SyntheticRoot;
-  AADepGraphNode *GetEntryNode() { return &SyntheticRoot; }
-
-  iterator begin() { return SyntheticRoot.child_begin(); }
-  iterator end() { return SyntheticRoot.child_end(); }
-
-  void viewGraph();
-
-  /// Dump graph to file
-  void dumpGraph();
-
-  /// Print dependency graph
-  void print();
-};
-
-/// Helper to describe and deal with positions in the LLVM-IR.
-///
-/// A position in the IR is described by an anchor value and an "offset" that
-/// could be the argument number, for call sites and arguments, or an indicator
-/// of the "position kind". The kinds, specified in the Kind enum below, include
-/// the locations in the attribute list, i.a., function scope and return value,
-/// as well as a distinction between call sites and functions. Finally, there
-/// are floating values that do not have a corresponding attribute list
-/// position.
-struct IRPosition {
-  // NOTE: In the future this definition can be changed to support recursive
-  // functions.
-  using CallBaseContext = CallBase;
-
-  /// The positions we distinguish in the IR.
-  enum Kind : char {
-    IRP_INVALID,  ///< An invalid position.
-    IRP_FLOAT,    ///< A position that is not associated with a spot suitable
-                  ///< for attributes. This could be any value or instruction.
-    IRP_RETURNED, ///< An attribute for the function return value.
-    IRP_CALL_SITE_RETURNED, ///< An attribute for a call site return value.
-    IRP_FUNCTION,           ///< An attribute for a function (scope).
-    IRP_CALL_SITE,          ///< An attribute for a call site (function scope).
-    IRP_ARGUMENT,           ///< An attribute for a function argument.
-    IRP_CALL_SITE_ARGUMENT, ///< An attribute for a call site argument.
-  };
-
-  /// Default constructor available to create invalid positions implicitly. All
-  /// other positions need to be created explicitly through the appropriate
-  /// static member function.
-  IRPosition() : Enc(nullptr, ENC_VALUE) { verify(); }
-
-  /// Create a position describing the value of \p V.
-  static const IRPosition value(const Value &V,
-                                const CallBaseContext *CBContext = nullptr) {
-    if (auto *Arg = dyn_cast<Argument>(&V))
-      return IRPosition::argument(*Arg, CBContext);
-    if (auto *CB = dyn_cast<CallBase>(&V))
-      return IRPosition::callsite_returned(*CB);
-    return IRPosition(const_cast<Value &>(V), IRP_FLOAT, CBContext);
-  }
-
-  /// Create a position describing the instruction \p I. This is different from
-  /// the value version because call sites are treated as intrusctions rather
-  /// than their return value in this function.
-  static const IRPosition inst(const Instruction &I,
-                               const CallBaseContext *CBContext = nullptr) {
-    return IRPosition(const_cast<Instruction &>(I), IRP_FLOAT, CBContext);
-  }
-
-  /// Create a position describing the function scope of \p F.
-  /// \p CBContext is used for call base specific analysis.
-  static const IRPosition function(const Function &F,
-                                   const CallBaseContext *CBContext = nullptr) {
-    return IRPosition(const_cast<Function &>(F), IRP_FUNCTION, CBContext);
-  }
-
-  /// Create a position describing the returned value of \p F.
-  /// \p CBContext is used for call base specific analysis.
-  static const IRPosition returned(const Function &F,
-                                   const CallBaseContext *CBContext = nullptr) {
-    return IRPosition(const_cast<Function &>(F), IRP_RETURNED, CBContext);
-  }
-
-  /// Create a position describing the argument \p Arg.
-  /// \p CBContext is used for call base specific analysis.
-  static const IRPosition argument(const Argument &Arg,
-                                   const CallBaseContext *CBContext = nullptr) {
-    return IRPosition(const_cast<Argument &>(Arg), IRP_ARGUMENT, CBContext);
-  }
-
-  /// Create a position describing the function scope of \p CB.
-  static const IRPosition callsite_function(const CallBase &CB) {
-    return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE);
-  }
-
-  /// Create a position describing the returned value of \p CB.
-  static const IRPosition callsite_returned(const CallBase &CB) {
-    return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE_RETURNED);
-  }
-
-  /// Create a position describing the argument of \p CB at position \p ArgNo.
-  static const IRPosition callsite_argument(const CallBase &CB,
-                                            unsigned ArgNo) {
-    return IRPosition(const_cast<Use &>(CB.getArgOperandUse(ArgNo)),
-                      IRP_CALL_SITE_ARGUMENT);
-  }
-
-  /// Create a position describing the argument of \p ACS at position \p ArgNo.
-  static const IRPosition callsite_argument(AbstractCallSite ACS,
-                                            unsigned ArgNo) {
-    if (ACS.getNumArgOperands() <= ArgNo)
-      return IRPosition();
-    int CSArgNo = ACS.getCallArgOperandNo(ArgNo);
-    if (CSArgNo >= 0)
-      return IRPosition::callsite_argument(
-          cast<CallBase>(*ACS.getInstruction()), CSArgNo);
-    return IRPosition();
-  }
-
-  /// Create a position with function scope matching the "context" of \p IRP.
-  /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result
-  /// will be a call site position, otherwise the function position of the
-  /// associated function.
-  static const IRPosition
-  function_scope(const IRPosition &IRP,
-                 const CallBaseContext *CBContext = nullptr) {
-    if (IRP.isAnyCallSitePosition()) {
-      return IRPosition::callsite_function(
-          cast<CallBase>(IRP.getAnchorValue()));
-    }
-    assert(IRP.getAssociatedFunction());
-    return IRPosition::function(*IRP.getAssociatedFunction(), CBContext);
-  }
-
-  bool operator==(const IRPosition &RHS) const {
-    return Enc == RHS.Enc && RHS.CBContext == CBContext;
-  }
-  bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); }
-
-  /// Return the value this abstract attribute is anchored with.
-  ///
-  /// The anchor value might not be the associated value if the latter is not
-  /// sufficient to determine where arguments will be manifested. This is, so
-  /// far, only the case for call site arguments as the value is not sufficient
-  /// to pinpoint them. Instead, we can use the call site as an anchor.
-  Value &getAnchorValue() const {
-    switch (getEncodingBits()) {
-    case ENC_VALUE:
-    case ENC_RETURNED_VALUE:
-    case ENC_FLOATING_FUNCTION:
-      return *getAsValuePtr();
-    case ENC_CALL_SITE_ARGUMENT_USE:
-      return *(getAsUsePtr()->getUser());
-    default:
-      llvm_unreachable("Unkown encoding!");
-    };
-  }
-
-  /// Return the associated function, if any.
-  Function *getAssociatedFunction() const {
-    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue())) {
-      // We reuse the logic that associates callback calles to arguments of a
-      // call site here to identify the callback callee as the associated
-      // function.
-      if (Argument *Arg = getAssociatedArgument())
-        return Arg->getParent();
-      return dyn_cast_if_present<Function>(
-          CB->getCalledOperand()->stripPointerCasts());
-    }
-    return getAnchorScope();
-  }
-
-  /// Return the associated argument, if any.
-  Argument *getAssociatedArgument() const;
-
-  /// Return true if the position refers to a function interface, that is the
-  /// function scope, the function return, or an argument.
-  bool isFnInterfaceKind() const {
-    switch (getPositionKind()) {
-    case IRPosition::IRP_FUNCTION:
-    case IRPosition::IRP_RETURNED:
-    case IRPosition::IRP_ARGUMENT:
-      return true;
-    default:
-      return false;
-    }
-  }
-
-  /// Return true if this is a function or call site position.
-  bool isFunctionScope() const {
-    switch (getPositionKind()) {
-    case IRPosition::IRP_CALL_SITE:
-    case IRPosition::IRP_FUNCTION:
-      return true;
-    default:
-      return false;
-    };
-  }
-
-  /// Return the Function surrounding the anchor value.
-  Function *getAnchorScope() const {
-    Value &V = getAnchorValue();
-    if (isa<Function>(V))
-      return &cast<Function>(V);
-    if (isa<Argument>(V))
-      return cast<Argument>(V).getParent();
-    if (isa<Instruction>(V))
-      return cast<Instruction>(V).getFunction();
-    return nullptr;
-  }
-
-  /// Return the context instruction, if any.
-  Instruction *getCtxI() const {
-    Value &V = getAnchorValue();
-    if (auto *I = dyn_cast<Instruction>(&V))
-      return I;
-    if (auto *Arg = dyn_cast<Argument>(&V))
-      if (!Arg->getParent()->isDeclaration())
-        return &Arg->getParent()->getEntryBlock().front();
-    if (auto *F = dyn_cast<Function>(&V))
-      if (!F->isDeclaration())
-        return &(F->getEntryBlock().front());
-    return nullptr;
-  }
-
-  /// Return the value this abstract attribute is associated with.
-  Value &getAssociatedValue() const {
-    if (getCallSiteArgNo() < 0 || isa<Argument>(&getAnchorValue()))
-      return getAnchorValue();
-    assert(isa<CallBase>(&getAnchorValue()) && "Expected a call base!");
-    return *cast<CallBase>(&getAnchorValue())
-                ->getArgOperand(getCallSiteArgNo());
-  }
-
-  /// Return the type this abstract attribute is associated with.
-  Type *getAssociatedType() const {
-    if (getPositionKind() == IRPosition::IRP_RETURNED)
-      return getAssociatedFunction()->getReturnType();
-    return getAssociatedValue().getType();
-  }
-
-  /// Return the callee argument number of the associated value if it is an
-  /// argument or call site argument, otherwise a negative value. In contrast to
-  /// `getCallSiteArgNo` this method will always return the "argument number"
-  /// from the perspective of the callee. This may not the same as the call site
-  /// if this is a callback call.
-  int getCalleeArgNo() const {
-    return getArgNo(/* CallbackCalleeArgIfApplicable */ true);
-  }
-
-  /// Return the call site argument number of the associated value if it is an
-  /// argument or call site argument, otherwise a negative value. In contrast to
-  /// `getCalleArgNo` this method will always return the "operand number" from
-  /// the perspective of the call site. This may not the same as the callee
-  /// perspective if this is a callback call.
-  int getCallSiteArgNo() const {
-    return getArgNo(/* CallbackCalleeArgIfApplicable */ false);
-  }
-
-  /// Return the index in the attribute list for this position.
-  unsigned getAttrIdx() const {
-    switch (getPositionKind()) {
-    case IRPosition::IRP_INVALID:
-    case IRPosition::IRP_FLOAT:
-      break;
-    case IRPosition::IRP_FUNCTION:
-    case IRPosition::IRP_CALL_SITE:
-      return AttributeList::FunctionIndex;
-    case IRPosition::IRP_RETURNED:
-    case IRPosition::IRP_CALL_SITE_RETURNED:
-      return AttributeList::ReturnIndex;
-    case IRPosition::IRP_ARGUMENT:
-      return getCalleeArgNo() + AttributeList::FirstArgIndex;
-    case IRPosition::IRP_CALL_SITE_ARGUMENT:
-      return getCallSiteArgNo() + AttributeList::FirstArgIndex;
-    }
-    llvm_unreachable(
-        "There is no attribute index for a floating or invalid position!");
-  }
-
-  /// Return the value attributes are attached to.
-  Value *getAttrListAnchor() const {
-    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
-      return CB;
-    return getAssociatedFunction();
-  }
-
-  /// Return the attributes associated with this function or call site scope.
-  AttributeList getAttrList() const {
-    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
-      return CB->getAttributes();
-    return getAssociatedFunction()->getAttributes();
-  }
-
-  /// Update the attributes associated with this function or call site scope.
-  void setAttrList(const AttributeList &AttrList) const {
-    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
-      return CB->setAttributes(AttrList);
-    return getAssociatedFunction()->setAttributes(AttrList);
-  }
-
-  /// Return the number of arguments associated with this function or call site
-  /// scope.
-  unsigned getNumArgs() const {
-    assert((getPositionKind() == IRP_CALL_SITE ||
-            getPositionKind() == IRP_FUNCTION) &&
-           "Only valid for function/call site positions!");
-    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
-      return CB->arg_size();
-    return getAssociatedFunction()->arg_size();
-  }
-
-  /// Return theargument \p ArgNo associated with this function or call site
-  /// scope.
-  Value *getArg(unsigned ArgNo) const {
-    assert((getPositionKind() == IRP_CALL_SITE ||
-            getPositionKind() == IRP_FUNCTION) &&
-           "Only valid for function/call site positions!");
-    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
-      return CB->getArgOperand(ArgNo);
-    return getAssociatedFunction()->getArg(ArgNo);
-  }
-
-  /// Return the associated position kind.
-  Kind getPositionKind() const {
-    char EncodingBits = getEncodingBits();
-    if (EncodingBits == ENC_CALL_SITE_ARGUMENT_USE)
-      return IRP_CALL_SITE_ARGUMENT;
-    if (EncodingBits == ENC_FLOATING_FUNCTION)
-      return IRP_FLOAT;
-
-    Value *V = getAsValuePtr();
-    if (!V)
-      return IRP_INVALID;
-    if (isa<Argument>(V))
-      return IRP_ARGUMENT;
-    if (isa<Function>(V))
-      return isReturnPosition(EncodingBits) ? IRP_RETURNED : IRP_FUNCTION;
-    if (isa<CallBase>(V))
-      return isReturnPosition(EncodingBits) ? IRP_CALL_SITE_RETURNED
-                                            : IRP_CALL_SITE;
-    return IRP_FLOAT;
-  }
-
-  bool isAnyCallSitePosition() const {
-    switch (getPositionKind()) {
-    case IRPosition::IRP_CALL_SITE:
-    case IRPosition::IRP_CALL_SITE_RETURNED:
-    case IRPosition::IRP_CALL_SITE_ARGUMENT:
-      return true;
-    default:
-      return false;
-    }
-  }
-
-  /// Return true if the position is an argument or call site argument.
-  bool isArgumentPosition() const {
-    switch (getPositionKind()) {
-    case IRPosition::IRP_ARGUMENT:
-    case IRPosition::IRP_CALL_SITE_ARGUMENT:
-      return true;
-    default:
-      return false;
-    }
-  }
-
-  /// Return the same position without the call base context.
-  IRPosition stripCallBaseContext() const {
-    IRPosition Result = *this;
-    Result.CBContext = nullptr;
-    return Result;
-  }
-
-  /// Get the call base context from the position.
-  const CallBaseContext *getCallBaseContext() const { return CBContext; }
-
-  /// Check if the position has any call base context.
-  bool hasCallBaseContext() const { return CBContext != nullptr; }
-
-  /// Special DenseMap key values.
-  ///
-  ///{
-  static const IRPosition EmptyKey;
-  static const IRPosition TombstoneKey;
-  ///}
-
-  /// Conversion into a void * to allow reuse of pointer hashing.
-  operator void *() const { return Enc.getOpaqueValue(); }
-
-private:
-  /// Private constructor for special values only!
-  explicit IRPosition(void *Ptr, const CallBaseContext *CBContext = nullptr)
-      : CBContext(CBContext) {
-    Enc.setFromOpaqueValue(Ptr);
-  }
-
-  /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK.
-  explicit IRPosition(Value &AnchorVal, Kind PK,
-                      const CallBaseContext *CBContext = nullptr)
-      : CBContext(CBContext) {
-    switch (PK) {
-    case IRPosition::IRP_INVALID:
-      llvm_unreachable("Cannot create invalid IRP with an anchor value!");
-      break;
-    case IRPosition::IRP_FLOAT:
-      // Special case for floating functions.
-      if (isa<Function>(AnchorVal) || isa<CallBase>(AnchorVal))
-        Enc = {&AnchorVal, ENC_FLOATING_FUNCTION};
-      else
-        Enc = {&AnchorVal, ENC_VALUE};
-      break;
-    case IRPosition::IRP_FUNCTION:
-    case IRPosition::IRP_CALL_SITE:
-      Enc = {&AnchorVal, ENC_VALUE};
-      break;
-    case IRPosition::IRP_RETURNED:
-    case IRPosition::IRP_CALL_SITE_RETURNED:
-      Enc = {&AnchorVal, ENC_RETURNED_VALUE};
-      break;
-    case IRPosition::IRP_ARGUMENT:
-      Enc = {&AnchorVal, ENC_VALUE};
-      break;
-    case IRPosition::IRP_CALL_SITE_ARGUMENT:
-      llvm_unreachable(
-          "Cannot create call site argument IRP with an anchor value!");
-      break;
-    }
-    verify();
-  }
-
-  /// Return the callee argument number of the associated value if it is an
-  /// argument or call site argument. See also `getCalleeArgNo` and
-  /// `getCallSiteArgNo`.
-  int getArgNo(bool CallbackCalleeArgIfApplicable) const {
-    if (CallbackCalleeArgIfApplicable)
-      if (Argument *Arg = getAssociatedArgument())
-        return Arg->getArgNo();
-    switch (getPositionKind()) {
-    case IRPosition::IRP_ARGUMENT:
-      return cast<Argument>(getAsValuePtr())->getArgNo();
-    case IRPosition::IRP_CALL_SITE_ARGUMENT: {
-      Use &U = *getAsUsePtr();
-      return cast<CallBase>(U.getUser())->getArgOperandNo(&U);
-    }
-    default:
-      return -1;
-    }
-  }
-
-  /// IRPosition for the use \p U. The position kind \p PK needs to be
-  /// IRP_CALL_SITE_ARGUMENT, the anchor value is the user, the associated value
-  /// the used value.
-  explicit IRPosition(Use &U, Kind PK) {
-    assert(PK == IRP_CALL_SITE_ARGUMENT &&
-           "Use constructor is for call site arguments only!");
-    Enc = {&U, ENC_CALL_SITE_ARGUMENT_USE};
-    verify();
-  }
-
-  /// Verify internal invariants.
-  void verify();
-
-  /// Return the underlying pointer as Value *, valid for all positions but
-  /// IRP_CALL_SITE_ARGUMENT.
-  Value *getAsValuePtr() const {
-    assert(getEncodingBits() != ENC_CALL_SITE_ARGUMENT_USE &&
-           "Not a value pointer!");
-    return reinterpret_cast<Value *>(Enc.getPointer());
-  }
-
-  /// Return the underlying pointer as Use *, valid only for
-  /// IRP_CALL_SITE_ARGUMENT positions.
-  Use *getAsUsePtr() const {
-    assert(getEncodingBits() == ENC_CALL_SITE_ARGUMENT_USE &&
-           "Not a value pointer!");
-    return reinterpret_cast<Use *>(Enc.getPointer());
-  }
-
-  /// Return true if \p EncodingBits describe a returned or call site returned
-  /// position.
-  static bool isReturnPosition(char EncodingBits) {
-    return EncodingBits == ENC_RETURNED_VALUE;
-  }
-
-  /// Return true if the encoding bits describe a returned or call site returned
-  /// position.
-  bool isReturnPosition() const { return isReturnPosition(getEncodingBits()); }
-
-  /// The encoding of the IRPosition is a combination of a pointer and two
-  /// encoding bits. The values of the encoding bits are defined in the enum
-  /// below. The pointer is either a Value* (for the first three encoding bit
-  /// combinations) or Use* (for ENC_CALL_SITE_ARGUMENT_USE).
-  ///
-  ///{
-  enum {
-    ENC_VALUE = 0b00,
-    ENC_RETURNED_VALUE = 0b01,
-    ENC_FLOATING_FUNCTION = 0b10,
-    ENC_CALL_SITE_ARGUMENT_USE = 0b11,
-  };
-
-  // Reserve the maximal amount of bits so there is no need to mask out the
-  // remaining ones. We will not encode anything else in the pointer anyway.
-  static constexpr int NumEncodingBits =
-      PointerLikeTypeTraits<void *>::NumLowBitsAvailable;
-  static_assert(NumEncodingBits >= 2, "At least two bits are required!");
-
-  /// The pointer with the encoding bits.
-  PointerIntPair<void *, NumEncodingBits, char> Enc;
-  ///}
-
-  /// Call base context. Used for callsite specific analysis.
-  const CallBaseContext *CBContext = nullptr;
-
-  /// Return the encoding bits.
-  char getEncodingBits() const { return Enc.getInt(); }
-};
-
-/// Helper that allows IRPosition as a key in a DenseMap.
-template <> struct DenseMapInfo<IRPosition> {
-  static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; }
-  static inline IRPosition getTombstoneKey() {
-    return IRPosition::TombstoneKey;
-  }
-  static unsigned getHashValue(const IRPosition &IRP) {
-    return (DenseMapInfo<void *>::getHashValue(IRP) << 4) ^
-           (DenseMapInfo<Value *>::getHashValue(IRP.getCallBaseContext()));
-  }
-
-  static bool isEqual(const IRPosition &a, const IRPosition &b) {
-    return a == b;
-  }
-};
-
-/// A visitor class for IR positions.
-///
-/// Given a position P, the SubsumingPositionIterator allows to visit "subsuming
-/// positions" wrt. attributes/information. Thus, if a piece of information
-/// holds for a subsuming position, it also holds for the position P.
-///
-/// The subsuming positions always include the initial position and then,
-/// depending on the position kind, additionally the following ones:
-/// - for IRP_RETURNED:
-///   - the function (IRP_FUNCTION)
-/// - for IRP_ARGUMENT:
-///   - the function (IRP_FUNCTION)
-/// - for IRP_CALL_SITE:
-///   - the callee (IRP_FUNCTION), if known
-/// - for IRP_CALL_SITE_RETURNED:
-///   - the callee (IRP_RETURNED), if known
-///   - the call site (IRP_FUNCTION)
-///   - the callee (IRP_FUNCTION), if known
-/// - for IRP_CALL_SITE_ARGUMENT:
-///   - the argument of the callee (IRP_ARGUMENT), if known
-///   - the callee (IRP_FUNCTION), if known
-///   - the position the call site argument is associated with if it is not
-///     anchored to the call site, e.g., if it is an argument then the argument
-///     (IRP_ARGUMENT)
-class SubsumingPositionIterator {
-  SmallVector<IRPosition, 4> IRPositions;
-  using iterator = decltype(IRPositions)::iterator;
-
-public:
-  SubsumingPositionIterator(const IRPosition &IRP);
-  iterator begin() { return IRPositions.begin(); }
-  iterator end() { return IRPositions.end(); }
-};
-
-/// Wrapper for FunctionAnalysisManager.
-struct AnalysisGetter {
-  // The client may be running the old pass manager, in which case, we need to
-  // map the requested Analysis to its equivalent wrapper in the old pass
-  // manager. The scheme implemented here does not require every Analysis to be
-  // updated. Only those new analyses that the client cares about in the old
-  // pass manager need to expose a LegacyWrapper type, and that wrapper should
-  // support a getResult() method that matches the new Analysis.
-  //
-  // We need SFINAE to check for the LegacyWrapper, but function templates don't
-  // allow partial specialization, which is needed in this case. So instead, we
-  // use a constexpr bool to perform the SFINAE, and then use this information
-  // inside the function template.
-  template <typename, typename = void>
-  static constexpr bool HasLegacyWrapper = false;
-
-  template <typename Analysis>
-  typename Analysis::Result *getAnalysis(const Function &F,
-                                         bool RequestCachedOnly = false) {
-    if (!LegacyPass && !FAM)
-      return nullptr;
-    if (FAM) {
-      if (CachedOnly || RequestCachedOnly)
-        return FAM->getCachedResult<Analysis>(const_cast<Function &>(F));
-      return &FAM->getResult<Analysis>(const_cast<Function &>(F));
-    }
-    if constexpr (HasLegacyWrapper<Analysis>) {
-      if (!CachedOnly && !RequestCachedOnly)
-        return &LegacyPass
-                    ->getAnalysis<typename Analysis::LegacyWrapper>(
-                        const_cast<Function &>(F))
-                    .getResult();
-      if (auto *P =
-              LegacyPass
-                  ->getAnalysisIfAvailable<typename Analysis::LegacyWrapper>())
-        return &P->getResult();
-    }
-    return nullptr;
-  }
-
-  /// Invalidates the analyses. Valid only when using the new pass manager.
-  void invalidateAnalyses() {
-    assert(FAM && "Can only be used from the new PM!");
-    FAM->clear();
-  }
-
-  AnalysisGetter(FunctionAnalysisManager &FAM, bool CachedOnly = false)
-      : FAM(&FAM), CachedOnly(CachedOnly) {}
-  AnalysisGetter(Pass *P, bool CachedOnly = false)
-      : LegacyPass(P), CachedOnly(CachedOnly) {}
-  AnalysisGetter() = default;
-
-private:
-  FunctionAnalysisManager *FAM = nullptr;
-  Pass *LegacyPass = nullptr;
-
-  /// If \p CachedOnly is true, no pass is created, just existing results are
-  /// used. Also available per request.
-  bool CachedOnly = false;
-};
-
-template <typename Analysis>
-constexpr bool AnalysisGetter::HasLegacyWrapper<
-    Analysis, std::void_t<typename Analysis::LegacyWrapper>> = true;
-
-/// Data structure to hold cached (LLVM-IR) information.
-///
-/// All attributes are given an InformationCache object at creation time to
-/// avoid inspection of the IR by all of them individually. This default
-/// InformationCache will hold information required by 'default' attributes,
-/// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..)
-/// is called.
-///
-/// If custom abstract attributes, registered manually through
-/// Attributor::registerAA(...), need more information, especially if it is not
-/// reusable, it is advised to inherit from the InformationCache and cast the
-/// instance down in the abstract attributes.
-struct InformationCache {
-  InformationCache(const Module &M, AnalysisGetter &AG,
-                   BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC,
-                   bool UseExplorer = true)
-      : CGSCC(CGSCC), DL(M.getDataLayout()), Allocator(Allocator), AG(AG),
-        TargetTriple(M.getTargetTriple()) {
-    if (UseExplorer)
-      Explorer = new (Allocator) MustBeExecutedContextExplorer(
-          /* ExploreInterBlock */ true, /* ExploreCFGForward */ true,
-          /* ExploreCFGBackward */ true,
-          /* LIGetter */
-          [&](const Function &F) { return AG.getAnalysis<LoopAnalysis>(F); },
-          /* DTGetter */
-          [&](const Function &F) {
-            return AG.getAnalysis<DominatorTreeAnalysis>(F);
-          },
-          /* PDTGetter */
-          [&](const Function &F) {
-            return AG.getAnalysis<PostDominatorTreeAnalysis>(F);
-          });
-  }
-
-  ~InformationCache() {
-    // The FunctionInfo objects are allocated via a BumpPtrAllocator, we call
-    // the destructor manually.
-    for (auto &It : FuncInfoMap)
-      It.getSecond()->~FunctionInfo();
-    // Same is true for the instruction exclusions sets.
-    using AA::InstExclusionSetTy;
-    for (auto *BES : BESets)
-      BES->~InstExclusionSetTy();
-    if (Explorer)
-      Explorer->~MustBeExecutedContextExplorer();
-  }
-
-  /// Apply \p CB to all uses of \p F. If \p LookThroughConstantExprUses is
-  /// true, constant expression users are not given to \p CB but their uses are
-  /// traversed transitively.
-  template <typename CBTy>
-  static void foreachUse(Function &F, CBTy CB,
-                         bool LookThroughConstantExprUses = true) {
-    SmallVector<Use *, 8> Worklist(make_pointer_range(F.uses()));
-
-    for (unsigned Idx = 0; Idx < Worklist.size(); ++Idx) {
-      Use &U = *Worklist[Idx];
-
-      // Allow use in constant bitcasts and simply look through them.
-      if (LookThroughConstantExprUses && isa<ConstantExpr>(U.getUser())) {
-        for (Use &CEU : cast<ConstantExpr>(U.getUser())->uses())
-          Worklist.push_back(&CEU);
-        continue;
-      }
-
-      CB(U);
-    }
-  }
-
-  /// The CG-SCC the pass is run on, or nullptr if it is a module pass.
-  const SetVector<Function *> *const CGSCC = nullptr;
-
-  /// A vector type to hold instructions.
-  using InstructionVectorTy = SmallVector<Instruction *, 8>;
-
-  /// A map type from opcodes to instructions with this opcode.
-  using OpcodeInstMapTy = DenseMap<unsigned, InstructionVectorTy *>;
-
-  /// Return the map that relates "interesting" opcodes with all instructions
-  /// with that opcode in \p F.
-  OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) {
-    return getFunctionInfo(F).OpcodeInstMap;
-  }
-
-  /// Return the instructions in \p F that may read or write memory.
-  InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) {
-    return getFunctionInfo(F).RWInsts;
-  }
-
-  /// Return MustBeExecutedContextExplorer
-  MustBeExecutedContextExplorer *getMustBeExecutedContextExplorer() {
-    return Explorer;
-  }
-
-  /// Return TargetLibraryInfo for function \p F.
-  TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) {
-    return AG.getAnalysis<TargetLibraryAnalysis>(F);
-  }
-
-  /// Return true if \p Arg is involved in a must-tail call, thus the argument
-  /// of the caller or callee.
-  bool isInvolvedInMustTailCall(const Argument &Arg) {
-    FunctionInfo &FI = getFunctionInfo(*Arg.getParent());
-    return FI.CalledViaMustTail || FI.ContainsMustTailCall;
-  }
-
-  bool isOnlyUsedByAssume(const Instruction &I) const {
-    return AssumeOnlyValues.contains(&I);
-  }
-
-  /// Invalidates the cached analyses. Valid only when using the new pass
-  /// manager.
-  void invalidateAnalyses() { AG.invalidateAnalyses(); }
-
-  /// Return the analysis result from a pass \p AP for function \p F.
-  template <typename AP>
-  typename AP::Result *getAnalysisResultForFunction(const Function &F,
-                                                    bool CachedOnly = false) {
-    return AG.getAnalysis<AP>(F, CachedOnly);
-  }
-
-  /// Return datalayout used in the module.
-  const DataLayout &getDL() { return DL; }
-
-  /// Return the map conaining all the knowledge we have from `llvm.assume`s.
-  const RetainedKnowledgeMap &getKnowledgeMap() const { return KnowledgeMap; }
-
-  /// Given \p BES, return a uniqued version.
-  const AA::InstExclusionSetTy *
-  getOrCreateUniqueBlockExecutionSet(const AA::InstExclusionSetTy *BES) {
-    auto It = BESets.find(BES);
-    if (It != BESets.end())
-      return *It;
-    auto *UniqueBES = new (Allocator) AA::InstExclusionSetTy(*BES);
-    bool Success = BESets.insert(UniqueBES).second;
-    (void)Success;
-    assert(Success && "Expected only new entries to be added");
-    return UniqueBES;
-  }
-
-  /// Return true if the stack (llvm::Alloca) can be accessed by other threads.
-  bool stackIsAccessibleByOtherThreads() { return !targetIsGPU(); }
-
-  /// Return true if the target is a GPU.
-  bool targetIsGPU() {
-    return TargetTriple.isAMDGPU() || TargetTriple.isNVPTX();
-  }
-
-  /// Return all functions that might be called indirectly, only valid for
-  /// closed world modules (see isClosedWorldModule).
-  const ArrayRef<Function *>
-  getIndirectlyCallableFunctions(Attributor &A) const;
-
-private:
-  struct FunctionInfo {
-    ~FunctionInfo();
-
-    /// A nested map that remembers all instructions in a function with a
-    /// certain instruction opcode (Instruction::getOpcode()).
-    OpcodeInstMapTy OpcodeInstMap;
-
-    /// A map from functions to their instructions that may read or write
-    /// memory.
-    InstructionVectorTy RWInsts;
-
-    /// Function is called by a `musttail` call.
-    bool CalledViaMustTail;
-
-    /// Function contains a `musttail` call.
-    bool ContainsMustTailCall;
-  };
-
-  /// A map type from functions to informatio about it.
-  DenseMap<const Function *, FunctionInfo *> FuncInfoMap;
-
-  /// Return information about the function \p F, potentially by creating it.
-  FunctionInfo &getFunctionInfo(const Function &F) {
-    FunctionInfo *&FI = FuncInfoMap[&F];
-    if (!FI) {
-      FI = new (Allocator) FunctionInfo();
-      initializeInformationCache(F, *FI);
-    }
-    return *FI;
-  }
-
-  /// Vector of functions that might be callable indirectly, i.a., via a
-  /// function pointer.
-  SmallVector<Function *> IndirectlyCallableFunctions;
-
-  /// Initialize the function information cache \p FI for the function \p F.
-  ///
-  /// This method needs to be called for all function that might be looked at
-  /// through the information cache interface *prior* to looking at them.
-  void initializeInformationCache(const Function &F, FunctionInfo &FI);
-
-  /// The datalayout used in the module.
-  const DataLayout &DL;
-
-  /// The allocator used to allocate memory, e.g. for `FunctionInfo`s.
-  BumpPtrAllocator &Allocator;
-
-  /// MustBeExecutedContextExplorer
-  MustBeExecutedContextExplorer *Explorer = nullptr;
-
-  /// A map with knowledge retained in `llvm.assume` instructions.
-  RetainedKnowledgeMap KnowledgeMap;
-
-  /// A container for all instructions that are only used by `llvm.assume`.
-  SetVector<const Instruction *> AssumeOnlyValues;
-
-  /// Cache for block sets to allow reuse.
-  DenseSet<const AA::InstExclusionSetTy *> BESets;
-
-  /// Getters for analysis.
-  AnalysisGetter &AG;
-
-  /// Set of inlineable functions
-  SmallPtrSet<const Function *, 8> InlineableFunctions;
-
-  /// The triple describing the target machine.
-  Triple TargetTriple;
-
-  /// Give the Attributor access to the members so
-  /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them.
-  friend struct Attributor;
-};
-
-/// Configuration for the Attributor.
-struct AttributorConfig {
-
-  AttributorConfig(CallGraphUpdater &CGUpdater) : CGUpdater(CGUpdater) {}
-
-  /// Is the user of the Attributor a module pass or not. This determines what
-  /// IR we can look at and modify. If it is a module pass we might deduce facts
-  /// outside the initial function set and modify functions outside that set,
-  /// but only as part of the optimization of the functions in the initial
-  /// function set. For CGSCC passes we can look at the IR of the module slice
-  /// but never run any deduction, or perform any modification, outside the
-  /// initial function set (which we assume is the SCC).
-  bool IsModulePass = true;
-
-  /// Flag to determine if we can delete functions or keep dead ones around.
-  bool DeleteFns = true;
-
-  /// Flag to determine if we rewrite function signatures.
-  bool RewriteSignatures = true;
-
-  /// Flag to determine if we want to initialize all default AAs for an internal
-  /// function marked live. See also: InitializationCallback>
-  bool DefaultInitializeLiveInternals = true;
-
-  /// Flag to determine if we should skip all liveness checks early on.
-  bool UseLiveness = true;
-
-  /// Flag to indicate if the entire world is contained in this module, that
-  /// is, no outside functions exist.
-  bool IsClosedWorldModule = false;
-
-  /// Callback function to be invoked on internal functions marked live.
-  std::function<void(Attributor &A, const Function &F)> InitializationCallback =
-      nullptr;
-
-  /// Callback function to determine if an indirect call targets should be made
-  /// direct call targets (with an if-cascade).
-  std::function<bool(Attributor &A, const AbstractAttribute &AA, CallBase &CB,
-                     Function &AssummedCallee)>
-      IndirectCalleeSpecializationCallback = nullptr;
-
-  /// Helper to update an underlying call graph and to delete functions.
-  CallGraphUpdater &CGUpdater;
-
-  /// If not null, a set limiting the attribute opportunities.
-  DenseSet<const char *> *Allowed = nullptr;
-
-  /// Maximum number of iterations to run until fixpoint.
-  std::optional<unsigned> MaxFixpointIterations;
-
-  /// A callback function that returns an ORE object from a Function pointer.
-  ///{
-  using OptimizationRemarkGetter =
-      function_ref<OptimizationRemarkEmitter &(Function *)>;
-  OptimizationRemarkGetter OREGetter = nullptr;
-  ///}
-
-  /// The name of the pass running the attributor, used to emit remarks.
-  const char *PassName = nullptr;
-
-  using IPOAmendableCBTy = function_ref<bool(const Function &F)>;
-  IPOAmendableCBTy IPOAmendableCB;
-};
-
-/// A debug counter to limit the number of AAs created.
-DEBUG_COUNTER(NumAbstractAttributes, "num-abstract-attributes",
-              "How many AAs should be initialized");
-
-/// The fixpoint analysis framework that orchestrates the attribute deduction.
-///
-/// The Attributor provides a general abstract analysis framework (guided
-/// fixpoint iteration) as well as helper functions for the deduction of
-/// (LLVM-IR) attributes. However, also other code properties can be deduced,
-/// propagated, and ultimately manifested through the Attributor framework. This
-/// is particularly useful if these properties interact with attributes and a
-/// co-scheduled deduction allows to improve the solution. Even if not, thus if
-/// attributes/properties are completely isolated, they should use the
-/// Attributor framework to reduce the number of fixpoint iteration frameworks
-/// in the code base. Note that the Attributor design makes sure that isolated
-/// attributes are not impacted, in any way, by others derived at the same time
-/// if there is no cross-reasoning performed.
-///
-/// The public facing interface of the Attributor is kept simple and basically
-/// allows abstract attributes to one thing, query abstract attributes
-/// in-flight. There are two reasons to do this:
-///    a) The optimistic state of one abstract attribute can justify an
-///       optimistic state of another, allowing to framework to end up with an
-///       optimistic (=best possible) fixpoint instead of one based solely on
-///       information in the IR.
-///    b) This avoids reimplementing various kinds of lookups, e.g., to check
-///       for existing IR attributes, in favor of a single lookups interface
-///       provided by an abstract attribute subclass.
-///
-/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
-///       described in the file comment.
-struct Attributor {
-
-  /// Constructor
-  ///
-  /// \param Functions The set of functions we are deriving attributes for.
-  /// \param InfoCache Cache to hold various information accessible for
-  ///                  the abstract attributes.
-  /// \param Configuration The Attributor configuration which determines what
-  ///                      generic features to use.
-  Attributor(SetVector<Function *> &Functions, InformationCache &InfoCache,
-             AttributorConfig Configuration);
-
-  ~Attributor();
-
-  /// Run the analyses until a fixpoint is reached or enforced (timeout).
-  ///
-  /// The attributes registered with this Attributor can be used after as long
-  /// as the Attributor is not destroyed (it owns the attributes now).
-  ///
-  /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED.
-  ChangeStatus run();
-
-  /// Lookup an abstract attribute of type \p AAType at position \p IRP. While
-  /// no abstract attribute is found equivalent positions are checked, see
-  /// SubsumingPositionIterator. Thus, the returned abstract attribute
-  /// might be anchored at a different position, e.g., the callee if \p IRP is a
-  /// call base.
-  ///
-  /// This method is the only (supported) way an abstract attribute can retrieve
-  /// information from another abstract attribute. As an example, take an
-  /// abstract attribute that determines the memory access behavior for a
-  /// argument (readnone, readonly, ...). It should use `getAAFor` to get the
-  /// most optimistic information for other abstract attributes in-flight, e.g.
-  /// the one reasoning about the "captured" state for the argument or the one
-  /// reasoning on the memory access behavior of the function as a whole.
-  ///
-  /// If the DepClass enum is set to `DepClassTy::None` the dependence from
-  /// \p QueryingAA to the return abstract attribute is not automatically
-  /// recorded. This should only be used if the caller will record the
-  /// dependence explicitly if necessary, thus if it the returned abstract
-  /// attribute is used for reasoning. To record the dependences explicitly use
-  /// the `Attributor::recordDependence` method.
-  template <typename AAType>
-  const AAType *getAAFor(const AbstractAttribute &QueryingAA,
-                         const IRPosition &IRP, DepClassTy DepClass) {
-    return getOrCreateAAFor<AAType>(IRP, &QueryingAA, DepClass,
-                                    /* ForceUpdate */ false);
-  }
-
-  /// The version of getAAFor that allows to omit a querying abstract
-  /// attribute. Using this after Attributor started running is restricted to
-  /// only the Attributor itself. Initial seeding of AAs can be done via this
-  /// function.
-  /// NOTE: ForceUpdate is ignored in any stage other than the update stage.
-  template <typename AAType>
-  const AAType *getOrCreateAAFor(IRPosition IRP,
-                                 const AbstractAttribute *QueryingAA,
-                                 DepClassTy DepClass, bool ForceUpdate = false,
-                                 bool UpdateAfterInit = true) {
-    if (!shouldPropagateCallBaseContext(IRP))
-      IRP = IRP.stripCallBaseContext();
-
-    if (AAType *AAPtr = lookupAAFor<AAType>(IRP, QueryingAA, DepClass,
-                                            /* AllowInvalidState */ true)) {
-      if (ForceUpdate && Phase == AttributorPhase::UPDATE)
-        updateAA(*AAPtr);
-      return AAPtr;
-    }
-
-    bool ShouldUpdateAA;
-    if (!shouldInitialize<AAType>(IRP, ShouldUpdateAA))
-      return nullptr;
-
-    if (!DebugCounter::shouldExecute(NumAbstractAttributes))
-      return nullptr;
-
-    // No matching attribute found, create one.
-    // Use the static create method.
-    auto &AA = AAType::createForPosition(IRP, *this);
-
-    // Always register a new attribute to make sure we clean up the allocated
-    // memory properly.
-    registerAA(AA);
-
-    // If we are currenty seeding attributes, enforce seeding rules.
-    if (Phase == AttributorPhase::SEEDING && !shouldSeedAttribute(AA)) {
-      AA.getState().indicatePessimisticFixpoint();
-      return &AA;
-    }
-
-    // Bootstrap the new attribute with an initial update to propagate
-    // information, e.g., function -> call site.
-    {
-      TimeTraceScope TimeScope("initialize", [&]() {
-        return AA.getName() +
-               std::to_string(AA.getIRPosition().getPositionKind());
-      });
-      ++InitializationChainLength;
-      AA.initialize(*this);
-      --InitializationChainLength;
-    }
-
-    if (!ShouldUpdateAA) {
-      AA.getState().indicatePessimisticFixpoint();
-      return &AA;
-    }
-
-    // Allow seeded attributes to declare dependencies.
-    // Remember the seeding state.
-    if (UpdateAfterInit) {
-      AttributorPhase OldPhase = Phase;
-      Phase = AttributorPhase::UPDATE;
-
-      updateAA(AA);
-
-      Phase = OldPhase;
-    }
-
-    if (QueryingAA && AA.getState().isValidState())
-      recordDependence(AA, const_cast<AbstractAttribute &>(*QueryingAA),
-                       DepClass);
-    return &AA;
-  }
-
-  template <typename AAType>
-  const AAType *getOrCreateAAFor(const IRPosition &IRP) {
-    return getOrCreateAAFor<AAType>(IRP, /* QueryingAA */ nullptr,
-                                    DepClassTy::NONE);
-  }
-
-  /// Return the attribute of \p AAType for \p IRP if existing and valid. This
-  /// also allows non-AA users lookup.
-  template <typename AAType>
-  AAType *lookupAAFor(const IRPosition &IRP,
-                      const AbstractAttribute *QueryingAA = nullptr,
-                      DepClassTy DepClass = DepClassTy::OPTIONAL,
-                      bool AllowInvalidState = false) {
-    static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
-                  "Cannot query an attribute with a type not derived from "
-                  "'AbstractAttribute'!");
-    // Lookup the abstract attribute of type AAType. If found, return it after
-    // registering a dependence of QueryingAA on the one returned attribute.
-    AbstractAttribute *AAPtr = AAMap.lookup({&AAType::ID, IRP});
-    if (!AAPtr)
-      return nullptr;
-
-    AAType *AA = static_cast<AAType *>(AAPtr);
-
-    // Do not register a dependence on an attribute with an invalid state.
-    if (DepClass != DepClassTy::NONE && QueryingAA &&
-        AA->getState().isValidState())
-      recordDependence(*AA, const_cast<AbstractAttribute &>(*QueryingAA),
-                       DepClass);
-
-    // Return nullptr if this attribute has an invalid state.
-    if (!AllowInvalidState && !AA->getState().isValidState())
-      return nullptr;
-    return AA;
-  }
-
-  /// Allows a query AA to request an update if a new query was received.
-  void registerForUpdate(AbstractAttribute &AA);
-
-  /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if
-  /// \p FromAA changes \p ToAA should be updated as well.
-  ///
-  /// This method should be used in conjunction with the `getAAFor` method and
-  /// with the DepClass enum passed to the method set to None. This can
-  /// be beneficial to avoid false dependences but it requires the users of
-  /// `getAAFor` to explicitly record true dependences through this method.
-  /// The \p DepClass flag indicates if the dependence is striclty necessary.
-  /// That means for required dependences, if \p FromAA changes to an invalid
-  /// state, \p ToAA can be moved to a pessimistic fixpoint because it required
-  /// information from \p FromAA but none are available anymore.
-  void recordDependence(const AbstractAttribute &FromAA,
-                        const AbstractAttribute &ToAA, DepClassTy DepClass);
-
-  /// Introduce a new abstract attribute into the fixpoint analysis.
-  ///
-  /// Note that ownership of the attribute is given to the Attributor. It will
-  /// invoke delete for the Attributor on destruction of the Attributor.
-  ///
-  /// Attributes are identified by their IR position (AAType::getIRPosition())
-  /// and the address of their static member (see AAType::ID).
-  template <typename AAType> AAType &registerAA(AAType &AA) {
-    static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
-                  "Cannot register an attribute with a type not derived from "
-                  "'AbstractAttribute'!");
-    // Put the attribute in the lookup map structure and the container we use to
-    // keep track of all attributes.
-    const IRPosition &IRP = AA.getIRPosition();
-    AbstractAttribute *&AAPtr = AAMap[{&AAType::ID, IRP}];
-
-    assert(!AAPtr && "Attribute already in map!");
-    AAPtr = &AA;
-
-    // Register AA with the synthetic root only before the manifest stage.
-    if (Phase == AttributorPhase::SEEDING || Phase == AttributorPhase::UPDATE)
-      DG.SyntheticRoot.Deps.insert(
-          AADepGraphNode::DepTy(&AA, unsigned(DepClassTy::REQUIRED)));
-
-    return AA;
-  }
-
-  /// Return the internal information cache.
-  InformationCache &getInfoCache() { return InfoCache; }
-
-  /// Return true if this is a module pass, false otherwise.
-  bool isModulePass() const { return Configuration.IsModulePass; }
-
-  /// Return true if we should specialize the call site \b CB for the potential
-  /// callee \p Fn.
-  bool shouldSpecializeCallSiteForCallee(const AbstractAttribute &AA,
-                                         CallBase &CB, Function &Callee) {
-    return Configuration.IndirectCalleeSpecializationCallback
-               ? Configuration.IndirectCalleeSpecializationCallback(*this, AA,
-                                                                    CB, Callee)
-               : true;
-  }
-
-  /// Return true if the module contains the whole world, thus, no outside
-  /// functions exist.
-  bool isClosedWorldModule() const;
-
-  /// Return true if we derive attributes for \p Fn
-  bool isRunOn(Function &Fn) const { return isRunOn(&Fn); }
-  bool isRunOn(Function *Fn) const {
-    return Functions.empty() || Functions.count(Fn);
-  }
-
-  template <typename AAType> bool shouldUpdateAA(const IRPosition &IRP) {
-    // If this is queried in the manifest stage, we force the AA to indicate
-    // pessimistic fixpoint immediately.
-    if (Phase == AttributorPhase::MANIFEST || Phase == AttributorPhase::CLEANUP)
-      return false;
-
-    Function *AssociatedFn = IRP.getAssociatedFunction();
-
-    if (IRP.isAnyCallSitePosition()) {
-      // Check if we require a callee but there is none.
-      if (!AssociatedFn && AAType::requiresCalleeForCallBase())
-        return false;
-
-      // Check if we require non-asm but it is inline asm.
-      if (AAType::requiresNonAsmForCallBase() &&
-          cast<CallBase>(IRP.getAnchorValue()).isInlineAsm())
-        return false;
-    }
-
-    // Check if we require a calles but we can't see all.
-    if (AAType::requiresCallersForArgOrFunction())
-      if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION ||
-          IRP.getPositionKind() == IRPosition::IRP_ARGUMENT)
-        if (!AssociatedFn->hasLocalLinkage())
-          return false;
-
-    if (!AAType::isValidIRPositionForUpdate(*this, IRP))
-      return false;
-
-    // We update only AAs associated with functions in the Functions set or
-    // call sites of them.
-    return (!AssociatedFn || isModulePass() || isRunOn(AssociatedFn) ||
-            isRunOn(IRP.getAnchorScope()));
-  }
-
-  template <typename AAType>
-  bool shouldInitialize(const IRPosition &IRP, bool &ShouldUpdateAA) {
-    if (!AAType::isValidIRPositionForInit(*this, IRP))
-      return false;
-
-    if (Configuration.Allowed && !Configuration.Allowed->count(&AAType::ID))
-      return false;
-
-    // For now we skip anything in naked and optnone functions.
-    const Function *AnchorFn = IRP.getAnchorScope();
-    if (AnchorFn && (AnchorFn->hasFnAttribute(Attribute::Naked) ||
-                     AnchorFn->hasFnAttribute(Attribute::OptimizeNone)))
-      return false;
-
-    // Avoid too many nested initializations to prevent a stack overflow.
-    if (InitializationChainLength > MaxInitializationChainLength)
-      return false;
-
-    ShouldUpdateAA = shouldUpdateAA<AAType>(IRP);
-
-    return !AAType::hasTrivialInitializer() || ShouldUpdateAA;
-  }
-
-  /// Determine opportunities to derive 'default' attributes in \p F and create
-  /// abstract attribute objects for them.
-  ///
-  /// \param F The function that is checked for attribute opportunities.
-  ///
-  /// Note that abstract attribute instances are generally created even if the
-  /// IR already contains the information they would deduce. The most important
-  /// reason for this is the single interface, the one of the abstract attribute
-  /// instance, which can be queried without the need to look at the IR in
-  /// various places.
-  void identifyDefaultAbstractAttributes(Function &F);
-
-  /// Determine whether the function \p F is IPO amendable
-  ///
-  /// If a function is exactly defined or it has alwaysinline attribute
-  /// and is viable to be inlined, we say it is IPO amendable
-  bool isFunctionIPOAmendable(const Function &F) {
-    return F.hasExactDefinition() || InfoCache.InlineableFunctions.count(&F) ||
-           (Configuration.IPOAmendableCB && Configuration.IPOAmendableCB(F));
-  }
-
-  /// Mark the internal function \p F as live.
-  ///
-  /// This will trigger the identification and initialization of attributes for
-  /// \p F.
-  void markLiveInternalFunction(const Function &F) {
-    assert(F.hasLocalLinkage() &&
-           "Only local linkage is assumed dead initially.");
-
-    if (Configuration.DefaultInitializeLiveInternals)
-      identifyDefaultAbstractAttributes(const_cast<Function &>(F));
-    if (Configuration.InitializationCallback)
-      Configuration.InitializationCallback(*this, F);
-  }
-
-  /// Helper function to remove callsite.
-  void removeCallSite(CallInst *CI) {
-    if (!CI)
-      return;
-
-    Configuration.CGUpdater.removeCallSite(*CI);
-  }
-
-  /// Record that \p U is to be replaces with \p NV after information was
-  /// manifested. This also triggers deletion of trivially dead istructions.
-  bool changeUseAfterManifest(Use &U, Value &NV) {
-    Value *&V = ToBeChangedUses[&U];
-    if (V && (V->stripPointerCasts() == NV.stripPointerCasts() ||
-              isa_and_nonnull<UndefValue>(V)))
-      return false;
-    assert((!V || V == &NV || isa<UndefValue>(NV)) &&
-           "Use was registered twice for replacement with different values!");
-    V = &NV;
-    return true;
-  }
-
-  /// Helper function to replace all uses associated with \p IRP with \p NV.
-  /// Return true if there is any change. The flag \p ChangeDroppable indicates
-  /// if dropppable uses should be changed too.
-  bool changeAfterManifest(const IRPosition IRP, Value &NV,
-                           bool ChangeDroppable = true) {
-    if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT) {
-      auto *CB = cast<CallBase>(IRP.getCtxI());
-      return changeUseAfterManifest(
-          CB->getArgOperandUse(IRP.getCallSiteArgNo()), NV);
-    }
-    Value &V = IRP.getAssociatedValue();
-    auto &Entry = ToBeChangedValues[&V];
-    Value *CurNV = get<0>(Entry);
-    if (CurNV && (CurNV->stripPointerCasts() == NV.stripPointerCasts() ||
-                  isa<UndefValue>(CurNV)))
-      return false;
-    assert((!CurNV || CurNV == &NV || isa<UndefValue>(NV)) &&
-           "Value replacement was registered twice with different values!");
-    Entry = {&NV, ChangeDroppable};
-    return true;
-  }
-
-  /// Record that \p I is to be replaced with `unreachable` after information
-  /// was manifested.
-  void changeToUnreachableAfterManifest(Instruction *I) {
-    ToBeChangedToUnreachableInsts.insert(I);
-  }
-
-  /// Record that \p II has at least one dead successor block. This information
-  /// is used, e.g., to replace \p II with a call, after information was
-  /// manifested.
-  void registerInvokeWithDeadSuccessor(InvokeInst &II) {
-    InvokeWithDeadSuccessor.insert(&II);
-  }
-
-  /// Record that \p I is deleted after information was manifested. This also
-  /// triggers deletion of trivially dead istructions.
-  void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); }
-
-  /// Record that \p BB is deleted after information was manifested. This also
-  /// triggers deletion of trivially dead istructions.
-  void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); }
-
-  // Record that \p BB is added during the manifest of an AA. Added basic blocks
-  // are preserved in the IR.
-  void registerManifestAddedBasicBlock(BasicBlock &BB) {
-    ManifestAddedBlocks.insert(&BB);
-  }
-
-  /// Record that \p F is deleted after information was manifested.
-  void deleteAfterManifest(Function &F) {
-    if (Configuration.DeleteFns)
-      ToBeDeletedFunctions.insert(&F);
-  }
-
-  /// Return the attributes of kind \p AK existing in the IR as operand bundles
-  /// of an llvm.assume.
-  bool getAttrsFromAssumes(const IRPosition &IRP, Attribute::AttrKind AK,
-                           SmallVectorImpl<Attribute> &Attrs);
-
-  /// Return true if any kind in \p AKs existing in the IR at a position that
-  /// will affect this one. See also getAttrs(...).
-  /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
-  ///                                 e.g., the function position if this is an
-  ///                                 argument position, should be ignored.
-  bool hasAttr(const IRPosition &IRP, ArrayRef<Attribute::AttrKind> AKs,
-               bool IgnoreSubsumingPositions = false,
-               Attribute::AttrKind ImpliedAttributeKind = Attribute::None);
-
-  /// Return the attributes of any kind in \p AKs existing in the IR at a
-  /// position that will affect this one. While each position can only have a
-  /// single attribute of any kind in \p AKs, there are "subsuming" positions
-  /// that could have an attribute as well. This method returns all attributes
-  /// found in \p Attrs.
-  /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
-  ///                                 e.g., the function position if this is an
-  ///                                 argument position, should be ignored.
-  void getAttrs(const IRPosition &IRP, ArrayRef<Attribute::AttrKind> AKs,
-                SmallVectorImpl<Attribute> &Attrs,
-                bool IgnoreSubsumingPositions = false);
-
-  /// Remove all \p AttrKinds attached to \p IRP.
-  ChangeStatus removeAttrs(const IRPosition &IRP,
-                           ArrayRef<Attribute::AttrKind> AttrKinds);
-  ChangeStatus removeAttrs(const IRPosition &IRP, ArrayRef<StringRef> Attrs);
-
-  /// Attach \p DeducedAttrs to \p IRP, if \p ForceReplace is set we do this
-  /// even if the same attribute kind was already present.
-  ChangeStatus manifestAttrs(const IRPosition &IRP,
-                             ArrayRef<Attribute> DeducedAttrs,
-                             bool ForceReplace = false);
-
-private:
-  /// Helper to check \p Attrs for \p AK, if not found, check if \p
-  /// AAType::isImpliedByIR is true, and if not, create AAType for \p IRP.
-  template <Attribute::AttrKind AK, typename AAType>
-  void checkAndQueryIRAttr(const IRPosition &IRP, AttributeSet Attrs);
-
-  /// Helper to apply \p CB on all attributes of type \p AttrDescs of \p IRP.
-  template <typename DescTy>
-  ChangeStatus updateAttrMap(const IRPosition &IRP, ArrayRef<DescTy> AttrDescs,
-                             function_ref<bool(const DescTy &, AttributeSet,
-                                               AttributeMask &, AttrBuilder &)>
-                                 CB);
-
-  /// Mapping from functions/call sites to their attributes.
-  DenseMap<Value *, AttributeList> AttrsMap;
-
-public:
-  /// If \p IRP is assumed to be a constant, return it, if it is unclear yet,
-  /// return std::nullopt, otherwise return `nullptr`.
-  std::optional<Constant *> getAssumedConstant(const IRPosition &IRP,
-                                               const AbstractAttribute &AA,
-                                               bool &UsedAssumedInformation);
-  std::optional<Constant *> getAssumedConstant(const Value &V,
-                                               const AbstractAttribute &AA,
-                                               bool &UsedAssumedInformation) {
-    return getAssumedConstant(IRPosition::value(V), AA, UsedAssumedInformation);
-  }
-
-  /// If \p V is assumed simplified, return it, if it is unclear yet,
-  /// return std::nullopt, otherwise return `nullptr`.
-  std::optional<Value *> getAssumedSimplified(const IRPosition &IRP,
-                                              const AbstractAttribute &AA,
-                                              bool &UsedAssumedInformation,
-                                              AA::ValueScope S) {
-    return getAssumedSimplified(IRP, &AA, UsedAssumedInformation, S);
-  }
-  std::optional<Value *> getAssumedSimplified(const Value &V,
-                                              const AbstractAttribute &AA,
-                                              bool &UsedAssumedInformation,
-                                              AA::ValueScope S) {
-    return getAssumedSimplified(IRPosition::value(V), AA,
-                                UsedAssumedInformation, S);
-  }
-
-  /// If \p V is assumed simplified, return it, if it is unclear yet,
-  /// return std::nullopt, otherwise return `nullptr`. Same as the public
-  /// version except that it can be used without recording dependences on any \p
-  /// AA.
-  std::optional<Value *> getAssumedSimplified(const IRPosition &V,
-                                              const AbstractAttribute *AA,
-                                              bool &UsedAssumedInformation,
-                                              AA::ValueScope S);
-
-  /// Try to simplify \p IRP and in the scope \p S. If successful, true is
-  /// returned and all potential values \p IRP can take are put into \p Values.
-  /// If the result in \p Values contains select or PHI instructions it means
-  /// those could not be simplified to a single value. Recursive calls with
-  /// these instructions will yield their respective potential values. If false
-  /// is returned no other information is valid.
-  bool getAssumedSimplifiedValues(const IRPosition &IRP,
-                                  const AbstractAttribute *AA,
-                                  SmallVectorImpl<AA::ValueAndContext> &Values,
-                                  AA::ValueScope S,
-                                  bool &UsedAssumedInformation,
-                                  bool RecurseForSelectAndPHI = true);
-
-  /// Register \p CB as a simplification callback.
-  /// `Attributor::getAssumedSimplified` will use these callbacks before
-  /// we it will ask `AAValueSimplify`. It is important to ensure this
-  /// is called before `identifyDefaultAbstractAttributes`, assuming the
-  /// latter is called at all.
-  using SimplifictionCallbackTy = std::function<std::optional<Value *>(
-      const IRPosition &, const AbstractAttribute *, bool &)>;
-  void registerSimplificationCallback(const IRPosition &IRP,
-                                      const SimplifictionCallbackTy &CB) {
-    SimplificationCallbacks[IRP].emplace_back(CB);
-  }
-
-  /// Return true if there is a simplification callback for \p IRP.
-  bool hasSimplificationCallback(const IRPosition &IRP) {
-    return SimplificationCallbacks.count(IRP);
-  }
-
-  /// Register \p CB as a simplification callback.
-  /// Similar to \p registerSimplificationCallback, the call back will be called
-  /// first when we simplify a global variable \p GV.
-  using GlobalVariableSimplifictionCallbackTy =
-      std::function<std::optional<Constant *>(
-          const GlobalVariable &, const AbstractAttribute *, bool &)>;
-  void registerGlobalVariableSimplificationCallback(
-      const GlobalVariable &GV,
-      const GlobalVariableSimplifictionCallbackTy &CB) {
-    GlobalVariableSimplificationCallbacks[&GV].emplace_back(CB);
-  }
-
-  /// Return true if there is a simplification callback for \p GV.
-  bool hasGlobalVariableSimplificationCallback(const GlobalVariable &GV) {
-    return GlobalVariableSimplificationCallbacks.count(&GV);
-  }
-
-  /// Return \p std::nullopt if there is no call back registered for \p GV or
-  /// the call back is still not sure if \p GV can be simplified. Return \p
-  /// nullptr if \p GV can't be simplified.
-  std::optional<Constant *>
-  getAssumedInitializerFromCallBack(const GlobalVariable &GV,
-                                    const AbstractAttribute *AA,
-                                    bool &UsedAssumedInformation) {
-    assert(GlobalVariableSimplificationCallbacks.contains(&GV));
-    for (auto &CB : GlobalVariableSimplificationCallbacks.lookup(&GV)) {
-      auto SimplifiedGV = CB(GV, AA, UsedAssumedInformation);
-      // For now we assume the call back will not return a std::nullopt.
-      assert(SimplifiedGV.has_value() && "SimplifiedGV has not value");
-      return *SimplifiedGV;
-    }
-    llvm_unreachable("there must be a callback registered");
-  }
-
-  using VirtualUseCallbackTy =
-      std::function<bool(Attributor &, const AbstractAttribute *)>;
-  void registerVirtualUseCallback(const Value &V,
-                                  const VirtualUseCallbackTy &CB) {
-    VirtualUseCallbacks[&V].emplace_back(CB);
-  }
-
-private:
-  /// The vector with all simplification callbacks registered by outside AAs.
-  DenseMap<IRPosition, SmallVector<SimplifictionCallbackTy, 1>>
-      SimplificationCallbacks;
-
-  /// The vector with all simplification callbacks for global variables
-  /// registered by outside AAs.
-  DenseMap<const GlobalVariable *,
-           SmallVector<GlobalVariableSimplifictionCallbackTy, 1>>
-      GlobalVariableSimplificationCallbacks;
-
-  DenseMap<const Value *, SmallVector<VirtualUseCallbackTy, 1>>
-      VirtualUseCallbacks;
-
-public:
-  /// Translate \p V from the callee context into the call site context.
-  std::optional<Value *>
-  translateArgumentToCallSiteContent(std::optional<Value *> V, CallBase &CB,
-                                     const AbstractAttribute &AA,
-                                     bool &UsedAssumedInformation);
-
-  /// Return true if \p AA (or its context instruction) is assumed dead.
-  ///
-  /// If \p LivenessAA is not provided it is queried.
-  bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA,
-                     bool &UsedAssumedInformation,
-                     bool CheckBBLivenessOnly = false,
-                     DepClassTy DepClass = DepClassTy::OPTIONAL);
-
-  /// Return true if \p I is assumed dead.
-  ///
-  /// If \p LivenessAA is not provided it is queried.
-  bool isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA,
-                     const AAIsDead *LivenessAA, bool &UsedAssumedInformation,
-                     bool CheckBBLivenessOnly = false,
-                     DepClassTy DepClass = DepClassTy::OPTIONAL,
-                     bool CheckForDeadStore = false);
-
-  /// Return true if \p U is assumed dead.
-  ///
-  /// If \p FnLivenessAA is not provided it is queried.
-  bool isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA,
-                     const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation,
-                     bool CheckBBLivenessOnly = false,
-                     DepClassTy DepClass = DepClassTy::OPTIONAL);
-
-  /// Return true if \p IRP is assumed dead.
-  ///
-  /// If \p FnLivenessAA is not provided it is queried.
-  bool isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA,
-                     const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation,
-                     bool CheckBBLivenessOnly = false,
-                     DepClassTy DepClass = DepClassTy::OPTIONAL);
-
-  /// Return true if \p BB is assumed dead.
-  ///
-  /// If \p LivenessAA is not provided it is queried.
-  bool isAssumedDead(const BasicBlock &BB, const AbstractAttribute *QueryingAA,
-                     const AAIsDead *FnLivenessAA,
-                     DepClassTy DepClass = DepClassTy::OPTIONAL);
-
-  /// Check \p Pred on all potential Callees of \p CB.
-  ///
-  /// This method will evaluate \p Pred with all potential callees of \p CB as
-  /// input and return true if \p Pred does. If some callees might be unknown
-  /// this function will return false.
-  bool checkForAllCallees(
-      function_ref<bool(ArrayRef<const Function *> Callees)> Pred,
-      const AbstractAttribute &QueryingAA, const CallBase &CB);
-
-  /// Check \p Pred on all (transitive) uses of \p V.
-  ///
-  /// This method will evaluate \p Pred on all (transitive) uses of the
-  /// associated value and return true if \p Pred holds every time.
-  /// If uses are skipped in favor of equivalent ones, e.g., if we look through
-  /// memory, the \p EquivalentUseCB will be used to give the caller an idea
-  /// what original used was replaced by a new one (or new ones). The visit is
-  /// cut short if \p EquivalentUseCB returns false and the function will return
-  /// false as well.
-  bool checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
-                       const AbstractAttribute &QueryingAA, const Value &V,
-                       bool CheckBBLivenessOnly = false,
-                       DepClassTy LivenessDepClass = DepClassTy::OPTIONAL,
-                       bool IgnoreDroppableUses = true,
-                       function_ref<bool(const Use &OldU, const Use &NewU)>
-                           EquivalentUseCB = nullptr);
-
-  /// Emit a remark generically.
-  ///
-  /// This template function can be used to generically emit a remark. The
-  /// RemarkKind should be one of the following:
-  ///   - OptimizationRemark to indicate a successful optimization attempt
-  ///   - OptimizationRemarkMissed to report a failed optimization attempt
-  ///   - OptimizationRemarkAnalysis to provide additional information about an
-  ///     optimization attempt
-  ///
-  /// The remark is built using a callback function \p RemarkCB that takes a
-  /// RemarkKind as input and returns a RemarkKind.
-  template <typename RemarkKind, typename RemarkCallBack>
-  void emitRemark(Instruction *I, StringRef RemarkName,
-                  RemarkCallBack &&RemarkCB) const {
-    if (!Configuration.OREGetter)
-      return;
-
-    Function *F = I->getFunction();
-    auto &ORE = Configuration.OREGetter(F);
-
-    if (RemarkName.starts_with("OMP"))
-      ORE.emit([&]() {
-        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I))
-               << " [" << RemarkName << "]";
-      });
-    else
-      ORE.emit([&]() {
-        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I));
-      });
-  }
-
-  /// Emit a remark on a function.
-  template <typename RemarkKind, typename RemarkCallBack>
-  void emitRemark(Function *F, StringRef RemarkName,
-                  RemarkCallBack &&RemarkCB) const {
-    if (!Configuration.OREGetter)
-      return;
-
-    auto &ORE = Configuration.OREGetter(F);
-
-    if (RemarkName.starts_with("OMP"))
-      ORE.emit([&]() {
-        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F))
-               << " [" << RemarkName << "]";
-      });
-    else
-      ORE.emit([&]() {
-        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F));
-      });
-  }
-
-  /// Helper struct used in the communication between an abstract attribute (AA)
-  /// that wants to change the signature of a function and the Attributor which
-  /// applies the changes. The struct is partially initialized with the
-  /// information from the AA (see the constructor). All other members are
-  /// provided by the Attributor prior to invoking any callbacks.
-  struct ArgumentReplacementInfo {
-    /// Callee repair callback type
-    ///
-    /// The function repair callback is invoked once to rewire the replacement
-    /// arguments in the body of the new function. The argument replacement info
-    /// is passed, as build from the registerFunctionSignatureRewrite call, as
-    /// well as the replacement function and an iteratore to the first
-    /// replacement argument.
-    using CalleeRepairCBTy = std::function<void(
-        const ArgumentReplacementInfo &, Function &, Function::arg_iterator)>;
-
-    /// Abstract call site (ACS) repair callback type
-    ///
-    /// The abstract call site repair callback is invoked once on every abstract
-    /// call site of the replaced function (\see ReplacedFn). The callback needs
-    /// to provide the operands for the call to the new replacement function.
-    /// The number and type of the operands appended to the provided vector
-    /// (second argument) is defined by the number and types determined through
-    /// the replacement type vector (\see ReplacementTypes). The first argument
-    /// is the ArgumentReplacementInfo object registered with the Attributor
-    /// through the registerFunctionSignatureRewrite call.
-    using ACSRepairCBTy =
-        std::function<void(const ArgumentReplacementInfo &, AbstractCallSite,
-                           SmallVectorImpl<Value *> &)>;
-
-    /// Simple getters, see the corresponding members for details.
-    ///{
-
-    Attributor &getAttributor() const { return A; }
-    const Function &getReplacedFn() const { return ReplacedFn; }
-    const Argument &getReplacedArg() const { return ReplacedArg; }
-    unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); }
-    const SmallVectorImpl<Type *> &getReplacementTypes() const {
-      return ReplacementTypes;
-    }
-
-    ///}
-
-  private:
-    /// Constructor that takes the argument to be replaced, the types of
-    /// the replacement arguments, as well as callbacks to repair the call sites
-    /// and new function after the replacement happened.
-    ArgumentReplacementInfo(Attributor &A, Argument &Arg,
-                            ArrayRef<Type *> ReplacementTypes,
-                            CalleeRepairCBTy &&CalleeRepairCB,
-                            ACSRepairCBTy &&ACSRepairCB)
-        : A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg),
-          ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()),
-          CalleeRepairCB(std::move(CalleeRepairCB)),
-          ACSRepairCB(std::move(ACSRepairCB)) {}
-
-    /// Reference to the attributor to allow access from the callbacks.
-    Attributor &A;
-
-    /// The "old" function replaced by ReplacementFn.
-    const Function &ReplacedFn;
-
-    /// The "old" argument replaced by new ones defined via ReplacementTypes.
-    const Argument &ReplacedArg;
-
-    /// The types of the arguments replacing ReplacedArg.
-    const SmallVector<Type *, 8> ReplacementTypes;
-
-    /// Callee repair callback, see CalleeRepairCBTy.
-    const CalleeRepairCBTy CalleeRepairCB;
-
-    /// Abstract call site (ACS) repair callback, see ACSRepairCBTy.
-    const ACSRepairCBTy ACSRepairCB;
-
-    /// Allow access to the private members from the Attributor.
-    friend struct Attributor;
-  };
-
-  /// Check if we can rewrite a function signature.
-  ///
-  /// The argument \p Arg is replaced with new ones defined by the number,
-  /// order, and types in \p ReplacementTypes.
-  ///
-  /// \returns True, if the replacement can be registered, via
-  /// registerFunctionSignatureRewrite, false otherwise.
-  bool isValidFunctionSignatureRewrite(Argument &Arg,
-                                       ArrayRef<Type *> ReplacementTypes);
-
-  /// Register a rewrite for a function signature.
-  ///
-  /// The argument \p Arg is replaced with new ones defined by the number,
-  /// order, and types in \p ReplacementTypes. The rewiring at the call sites is
-  /// done through \p ACSRepairCB and at the callee site through
-  /// \p CalleeRepairCB.
-  ///
-  /// \returns True, if the replacement was registered, false otherwise.
-  bool registerFunctionSignatureRewrite(
-      Argument &Arg, ArrayRef<Type *> ReplacementTypes,
-      ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
-      ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB);
-
-  /// Check \p Pred on all function call sites.
-  ///
-  /// This method will evaluate \p Pred on call sites and return
-  /// true if \p Pred holds in every call sites. However, this is only possible
-  /// all call sites are known, hence the function has internal linkage.
-  /// If true is returned, \p UsedAssumedInformation is set if assumed
-  /// information was used to skip or simplify potential call sites.
-  bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
-                            const AbstractAttribute &QueryingAA,
-                            bool RequireAllCallSites,
-                            bool &UsedAssumedInformation);
-
-  /// Check \p Pred on all call sites of \p Fn.
-  ///
-  /// This method will evaluate \p Pred on call sites and return
-  /// true if \p Pred holds in every call sites. However, this is only possible
-  /// all call sites are known, hence the function has internal linkage.
-  /// If true is returned, \p UsedAssumedInformation is set if assumed
-  /// information was used to skip or simplify potential call sites.
-  bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
-                            const Function &Fn, bool RequireAllCallSites,
-                            const AbstractAttribute *QueryingAA,
-                            bool &UsedAssumedInformation,
-                            bool CheckPotentiallyDead = false);
-
-  /// Check \p Pred on all values potentially returned by the function
-  /// associated with \p QueryingAA.
-  ///
-  /// This is the context insensitive version of the method above.
-  bool
-  checkForAllReturnedValues(function_ref<bool(Value &)> Pred,
-                            const AbstractAttribute &QueryingAA,
-                            AA::ValueScope S = AA::ValueScope::Intraprocedural,
-                            bool RecurseForSelectAndPHI = true);
-
-  /// Check \p Pred on all instructions in \p Fn with an opcode present in
-  /// \p Opcodes.
-  ///
-  /// This method will evaluate \p Pred on all instructions with an opcode
-  /// present in \p Opcode and return true if \p Pred holds on all of them.
-  bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
-                               const Function *Fn,
-                               const AbstractAttribute *QueryingAA,
-                               ArrayRef<unsigned> Opcodes,
-                               bool &UsedAssumedInformation,
-                               bool CheckBBLivenessOnly = false,
-                               bool CheckPotentiallyDead = false);
-
-  /// Check \p Pred on all instructions with an opcode present in \p Opcodes.
-  ///
-  /// This method will evaluate \p Pred on all instructions with an opcode
-  /// present in \p Opcode and return true if \p Pred holds on all of them.
-  bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
-                               const AbstractAttribute &QueryingAA,
-                               ArrayRef<unsigned> Opcodes,
-                               bool &UsedAssumedInformation,
-                               bool CheckBBLivenessOnly = false,
-                               bool CheckPotentiallyDead = false);
-
-  /// Check \p Pred on all call-like instructions (=CallBased derived).
-  ///
-  /// See checkForAllCallLikeInstructions(...) for more information.
-  bool checkForAllCallLikeInstructions(function_ref<bool(Instruction &)> Pred,
-                                       const AbstractAttribute &QueryingAA,
-                                       bool &UsedAssumedInformation,
-                                       bool CheckBBLivenessOnly = false,
-                                       bool CheckPotentiallyDead = false) {
-    return checkForAllInstructions(
-        Pred, QueryingAA,
-        {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
-         (unsigned)Instruction::Call},
-        UsedAssumedInformation, CheckBBLivenessOnly, CheckPotentiallyDead);
-  }
-
-  /// Check \p Pred on all Read/Write instructions.
-  ///
-  /// This method will evaluate \p Pred on all instructions that read or write
-  /// to memory present in the information cache and return true if \p Pred
-  /// holds on all of them.
-  bool checkForAllReadWriteInstructions(function_ref<bool(Instruction &)> Pred,
-                                        AbstractAttribute &QueryingAA,
-                                        bool &UsedAssumedInformation);
-
-  /// Create a shallow wrapper for \p F such that \p F has internal linkage
-  /// afterwards. It also sets the original \p F 's name to anonymous
-  ///
-  /// A wrapper is a function with the same type (and attributes) as \p F
-  /// that will only call \p F and return the result, if any.
-  ///
-  /// Assuming the declaration of looks like:
-  ///   rty F(aty0 arg0, ..., atyN argN);
-  ///
-  /// The wrapper will then look as follows:
-  ///   rty wrapper(aty0 arg0, ..., atyN argN) {
-  ///     return F(arg0, ..., argN);
-  ///   }
-  ///
-  static void createShallowWrapper(Function &F);
-
-  /// Returns true if the function \p F can be internalized. i.e. it has a
-  /// compatible linkage.
-  static bool isInternalizable(Function &F);
-
-  /// Make another copy of the function \p F such that the copied version has
-  /// internal linkage afterwards and can be analysed. Then we replace all uses
-  /// of the original function to the copied one
-  ///
-  /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr`
-  /// linkage can be internalized because these linkages guarantee that other
-  /// definitions with the same name have the same semantics as this one.
-  ///
-  /// This will only be run if the `attributor-allow-deep-wrappers` option is
-  /// set, or if the function is called with \p Force set to true.
-  ///
-  /// If the function \p F failed to be internalized the return value will be a
-  /// null pointer.
-  static Function *internalizeFunction(Function &F, bool Force = false);
-
-  /// Make copies of each function in the set \p FnSet such that the copied
-  /// version has internal linkage afterwards and can be analysed. Then we
-  /// replace all uses of the original function to the copied one. The map
-  /// \p FnMap contains a mapping of functions to their internalized versions.
-  ///
-  /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr`
-  /// linkage can be internalized because these linkages guarantee that other
-  /// definitions with the same name have the same semantics as this one.
-  ///
-  /// This version will internalize all the functions in the set \p FnSet at
-  /// once and then replace the uses. This prevents internalized functions being
-  /// called by external functions when there is an internalized version in the
-  /// module.
-  static bool internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
-                                   DenseMap<Function *, Function *> &FnMap);
-
-  /// Return the data layout associated with the anchor scope.
-  const DataLayout &getDataLayout() const { return InfoCache.DL; }
-
-  /// The allocator used to allocate memory, e.g. for `AbstractAttribute`s.
-  BumpPtrAllocator &Allocator;
-
-  const SmallSetVector<Function *, 8> &getModifiedFunctions() {
-    return CGModifiedFunctions;
-  }
-
-private:
-  /// This method will do fixpoint iteration until fixpoint or the
-  /// maximum iteration count is reached.
-  ///
-  /// If the maximum iteration count is reached, This method will
-  /// indicate pessimistic fixpoint on attributes that transitively depend
-  /// on attributes that were scheduled for an update.
-  void runTillFixpoint();
-
-  /// Gets called after scheduling, manifests attributes to the LLVM IR.
-  ChangeStatus manifestAttributes();
-
-  /// Gets called after attributes have been manifested, cleans up the IR.
-  /// Deletes dead functions, blocks and instructions.
-  /// Rewrites function signitures and updates the call graph.
-  ChangeStatus cleanupIR();
-
-  /// Identify internal functions that are effectively dead, thus not reachable
-  /// from a live entry point. The functions are added to ToBeDeletedFunctions.
-  void identifyDeadInternalFunctions();
-
-  /// Run `::update` on \p AA and track the dependences queried while doing so.
-  /// Also adjust the state if we know further updates are not necessary.
-  ChangeStatus updateAA(AbstractAttribute &AA);
-
-  /// Remember the dependences on the top of the dependence stack such that they
-  /// may trigger further updates. (\see DependenceStack)
-  void rememberDependences();
-
-  /// Determine if CallBase context in \p IRP should be propagated.
-  bool shouldPropagateCallBaseContext(const IRPosition &IRP);
-
-  /// Apply all requested function signature rewrites
-  /// (\see registerFunctionSignatureRewrite) and return Changed if the module
-  /// was altered.
-  ChangeStatus
-  rewriteFunctionSignatures(SmallSetVector<Function *, 8> &ModifiedFns);
-
-  /// Check if the Attribute \p AA should be seeded.
-  /// See getOrCreateAAFor.
-  bool shouldSeedAttribute(AbstractAttribute &AA);
-
-  /// A nested map to lookup abstract attributes based on the argument position
-  /// on the outer level, and the addresses of the static member (AAType::ID) on
-  /// the inner level.
-  ///{
-  using AAMapKeyTy = std::pair<const char *, IRPosition>;
-  DenseMap<AAMapKeyTy, AbstractAttribute *> AAMap;
-  ///}
-
-  /// Map to remember all requested signature changes (= argument replacements).
-  DenseMap<Function *, SmallVector<std::unique_ptr<ArgumentReplacementInfo>, 8>>
-      ArgumentReplacementMap;
-
-  /// The set of functions we are deriving attributes for.
-  SetVector<Function *> &Functions;
-
-  /// The information cache that holds pre-processed (LLVM-IR) information.
-  InformationCache &InfoCache;
-
-  /// Abstract Attribute dependency graph
-  AADepGraph DG;
-
-  /// Set of functions for which we modified the content such that it might
-  /// impact the call graph.
-  SmallSetVector<Function *, 8> CGModifiedFunctions;
-
-  /// Information about a dependence. If FromAA is changed ToAA needs to be
-  /// updated as well.
-  struct DepInfo {
-    const AbstractAttribute *FromAA;
-    const AbstractAttribute *ToAA;
-    DepClassTy DepClass;
-  };
-
-  /// The dependence stack is used to track dependences during an
-  /// `AbstractAttribute::update` call. As `AbstractAttribute::update` can be
-  /// recursive we might have multiple vectors of dependences in here. The stack
-  /// size, should be adjusted according to the expected recursion depth and the
-  /// inner dependence vector size to the expected number of dependences per
-  /// abstract attribute. Since the inner vectors are actually allocated on the
-  /// stack we can be generous with their size.
-  using DependenceVector = SmallVector<DepInfo, 8>;
-  SmallVector<DependenceVector *, 16> DependenceStack;
-
-  /// A set to remember the functions we already assume to be live and visited.
-  DenseSet<const Function *> VisitedFunctions;
-
-  /// Uses we replace with a new value after manifest is done. We will remove
-  /// then trivially dead instructions as well.
-  SmallMapVector<Use *, Value *, 32> ToBeChangedUses;
-
-  /// Values we replace with a new value after manifest is done. We will remove
-  /// then trivially dead instructions as well.
-  SmallMapVector<Value *, PointerIntPair<Value *, 1, bool>, 32>
-      ToBeChangedValues;
-
-  /// Instructions we replace with `unreachable` insts after manifest is done.
-  SmallSetVector<WeakVH, 16> ToBeChangedToUnreachableInsts;
-
-  /// Invoke instructions with at least a single dead successor block.
-  SmallSetVector<WeakVH, 16> InvokeWithDeadSuccessor;
-
-  /// A flag that indicates which stage of the process we are in. Initially, the
-  /// phase is SEEDING. Phase is changed in `Attributor::run()`
-  enum class AttributorPhase {
-    SEEDING,
-    UPDATE,
-    MANIFEST,
-    CLEANUP,
-  } Phase = AttributorPhase::SEEDING;
-
-  /// The current initialization chain length. Tracked to avoid stack overflows.
-  unsigned InitializationChainLength = 0;
-
-  /// Functions, blocks, and instructions we delete after manifest is done.
-  ///
-  ///{
-  SmallPtrSet<BasicBlock *, 8> ManifestAddedBlocks;
-  SmallSetVector<Function *, 8> ToBeDeletedFunctions;
-  SmallSetVector<BasicBlock *, 8> ToBeDeletedBlocks;
-  SmallSetVector<WeakVH, 8> ToBeDeletedInsts;
-  ///}
-
-  /// Container with all the query AAs that requested an update via
-  /// registerForUpdate.
-  SmallSetVector<AbstractAttribute *, 16> QueryAAsAwaitingUpdate;
-
-  /// User provided configuration for this Attributor instance.
-  const AttributorConfig Configuration;
-
-  friend AADepGraph;
-  friend AttributorCallGraph;
-};
-
-/// An interface to query the internal state of an abstract attribute.
-///
-/// The abstract state is a minimal interface that allows the Attributor to
-/// communicate with the abstract attributes about their internal state without
-/// enforcing or exposing implementation details, e.g., the (existence of an)
-/// underlying lattice.
-///
-/// It is sufficient to be able to query if a state is (1) valid or invalid, (2)
-/// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint
-/// was reached or (4) a pessimistic fixpoint was enforced.
-///
-/// All methods need to be implemented by the subclass. For the common use case,
-/// a single boolean state or a bit-encoded state, the BooleanState and
-/// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract
-/// attribute can inherit from them to get the abstract state interface and
-/// additional methods to directly modify the state based if needed. See the
-/// class comments for help.
-struct AbstractState {
-  virtual ~AbstractState() = default;
-
-  /// Return if this abstract state is in a valid state. If false, no
-  /// information provided should be used.
-  virtual bool isValidState() const = 0;
-
-  /// Return if this abstract state is fixed, thus does not need to be updated
-  /// if information changes as it cannot change itself.
-  virtual bool isAtFixpoint() const = 0;
-
-  /// Indicate that the abstract state should converge to the optimistic state.
-  ///
-  /// This will usually make the optimistically assumed state the known to be
-  /// true state.
-  ///
-  /// \returns ChangeStatus::UNCHANGED as the assumed value should not change.
-  virtual ChangeStatus indicateOptimisticFixpoint() = 0;
-
-  /// Indicate that the abstract state should converge to the pessimistic state.
-  ///
-  /// This will usually revert the optimistically assumed state to the known to
-  /// be true state.
-  ///
-  /// \returns ChangeStatus::CHANGED as the assumed value may change.
-  virtual ChangeStatus indicatePessimisticFixpoint() = 0;
-};
-
-/// Simple state with integers encoding.
-///
-/// The interface ensures that the assumed bits are always a subset of the known
-/// bits. Users can only add known bits and, except through adding known bits,
-/// they can only remove assumed bits. This should guarantee monotonicity and
-/// thereby the existence of a fixpoint (if used correctly). The fixpoint is
-/// reached when the assumed and known state/bits are equal. Users can
-/// force/inidicate a fixpoint. If an optimistic one is indicated, the known
-/// state will catch up with the assumed one, for a pessimistic fixpoint it is
-/// the other way around.
-template <typename base_ty, base_ty BestState, base_ty WorstState>
-struct IntegerStateBase : public AbstractState {
-  using base_t = base_ty;
-
-  IntegerStateBase() = default;
-  IntegerStateBase(base_t Assumed) : Assumed(Assumed) {}
-
-  /// Return the best possible representable state.
-  static constexpr base_t getBestState() { return BestState; }
-  static constexpr base_t getBestState(const IntegerStateBase &) {
-    return getBestState();
-  }
-
-  /// Return the worst possible representable state.
-  static constexpr base_t getWorstState() { return WorstState; }
-  static constexpr base_t getWorstState(const IntegerStateBase &) {
-    return getWorstState();
-  }
-
-  /// See AbstractState::isValidState()
-  /// NOTE: For now we simply pretend that the worst possible state is invalid.
-  bool isValidState() const override { return Assumed != getWorstState(); }
-
-  /// See AbstractState::isAtFixpoint()
-  bool isAtFixpoint() const override { return Assumed == Known; }
-
-  /// See AbstractState::indicateOptimisticFixpoint(...)
-  ChangeStatus indicateOptimisticFixpoint() override {
-    Known = Assumed;
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...)
-  ChangeStatus indicatePessimisticFixpoint() override {
-    Assumed = Known;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// Return the known state encoding
-  base_t getKnown() const { return Known; }
-
-  /// Return the assumed state encoding.
-  base_t getAssumed() const { return Assumed; }
-
-  /// Equality for IntegerStateBase.
-  bool
-  operator==(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
-    return this->getAssumed() == R.getAssumed() &&
-           this->getKnown() == R.getKnown();
-  }
-
-  /// Inequality for IntegerStateBase.
-  bool
-  operator!=(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
-    return !(*this == R);
-  }
-
-  /// "Clamp" this state with \p R. The result is subtype dependent but it is
-  /// intended that only information assumed in both states will be assumed in
-  /// this one afterwards.
-  void operator^=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
-    handleNewAssumedValue(R.getAssumed());
-  }
-
-  /// "Clamp" this state with \p R. The result is subtype dependent but it is
-  /// intended that information known in either state will be known in
-  /// this one afterwards.
-  void operator+=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
-    handleNewKnownValue(R.getKnown());
-  }
-
-  void operator|=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
-    joinOR(R.getAssumed(), R.getKnown());
-  }
-
-  void operator&=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
-    joinAND(R.getAssumed(), R.getKnown());
-  }
-
-protected:
-  /// Handle a new assumed value \p Value. Subtype dependent.
-  virtual void handleNewAssumedValue(base_t Value) = 0;
-
-  /// Handle a new known value \p Value. Subtype dependent.
-  virtual void handleNewKnownValue(base_t Value) = 0;
-
-  /// Handle a  value \p Value. Subtype dependent.
-  virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0;
-
-  /// Handle a new assumed value \p Value. Subtype dependent.
-  virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0;
-
-  /// The known state encoding in an integer of type base_t.
-  base_t Known = getWorstState();
-
-  /// The assumed state encoding in an integer of type base_t.
-  base_t Assumed = getBestState();
-};
-
-/// Specialization of the integer state for a bit-wise encoding.
-template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
-          base_ty WorstState = 0>
-struct BitIntegerState
-    : public IntegerStateBase<base_ty, BestState, WorstState> {
-  using super = IntegerStateBase<base_ty, BestState, WorstState>;
-  using base_t = base_ty;
-  BitIntegerState() = default;
-  BitIntegerState(base_t Assumed) : super(Assumed) {}
-
-  /// Return true if the bits set in \p BitsEncoding are "known bits".
-  bool isKnown(base_t BitsEncoding = BestState) const {
-    return (this->Known & BitsEncoding) == BitsEncoding;
-  }
-
-  /// Return true if the bits set in \p BitsEncoding are "assumed bits".
-  bool isAssumed(base_t BitsEncoding = BestState) const {
-    return (this->Assumed & BitsEncoding) == BitsEncoding;
-  }
-
-  /// Add the bits in \p BitsEncoding to the "known bits".
-  BitIntegerState &addKnownBits(base_t Bits) {
-    // Make sure we never miss any "known bits".
-    this->Assumed |= Bits;
-    this->Known |= Bits;
-    return *this;
-  }
-
-  /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known.
-  BitIntegerState &removeAssumedBits(base_t BitsEncoding) {
-    return intersectAssumedBits(~BitsEncoding);
-  }
-
-  /// Remove the bits in \p BitsEncoding from the "known bits".
-  BitIntegerState &removeKnownBits(base_t BitsEncoding) {
-    this->Known = (this->Known & ~BitsEncoding);
-    return *this;
-  }
-
-  /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones.
-  BitIntegerState &intersectAssumedBits(base_t BitsEncoding) {
-    // Make sure we never lose any "known bits".
-    this->Assumed = (this->Assumed & BitsEncoding) | this->Known;
-    return *this;
-  }
-
-private:
-  void handleNewAssumedValue(base_t Value) override {
-    intersectAssumedBits(Value);
-  }
-  void handleNewKnownValue(base_t Value) override { addKnownBits(Value); }
-  void joinOR(base_t AssumedValue, base_t KnownValue) override {
-    this->Known |= KnownValue;
-    this->Assumed |= AssumedValue;
-  }
-  void joinAND(base_t AssumedValue, base_t KnownValue) override {
-    this->Known &= KnownValue;
-    this->Assumed &= AssumedValue;
-  }
-};
-
-/// Specialization of the integer state for an increasing value, hence ~0u is
-/// the best state and 0 the worst.
-template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
-          base_ty WorstState = 0>
-struct IncIntegerState
-    : public IntegerStateBase<base_ty, BestState, WorstState> {
-  using super = IntegerStateBase<base_ty, BestState, WorstState>;
-  using base_t = base_ty;
-
-  IncIntegerState() : super() {}
-  IncIntegerState(base_t Assumed) : super(Assumed) {}
-
-  /// Return the best possible representable state.
-  static constexpr base_t getBestState() { return BestState; }
-  static constexpr base_t
-  getBestState(const IncIntegerState<base_ty, BestState, WorstState> &) {
-    return getBestState();
-  }
-
-  /// Take minimum of assumed and \p Value.
-  IncIntegerState &takeAssumedMinimum(base_t Value) {
-    // Make sure we never lose "known value".
-    this->Assumed = std::max(std::min(this->Assumed, Value), this->Known);
-    return *this;
-  }
-
-  /// Take maximum of known and \p Value.
-  IncIntegerState &takeKnownMaximum(base_t Value) {
-    // Make sure we never lose "known value".
-    this->Assumed = std::max(Value, this->Assumed);
-    this->Known = std::max(Value, this->Known);
-    return *this;
-  }
-
-private:
-  void handleNewAssumedValue(base_t Value) override {
-    takeAssumedMinimum(Value);
-  }
-  void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); }
-  void joinOR(base_t AssumedValue, base_t KnownValue) override {
-    this->Known = std::max(this->Known, KnownValue);
-    this->Assumed = std::max(this->Assumed, AssumedValue);
-  }
-  void joinAND(base_t AssumedValue, base_t KnownValue) override {
-    this->Known = std::min(this->Known, KnownValue);
-    this->Assumed = std::min(this->Assumed, AssumedValue);
-  }
-};
-
-/// Specialization of the integer state for a decreasing value, hence 0 is the
-/// best state and ~0u the worst.
-template <typename base_ty = uint32_t>
-struct DecIntegerState : public IntegerStateBase<base_ty, 0, ~base_ty(0)> {
-  using base_t = base_ty;
-
-  /// Take maximum of assumed and \p Value.
-  DecIntegerState &takeAssumedMaximum(base_t Value) {
-    // Make sure we never lose "known value".
-    this->Assumed = std::min(std::max(this->Assumed, Value), this->Known);
-    return *this;
-  }
-
-  /// Take minimum of known and \p Value.
-  DecIntegerState &takeKnownMinimum(base_t Value) {
-    // Make sure we never lose "known value".
-    this->Assumed = std::min(Value, this->Assumed);
-    this->Known = std::min(Value, this->Known);
-    return *this;
-  }
-
-private:
-  void handleNewAssumedValue(base_t Value) override {
-    takeAssumedMaximum(Value);
-  }
-  void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); }
-  void joinOR(base_t AssumedValue, base_t KnownValue) override {
-    this->Assumed = std::min(this->Assumed, KnownValue);
-    this->Assumed = std::min(this->Assumed, AssumedValue);
-  }
-  void joinAND(base_t AssumedValue, base_t KnownValue) override {
-    this->Assumed = std::max(this->Assumed, KnownValue);
-    this->Assumed = std::max(this->Assumed, AssumedValue);
-  }
-};
-
-/// Simple wrapper for a single bit (boolean) state.
-struct BooleanState : public IntegerStateBase<bool, true, false> {
-  using super = IntegerStateBase<bool, true, false>;
-  using base_t = IntegerStateBase::base_t;
-
-  BooleanState() = default;
-  BooleanState(base_t Assumed) : super(Assumed) {}
-
-  /// Set the assumed value to \p Value but never below the known one.
-  void setAssumed(bool Value) { Assumed &= (Known | Value); }
-
-  /// Set the known and asssumed value to \p Value.
-  void setKnown(bool Value) {
-    Known |= Value;
-    Assumed |= Value;
-  }
-
-  /// Return true if the state is assumed to hold.
-  bool isAssumed() const { return getAssumed(); }
-
-  /// Return true if the state is known to hold.
-  bool isKnown() const { return getKnown(); }
-
-private:
-  void handleNewAssumedValue(base_t Value) override {
-    if (!Value)
-      Assumed = Known;
-  }
-  void handleNewKnownValue(base_t Value) override {
-    if (Value)
-      Known = (Assumed = Value);
-  }
-  void joinOR(base_t AssumedValue, base_t KnownValue) override {
-    Known |= KnownValue;
-    Assumed |= AssumedValue;
-  }
-  void joinAND(base_t AssumedValue, base_t KnownValue) override {
-    Known &= KnownValue;
-    Assumed &= AssumedValue;
-  }
-};
-
-/// State for an integer range.
-struct IntegerRangeState : public AbstractState {
-
-  /// Bitwidth of the associated value.
-  uint32_t BitWidth;
-
-  /// State representing assumed range, initially set to empty.
-  ConstantRange Assumed;
-
-  /// State representing known range, initially set to [-inf, inf].
-  ConstantRange Known;
-
-  IntegerRangeState(uint32_t BitWidth)
-      : BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)),
-        Known(ConstantRange::getFull(BitWidth)) {}
-
-  IntegerRangeState(const ConstantRange &CR)
-      : BitWidth(CR.getBitWidth()), Assumed(CR),
-        Known(getWorstState(CR.getBitWidth())) {}
-
-  /// Return the worst possible representable state.
-  static ConstantRange getWorstState(uint32_t BitWidth) {
-    return ConstantRange::getFull(BitWidth);
-  }
-
-  /// Return the best possible representable state.
-  static ConstantRange getBestState(uint32_t BitWidth) {
-    return ConstantRange::getEmpty(BitWidth);
-  }
-  static ConstantRange getBestState(const IntegerRangeState &IRS) {
-    return getBestState(IRS.getBitWidth());
-  }
-
-  /// Return associated values' bit width.
-  uint32_t getBitWidth() const { return BitWidth; }
-
-  /// See AbstractState::isValidState()
-  bool isValidState() const override {
-    return BitWidth > 0 && !Assumed.isFullSet();
-  }
-
-  /// See AbstractState::isAtFixpoint()
-  bool isAtFixpoint() const override { return Assumed == Known; }
-
-  /// See AbstractState::indicateOptimisticFixpoint(...)
-  ChangeStatus indicateOptimisticFixpoint() override {
-    Known = Assumed;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...)
-  ChangeStatus indicatePessimisticFixpoint() override {
-    Assumed = Known;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// Return the known state encoding
-  ConstantRange getKnown() const { return Known; }
-
-  /// Return the assumed state encoding.
-  ConstantRange getAssumed() const { return Assumed; }
-
-  /// Unite assumed range with the passed state.
-  void unionAssumed(const ConstantRange &R) {
-    // Don't lose a known range.
-    Assumed = Assumed.unionWith(R).intersectWith(Known);
-  }
-
-  /// See IntegerRangeState::unionAssumed(..).
-  void unionAssumed(const IntegerRangeState &R) {
-    unionAssumed(R.getAssumed());
-  }
-
-  /// Intersect known range with the passed state.
-  void intersectKnown(const ConstantRange &R) {
-    Assumed = Assumed.intersectWith(R);
-    Known = Known.intersectWith(R);
-  }
-
-  /// See IntegerRangeState::intersectKnown(..).
-  void intersectKnown(const IntegerRangeState &R) {
-    intersectKnown(R.getKnown());
-  }
-
-  /// Equality for IntegerRangeState.
-  bool operator==(const IntegerRangeState &R) const {
-    return getAssumed() == R.getAssumed() && getKnown() == R.getKnown();
-  }
-
-  /// "Clamp" this state with \p R. The result is subtype dependent but it is
-  /// intended that only information assumed in both states will be assumed in
-  /// this one afterwards.
-  IntegerRangeState operator^=(const IntegerRangeState &R) {
-    // NOTE: `^=` operator seems like `intersect` but in this case, we need to
-    // take `union`.
-    unionAssumed(R);
-    return *this;
-  }
-
-  IntegerRangeState operator&=(const IntegerRangeState &R) {
-    // NOTE: `&=` operator seems like `intersect` but in this case, we need to
-    // take `union`.
-    Known = Known.unionWith(R.getKnown());
-    Assumed = Assumed.unionWith(R.getAssumed());
-    return *this;
-  }
-};
-
-/// Simple state for a set.
-///
-/// This represents a state containing a set of values. The interface supports
-/// modelling sets that contain all possible elements. The state's internal
-/// value is modified using union or intersection operations.
-template <typename BaseTy> struct SetState : public AbstractState {
-  /// A wrapper around a set that has semantics for handling unions and
-  /// intersections with a "universal" set that contains all elements.
-  struct SetContents {
-    /// Creates a universal set with no concrete elements or an empty set.
-    SetContents(bool Universal) : Universal(Universal) {}
-
-    /// Creates a non-universal set with concrete values.
-    SetContents(const DenseSet<BaseTy> &Assumptions)
-        : Universal(false), Set(Assumptions) {}
-
-    SetContents(bool Universal, const DenseSet<BaseTy> &Assumptions)
-        : Universal(Universal), Set(Assumptions) {}
-
-    const DenseSet<BaseTy> &getSet() const { return Set; }
-
-    bool isUniversal() const { return Universal; }
-
-    bool empty() const { return Set.empty() && !Universal; }
-
-    /// Finds A := A ^ B where A or B could be the "Universal" set which
-    /// contains every possible attribute. Returns true if changes were made.
-    bool getIntersection(const SetContents &RHS) {
-      bool IsUniversal = Universal;
-      unsigned Size = Set.size();
-
-      // A := A ^ U = A
-      if (RHS.isUniversal())
-        return false;
-
-      // A := U ^ B = B
-      if (Universal)
-        Set = RHS.getSet();
-      else
-        set_intersect(Set, RHS.getSet());
-
-      Universal &= RHS.isUniversal();
-      return IsUniversal != Universal || Size != Set.size();
-    }
-
-    /// Finds A := A u B where A or B could be the "Universal" set which
-    /// contains every possible attribute. returns true if changes were made.
-    bool getUnion(const SetContents &RHS) {
-      bool IsUniversal = Universal;
-      unsigned Size = Set.size();
-
-      // A := A u U = U = U u B
-      if (!RHS.isUniversal() && !Universal)
-        set_union(Set, RHS.getSet());
-
-      Universal |= RHS.isUniversal();
-      return IsUniversal != Universal || Size != Set.size();
-    }
-
-  private:
-    /// Indicates if this set is "universal", containing every possible element.
-    bool Universal;
-
-    /// The set of currently active assumptions.
-    DenseSet<BaseTy> Set;
-  };
-
-  SetState() : Known(false), Assumed(true), IsAtFixedpoint(false) {}
-
-  /// Initializes the known state with an initial set and initializes the
-  /// assumed state as universal.
-  SetState(const DenseSet<BaseTy> &Known)
-      : Known(Known), Assumed(true), IsAtFixedpoint(false) {}
-
-  /// See AbstractState::isValidState()
-  bool isValidState() const override { return !Assumed.empty(); }
-
-  /// See AbstractState::isAtFixpoint()
-  bool isAtFixpoint() const override { return IsAtFixedpoint; }
-
-  /// See AbstractState::indicateOptimisticFixpoint(...)
-  ChangeStatus indicateOptimisticFixpoint() override {
-    IsAtFixedpoint = true;
-    Known = Assumed;
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...)
-  ChangeStatus indicatePessimisticFixpoint() override {
-    IsAtFixedpoint = true;
-    Assumed = Known;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// Return the known state encoding.
-  const SetContents &getKnown() const { return Known; }
-
-  /// Return the assumed state encoding.
-  const SetContents &getAssumed() const { return Assumed; }
-
-  /// Returns if the set state contains the element.
-  bool setContains(const BaseTy &Elem) const {
-    return Assumed.getSet().contains(Elem) || Known.getSet().contains(Elem);
-  }
-
-  /// Performs the set intersection between this set and \p RHS. Returns true if
-  /// changes were made.
-  bool getIntersection(const SetContents &RHS) {
-    bool IsUniversal = Assumed.isUniversal();
-    unsigned SizeBefore = Assumed.getSet().size();
-
-    // Get intersection and make sure that the known set is still a proper
-    // subset of the assumed set. A := K u (A ^ R).
-    Assumed.getIntersection(RHS);
-    Assumed.getUnion(Known);
-
-    return SizeBefore != Assumed.getSet().size() ||
-           IsUniversal != Assumed.isUniversal();
-  }
-
-  /// Performs the set union between this set and \p RHS. Returns true if
-  /// changes were made.
-  bool getUnion(const SetContents &RHS) { return Assumed.getUnion(RHS); }
-
-private:
-  /// The set of values known for this state.
-  SetContents Known;
-
-  /// The set of assumed values for this state.
-  SetContents Assumed;
-
-  bool IsAtFixedpoint;
-};
-
-/// Helper to tie a abstract state implementation to an abstract attribute.
-template <typename StateTy, typename BaseType, class... Ts>
-struct StateWrapper : public BaseType, public StateTy {
-  /// Provide static access to the type of the state.
-  using StateType = StateTy;
-
-  StateWrapper(const IRPosition &IRP, Ts... Args)
-      : BaseType(IRP), StateTy(Args...) {}
-
-  /// See AbstractAttribute::getState(...).
-  StateType &getState() override { return *this; }
-
-  /// See AbstractAttribute::getState(...).
-  const StateType &getState() const override { return *this; }
-};
-
-/// Helper class that provides common functionality to manifest IR attributes.
-template <Attribute::AttrKind AK, typename BaseType, typename AAType>
-struct IRAttribute : public BaseType {
-  IRAttribute(const IRPosition &IRP) : BaseType(IRP) {}
-
-  /// Most boolean IRAttribute AAs don't do anything non-trivial
-  /// in their initializers while non-boolean ones often do. Subclasses can
-  /// change this.
-  static bool hasTrivialInitializer() { return Attribute::isEnumAttrKind(AK); }
-
-  /// Compile time access to the IR attribute kind.
-  static constexpr Attribute::AttrKind IRAttributeKind = AK;
-
-  /// Return true if the IR attribute(s) associated with this AA are implied for
-  /// an undef value.
-  static bool isImpliedByUndef() { return true; }
-
-  /// Return true if the IR attribute(s) associated with this AA are implied for
-  /// an poison value.
-  static bool isImpliedByPoison() { return true; }
-
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind = AK,
-                            bool IgnoreSubsumingPositions = false) {
-    if (AAType::isImpliedByUndef() && isa<UndefValue>(IRP.getAssociatedValue()))
-      return true;
-    if (AAType::isImpliedByPoison() &&
-        isa<PoisonValue>(IRP.getAssociatedValue()))
-      return true;
-    return A.hasAttr(IRP, {ImpliedAttributeKind}, IgnoreSubsumingPositions,
-                     ImpliedAttributeKind);
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    if (isa<UndefValue>(this->getIRPosition().getAssociatedValue()))
-      return ChangeStatus::UNCHANGED;
-    SmallVector<Attribute, 4> DeducedAttrs;
-    getDeducedAttributes(A, this->getAnchorValue().getContext(), DeducedAttrs);
-    if (DeducedAttrs.empty())
-      return ChangeStatus::UNCHANGED;
-    return A.manifestAttrs(this->getIRPosition(), DeducedAttrs);
-  }
-
-  /// Return the kind that identifies the abstract attribute implementation.
-  Attribute::AttrKind getAttrKind() const { return AK; }
-
-  /// Return the deduced attributes in \p Attrs.
-  virtual void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                                    SmallVectorImpl<Attribute> &Attrs) const {
-    Attrs.emplace_back(Attribute::get(Ctx, getAttrKind()));
-  }
-};
-
-/// Base struct for all "concrete attribute" deductions.
-///
-/// The abstract attribute is a minimal interface that allows the Attributor to
-/// orchestrate the abstract/fixpoint analysis. The design allows to hide away
-/// implementation choices made for the subclasses but also to structure their
-/// implementation and simplify the use of other abstract attributes in-flight.
-///
-/// To allow easy creation of new attributes, most methods have default
-/// implementations. The ones that do not are generally straight forward, except
-/// `AbstractAttribute::updateImpl` which is the location of most reasoning
-/// associated with the abstract attribute. The update is invoked by the
-/// Attributor in case the situation used to justify the current optimistic
-/// state might have changed. The Attributor determines this automatically
-/// by monitoring the `Attributor::getAAFor` calls made by abstract attributes.
-///
-/// The `updateImpl` method should inspect the IR and other abstract attributes
-/// in-flight to justify the best possible (=optimistic) state. The actual
-/// implementation is, similar to the underlying abstract state encoding, not
-/// exposed. In the most common case, the `updateImpl` will go through a list of
-/// reasons why its optimistic state is valid given the current information. If
-/// any combination of them holds and is sufficient to justify the current
-/// optimistic state, the method shall return UNCHAGED. If not, the optimistic
-/// state is adjusted to the situation and the method shall return CHANGED.
-///
-/// If the manifestation of the "concrete attribute" deduced by the subclass
-/// differs from the "default" behavior, which is a (set of) LLVM-IR
-/// attribute(s) for an argument, call site argument, function return value, or
-/// function, the `AbstractAttribute::manifest` method should be overloaded.
-///
-/// NOTE: If the state obtained via getState() is INVALID, thus if
-///       AbstractAttribute::getState().isValidState() returns false, no
-///       information provided by the methods of this class should be used.
-/// NOTE: The Attributor currently has certain limitations to what we can do.
-///       As a general rule of thumb, "concrete" abstract attributes should *for
-///       now* only perform "backward" information propagation. That means
-///       optimistic information obtained through abstract attributes should
-///       only be used at positions that precede the origin of the information
-///       with regards to the program flow. More practically, information can
-///       *now* be propagated from instructions to their enclosing function, but
-///       *not* from call sites to the called function. The mechanisms to allow
-///       both directions will be added in the future.
-/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
-///       described in the file comment.
-struct AbstractAttribute : public IRPosition, public AADepGraphNode {
-  using StateType = AbstractState;
-
-  AbstractAttribute(const IRPosition &IRP) : IRPosition(IRP) {}
-
-  /// Virtual destructor.
-  virtual ~AbstractAttribute() = default;
-
-  /// Compile time access to the IR attribute kind.
-  static constexpr Attribute::AttrKind IRAttributeKind = Attribute::None;
-
-  /// This function is used to identify if an \p DGN is of type
-  /// AbstractAttribute so that the dyn_cast and cast can use such information
-  /// to cast an AADepGraphNode to an AbstractAttribute.
-  ///
-  /// We eagerly return true here because all AADepGraphNodes except for the
-  /// Synthethis Node are of type AbstractAttribute
-  static bool classof(const AADepGraphNode *DGN) { return true; }
-
-  /// Return false if this AA does anything non-trivial (hence not done by
-  /// default) in its initializer.
-  static bool hasTrivialInitializer() { return false; }
-
-  /// Return true if this AA requires a "callee" (or an associted function) for
-  /// a call site positon. Default is optimistic to minimize AAs.
-  static bool requiresCalleeForCallBase() { return false; }
-
-  /// Return true if this AA requires non-asm "callee" for a call site positon.
-  static bool requiresNonAsmForCallBase() { return true; }
-
-  /// Return true if this AA requires all callees for an argument or function
-  /// positon.
-  static bool requiresCallersForArgOrFunction() { return false; }
-
-  /// Return false if an AA should not be created for \p IRP.
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    return true;
-  }
-
-  /// Return false if an AA should not be updated for \p IRP.
-  static bool isValidIRPositionForUpdate(Attributor &A, const IRPosition &IRP) {
-    Function *AssociatedFn = IRP.getAssociatedFunction();
-    bool IsFnInterface = IRP.isFnInterfaceKind();
-    assert((!IsFnInterface || AssociatedFn) &&
-           "Function interface without a function?");
-
-    // TODO: Not all attributes require an exact definition. Find a way to
-    //       enable deduction for some but not all attributes in case the
-    //       definition might be changed at runtime, see also
-    //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
-    // TODO: We could always determine abstract attributes and if sufficient
-    //       information was found we could duplicate the functions that do not
-    //       have an exact definition.
-    return !IsFnInterface || A.isFunctionIPOAmendable(*AssociatedFn);
-  }
-
-  /// Initialize the state with the information in the Attributor \p A.
-  ///
-  /// This function is called by the Attributor once all abstract attributes
-  /// have been identified. It can and shall be used for task like:
-  ///  - identify existing knowledge in the IR and use it for the "known state"
-  ///  - perform any work that is not going to change over time, e.g., determine
-  ///    a subset of the IR, or attributes in-flight, that have to be looked at
-  ///    in the `updateImpl` method.
-  virtual void initialize(Attributor &A) {}
-
-  /// A query AA is always scheduled as long as we do updates because it does
-  /// lazy computation that cannot be determined to be done from the outside.
-  /// However, while query AAs will not be fixed if they do not have outstanding
-  /// dependences, we will only schedule them like other AAs. If a query AA that
-  /// received a new query it needs to request an update via
-  /// `Attributor::requestUpdateForAA`.
-  virtual bool isQueryAA() const { return false; }
-
-  /// Return the internal abstract state for inspection.
-  virtual StateType &getState() = 0;
-  virtual const StateType &getState() const = 0;
-
-  /// Return an IR position, see struct IRPosition.
-  const IRPosition &getIRPosition() const { return *this; };
-  IRPosition &getIRPosition() { return *this; };
-
-  /// Helper functions, for debug purposes only.
-  ///{
-  void print(raw_ostream &OS) const { print(nullptr, OS); }
-  void print(Attributor *, raw_ostream &OS) const override;
-  virtual void printWithDeps(raw_ostream &OS) const;
-  void dump() const { this->print(dbgs()); }
-
-  /// This function should return the "summarized" assumed state as string.
-  virtual const std::string getAsStr(Attributor *A) const = 0;
-
-  /// This function should return the name of the AbstractAttribute
-  virtual const std::string getName() const = 0;
-
-  /// This function should return the address of the ID of the AbstractAttribute
-  virtual const char *getIdAddr() const = 0;
-  ///}
-
-  /// Allow the Attributor access to the protected methods.
-  friend struct Attributor;
-
-protected:
-  /// Hook for the Attributor to trigger an update of the internal state.
-  ///
-  /// If this attribute is already fixed, this method will return UNCHANGED,
-  /// otherwise it delegates to `AbstractAttribute::updateImpl`.
-  ///
-  /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
-  ChangeStatus update(Attributor &A);
-
-  /// Hook for the Attributor to trigger the manifestation of the information
-  /// represented by the abstract attribute in the LLVM-IR.
-  ///
-  /// \Return CHANGED if the IR was altered, otherwise UNCHANGED.
-  virtual ChangeStatus manifest(Attributor &A) {
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// Hook to enable custom statistic tracking, called after manifest that
-  /// resulted in a change if statistics are enabled.
-  ///
-  /// We require subclasses to provide an implementation so we remember to
-  /// add statistics for them.
-  virtual void trackStatistics() const = 0;
-
-  /// The actual update/transfer function which has to be implemented by the
-  /// derived classes.
-  ///
-  /// If it is called, the environment has changed and we have to determine if
-  /// the current information is still valid or adjust it otherwise.
-  ///
-  /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
-  virtual ChangeStatus updateImpl(Attributor &A) = 0;
-};
-
-/// Forward declarations of output streams for debug purposes.
-///
-///{
-raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA);
-raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S);
-raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind);
-raw_ostream &operator<<(raw_ostream &OS, const IRPosition &);
-raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State);
-template <typename base_ty, base_ty BestState, base_ty WorstState>
-raw_ostream &
-operator<<(raw_ostream &OS,
-           const IntegerStateBase<base_ty, BestState, WorstState> &S) {
-  return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
-            << static_cast<const AbstractState &>(S);
-}
-raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State);
-///}
-
-struct AttributorPass : public PassInfoMixin<AttributorPass> {
-  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
-};
-struct AttributorCGSCCPass : public PassInfoMixin<AttributorCGSCCPass> {
-  PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
-                        LazyCallGraph &CG, CGSCCUpdateResult &UR);
-};
-
-/// A more lightweight version of the Attributor which only runs attribute
-/// inference but no simplifications.
-struct AttributorLightPass : public PassInfoMixin<AttributorLightPass> {
-  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
-};
-
-/// A more lightweight version of the Attributor which only runs attribute
-/// inference but no simplifications.
-struct AttributorLightCGSCCPass
-    : public PassInfoMixin<AttributorLightCGSCCPass> {
-  PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
-                        LazyCallGraph &CG, CGSCCUpdateResult &UR);
-};
-
-/// Helper function to clamp a state \p S of type \p StateType with the
-/// information in \p R and indicate/return if \p S did change (as-in update is
-/// required to be run again).
-template <typename StateType>
-ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
-  auto Assumed = S.getAssumed();
-  S ^= R;
-  return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
-                                   : ChangeStatus::CHANGED;
-}
-
-/// ----------------------------------------------------------------------------
-///                       Abstract Attribute Classes
-/// ----------------------------------------------------------------------------
-
-struct AANoUnwind
-    : public IRAttribute<Attribute::NoUnwind,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoUnwind> {
-  AANoUnwind(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// Returns true if nounwind is assumed.
-  bool isAssumedNoUnwind() const { return getAssumed(); }
-
-  /// Returns true if nounwind is known.
-  bool isKnownNoUnwind() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoUnwind"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoUnwind
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-struct AANoSync
-    : public IRAttribute<Attribute::NoSync,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoSync> {
-  AANoSync(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false) {
-    // Note: This is also run for non-IPO amendable functions.
-    assert(ImpliedAttributeKind == Attribute::NoSync);
-    if (A.hasAttr(IRP, {Attribute::NoSync}, IgnoreSubsumingPositions,
-                  Attribute::NoSync))
-      return true;
-
-    // Check for readonly + non-convergent.
-    // TODO: We should be able to use hasAttr for Attributes, not only
-    // AttrKinds.
-    Function *F = IRP.getAssociatedFunction();
-    if (!F || F->isConvergent())
-      return false;
-
-    SmallVector<Attribute, 2> Attrs;
-    A.getAttrs(IRP, {Attribute::Memory}, Attrs, IgnoreSubsumingPositions);
-
-    MemoryEffects ME = MemoryEffects::unknown();
-    for (const Attribute &Attr : Attrs)
-      ME &= Attr.getMemoryEffects();
-
-    if (!ME.onlyReadsMemory())
-      return false;
-
-    A.manifestAttrs(IRP, Attribute::get(F->getContext(), Attribute::NoSync));
-    return true;
-  }
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.isFunctionScope() &&
-        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Returns true if "nosync" is assumed.
-  bool isAssumedNoSync() const { return getAssumed(); }
-
-  /// Returns true if "nosync" is known.
-  bool isKnownNoSync() const { return getKnown(); }
-
-  /// Helper function used to determine whether an instruction is non-relaxed
-  /// atomic. In other words, if an atomic instruction does not have unordered
-  /// or monotonic ordering
-  static bool isNonRelaxedAtomic(const Instruction *I);
-
-  /// Helper function specific for intrinsics which are potentially volatile.
-  static bool isNoSyncIntrinsic(const Instruction *I);
-
-  /// Helper function to determine if \p CB is an aligned (GPU) barrier. Aligned
-  /// barriers have to be executed by all threads. The flag \p ExecutedAligned
-  /// indicates if the call is executed by all threads in a (thread) block in an
-  /// aligned way. If that is the case, non-aligned barriers are effectively
-  /// aligned barriers.
-  static bool isAlignedBarrier(const CallBase &CB, bool ExecutedAligned);
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoSync"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoSync
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for all nonnull attributes.
-struct AAMustProgress
-    : public IRAttribute<Attribute::MustProgress,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AAMustProgress> {
-  AAMustProgress(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false) {
-    // Note: This is also run for non-IPO amendable functions.
-    assert(ImpliedAttributeKind == Attribute::MustProgress);
-    return A.hasAttr(IRP, {Attribute::MustProgress, Attribute::WillReturn},
-                     IgnoreSubsumingPositions, Attribute::MustProgress);
-  }
-
-  /// Return true if we assume that the underlying value is nonnull.
-  bool isAssumedMustProgress() const { return getAssumed(); }
-
-  /// Return true if we know that underlying value is nonnull.
-  bool isKnownMustProgress() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAMustProgress &createForPosition(const IRPosition &IRP,
-                                           Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAMustProgress"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAMustProgress
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for all nonnull attributes.
-struct AANonNull
-    : public IRAttribute<Attribute::NonNull,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANonNull> {
-  AANonNull(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::hasTrivialInitializer.
-  static bool hasTrivialInitializer() { return false; }
-
-  /// See IRAttribute::isImpliedByUndef.
-  /// Undef is not necessarily nonnull as nonnull + noundef would cause poison.
-  /// Poison implies nonnull though.
-  static bool isImpliedByUndef() { return false; }
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// See AbstractAttribute::isImpliedByIR(...).
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false);
-
-  /// Return true if we assume that the underlying value is nonnull.
-  bool isAssumedNonNull() const { return getAssumed(); }
-
-  /// Return true if we know that underlying value is nonnull.
-  bool isKnownNonNull() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANonNull"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANonNull
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract attribute for norecurse.
-struct AANoRecurse
-    : public IRAttribute<Attribute::NoRecurse,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoRecurse> {
-  AANoRecurse(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// Return true if "norecurse" is assumed.
-  bool isAssumedNoRecurse() const { return getAssumed(); }
-
-  /// Return true if "norecurse" is known.
-  bool isKnownNoRecurse() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoRecurse"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoRecurse
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract attribute for willreturn.
-struct AAWillReturn
-    : public IRAttribute<Attribute::WillReturn,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AAWillReturn> {
-  AAWillReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false) {
-    // Note: This is also run for non-IPO amendable functions.
-    assert(ImpliedAttributeKind == Attribute::WillReturn);
-    if (IRAttribute::isImpliedByIR(A, IRP, ImpliedAttributeKind,
-                                   IgnoreSubsumingPositions))
-      return true;
-    if (!isImpliedByMustprogressAndReadonly(A, IRP))
-      return false;
-    A.manifestAttrs(IRP, Attribute::get(IRP.getAnchorValue().getContext(),
-                                        Attribute::WillReturn));
-    return true;
-  }
-
-  /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
-  static bool isImpliedByMustprogressAndReadonly(Attributor &A,
-                                                 const IRPosition &IRP) {
-    // Check for `mustprogress` in the scope and the associated function which
-    // might be different if this is a call site.
-    if (!A.hasAttr(IRP, {Attribute::MustProgress}))
-      return false;
-
-    SmallVector<Attribute, 2> Attrs;
-    A.getAttrs(IRP, {Attribute::Memory}, Attrs,
-               /* IgnoreSubsumingPositions */ false);
-
-    MemoryEffects ME = MemoryEffects::unknown();
-    for (const Attribute &Attr : Attrs)
-      ME &= Attr.getMemoryEffects();
-    return ME.onlyReadsMemory();
-  }
-
-  /// Return true if "willreturn" is assumed.
-  bool isAssumedWillReturn() const { return getAssumed(); }
-
-  /// Return true if "willreturn" is known.
-  bool isKnownWillReturn() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAWillReturn"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AAWillReturn
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract attribute for undefined behavior.
-struct AAUndefinedBehavior
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-  AAUndefinedBehavior(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// Return true if "undefined behavior" is assumed.
-  bool isAssumedToCauseUB() const { return getAssumed(); }
-
-  /// Return true if "undefined behavior" is assumed for a specific instruction.
-  virtual bool isAssumedToCauseUB(Instruction *I) const = 0;
-
-  /// Return true if "undefined behavior" is known.
-  bool isKnownToCauseUB() const { return getKnown(); }
-
-  /// Return true if "undefined behavior" is known for a specific instruction.
-  virtual bool isKnownToCauseUB(Instruction *I) const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAUndefinedBehavior &createForPosition(const IRPosition &IRP,
-                                                Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAUndefinedBehavior"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAUndefineBehavior
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface to determine reachability of point A to B.
-struct AAIntraFnReachability
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-  AAIntraFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// Returns true if 'From' instruction is assumed to reach, 'To' instruction.
-  /// Users should provide two positions they are interested in, and the class
-  /// determines (and caches) reachability.
-  virtual bool isAssumedReachable(
-      Attributor &A, const Instruction &From, const Instruction &To,
-      const AA::InstExclusionSetTy *ExclusionSet = nullptr) const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAIntraFnReachability &createForPosition(const IRPosition &IRP,
-                                                  Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAIntraFnReachability"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAIntraFnReachability
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for all noalias attributes.
-struct AANoAlias
-    : public IRAttribute<Attribute::NoAlias,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoAlias> {
-  AANoAlias(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// See IRAttribute::isImpliedByIR
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false);
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// Return true if we assume that the underlying value is alias.
-  bool isAssumedNoAlias() const { return getAssumed(); }
-
-  /// Return true if we know that underlying value is noalias.
-  bool isKnownNoAlias() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoAlias"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoAlias
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An AbstractAttribute for nofree.
-struct AANoFree
-    : public IRAttribute<Attribute::NoFree,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoFree> {
-  AANoFree(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See IRAttribute::isImpliedByIR
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false) {
-    // Note: This is also run for non-IPO amendable functions.
-    assert(ImpliedAttributeKind == Attribute::NoFree);
-    return A.hasAttr(
-        IRP, {Attribute::ReadNone, Attribute::ReadOnly, Attribute::NoFree},
-        IgnoreSubsumingPositions, Attribute::NoFree);
-  }
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.isFunctionScope() &&
-        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Return true if "nofree" is assumed.
-  bool isAssumedNoFree() const { return getAssumed(); }
-
-  /// Return true if "nofree" is known.
-  bool isKnownNoFree() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoFree"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoFree
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An AbstractAttribute for noreturn.
-struct AANoReturn
-    : public IRAttribute<Attribute::NoReturn,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoReturn> {
-  AANoReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// Return true if the underlying object is assumed to never return.
-  bool isAssumedNoReturn() const { return getAssumed(); }
-
-  /// Return true if the underlying object is known to never return.
-  bool isKnownNoReturn() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoReturn"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoReturn
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for liveness abstract attribute.
-struct AAIsDead
-    : public StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute> {
-  using Base = StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute>;
-  AAIsDead(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION)
-      return isa<Function>(IRP.getAnchorValue()) &&
-             !cast<Function>(IRP.getAnchorValue()).isDeclaration();
-    return true;
-  }
-
-  /// State encoding bits. A set bit in the state means the property holds.
-  enum {
-    HAS_NO_EFFECT = 1 << 0,
-    IS_REMOVABLE = 1 << 1,
-
-    IS_DEAD = HAS_NO_EFFECT | IS_REMOVABLE,
-  };
-  static_assert(IS_DEAD == getBestState(), "Unexpected BEST_STATE value");
-
-protected:
-  /// The query functions are protected such that other attributes need to go
-  /// through the Attributor interfaces: `Attributor::isAssumedDead(...)`
-
-  /// Returns true if the underlying value is assumed dead.
-  virtual bool isAssumedDead() const = 0;
-
-  /// Returns true if the underlying value is known dead.
-  virtual bool isKnownDead() const = 0;
-
-  /// Returns true if \p BB is known dead.
-  virtual bool isKnownDead(const BasicBlock *BB) const = 0;
-
-  /// Returns true if \p I is assumed dead.
-  virtual bool isAssumedDead(const Instruction *I) const = 0;
-
-  /// Returns true if \p I is known dead.
-  virtual bool isKnownDead(const Instruction *I) const = 0;
-
-  /// Return true if the underlying value is a store that is known to be
-  /// removable. This is different from dead stores as the removable store
-  /// can have an effect on live values, especially loads, but that effect
-  /// is propagated which allows us to remove the store in turn.
-  virtual bool isRemovableStore() const { return false; }
-
-  /// This method is used to check if at least one instruction in a collection
-  /// of instructions is live.
-  template <typename T> bool isLiveInstSet(T begin, T end) const {
-    for (const auto &I : llvm::make_range(begin, end)) {
-      assert(I->getFunction() == getIRPosition().getAssociatedFunction() &&
-             "Instruction must be in the same anchor scope function.");
-
-      if (!isAssumedDead(I))
-        return true;
-    }
-
-    return false;
-  }
-
-public:
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// Determine if \p F might catch asynchronous exceptions.
-  static bool mayCatchAsynchronousExceptions(const Function &F) {
-    return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
-  }
-
-  /// Returns true if \p BB is assumed dead.
-  virtual bool isAssumedDead(const BasicBlock *BB) const = 0;
-
-  /// Return if the edge from \p From BB to \p To BB is assumed dead.
-  /// This is specifically useful in AAReachability.
-  virtual bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const {
-    return false;
-  }
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAIsDead"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AAIsDead
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-
-  friend struct Attributor;
-};
-
-/// State for dereferenceable attribute
-struct DerefState : AbstractState {
-
-  static DerefState getBestState() { return DerefState(); }
-  static DerefState getBestState(const DerefState &) { return getBestState(); }
-
-  /// Return the worst possible representable state.
-  static DerefState getWorstState() {
-    DerefState DS;
-    DS.indicatePessimisticFixpoint();
-    return DS;
-  }
-  static DerefState getWorstState(const DerefState &) {
-    return getWorstState();
-  }
-
-  /// State representing for dereferenceable bytes.
-  IncIntegerState<> DerefBytesState;
-
-  /// Map representing for accessed memory offsets and sizes.
-  /// A key is Offset and a value is size.
-  /// If there is a load/store instruction something like,
-  ///   p[offset] = v;
-  /// (offset, sizeof(v)) will be inserted to this map.
-  /// std::map is used because we want to iterate keys in ascending order.
-  std::map<int64_t, uint64_t> AccessedBytesMap;
-
-  /// Helper function to calculate dereferenceable bytes from current known
-  /// bytes and accessed bytes.
-  ///
-  /// int f(int *A){
-  ///    *A = 0;
-  ///    *(A+2) = 2;
-  ///    *(A+1) = 1;
-  ///    *(A+10) = 10;
-  /// }
-  /// ```
-  /// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`.
-  /// AccessedBytesMap is std::map so it is iterated in accending order on
-  /// key(Offset). So KnownBytes will be updated like this:
-  ///
-  /// |Access | KnownBytes
-  /// |(0, 4)| 0 -> 4
-  /// |(4, 4)| 4 -> 8
-  /// |(8, 4)| 8 -> 12
-  /// |(40, 4) | 12 (break)
-  void computeKnownDerefBytesFromAccessedMap() {
-    int64_t KnownBytes = DerefBytesState.getKnown();
-    for (auto &Access : AccessedBytesMap) {
-      if (KnownBytes < Access.first)
-        break;
-      KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second);
-    }
-
-    DerefBytesState.takeKnownMaximum(KnownBytes);
-  }
-
-  /// State representing that whether the value is globaly dereferenceable.
-  BooleanState GlobalState;
-
-  /// See AbstractState::isValidState()
-  bool isValidState() const override { return DerefBytesState.isValidState(); }
-
-  /// See AbstractState::isAtFixpoint()
-  bool isAtFixpoint() const override {
-    return !isValidState() ||
-           (DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint());
-  }
-
-  /// See AbstractState::indicateOptimisticFixpoint(...)
-  ChangeStatus indicateOptimisticFixpoint() override {
-    DerefBytesState.indicateOptimisticFixpoint();
-    GlobalState.indicateOptimisticFixpoint();
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...)
-  ChangeStatus indicatePessimisticFixpoint() override {
-    DerefBytesState.indicatePessimisticFixpoint();
-    GlobalState.indicatePessimisticFixpoint();
-    return ChangeStatus::CHANGED;
-  }
-
-  /// Update known dereferenceable bytes.
-  void takeKnownDerefBytesMaximum(uint64_t Bytes) {
-    DerefBytesState.takeKnownMaximum(Bytes);
-
-    // Known bytes might increase.
-    computeKnownDerefBytesFromAccessedMap();
-  }
-
-  /// Update assumed dereferenceable bytes.
-  void takeAssumedDerefBytesMinimum(uint64_t Bytes) {
-    DerefBytesState.takeAssumedMinimum(Bytes);
-  }
-
-  /// Add accessed bytes to the map.
-  void addAccessedBytes(int64_t Offset, uint64_t Size) {
-    uint64_t &AccessedBytes = AccessedBytesMap[Offset];
-    AccessedBytes = std::max(AccessedBytes, Size);
-
-    // Known bytes might increase.
-    computeKnownDerefBytesFromAccessedMap();
-  }
-
-  /// Equality for DerefState.
-  bool operator==(const DerefState &R) const {
-    return this->DerefBytesState == R.DerefBytesState &&
-           this->GlobalState == R.GlobalState;
-  }
-
-  /// Inequality for DerefState.
-  bool operator!=(const DerefState &R) const { return !(*this == R); }
-
-  /// See IntegerStateBase::operator^=
-  DerefState operator^=(const DerefState &R) {
-    DerefBytesState ^= R.DerefBytesState;
-    GlobalState ^= R.GlobalState;
-    return *this;
-  }
-
-  /// See IntegerStateBase::operator+=
-  DerefState operator+=(const DerefState &R) {
-    DerefBytesState += R.DerefBytesState;
-    GlobalState += R.GlobalState;
-    return *this;
-  }
-
-  /// See IntegerStateBase::operator&=
-  DerefState operator&=(const DerefState &R) {
-    DerefBytesState &= R.DerefBytesState;
-    GlobalState &= R.GlobalState;
-    return *this;
-  }
-
-  /// See IntegerStateBase::operator|=
-  DerefState operator|=(const DerefState &R) {
-    DerefBytesState |= R.DerefBytesState;
-    GlobalState |= R.GlobalState;
-    return *this;
-  }
-};
-
-/// An abstract interface for all dereferenceable attribute.
-struct AADereferenceable
-    : public IRAttribute<Attribute::Dereferenceable,
-                         StateWrapper<DerefState, AbstractAttribute>,
-                         AADereferenceable> {
-  AADereferenceable(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Return true if we assume that underlying value is
-  /// dereferenceable(_or_null) globally.
-  bool isAssumedGlobal() const { return GlobalState.getAssumed(); }
-
-  /// Return true if we know that underlying value is
-  /// dereferenceable(_or_null) globally.
-  bool isKnownGlobal() const { return GlobalState.getKnown(); }
-
-  /// Return assumed dereferenceable bytes.
-  uint32_t getAssumedDereferenceableBytes() const {
-    return DerefBytesState.getAssumed();
-  }
-
-  /// Return known dereferenceable bytes.
-  uint32_t getKnownDereferenceableBytes() const {
-    return DerefBytesState.getKnown();
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AADereferenceable &createForPosition(const IRPosition &IRP,
-                                              Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AADereferenceable"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AADereferenceable
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-using AAAlignmentStateType =
-    IncIntegerState<uint64_t, Value::MaximumAlignment, 1>;
-/// An abstract interface for all align attributes.
-struct AAAlign
-    : public IRAttribute<Attribute::Alignment,
-                         StateWrapper<AAAlignmentStateType, AbstractAttribute>,
-                         AAAlign> {
-  AAAlign(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Return assumed alignment.
-  Align getAssumedAlign() const { return Align(getAssumed()); }
-
-  /// Return known alignment.
-  Align getKnownAlign() const { return Align(getKnown()); }
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAAlign"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AAAlign
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface to track if a value leaves it's defining function
-/// instance.
-/// TODO: We should make it a ternary AA tracking uniqueness, and uniqueness
-/// wrt. the Attributor analysis separately.
-struct AAInstanceInfo : public StateWrapper<BooleanState, AbstractAttribute> {
-  AAInstanceInfo(const IRPosition &IRP, Attributor &A)
-      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
-
-  /// Return true if we know that the underlying value is unique in its scope
-  /// wrt. the Attributor analysis. That means it might not be unique but we can
-  /// still use pointer equality without risking to represent two instances with
-  /// one `llvm::Value`.
-  bool isKnownUniqueForAnalysis() const { return isKnown(); }
-
-  /// Return true if we assume that the underlying value is unique in its scope
-  /// wrt. the Attributor analysis. That means it might not be unique but we can
-  /// still use pointer equality without risking to represent two instances with
-  /// one `llvm::Value`.
-  bool isAssumedUniqueForAnalysis() const { return isAssumed(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAInstanceInfo &createForPosition(const IRPosition &IRP,
-                                           Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAInstanceInfo"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAInstanceInfo
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for all nocapture attributes.
-struct AANoCapture
-    : public IRAttribute<
-          Attribute::NoCapture,
-          StateWrapper<BitIntegerState<uint16_t, 7, 0>, AbstractAttribute>,
-          AANoCapture> {
-  AANoCapture(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See IRAttribute::isImpliedByIR
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false);
-
-  /// Update \p State according to the capture capabilities of \p F for position
-  /// \p IRP.
-  static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
-                                                   const Function &F,
-                                                   BitIntegerState &State);
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// State encoding bits. A set bit in the state means the property holds.
-  /// NO_CAPTURE is the best possible state, 0 the worst possible state.
-  enum {
-    NOT_CAPTURED_IN_MEM = 1 << 0,
-    NOT_CAPTURED_IN_INT = 1 << 1,
-    NOT_CAPTURED_IN_RET = 1 << 2,
-
-    /// If we do not capture the value in memory or through integers we can only
-    /// communicate it back as a derived pointer.
-    NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT,
-
-    /// If we do not capture the value in memory, through integers, or as a
-    /// derived pointer we know it is not captured.
-    NO_CAPTURE =
-        NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET,
-  };
-
-  /// Return true if we know that the underlying value is not captured in its
-  /// respective scope.
-  bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); }
-
-  /// Return true if we assume that the underlying value is not captured in its
-  /// respective scope.
-  bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); }
-
-  /// Return true if we know that the underlying value is not captured in its
-  /// respective scope but we allow it to escape through a "return".
-  bool isKnownNoCaptureMaybeReturned() const {
-    return isKnown(NO_CAPTURE_MAYBE_RETURNED);
-  }
-
-  /// Return true if we assume that the underlying value is not captured in its
-  /// respective scope but we allow it to escape through a "return".
-  bool isAssumedNoCaptureMaybeReturned() const {
-    return isAssumed(NO_CAPTURE_MAYBE_RETURNED);
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoCapture"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoCapture
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-struct ValueSimplifyStateType : public AbstractState {
-
-  ValueSimplifyStateType(Type *Ty) : Ty(Ty) {}
-
-  static ValueSimplifyStateType getBestState(Type *Ty) {
-    return ValueSimplifyStateType(Ty);
-  }
-  static ValueSimplifyStateType getBestState(const ValueSimplifyStateType &VS) {
-    return getBestState(VS.Ty);
-  }
-
-  /// Return the worst possible representable state.
-  static ValueSimplifyStateType getWorstState(Type *Ty) {
-    ValueSimplifyStateType DS(Ty);
-    DS.indicatePessimisticFixpoint();
-    return DS;
-  }
-  static ValueSimplifyStateType
-  getWorstState(const ValueSimplifyStateType &VS) {
-    return getWorstState(VS.Ty);
-  }
-
-  /// See AbstractState::isValidState(...)
-  bool isValidState() const override { return BS.isValidState(); }
-
-  /// See AbstractState::isAtFixpoint(...)
-  bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
-
-  /// Return the assumed state encoding.
-  ValueSimplifyStateType getAssumed() { return *this; }
-  const ValueSimplifyStateType &getAssumed() const { return *this; }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...)
-  ChangeStatus indicatePessimisticFixpoint() override {
-    return BS.indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractState::indicateOptimisticFixpoint(...)
-  ChangeStatus indicateOptimisticFixpoint() override {
-    return BS.indicateOptimisticFixpoint();
-  }
-
-  /// "Clamp" this state with \p PVS.
-  ValueSimplifyStateType operator^=(const ValueSimplifyStateType &VS) {
-    BS ^= VS.BS;
-    unionAssumed(VS.SimplifiedAssociatedValue);
-    return *this;
-  }
-
-  bool operator==(const ValueSimplifyStateType &RHS) const {
-    if (isValidState() != RHS.isValidState())
-      return false;
-    if (!isValidState() && !RHS.isValidState())
-      return true;
-    return SimplifiedAssociatedValue == RHS.SimplifiedAssociatedValue;
-  }
-
-protected:
-  /// The type of the original value.
-  Type *Ty;
-
-  /// Merge \p Other into the currently assumed simplified value
-  bool unionAssumed(std::optional<Value *> Other);
-
-  /// Helper to track validity and fixpoint
-  BooleanState BS;
-
-  /// An assumed simplified value. Initially, it is set to std::nullopt, which
-  /// means that the value is not clear under current assumption. If in the
-  /// pessimistic state, getAssumedSimplifiedValue doesn't return this value but
-  /// returns orignal associated value.
-  std::optional<Value *> SimplifiedAssociatedValue;
-};
-
-/// An abstract interface for value simplify abstract attribute.
-struct AAValueSimplify
-    : public StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *> {
-  using Base = StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *>;
-  AAValueSimplify(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, IRP.getAssociatedType()) {}
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAValueSimplify &createForPosition(const IRPosition &IRP,
-                                            Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAValueSimplify"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAValueSimplify
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-
-private:
-  /// Return an assumed simplified value if a single candidate is found. If
-  /// there cannot be one, return original value. If it is not clear yet, return
-  /// std::nullopt.
-  ///
-  /// Use `Attributor::getAssumedSimplified` for value simplification.
-  virtual std::optional<Value *>
-  getAssumedSimplifiedValue(Attributor &A) const = 0;
-
-  friend struct Attributor;
-};
-
-struct AAHeapToStack : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-  AAHeapToStack(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// Returns true if HeapToStack conversion is assumed to be possible.
-  virtual bool isAssumedHeapToStack(const CallBase &CB) const = 0;
-
-  /// Returns true if HeapToStack conversion is assumed and the CB is a
-  /// callsite to a free operation to be removed.
-  virtual bool isAssumedHeapToStackRemovedFree(CallBase &CB) const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAHeapToStack"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AAHeapToStack
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for privatizability.
-///
-/// A pointer is privatizable if it can be replaced by a new, private one.
-/// Privatizing pointer reduces the use count, interaction between unrelated
-/// code parts.
-///
-/// In order for a pointer to be privatizable its value cannot be observed
-/// (=nocapture), it is (for now) not written (=readonly & noalias), we know
-/// what values are necessary to make the private copy look like the original
-/// one, and the values we need can be loaded (=dereferenceable).
-struct AAPrivatizablePtr
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-  AAPrivatizablePtr(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Returns true if pointer privatization is assumed to be possible.
-  bool isAssumedPrivatizablePtr() const { return getAssumed(); }
-
-  /// Returns true if pointer privatization is known to be possible.
-  bool isKnownPrivatizablePtr() const { return getKnown(); }
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// Return the type we can choose for a private copy of the underlying
-  /// value. std::nullopt means it is not clear yet, nullptr means there is
-  /// none.
-  virtual std::optional<Type *> getPrivatizableType() const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAPrivatizablePtr &createForPosition(const IRPosition &IRP,
-                                              Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAPrivatizablePtr"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAPricatizablePtr
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for memory access kind related attributes
-/// (readnone/readonly/writeonly).
-struct AAMemoryBehavior
-    : public IRAttribute<
-          Attribute::None,
-          StateWrapper<BitIntegerState<uint8_t, 3>, AbstractAttribute>,
-          AAMemoryBehavior> {
-  AAMemoryBehavior(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::hasTrivialInitializer.
-  static bool hasTrivialInitializer() { return false; }
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.isFunctionScope() &&
-        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// State encoding bits. A set bit in the state means the property holds.
-  /// BEST_STATE is the best possible state, 0 the worst possible state.
-  enum {
-    NO_READS = 1 << 0,
-    NO_WRITES = 1 << 1,
-    NO_ACCESSES = NO_READS | NO_WRITES,
-
-    BEST_STATE = NO_ACCESSES,
-  };
-  static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
-
-  /// Return true if we know that the underlying value is not read or accessed
-  /// in its respective scope.
-  bool isKnownReadNone() const { return isKnown(NO_ACCESSES); }
-
-  /// Return true if we assume that the underlying value is not read or accessed
-  /// in its respective scope.
-  bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); }
-
-  /// Return true if we know that the underlying value is not accessed
-  /// (=written) in its respective scope.
-  bool isKnownReadOnly() const { return isKnown(NO_WRITES); }
-
-  /// Return true if we assume that the underlying value is not accessed
-  /// (=written) in its respective scope.
-  bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); }
-
-  /// Return true if we know that the underlying value is not read in its
-  /// respective scope.
-  bool isKnownWriteOnly() const { return isKnown(NO_READS); }
-
-  /// Return true if we assume that the underlying value is not read in its
-  /// respective scope.
-  bool isAssumedWriteOnly() const { return isAssumed(NO_READS); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAMemoryBehavior &createForPosition(const IRPosition &IRP,
-                                             Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAMemoryBehavior"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAMemoryBehavior
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for all memory location attributes
-/// (readnone/argmemonly/inaccessiblememonly/inaccessibleorargmemonly).
-struct AAMemoryLocation
-    : public IRAttribute<
-          Attribute::None,
-          StateWrapper<BitIntegerState<uint32_t, 511>, AbstractAttribute>,
-          AAMemoryLocation> {
-  using MemoryLocationsKind = StateType::base_t;
-
-  AAMemoryLocation(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::requiresCalleeForCallBase.
-  static bool requiresCalleeForCallBase() { return true; }
-
-  /// See AbstractAttribute::hasTrivialInitializer.
-  static bool hasTrivialInitializer() { return false; }
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.isFunctionScope() &&
-        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return IRAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Encoding of different locations that could be accessed by a memory
-  /// access.
-  enum {
-    ALL_LOCATIONS = 0,
-    NO_LOCAL_MEM = 1 << 0,
-    NO_CONST_MEM = 1 << 1,
-    NO_GLOBAL_INTERNAL_MEM = 1 << 2,
-    NO_GLOBAL_EXTERNAL_MEM = 1 << 3,
-    NO_GLOBAL_MEM = NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM,
-    NO_ARGUMENT_MEM = 1 << 4,
-    NO_INACCESSIBLE_MEM = 1 << 5,
-    NO_MALLOCED_MEM = 1 << 6,
-    NO_UNKOWN_MEM = 1 << 7,
-    NO_LOCATIONS = NO_LOCAL_MEM | NO_CONST_MEM | NO_GLOBAL_INTERNAL_MEM |
-                   NO_GLOBAL_EXTERNAL_MEM | NO_ARGUMENT_MEM |
-                   NO_INACCESSIBLE_MEM | NO_MALLOCED_MEM | NO_UNKOWN_MEM,
-
-    // Helper bit to track if we gave up or not.
-    VALID_STATE = NO_LOCATIONS + 1,
-
-    BEST_STATE = NO_LOCATIONS | VALID_STATE,
-  };
-  static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
-
-  /// Return true if we know that the associated functions has no observable
-  /// accesses.
-  bool isKnownReadNone() const { return isKnown(NO_LOCATIONS); }
-
-  /// Return true if we assume that the associated functions has no observable
-  /// accesses.
-  bool isAssumedReadNone() const {
-    return isAssumed(NO_LOCATIONS) || isAssumedStackOnly();
-  }
-
-  /// Return true if we know that the associated functions has at most
-  /// local/stack accesses.
-  bool isKnowStackOnly() const {
-    return isKnown(inverseLocation(NO_LOCAL_MEM, true, true));
-  }
-
-  /// Return true if we assume that the associated functions has at most
-  /// local/stack accesses.
-  bool isAssumedStackOnly() const {
-    return isAssumed(inverseLocation(NO_LOCAL_MEM, true, true));
-  }
-
-  /// Return true if we know that the underlying value will only access
-  /// inaccesible memory only (see Attribute::InaccessibleMemOnly).
-  bool isKnownInaccessibleMemOnly() const {
-    return isKnown(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
-  }
-
-  /// Return true if we assume that the underlying value will only access
-  /// inaccesible memory only (see Attribute::InaccessibleMemOnly).
-  bool isAssumedInaccessibleMemOnly() const {
-    return isAssumed(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
-  }
-
-  /// Return true if we know that the underlying value will only access
-  /// argument pointees (see Attribute::ArgMemOnly).
-  bool isKnownArgMemOnly() const {
-    return isKnown(inverseLocation(NO_ARGUMENT_MEM, true, true));
-  }
-
-  /// Return true if we assume that the underlying value will only access
-  /// argument pointees (see Attribute::ArgMemOnly).
-  bool isAssumedArgMemOnly() const {
-    return isAssumed(inverseLocation(NO_ARGUMENT_MEM, true, true));
-  }
-
-  /// Return true if we know that the underlying value will only access
-  /// inaccesible memory or argument pointees (see
-  /// Attribute::InaccessibleOrArgMemOnly).
-  bool isKnownInaccessibleOrArgMemOnly() const {
-    return isKnown(
-        inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
-  }
-
-  /// Return true if we assume that the underlying value will only access
-  /// inaccesible memory or argument pointees (see
-  /// Attribute::InaccessibleOrArgMemOnly).
-  bool isAssumedInaccessibleOrArgMemOnly() const {
-    return isAssumed(
-        inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
-  }
-
-  /// Return true if the underlying value may access memory through arguement
-  /// pointers of the associated function, if any.
-  bool mayAccessArgMem() const { return !isAssumed(NO_ARGUMENT_MEM); }
-
-  /// Return true if only the memory locations specififed by \p MLK are assumed
-  /// to be accessed by the associated function.
-  bool isAssumedSpecifiedMemOnly(MemoryLocationsKind MLK) const {
-    return isAssumed(MLK);
-  }
-
-  /// Return the locations that are assumed to be not accessed by the associated
-  /// function, if any.
-  MemoryLocationsKind getAssumedNotAccessedLocation() const {
-    return getAssumed();
-  }
-
-  /// Return the inverse of location \p Loc, thus for NO_XXX the return
-  /// describes ONLY_XXX. The flags \p AndLocalMem and \p AndConstMem determine
-  /// if local (=stack) and constant memory are allowed as well. Most of the
-  /// time we do want them to be included, e.g., argmemonly allows accesses via
-  /// argument pointers or local or constant memory accesses.
-  static MemoryLocationsKind
-  inverseLocation(MemoryLocationsKind Loc, bool AndLocalMem, bool AndConstMem) {
-    return NO_LOCATIONS & ~(Loc | (AndLocalMem ? NO_LOCAL_MEM : 0) |
-                            (AndConstMem ? NO_CONST_MEM : 0));
-  };
-
-  /// Return the locations encoded by \p MLK as a readable string.
-  static std::string getMemoryLocationsAsStr(MemoryLocationsKind MLK);
-
-  /// Simple enum to distinguish read/write/read-write accesses.
-  enum AccessKind {
-    NONE = 0,
-    READ = 1 << 0,
-    WRITE = 1 << 1,
-    READ_WRITE = READ | WRITE,
-  };
-
-  /// Check \p Pred on all accesses to the memory kinds specified by \p MLK.
-  ///
-  /// This method will evaluate \p Pred on all accesses (access instruction +
-  /// underlying accessed memory pointer) and it will return true if \p Pred
-  /// holds every time.
-  virtual bool checkForAllAccessesToMemoryKind(
-      function_ref<bool(const Instruction *, const Value *, AccessKind,
-                        MemoryLocationsKind)>
-          Pred,
-      MemoryLocationsKind MLK) const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAMemoryLocation &createForPosition(const IRPosition &IRP,
-                                             Attributor &A);
-
-  /// See AbstractState::getAsStr(Attributor).
-  const std::string getAsStr(Attributor *A) const override {
-    return getMemoryLocationsAsStr(getAssumedNotAccessedLocation());
-  }
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAMemoryLocation"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAMemoryLocation
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for range value analysis.
-struct AAValueConstantRange
-    : public StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t> {
-  using Base = StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t>;
-  AAValueConstantRange(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, IRP.getAssociatedType()->getIntegerBitWidth()) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isIntegerTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// See AbstractAttribute::getState(...).
-  IntegerRangeState &getState() override { return *this; }
-  const IntegerRangeState &getState() const override { return *this; }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAValueConstantRange &createForPosition(const IRPosition &IRP,
-                                                 Attributor &A);
-
-  /// Return an assumed range for the associated value a program point \p CtxI.
-  /// If \p I is nullptr, simply return an assumed range.
-  virtual ConstantRange
-  getAssumedConstantRange(Attributor &A,
-                          const Instruction *CtxI = nullptr) const = 0;
-
-  /// Return a known range for the associated value at a program point \p CtxI.
-  /// If \p I is nullptr, simply return a known range.
-  virtual ConstantRange
-  getKnownConstantRange(Attributor &A,
-                        const Instruction *CtxI = nullptr) const = 0;
-
-  /// Return an assumed constant for the associated value a program point \p
-  /// CtxI.
-  std::optional<Constant *>
-  getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const {
-    ConstantRange RangeV = getAssumedConstantRange(A, CtxI);
-    if (auto *C = RangeV.getSingleElement()) {
-      Type *Ty = getAssociatedValue().getType();
-      return cast_or_null<Constant>(
-          AA::getWithType(*ConstantInt::get(Ty->getContext(), *C), *Ty));
-    }
-    if (RangeV.isEmptySet())
-      return std::nullopt;
-    return nullptr;
-  }
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAValueConstantRange"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAValueConstantRange
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// A class for a set state.
-/// The assumed boolean state indicates whether the corresponding set is full
-/// set or not. If the assumed state is false, this is the worst state. The
-/// worst state (invalid state) of set of potential values is when the set
-/// contains every possible value (i.e. we cannot in any way limit the value
-/// that the target position can take). That never happens naturally, we only
-/// force it. As for the conditions under which we force it, see
-/// AAPotentialConstantValues.
-template <typename MemberTy> struct PotentialValuesState : AbstractState {
-  using SetTy = SmallSetVector<MemberTy, 8>;
-
-  PotentialValuesState() : IsValidState(true), UndefIsContained(false) {}
-
-  PotentialValuesState(bool IsValid)
-      : IsValidState(IsValid), UndefIsContained(false) {}
-
-  /// See AbstractState::isValidState(...)
-  bool isValidState() const override { return IsValidState.isValidState(); }
-
-  /// See AbstractState::isAtFixpoint(...)
-  bool isAtFixpoint() const override { return IsValidState.isAtFixpoint(); }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...)
-  ChangeStatus indicatePessimisticFixpoint() override {
-    return IsValidState.indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractState::indicateOptimisticFixpoint(...)
-  ChangeStatus indicateOptimisticFixpoint() override {
-    return IsValidState.indicateOptimisticFixpoint();
-  }
-
-  /// Return the assumed state
-  PotentialValuesState &getAssumed() { return *this; }
-  const PotentialValuesState &getAssumed() const { return *this; }
-
-  /// Return this set. We should check whether this set is valid or not by
-  /// isValidState() before calling this function.
-  const SetTy &getAssumedSet() const {
-    assert(isValidState() && "This set shoud not be used when it is invalid!");
-    return Set;
-  }
-
-  /// Returns whether this state contains an undef value or not.
-  bool undefIsContained() const {
-    assert(isValidState() && "This flag shoud not be used when it is invalid!");
-    return UndefIsContained;
-  }
-
-  bool operator==(const PotentialValuesState &RHS) const {
-    if (isValidState() != RHS.isValidState())
-      return false;
-    if (!isValidState() && !RHS.isValidState())
-      return true;
-    if (undefIsContained() != RHS.undefIsContained())
-      return false;
-    return Set == RHS.getAssumedSet();
-  }
-
-  /// Maximum number of potential values to be tracked.
-  /// This is set by -attributor-max-potential-values command line option
-  static unsigned MaxPotentialValues;
-
-  /// Return empty set as the best state of potential values.
-  static PotentialValuesState getBestState() {
-    return PotentialValuesState(true);
-  }
-
-  static PotentialValuesState getBestState(const PotentialValuesState &PVS) {
-    return getBestState();
-  }
-
-  /// Return full set as the worst state of potential values.
-  static PotentialValuesState getWorstState() {
-    return PotentialValuesState(false);
-  }
-
-  /// Union assumed set with the passed value.
-  void unionAssumed(const MemberTy &C) { insert(C); }
-
-  /// Union assumed set with assumed set of the passed state \p PVS.
-  void unionAssumed(const PotentialValuesState &PVS) { unionWith(PVS); }
-
-  /// Union assumed set with an undef value.
-  void unionAssumedWithUndef() { unionWithUndef(); }
-
-  /// "Clamp" this state with \p PVS.
-  PotentialValuesState operator^=(const PotentialValuesState &PVS) {
-    IsValidState ^= PVS.IsValidState;
-    unionAssumed(PVS);
-    return *this;
-  }
-
-  PotentialValuesState operator&=(const PotentialValuesState &PVS) {
-    IsValidState &= PVS.IsValidState;
-    unionAssumed(PVS);
-    return *this;
-  }
-
-  bool contains(const MemberTy &V) const {
-    return !isValidState() ? true : Set.contains(V);
-  }
-
-protected:
-  SetTy &getAssumedSet() {
-    assert(isValidState() && "This set shoud not be used when it is invalid!");
-    return Set;
-  }
-
-private:
-  /// Check the size of this set, and invalidate when the size is no
-  /// less than \p MaxPotentialValues threshold.
-  void checkAndInvalidate() {
-    if (Set.size() >= MaxPotentialValues)
-      indicatePessimisticFixpoint();
-    else
-      reduceUndefValue();
-  }
-
-  /// If this state contains both undef and not undef, we can reduce
-  /// undef to the not undef value.
-  void reduceUndefValue() { UndefIsContained = UndefIsContained & Set.empty(); }
-
-  /// Insert an element into this set.
-  void insert(const MemberTy &C) {
-    if (!isValidState())
-      return;
-    Set.insert(C);
-    checkAndInvalidate();
-  }
-
-  /// Take union with R.
-  void unionWith(const PotentialValuesState &R) {
-    /// If this is a full set, do nothing.
-    if (!isValidState())
-      return;
-    /// If R is full set, change L to a full set.
-    if (!R.isValidState()) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-    for (const MemberTy &C : R.Set)
-      Set.insert(C);
-    UndefIsContained |= R.undefIsContained();
-    checkAndInvalidate();
-  }
-
-  /// Take union with an undef value.
-  void unionWithUndef() {
-    UndefIsContained = true;
-    reduceUndefValue();
-  }
-
-  /// Take intersection with R.
-  void intersectWith(const PotentialValuesState &R) {
-    /// If R is a full set, do nothing.
-    if (!R.isValidState())
-      return;
-    /// If this is a full set, change this to R.
-    if (!isValidState()) {
-      *this = R;
-      return;
-    }
-    SetTy IntersectSet;
-    for (const MemberTy &C : Set) {
-      if (R.Set.count(C))
-        IntersectSet.insert(C);
-    }
-    Set = IntersectSet;
-    UndefIsContained &= R.undefIsContained();
-    reduceUndefValue();
-  }
-
-  /// A helper state which indicate whether this state is valid or not.
-  BooleanState IsValidState;
-
-  /// Container for potential values
-  SetTy Set;
-
-  /// Flag for undef value
-  bool UndefIsContained;
-};
-
-struct DenormalFPMathState : public AbstractState {
-  struct DenormalState {
-    DenormalMode Mode = DenormalMode::getInvalid();
-    DenormalMode ModeF32 = DenormalMode::getInvalid();
-
-    bool operator==(const DenormalState Other) const {
-      return Mode == Other.Mode && ModeF32 == Other.ModeF32;
-    }
-
-    bool operator!=(const DenormalState Other) const {
-      return Mode != Other.Mode || ModeF32 != Other.ModeF32;
-    }
-
-    bool isValid() const {
-      return Mode.isValid() && ModeF32.isValid();
-    }
-
-    static DenormalMode::DenormalModeKind
-    unionDenormalKind(DenormalMode::DenormalModeKind Callee,
-                      DenormalMode::DenormalModeKind Caller) {
-      if (Caller == Callee)
-        return Caller;
-      if (Callee == DenormalMode::Dynamic)
-        return Caller;
-      if (Caller == DenormalMode::Dynamic)
-        return Callee;
-      return DenormalMode::Invalid;
-    }
-
-    static DenormalMode unionAssumed(DenormalMode Callee, DenormalMode Caller) {
-      return DenormalMode{unionDenormalKind(Callee.Output, Caller.Output),
-                          unionDenormalKind(Callee.Input, Caller.Input)};
-    }
-
-    DenormalState unionWith(DenormalState Caller) const {
-      DenormalState Callee(*this);
-      Callee.Mode = unionAssumed(Callee.Mode, Caller.Mode);
-      Callee.ModeF32 = unionAssumed(Callee.ModeF32, Caller.ModeF32);
-      return Callee;
-    }
-  };
-
-  DenormalState Known;
-
-  /// Explicitly track whether we've hit a fixed point.
-  bool IsAtFixedpoint = false;
-
-  DenormalFPMathState() = default;
-
-  DenormalState getKnown() const { return Known; }
-
-  // There's only really known or unknown, there's no speculatively assumable
-  // state.
-  DenormalState getAssumed() const { return Known; }
-
-  bool isValidState() const override {
-    return Known.isValid();
-  }
-
-  /// Return true if there are no dynamic components to the denormal mode worth
-  /// specializing.
-  bool isModeFixed() const {
-    return Known.Mode.Input != DenormalMode::Dynamic &&
-           Known.Mode.Output != DenormalMode::Dynamic &&
-           Known.ModeF32.Input != DenormalMode::Dynamic &&
-           Known.ModeF32.Output != DenormalMode::Dynamic;
-  }
-
-  bool isAtFixpoint() const override {
-    return IsAtFixedpoint;
-  }
-
-  ChangeStatus indicateFixpoint() {
-    bool Changed = !IsAtFixedpoint;
-    IsAtFixedpoint = true;
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  ChangeStatus indicateOptimisticFixpoint() override {
-    return indicateFixpoint();
-  }
-
-  ChangeStatus indicatePessimisticFixpoint() override {
-    return indicateFixpoint();
-  }
-
-  DenormalFPMathState operator^=(const DenormalFPMathState &Caller) {
-    Known = Known.unionWith(Caller.getKnown());
-    return *this;
-  }
-};
-
-using PotentialConstantIntValuesState = PotentialValuesState<APInt>;
-using PotentialLLVMValuesState =
-    PotentialValuesState<std::pair<AA::ValueAndContext, AA::ValueScope>>;
-
-raw_ostream &operator<<(raw_ostream &OS,
-                        const PotentialConstantIntValuesState &R);
-raw_ostream &operator<<(raw_ostream &OS, const PotentialLLVMValuesState &R);
-
-/// An abstract interface for potential values analysis.
-///
-/// This AA collects potential values for each IR position.
-/// An assumed set of potential values is initialized with the empty set (the
-/// best state) and it will grow monotonically as we find more potential values
-/// for this position.
-/// The set might be forced to the worst state, that is, to contain every
-/// possible value for this position in 2 cases.
-///   1. We surpassed the \p MaxPotentialValues threshold. This includes the
-///      case that this position is affected (e.g. because of an operation) by a
-///      Value that is in the worst state.
-///   2. We tried to initialize on a Value that we cannot handle (e.g. an
-///      operator we do not currently handle).
-///
-/// For non constant integers see AAPotentialValues.
-struct AAPotentialConstantValues
-    : public StateWrapper<PotentialConstantIntValuesState, AbstractAttribute> {
-  using Base = StateWrapper<PotentialConstantIntValuesState, AbstractAttribute>;
-  AAPotentialConstantValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isIntegerTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// See AbstractAttribute::getState(...).
-  PotentialConstantIntValuesState &getState() override { return *this; }
-  const PotentialConstantIntValuesState &getState() const override {
-    return *this;
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAPotentialConstantValues &createForPosition(const IRPosition &IRP,
-                                                      Attributor &A);
-
-  /// Return assumed constant for the associated value
-  std::optional<Constant *>
-  getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const {
-    if (!isValidState())
-      return nullptr;
-    if (getAssumedSet().size() == 1) {
-      Type *Ty = getAssociatedValue().getType();
-      return cast_or_null<Constant>(AA::getWithType(
-          *ConstantInt::get(Ty->getContext(), *(getAssumedSet().begin())),
-          *Ty));
-    }
-    if (getAssumedSet().size() == 0) {
-      if (undefIsContained())
-        return UndefValue::get(getAssociatedValue().getType());
-      return std::nullopt;
-    }
-
-    return nullptr;
-  }
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override {
-    return "AAPotentialConstantValues";
-  }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAPotentialConstantValues
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-struct AAPotentialValues
-    : public StateWrapper<PotentialLLVMValuesState, AbstractAttribute> {
-  using Base = StateWrapper<PotentialLLVMValuesState, AbstractAttribute>;
-  AAPotentialValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// See AbstractAttribute::getState(...).
-  PotentialLLVMValuesState &getState() override { return *this; }
-  const PotentialLLVMValuesState &getState() const override { return *this; }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAPotentialValues &createForPosition(const IRPosition &IRP,
-                                              Attributor &A);
-
-  /// Extract the single value in \p Values if any.
-  static Value *getSingleValue(Attributor &A, const AbstractAttribute &AA,
-                               const IRPosition &IRP,
-                               SmallVectorImpl<AA::ValueAndContext> &Values);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAPotentialValues"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAPotentialValues
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-
-private:
-  virtual bool getAssumedSimplifiedValues(
-      Attributor &A, SmallVectorImpl<AA::ValueAndContext> &Values,
-      AA::ValueScope, bool RecurseForSelectAndPHI = false) const = 0;
-
-  friend struct Attributor;
-};
-
-/// An abstract interface for all noundef attributes.
-struct AANoUndef
-    : public IRAttribute<Attribute::NoUndef,
-                         StateWrapper<BooleanState, AbstractAttribute>,
-                         AANoUndef> {
-  AANoUndef(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See IRAttribute::isImpliedByUndef
-  static bool isImpliedByUndef() { return false; }
-
-  /// See IRAttribute::isImpliedByPoison
-  static bool isImpliedByPoison() { return false; }
-
-  /// See IRAttribute::isImpliedByIR
-  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                            Attribute::AttrKind ImpliedAttributeKind,
-                            bool IgnoreSubsumingPositions = false);
-
-  /// Return true if we assume that the underlying value is noundef.
-  bool isAssumedNoUndef() const { return getAssumed(); }
-
-  /// Return true if we know that underlying value is noundef.
-  bool isKnownNoUndef() const { return getKnown(); }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoUndef &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoUndef"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoUndef
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-struct AANoFPClass
-    : public IRAttribute<
-          Attribute::NoFPClass,
-          StateWrapper<BitIntegerState<uint32_t, fcAllFlags, fcNone>,
-                       AbstractAttribute>,
-          AANoFPClass> {
-  using Base = StateWrapper<BitIntegerState<uint32_t, fcAllFlags, fcNone>,
-                            AbstractAttribute>;
-
-  AANoFPClass(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    Type *Ty = IRP.getAssociatedType();
-    do {
-      if (Ty->isFPOrFPVectorTy())
-        return IRAttribute::isValidIRPositionForInit(A, IRP);
-      if (!Ty->isArrayTy())
-        break;
-      Ty = Ty->getArrayElementType();
-    } while (true);
-    return false;
-  }
-
-  /// Return true if we assume that the underlying value is nofpclass.
-  FPClassTest getAssumedNoFPClass() const {
-    return static_cast<FPClassTest>(getAssumed());
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANoFPClass &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANoFPClass"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AANoFPClass
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-struct AACallGraphNode;
-struct AACallEdges;
-
-/// An Iterator for call edges, creates AACallEdges attributes in a lazy way.
-/// This iterator becomes invalid if the underlying edge list changes.
-/// So This shouldn't outlive a iteration of Attributor.
-class AACallEdgeIterator
-    : public iterator_adaptor_base<AACallEdgeIterator,
-                                   SetVector<Function *>::iterator> {
-  AACallEdgeIterator(Attributor &A, SetVector<Function *>::iterator Begin)
-      : iterator_adaptor_base(Begin), A(A) {}
-
-public:
-  AACallGraphNode *operator*() const;
-
-private:
-  Attributor &A;
-  friend AACallEdges;
-  friend AttributorCallGraph;
-};
-
-struct AACallGraphNode {
-  AACallGraphNode(Attributor &A) : A(A) {}
-  virtual ~AACallGraphNode() = default;
-
-  virtual AACallEdgeIterator optimisticEdgesBegin() const = 0;
-  virtual AACallEdgeIterator optimisticEdgesEnd() const = 0;
-
-  /// Iterator range for exploring the call graph.
-  iterator_range<AACallEdgeIterator> optimisticEdgesRange() const {
-    return iterator_range<AACallEdgeIterator>(optimisticEdgesBegin(),
-                                              optimisticEdgesEnd());
-  }
-
-protected:
-  /// Reference to Attributor needed for GraphTraits implementation.
-  Attributor &A;
-};
-
-/// An abstract state for querying live call edges.
-/// This interface uses the Attributor's optimistic liveness
-/// information to compute the edges that are alive.
-struct AACallEdges : public StateWrapper<BooleanState, AbstractAttribute>,
-                     AACallGraphNode {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-
-  AACallEdges(const IRPosition &IRP, Attributor &A)
-      : Base(IRP), AACallGraphNode(A) {}
-
-  /// See AbstractAttribute::requiresNonAsmForCallBase.
-  static bool requiresNonAsmForCallBase() { return false; }
-
-  /// Get the optimistic edges.
-  virtual const SetVector<Function *> &getOptimisticEdges() const = 0;
-
-  /// Is there any call with a unknown callee.
-  virtual bool hasUnknownCallee() const = 0;
-
-  /// Is there any call with a unknown callee, excluding any inline asm.
-  virtual bool hasNonAsmUnknownCallee() const = 0;
-
-  /// Iterator for exploring the call graph.
-  AACallEdgeIterator optimisticEdgesBegin() const override {
-    return AACallEdgeIterator(A, getOptimisticEdges().begin());
-  }
-
-  /// Iterator for exploring the call graph.
-  AACallEdgeIterator optimisticEdgesEnd() const override {
-    return AACallEdgeIterator(A, getOptimisticEdges().end());
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AACallEdges &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AACallEdges"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AACallEdges.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-// Synthetic root node for the Attributor's internal call graph.
-struct AttributorCallGraph : public AACallGraphNode {
-  AttributorCallGraph(Attributor &A) : AACallGraphNode(A) {}
-  virtual ~AttributorCallGraph() = default;
-
-  AACallEdgeIterator optimisticEdgesBegin() const override {
-    return AACallEdgeIterator(A, A.Functions.begin());
-  }
-
-  AACallEdgeIterator optimisticEdgesEnd() const override {
-    return AACallEdgeIterator(A, A.Functions.end());
-  }
-
-  /// Force populate the entire call graph.
-  void populateAll() const {
-    for (const AACallGraphNode *AA : optimisticEdgesRange()) {
-      // Nothing else to do here.
-      (void)AA;
-    }
-  }
-
-  void print();
-};
-
-template <> struct GraphTraits<AACallGraphNode *> {
-  using NodeRef = AACallGraphNode *;
-  using ChildIteratorType = AACallEdgeIterator;
-
-  static AACallEdgeIterator child_begin(AACallGraphNode *Node) {
-    return Node->optimisticEdgesBegin();
-  }
-
-  static AACallEdgeIterator child_end(AACallGraphNode *Node) {
-    return Node->optimisticEdgesEnd();
-  }
-};
-
-template <>
-struct GraphTraits<AttributorCallGraph *>
-    : public GraphTraits<AACallGraphNode *> {
-  using nodes_iterator = AACallEdgeIterator;
-
-  static AACallGraphNode *getEntryNode(AttributorCallGraph *G) {
-    return static_cast<AACallGraphNode *>(G);
-  }
-
-  static AACallEdgeIterator nodes_begin(const AttributorCallGraph *G) {
-    return G->optimisticEdgesBegin();
-  }
-
-  static AACallEdgeIterator nodes_end(const AttributorCallGraph *G) {
-    return G->optimisticEdgesEnd();
-  }
-};
-
-template <>
-struct DOTGraphTraits<AttributorCallGraph *> : public DefaultDOTGraphTraits {
-  DOTGraphTraits(bool Simple = false) : DefaultDOTGraphTraits(Simple) {}
-
-  std::string getNodeLabel(const AACallGraphNode *Node,
-                           const AttributorCallGraph *Graph) {
-    const AACallEdges *AACE = static_cast<const AACallEdges *>(Node);
-    return AACE->getAssociatedFunction()->getName().str();
-  }
-
-  static bool isNodeHidden(const AACallGraphNode *Node,
-                           const AttributorCallGraph *Graph) {
-    // Hide the synth root.
-    return static_cast<const AACallGraphNode *>(Graph) == Node;
-  }
-};
-
-struct AAExecutionDomain
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-  AAExecutionDomain(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// Summary about the execution domain of a block or instruction.
-  struct ExecutionDomainTy {
-    using BarriersSetTy = SmallPtrSet<CallBase *, 2>;
-    using AssumesSetTy = SmallPtrSet<AssumeInst *, 4>;
-
-    void addAssumeInst(Attributor &A, AssumeInst &AI) {
-      EncounteredAssumes.insert(&AI);
-    }
-
-    void addAlignedBarrier(Attributor &A, CallBase &CB) {
-      AlignedBarriers.insert(&CB);
-    }
-
-    void clearAssumeInstAndAlignedBarriers() {
-      EncounteredAssumes.clear();
-      AlignedBarriers.clear();
-    }
-
-    bool IsExecutedByInitialThreadOnly = true;
-    bool IsReachedFromAlignedBarrierOnly = true;
-    bool IsReachingAlignedBarrierOnly = true;
-    bool EncounteredNonLocalSideEffect = false;
-    BarriersSetTy AlignedBarriers;
-    AssumesSetTy EncounteredAssumes;
-  };
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAExecutionDomain &createForPosition(const IRPosition &IRP,
-                                              Attributor &A);
-
-  /// See AbstractAttribute::getName().
-  const std::string getName() const override { return "AAExecutionDomain"; }
-
-  /// See AbstractAttribute::getIdAddr().
-  const char *getIdAddr() const override { return &ID; }
-
-  /// Check if an instruction is executed only by the initial thread.
-  bool isExecutedByInitialThreadOnly(const Instruction &I) const {
-    return isExecutedByInitialThreadOnly(*I.getParent());
-  }
-
-  /// Check if a basic block is executed only by the initial thread.
-  virtual bool isExecutedByInitialThreadOnly(const BasicBlock &) const = 0;
-
-  /// Check if the instruction \p I is executed in an aligned region, that is,
-  /// the synchronizing effects before and after \p I are both aligned barriers.
-  /// This effectively means all threads execute \p I together.
-  virtual bool isExecutedInAlignedRegion(Attributor &A,
-                                         const Instruction &I) const = 0;
-
-  virtual ExecutionDomainTy getExecutionDomain(const BasicBlock &) const = 0;
-  /// Return the execution domain with which the call \p CB is entered and the
-  /// one with which it is left.
-  virtual std::pair<ExecutionDomainTy, ExecutionDomainTy>
-  getExecutionDomain(const CallBase &CB) const = 0;
-  virtual ExecutionDomainTy getFunctionExecutionDomain() const = 0;
-
-  /// Helper function to determine if \p FI is a no-op given the information
-  /// about its execution from \p ExecDomainAA.
-  virtual bool isNoOpFence(const FenceInst &FI) const = 0;
-
-  /// This function should return true if the type of the \p AA is
-  /// AAExecutionDomain.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract Attribute for computing reachability between functions.
-struct AAInterFnReachability
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-
-  AAInterFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// If the function represented by this possition can reach \p Fn.
-  bool canReach(Attributor &A, const Function &Fn) const {
-    Function *Scope = getAnchorScope();
-    if (!Scope || Scope->isDeclaration())
-      return true;
-    return instructionCanReach(A, Scope->getEntryBlock().front(), Fn);
-  }
-
-  /// Can  \p Inst reach \p Fn.
-  /// See also AA::isPotentiallyReachable.
-  virtual bool instructionCanReach(
-      Attributor &A, const Instruction &Inst, const Function &Fn,
-      const AA::InstExclusionSetTy *ExclusionSet = nullptr) const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAInterFnReachability &createForPosition(const IRPosition &IRP,
-                                                  Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAInterFnReachability"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is AACallEdges.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract Attribute for determining the necessity of the convergent
-/// attribute.
-struct AANonConvergent : public StateWrapper<BooleanState, AbstractAttribute> {
-  using Base = StateWrapper<BooleanState, AbstractAttribute>;
-
-  AANonConvergent(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AANonConvergent &createForPosition(const IRPosition &IRP,
-                                            Attributor &A);
-
-  /// Return true if "non-convergent" is assumed.
-  bool isAssumedNotConvergent() const { return getAssumed(); }
-
-  /// Return true if "non-convergent" is known.
-  bool isKnownNotConvergent() const { return getKnown(); }
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AANonConvergent"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AANonConvergent.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for struct information.
-struct AAPointerInfo : public AbstractAttribute {
-  AAPointerInfo(const IRPosition &IRP) : AbstractAttribute(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  enum AccessKind {
-    // First two bits to distinguish may and must accesses.
-    AK_MUST = 1 << 0,
-    AK_MAY = 1 << 1,
-
-    // Then two bits for read and write. These are not exclusive.
-    AK_R = 1 << 2,
-    AK_W = 1 << 3,
-    AK_RW = AK_R | AK_W,
-
-    // One special case for assumptions about memory content. These
-    // are neither reads nor writes. They are however always modeled
-    // as read to avoid using them for write removal.
-    AK_ASSUMPTION = (1 << 4) | AK_MUST,
-
-    // Helper for easy access.
-    AK_MAY_READ = AK_MAY | AK_R,
-    AK_MAY_WRITE = AK_MAY | AK_W,
-    AK_MAY_READ_WRITE = AK_MAY | AK_R | AK_W,
-    AK_MUST_READ = AK_MUST | AK_R,
-    AK_MUST_WRITE = AK_MUST | AK_W,
-    AK_MUST_READ_WRITE = AK_MUST | AK_R | AK_W,
-  };
-
-  /// A container for a list of ranges.
-  struct RangeList {
-    // The set of ranges rarely contains more than one element, and is unlikely
-    // to contain more than say four elements. So we find the middle-ground with
-    // a sorted vector. This avoids hard-coding a rarely used number like "four"
-    // into every instance of a SmallSet.
-    using RangeTy = AA::RangeTy;
-    using VecTy = SmallVector<RangeTy>;
-    using iterator = VecTy::iterator;
-    using const_iterator = VecTy::const_iterator;
-    VecTy Ranges;
-
-    RangeList(const RangeTy &R) { Ranges.push_back(R); }
-    RangeList(ArrayRef<int64_t> Offsets, int64_t Size) {
-      Ranges.reserve(Offsets.size());
-      for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
-        assert(((i + 1 == e) || Offsets[i] < Offsets[i + 1]) &&
-               "Expected strictly ascending offsets.");
-        Ranges.emplace_back(Offsets[i], Size);
-      }
-    }
-    RangeList() = default;
-
-    iterator begin() { return Ranges.begin(); }
-    iterator end() { return Ranges.end(); }
-    const_iterator begin() const { return Ranges.begin(); }
-    const_iterator end() const { return Ranges.end(); }
-
-    // Helpers required for std::set_difference
-    using value_type = RangeTy;
-    void push_back(const RangeTy &R) {
-      assert((Ranges.empty() || RangeTy::OffsetLessThan(Ranges.back(), R)) &&
-             "Ensure the last element is the greatest.");
-      Ranges.push_back(R);
-    }
-
-    /// Copy ranges from \p L that are not in \p R, into \p D.
-    static void set_difference(const RangeList &L, const RangeList &R,
-                               RangeList &D) {
-      std::set_difference(L.begin(), L.end(), R.begin(), R.end(),
-                          std::back_inserter(D), RangeTy::OffsetLessThan);
-    }
-
-    unsigned size() const { return Ranges.size(); }
-
-    bool operator==(const RangeList &OI) const { return Ranges == OI.Ranges; }
-
-    /// Merge the ranges in \p RHS into the current ranges.
-    /// - Merging a list of  unknown ranges makes the current list unknown.
-    /// - Ranges with the same offset are merged according to RangeTy::operator&
-    /// \return true if the current RangeList changed.
-    bool merge(const RangeList &RHS) {
-      if (isUnknown())
-        return false;
-      if (RHS.isUnknown()) {
-        setUnknown();
-        return true;
-      }
-
-      if (Ranges.empty()) {
-        Ranges = RHS.Ranges;
-        return true;
-      }
-
-      bool Changed = false;
-      auto LPos = Ranges.begin();
-      for (auto &R : RHS.Ranges) {
-        auto Result = insert(LPos, R);
-        if (isUnknown())
-          return true;
-        LPos = Result.first;
-        Changed |= Result.second;
-      }
-      return Changed;
-    }
-
-    /// Insert \p R at the given iterator \p Pos, and merge if necessary.
-    ///
-    /// This assumes that all ranges before \p Pos are OffsetLessThan \p R, and
-    /// then maintains the sorted order for the suffix list.
-    ///
-    /// \return The place of insertion and true iff anything changed.
-    std::pair<iterator, bool> insert(iterator Pos, const RangeTy &R) {
-      if (isUnknown())
-        return std::make_pair(Ranges.begin(), false);
-      if (R.offsetOrSizeAreUnknown()) {
-        return std::make_pair(setUnknown(), true);
-      }
-
-      // Maintain this as a sorted vector of unique entries.
-      auto LB = std::lower_bound(Pos, Ranges.end(), R, RangeTy::OffsetLessThan);
-      if (LB == Ranges.end() || LB->Offset != R.Offset)
-        return std::make_pair(Ranges.insert(LB, R), true);
-      bool Changed = *LB != R;
-      *LB &= R;
-      if (LB->offsetOrSizeAreUnknown())
-        return std::make_pair(setUnknown(), true);
-      return std::make_pair(LB, Changed);
-    }
-
-    /// Insert the given range \p R, maintaining sorted order.
-    ///
-    /// \return The place of insertion and true iff anything changed.
-    std::pair<iterator, bool> insert(const RangeTy &R) {
-      return insert(Ranges.begin(), R);
-    }
-
-    /// Add the increment \p Inc to the offset of every range.
-    void addToAllOffsets(int64_t Inc) {
-      assert(!isUnassigned() &&
-             "Cannot increment if the offset is not yet computed!");
-      if (isUnknown())
-        return;
-      for (auto &R : Ranges) {
-        R.Offset += Inc;
-      }
-    }
-
-    /// Return true iff there is exactly one range and it is known.
-    bool isUnique() const {
-      return Ranges.size() == 1 && !Ranges.front().offsetOrSizeAreUnknown();
-    }
-
-    /// Return the unique range, assuming it exists.
-    const RangeTy &getUnique() const {
-      assert(isUnique() && "No unique range to return!");
-      return Ranges.front();
-    }
-
-    /// Return true iff the list contains an unknown range.
-    bool isUnknown() const {
-      if (isUnassigned())
-        return false;
-      if (Ranges.front().offsetOrSizeAreUnknown()) {
-        assert(Ranges.size() == 1 && "Unknown is a singleton range.");
-        return true;
-      }
-      return false;
-    }
-
-    /// Discard all ranges and insert a single unknown range.
-    iterator setUnknown() {
-      Ranges.clear();
-      Ranges.push_back(RangeTy::getUnknown());
-      return Ranges.begin();
-    }
-
-    /// Return true if no ranges have been inserted.
-    bool isUnassigned() const { return Ranges.size() == 0; }
-  };
-
-  /// An access description.
-  struct Access {
-    Access(Instruction *I, int64_t Offset, int64_t Size,
-           std::optional<Value *> Content, AccessKind Kind, Type *Ty)
-        : LocalI(I), RemoteI(I), Content(Content), Ranges(Offset, Size),
-          Kind(Kind), Ty(Ty) {
-      verify();
-    }
-    Access(Instruction *LocalI, Instruction *RemoteI, const RangeList &Ranges,
-           std::optional<Value *> Content, AccessKind K, Type *Ty)
-        : LocalI(LocalI), RemoteI(RemoteI), Content(Content), Ranges(Ranges),
-          Kind(K), Ty(Ty) {
-      if (Ranges.size() > 1) {
-        Kind = AccessKind(Kind | AK_MAY);
-        Kind = AccessKind(Kind & ~AK_MUST);
-      }
-      verify();
-    }
-    Access(Instruction *LocalI, Instruction *RemoteI, int64_t Offset,
-           int64_t Size, std::optional<Value *> Content, AccessKind Kind,
-           Type *Ty)
-        : LocalI(LocalI), RemoteI(RemoteI), Content(Content),
-          Ranges(Offset, Size), Kind(Kind), Ty(Ty) {
-      verify();
-    }
-    Access(const Access &Other) = default;
-
-    Access &operator=(const Access &Other) = default;
-    bool operator==(const Access &R) const {
-      return LocalI == R.LocalI && RemoteI == R.RemoteI && Ranges == R.Ranges &&
-             Content == R.Content && Kind == R.Kind;
-    }
-    bool operator!=(const Access &R) const { return !(*this == R); }
-
-    Access &operator&=(const Access &R) {
-      assert(RemoteI == R.RemoteI && "Expected same instruction!");
-      assert(LocalI == R.LocalI && "Expected same instruction!");
-
-      // Note that every Access object corresponds to a unique Value, and only
-      // accesses to the same Value are merged. Hence we assume that all ranges
-      // are the same size. If ranges can be different size, then the contents
-      // must be dropped.
-      Ranges.merge(R.Ranges);
-      Content =
-          AA::combineOptionalValuesInAAValueLatice(Content, R.Content, Ty);
-
-      // Combine the access kind, which results in a bitwise union.
-      // If there is more than one range, then this must be a MAY.
-      // If we combine a may and a must access we clear the must bit.
-      Kind = AccessKind(Kind | R.Kind);
-      if ((Kind & AK_MAY) || Ranges.size() > 1) {
-        Kind = AccessKind(Kind | AK_MAY);
-        Kind = AccessKind(Kind & ~AK_MUST);
-      }
-      verify();
-      return *this;
-    }
-
-    void verify() {
-      assert(isMustAccess() + isMayAccess() == 1 &&
-             "Expect must or may access, not both.");
-      assert(isAssumption() + isWrite() <= 1 &&
-             "Expect assumption access or write access, never both.");
-      assert((isMayAccess() || Ranges.size() == 1) &&
-             "Cannot be a must access if there are multiple ranges.");
-    }
-
-    /// Return the access kind.
-    AccessKind getKind() const { return Kind; }
-
-    /// Return true if this is a read access.
-    bool isRead() const { return Kind & AK_R; }
-
-    /// Return true if this is a write access.
-    bool isWrite() const { return Kind & AK_W; }
-
-    /// Return true if this is a write access.
-    bool isWriteOrAssumption() const { return isWrite() || isAssumption(); }
-
-    /// Return true if this is an assumption access.
-    bool isAssumption() const { return Kind == AK_ASSUMPTION; }
-
-    bool isMustAccess() const {
-      bool MustAccess = Kind & AK_MUST;
-      assert((!MustAccess || Ranges.size() < 2) &&
-             "Cannot be a must access if there are multiple ranges.");
-      return MustAccess;
-    }
-
-    bool isMayAccess() const {
-      bool MayAccess = Kind & AK_MAY;
-      assert((MayAccess || Ranges.size() < 2) &&
-             "Cannot be a must access if there are multiple ranges.");
-      return MayAccess;
-    }
-
-    /// Return the instruction that causes the access with respect to the local
-    /// scope of the associated attribute.
-    Instruction *getLocalInst() const { return LocalI; }
-
-    /// Return the actual instruction that causes the access.
-    Instruction *getRemoteInst() const { return RemoteI; }
-
-    /// Return true if the value written is not known yet.
-    bool isWrittenValueYetUndetermined() const { return !Content; }
-
-    /// Return true if the value written cannot be determined at all.
-    bool isWrittenValueUnknown() const {
-      return Content.has_value() && !*Content;
-    }
-
-    /// Set the value written to nullptr, i.e., unknown.
-    void setWrittenValueUnknown() { Content = nullptr; }
-
-    /// Return the type associated with the access, if known.
-    Type *getType() const { return Ty; }
-
-    /// Return the value writen, if any.
-    Value *getWrittenValue() const {
-      assert(!isWrittenValueYetUndetermined() &&
-             "Value needs to be determined before accessing it.");
-      return *Content;
-    }
-
-    /// Return the written value which can be `llvm::null` if it is not yet
-    /// determined.
-    std::optional<Value *> getContent() const { return Content; }
-
-    bool hasUniqueRange() const { return Ranges.isUnique(); }
-    const AA::RangeTy &getUniqueRange() const { return Ranges.getUnique(); }
-
-    /// Add a range accessed by this Access.
-    ///
-    /// If there are multiple ranges, then this is a "may access".
-    void addRange(int64_t Offset, int64_t Size) {
-      Ranges.insert({Offset, Size});
-      if (!hasUniqueRange()) {
-        Kind = AccessKind(Kind | AK_MAY);
-        Kind = AccessKind(Kind & ~AK_MUST);
-      }
-    }
-
-    const RangeList &getRanges() const { return Ranges; }
-
-    using const_iterator = RangeList::const_iterator;
-    const_iterator begin() const { return Ranges.begin(); }
-    const_iterator end() const { return Ranges.end(); }
-
-  private:
-    /// The instruction responsible for the access with respect to the local
-    /// scope of the associated attribute.
-    Instruction *LocalI;
-
-    /// The instruction responsible for the access.
-    Instruction *RemoteI;
-
-    /// The value written, if any. `std::nullopt` means "not known yet",
-    /// `nullptr` cannot be determined.
-    std::optional<Value *> Content;
-
-    /// Set of potential ranges accessed from the base pointer.
-    RangeList Ranges;
-
-    /// The access kind, e.g., READ, as bitset (could be more than one).
-    AccessKind Kind;
-
-    /// The type of the content, thus the type read/written, can be null if not
-    /// available.
-    Type *Ty;
-  };
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAPointerInfo &createForPosition(const IRPosition &IRP, Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAPointerInfo"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  using OffsetBinsTy = DenseMap<AA::RangeTy, SmallSet<unsigned, 4>>;
-  using const_bin_iterator = OffsetBinsTy::const_iterator;
-  virtual const_bin_iterator begin() const = 0;
-  virtual const_bin_iterator end() const = 0;
-  virtual int64_t numOffsetBins() const = 0;
-  virtual void dumpState(raw_ostream &O) const = 0;
-  virtual const Access &getBinAccess(unsigned Index) const = 0;
-
-  /// Call \p CB on all accesses that might interfere with \p Range and return
-  /// true if all such accesses were known and the callback returned true for
-  /// all of them, false otherwise. An access interferes with an offset-size
-  /// pair if it might read or write that memory region.
-  virtual bool forallInterferingAccesses(
-      AA::RangeTy Range, function_ref<bool(const Access &, bool)> CB) const = 0;
-
-  /// Call \p CB on all accesses that might interfere with \p I and
-  /// return true if all such accesses were known and the callback returned true
-  /// for all of them, false otherwise. In contrast to forallInterferingAccesses
-  /// this function will perform reasoning to exclude write accesses that cannot
-  /// affect the load even if they on the surface look as if they would. The
-  /// flag \p HasBeenWrittenTo will be set to true if we know that \p I does not
-  /// read the initial value of the underlying memory. If \p SkipCB is given and
-  /// returns false for a potentially interfering access, that access is not
-  /// checked for actual interference.
-  virtual bool forallInterferingAccesses(
-      Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
-      bool FindInterferingWrites, bool FindInterferingReads,
-      function_ref<bool(const Access &, bool)> CB, bool &HasBeenWrittenTo,
-      AA::RangeTy &Range,
-      function_ref<bool(const Access &)> SkipCB = nullptr) const = 0;
-
-  /// This function should return true if the type of the \p AA is AAPointerInfo
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-raw_ostream &operator<<(raw_ostream &, const AAPointerInfo::Access &);
-
-/// An abstract attribute for getting assumption information.
-struct AAAssumptionInfo
-    : public StateWrapper<SetState<StringRef>, AbstractAttribute,
-                          DenseSet<StringRef>> {
-  using Base =
-      StateWrapper<SetState<StringRef>, AbstractAttribute, DenseSet<StringRef>>;
-
-  AAAssumptionInfo(const IRPosition &IRP, Attributor &A,
-                   const DenseSet<StringRef> &Known)
-      : Base(IRP, Known) {}
-
-  /// Returns true if the assumption set contains the assumption \p Assumption.
-  virtual bool hasAssumption(const StringRef Assumption) const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAAssumptionInfo &createForPosition(const IRPosition &IRP,
-                                             Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAAssumptionInfo"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAAssumptionInfo
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract attribute for getting all assumption underlying objects.
-struct AAUnderlyingObjects : AbstractAttribute {
-  AAUnderlyingObjects(const IRPosition &IRP) : AbstractAttribute(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// Create an abstract attribute biew for the position \p IRP.
-  static AAUnderlyingObjects &createForPosition(const IRPosition &IRP,
-                                                Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAUnderlyingObjects"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAUnderlyingObjects.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-
-  /// Check \p Pred on all underlying objects in \p Scope collected so far.
-  ///
-  /// This method will evaluate \p Pred on all underlying objects in \p Scope
-  /// collected so far and return true if \p Pred holds on all of them.
-  virtual bool
-  forallUnderlyingObjects(function_ref<bool(Value &)> Pred,
-                          AA::ValueScope Scope = AA::Interprocedural) const = 0;
-};
-
-/// An abstract interface for address space information.
-struct AAAddressSpace : public StateWrapper<BooleanState, AbstractAttribute> {
-  AAAddressSpace(const IRPosition &IRP, Attributor &A)
-      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// See AbstractAttribute::requiresCallersForArgOrFunction
-  static bool requiresCallersForArgOrFunction() { return true; }
-
-  /// Return the address space of the associated value. \p NoAddressSpace is
-  /// returned if the associated value is dead. This functions is not supposed
-  /// to be called if the AA is invalid.
-  virtual int32_t getAddressSpace() const = 0;
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAAddressSpace &createForPosition(const IRPosition &IRP,
-                                           Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAAddressSpace"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAAssumptionInfo
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  // No address space which indicates the associated value is dead.
-  static const int32_t NoAddressSpace = -1;
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-struct AAAllocationInfo : public StateWrapper<BooleanState, AbstractAttribute> {
-  AAAllocationInfo(const IRPosition &IRP, Attributor &A)
-      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
-      return false;
-    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAAllocationInfo &createForPosition(const IRPosition &IRP,
-                                             Attributor &A);
-
-  virtual std::optional<TypeSize> getAllocatedSize() const = 0;
-
-  using NewOffsetsTy = DenseMap<AA::RangeTy, AA::RangeTy>;
-  virtual const NewOffsetsTy &getNewOffsets() const = 0;
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAAllocationInfo"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAAllocationInfo
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  constexpr static const std::optional<TypeSize> HasNoAllocationSize =
-      std::optional<TypeSize>(TypeSize(-1, true));
-
-  static const char ID;
-};
-
-/// An abstract interface for llvm::GlobalValue information interference.
-struct AAGlobalValueInfo
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  AAGlobalValueInfo(const IRPosition &IRP, Attributor &A)
-      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (IRP.getPositionKind() != IRPosition::IRP_FLOAT)
-      return false;
-    auto *GV = dyn_cast<GlobalValue>(&IRP.getAnchorValue());
-    if (!GV)
-      return false;
-    return GV->hasLocalLinkage();
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAGlobalValueInfo &createForPosition(const IRPosition &IRP,
-                                              Attributor &A);
-
-  /// Return true iff \p U is a potential use of the associated global value.
-  virtual bool isPotentialUse(const Use &U) const = 0;
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAGlobalValueInfo"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAGlobalValueInfo
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract interface for indirect call information interference.
-struct AAIndirectCallInfo
-    : public StateWrapper<BooleanState, AbstractAttribute> {
-  AAIndirectCallInfo(const IRPosition &IRP, Attributor &A)
-      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
-
-  /// See AbstractAttribute::isValidIRPositionForInit
-  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
-    if (IRP.getPositionKind() != IRPosition::IRP_CALL_SITE)
-      return false;
-    auto *CB = cast<CallBase>(IRP.getCtxI());
-    return CB->getOpcode() == Instruction::Call && CB->isIndirectCall() &&
-           !CB->isMustTailCall();
-  }
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AAIndirectCallInfo &createForPosition(const IRPosition &IRP,
-                                               Attributor &A);
-
-  /// Call \CB on each potential callee value and return true if all were known
-  /// and \p CB returned true on all of them. Otherwise, return false.
-  virtual bool foreachCallee(function_ref<bool(Function *)> CB) const = 0;
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AAIndirectCallInfo"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AAIndirectCallInfo
-  /// This function should return true if the type of the \p AA is
-  /// AADenormalFPMath.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-/// An abstract Attribute for specializing "dynamic" components of
-/// "denormal-fp-math" and "denormal-fp-math-f32" to a known denormal mode.
-struct AADenormalFPMath
-    : public StateWrapper<DenormalFPMathState, AbstractAttribute> {
-  using Base = StateWrapper<DenormalFPMathState, AbstractAttribute>;
-
-  AADenormalFPMath(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
-
-  /// Create an abstract attribute view for the position \p IRP.
-  static AADenormalFPMath &createForPosition(const IRPosition &IRP,
-                                             Attributor &A);
-
-  /// See AbstractAttribute::getName()
-  const std::string getName() const override { return "AADenormalFPMath"; }
-
-  /// See AbstractAttribute::getIdAddr()
-  const char *getIdAddr() const override { return &ID; }
-
-  /// This function should return true if the type of the \p AA is
-  /// AADenormalFPMath.
-  static bool classof(const AbstractAttribute *AA) {
-    return (AA->getIdAddr() == &ID);
-  }
-
-  /// Unique ID (due to the unique address)
-  static const char ID;
-};
-
-raw_ostream &operator<<(raw_ostream &, const AAPointerInfo::Access &);
-
-/// Run options, used by the pass manager.
-enum AttributorRunOption {
-  NONE = 0,
-  MODULE = 1 << 0,
-  CGSCC = 1 << 1,
-  ALL = MODULE | CGSCC
-};
-
-namespace AA {
-/// Helper to avoid creating an AA for IR Attributes that might already be set.
-template <Attribute::AttrKind AK, typename AAType = AbstractAttribute>
-bool hasAssumedIRAttr(Attributor &A, const AbstractAttribute *QueryingAA,
-                      const IRPosition &IRP, DepClassTy DepClass, bool &IsKnown,
-                      bool IgnoreSubsumingPositions = false,
-                      const AAType **AAPtr = nullptr) {
-  IsKnown = false;
-  switch (AK) {
-#define CASE(ATTRNAME, AANAME, ...)                                            \
-  case Attribute::ATTRNAME: {                                                  \
-    if (AANAME::isImpliedByIR(A, IRP, AK, IgnoreSubsumingPositions))           \
-      return IsKnown = true;                                                   \
-    if (!QueryingAA)                                                           \
-      return false;                                                            \
-    const auto *AA = A.getAAFor<AANAME>(*QueryingAA, IRP, DepClass);           \
-    if (AAPtr)                                                                 \
-      *AAPtr = reinterpret_cast<const AAType *>(AA);                           \
-    if (!AA || !AA->isAssumed(__VA_ARGS__))                                    \
-      return false;                                                            \
-    IsKnown = AA->isKnown(__VA_ARGS__);                                        \
-    return true;                                                               \
-  }
-    CASE(NoUnwind, AANoUnwind, );
-    CASE(WillReturn, AAWillReturn, );
-    CASE(NoFree, AANoFree, );
-    CASE(NoCapture, AANoCapture, );
-    CASE(NoRecurse, AANoRecurse, );
-    CASE(NoReturn, AANoReturn, );
-    CASE(NoSync, AANoSync, );
-    CASE(NoAlias, AANoAlias, );
-    CASE(NonNull, AANonNull, );
-    CASE(MustProgress, AAMustProgress, );
-    CASE(NoUndef, AANoUndef, );
-    CASE(ReadNone, AAMemoryBehavior, AAMemoryBehavior::NO_ACCESSES);
-    CASE(ReadOnly, AAMemoryBehavior, AAMemoryBehavior::NO_WRITES);
-    CASE(WriteOnly, AAMemoryBehavior, AAMemoryBehavior::NO_READS);
-#undef CASE
-  default:
-    llvm_unreachable("hasAssumedIRAttr not available for this attribute kind");
-  };
-}
-} // namespace AA
-
-} // end namespace llvm
-
-#endif // LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
diff --git a/llvm/lib/Transforms/IPO/AttributorAttributes.cpp b/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
index dc985261ca7c6..e69de29bb2d1d 100644
--- a/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
+++ b/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
@@ -1,13216 +0,0 @@
-//===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// See the Attributor.h file comment and the class descriptions in that file for
-// more information.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/Attributor.h"
-
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumeBundleQueries.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/CycleAnalysis.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Assumptions.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InlineAsm.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/IntrinsicsAMDGPU.h"
-#include "llvm/IR/IntrinsicsNVPTX.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/IR/NoFolder.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Support/Alignment.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/TypeSize.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/CallPromotionUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/ValueMapper.h"
-#include <cassert>
-#include <numeric>
-#include <optional>
-#include <string>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "attributor"
-
-static cl::opt<bool> ManifestInternal(
-    "attributor-manifest-internal", cl::Hidden,
-    cl::desc("Manifest Attributor internal string attributes."),
-    cl::init(false));
-
-static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
-                                       cl::Hidden);
-
-template <>
-unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
-
-template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
-
-static cl::opt<unsigned, true> MaxPotentialValues(
-    "attributor-max-potential-values", cl::Hidden,
-    cl::desc("Maximum number of potential values to be "
-             "tracked for each position."),
-    cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
-    cl::init(7));
-
-static cl::opt<int> MaxPotentialValuesIterations(
-    "attributor-max-potential-values-iterations", cl::Hidden,
-    cl::desc(
-        "Maximum number of iterations we keep dismantling potential values."),
-    cl::init(64));
-
-STATISTIC(NumAAs, "Number of abstract attributes created");
-
-// Some helper macros to deal with statistics tracking.
-//
-// Usage:
-// For simple IR attribute tracking overload trackStatistics in the abstract
-// attribute and choose the right STATS_DECLTRACK_********* macro,
-// e.g.,:
-//  void trackStatistics() const override {
-//    STATS_DECLTRACK_ARG_ATTR(returned)
-//  }
-// If there is a single "increment" side one can use the macro
-// STATS_DECLTRACK with a custom message. If there are multiple increment
-// sides, STATS_DECL and STATS_TRACK can also be used separately.
-//
-#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
-  ("Number of " #TYPE " marked '" #NAME "'")
-#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
-#define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
-#define STATS_DECL(NAME, TYPE, MSG)                                            \
-  STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
-#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
-#define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
-  {                                                                            \
-    STATS_DECL(NAME, TYPE, MSG)                                                \
-    STATS_TRACK(NAME, TYPE)                                                    \
-  }
-#define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
-  STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
-#define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
-  STATS_DECLTRACK(NAME, CSArguments,                                           \
-                  BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
-#define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
-  STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
-#define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
-  STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
-#define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
-  STATS_DECLTRACK(NAME, FunctionReturn,                                        \
-                  BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
-#define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
-  STATS_DECLTRACK(NAME, CSReturn,                                              \
-                  BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
-#define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
-  STATS_DECLTRACK(NAME, Floating,                                              \
-                  ("Number of floating values known to be '" #NAME "'"))
-
-// Specialization of the operator<< for abstract attributes subclasses. This
-// disambiguates situations where multiple operators are applicable.
-namespace llvm {
-#define PIPE_OPERATOR(CLASS)                                                   \
-  raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
-    return OS << static_cast<const AbstractAttribute &>(AA);                   \
-  }
-
-PIPE_OPERATOR(AAIsDead)
-PIPE_OPERATOR(AANoUnwind)
-PIPE_OPERATOR(AANoSync)
-PIPE_OPERATOR(AANoRecurse)
-PIPE_OPERATOR(AANonConvergent)
-PIPE_OPERATOR(AAWillReturn)
-PIPE_OPERATOR(AANoReturn)
-PIPE_OPERATOR(AANonNull)
-PIPE_OPERATOR(AAMustProgress)
-PIPE_OPERATOR(AANoAlias)
-PIPE_OPERATOR(AADereferenceable)
-PIPE_OPERATOR(AAAlign)
-PIPE_OPERATOR(AAInstanceInfo)
-PIPE_OPERATOR(AANoCapture)
-PIPE_OPERATOR(AAValueSimplify)
-PIPE_OPERATOR(AANoFree)
-PIPE_OPERATOR(AAHeapToStack)
-PIPE_OPERATOR(AAIntraFnReachability)
-PIPE_OPERATOR(AAMemoryBehavior)
-PIPE_OPERATOR(AAMemoryLocation)
-PIPE_OPERATOR(AAValueConstantRange)
-PIPE_OPERATOR(AAPrivatizablePtr)
-PIPE_OPERATOR(AAUndefinedBehavior)
-PIPE_OPERATOR(AAPotentialConstantValues)
-PIPE_OPERATOR(AAPotentialValues)
-PIPE_OPERATOR(AANoUndef)
-PIPE_OPERATOR(AANoFPClass)
-PIPE_OPERATOR(AACallEdges)
-PIPE_OPERATOR(AAInterFnReachability)
-PIPE_OPERATOR(AAPointerInfo)
-PIPE_OPERATOR(AAAssumptionInfo)
-PIPE_OPERATOR(AAUnderlyingObjects)
-PIPE_OPERATOR(AAAddressSpace)
-PIPE_OPERATOR(AAAllocationInfo)
-PIPE_OPERATOR(AAIndirectCallInfo)
-PIPE_OPERATOR(AAGlobalValueInfo)
-PIPE_OPERATOR(AADenormalFPMath)
-
-#undef PIPE_OPERATOR
-
-template <>
-ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
-                                                     const DerefState &R) {
-  ChangeStatus CS0 =
-      clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
-  ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
-  return CS0 | CS1;
-}
-
-} // namespace llvm
-
-static bool mayBeInCycle(const CycleInfo *CI, const Instruction *I,
-                         bool HeaderOnly, Cycle **CPtr = nullptr) {
-  if (!CI)
-    return true;
-  auto *BB = I->getParent();
-  auto *C = CI->getCycle(BB);
-  if (!C)
-    return false;
-  if (CPtr)
-    *CPtr = C;
-  return !HeaderOnly || BB == C->getHeader();
-}
-
-/// Checks if a type could have padding bytes.
-static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
-  // There is no size information, so be conservative.
-  if (!Ty->isSized())
-    return false;
-
-  // If the alloc size is not equal to the storage size, then there are padding
-  // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
-  if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
-    return false;
-
-  // FIXME: This isn't the right way to check for padding in vectors with
-  // non-byte-size elements.
-  if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
-    return isDenselyPacked(SeqTy->getElementType(), DL);
-
-  // For array types, check for padding within members.
-  if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
-    return isDenselyPacked(SeqTy->getElementType(), DL);
-
-  if (!isa<StructType>(Ty))
-    return true;
-
-  // Check for padding within and between elements of a struct.
-  StructType *StructTy = cast<StructType>(Ty);
-  const StructLayout *Layout = DL.getStructLayout(StructTy);
-  uint64_t StartPos = 0;
-  for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
-    Type *ElTy = StructTy->getElementType(I);
-    if (!isDenselyPacked(ElTy, DL))
-      return false;
-    if (StartPos != Layout->getElementOffsetInBits(I))
-      return false;
-    StartPos += DL.getTypeAllocSizeInBits(ElTy);
-  }
-
-  return true;
-}
-
-/// Get pointer operand of memory accessing instruction. If \p I is
-/// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
-/// is set to false and the instruction is volatile, return nullptr.
-static const Value *getPointerOperand(const Instruction *I,
-                                      bool AllowVolatile) {
-  if (!AllowVolatile && I->isVolatile())
-    return nullptr;
-
-  if (auto *LI = dyn_cast<LoadInst>(I)) {
-    return LI->getPointerOperand();
-  }
-
-  if (auto *SI = dyn_cast<StoreInst>(I)) {
-    return SI->getPointerOperand();
-  }
-
-  if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
-    return CXI->getPointerOperand();
-  }
-
-  if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
-    return RMWI->getPointerOperand();
-  }
-
-  return nullptr;
-}
-
-/// Helper function to create a pointer based on \p Ptr, and advanced by \p
-/// Offset bytes.
-static Value *constructPointer(Value *Ptr, int64_t Offset,
-                               IRBuilder<NoFolder> &IRB) {
-  LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
-                    << "-bytes\n");
-
-  if (Offset)
-    Ptr = IRB.CreatePtrAdd(Ptr, IRB.getInt64(Offset),
-                           Ptr->getName() + ".b" + Twine(Offset));
-  return Ptr;
-}
-
-static const Value *
-stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
-                          const Value *Val, const DataLayout &DL, APInt &Offset,
-                          bool GetMinOffset, bool AllowNonInbounds,
-                          bool UseAssumed = false) {
-
-  auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
-    const IRPosition &Pos = IRPosition::value(V);
-    // Only track dependence if we are going to use the assumed info.
-    const AAValueConstantRange *ValueConstantRangeAA =
-        A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
-                                         UseAssumed ? DepClassTy::OPTIONAL
-                                                    : DepClassTy::NONE);
-    if (!ValueConstantRangeAA)
-      return false;
-    ConstantRange Range = UseAssumed ? ValueConstantRangeAA->getAssumed()
-                                     : ValueConstantRangeAA->getKnown();
-    if (Range.isFullSet())
-      return false;
-
-    // We can only use the lower part of the range because the upper part can
-    // be higher than what the value can really be.
-    if (GetMinOffset)
-      ROffset = Range.getSignedMin();
-    else
-      ROffset = Range.getSignedMax();
-    return true;
-  };
-
-  return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
-                                                /* AllowInvariant */ true,
-                                                AttributorAnalysis);
-}
-
-static const Value *
-getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
-                        const Value *Ptr, int64_t &BytesOffset,
-                        const DataLayout &DL, bool AllowNonInbounds = false) {
-  APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
-  const Value *Base =
-      stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
-                                /* GetMinOffset */ true, AllowNonInbounds);
-
-  BytesOffset = OffsetAPInt.getSExtValue();
-  return Base;
-}
-
-/// Clamp the information known for all returned values of a function
-/// (identified by \p QueryingAA) into \p S.
-template <typename AAType, typename StateType = typename AAType::StateType,
-          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind,
-          bool RecurseForSelectAndPHI = true>
-static void clampReturnedValueStates(
-    Attributor &A, const AAType &QueryingAA, StateType &S,
-    const IRPosition::CallBaseContext *CBContext = nullptr) {
-  LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
-                    << QueryingAA << " into " << S << "\n");
-
-  assert((QueryingAA.getIRPosition().getPositionKind() ==
-              IRPosition::IRP_RETURNED ||
-          QueryingAA.getIRPosition().getPositionKind() ==
-              IRPosition::IRP_CALL_SITE_RETURNED) &&
-         "Can only clamp returned value states for a function returned or call "
-         "site returned position!");
-
-  // Use an optional state as there might not be any return values and we want
-  // to join (IntegerState::operator&) the state of all there are.
-  std::optional<StateType> T;
-
-  // Callback for each possibly returned value.
-  auto CheckReturnValue = [&](Value &RV) -> bool {
-    const IRPosition &RVPos = IRPosition::value(RV, CBContext);
-    // If possible, use the hasAssumedIRAttr interface.
-    if (Attribute::isEnumAttrKind(IRAttributeKind)) {
-      bool IsKnown;
-      return AA::hasAssumedIRAttr<IRAttributeKind>(
-          A, &QueryingAA, RVPos, DepClassTy::REQUIRED, IsKnown);
-    }
-
-    const AAType *AA =
-        A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
-    if (!AA)
-      return false;
-    LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV
-                      << " AA: " << AA->getAsStr(&A) << " @ " << RVPos << "\n");
-    const StateType &AAS = AA->getState();
-    if (!T)
-      T = StateType::getBestState(AAS);
-    *T &= AAS;
-    LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
-                      << "\n");
-    return T->isValidState();
-  };
-
-  if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA,
-                                   AA::ValueScope::Intraprocedural,
-                                   RecurseForSelectAndPHI))
-    S.indicatePessimisticFixpoint();
-  else if (T)
-    S ^= *T;
-}
-
-namespace {
-/// Helper class for generic deduction: return value -> returned position.
-template <typename AAType, typename BaseType,
-          typename StateType = typename BaseType::StateType,
-          bool PropagateCallBaseContext = false,
-          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind,
-          bool RecurseForSelectAndPHI = true>
-struct AAReturnedFromReturnedValues : public BaseType {
-  AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
-      : BaseType(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    StateType S(StateType::getBestState(this->getState()));
-    clampReturnedValueStates<AAType, StateType, IRAttributeKind, RecurseForSelectAndPHI>(
-        A, *this, S,
-        PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
-    // TODO: If we know we visited all returned values, thus no are assumed
-    // dead, we can take the known information from the state T.
-    return clampStateAndIndicateChange<StateType>(this->getState(), S);
-  }
-};
-
-/// Clamp the information known at all call sites for a given argument
-/// (identified by \p QueryingAA) into \p S.
-template <typename AAType, typename StateType = typename AAType::StateType,
-          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
-static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
-                                        StateType &S) {
-  LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
-                    << QueryingAA << " into " << S << "\n");
-
-  assert(QueryingAA.getIRPosition().getPositionKind() ==
-             IRPosition::IRP_ARGUMENT &&
-         "Can only clamp call site argument states for an argument position!");
-
-  // Use an optional state as there might not be any return values and we want
-  // to join (IntegerState::operator&) the state of all there are.
-  std::optional<StateType> T;
-
-  // The argument number which is also the call site argument number.
-  unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
-
-  auto CallSiteCheck = [&](AbstractCallSite ACS) {
-    const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
-    // Check if a coresponding argument was found or if it is on not associated
-    // (which can happen for callback calls).
-    if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
-      return false;
-
-    // If possible, use the hasAssumedIRAttr interface.
-    if (Attribute::isEnumAttrKind(IRAttributeKind)) {
-      bool IsKnown;
-      return AA::hasAssumedIRAttr<IRAttributeKind>(
-          A, &QueryingAA, ACSArgPos, DepClassTy::REQUIRED, IsKnown);
-    }
-
-    const AAType *AA =
-        A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
-    if (!AA)
-      return false;
-    LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
-                      << " AA: " << AA->getAsStr(&A) << " @" << ACSArgPos
-                      << "\n");
-    const StateType &AAS = AA->getState();
-    if (!T)
-      T = StateType::getBestState(AAS);
-    *T &= AAS;
-    LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
-                      << "\n");
-    return T->isValidState();
-  };
-
-  bool UsedAssumedInformation = false;
-  if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
-                              UsedAssumedInformation))
-    S.indicatePessimisticFixpoint();
-  else if (T)
-    S ^= *T;
-}
-
-/// This function is the bridge between argument position and the call base
-/// context.
-template <typename AAType, typename BaseType,
-          typename StateType = typename AAType::StateType,
-          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
-bool getArgumentStateFromCallBaseContext(Attributor &A,
-                                         BaseType &QueryingAttribute,
-                                         IRPosition &Pos, StateType &State) {
-  assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
-         "Expected an 'argument' position !");
-  const CallBase *CBContext = Pos.getCallBaseContext();
-  if (!CBContext)
-    return false;
-
-  int ArgNo = Pos.getCallSiteArgNo();
-  assert(ArgNo >= 0 && "Invalid Arg No!");
-  const IRPosition CBArgPos = IRPosition::callsite_argument(*CBContext, ArgNo);
-
-  // If possible, use the hasAssumedIRAttr interface.
-  if (Attribute::isEnumAttrKind(IRAttributeKind)) {
-    bool IsKnown;
-    return AA::hasAssumedIRAttr<IRAttributeKind>(
-        A, &QueryingAttribute, CBArgPos, DepClassTy::REQUIRED, IsKnown);
-  }
-
-  const auto *AA =
-      A.getAAFor<AAType>(QueryingAttribute, CBArgPos, DepClassTy::REQUIRED);
-  if (!AA)
-    return false;
-  const StateType &CBArgumentState =
-      static_cast<const StateType &>(AA->getState());
-
-  LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
-                    << "Position:" << Pos << "CB Arg state:" << CBArgumentState
-                    << "\n");
-
-  // NOTE: If we want to do call site grouping it should happen here.
-  State ^= CBArgumentState;
-  return true;
-}
-
-/// Helper class for generic deduction: call site argument -> argument position.
-template <typename AAType, typename BaseType,
-          typename StateType = typename AAType::StateType,
-          bool BridgeCallBaseContext = false,
-          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
-struct AAArgumentFromCallSiteArguments : public BaseType {
-  AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
-      : BaseType(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    StateType S = StateType::getBestState(this->getState());
-
-    if (BridgeCallBaseContext) {
-      bool Success =
-          getArgumentStateFromCallBaseContext<AAType, BaseType, StateType,
-                                              IRAttributeKind>(
-              A, *this, this->getIRPosition(), S);
-      if (Success)
-        return clampStateAndIndicateChange<StateType>(this->getState(), S);
-    }
-    clampCallSiteArgumentStates<AAType, StateType, IRAttributeKind>(A, *this,
-                                                                    S);
-
-    // TODO: If we know we visited all incoming values, thus no are assumed
-    // dead, we can take the known information from the state T.
-    return clampStateAndIndicateChange<StateType>(this->getState(), S);
-  }
-};
-
-/// Helper class for generic replication: function returned -> cs returned.
-template <typename AAType, typename BaseType,
-          typename StateType = typename BaseType::StateType,
-          bool IntroduceCallBaseContext = false,
-          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
-struct AACalleeToCallSite : public BaseType {
-  AACalleeToCallSite(const IRPosition &IRP, Attributor &A) : BaseType(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto IRPKind = this->getIRPosition().getPositionKind();
-    assert((IRPKind == IRPosition::IRP_CALL_SITE_RETURNED ||
-            IRPKind == IRPosition::IRP_CALL_SITE) &&
-           "Can only wrap function returned positions for call site "
-           "returned positions!");
-    auto &S = this->getState();
-
-    CallBase &CB = cast<CallBase>(this->getAnchorValue());
-    if (IntroduceCallBaseContext)
-      LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:" << CB
-                        << "\n");
-
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    auto CalleePred = [&](ArrayRef<const Function *> Callees) {
-      for (const Function *Callee : Callees) {
-        IRPosition FnPos =
-            IRPKind == llvm::IRPosition::IRP_CALL_SITE_RETURNED
-                ? IRPosition::returned(*Callee,
-                                       IntroduceCallBaseContext ? &CB : nullptr)
-                : IRPosition::function(
-                      *Callee, IntroduceCallBaseContext ? &CB : nullptr);
-        // If possible, use the hasAssumedIRAttr interface.
-        if (Attribute::isEnumAttrKind(IRAttributeKind)) {
-          bool IsKnown;
-          if (!AA::hasAssumedIRAttr<IRAttributeKind>(
-                  A, this, FnPos, DepClassTy::REQUIRED, IsKnown))
-            return false;
-          continue;
-        }
-
-        const AAType *AA =
-            A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
-        if (!AA)
-          return false;
-        Changed |= clampStateAndIndicateChange(S, AA->getState());
-        if (S.isAtFixpoint())
-          return S.isValidState();
-      }
-      return true;
-    };
-    if (!A.checkForAllCallees(CalleePred, *this, CB))
-      return S.indicatePessimisticFixpoint();
-    return Changed;
-  }
-};
-
-/// Helper function to accumulate uses.
-template <class AAType, typename StateType = typename AAType::StateType>
-static void followUsesInContext(AAType &AA, Attributor &A,
-                                MustBeExecutedContextExplorer &Explorer,
-                                const Instruction *CtxI,
-                                SetVector<const Use *> &Uses,
-                                StateType &State) {
-  auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
-  for (unsigned u = 0; u < Uses.size(); ++u) {
-    const Use *U = Uses[u];
-    if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
-      bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
-      if (Found && AA.followUseInMBEC(A, U, UserI, State))
-        for (const Use &Us : UserI->uses())
-          Uses.insert(&Us);
-    }
-  }
-}
-
-/// Use the must-be-executed-context around \p I to add information into \p S.
-/// The AAType class is required to have `followUseInMBEC` method with the
-/// following signature and behaviour:
-///
-/// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
-/// U - Underlying use.
-/// I - The user of the \p U.
-/// Returns true if the value should be tracked transitively.
-///
-template <class AAType, typename StateType = typename AAType::StateType>
-static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
-                             Instruction &CtxI) {
-  MustBeExecutedContextExplorer *Explorer =
-      A.getInfoCache().getMustBeExecutedContextExplorer();
-  if (!Explorer)
-    return;
-
-  // Container for (transitive) uses of the associated value.
-  SetVector<const Use *> Uses;
-  for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
-    Uses.insert(&U);
-
-  followUsesInContext<AAType>(AA, A, *Explorer, &CtxI, Uses, S);
-
-  if (S.isAtFixpoint())
-    return;
-
-  SmallVector<const BranchInst *, 4> BrInsts;
-  auto Pred = [&](const Instruction *I) {
-    if (const BranchInst *Br = dyn_cast<BranchInst>(I))
-      if (Br->isConditional())
-        BrInsts.push_back(Br);
-    return true;
-  };
-
-  // Here, accumulate conditional branch instructions in the context. We
-  // explore the child paths and collect the known states. The disjunction of
-  // those states can be merged to its own state. Let ParentState_i be a state
-  // to indicate the known information for an i-th branch instruction in the
-  // context. ChildStates are created for its successors respectively.
-  //
-  // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
-  // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
-  //      ...
-  // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
-  //
-  // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
-  //
-  // FIXME: Currently, recursive branches are not handled. For example, we
-  // can't deduce that ptr must be dereferenced in below function.
-  //
-  // void f(int a, int c, int *ptr) {
-  //    if(a)
-  //      if (b) {
-  //        *ptr = 0;
-  //      } else {
-  //        *ptr = 1;
-  //      }
-  //    else {
-  //      if (b) {
-  //        *ptr = 0;
-  //      } else {
-  //        *ptr = 1;
-  //      }
-  //    }
-  // }
-
-  Explorer->checkForAllContext(&CtxI, Pred);
-  for (const BranchInst *Br : BrInsts) {
-    StateType ParentState;
-
-    // The known state of the parent state is a conjunction of children's
-    // known states so it is initialized with a best state.
-    ParentState.indicateOptimisticFixpoint();
-
-    for (const BasicBlock *BB : Br->successors()) {
-      StateType ChildState;
-
-      size_t BeforeSize = Uses.size();
-      followUsesInContext(AA, A, *Explorer, &BB->front(), Uses, ChildState);
-
-      // Erase uses which only appear in the child.
-      for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
-        It = Uses.erase(It);
-
-      ParentState &= ChildState;
-    }
-
-    // Use only known state.
-    S += ParentState;
-  }
-}
-} // namespace
-
-/// ------------------------ PointerInfo ---------------------------------------
-
-namespace llvm {
-namespace AA {
-namespace PointerInfo {
-
-struct State;
-
-} // namespace PointerInfo
-} // namespace AA
-
-/// Helper for AA::PointerInfo::Access DenseMap/Set usage.
-template <>
-struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
-  using Access = AAPointerInfo::Access;
-  static inline Access getEmptyKey();
-  static inline Access getTombstoneKey();
-  static unsigned getHashValue(const Access &A);
-  static bool isEqual(const Access &LHS, const Access &RHS);
-};
-
-/// Helper that allows RangeTy as a key in a DenseMap.
-template <> struct DenseMapInfo<AA::RangeTy> {
-  static inline AA::RangeTy getEmptyKey() {
-    auto EmptyKey = DenseMapInfo<int64_t>::getEmptyKey();
-    return AA::RangeTy{EmptyKey, EmptyKey};
-  }
-
-  static inline AA::RangeTy getTombstoneKey() {
-    auto TombstoneKey = DenseMapInfo<int64_t>::getTombstoneKey();
-    return AA::RangeTy{TombstoneKey, TombstoneKey};
-  }
-
-  static unsigned getHashValue(const AA::RangeTy &Range) {
-    return detail::combineHashValue(
-        DenseMapInfo<int64_t>::getHashValue(Range.Offset),
-        DenseMapInfo<int64_t>::getHashValue(Range.Size));
-  }
-
-  static bool isEqual(const AA::RangeTy &A, const AA::RangeTy B) {
-    return A == B;
-  }
-};
-
-/// Helper for AA::PointerInfo::Access DenseMap/Set usage ignoring everythign
-/// but the instruction
-struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
-  using Base = DenseMapInfo<Instruction *>;
-  using Access = AAPointerInfo::Access;
-  static inline Access getEmptyKey();
-  static inline Access getTombstoneKey();
-  static unsigned getHashValue(const Access &A);
-  static bool isEqual(const Access &LHS, const Access &RHS);
-};
-
-} // namespace llvm
-
-/// A type to track pointer/struct usage and accesses for AAPointerInfo.
-struct AA::PointerInfo::State : public AbstractState {
-  /// Return the best possible representable state.
-  static State getBestState(const State &SIS) { return State(); }
-
-  /// Return the worst possible representable state.
-  static State getWorstState(const State &SIS) {
-    State R;
-    R.indicatePessimisticFixpoint();
-    return R;
-  }
-
-  State() = default;
-  State(State &&SIS) = default;
-
-  const State &getAssumed() const { return *this; }
-
-  /// See AbstractState::isValidState().
-  bool isValidState() const override { return BS.isValidState(); }
-
-  /// See AbstractState::isAtFixpoint().
-  bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
-
-  /// See AbstractState::indicateOptimisticFixpoint().
-  ChangeStatus indicateOptimisticFixpoint() override {
-    BS.indicateOptimisticFixpoint();
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint().
-  ChangeStatus indicatePessimisticFixpoint() override {
-    BS.indicatePessimisticFixpoint();
-    return ChangeStatus::CHANGED;
-  }
-
-  State &operator=(const State &R) {
-    if (this == &R)
-      return *this;
-    BS = R.BS;
-    AccessList = R.AccessList;
-    OffsetBins = R.OffsetBins;
-    RemoteIMap = R.RemoteIMap;
-    return *this;
-  }
-
-  State &operator=(State &&R) {
-    if (this == &R)
-      return *this;
-    std::swap(BS, R.BS);
-    std::swap(AccessList, R.AccessList);
-    std::swap(OffsetBins, R.OffsetBins);
-    std::swap(RemoteIMap, R.RemoteIMap);
-    return *this;
-  }
-
-  /// Add a new Access to the state at offset \p Offset and with size \p Size.
-  /// The access is associated with \p I, writes \p Content (if anything), and
-  /// is of kind \p Kind. If an Access already exists for the same \p I and same
-  /// \p RemoteI, the two are combined, potentially losing information about
-  /// offset and size. The resulting access must now be moved from its original
-  /// OffsetBin to the bin for its new offset.
-  ///
-  /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
-  ChangeStatus addAccess(Attributor &A, const AAPointerInfo::RangeList &Ranges,
-                         Instruction &I, std::optional<Value *> Content,
-                         AAPointerInfo::AccessKind Kind, Type *Ty,
-                         Instruction *RemoteI = nullptr);
-
-  AAPointerInfo::const_bin_iterator begin() const { return OffsetBins.begin(); }
-  AAPointerInfo::const_bin_iterator end() const { return OffsetBins.end(); }
-  int64_t numOffsetBins() const { return OffsetBins.size(); }
-
-  const AAPointerInfo::Access &getAccess(unsigned Index) const {
-    return AccessList[Index];
-  }
-
-protected:
-  // Every memory instruction results in an Access object. We maintain a list of
-  // all Access objects that we own, along with the following maps:
-  //
-  // - OffsetBins: RangeTy -> { Access }
-  // - RemoteIMap: RemoteI x LocalI -> Access
-  //
-  // A RemoteI is any instruction that accesses memory. RemoteI is different
-  // from LocalI if and only if LocalI is a call; then RemoteI is some
-  // instruction in the callgraph starting from LocalI. Multiple paths in the
-  // callgraph from LocalI to RemoteI may produce multiple accesses, but these
-  // are all combined into a single Access object. This may result in loss of
-  // information in RangeTy in the Access object.
-  SmallVector<AAPointerInfo::Access> AccessList;
-  AAPointerInfo::OffsetBinsTy OffsetBins;
-  DenseMap<const Instruction *, SmallVector<unsigned>> RemoteIMap;
-
-  /// See AAPointerInfo::forallInterferingAccesses.
-  bool forallInterferingAccesses(
-      AA::RangeTy Range,
-      function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
-    if (!isValidState())
-      return false;
-
-    for (const auto &It : OffsetBins) {
-      AA::RangeTy ItRange = It.getFirst();
-      if (!Range.mayOverlap(ItRange))
-        continue;
-      bool IsExact = Range == ItRange && !Range.offsetOrSizeAreUnknown();
-      for (auto Index : It.getSecond()) {
-        auto &Access = AccessList[Index];
-        if (!CB(Access, IsExact))
-          return false;
-      }
-    }
-    return true;
-  }
-
-  /// See AAPointerInfo::forallInterferingAccesses.
-  bool forallInterferingAccesses(
-      Instruction &I,
-      function_ref<bool(const AAPointerInfo::Access &, bool)> CB,
-      AA::RangeTy &Range) const {
-    if (!isValidState())
-      return false;
-
-    auto LocalList = RemoteIMap.find(&I);
-    if (LocalList == RemoteIMap.end()) {
-      return true;
-    }
-
-    for (unsigned Index : LocalList->getSecond()) {
-      for (auto &R : AccessList[Index]) {
-        Range &= R;
-        if (Range.offsetAndSizeAreUnknown())
-          break;
-      }
-    }
-    return forallInterferingAccesses(Range, CB);
-  }
-
-private:
-  /// State to track fixpoint and validity.
-  BooleanState BS;
-};
-
-ChangeStatus AA::PointerInfo::State::addAccess(
-    Attributor &A, const AAPointerInfo::RangeList &Ranges, Instruction &I,
-    std::optional<Value *> Content, AAPointerInfo::AccessKind Kind, Type *Ty,
-    Instruction *RemoteI) {
-  RemoteI = RemoteI ? RemoteI : &I;
-
-  // Check if we have an access for this instruction, if not, simply add it.
-  auto &LocalList = RemoteIMap[RemoteI];
-  bool AccExists = false;
-  unsigned AccIndex = AccessList.size();
-  for (auto Index : LocalList) {
-    auto &A = AccessList[Index];
-    if (A.getLocalInst() == &I) {
-      AccExists = true;
-      AccIndex = Index;
-      break;
-    }
-  }
-
-  auto AddToBins = [&](const AAPointerInfo::RangeList &ToAdd) {
-    LLVM_DEBUG(if (ToAdd.size()) dbgs()
-                   << "[AAPointerInfo] Inserting access in new offset bins\n";);
-
-    for (auto Key : ToAdd) {
-      LLVM_DEBUG(dbgs() << "    key " << Key << "\n");
-      OffsetBins[Key].insert(AccIndex);
-    }
-  };
-
-  if (!AccExists) {
-    AccessList.emplace_back(&I, RemoteI, Ranges, Content, Kind, Ty);
-    assert((AccessList.size() == AccIndex + 1) &&
-           "New Access should have been at AccIndex");
-    LocalList.push_back(AccIndex);
-    AddToBins(AccessList[AccIndex].getRanges());
-    return ChangeStatus::CHANGED;
-  }
-
-  // Combine the new Access with the existing Access, and then update the
-  // mapping in the offset bins.
-  AAPointerInfo::Access Acc(&I, RemoteI, Ranges, Content, Kind, Ty);
-  auto &Current = AccessList[AccIndex];
-  auto Before = Current;
-  Current &= Acc;
-  if (Current == Before)
-    return ChangeStatus::UNCHANGED;
-
-  auto &ExistingRanges = Before.getRanges();
-  auto &NewRanges = Current.getRanges();
-
-  // Ranges that are in the old access but not the new access need to be removed
-  // from the offset bins.
-  AAPointerInfo::RangeList ToRemove;
-  AAPointerInfo::RangeList::set_difference(ExistingRanges, NewRanges, ToRemove);
-  LLVM_DEBUG(if (ToRemove.size()) dbgs()
-                 << "[AAPointerInfo] Removing access from old offset bins\n";);
-
-  for (auto Key : ToRemove) {
-    LLVM_DEBUG(dbgs() << "    key " << Key << "\n");
-    assert(OffsetBins.count(Key) && "Existing Access must be in some bin.");
-    auto &Bin = OffsetBins[Key];
-    assert(Bin.count(AccIndex) &&
-           "Expected bin to actually contain the Access.");
-    Bin.erase(AccIndex);
-  }
-
-  // Ranges that are in the new access but not the old access need to be added
-  // to the offset bins.
-  AAPointerInfo::RangeList ToAdd;
-  AAPointerInfo::RangeList::set_difference(NewRanges, ExistingRanges, ToAdd);
-  AddToBins(ToAdd);
-  return ChangeStatus::CHANGED;
-}
-
-namespace {
-
-/// A helper containing a list of offsets computed for a Use. Ideally this
-/// list should be strictly ascending, but we ensure that only when we
-/// actually translate the list of offsets to a RangeList.
-struct OffsetInfo {
-  using VecTy = SmallVector<int64_t>;
-  using const_iterator = VecTy::const_iterator;
-  VecTy Offsets;
-
-  const_iterator begin() const { return Offsets.begin(); }
-  const_iterator end() const { return Offsets.end(); }
-
-  bool operator==(const OffsetInfo &RHS) const {
-    return Offsets == RHS.Offsets;
-  }
-
-  bool operator!=(const OffsetInfo &RHS) const { return !(*this == RHS); }
-
-  void insert(int64_t Offset) { Offsets.push_back(Offset); }
-  bool isUnassigned() const { return Offsets.size() == 0; }
-
-  bool isUnknown() const {
-    if (isUnassigned())
-      return false;
-    if (Offsets.size() == 1)
-      return Offsets.front() == AA::RangeTy::Unknown;
-    return false;
-  }
-
-  void setUnknown() {
-    Offsets.clear();
-    Offsets.push_back(AA::RangeTy::Unknown);
-  }
-
-  void addToAll(int64_t Inc) {
-    for (auto &Offset : Offsets) {
-      Offset += Inc;
-    }
-  }
-
-  /// Copy offsets from \p R into the current list.
-  ///
-  /// Ideally all lists should be strictly ascending, but we defer that to the
-  /// actual use of the list. So we just blindly append here.
-  void merge(const OffsetInfo &R) { Offsets.append(R.Offsets); }
-};
-
-#ifndef NDEBUG
-static raw_ostream &operator<<(raw_ostream &OS, const OffsetInfo &OI) {
-  ListSeparator LS;
-  OS << "[";
-  for (auto Offset : OI) {
-    OS << LS << Offset;
-  }
-  OS << "]";
-  return OS;
-}
-#endif // NDEBUG
-
-struct AAPointerInfoImpl
-    : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
-  using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
-  AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return std::string("PointerInfo ") +
-           (isValidState() ? (std::string("#") +
-                              std::to_string(OffsetBins.size()) + " bins")
-                           : "<invalid>");
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    return AAPointerInfo::manifest(A);
-  }
-
-  virtual const_bin_iterator begin() const override { return State::begin(); }
-  virtual const_bin_iterator end() const override { return State::end(); }
-  virtual int64_t numOffsetBins() const override {
-    return State::numOffsetBins();
-  }
-
-  virtual const Access &getBinAccess(unsigned Index) const override {
-    return getAccess(Index);
-  }
-
-  bool forallInterferingAccesses(
-      AA::RangeTy Range,
-      function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
-      const override {
-    return State::forallInterferingAccesses(Range, CB);
-  }
-
-  bool forallInterferingAccesses(
-      Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
-      bool FindInterferingWrites, bool FindInterferingReads,
-      function_ref<bool(const Access &, bool)> UserCB, bool &HasBeenWrittenTo,
-      AA::RangeTy &Range,
-      function_ref<bool(const Access &)> SkipCB) const override {
-    HasBeenWrittenTo = false;
-
-    SmallPtrSet<const Access *, 8> DominatingWrites;
-    SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
-
-    Function &Scope = *I.getFunction();
-    bool IsKnownNoSync;
-    bool IsAssumedNoSync = AA::hasAssumedIRAttr<Attribute::NoSync>(
-        A, &QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL,
-        IsKnownNoSync);
-    const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
-        IRPosition::function(Scope), &QueryingAA, DepClassTy::NONE);
-    bool AllInSameNoSyncFn = IsAssumedNoSync;
-    bool InstIsExecutedByInitialThreadOnly =
-        ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I);
-
-    // If the function is not ending in aligned barriers, we need the stores to
-    // be in aligned barriers. The load being in one is not sufficient since the
-    // store might be executed by a thread that disappears after, causing the
-    // aligned barrier guarding the load to unblock and the load to read a value
-    // that has no CFG path to the load.
-    bool InstIsExecutedInAlignedRegion =
-        FindInterferingReads && ExecDomainAA &&
-        ExecDomainAA->isExecutedInAlignedRegion(A, I);
-
-    if (InstIsExecutedInAlignedRegion || InstIsExecutedByInitialThreadOnly)
-      A.recordDependence(*ExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
-
-    InformationCache &InfoCache = A.getInfoCache();
-    bool IsThreadLocalObj =
-        AA::isAssumedThreadLocalObject(A, getAssociatedValue(), *this);
-
-    // Helper to determine if we need to consider threading, which we cannot
-    // right now. However, if the function is (assumed) nosync or the thread
-    // executing all instructions is the main thread only we can ignore
-    // threading. Also, thread-local objects do not require threading reasoning.
-    // Finally, we can ignore threading if either access is executed in an
-    // aligned region.
-    auto CanIgnoreThreadingForInst = [&](const Instruction &I) -> bool {
-      if (IsThreadLocalObj || AllInSameNoSyncFn)
-        return true;
-      const auto *FnExecDomainAA =
-          I.getFunction() == &Scope
-              ? ExecDomainAA
-              : A.lookupAAFor<AAExecutionDomain>(
-                    IRPosition::function(*I.getFunction()), &QueryingAA,
-                    DepClassTy::NONE);
-      if (!FnExecDomainAA)
-        return false;
-      if (InstIsExecutedInAlignedRegion ||
-          (FindInterferingWrites &&
-           FnExecDomainAA->isExecutedInAlignedRegion(A, I))) {
-        A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
-        return true;
-      }
-      if (InstIsExecutedByInitialThreadOnly &&
-          FnExecDomainAA->isExecutedByInitialThreadOnly(I)) {
-        A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
-        return true;
-      }
-      return false;
-    };
-
-    // Helper to determine if the access is executed by the same thread as the
-    // given instruction, for now it is sufficient to avoid any potential
-    // threading effects as we cannot deal with them anyway.
-    auto CanIgnoreThreading = [&](const Access &Acc) -> bool {
-      return CanIgnoreThreadingForInst(*Acc.getRemoteInst()) ||
-             (Acc.getRemoteInst() != Acc.getLocalInst() &&
-              CanIgnoreThreadingForInst(*Acc.getLocalInst()));
-    };
-
-    // TODO: Use inter-procedural reachability and dominance.
-    bool IsKnownNoRecurse;
-    AA::hasAssumedIRAttr<Attribute::NoRecurse>(
-        A, this, IRPosition::function(Scope), DepClassTy::OPTIONAL,
-        IsKnownNoRecurse);
-
-    // TODO: Use reaching kernels from AAKernelInfo (or move it to
-    // AAExecutionDomain) such that we allow scopes other than kernels as long
-    // as the reaching kernels are disjoint.
-    bool InstInKernel = Scope.hasFnAttribute("kernel");
-    bool ObjHasKernelLifetime = false;
-    const bool UseDominanceReasoning =
-        FindInterferingWrites && IsKnownNoRecurse;
-    const DominatorTree *DT =
-        InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(Scope);
-
-    // Helper to check if a value has "kernel lifetime", that is it will not
-    // outlive a GPU kernel. This is true for shared, constant, and local
-    // globals on AMD and NVIDIA GPUs.
-    auto HasKernelLifetime = [&](Value *V, Module &M) {
-      if (!AA::isGPU(M))
-        return false;
-      switch (AA::GPUAddressSpace(V->getType()->getPointerAddressSpace())) {
-      case AA::GPUAddressSpace::Shared:
-      case AA::GPUAddressSpace::Constant:
-      case AA::GPUAddressSpace::Local:
-        return true;
-      default:
-        return false;
-      };
-    };
-
-    // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
-    // to determine if we should look at reachability from the callee. For
-    // certain pointers we know the lifetime and we do not have to step into the
-    // callee to determine reachability as the pointer would be dead in the
-    // callee. See the conditional initialization below.
-    std::function<bool(const Function &)> IsLiveInCalleeCB;
-
-    if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
-      // If the alloca containing function is not recursive the alloca
-      // must be dead in the callee.
-      const Function *AIFn = AI->getFunction();
-      ObjHasKernelLifetime = AIFn->hasFnAttribute("kernel");
-      bool IsKnownNoRecurse;
-      if (AA::hasAssumedIRAttr<Attribute::NoRecurse>(
-              A, this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL,
-              IsKnownNoRecurse)) {
-        IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
-      }
-    } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
-      // If the global has kernel lifetime we can stop if we reach a kernel
-      // as it is "dead" in the (unknown) callees.
-      ObjHasKernelLifetime = HasKernelLifetime(GV, *GV->getParent());
-      if (ObjHasKernelLifetime)
-        IsLiveInCalleeCB = [](const Function &Fn) {
-          return !Fn.hasFnAttribute("kernel");
-        };
-    }
-
-    // Set of accesses/instructions that will overwrite the result and are
-    // therefore blockers in the reachability traversal.
-    AA::InstExclusionSetTy ExclusionSet;
-
-    auto AccessCB = [&](const Access &Acc, bool Exact) {
-      Function *AccScope = Acc.getRemoteInst()->getFunction();
-      bool AccInSameScope = AccScope == &Scope;
-
-      // If the object has kernel lifetime we can ignore accesses only reachable
-      // by other kernels. For now we only skip accesses *in* other kernels.
-      if (InstInKernel && ObjHasKernelLifetime && !AccInSameScope &&
-          AccScope->hasFnAttribute("kernel"))
-        return true;
-
-      if (Exact && Acc.isMustAccess() && Acc.getRemoteInst() != &I) {
-        if (Acc.isWrite() || (isa<LoadInst>(I) && Acc.isWriteOrAssumption()))
-          ExclusionSet.insert(Acc.getRemoteInst());
-      }
-
-      if ((!FindInterferingWrites || !Acc.isWriteOrAssumption()) &&
-          (!FindInterferingReads || !Acc.isRead()))
-        return true;
-
-      bool Dominates = FindInterferingWrites && DT && Exact &&
-                       Acc.isMustAccess() && AccInSameScope &&
-                       DT->dominates(Acc.getRemoteInst(), &I);
-      if (Dominates)
-        DominatingWrites.insert(&Acc);
-
-      // Track if all interesting accesses are in the same `nosync` function as
-      // the given instruction.
-      AllInSameNoSyncFn &= Acc.getRemoteInst()->getFunction() == &Scope;
-
-      InterferingAccesses.push_back({&Acc, Exact});
-      return true;
-    };
-    if (!State::forallInterferingAccesses(I, AccessCB, Range))
-      return false;
-
-    HasBeenWrittenTo = !DominatingWrites.empty();
-
-    // Dominating writes form a chain, find the least/lowest member.
-    Instruction *LeastDominatingWriteInst = nullptr;
-    for (const Access *Acc : DominatingWrites) {
-      if (!LeastDominatingWriteInst) {
-        LeastDominatingWriteInst = Acc->getRemoteInst();
-      } else if (DT->dominates(LeastDominatingWriteInst,
-                               Acc->getRemoteInst())) {
-        LeastDominatingWriteInst = Acc->getRemoteInst();
-      }
-    }
-
-    // Helper to determine if we can skip a specific write access.
-    auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
-      if (SkipCB && SkipCB(Acc))
-        return true;
-      if (!CanIgnoreThreading(Acc))
-        return false;
-
-      // Check read (RAW) dependences and write (WAR) dependences as necessary.
-      // If we successfully excluded all effects we are interested in, the
-      // access can be skipped.
-      bool ReadChecked = !FindInterferingReads;
-      bool WriteChecked = !FindInterferingWrites;
-
-      // If the instruction cannot reach the access, the former does not
-      // interfere with what the access reads.
-      if (!ReadChecked) {
-        if (!AA::isPotentiallyReachable(A, I, *Acc.getRemoteInst(), QueryingAA,
-                                        &ExclusionSet, IsLiveInCalleeCB))
-          ReadChecked = true;
-      }
-      // If the instruction cannot be reach from the access, the latter does not
-      // interfere with what the instruction reads.
-      if (!WriteChecked) {
-        if (!AA::isPotentiallyReachable(A, *Acc.getRemoteInst(), I, QueryingAA,
-                                        &ExclusionSet, IsLiveInCalleeCB))
-          WriteChecked = true;
-      }
-
-      // If we still might be affected by the write of the access but there are
-      // dominating writes in the function of the instruction
-      // (HasBeenWrittenTo), we can try to reason that the access is overwritten
-      // by them. This would have happend above if they are all in the same
-      // function, so we only check the inter-procedural case. Effectively, we
-      // want to show that there is no call after the dominting write that might
-      // reach the access, and when it returns reach the instruction with the
-      // updated value. To this end, we iterate all call sites, check if they
-      // might reach the instruction without going through another access
-      // (ExclusionSet) and at the same time might reach the access. However,
-      // that is all part of AAInterFnReachability.
-      if (!WriteChecked && HasBeenWrittenTo &&
-          Acc.getRemoteInst()->getFunction() != &Scope) {
-
-        const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>(
-            QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
-
-        // Without going backwards in the call tree, can we reach the access
-        // from the least dominating write. Do not allow to pass the instruction
-        // itself either.
-        bool Inserted = ExclusionSet.insert(&I).second;
-
-        if (!FnReachabilityAA ||
-            !FnReachabilityAA->instructionCanReach(
-                A, *LeastDominatingWriteInst,
-                *Acc.getRemoteInst()->getFunction(), &ExclusionSet))
-          WriteChecked = true;
-
-        if (Inserted)
-          ExclusionSet.erase(&I);
-      }
-
-      if (ReadChecked && WriteChecked)
-        return true;
-
-      if (!DT || !UseDominanceReasoning)
-        return false;
-      if (!DominatingWrites.count(&Acc))
-        return false;
-      return LeastDominatingWriteInst != Acc.getRemoteInst();
-    };
-
-    // Run the user callback on all accesses we cannot skip and return if
-    // that succeeded for all or not.
-    for (auto &It : InterferingAccesses) {
-      if ((!AllInSameNoSyncFn && !IsThreadLocalObj && !ExecDomainAA) ||
-          !CanSkipAccess(*It.first, It.second)) {
-        if (!UserCB(*It.first, It.second))
-          return false;
-      }
-    }
-    return true;
-  }
-
-  ChangeStatus translateAndAddStateFromCallee(Attributor &A,
-                                              const AAPointerInfo &OtherAA,
-                                              CallBase &CB) {
-    using namespace AA::PointerInfo;
-    if (!OtherAA.getState().isValidState() || !isValidState())
-      return indicatePessimisticFixpoint();
-
-    const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
-    bool IsByval = OtherAAImpl.getAssociatedArgument()->hasByValAttr();
-
-    // Combine the accesses bin by bin.
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    const auto &State = OtherAAImpl.getState();
-    for (const auto &It : State) {
-      for (auto Index : It.getSecond()) {
-        const auto &RAcc = State.getAccess(Index);
-        if (IsByval && !RAcc.isRead())
-          continue;
-        bool UsedAssumedInformation = false;
-        AccessKind AK = RAcc.getKind();
-        auto Content = A.translateArgumentToCallSiteContent(
-            RAcc.getContent(), CB, *this, UsedAssumedInformation);
-        AK = AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW));
-        AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST));
-
-        Changed |= addAccess(A, RAcc.getRanges(), CB, Content, AK,
-                             RAcc.getType(), RAcc.getRemoteInst());
-      }
-    }
-    return Changed;
-  }
-
-  ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
-                                    const OffsetInfo &Offsets, CallBase &CB) {
-    using namespace AA::PointerInfo;
-    if (!OtherAA.getState().isValidState() || !isValidState())
-      return indicatePessimisticFixpoint();
-
-    const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
-
-    // Combine the accesses bin by bin.
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    const auto &State = OtherAAImpl.getState();
-    for (const auto &It : State) {
-      for (auto Index : It.getSecond()) {
-        const auto &RAcc = State.getAccess(Index);
-        for (auto Offset : Offsets) {
-          auto NewRanges = Offset == AA::RangeTy::Unknown
-                               ? AA::RangeTy::getUnknown()
-                               : RAcc.getRanges();
-          if (!NewRanges.isUnknown()) {
-            NewRanges.addToAllOffsets(Offset);
-          }
-          Changed |=
-              addAccess(A, NewRanges, CB, RAcc.getContent(), RAcc.getKind(),
-                        RAcc.getType(), RAcc.getRemoteInst());
-        }
-      }
-    }
-    return Changed;
-  }
-
-  /// Statistic tracking for all AAPointerInfo implementations.
-  /// See AbstractAttribute::trackStatistics().
-  void trackPointerInfoStatistics(const IRPosition &IRP) const {}
-
-  /// Dump the state into \p O.
-  virtual void dumpState(raw_ostream &O) const override {
-    for (auto &It : OffsetBins) {
-      O << "[" << It.first.Offset << "-" << It.first.Offset + It.first.Size
-        << "] : " << It.getSecond().size() << "\n";
-      for (auto AccIndex : It.getSecond()) {
-        auto &Acc = AccessList[AccIndex];
-        O << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
-        if (Acc.getLocalInst() != Acc.getRemoteInst())
-          O << "     -->                         " << *Acc.getRemoteInst()
-            << "\n";
-        if (!Acc.isWrittenValueYetUndetermined()) {
-          if (isa_and_nonnull<Function>(Acc.getWrittenValue()))
-            O << "       - c: func " << Acc.getWrittenValue()->getName()
-              << "\n";
-          else if (Acc.getWrittenValue())
-            O << "       - c: " << *Acc.getWrittenValue() << "\n";
-          else
-            O << "       - c: <unknown>\n";
-        }
-      }
-    }
-  }
-};
-
-struct AAPointerInfoFloating : public AAPointerInfoImpl {
-  using AccessKind = AAPointerInfo::AccessKind;
-  AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
-      : AAPointerInfoImpl(IRP, A) {}
-
-  /// Deal with an access and signal if it was handled successfully.
-  bool handleAccess(Attributor &A, Instruction &I,
-                    std::optional<Value *> Content, AccessKind Kind,
-                    SmallVectorImpl<int64_t> &Offsets, ChangeStatus &Changed,
-                    Type &Ty) {
-    using namespace AA::PointerInfo;
-    auto Size = AA::RangeTy::Unknown;
-    const DataLayout &DL = A.getDataLayout();
-    TypeSize AccessSize = DL.getTypeStoreSize(&Ty);
-    if (!AccessSize.isScalable())
-      Size = AccessSize.getFixedValue();
-
-    // Make a strictly ascending list of offsets as required by addAccess()
-    llvm::sort(Offsets);
-    auto *Last = std::unique(Offsets.begin(), Offsets.end());
-    Offsets.erase(Last, Offsets.end());
-
-    VectorType *VT = dyn_cast<VectorType>(&Ty);
-    if (!VT || VT->getElementCount().isScalable() ||
-        !Content.value_or(nullptr) || !isa<Constant>(*Content) ||
-        (*Content)->getType() != VT ||
-        DL.getTypeStoreSize(VT->getElementType()).isScalable()) {
-      Changed = Changed | addAccess(A, {Offsets, Size}, I, Content, Kind, &Ty);
-    } else {
-      // Handle vector stores with constant content element-wise.
-      // TODO: We could look for the elements or create instructions
-      //       representing them.
-      // TODO: We need to push the Content into the range abstraction
-      //       (AA::RangeTy) to allow different content values for different
-      //       ranges. ranges. Hence, support vectors storing different values.
-      Type *ElementType = VT->getElementType();
-      int64_t ElementSize = DL.getTypeStoreSize(ElementType).getFixedValue();
-      auto *ConstContent = cast<Constant>(*Content);
-      Type *Int32Ty = Type::getInt32Ty(ElementType->getContext());
-      SmallVector<int64_t> ElementOffsets(Offsets.begin(), Offsets.end());
-
-      for (int i = 0, e = VT->getElementCount().getFixedValue(); i != e; ++i) {
-        Value *ElementContent = ConstantExpr::getExtractElement(
-            ConstContent, ConstantInt::get(Int32Ty, i));
-
-        // Add the element access.
-        Changed = Changed | addAccess(A, {ElementOffsets, ElementSize}, I,
-                                      ElementContent, Kind, ElementType);
-
-        // Advance the offsets for the next element.
-        for (auto &ElementOffset : ElementOffsets)
-          ElementOffset += ElementSize;
-      }
-    }
-    return true;
-  };
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override;
-
-  /// If the indices to \p GEP can be traced to constants, incorporate all
-  /// of these into \p UsrOI.
-  ///
-  /// \return true iff \p UsrOI is updated.
-  bool collectConstantsForGEP(Attributor &A, const DataLayout &DL,
-                              OffsetInfo &UsrOI, const OffsetInfo &PtrOI,
-                              const GEPOperator *GEP);
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
-  }
-};
-
-bool AAPointerInfoFloating::collectConstantsForGEP(Attributor &A,
-                                                   const DataLayout &DL,
-                                                   OffsetInfo &UsrOI,
-                                                   const OffsetInfo &PtrOI,
-                                                   const GEPOperator *GEP) {
-  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
-  MapVector<Value *, APInt> VariableOffsets;
-  APInt ConstantOffset(BitWidth, 0);
-
-  assert(!UsrOI.isUnknown() && !PtrOI.isUnknown() &&
-         "Don't look for constant values if the offset has already been "
-         "determined to be unknown.");
-
-  if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
-    UsrOI.setUnknown();
-    return true;
-  }
-
-  LLVM_DEBUG(dbgs() << "[AAPointerInfo] GEP offset is "
-                    << (VariableOffsets.empty() ? "" : "not") << " constant "
-                    << *GEP << "\n");
-
-  auto Union = PtrOI;
-  Union.addToAll(ConstantOffset.getSExtValue());
-
-  // Each VI in VariableOffsets has a set of potential constant values. Every
-  // combination of elements, picked one each from these sets, is separately
-  // added to the original set of offsets, thus resulting in more offsets.
-  for (const auto &VI : VariableOffsets) {
-    auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
-        *this, IRPosition::value(*VI.first), DepClassTy::OPTIONAL);
-    if (!PotentialConstantsAA || !PotentialConstantsAA->isValidState()) {
-      UsrOI.setUnknown();
-      return true;
-    }
-
-    // UndefValue is treated as a zero, which leaves Union as is.
-    if (PotentialConstantsAA->undefIsContained())
-      continue;
-
-    // We need at least one constant in every set to compute an actual offset.
-    // Otherwise, we end up pessimizing AAPointerInfo by respecting offsets that
-    // don't actually exist. In other words, the absence of constant values
-    // implies that the operation can be assumed dead for now.
-    auto &AssumedSet = PotentialConstantsAA->getAssumedSet();
-    if (AssumedSet.empty())
-      return false;
-
-    OffsetInfo Product;
-    for (const auto &ConstOffset : AssumedSet) {
-      auto CopyPerOffset = Union;
-      CopyPerOffset.addToAll(ConstOffset.getSExtValue() *
-                             VI.second.getZExtValue());
-      Product.merge(CopyPerOffset);
-    }
-    Union = Product;
-  }
-
-  UsrOI = std::move(Union);
-  return true;
-}
-
-ChangeStatus AAPointerInfoFloating::updateImpl(Attributor &A) {
-  using namespace AA::PointerInfo;
-  ChangeStatus Changed = ChangeStatus::UNCHANGED;
-  const DataLayout &DL = A.getDataLayout();
-  Value &AssociatedValue = getAssociatedValue();
-
-  DenseMap<Value *, OffsetInfo> OffsetInfoMap;
-  OffsetInfoMap[&AssociatedValue].insert(0);
-
-  auto HandlePassthroughUser = [&](Value *Usr, Value *CurPtr, bool &Follow) {
-    // One does not simply walk into a map and assign a reference to a possibly
-    // new location. That can cause an invalidation before the assignment
-    // happens, like so:
-    //
-    //   OffsetInfoMap[Usr] = OffsetInfoMap[CurPtr]; /* bad idea! */
-    //
-    // The RHS is a reference that may be invalidated by an insertion caused by
-    // the LHS. So we ensure that the side-effect of the LHS happens first.
-    auto &UsrOI = OffsetInfoMap[Usr];
-    auto &PtrOI = OffsetInfoMap[CurPtr];
-    assert(!PtrOI.isUnassigned() &&
-           "Cannot pass through if the input Ptr was not visited!");
-    UsrOI = PtrOI;
-    Follow = true;
-    return true;
-  };
-
-  const auto *F = getAnchorScope();
-  const auto *CI =
-      F ? A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(*F)
-        : nullptr;
-  const auto *TLI =
-      F ? A.getInfoCache().getTargetLibraryInfoForFunction(*F) : nullptr;
-
-  auto UsePred = [&](const Use &U, bool &Follow) -> bool {
-    Value *CurPtr = U.get();
-    User *Usr = U.getUser();
-    LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in " << *Usr
-                      << "\n");
-    assert(OffsetInfoMap.count(CurPtr) &&
-           "The current pointer offset should have been seeded!");
-
-    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
-      if (CE->isCast())
-        return HandlePassthroughUser(Usr, CurPtr, Follow);
-      if (CE->isCompare())
-        return true;
-      if (!isa<GEPOperator>(CE)) {
-        LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
-                          << "\n");
-        return false;
-      }
-    }
-    if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
-      // Note the order here, the Usr access might change the map, CurPtr is
-      // already in it though.
-      auto &UsrOI = OffsetInfoMap[Usr];
-      auto &PtrOI = OffsetInfoMap[CurPtr];
-
-      if (UsrOI.isUnknown())
-        return true;
-
-      if (PtrOI.isUnknown()) {
-        Follow = true;
-        UsrOI.setUnknown();
-        return true;
-      }
-
-      Follow = collectConstantsForGEP(A, DL, UsrOI, PtrOI, GEP);
-      return true;
-    }
-    if (isa<PtrToIntInst>(Usr))
-      return false;
-    if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
-      return HandlePassthroughUser(Usr, CurPtr, Follow);
-
-    // For PHIs we need to take care of the recurrence explicitly as the value
-    // might change while we iterate through a loop. For now, we give up if
-    // the PHI is not invariant.
-    if (isa<PHINode>(Usr)) {
-      // Note the order here, the Usr access might change the map, CurPtr is
-      // already in it though.
-      bool IsFirstPHIUser = !OffsetInfoMap.count(Usr);
-      auto &UsrOI = OffsetInfoMap[Usr];
-      auto &PtrOI = OffsetInfoMap[CurPtr];
-
-      // Check if the PHI operand has already an unknown offset as we can't
-      // improve on that anymore.
-      if (PtrOI.isUnknown()) {
-        LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand offset unknown "
-                          << *CurPtr << " in " << *Usr << "\n");
-        Follow = !UsrOI.isUnknown();
-        UsrOI.setUnknown();
-        return true;
-      }
-
-      // Check if the PHI is invariant (so far).
-      if (UsrOI == PtrOI) {
-        assert(!PtrOI.isUnassigned() &&
-               "Cannot assign if the current Ptr was not visited!");
-        LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant (so far)");
-        return true;
-      }
-
-      // Check if the PHI operand can be traced back to AssociatedValue.
-      APInt Offset(
-          DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
-          0);
-      Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets(
-          DL, Offset, /* AllowNonInbounds */ true);
-      auto It = OffsetInfoMap.find(CurPtrBase);
-      if (It == OffsetInfoMap.end()) {
-        LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
-                          << *CurPtr << " in " << *Usr << "\n");
-        UsrOI.setUnknown();
-        Follow = true;
-        return true;
-      }
-
-      // Check if the PHI operand is not dependent on the PHI itself. Every
-      // recurrence is a cyclic net of PHIs in the data flow, and has an
-      // equivalent Cycle in the control flow. One of those PHIs must be in the
-      // header of that control flow Cycle. This is independent of the choice of
-      // Cycles reported by CycleInfo. It is sufficient to check the PHIs in
-      // every Cycle header; if such a node is marked unknown, this will
-      // eventually propagate through the whole net of PHIs in the recurrence.
-      if (mayBeInCycle(CI, cast<Instruction>(Usr), /* HeaderOnly */ true)) {
-        auto BaseOI = It->getSecond();
-        BaseOI.addToAll(Offset.getZExtValue());
-        if (IsFirstPHIUser || BaseOI == UsrOI) {
-          LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant " << *CurPtr
-                            << " in " << *Usr << "\n");
-          return HandlePassthroughUser(Usr, CurPtr, Follow);
-        }
-
-        LLVM_DEBUG(
-            dbgs() << "[AAPointerInfo] PHI operand pointer offset mismatch "
-                   << *CurPtr << " in " << *Usr << "\n");
-        UsrOI.setUnknown();
-        Follow = true;
-        return true;
-      }
-
-      UsrOI.merge(PtrOI);
-      Follow = true;
-      return true;
-    }
-
-    if (auto *LoadI = dyn_cast<LoadInst>(Usr)) {
-      // If the access is to a pointer that may or may not be the associated
-      // value, e.g. due to a PHI, we cannot assume it will be read.
-      AccessKind AK = AccessKind::AK_R;
-      if (getUnderlyingObject(CurPtr) == &AssociatedValue)
-        AK = AccessKind(AK | AccessKind::AK_MUST);
-      else
-        AK = AccessKind(AK | AccessKind::AK_MAY);
-      if (!handleAccess(A, *LoadI, /* Content */ nullptr, AK,
-                        OffsetInfoMap[CurPtr].Offsets, Changed,
-                        *LoadI->getType()))
-        return false;
-
-      auto IsAssumption = [](Instruction &I) {
-        if (auto *II = dyn_cast<IntrinsicInst>(&I))
-          return II->isAssumeLikeIntrinsic();
-        return false;
-      };
-
-      auto IsImpactedInRange = [&](Instruction *FromI, Instruction *ToI) {
-        // Check if the assumption and the load are executed together without
-        // memory modification.
-        do {
-          if (FromI->mayWriteToMemory() && !IsAssumption(*FromI))
-            return true;
-          FromI = FromI->getNextNonDebugInstruction();
-        } while (FromI && FromI != ToI);
-        return false;
-      };
-
-      BasicBlock *BB = LoadI->getParent();
-      auto IsValidAssume = [&](IntrinsicInst &IntrI) {
-        if (IntrI.getIntrinsicID() != Intrinsic::assume)
-          return false;
-        BasicBlock *IntrBB = IntrI.getParent();
-        if (IntrI.getParent() == BB) {
-          if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(), &IntrI))
-            return false;
-        } else {
-          auto PredIt = pred_begin(IntrBB);
-          if (PredIt == pred_end(IntrBB))
-            return false;
-          if ((*PredIt) != BB)
-            return false;
-          if (++PredIt != pred_end(IntrBB))
-            return false;
-          for (auto *SuccBB : successors(BB)) {
-            if (SuccBB == IntrBB)
-              continue;
-            if (isa<UnreachableInst>(SuccBB->getTerminator()))
-              continue;
-            return false;
-          }
-          if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(),
-                                BB->getTerminator()))
-            return false;
-          if (IsImpactedInRange(&IntrBB->front(), &IntrI))
-            return false;
-        }
-        return true;
-      };
-
-      std::pair<Value *, IntrinsicInst *> Assumption;
-      for (const Use &LoadU : LoadI->uses()) {
-        if (auto *CmpI = dyn_cast<CmpInst>(LoadU.getUser())) {
-          if (!CmpI->isEquality() || !CmpI->isTrueWhenEqual())
-            continue;
-          for (const Use &CmpU : CmpI->uses()) {
-            if (auto *IntrI = dyn_cast<IntrinsicInst>(CmpU.getUser())) {
-              if (!IsValidAssume(*IntrI))
-                continue;
-              int Idx = CmpI->getOperandUse(0) == LoadU;
-              Assumption = {CmpI->getOperand(Idx), IntrI};
-              break;
-            }
-          }
-        }
-        if (Assumption.first)
-          break;
-      }
-
-      // Check if we found an assumption associated with this load.
-      if (!Assumption.first || !Assumption.second)
-        return true;
-
-      LLVM_DEBUG(dbgs() << "[AAPointerInfo] Assumption found "
-                        << *Assumption.second << ": " << *LoadI
-                        << " == " << *Assumption.first << "\n");
-      bool UsedAssumedInformation = false;
-      std::optional<Value *> Content = nullptr;
-      if (Assumption.first)
-        Content =
-            A.getAssumedSimplified(*Assumption.first, *this,
-                                   UsedAssumedInformation, AA::Interprocedural);
-      return handleAccess(
-          A, *Assumption.second, Content, AccessKind::AK_ASSUMPTION,
-          OffsetInfoMap[CurPtr].Offsets, Changed, *LoadI->getType());
-    }
-
-    auto HandleStoreLike = [&](Instruction &I, Value *ValueOp, Type &ValueTy,
-                               ArrayRef<Value *> OtherOps, AccessKind AK) {
-      for (auto *OtherOp : OtherOps) {
-        if (OtherOp == CurPtr) {
-          LLVM_DEBUG(
-              dbgs()
-              << "[AAPointerInfo] Escaping use in store like instruction " << I
-              << "\n");
-          return false;
-        }
-      }
-
-      // If the access is to a pointer that may or may not be the associated
-      // value, e.g. due to a PHI, we cannot assume it will be written.
-      if (getUnderlyingObject(CurPtr) == &AssociatedValue)
-        AK = AccessKind(AK | AccessKind::AK_MUST);
-      else
-        AK = AccessKind(AK | AccessKind::AK_MAY);
-      bool UsedAssumedInformation = false;
-      std::optional<Value *> Content = nullptr;
-      if (ValueOp)
-        Content = A.getAssumedSimplified(
-            *ValueOp, *this, UsedAssumedInformation, AA::Interprocedural);
-      return handleAccess(A, I, Content, AK, OffsetInfoMap[CurPtr].Offsets,
-                          Changed, ValueTy);
-    };
-
-    if (auto *StoreI = dyn_cast<StoreInst>(Usr))
-      return HandleStoreLike(*StoreI, StoreI->getValueOperand(),
-                             *StoreI->getValueOperand()->getType(),
-                             {StoreI->getValueOperand()}, AccessKind::AK_W);
-    if (auto *RMWI = dyn_cast<AtomicRMWInst>(Usr))
-      return HandleStoreLike(*RMWI, nullptr, *RMWI->getValOperand()->getType(),
-                             {RMWI->getValOperand()}, AccessKind::AK_RW);
-    if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(Usr))
-      return HandleStoreLike(
-          *CXI, nullptr, *CXI->getNewValOperand()->getType(),
-          {CXI->getCompareOperand(), CXI->getNewValOperand()},
-          AccessKind::AK_RW);
-
-    if (auto *CB = dyn_cast<CallBase>(Usr)) {
-      if (CB->isLifetimeStartOrEnd())
-        return true;
-      if (getFreedOperand(CB, TLI) == U)
-        return true;
-      if (CB->isArgOperand(&U)) {
-        unsigned ArgNo = CB->getArgOperandNo(&U);
-        const auto *CSArgPI = A.getAAFor<AAPointerInfo>(
-            *this, IRPosition::callsite_argument(*CB, ArgNo),
-            DepClassTy::REQUIRED);
-        if (!CSArgPI)
-          return false;
-        Changed =
-            translateAndAddState(A, *CSArgPI, OffsetInfoMap[CurPtr], *CB) |
-            Changed;
-        return isValidState();
-      }
-      LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
-                        << "\n");
-      // TODO: Allow some call uses
-      return false;
-    }
-
-    LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
-    return false;
-  };
-  auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
-    assert(OffsetInfoMap.count(OldU) && "Old use should be known already!");
-    if (OffsetInfoMap.count(NewU)) {
-      LLVM_DEBUG({
-        if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
-          dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
-                 << OffsetInfoMap[NewU] << " vs " << OffsetInfoMap[OldU]
-                 << "\n";
-        }
-      });
-      return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
-    }
-    OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
-    return true;
-  };
-  if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
-                         /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
-                         /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
-    LLVM_DEBUG(dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
-    return indicatePessimisticFixpoint();
-  }
-
-  LLVM_DEBUG({
-    dbgs() << "Accesses by bin after update:\n";
-    dumpState(dbgs());
-  });
-
-  return Changed;
-}
-
-struct AAPointerInfoReturned final : AAPointerInfoImpl {
-  AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
-      : AAPointerInfoImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
-  }
-};
-
-struct AAPointerInfoArgument final : AAPointerInfoFloating {
-  AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
-      : AAPointerInfoFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
-  }
-};
-
-struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
-  AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAPointerInfoFloating(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    using namespace AA::PointerInfo;
-    // We handle memory intrinsics explicitly, at least the first (=
-    // destination) and second (=source) arguments as we know how they are
-    // accessed.
-    if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
-      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
-      int64_t LengthVal = AA::RangeTy::Unknown;
-      if (Length)
-        LengthVal = Length->getSExtValue();
-      unsigned ArgNo = getIRPosition().getCallSiteArgNo();
-      ChangeStatus Changed = ChangeStatus::UNCHANGED;
-      if (ArgNo > 1) {
-        LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
-                          << *MI << "\n");
-        return indicatePessimisticFixpoint();
-      } else {
-        auto Kind =
-            ArgNo == 0 ? AccessKind::AK_MUST_WRITE : AccessKind::AK_MUST_READ;
-        Changed =
-            Changed | addAccess(A, {0, LengthVal}, *MI, nullptr, Kind, nullptr);
-      }
-      LLVM_DEBUG({
-        dbgs() << "Accesses by bin after update:\n";
-        dumpState(dbgs());
-      });
-
-      return Changed;
-    }
-
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Argument *Arg = getAssociatedArgument();
-    if (Arg) {
-      const IRPosition &ArgPos = IRPosition::argument(*Arg);
-      auto *ArgAA =
-          A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
-      if (ArgAA && ArgAA->getState().isValidState())
-        return translateAndAddStateFromCallee(A, *ArgAA,
-                                              *cast<CallBase>(getCtxI()));
-      if (!Arg->getParent()->isDeclaration())
-        return indicatePessimisticFixpoint();
-    }
-
-    bool IsKnownNoCapture;
-    if (!AA::hasAssumedIRAttr<Attribute::NoCapture>(
-            A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNoCapture))
-      return indicatePessimisticFixpoint();
-
-    bool IsKnown = false;
-    if (AA::isAssumedReadNone(A, getIRPosition(), *this, IsKnown))
-      return ChangeStatus::UNCHANGED;
-    bool ReadOnly = AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown);
-    auto Kind =
-        ReadOnly ? AccessKind::AK_MAY_READ : AccessKind::AK_MAY_READ_WRITE;
-    return addAccess(A, AA::RangeTy::getUnknown(), *getCtxI(), nullptr, Kind,
-                     nullptr);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
-  }
-};
-
-struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
-  AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAPointerInfoFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
-  }
-};
-} // namespace
-
-/// -----------------------NoUnwind Function Attribute--------------------------
-
-namespace {
-struct AANoUnwindImpl : AANoUnwind {
-  AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::NoUnwind>(
-        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "nounwind" : "may-unwind";
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto Opcodes = {
-        (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
-        (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
-        (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
-
-    auto CheckForNoUnwind = [&](Instruction &I) {
-      if (!I.mayThrow(/* IncludePhaseOneUnwind */ true))
-        return true;
-
-      if (const auto *CB = dyn_cast<CallBase>(&I)) {
-        bool IsKnownNoUnwind;
-        return AA::hasAssumedIRAttr<Attribute::NoUnwind>(
-            A, this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED,
-            IsKnownNoUnwind);
-      }
-      return false;
-    };
-
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
-                                   UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-};
-
-struct AANoUnwindFunction final : public AANoUnwindImpl {
-  AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
-      : AANoUnwindImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
-};
-
-/// NoUnwind attribute deduction for a call sites.
-struct AANoUnwindCallSite final
-    : AACalleeToCallSite<AANoUnwind, AANoUnwindImpl> {
-  AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoUnwind, AANoUnwindImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
-};
-} // namespace
-
-/// ------------------------ NoSync Function Attribute -------------------------
-
-bool AANoSync::isAlignedBarrier(const CallBase &CB, bool ExecutedAligned) {
-  switch (CB.getIntrinsicID()) {
-  case Intrinsic::nvvm_barrier0:
-  case Intrinsic::nvvm_barrier0_and:
-  case Intrinsic::nvvm_barrier0_or:
-  case Intrinsic::nvvm_barrier0_popc:
-    return true;
-  case Intrinsic::amdgcn_s_barrier:
-    if (ExecutedAligned)
-      return true;
-    break;
-  default:
-    break;
-  }
-  return hasAssumption(CB, KnownAssumptionString("ompx_aligned_barrier"));
-}
-
-bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
-  if (!I->isAtomic())
-    return false;
-
-  if (auto *FI = dyn_cast<FenceInst>(I))
-    // All legal orderings for fence are stronger than monotonic.
-    return FI->getSyncScopeID() != SyncScope::SingleThread;
-  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
-    // Unordered is not a legal ordering for cmpxchg.
-    return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
-            AI->getFailureOrdering() != AtomicOrdering::Monotonic);
-  }
-
-  AtomicOrdering Ordering;
-  switch (I->getOpcode()) {
-  case Instruction::AtomicRMW:
-    Ordering = cast<AtomicRMWInst>(I)->getOrdering();
-    break;
-  case Instruction::Store:
-    Ordering = cast<StoreInst>(I)->getOrdering();
-    break;
-  case Instruction::Load:
-    Ordering = cast<LoadInst>(I)->getOrdering();
-    break;
-  default:
-    llvm_unreachable(
-        "New atomic operations need to be known in the attributor.");
-  }
-
-  return (Ordering != AtomicOrdering::Unordered &&
-          Ordering != AtomicOrdering::Monotonic);
-}
-
-/// Return true if this intrinsic is nosync.  This is only used for intrinsics
-/// which would be nosync except that they have a volatile flag.  All other
-/// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
-bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
-  if (auto *MI = dyn_cast<MemIntrinsic>(I))
-    return !MI->isVolatile();
-  return false;
-}
-
-namespace {
-struct AANoSyncImpl : AANoSync {
-  AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::NoSync>(A, nullptr, getIRPosition(),
-                                                    DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "nosync" : "may-sync";
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override;
-};
-
-ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
-
-  auto CheckRWInstForNoSync = [&](Instruction &I) {
-    return AA::isNoSyncInst(A, I, *this);
-  };
-
-  auto CheckForNoSync = [&](Instruction &I) {
-    // At this point we handled all read/write effects and they are all
-    // nosync, so they can be skipped.
-    if (I.mayReadOrWriteMemory())
-      return true;
-
-    bool IsKnown;
-    CallBase &CB = cast<CallBase>(I);
-    if (AA::hasAssumedIRAttr<Attribute::NoSync>(
-            A, this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL,
-            IsKnown))
-      return true;
-
-    // non-convergent and readnone imply nosync.
-    return !CB.isConvergent();
-  };
-
-  bool UsedAssumedInformation = false;
-  if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
-                                          UsedAssumedInformation) ||
-      !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
-                                         UsedAssumedInformation))
-    return indicatePessimisticFixpoint();
-
-  return ChangeStatus::UNCHANGED;
-}
-
-struct AANoSyncFunction final : public AANoSyncImpl {
-  AANoSyncFunction(const IRPosition &IRP, Attributor &A)
-      : AANoSyncImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
-};
-
-/// NoSync attribute deduction for a call sites.
-struct AANoSyncCallSite final : AACalleeToCallSite<AANoSync, AANoSyncImpl> {
-  AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoSync, AANoSyncImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
-};
-} // namespace
-
-/// ------------------------ No-Free Attributes ----------------------------
-
-namespace {
-struct AANoFreeImpl : public AANoFree {
-  AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::NoFree>(A, nullptr, getIRPosition(),
-                                                    DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto CheckForNoFree = [&](Instruction &I) {
-      bool IsKnown;
-      return AA::hasAssumedIRAttr<Attribute::NoFree>(
-          A, this, IRPosition::callsite_function(cast<CallBase>(I)),
-          DepClassTy::REQUIRED, IsKnown);
-    };
-
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
-                                           UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "nofree" : "may-free";
-  }
-};
-
-struct AANoFreeFunction final : public AANoFreeImpl {
-  AANoFreeFunction(const IRPosition &IRP, Attributor &A)
-      : AANoFreeImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
-};
-
-/// NoFree attribute deduction for a call sites.
-struct AANoFreeCallSite final : AACalleeToCallSite<AANoFree, AANoFreeImpl> {
-  AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoFree, AANoFreeImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
-};
-
-/// NoFree attribute for floating values.
-struct AANoFreeFloating : AANoFreeImpl {
-  AANoFreeFloating(const IRPosition &IRP, Attributor &A)
-      : AANoFreeImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
-
-  /// See Abstract Attribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    const IRPosition &IRP = getIRPosition();
-
-    bool IsKnown;
-    if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this,
-                                                IRPosition::function_scope(IRP),
-                                                DepClassTy::OPTIONAL, IsKnown))
-      return ChangeStatus::UNCHANGED;
-
-    Value &AssociatedValue = getIRPosition().getAssociatedValue();
-    auto Pred = [&](const Use &U, bool &Follow) -> bool {
-      Instruction *UserI = cast<Instruction>(U.getUser());
-      if (auto *CB = dyn_cast<CallBase>(UserI)) {
-        if (CB->isBundleOperand(&U))
-          return false;
-        if (!CB->isArgOperand(&U))
-          return true;
-        unsigned ArgNo = CB->getArgOperandNo(&U);
-
-        bool IsKnown;
-        return AA::hasAssumedIRAttr<Attribute::NoFree>(
-            A, this, IRPosition::callsite_argument(*CB, ArgNo),
-            DepClassTy::REQUIRED, IsKnown);
-      }
-
-      if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
-          isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
-        Follow = true;
-        return true;
-      }
-      if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
-          isa<ReturnInst>(UserI))
-        return true;
-
-      // Unknown user.
-      return false;
-    };
-    if (!A.checkForAllUses(Pred, *this, AssociatedValue))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-};
-
-/// NoFree attribute for a call site argument.
-struct AANoFreeArgument final : AANoFreeFloating {
-  AANoFreeArgument(const IRPosition &IRP, Attributor &A)
-      : AANoFreeFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
-};
-
-/// NoFree attribute for call site arguments.
-struct AANoFreeCallSiteArgument final : AANoFreeFloating {
-  AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AANoFreeFloating(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Argument *Arg = getAssociatedArgument();
-    if (!Arg)
-      return indicatePessimisticFixpoint();
-    const IRPosition &ArgPos = IRPosition::argument(*Arg);
-    bool IsKnown;
-    if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this, ArgPos,
-                                                DepClassTy::REQUIRED, IsKnown))
-      return ChangeStatus::UNCHANGED;
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
-};
-
-/// NoFree attribute for function return value.
-struct AANoFreeReturned final : AANoFreeFloating {
-  AANoFreeReturned(const IRPosition &IRP, Attributor &A)
-      : AANoFreeFloating(IRP, A) {
-    llvm_unreachable("NoFree is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    llvm_unreachable("NoFree is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable("NoFree is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-};
-
-/// NoFree attribute deduction for a call site return value.
-struct AANoFreeCallSiteReturned final : AANoFreeFloating {
-  AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AANoFreeFloating(IRP, A) {}
-
-  ChangeStatus manifest(Attributor &A) override {
-    return ChangeStatus::UNCHANGED;
-  }
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
-};
-} // namespace
-
-/// ------------------------ NonNull Argument Attribute ------------------------
-
-bool AANonNull::isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                              Attribute::AttrKind ImpliedAttributeKind,
-                              bool IgnoreSubsumingPositions) {
-  SmallVector<Attribute::AttrKind, 2> AttrKinds;
-  AttrKinds.push_back(Attribute::NonNull);
-  if (!NullPointerIsDefined(IRP.getAnchorScope(),
-                            IRP.getAssociatedType()->getPointerAddressSpace()))
-    AttrKinds.push_back(Attribute::Dereferenceable);
-  if (A.hasAttr(IRP, AttrKinds, IgnoreSubsumingPositions, Attribute::NonNull))
-    return true;
-
-  DominatorTree *DT = nullptr;
-  AssumptionCache *AC = nullptr;
-  InformationCache &InfoCache = A.getInfoCache();
-  if (const Function *Fn = IRP.getAnchorScope()) {
-    if (!Fn->isDeclaration()) {
-      DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
-      AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
-    }
-  }
-
-  SmallVector<AA::ValueAndContext> Worklist;
-  if (IRP.getPositionKind() != IRP_RETURNED) {
-    Worklist.push_back({IRP.getAssociatedValue(), IRP.getCtxI()});
-  } else {
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllInstructions(
-            [&](Instruction &I) {
-              Worklist.push_back({*cast<ReturnInst>(I).getReturnValue(), &I});
-              return true;
-            },
-            IRP.getAssociatedFunction(), nullptr, {Instruction::Ret},
-            UsedAssumedInformation))
-      return false;
-  }
-
-  if (llvm::any_of(Worklist, [&](AA::ValueAndContext VAC) {
-        return !isKnownNonZero(
-            VAC.getValue(),
-            SimplifyQuery(A.getDataLayout(), DT, AC, VAC.getCtxI()));
-      }))
-    return false;
-
-  A.manifestAttrs(IRP, {Attribute::get(IRP.getAnchorValue().getContext(),
-                                       Attribute::NonNull)});
-  return true;
-}
-
-namespace {
-static int64_t getKnownNonNullAndDerefBytesForUse(
-    Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
-    const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
-  TrackUse = false;
-
-  const Value *UseV = U->get();
-  if (!UseV->getType()->isPointerTy())
-    return 0;
-
-  // We need to follow common pointer manipulation uses to the accesses they
-  // feed into. We can try to be smart to avoid looking through things we do not
-  // like for now, e.g., non-inbounds GEPs.
-  if (isa<CastInst>(I)) {
-    TrackUse = true;
-    return 0;
-  }
-
-  if (isa<GetElementPtrInst>(I)) {
-    TrackUse = true;
-    return 0;
-  }
-
-  Type *PtrTy = UseV->getType();
-  const Function *F = I->getFunction();
-  bool NullPointerIsDefined =
-      F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
-  const DataLayout &DL = A.getInfoCache().getDL();
-  if (const auto *CB = dyn_cast<CallBase>(I)) {
-    if (CB->isBundleOperand(U)) {
-      if (RetainedKnowledge RK = getKnowledgeFromUse(
-              U, {Attribute::NonNull, Attribute::Dereferenceable})) {
-        IsNonNull |=
-            (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
-        return RK.ArgValue;
-      }
-      return 0;
-    }
-
-    if (CB->isCallee(U)) {
-      IsNonNull |= !NullPointerIsDefined;
-      return 0;
-    }
-
-    unsigned ArgNo = CB->getArgOperandNo(U);
-    IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
-    // As long as we only use known information there is no need to track
-    // dependences here.
-    bool IsKnownNonNull;
-    AA::hasAssumedIRAttr<Attribute::NonNull>(A, &QueryingAA, IRP,
-                                             DepClassTy::NONE, IsKnownNonNull);
-    IsNonNull |= IsKnownNonNull;
-    auto *DerefAA =
-        A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
-    return DerefAA ? DerefAA->getKnownDereferenceableBytes() : 0;
-  }
-
-  std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
-  if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() ||
-      Loc->Size.isScalable() || I->isVolatile())
-    return 0;
-
-  int64_t Offset;
-  const Value *Base =
-      getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
-  if (Base && Base == &AssociatedValue) {
-    int64_t DerefBytes = Loc->Size.getValue() + Offset;
-    IsNonNull |= !NullPointerIsDefined;
-    return std::max(int64_t(0), DerefBytes);
-  }
-
-  /// Corner case when an offset is 0.
-  Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
-                                          /*AllowNonInbounds*/ true);
-  if (Base && Base == &AssociatedValue && Offset == 0) {
-    int64_t DerefBytes = Loc->Size.getValue();
-    IsNonNull |= !NullPointerIsDefined;
-    return std::max(int64_t(0), DerefBytes);
-  }
-
-  return 0;
-}
-
-struct AANonNullImpl : AANonNull {
-  AANonNullImpl(const IRPosition &IRP, Attributor &A) : AANonNull(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    Value &V = *getAssociatedValue().stripPointerCasts();
-    if (isa<ConstantPointerNull>(V)) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-
-    if (Instruction *CtxI = getCtxI())
-      followUsesInMBEC(*this, A, getState(), *CtxI);
-  }
-
-  /// See followUsesInMBEC
-  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
-                       AANonNull::StateType &State) {
-    bool IsNonNull = false;
-    bool TrackUse = false;
-    getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
-                                       IsNonNull, TrackUse);
-    State.setKnown(IsNonNull);
-    return TrackUse;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "nonnull" : "may-null";
-  }
-};
-
-/// NonNull attribute for a floating value.
-struct AANonNullFloating : public AANonNullImpl {
-  AANonNullFloating(const IRPosition &IRP, Attributor &A)
-      : AANonNullImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto CheckIRP = [&](const IRPosition &IRP) {
-      bool IsKnownNonNull;
-      return AA::hasAssumedIRAttr<Attribute::NonNull>(
-          A, *this, IRP, DepClassTy::OPTIONAL, IsKnownNonNull);
-    };
-
-    bool Stripped;
-    bool UsedAssumedInformation = false;
-    Value *AssociatedValue = &getAssociatedValue();
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
-                                      AA::AnyScope, UsedAssumedInformation))
-      Stripped = false;
-    else
-      Stripped =
-          Values.size() != 1 || Values.front().getValue() != AssociatedValue;
-
-    if (!Stripped) {
-      bool IsKnown;
-      if (auto *PHI = dyn_cast<PHINode>(AssociatedValue))
-        if (llvm::all_of(PHI->incoming_values(), [&](Value *Op) {
-              return AA::hasAssumedIRAttr<Attribute::NonNull>(
-                  A, this, IRPosition::value(*Op), DepClassTy::OPTIONAL,
-                  IsKnown);
-            }))
-          return ChangeStatus::UNCHANGED;
-      if (auto *Select = dyn_cast<SelectInst>(AssociatedValue))
-        if (AA::hasAssumedIRAttr<Attribute::NonNull>(
-                A, this, IRPosition::value(*Select->getFalseValue()),
-                DepClassTy::OPTIONAL, IsKnown) &&
-            AA::hasAssumedIRAttr<Attribute::NonNull>(
-                A, this, IRPosition::value(*Select->getTrueValue()),
-                DepClassTy::OPTIONAL, IsKnown))
-          return ChangeStatus::UNCHANGED;
-
-      // If we haven't stripped anything we might still be able to use a
-      // different AA, but only if the IRP changes. Effectively when we
-      // interpret this not as a call site value but as a floating/argument
-      // value.
-      const IRPosition AVIRP = IRPosition::value(*AssociatedValue);
-      if (AVIRP == getIRPosition() || !CheckIRP(AVIRP))
-        return indicatePessimisticFixpoint();
-      return ChangeStatus::UNCHANGED;
-    }
-
-    for (const auto &VAC : Values)
-      if (!CheckIRP(IRPosition::value(*VAC.getValue())))
-        return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
-};
-
-/// NonNull attribute for function return value.
-struct AANonNullReturned final
-    : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType,
-                                   false, AANonNull::IRAttributeKind, false> {
-  AANonNullReturned(const IRPosition &IRP, Attributor &A)
-      : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType,
-                                     false, Attribute::NonNull, false>(IRP, A) {
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "nonnull" : "may-null";
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
-};
-
-/// NonNull attribute for function argument.
-struct AANonNullArgument final
-    : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
-  AANonNullArgument(const IRPosition &IRP, Attributor &A)
-      : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
-};
-
-struct AANonNullCallSiteArgument final : AANonNullFloating {
-  AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AANonNullFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
-};
-
-/// NonNull attribute for a call site return position.
-struct AANonNullCallSiteReturned final
-    : AACalleeToCallSite<AANonNull, AANonNullImpl> {
-  AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANonNull, AANonNullImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
-};
-} // namespace
-
-/// ------------------------ Must-Progress Attributes --------------------------
-namespace {
-struct AAMustProgressImpl : public AAMustProgress {
-  AAMustProgressImpl(const IRPosition &IRP, Attributor &A)
-      : AAMustProgress(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::MustProgress>(
-        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  /// See AbstractAttribute::getAsStr()
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "mustprogress" : "may-not-progress";
-  }
-};
-
-struct AAMustProgressFunction final : AAMustProgressImpl {
-  AAMustProgressFunction(const IRPosition &IRP, Attributor &A)
-      : AAMustProgressImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    bool IsKnown;
-    if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
-            A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnown)) {
-      if (IsKnown)
-        return indicateOptimisticFixpoint();
-      return ChangeStatus::UNCHANGED;
-    }
-
-    auto CheckForMustProgress = [&](AbstractCallSite ACS) {
-      IRPosition IPos = IRPosition::callsite_function(*ACS.getInstruction());
-      bool IsKnownMustProgress;
-      return AA::hasAssumedIRAttr<Attribute::MustProgress>(
-          A, this, IPos, DepClassTy::REQUIRED, IsKnownMustProgress,
-          /* IgnoreSubsumingPositions */ true);
-    };
-
-    bool AllCallSitesKnown = true;
-    if (!A.checkForAllCallSites(CheckForMustProgress, *this,
-                                /* RequireAllCallSites */ true,
-                                AllCallSitesKnown))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FN_ATTR(mustprogress)
-  }
-};
-
-/// MustProgress attribute deduction for a call sites.
-struct AAMustProgressCallSite final : AAMustProgressImpl {
-  AAMustProgressCallSite(const IRPosition &IRP, Attributor &A)
-      : AAMustProgressImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
-    bool IsKnownMustProgress;
-    if (!AA::hasAssumedIRAttr<Attribute::MustProgress>(
-            A, this, FnPos, DepClassTy::REQUIRED, IsKnownMustProgress))
-      return indicatePessimisticFixpoint();
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CS_ATTR(mustprogress);
-  }
-};
-} // namespace
-
-/// ------------------------ No-Recurse Attributes ----------------------------
-
-namespace {
-struct AANoRecurseImpl : public AANoRecurse {
-  AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
-        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  /// See AbstractAttribute::getAsStr()
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "norecurse" : "may-recurse";
-  }
-};
-
-struct AANoRecurseFunction final : AANoRecurseImpl {
-  AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
-      : AANoRecurseImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-
-    // If all live call sites are known to be no-recurse, we are as well.
-    auto CallSitePred = [&](AbstractCallSite ACS) {
-      bool IsKnownNoRecurse;
-      if (!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
-              A, this,
-              IRPosition::function(*ACS.getInstruction()->getFunction()),
-              DepClassTy::NONE, IsKnownNoRecurse))
-        return false;
-      return IsKnownNoRecurse;
-    };
-    bool UsedAssumedInformation = false;
-    if (A.checkForAllCallSites(CallSitePred, *this, true,
-                               UsedAssumedInformation)) {
-      // If we know all call sites and all are known no-recurse, we are done.
-      // If all known call sites, which might not be all that exist, are known
-      // to be no-recurse, we are not done but we can continue to assume
-      // no-recurse. If one of the call sites we have not visited will become
-      // live, another update is triggered.
-      if (!UsedAssumedInformation)
-        indicateOptimisticFixpoint();
-      return ChangeStatus::UNCHANGED;
-    }
-
-    const AAInterFnReachability *EdgeReachability =
-        A.getAAFor<AAInterFnReachability>(*this, getIRPosition(),
-                                          DepClassTy::REQUIRED);
-    if (EdgeReachability && EdgeReachability->canReach(A, *getAnchorScope()))
-      return indicatePessimisticFixpoint();
-    return ChangeStatus::UNCHANGED;
-  }
-
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
-};
-
-/// NoRecurse attribute deduction for a call sites.
-struct AANoRecurseCallSite final
-    : AACalleeToCallSite<AANoRecurse, AANoRecurseImpl> {
-  AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoRecurse, AANoRecurseImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
-};
-} // namespace
-
-/// ------------------------ No-Convergent Attribute --------------------------
-
-namespace {
-struct AANonConvergentImpl : public AANonConvergent {
-  AANonConvergentImpl(const IRPosition &IRP, Attributor &A)
-      : AANonConvergent(IRP, A) {}
-
-  /// See AbstractAttribute::getAsStr()
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "non-convergent" : "may-be-convergent";
-  }
-};
-
-struct AANonConvergentFunction final : AANonConvergentImpl {
-  AANonConvergentFunction(const IRPosition &IRP, Attributor &A)
-      : AANonConvergentImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // If all function calls are known to not be convergent, we are not
-    // convergent.
-    auto CalleeIsNotConvergent = [&](Instruction &Inst) {
-      CallBase &CB = cast<CallBase>(Inst);
-      auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
-      if (!Callee || Callee->isIntrinsic()) {
-        return false;
-      }
-      if (Callee->isDeclaration()) {
-        return !Callee->hasFnAttribute(Attribute::Convergent);
-      }
-      const auto *ConvergentAA = A.getAAFor<AANonConvergent>(
-          *this, IRPosition::function(*Callee), DepClassTy::REQUIRED);
-      return ConvergentAA && ConvergentAA->isAssumedNotConvergent();
-    };
-
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllCallLikeInstructions(CalleeIsNotConvergent, *this,
-                                           UsedAssumedInformation)) {
-      return indicatePessimisticFixpoint();
-    }
-    return ChangeStatus::UNCHANGED;
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    if (isKnownNotConvergent() &&
-        A.hasAttr(getIRPosition(), Attribute::Convergent)) {
-      A.removeAttrs(getIRPosition(), {Attribute::Convergent});
-      return ChangeStatus::CHANGED;
-    }
-    return ChangeStatus::UNCHANGED;
-  }
-
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(convergent) }
-};
-} // namespace
-
-/// -------------------- Undefined-Behavior Attributes ------------------------
-
-namespace {
-struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
-  AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
-      : AAUndefinedBehavior(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  // through a pointer (i.e. also branches etc.)
-  ChangeStatus updateImpl(Attributor &A) override {
-    const size_t UBPrevSize = KnownUBInsts.size();
-    const size_t NoUBPrevSize = AssumedNoUBInsts.size();
-
-    auto InspectMemAccessInstForUB = [&](Instruction &I) {
-      // Lang ref now states volatile store is not UB, let's skip them.
-      if (I.isVolatile() && I.mayWriteToMemory())
-        return true;
-
-      // Skip instructions that are already saved.
-      if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
-        return true;
-
-      // If we reach here, we know we have an instruction
-      // that accesses memory through a pointer operand,
-      // for which getPointerOperand() should give it to us.
-      Value *PtrOp =
-          const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
-      assert(PtrOp &&
-             "Expected pointer operand of memory accessing instruction");
-
-      // Either we stopped and the appropriate action was taken,
-      // or we got back a simplified value to continue.
-      std::optional<Value *> SimplifiedPtrOp =
-          stopOnUndefOrAssumed(A, PtrOp, &I);
-      if (!SimplifiedPtrOp || !*SimplifiedPtrOp)
-        return true;
-      const Value *PtrOpVal = *SimplifiedPtrOp;
-
-      // A memory access through a pointer is considered UB
-      // only if the pointer has constant null value.
-      // TODO: Expand it to not only check constant values.
-      if (!isa<ConstantPointerNull>(PtrOpVal)) {
-        AssumedNoUBInsts.insert(&I);
-        return true;
-      }
-      const Type *PtrTy = PtrOpVal->getType();
-
-      // Because we only consider instructions inside functions,
-      // assume that a parent function exists.
-      const Function *F = I.getFunction();
-
-      // A memory access using constant null pointer is only considered UB
-      // if null pointer is _not_ defined for the target platform.
-      if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
-        AssumedNoUBInsts.insert(&I);
-      else
-        KnownUBInsts.insert(&I);
-      return true;
-    };
-
-    auto InspectBrInstForUB = [&](Instruction &I) {
-      // A conditional branch instruction is considered UB if it has `undef`
-      // condition.
-
-      // Skip instructions that are already saved.
-      if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
-        return true;
-
-      // We know we have a branch instruction.
-      auto *BrInst = cast<BranchInst>(&I);
-
-      // Unconditional branches are never considered UB.
-      if (BrInst->isUnconditional())
-        return true;
-
-      // Either we stopped and the appropriate action was taken,
-      // or we got back a simplified value to continue.
-      std::optional<Value *> SimplifiedCond =
-          stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
-      if (!SimplifiedCond || !*SimplifiedCond)
-        return true;
-      AssumedNoUBInsts.insert(&I);
-      return true;
-    };
-
-    auto InspectCallSiteForUB = [&](Instruction &I) {
-      // Check whether a callsite always cause UB or not
-
-      // Skip instructions that are already saved.
-      if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
-        return true;
-
-      // Check nonnull and noundef argument attribute violation for each
-      // callsite.
-      CallBase &CB = cast<CallBase>(I);
-      auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
-      if (!Callee)
-        return true;
-      for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
-        // If current argument is known to be simplified to null pointer and the
-        // corresponding argument position is known to have nonnull attribute,
-        // the argument is poison. Furthermore, if the argument is poison and
-        // the position is known to have noundef attriubte, this callsite is
-        // considered UB.
-        if (idx >= Callee->arg_size())
-          break;
-        Value *ArgVal = CB.getArgOperand(idx);
-        if (!ArgVal)
-          continue;
-        // Here, we handle three cases.
-        //   (1) Not having a value means it is dead. (we can replace the value
-        //       with undef)
-        //   (2) Simplified to undef. The argument violate noundef attriubte.
-        //   (3) Simplified to null pointer where known to be nonnull.
-        //       The argument is a poison value and violate noundef attribute.
-        IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
-        bool IsKnownNoUndef;
-        AA::hasAssumedIRAttr<Attribute::NoUndef>(
-            A, this, CalleeArgumentIRP, DepClassTy::NONE, IsKnownNoUndef);
-        if (!IsKnownNoUndef)
-          continue;
-        bool UsedAssumedInformation = false;
-        std::optional<Value *> SimplifiedVal =
-            A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
-                                   UsedAssumedInformation, AA::Interprocedural);
-        if (UsedAssumedInformation)
-          continue;
-        if (SimplifiedVal && !*SimplifiedVal)
-          return true;
-        if (!SimplifiedVal || isa<UndefValue>(**SimplifiedVal)) {
-          KnownUBInsts.insert(&I);
-          continue;
-        }
-        if (!ArgVal->getType()->isPointerTy() ||
-            !isa<ConstantPointerNull>(**SimplifiedVal))
-          continue;
-        bool IsKnownNonNull;
-        AA::hasAssumedIRAttr<Attribute::NonNull>(
-            A, this, CalleeArgumentIRP, DepClassTy::NONE, IsKnownNonNull);
-        if (IsKnownNonNull)
-          KnownUBInsts.insert(&I);
-      }
-      return true;
-    };
-
-    auto InspectReturnInstForUB = [&](Instruction &I) {
-      auto &RI = cast<ReturnInst>(I);
-      // Either we stopped and the appropriate action was taken,
-      // or we got back a simplified return value to continue.
-      std::optional<Value *> SimplifiedRetValue =
-          stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
-      if (!SimplifiedRetValue || !*SimplifiedRetValue)
-        return true;
-
-      // Check if a return instruction always cause UB or not
-      // Note: It is guaranteed that the returned position of the anchor
-      //       scope has noundef attribute when this is called.
-      //       We also ensure the return position is not "assumed dead"
-      //       because the returned value was then potentially simplified to
-      //       `undef` in AAReturnedValues without removing the `noundef`
-      //       attribute yet.
-
-      // When the returned position has noundef attriubte, UB occurs in the
-      // following cases.
-      //   (1) Returned value is known to be undef.
-      //   (2) The value is known to be a null pointer and the returned
-      //       position has nonnull attribute (because the returned value is
-      //       poison).
-      if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
-        bool IsKnownNonNull;
-        AA::hasAssumedIRAttr<Attribute::NonNull>(
-            A, this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE,
-            IsKnownNonNull);
-        if (IsKnownNonNull)
-          KnownUBInsts.insert(&I);
-      }
-
-      return true;
-    };
-
-    bool UsedAssumedInformation = false;
-    A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
-                              {Instruction::Load, Instruction::Store,
-                               Instruction::AtomicCmpXchg,
-                               Instruction::AtomicRMW},
-                              UsedAssumedInformation,
-                              /* CheckBBLivenessOnly */ true);
-    A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
-                              UsedAssumedInformation,
-                              /* CheckBBLivenessOnly */ true);
-    A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
-                                      UsedAssumedInformation);
-
-    // If the returned position of the anchor scope has noundef attriubte, check
-    // all returned instructions.
-    if (!getAnchorScope()->getReturnType()->isVoidTy()) {
-      const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
-      if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
-        bool IsKnownNoUndef;
-        AA::hasAssumedIRAttr<Attribute::NoUndef>(
-            A, this, ReturnIRP, DepClassTy::NONE, IsKnownNoUndef);
-        if (IsKnownNoUndef)
-          A.checkForAllInstructions(InspectReturnInstForUB, *this,
-                                    {Instruction::Ret}, UsedAssumedInformation,
-                                    /* CheckBBLivenessOnly */ true);
-      }
-    }
-
-    if (NoUBPrevSize != AssumedNoUBInsts.size() ||
-        UBPrevSize != KnownUBInsts.size())
-      return ChangeStatus::CHANGED;
-    return ChangeStatus::UNCHANGED;
-  }
-
-  bool isKnownToCauseUB(Instruction *I) const override {
-    return KnownUBInsts.count(I);
-  }
-
-  bool isAssumedToCauseUB(Instruction *I) const override {
-    // In simple words, if an instruction is not in the assumed to _not_
-    // cause UB, then it is assumed UB (that includes those
-    // in the KnownUBInsts set). The rest is boilerplate
-    // is to ensure that it is one of the instructions we test
-    // for UB.
-
-    switch (I->getOpcode()) {
-    case Instruction::Load:
-    case Instruction::Store:
-    case Instruction::AtomicCmpXchg:
-    case Instruction::AtomicRMW:
-      return !AssumedNoUBInsts.count(I);
-    case Instruction::Br: {
-      auto *BrInst = cast<BranchInst>(I);
-      if (BrInst->isUnconditional())
-        return false;
-      return !AssumedNoUBInsts.count(I);
-    } break;
-    default:
-      return false;
-    }
-    return false;
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    if (KnownUBInsts.empty())
-      return ChangeStatus::UNCHANGED;
-    for (Instruction *I : KnownUBInsts)
-      A.changeToUnreachableAfterManifest(I);
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::getAsStr()
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "undefined-behavior" : "no-ub";
-  }
-
-  /// Note: The correctness of this analysis depends on the fact that the
-  /// following 2 sets will stop changing after some point.
-  /// "Change" here means that their size changes.
-  /// The size of each set is monotonically increasing
-  /// (we only add items to them) and it is upper bounded by the number of
-  /// instructions in the processed function (we can never save more
-  /// elements in either set than this number). Hence, at some point,
-  /// they will stop increasing.
-  /// Consequently, at some point, both sets will have stopped
-  /// changing, effectively making the analysis reach a fixpoint.
-
-  /// Note: These 2 sets are disjoint and an instruction can be considered
-  /// one of 3 things:
-  /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
-  ///    the KnownUBInsts set.
-  /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
-  ///    has a reason to assume it).
-  /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
-  ///    could not find a reason to assume or prove that it can cause UB,
-  ///    hence it assumes it doesn't. We have a set for these instructions
-  ///    so that we don't reprocess them in every update.
-  ///    Note however that instructions in this set may cause UB.
-
-protected:
-  /// A set of all live instructions _known_ to cause UB.
-  SmallPtrSet<Instruction *, 8> KnownUBInsts;
-
-private:
-  /// A set of all the (live) instructions that are assumed to _not_ cause UB.
-  SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
-
-  // Should be called on updates in which if we're processing an instruction
-  // \p I that depends on a value \p V, one of the following has to happen:
-  // - If the value is assumed, then stop.
-  // - If the value is known but undef, then consider it UB.
-  // - Otherwise, do specific processing with the simplified value.
-  // We return std::nullopt in the first 2 cases to signify that an appropriate
-  // action was taken and the caller should stop.
-  // Otherwise, we return the simplified value that the caller should
-  // use for specific processing.
-  std::optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
-                                              Instruction *I) {
-    bool UsedAssumedInformation = false;
-    std::optional<Value *> SimplifiedV =
-        A.getAssumedSimplified(IRPosition::value(*V), *this,
-                               UsedAssumedInformation, AA::Interprocedural);
-    if (!UsedAssumedInformation) {
-      // Don't depend on assumed values.
-      if (!SimplifiedV) {
-        // If it is known (which we tested above) but it doesn't have a value,
-        // then we can assume `undef` and hence the instruction is UB.
-        KnownUBInsts.insert(I);
-        return std::nullopt;
-      }
-      if (!*SimplifiedV)
-        return nullptr;
-      V = *SimplifiedV;
-    }
-    if (isa<UndefValue>(V)) {
-      KnownUBInsts.insert(I);
-      return std::nullopt;
-    }
-    return V;
-  }
-};
-
-struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
-  AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
-      : AAUndefinedBehaviorImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECL(UndefinedBehaviorInstruction, Instruction,
-               "Number of instructions known to have UB");
-    BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
-        KnownUBInsts.size();
-  }
-};
-} // namespace
-
-/// ------------------------ Will-Return Attributes ----------------------------
-
-namespace {
-// Helper function that checks whether a function has any cycle which we don't
-// know if it is bounded or not.
-// Loops with maximum trip count are considered bounded, any other cycle not.
-static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
-  ScalarEvolution *SE =
-      A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
-  LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
-  // If either SCEV or LoopInfo is not available for the function then we assume
-  // any cycle to be unbounded cycle.
-  // We use scc_iterator which uses Tarjan algorithm to find all the maximal
-  // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
-  if (!SE || !LI) {
-    for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
-      if (SCCI.hasCycle())
-        return true;
-    return false;
-  }
-
-  // If there's irreducible control, the function may contain non-loop cycles.
-  if (mayContainIrreducibleControl(F, LI))
-    return true;
-
-  // Any loop that does not have a max trip count is considered unbounded cycle.
-  for (auto *L : LI->getLoopsInPreorder()) {
-    if (!SE->getSmallConstantMaxTripCount(L))
-      return true;
-  }
-  return false;
-}
-
-struct AAWillReturnImpl : public AAWillReturn {
-  AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
-      : AAWillReturn(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::WillReturn>(
-        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
-  bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
-    if (!A.hasAttr(getIRPosition(), {Attribute::MustProgress}))
-      return false;
-
-    bool IsKnown;
-    if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
-      return IsKnown || !KnownOnly;
-    return false;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
-      return ChangeStatus::UNCHANGED;
-
-    auto CheckForWillReturn = [&](Instruction &I) {
-      IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
-      bool IsKnown;
-      if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
-              A, this, IPos, DepClassTy::REQUIRED, IsKnown)) {
-        if (IsKnown)
-          return true;
-      } else {
-        return false;
-      }
-      bool IsKnownNoRecurse;
-      return AA::hasAssumedIRAttr<Attribute::NoRecurse>(
-          A, this, IPos, DepClassTy::REQUIRED, IsKnownNoRecurse);
-    };
-
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
-                                           UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::getAsStr()
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "willreturn" : "may-noreturn";
-  }
-};
-
-struct AAWillReturnFunction final : AAWillReturnImpl {
-  AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
-      : AAWillReturnImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAWillReturnImpl::initialize(A);
-
-    Function *F = getAnchorScope();
-    assert(F && "Did expect an anchor function");
-    if (F->isDeclaration() || mayContainUnboundedCycle(*F, A))
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
-};
-
-/// WillReturn attribute deduction for a call sites.
-struct AAWillReturnCallSite final
-    : AACalleeToCallSite<AAWillReturn, AAWillReturnImpl> {
-  AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AAWillReturn, AAWillReturnImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
-      return ChangeStatus::UNCHANGED;
-
-    return AACalleeToCallSite::updateImpl(A);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
-};
-} // namespace
-
-/// -------------------AAIntraFnReachability Attribute--------------------------
-
-/// All information associated with a reachability query. This boilerplate code
-/// is used by both AAIntraFnReachability and AAInterFnReachability, with
-/// different \p ToTy values.
-template <typename ToTy> struct ReachabilityQueryInfo {
-  enum class Reachable {
-    No,
-    Yes,
-  };
-
-  /// Start here,
-  const Instruction *From = nullptr;
-  /// reach this place,
-  const ToTy *To = nullptr;
-  /// without going through any of these instructions,
-  const AA::InstExclusionSetTy *ExclusionSet = nullptr;
-  /// and remember if it worked:
-  Reachable Result = Reachable::No;
-
-  /// Precomputed hash for this RQI.
-  unsigned Hash = 0;
-
-  unsigned computeHashValue() const {
-    assert(Hash == 0 && "Computed hash twice!");
-    using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>;
-    using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>;
-    return const_cast<ReachabilityQueryInfo<ToTy> *>(this)->Hash =
-               detail::combineHashValue(PairDMI ::getHashValue({From, To}),
-                                        InstSetDMI::getHashValue(ExclusionSet));
-  }
-
-  ReachabilityQueryInfo(const Instruction *From, const ToTy *To)
-      : From(From), To(To) {}
-
-  /// Constructor replacement to ensure unique and stable sets are used for the
-  /// cache.
-  ReachabilityQueryInfo(Attributor &A, const Instruction &From, const ToTy &To,
-                        const AA::InstExclusionSetTy *ES, bool MakeUnique)
-      : From(&From), To(&To), ExclusionSet(ES) {
-
-    if (!ES || ES->empty()) {
-      ExclusionSet = nullptr;
-    } else if (MakeUnique) {
-      ExclusionSet = A.getInfoCache().getOrCreateUniqueBlockExecutionSet(ES);
-    }
-  }
-
-  ReachabilityQueryInfo(const ReachabilityQueryInfo &RQI)
-      : From(RQI.From), To(RQI.To), ExclusionSet(RQI.ExclusionSet) {}
-};
-
-namespace llvm {
-template <typename ToTy> struct DenseMapInfo<ReachabilityQueryInfo<ToTy> *> {
-  using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>;
-  using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>;
-
-  static ReachabilityQueryInfo<ToTy> EmptyKey;
-  static ReachabilityQueryInfo<ToTy> TombstoneKey;
-
-  static inline ReachabilityQueryInfo<ToTy> *getEmptyKey() { return &EmptyKey; }
-  static inline ReachabilityQueryInfo<ToTy> *getTombstoneKey() {
-    return &TombstoneKey;
-  }
-  static unsigned getHashValue(const ReachabilityQueryInfo<ToTy> *RQI) {
-    return RQI->Hash ? RQI->Hash : RQI->computeHashValue();
-  }
-  static bool isEqual(const ReachabilityQueryInfo<ToTy> *LHS,
-                      const ReachabilityQueryInfo<ToTy> *RHS) {
-    if (!PairDMI::isEqual({LHS->From, LHS->To}, {RHS->From, RHS->To}))
-      return false;
-    return InstSetDMI::isEqual(LHS->ExclusionSet, RHS->ExclusionSet);
-  }
-};
-
-#define DefineKeys(ToTy)                                                       \
-  template <>                                                                  \
-  ReachabilityQueryInfo<ToTy>                                                  \
-      DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::EmptyKey =                  \
-          ReachabilityQueryInfo<ToTy>(                                         \
-              DenseMapInfo<const Instruction *>::getEmptyKey(),                \
-              DenseMapInfo<const ToTy *>::getEmptyKey());                      \
-  template <>                                                                  \
-  ReachabilityQueryInfo<ToTy>                                                  \
-      DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::TombstoneKey =              \
-          ReachabilityQueryInfo<ToTy>(                                         \
-              DenseMapInfo<const Instruction *>::getTombstoneKey(),            \
-              DenseMapInfo<const ToTy *>::getTombstoneKey());
-
-DefineKeys(Instruction) DefineKeys(Function)
-#undef DefineKeys
-
-} // namespace llvm
-
-namespace {
-
-template <typename BaseTy, typename ToTy>
-struct CachedReachabilityAA : public BaseTy {
-  using RQITy = ReachabilityQueryInfo<ToTy>;
-
-  CachedReachabilityAA(const IRPosition &IRP, Attributor &A) : BaseTy(IRP, A) {}
-
-  /// See AbstractAttribute::isQueryAA.
-  bool isQueryAA() const override { return true; }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    for (unsigned u = 0, e = QueryVector.size(); u < e; ++u) {
-      RQITy *RQI = QueryVector[u];
-      if (RQI->Result == RQITy::Reachable::No &&
-          isReachableImpl(A, *RQI, /*IsTemporaryRQI=*/false))
-        Changed = ChangeStatus::CHANGED;
-    }
-    return Changed;
-  }
-
-  virtual bool isReachableImpl(Attributor &A, RQITy &RQI,
-                               bool IsTemporaryRQI) = 0;
-
-  bool rememberResult(Attributor &A, typename RQITy::Reachable Result,
-                      RQITy &RQI, bool UsedExclusionSet, bool IsTemporaryRQI) {
-    RQI.Result = Result;
-
-    // Remove the temporary RQI from the cache.
-    if (IsTemporaryRQI)
-      QueryCache.erase(&RQI);
-
-    // Insert a plain RQI (w/o exclusion set) if that makes sense. Two options:
-    // 1) If it is reachable, it doesn't matter if we have an exclusion set for
-    // this query. 2) We did not use the exclusion set, potentially because
-    // there is none.
-    if (Result == RQITy::Reachable::Yes || !UsedExclusionSet) {
-      RQITy PlainRQI(RQI.From, RQI.To);
-      if (!QueryCache.count(&PlainRQI)) {
-        RQITy *RQIPtr = new (A.Allocator) RQITy(RQI.From, RQI.To);
-        RQIPtr->Result = Result;
-        QueryVector.push_back(RQIPtr);
-        QueryCache.insert(RQIPtr);
-      }
-    }
-
-    // Check if we need to insert a new permanent RQI with the exclusion set.
-    if (IsTemporaryRQI && Result != RQITy::Reachable::Yes && UsedExclusionSet) {
-      assert((!RQI.ExclusionSet || !RQI.ExclusionSet->empty()) &&
-             "Did not expect empty set!");
-      RQITy *RQIPtr = new (A.Allocator)
-          RQITy(A, *RQI.From, *RQI.To, RQI.ExclusionSet, true);
-      assert(RQIPtr->Result == RQITy::Reachable::No && "Already reachable?");
-      RQIPtr->Result = Result;
-      assert(!QueryCache.count(RQIPtr));
-      QueryVector.push_back(RQIPtr);
-      QueryCache.insert(RQIPtr);
-    }
-
-    if (Result == RQITy::Reachable::No && IsTemporaryRQI)
-      A.registerForUpdate(*this);
-    return Result == RQITy::Reachable::Yes;
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    // TODO: Return the number of reachable queries.
-    return "#queries(" + std::to_string(QueryVector.size()) + ")";
-  }
-
-  bool checkQueryCache(Attributor &A, RQITy &StackRQI,
-                       typename RQITy::Reachable &Result) {
-    if (!this->getState().isValidState()) {
-      Result = RQITy::Reachable::Yes;
-      return true;
-    }
-
-    // If we have an exclusion set we might be able to find our answer by
-    // ignoring it first.
-    if (StackRQI.ExclusionSet) {
-      RQITy PlainRQI(StackRQI.From, StackRQI.To);
-      auto It = QueryCache.find(&PlainRQI);
-      if (It != QueryCache.end() && (*It)->Result == RQITy::Reachable::No) {
-        Result = RQITy::Reachable::No;
-        return true;
-      }
-    }
-
-    auto It = QueryCache.find(&StackRQI);
-    if (It != QueryCache.end()) {
-      Result = (*It)->Result;
-      return true;
-    }
-
-    // Insert a temporary for recursive queries. We will replace it with a
-    // permanent entry later.
-    QueryCache.insert(&StackRQI);
-    return false;
-  }
-
-private:
-  SmallVector<RQITy *> QueryVector;
-  DenseSet<RQITy *> QueryCache;
-};
-
-struct AAIntraFnReachabilityFunction final
-    : public CachedReachabilityAA<AAIntraFnReachability, Instruction> {
-  using Base = CachedReachabilityAA<AAIntraFnReachability, Instruction>;
-  AAIntraFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {
-    DT = A.getInfoCache().getAnalysisResultForFunction<DominatorTreeAnalysis>(
-        *IRP.getAssociatedFunction());
-  }
-
-  bool isAssumedReachable(
-      Attributor &A, const Instruction &From, const Instruction &To,
-      const AA::InstExclusionSetTy *ExclusionSet) const override {
-    auto *NonConstThis = const_cast<AAIntraFnReachabilityFunction *>(this);
-    if (&From == &To)
-      return true;
-
-    RQITy StackRQI(A, From, To, ExclusionSet, false);
-    typename RQITy::Reachable Result;
-    if (!NonConstThis->checkQueryCache(A, StackRQI, Result))
-      return NonConstThis->isReachableImpl(A, StackRQI,
-                                           /*IsTemporaryRQI=*/true);
-    return Result == RQITy::Reachable::Yes;
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-    // We only depend on liveness. DeadEdges is all we care about, check if any
-    // of them changed.
-    auto *LivenessAA =
-        A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
-    if (LivenessAA &&
-        llvm::all_of(DeadEdges,
-                     [&](const auto &DeadEdge) {
-                       return LivenessAA->isEdgeDead(DeadEdge.first,
-                                                     DeadEdge.second);
-                     }) &&
-        llvm::all_of(DeadBlocks, [&](const BasicBlock *BB) {
-          return LivenessAA->isAssumedDead(BB);
-        })) {
-      return ChangeStatus::UNCHANGED;
-    }
-    DeadEdges.clear();
-    DeadBlocks.clear();
-    return Base::updateImpl(A);
-  }
-
-  bool isReachableImpl(Attributor &A, RQITy &RQI,
-                       bool IsTemporaryRQI) override {
-    const Instruction *Origin = RQI.From;
-    bool UsedExclusionSet = false;
-
-    auto WillReachInBlock = [&](const Instruction &From, const Instruction &To,
-                                const AA::InstExclusionSetTy *ExclusionSet) {
-      const Instruction *IP = &From;
-      while (IP && IP != &To) {
-        if (ExclusionSet && IP != Origin && ExclusionSet->count(IP)) {
-          UsedExclusionSet = true;
-          break;
-        }
-        IP = IP->getNextNode();
-      }
-      return IP == &To;
-    };
-
-    const BasicBlock *FromBB = RQI.From->getParent();
-    const BasicBlock *ToBB = RQI.To->getParent();
-    assert(FromBB->getParent() == ToBB->getParent() &&
-           "Not an intra-procedural query!");
-
-    // Check intra-block reachability, however, other reaching paths are still
-    // possible.
-    if (FromBB == ToBB &&
-        WillReachInBlock(*RQI.From, *RQI.To, RQI.ExclusionSet))
-      return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
-                            IsTemporaryRQI);
-
-    // Check if reaching the ToBB block is sufficient or if even that would not
-    // ensure reaching the target. In the latter case we are done.
-    if (!WillReachInBlock(ToBB->front(), *RQI.To, RQI.ExclusionSet))
-      return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
-                            IsTemporaryRQI);
-
-    const Function *Fn = FromBB->getParent();
-    SmallPtrSet<const BasicBlock *, 16> ExclusionBlocks;
-    if (RQI.ExclusionSet)
-      for (auto *I : *RQI.ExclusionSet)
-        if (I->getFunction() == Fn)
-          ExclusionBlocks.insert(I->getParent());
-
-    // Check if we make it out of the FromBB block at all.
-    if (ExclusionBlocks.count(FromBB) &&
-        !WillReachInBlock(*RQI.From, *FromBB->getTerminator(),
-                          RQI.ExclusionSet))
-      return rememberResult(A, RQITy::Reachable::No, RQI, true, IsTemporaryRQI);
-
-    auto *LivenessAA =
-        A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
-    if (LivenessAA && LivenessAA->isAssumedDead(ToBB)) {
-      DeadBlocks.insert(ToBB);
-      return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
-                            IsTemporaryRQI);
-    }
-
-    SmallPtrSet<const BasicBlock *, 16> Visited;
-    SmallVector<const BasicBlock *, 16> Worklist;
-    Worklist.push_back(FromBB);
-
-    DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> LocalDeadEdges;
-    while (!Worklist.empty()) {
-      const BasicBlock *BB = Worklist.pop_back_val();
-      if (!Visited.insert(BB).second)
-        continue;
-      for (const BasicBlock *SuccBB : successors(BB)) {
-        if (LivenessAA && LivenessAA->isEdgeDead(BB, SuccBB)) {
-          LocalDeadEdges.insert({BB, SuccBB});
-          continue;
-        }
-        // We checked before if we just need to reach the ToBB block.
-        if (SuccBB == ToBB)
-          return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
-                                IsTemporaryRQI);
-        if (DT && ExclusionBlocks.empty() && DT->dominates(BB, ToBB))
-          return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
-                                IsTemporaryRQI);
-
-        if (ExclusionBlocks.count(SuccBB)) {
-          UsedExclusionSet = true;
-          continue;
-        }
-        Worklist.push_back(SuccBB);
-      }
-    }
-
-    DeadEdges.insert(LocalDeadEdges.begin(), LocalDeadEdges.end());
-    return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
-                          IsTemporaryRQI);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-
-private:
-  // Set of assumed dead blocks we used in the last query. If any changes we
-  // update the state.
-  DenseSet<const BasicBlock *> DeadBlocks;
-
-  // Set of assumed dead edges we used in the last query. If any changes we
-  // update the state.
-  DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> DeadEdges;
-
-  /// The dominator tree of the function to short-circuit reasoning.
-  const DominatorTree *DT = nullptr;
-};
-} // namespace
-
-/// ------------------------ NoAlias Argument Attribute ------------------------
-
-bool AANoAlias::isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                              Attribute::AttrKind ImpliedAttributeKind,
-                              bool IgnoreSubsumingPositions) {
-  assert(ImpliedAttributeKind == Attribute::NoAlias &&
-         "Unexpected attribute kind");
-  Value *Val = &IRP.getAssociatedValue();
-  if (IRP.getPositionKind() != IRP_CALL_SITE_ARGUMENT) {
-    if (isa<AllocaInst>(Val))
-      return true;
-  } else {
-    IgnoreSubsumingPositions = true;
-  }
-
-  if (isa<UndefValue>(Val))
-    return true;
-
-  if (isa<ConstantPointerNull>(Val) &&
-      !NullPointerIsDefined(IRP.getAnchorScope(),
-                            Val->getType()->getPointerAddressSpace()))
-    return true;
-
-  if (A.hasAttr(IRP, {Attribute::ByVal, Attribute::NoAlias},
-                IgnoreSubsumingPositions, Attribute::NoAlias))
-    return true;
-
-  return false;
-}
-
-namespace {
-struct AANoAliasImpl : AANoAlias {
-  AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
-    assert(getAssociatedType()->isPointerTy() &&
-           "Noalias is a pointer attribute");
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "noalias" : "may-alias";
-  }
-};
-
-/// NoAlias attribute for a floating value.
-struct AANoAliasFloating final : AANoAliasImpl {
-  AANoAliasFloating(const IRPosition &IRP, Attributor &A)
-      : AANoAliasImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Implement this.
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(noalias)
-  }
-};
-
-/// NoAlias attribute for an argument.
-struct AANoAliasArgument final
-    : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
-  using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
-  AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
-
-  /// See AbstractAttribute::update(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // We have to make sure no-alias on the argument does not break
-    // synchronization when this is a callback argument, see also [1] below.
-    // If synchronization cannot be affected, we delegate to the base updateImpl
-    // function, otherwise we give up for now.
-
-    // If the function is no-sync, no-alias cannot break synchronization.
-    bool IsKnownNoSycn;
-    if (AA::hasAssumedIRAttr<Attribute::NoSync>(
-            A, this, IRPosition::function_scope(getIRPosition()),
-            DepClassTy::OPTIONAL, IsKnownNoSycn))
-      return Base::updateImpl(A);
-
-    // If the argument is read-only, no-alias cannot break synchronization.
-    bool IsKnown;
-    if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
-      return Base::updateImpl(A);
-
-    // If the argument is never passed through callbacks, no-alias cannot break
-    // synchronization.
-    bool UsedAssumedInformation = false;
-    if (A.checkForAllCallSites(
-            [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
-            true, UsedAssumedInformation))
-      return Base::updateImpl(A);
-
-    // TODO: add no-alias but make sure it doesn't break synchronization by
-    // introducing fake uses. See:
-    // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
-    //     International Workshop on OpenMP 2018,
-    //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
-
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
-};
-
-struct AANoAliasCallSiteArgument final : AANoAliasImpl {
-  AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AANoAliasImpl(IRP, A) {}
-
-  /// Determine if the underlying value may alias with the call site argument
-  /// \p OtherArgNo of \p ICS (= the underlying call site).
-  bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
-                            const AAMemoryBehavior &MemBehaviorAA,
-                            const CallBase &CB, unsigned OtherArgNo) {
-    // We do not need to worry about aliasing with the underlying IRP.
-    if (this->getCalleeArgNo() == (int)OtherArgNo)
-      return false;
-
-    // If it is not a pointer or pointer vector we do not alias.
-    const Value *ArgOp = CB.getArgOperand(OtherArgNo);
-    if (!ArgOp->getType()->isPtrOrPtrVectorTy())
-      return false;
-
-    auto *CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
-        *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
-
-    // If the argument is readnone, there is no read-write aliasing.
-    if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadNone()) {
-      A.recordDependence(*CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
-      return false;
-    }
-
-    // If the argument is readonly and the underlying value is readonly, there
-    // is no read-write aliasing.
-    bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
-    if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadOnly() &&
-        IsReadOnly) {
-      A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
-      A.recordDependence(*CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
-      return false;
-    }
-
-    // We have to utilize actual alias analysis queries so we need the object.
-    if (!AAR)
-      AAR = A.getInfoCache().getAnalysisResultForFunction<AAManager>(
-          *getAnchorScope());
-
-    // Try to rule it out at the call site.
-    bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
-    LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
-                         "callsite arguments: "
-                      << getAssociatedValue() << " " << *ArgOp << " => "
-                      << (IsAliasing ? "" : "no-") << "alias \n");
-
-    return IsAliasing;
-  }
-
-  bool isKnownNoAliasDueToNoAliasPreservation(
-      Attributor &A, AAResults *&AAR, const AAMemoryBehavior &MemBehaviorAA) {
-    // We can deduce "noalias" if the following conditions hold.
-    // (i)   Associated value is assumed to be noalias in the definition.
-    // (ii)  Associated value is assumed to be no-capture in all the uses
-    //       possibly executed before this callsite.
-    // (iii) There is no other pointer argument which could alias with the
-    //       value.
-
-    auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
-      const auto *DerefAA = A.getAAFor<AADereferenceable>(
-          *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
-      return DerefAA ? DerefAA->getAssumedDereferenceableBytes() : 0;
-    };
-
-    const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
-    const Function *ScopeFn = VIRP.getAnchorScope();
-    // Check whether the value is captured in the scope using AANoCapture.
-    // Look at CFG and check only uses possibly executed before this
-    // callsite.
-    auto UsePred = [&](const Use &U, bool &Follow) -> bool {
-      Instruction *UserI = cast<Instruction>(U.getUser());
-
-      // If UserI is the curr instruction and there is a single potential use of
-      // the value in UserI we allow the use.
-      // TODO: We should inspect the operands and allow those that cannot alias
-      //       with the value.
-      if (UserI == getCtxI() && UserI->getNumOperands() == 1)
-        return true;
-
-      if (ScopeFn) {
-        if (auto *CB = dyn_cast<CallBase>(UserI)) {
-          if (CB->isArgOperand(&U)) {
-
-            unsigned ArgNo = CB->getArgOperandNo(&U);
-
-            bool IsKnownNoCapture;
-            if (AA::hasAssumedIRAttr<Attribute::NoCapture>(
-                    A, this, IRPosition::callsite_argument(*CB, ArgNo),
-                    DepClassTy::OPTIONAL, IsKnownNoCapture))
-              return true;
-          }
-        }
-
-        if (!AA::isPotentiallyReachable(
-                A, *UserI, *getCtxI(), *this, /* ExclusionSet */ nullptr,
-                [ScopeFn](const Function &Fn) { return &Fn != ScopeFn; }))
-          return true;
-      }
-
-      // TODO: We should track the capturing uses in AANoCapture but the problem
-      //       is CGSCC runs. For those we would need to "allow" AANoCapture for
-      //       a value in the module slice.
-      switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
-      case UseCaptureKind::NO_CAPTURE:
-        return true;
-      case UseCaptureKind::MAY_CAPTURE:
-        LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
-                          << "\n");
-        return false;
-      case UseCaptureKind::PASSTHROUGH:
-        Follow = true;
-        return true;
-      }
-      llvm_unreachable("unknown UseCaptureKind");
-    };
-
-    bool IsKnownNoCapture;
-    const AANoCapture *NoCaptureAA = nullptr;
-    bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
-        A, this, VIRP, DepClassTy::NONE, IsKnownNoCapture, false, &NoCaptureAA);
-    if (!IsAssumedNoCapture &&
-        (!NoCaptureAA || !NoCaptureAA->isAssumedNoCaptureMaybeReturned())) {
-      if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
-        LLVM_DEBUG(
-            dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
-                   << " cannot be noalias as it is potentially captured\n");
-        return false;
-      }
-    }
-    if (NoCaptureAA)
-      A.recordDependence(*NoCaptureAA, *this, DepClassTy::OPTIONAL);
-
-    // Check there is no other pointer argument which could alias with the
-    // value passed at this call site.
-    // TODO: AbstractCallSite
-    const auto &CB = cast<CallBase>(getAnchorValue());
-    for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
-      if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
-        return false;
-
-    return true;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // If the argument is readnone we are done as there are no accesses via the
-    // argument.
-    auto *MemBehaviorAA =
-        A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
-    if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) {
-      A.recordDependence(*MemBehaviorAA, *this, DepClassTy::OPTIONAL);
-      return ChangeStatus::UNCHANGED;
-    }
-
-    bool IsKnownNoAlias;
-    const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
-    if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
-            A, this, VIRP, DepClassTy::REQUIRED, IsKnownNoAlias)) {
-      LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
-                        << " is not no-alias at the definition\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    AAResults *AAR = nullptr;
-    if (MemBehaviorAA &&
-        isKnownNoAliasDueToNoAliasPreservation(A, AAR, *MemBehaviorAA)) {
-      LLVM_DEBUG(
-          dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
-      return ChangeStatus::UNCHANGED;
-    }
-
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
-};
-
-/// NoAlias attribute for function return value.
-struct AANoAliasReturned final : AANoAliasImpl {
-  AANoAliasReturned(const IRPosition &IRP, Attributor &A)
-      : AANoAliasImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-
-    auto CheckReturnValue = [&](Value &RV) -> bool {
-      if (Constant *C = dyn_cast<Constant>(&RV))
-        if (C->isNullValue() || isa<UndefValue>(C))
-          return true;
-
-      /// For now, we can only deduce noalias if we have call sites.
-      /// FIXME: add more support.
-      if (!isa<CallBase>(&RV))
-        return false;
-
-      const IRPosition &RVPos = IRPosition::value(RV);
-      bool IsKnownNoAlias;
-      if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
-              A, this, RVPos, DepClassTy::REQUIRED, IsKnownNoAlias))
-        return false;
-
-      bool IsKnownNoCapture;
-      const AANoCapture *NoCaptureAA = nullptr;
-      bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
-          A, this, RVPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
-          &NoCaptureAA);
-      return IsAssumedNoCapture ||
-             (NoCaptureAA && NoCaptureAA->isAssumedNoCaptureMaybeReturned());
-    };
-
-    if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
-};
-
-/// NoAlias attribute deduction for a call site return value.
-struct AANoAliasCallSiteReturned final
-    : AACalleeToCallSite<AANoAlias, AANoAliasImpl> {
-  AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoAlias, AANoAliasImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
-};
-} // namespace
-
-/// -------------------AAIsDead Function Attribute-----------------------
-
-namespace {
-struct AAIsDeadValueImpl : public AAIsDead {
-  AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
-
-  /// See AAIsDead::isAssumedDead().
-  bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
-
-  /// See AAIsDead::isKnownDead().
-  bool isKnownDead() const override { return isKnown(IS_DEAD); }
-
-  /// See AAIsDead::isAssumedDead(BasicBlock *).
-  bool isAssumedDead(const BasicBlock *BB) const override { return false; }
-
-  /// See AAIsDead::isKnownDead(BasicBlock *).
-  bool isKnownDead(const BasicBlock *BB) const override { return false; }
-
-  /// See AAIsDead::isAssumedDead(Instruction *I).
-  bool isAssumedDead(const Instruction *I) const override {
-    return I == getCtxI() && isAssumedDead();
-  }
-
-  /// See AAIsDead::isKnownDead(Instruction *I).
-  bool isKnownDead(const Instruction *I) const override {
-    return isAssumedDead(I) && isKnownDead();
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return isAssumedDead() ? "assumed-dead" : "assumed-live";
-  }
-
-  /// Check if all uses are assumed dead.
-  bool areAllUsesAssumedDead(Attributor &A, Value &V) {
-    // Callers might not check the type, void has no uses.
-    if (V.getType()->isVoidTy() || V.use_empty())
-      return true;
-
-    // If we replace a value with a constant there are no uses left afterwards.
-    if (!isa<Constant>(V)) {
-      if (auto *I = dyn_cast<Instruction>(&V))
-        if (!A.isRunOn(*I->getFunction()))
-          return false;
-      bool UsedAssumedInformation = false;
-      std::optional<Constant *> C =
-          A.getAssumedConstant(V, *this, UsedAssumedInformation);
-      if (!C || *C)
-        return true;
-    }
-
-    auto UsePred = [&](const Use &U, bool &Follow) { return false; };
-    // Explicitly set the dependence class to required because we want a long
-    // chain of N dependent instructions to be considered live as soon as one is
-    // without going through N update cycles. This is not required for
-    // correctness.
-    return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
-                             DepClassTy::REQUIRED,
-                             /* IgnoreDroppableUses */ false);
-  }
-
-  /// Determine if \p I is assumed to be side-effect free.
-  bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
-    if (!I || wouldInstructionBeTriviallyDead(I))
-      return true;
-
-    auto *CB = dyn_cast<CallBase>(I);
-    if (!CB || isa<IntrinsicInst>(CB))
-      return false;
-
-    const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
-
-    bool IsKnownNoUnwind;
-    if (!AA::hasAssumedIRAttr<Attribute::NoUnwind>(
-            A, this, CallIRP, DepClassTy::OPTIONAL, IsKnownNoUnwind))
-      return false;
-
-    bool IsKnown;
-    return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
-  }
-};
-
-struct AAIsDeadFloating : public AAIsDeadValueImpl {
-  AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
-      : AAIsDeadValueImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAIsDeadValueImpl::initialize(A);
-
-    if (isa<UndefValue>(getAssociatedValue())) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-
-    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
-    if (!isAssumedSideEffectFree(A, I)) {
-      if (!isa_and_nonnull<StoreInst>(I) && !isa_and_nonnull<FenceInst>(I))
-        indicatePessimisticFixpoint();
-      else
-        removeAssumedBits(HAS_NO_EFFECT);
-    }
-  }
-
-  bool isDeadFence(Attributor &A, FenceInst &FI) {
-    const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
-        IRPosition::function(*FI.getFunction()), *this, DepClassTy::NONE);
-    if (!ExecDomainAA || !ExecDomainAA->isNoOpFence(FI))
-      return false;
-    A.recordDependence(*ExecDomainAA, *this, DepClassTy::OPTIONAL);
-    return true;
-  }
-
-  bool isDeadStore(Attributor &A, StoreInst &SI,
-                   SmallSetVector<Instruction *, 8> *AssumeOnlyInst = nullptr) {
-    // Lang ref now states volatile store is not UB/dead, let's skip them.
-    if (SI.isVolatile())
-      return false;
-
-    // If we are collecting assumes to be deleted we are in the manifest stage.
-    // It's problematic to collect the potential copies again now so we use the
-    // cached ones.
-    bool UsedAssumedInformation = false;
-    if (!AssumeOnlyInst) {
-      PotentialCopies.clear();
-      if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
-                                               UsedAssumedInformation)) {
-        LLVM_DEBUG(
-            dbgs()
-            << "[AAIsDead] Could not determine potential copies of store!\n");
-        return false;
-      }
-    }
-    LLVM_DEBUG(dbgs() << "[AAIsDead] Store has " << PotentialCopies.size()
-                      << " potential copies.\n");
-
-    InformationCache &InfoCache = A.getInfoCache();
-    return llvm::all_of(PotentialCopies, [&](Value *V) {
-      if (A.isAssumedDead(IRPosition::value(*V), this, nullptr,
-                          UsedAssumedInformation))
-        return true;
-      if (auto *LI = dyn_cast<LoadInst>(V)) {
-        if (llvm::all_of(LI->uses(), [&](const Use &U) {
-              auto &UserI = cast<Instruction>(*U.getUser());
-              if (InfoCache.isOnlyUsedByAssume(UserI)) {
-                if (AssumeOnlyInst)
-                  AssumeOnlyInst->insert(&UserI);
-                return true;
-              }
-              return A.isAssumedDead(U, this, nullptr, UsedAssumedInformation);
-            })) {
-          return true;
-        }
-      }
-      LLVM_DEBUG(dbgs() << "[AAIsDead] Potential copy " << *V
-                        << " is assumed live!\n");
-      return false;
-    });
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
-    if (isa_and_nonnull<StoreInst>(I))
-      if (isValidState())
-        return "assumed-dead-store";
-    if (isa_and_nonnull<FenceInst>(I))
-      if (isValidState())
-        return "assumed-dead-fence";
-    return AAIsDeadValueImpl::getAsStr(A);
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
-    if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
-      if (!isDeadStore(A, *SI))
-        return indicatePessimisticFixpoint();
-    } else if (auto *FI = dyn_cast_or_null<FenceInst>(I)) {
-      if (!isDeadFence(A, *FI))
-        return indicatePessimisticFixpoint();
-    } else {
-      if (!isAssumedSideEffectFree(A, I))
-        return indicatePessimisticFixpoint();
-      if (!areAllUsesAssumedDead(A, getAssociatedValue()))
-        return indicatePessimisticFixpoint();
-    }
-    return ChangeStatus::UNCHANGED;
-  }
-
-  bool isRemovableStore() const override {
-    return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    Value &V = getAssociatedValue();
-    if (auto *I = dyn_cast<Instruction>(&V)) {
-      // If we get here we basically know the users are all dead. We check if
-      // isAssumedSideEffectFree returns true here again because it might not be
-      // the case and only the users are dead but the instruction (=call) is
-      // still needed.
-      if (auto *SI = dyn_cast<StoreInst>(I)) {
-        SmallSetVector<Instruction *, 8> AssumeOnlyInst;
-        bool IsDead = isDeadStore(A, *SI, &AssumeOnlyInst);
-        (void)IsDead;
-        assert(IsDead && "Store was assumed to be dead!");
-        A.deleteAfterManifest(*I);
-        for (size_t i = 0; i < AssumeOnlyInst.size(); ++i) {
-          Instruction *AOI = AssumeOnlyInst[i];
-          for (auto *Usr : AOI->users())
-            AssumeOnlyInst.insert(cast<Instruction>(Usr));
-          A.deleteAfterManifest(*AOI);
-        }
-        return ChangeStatus::CHANGED;
-      }
-      if (auto *FI = dyn_cast<FenceInst>(I)) {
-        assert(isDeadFence(A, *FI));
-        A.deleteAfterManifest(*FI);
-        return ChangeStatus::CHANGED;
-      }
-      if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
-        A.deleteAfterManifest(*I);
-        return ChangeStatus::CHANGED;
-      }
-    }
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(IsDead)
-  }
-
-private:
-  // The potential copies of a dead store, used for deletion during manifest.
-  SmallSetVector<Value *, 4> PotentialCopies;
-};
-
-struct AAIsDeadArgument : public AAIsDeadFloating {
-  AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
-      : AAIsDeadFloating(IRP, A) {}
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    Argument &Arg = *getAssociatedArgument();
-    if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
-      if (A.registerFunctionSignatureRewrite(
-              Arg, /* ReplacementTypes */ {},
-              Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
-              Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
-        return ChangeStatus::CHANGED;
-      }
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
-};
-
-struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
-  AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAIsDeadValueImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAIsDeadValueImpl::initialize(A);
-    if (isa<UndefValue>(getAssociatedValue()))
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Argument *Arg = getAssociatedArgument();
-    if (!Arg)
-      return indicatePessimisticFixpoint();
-    const IRPosition &ArgPos = IRPosition::argument(*Arg);
-    auto *ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
-    if (!ArgAA)
-      return indicatePessimisticFixpoint();
-    return clampStateAndIndicateChange(getState(), ArgAA->getState());
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    CallBase &CB = cast<CallBase>(getAnchorValue());
-    Use &U = CB.getArgOperandUse(getCallSiteArgNo());
-    assert(!isa<UndefValue>(U.get()) &&
-           "Expected undef values to be filtered out!");
-    UndefValue &UV = *UndefValue::get(U->getType());
-    if (A.changeUseAfterManifest(U, UV))
-      return ChangeStatus::CHANGED;
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
-};
-
-struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
-  AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAIsDeadFloating(IRP, A) {}
-
-  /// See AAIsDead::isAssumedDead().
-  bool isAssumedDead() const override {
-    return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
-  }
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAIsDeadFloating::initialize(A);
-    if (isa<UndefValue>(getAssociatedValue())) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-
-    // We track this separately as a secondary state.
-    IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
-      IsAssumedSideEffectFree = false;
-      Changed = ChangeStatus::CHANGED;
-    }
-    if (!areAllUsesAssumedDead(A, getAssociatedValue()))
-      return indicatePessimisticFixpoint();
-    return Changed;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (IsAssumedSideEffectFree)
-      STATS_DECLTRACK_CSRET_ATTR(IsDead)
-    else
-      STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return isAssumedDead()
-               ? "assumed-dead"
-               : (getAssumed() ? "assumed-dead-users" : "assumed-live");
-  }
-
-private:
-  bool IsAssumedSideEffectFree = true;
-};
-
-struct AAIsDeadReturned : public AAIsDeadValueImpl {
-  AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
-      : AAIsDeadValueImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-
-    bool UsedAssumedInformation = false;
-    A.checkForAllInstructions([](Instruction &) { return true; }, *this,
-                              {Instruction::Ret}, UsedAssumedInformation);
-
-    auto PredForCallSite = [&](AbstractCallSite ACS) {
-      if (ACS.isCallbackCall() || !ACS.getInstruction())
-        return false;
-      return areAllUsesAssumedDead(A, *ACS.getInstruction());
-    };
-
-    if (!A.checkForAllCallSites(PredForCallSite, *this, true,
-                                UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // TODO: Rewrite the signature to return void?
-    bool AnyChange = false;
-    UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
-    auto RetInstPred = [&](Instruction &I) {
-      ReturnInst &RI = cast<ReturnInst>(I);
-      if (!isa<UndefValue>(RI.getReturnValue()))
-        AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
-      return true;
-    };
-    bool UsedAssumedInformation = false;
-    A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
-                              UsedAssumedInformation);
-    return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
-};
-
-struct AAIsDeadFunction : public AAIsDead {
-  AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    Function *F = getAnchorScope();
-    assert(F && "Did expect an anchor function");
-    if (!isAssumedDeadInternalFunction(A)) {
-      ToBeExploredFrom.insert(&F->getEntryBlock().front());
-      assumeLive(A, F->getEntryBlock());
-    }
-  }
-
-  bool isAssumedDeadInternalFunction(Attributor &A) {
-    if (!getAnchorScope()->hasLocalLinkage())
-      return false;
-    bool UsedAssumedInformation = false;
-    return A.checkForAllCallSites([](AbstractCallSite) { return false; }, *this,
-                                  true, UsedAssumedInformation);
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
-           std::to_string(getAnchorScope()->size()) + "][#TBEP " +
-           std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
-           std::to_string(KnownDeadEnds.size()) + "]";
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    assert(getState().isValidState() &&
-           "Attempted to manifest an invalid state!");
-
-    ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
-    Function &F = *getAnchorScope();
-
-    if (AssumedLiveBlocks.empty()) {
-      A.deleteAfterManifest(F);
-      return ChangeStatus::CHANGED;
-    }
-
-    // Flag to determine if we can change an invoke to a call assuming the
-    // callee is nounwind. This is not possible if the personality of the
-    // function allows to catch asynchronous exceptions.
-    bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
-
-    KnownDeadEnds.set_union(ToBeExploredFrom);
-    for (const Instruction *DeadEndI : KnownDeadEnds) {
-      auto *CB = dyn_cast<CallBase>(DeadEndI);
-      if (!CB)
-        continue;
-      bool IsKnownNoReturn;
-      bool MayReturn = !AA::hasAssumedIRAttr<Attribute::NoReturn>(
-          A, this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL,
-          IsKnownNoReturn);
-      if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
-        continue;
-
-      if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
-        A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
-      else
-        A.changeToUnreachableAfterManifest(
-            const_cast<Instruction *>(DeadEndI->getNextNode()));
-      HasChanged = ChangeStatus::CHANGED;
-    }
-
-    STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
-    for (BasicBlock &BB : F)
-      if (!AssumedLiveBlocks.count(&BB)) {
-        A.deleteAfterManifest(BB);
-        ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
-        HasChanged = ChangeStatus::CHANGED;
-      }
-
-    return HasChanged;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override;
-
-  bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
-    assert(From->getParent() == getAnchorScope() &&
-           To->getParent() == getAnchorScope() &&
-           "Used AAIsDead of the wrong function");
-    return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-
-  /// Returns true if the function is assumed dead.
-  bool isAssumedDead() const override { return false; }
-
-  /// See AAIsDead::isKnownDead().
-  bool isKnownDead() const override { return false; }
-
-  /// See AAIsDead::isAssumedDead(BasicBlock *).
-  bool isAssumedDead(const BasicBlock *BB) const override {
-    assert(BB->getParent() == getAnchorScope() &&
-           "BB must be in the same anchor scope function.");
-
-    if (!getAssumed())
-      return false;
-    return !AssumedLiveBlocks.count(BB);
-  }
-
-  /// See AAIsDead::isKnownDead(BasicBlock *).
-  bool isKnownDead(const BasicBlock *BB) const override {
-    return getKnown() && isAssumedDead(BB);
-  }
-
-  /// See AAIsDead::isAssumed(Instruction *I).
-  bool isAssumedDead(const Instruction *I) const override {
-    assert(I->getParent()->getParent() == getAnchorScope() &&
-           "Instruction must be in the same anchor scope function.");
-
-    if (!getAssumed())
-      return false;
-
-    // If it is not in AssumedLiveBlocks then it for sure dead.
-    // Otherwise, it can still be after noreturn call in a live block.
-    if (!AssumedLiveBlocks.count(I->getParent()))
-      return true;
-
-    // If it is not after a liveness barrier it is live.
-    const Instruction *PrevI = I->getPrevNode();
-    while (PrevI) {
-      if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
-        return true;
-      PrevI = PrevI->getPrevNode();
-    }
-    return false;
-  }
-
-  /// See AAIsDead::isKnownDead(Instruction *I).
-  bool isKnownDead(const Instruction *I) const override {
-    return getKnown() && isAssumedDead(I);
-  }
-
-  /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
-  /// that internal function called from \p BB should now be looked at.
-  bool assumeLive(Attributor &A, const BasicBlock &BB) {
-    if (!AssumedLiveBlocks.insert(&BB).second)
-      return false;
-
-    // We assume that all of BB is (probably) live now and if there are calls to
-    // internal functions we will assume that those are now live as well. This
-    // is a performance optimization for blocks with calls to a lot of internal
-    // functions. It can however cause dead functions to be treated as live.
-    for (const Instruction &I : BB)
-      if (const auto *CB = dyn_cast<CallBase>(&I))
-        if (auto *F = dyn_cast_if_present<Function>(CB->getCalledOperand()))
-          if (F->hasLocalLinkage())
-            A.markLiveInternalFunction(*F);
-    return true;
-  }
-
-  /// Collection of instructions that need to be explored again, e.g., we
-  /// did assume they do not transfer control to (one of their) successors.
-  SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
-
-  /// Collection of instructions that are known to not transfer control.
-  SmallSetVector<const Instruction *, 8> KnownDeadEnds;
-
-  /// Collection of all assumed live edges
-  DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
-
-  /// Collection of all assumed live BasicBlocks.
-  DenseSet<const BasicBlock *> AssumedLiveBlocks;
-};
-
-static bool
-identifyAliveSuccessors(Attributor &A, const CallBase &CB,
-                        AbstractAttribute &AA,
-                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
-  const IRPosition &IPos = IRPosition::callsite_function(CB);
-
-  bool IsKnownNoReturn;
-  if (AA::hasAssumedIRAttr<Attribute::NoReturn>(
-          A, &AA, IPos, DepClassTy::OPTIONAL, IsKnownNoReturn))
-    return !IsKnownNoReturn;
-  if (CB.isTerminator())
-    AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
-  else
-    AliveSuccessors.push_back(CB.getNextNode());
-  return false;
-}
-
-static bool
-identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
-                        AbstractAttribute &AA,
-                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
-  bool UsedAssumedInformation =
-      identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
-
-  // First, determine if we can change an invoke to a call assuming the
-  // callee is nounwind. This is not possible if the personality of the
-  // function allows to catch asynchronous exceptions.
-  if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
-    AliveSuccessors.push_back(&II.getUnwindDest()->front());
-  } else {
-    const IRPosition &IPos = IRPosition::callsite_function(II);
-
-    bool IsKnownNoUnwind;
-    if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
-            A, &AA, IPos, DepClassTy::OPTIONAL, IsKnownNoUnwind)) {
-      UsedAssumedInformation |= !IsKnownNoUnwind;
-    } else {
-      AliveSuccessors.push_back(&II.getUnwindDest()->front());
-    }
-  }
-  return UsedAssumedInformation;
-}
-
-static bool
-identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
-                        AbstractAttribute &AA,
-                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
-  bool UsedAssumedInformation = false;
-  if (BI.getNumSuccessors() == 1) {
-    AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
-  } else {
-    std::optional<Constant *> C =
-        A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
-    if (!C || isa_and_nonnull<UndefValue>(*C)) {
-      // No value yet, assume both edges are dead.
-    } else if (isa_and_nonnull<ConstantInt>(*C)) {
-      const BasicBlock *SuccBB =
-          BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
-      AliveSuccessors.push_back(&SuccBB->front());
-    } else {
-      AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
-      AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
-      UsedAssumedInformation = false;
-    }
-  }
-  return UsedAssumedInformation;
-}
-
-static bool
-identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
-                        AbstractAttribute &AA,
-                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
-  bool UsedAssumedInformation = false;
-  SmallVector<AA::ValueAndContext> Values;
-  if (!A.getAssumedSimplifiedValues(IRPosition::value(*SI.getCondition()), &AA,
-                                    Values, AA::AnyScope,
-                                    UsedAssumedInformation)) {
-    // Something went wrong, assume all successors are live.
-    for (const BasicBlock *SuccBB : successors(SI.getParent()))
-      AliveSuccessors.push_back(&SuccBB->front());
-    return false;
-  }
-
-  if (Values.empty() ||
-      (Values.size() == 1 &&
-       isa_and_nonnull<UndefValue>(Values.front().getValue()))) {
-    // No valid value yet, assume all edges are dead.
-    return UsedAssumedInformation;
-  }
-
-  Type &Ty = *SI.getCondition()->getType();
-  SmallPtrSet<ConstantInt *, 8> Constants;
-  auto CheckForConstantInt = [&](Value *V) {
-    if (auto *CI = dyn_cast_if_present<ConstantInt>(AA::getWithType(*V, Ty))) {
-      Constants.insert(CI);
-      return true;
-    }
-    return false;
-  };
-
-  if (!all_of(Values, [&](AA::ValueAndContext &VAC) {
-        return CheckForConstantInt(VAC.getValue());
-      })) {
-    for (const BasicBlock *SuccBB : successors(SI.getParent()))
-      AliveSuccessors.push_back(&SuccBB->front());
-    return UsedAssumedInformation;
-  }
-
-  unsigned MatchedCases = 0;
-  for (const auto &CaseIt : SI.cases()) {
-    if (Constants.count(CaseIt.getCaseValue())) {
-      ++MatchedCases;
-      AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
-    }
-  }
-
-  // If all potential values have been matched, we will not visit the default
-  // case.
-  if (MatchedCases < Constants.size())
-    AliveSuccessors.push_back(&SI.getDefaultDest()->front());
-  return UsedAssumedInformation;
-}
-
-ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
-  ChangeStatus Change = ChangeStatus::UNCHANGED;
-
-  if (AssumedLiveBlocks.empty()) {
-    if (isAssumedDeadInternalFunction(A))
-      return ChangeStatus::UNCHANGED;
-
-    Function *F = getAnchorScope();
-    ToBeExploredFrom.insert(&F->getEntryBlock().front());
-    assumeLive(A, F->getEntryBlock());
-    Change = ChangeStatus::CHANGED;
-  }
-
-  LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
-                    << getAnchorScope()->size() << "] BBs and "
-                    << ToBeExploredFrom.size() << " exploration points and "
-                    << KnownDeadEnds.size() << " known dead ends\n");
-
-  // Copy and clear the list of instructions we need to explore from. It is
-  // refilled with instructions the next update has to look at.
-  SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
-                                               ToBeExploredFrom.end());
-  decltype(ToBeExploredFrom) NewToBeExploredFrom;
-
-  SmallVector<const Instruction *, 8> AliveSuccessors;
-  while (!Worklist.empty()) {
-    const Instruction *I = Worklist.pop_back_val();
-    LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
-
-    // Fast forward for uninteresting instructions. We could look for UB here
-    // though.
-    while (!I->isTerminator() && !isa<CallBase>(I))
-      I = I->getNextNode();
-
-    AliveSuccessors.clear();
-
-    bool UsedAssumedInformation = false;
-    switch (I->getOpcode()) {
-    // TODO: look for (assumed) UB to backwards propagate "deadness".
-    default:
-      assert(I->isTerminator() &&
-             "Expected non-terminators to be handled already!");
-      for (const BasicBlock *SuccBB : successors(I->getParent()))
-        AliveSuccessors.push_back(&SuccBB->front());
-      break;
-    case Instruction::Call:
-      UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
-                                                       *this, AliveSuccessors);
-      break;
-    case Instruction::Invoke:
-      UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
-                                                       *this, AliveSuccessors);
-      break;
-    case Instruction::Br:
-      UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
-                                                       *this, AliveSuccessors);
-      break;
-    case Instruction::Switch:
-      UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
-                                                       *this, AliveSuccessors);
-      break;
-    }
-
-    if (UsedAssumedInformation) {
-      NewToBeExploredFrom.insert(I);
-    } else if (AliveSuccessors.empty() ||
-               (I->isTerminator() &&
-                AliveSuccessors.size() < I->getNumSuccessors())) {
-      if (KnownDeadEnds.insert(I))
-        Change = ChangeStatus::CHANGED;
-    }
-
-    LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
-                      << AliveSuccessors.size() << " UsedAssumedInformation: "
-                      << UsedAssumedInformation << "\n");
-
-    for (const Instruction *AliveSuccessor : AliveSuccessors) {
-      if (!I->isTerminator()) {
-        assert(AliveSuccessors.size() == 1 &&
-               "Non-terminator expected to have a single successor!");
-        Worklist.push_back(AliveSuccessor);
-      } else {
-        // record the assumed live edge
-        auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
-        if (AssumedLiveEdges.insert(Edge).second)
-          Change = ChangeStatus::CHANGED;
-        if (assumeLive(A, *AliveSuccessor->getParent()))
-          Worklist.push_back(AliveSuccessor);
-      }
-    }
-  }
-
-  // Check if the content of ToBeExploredFrom changed, ignore the order.
-  if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
-      llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
-        return !ToBeExploredFrom.count(I);
-      })) {
-    Change = ChangeStatus::CHANGED;
-    ToBeExploredFrom = std::move(NewToBeExploredFrom);
-  }
-
-  // If we know everything is live there is no need to query for liveness.
-  // Instead, indicating a pessimistic fixpoint will cause the state to be
-  // "invalid" and all queries to be answered conservatively without lookups.
-  // To be in this state we have to (1) finished the exploration and (3) not
-  // discovered any non-trivial dead end and (2) not ruled unreachable code
-  // dead.
-  if (ToBeExploredFrom.empty() &&
-      getAnchorScope()->size() == AssumedLiveBlocks.size() &&
-      llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
-        return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
-      }))
-    return indicatePessimisticFixpoint();
-  return Change;
-}
-
-/// Liveness information for a call sites.
-struct AAIsDeadCallSite final : AAIsDeadFunction {
-  AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
-      : AAIsDeadFunction(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites instead of
-    //       redirecting requests to the callee.
-    llvm_unreachable("Abstract attributes for liveness are not "
-                     "supported for call sites yet!");
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-};
-} // namespace
-
-/// -------------------- Dereferenceable Argument Attribute --------------------
-
-namespace {
-struct AADereferenceableImpl : AADereferenceable {
-  AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
-      : AADereferenceable(IRP, A) {}
-  using StateType = DerefState;
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    Value &V = *getAssociatedValue().stripPointerCasts();
-    SmallVector<Attribute, 4> Attrs;
-    A.getAttrs(getIRPosition(),
-               {Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
-               Attrs, /* IgnoreSubsumingPositions */ false);
-    for (const Attribute &Attr : Attrs)
-      takeKnownDerefBytesMaximum(Attr.getValueAsInt());
-
-    // Ensure we initialize the non-null AA (if necessary).
-    bool IsKnownNonNull;
-    AA::hasAssumedIRAttr<Attribute::NonNull>(
-        A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNonNull);
-
-    bool CanBeNull, CanBeFreed;
-    takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
-        A.getDataLayout(), CanBeNull, CanBeFreed));
-
-    if (Instruction *CtxI = getCtxI())
-      followUsesInMBEC(*this, A, getState(), *CtxI);
-  }
-
-  /// See AbstractAttribute::getState()
-  /// {
-  StateType &getState() override { return *this; }
-  const StateType &getState() const override { return *this; }
-  /// }
-
-  /// Helper function for collecting accessed bytes in must-be-executed-context
-  void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
-                              DerefState &State) {
-    const Value *UseV = U->get();
-    if (!UseV->getType()->isPointerTy())
-      return;
-
-    std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
-    if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
-      return;
-
-    int64_t Offset;
-    const Value *Base = GetPointerBaseWithConstantOffset(
-        Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
-    if (Base && Base == &getAssociatedValue())
-      State.addAccessedBytes(Offset, Loc->Size.getValue());
-  }
-
-  /// See followUsesInMBEC
-  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
-                       AADereferenceable::StateType &State) {
-    bool IsNonNull = false;
-    bool TrackUse = false;
-    int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
-        A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
-    LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
-                      << " for instruction " << *I << "\n");
-
-    addAccessedBytesForUse(A, U, I, State);
-    State.takeKnownDerefBytesMaximum(DerefBytes);
-    return TrackUse;
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    ChangeStatus Change = AADereferenceable::manifest(A);
-    bool IsKnownNonNull;
-    bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
-        A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
-    if (IsAssumedNonNull &&
-        A.hasAttr(getIRPosition(), Attribute::DereferenceableOrNull)) {
-      A.removeAttrs(getIRPosition(), {Attribute::DereferenceableOrNull});
-      return ChangeStatus::CHANGED;
-    }
-    return Change;
-  }
-
-  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                            SmallVectorImpl<Attribute> &Attrs) const override {
-    // TODO: Add *_globally support
-    bool IsKnownNonNull;
-    bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
-        A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
-    if (IsAssumedNonNull)
-      Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
-          Ctx, getAssumedDereferenceableBytes()));
-    else
-      Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
-          Ctx, getAssumedDereferenceableBytes()));
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    if (!getAssumedDereferenceableBytes())
-      return "unknown-dereferenceable";
-    bool IsKnownNonNull;
-    bool IsAssumedNonNull = false;
-    if (A)
-      IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
-          *A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
-    return std::string("dereferenceable") +
-           (IsAssumedNonNull ? "" : "_or_null") +
-           (isAssumedGlobal() ? "_globally" : "") + "<" +
-           std::to_string(getKnownDereferenceableBytes()) + "-" +
-           std::to_string(getAssumedDereferenceableBytes()) + ">" +
-           (!A ? " [non-null is unknown]" : "");
-  }
-};
-
-/// Dereferenceable attribute for a floating value.
-struct AADereferenceableFloating : AADereferenceableImpl {
-  AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
-      : AADereferenceableImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    bool Stripped;
-    bool UsedAssumedInformation = false;
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
-                                      AA::AnyScope, UsedAssumedInformation)) {
-      Values.push_back({getAssociatedValue(), getCtxI()});
-      Stripped = false;
-    } else {
-      Stripped = Values.size() != 1 ||
-                 Values.front().getValue() != &getAssociatedValue();
-    }
-
-    const DataLayout &DL = A.getDataLayout();
-    DerefState T;
-
-    auto VisitValueCB = [&](const Value &V) -> bool {
-      unsigned IdxWidth =
-          DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
-      APInt Offset(IdxWidth, 0);
-      const Value *Base = stripAndAccumulateOffsets(
-          A, *this, &V, DL, Offset, /* GetMinOffset */ false,
-          /* AllowNonInbounds */ true);
-
-      const auto *AA = A.getAAFor<AADereferenceable>(
-          *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
-      int64_t DerefBytes = 0;
-      if (!AA || (!Stripped && this == AA)) {
-        // Use IR information if we did not strip anything.
-        // TODO: track globally.
-        bool CanBeNull, CanBeFreed;
-        DerefBytes =
-            Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
-        T.GlobalState.indicatePessimisticFixpoint();
-      } else {
-        const DerefState &DS = AA->getState();
-        DerefBytes = DS.DerefBytesState.getAssumed();
-        T.GlobalState &= DS.GlobalState;
-      }
-
-      // For now we do not try to "increase" dereferenceability due to negative
-      // indices as we first have to come up with code to deal with loops and
-      // for overflows of the dereferenceable bytes.
-      int64_t OffsetSExt = Offset.getSExtValue();
-      if (OffsetSExt < 0)
-        OffsetSExt = 0;
-
-      T.takeAssumedDerefBytesMinimum(
-          std::max(int64_t(0), DerefBytes - OffsetSExt));
-
-      if (this == AA) {
-        if (!Stripped) {
-          // If nothing was stripped IR information is all we got.
-          T.takeKnownDerefBytesMaximum(
-              std::max(int64_t(0), DerefBytes - OffsetSExt));
-          T.indicatePessimisticFixpoint();
-        } else if (OffsetSExt > 0) {
-          // If something was stripped but there is circular reasoning we look
-          // for the offset. If it is positive we basically decrease the
-          // dereferenceable bytes in a circular loop now, which will simply
-          // drive them down to the known value in a very slow way which we
-          // can accelerate.
-          T.indicatePessimisticFixpoint();
-        }
-      }
-
-      return T.isValidState();
-    };
-
-    for (const auto &VAC : Values)
-      if (!VisitValueCB(*VAC.getValue()))
-        return indicatePessimisticFixpoint();
-
-    return clampStateAndIndicateChange(getState(), T);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
-  }
-};
-
-/// Dereferenceable attribute for a return value.
-struct AADereferenceableReturned final
-    : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
-  using Base =
-      AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>;
-  AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
-  }
-};
-
-/// Dereferenceable attribute for an argument
-struct AADereferenceableArgument final
-    : AAArgumentFromCallSiteArguments<AADereferenceable,
-                                      AADereferenceableImpl> {
-  using Base =
-      AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
-  AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(dereferenceable)
-  }
-};
-
-/// Dereferenceable attribute for a call site argument.
-struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
-  AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AADereferenceableFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
-  }
-};
-
-/// Dereferenceable attribute deduction for a call site return value.
-struct AADereferenceableCallSiteReturned final
-    : AACalleeToCallSite<AADereferenceable, AADereferenceableImpl> {
-  using Base = AACalleeToCallSite<AADereferenceable, AADereferenceableImpl>;
-  AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CS_ATTR(dereferenceable);
-  }
-};
-} // namespace
-
-// ------------------------ Align Argument Attribute ------------------------
-
-namespace {
-static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
-                                    Value &AssociatedValue, const Use *U,
-                                    const Instruction *I, bool &TrackUse) {
-  // We need to follow common pointer manipulation uses to the accesses they
-  // feed into.
-  if (isa<CastInst>(I)) {
-    // Follow all but ptr2int casts.
-    TrackUse = !isa<PtrToIntInst>(I);
-    return 0;
-  }
-  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
-    if (GEP->hasAllConstantIndices())
-      TrackUse = true;
-    return 0;
-  }
-
-  MaybeAlign MA;
-  if (const auto *CB = dyn_cast<CallBase>(I)) {
-    if (CB->isBundleOperand(U) || CB->isCallee(U))
-      return 0;
-
-    unsigned ArgNo = CB->getArgOperandNo(U);
-    IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
-    // As long as we only use known information there is no need to track
-    // dependences here.
-    auto *AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
-    if (AlignAA)
-      MA = MaybeAlign(AlignAA->getKnownAlign());
-  }
-
-  const DataLayout &DL = A.getDataLayout();
-  const Value *UseV = U->get();
-  if (auto *SI = dyn_cast<StoreInst>(I)) {
-    if (SI->getPointerOperand() == UseV)
-      MA = SI->getAlign();
-  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
-    if (LI->getPointerOperand() == UseV)
-      MA = LI->getAlign();
-  } else if (auto *AI = dyn_cast<AtomicRMWInst>(I)) {
-    if (AI->getPointerOperand() == UseV)
-      MA = AI->getAlign();
-  } else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
-    if (AI->getPointerOperand() == UseV)
-      MA = AI->getAlign();
-  }
-
-  if (!MA || *MA <= QueryingAA.getKnownAlign())
-    return 0;
-
-  unsigned Alignment = MA->value();
-  int64_t Offset;
-
-  if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
-    if (Base == &AssociatedValue) {
-      // BasePointerAddr + Offset = Alignment * Q for some integer Q.
-      // So we can say that the maximum power of two which is a divisor of
-      // gcd(Offset, Alignment) is an alignment.
-
-      uint32_t gcd = std::gcd(uint32_t(abs((int32_t)Offset)), Alignment);
-      Alignment = llvm::bit_floor(gcd);
-    }
-  }
-
-  return Alignment;
-}
-
-struct AAAlignImpl : AAAlign {
-  AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    SmallVector<Attribute, 4> Attrs;
-    A.getAttrs(getIRPosition(), {Attribute::Alignment}, Attrs);
-    for (const Attribute &Attr : Attrs)
-      takeKnownMaximum(Attr.getValueAsInt());
-
-    Value &V = *getAssociatedValue().stripPointerCasts();
-    takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
-
-    if (Instruction *CtxI = getCtxI())
-      followUsesInMBEC(*this, A, getState(), *CtxI);
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
-
-    // Check for users that allow alignment annotations.
-    Value &AssociatedValue = getAssociatedValue();
-    for (const Use &U : AssociatedValue.uses()) {
-      if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
-        if (SI->getPointerOperand() == &AssociatedValue)
-          if (SI->getAlign() < getAssumedAlign()) {
-            STATS_DECLTRACK(AAAlign, Store,
-                            "Number of times alignment added to a store");
-            SI->setAlignment(getAssumedAlign());
-            LoadStoreChanged = ChangeStatus::CHANGED;
-          }
-      } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
-        if (LI->getPointerOperand() == &AssociatedValue)
-          if (LI->getAlign() < getAssumedAlign()) {
-            LI->setAlignment(getAssumedAlign());
-            STATS_DECLTRACK(AAAlign, Load,
-                            "Number of times alignment added to a load");
-            LoadStoreChanged = ChangeStatus::CHANGED;
-          }
-      }
-    }
-
-    ChangeStatus Changed = AAAlign::manifest(A);
-
-    Align InheritAlign =
-        getAssociatedValue().getPointerAlignment(A.getDataLayout());
-    if (InheritAlign >= getAssumedAlign())
-      return LoadStoreChanged;
-    return Changed | LoadStoreChanged;
-  }
-
-  // TODO: Provide a helper to determine the implied ABI alignment and check in
-  //       the existing manifest method and a new one for AAAlignImpl that value
-  //       to avoid making the alignment explicit if it did not improve.
-
-  /// See AbstractAttribute::getDeducedAttributes
-  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                            SmallVectorImpl<Attribute> &Attrs) const override {
-    if (getAssumedAlign() > 1)
-      Attrs.emplace_back(
-          Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
-  }
-
-  /// See followUsesInMBEC
-  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
-                       AAAlign::StateType &State) {
-    bool TrackUse = false;
-
-    unsigned int KnownAlign =
-        getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
-    State.takeKnownMaximum(KnownAlign);
-
-    return TrackUse;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return "align<" + std::to_string(getKnownAlign().value()) + "-" +
-           std::to_string(getAssumedAlign().value()) + ">";
-  }
-};
-
-/// Align attribute for a floating value.
-struct AAAlignFloating : AAAlignImpl {
-  AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    const DataLayout &DL = A.getDataLayout();
-
-    bool Stripped;
-    bool UsedAssumedInformation = false;
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
-                                      AA::AnyScope, UsedAssumedInformation)) {
-      Values.push_back({getAssociatedValue(), getCtxI()});
-      Stripped = false;
-    } else {
-      Stripped = Values.size() != 1 ||
-                 Values.front().getValue() != &getAssociatedValue();
-    }
-
-    StateType T;
-    auto VisitValueCB = [&](Value &V) -> bool {
-      if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
-        return true;
-      const auto *AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
-                                           DepClassTy::REQUIRED);
-      if (!AA || (!Stripped && this == AA)) {
-        int64_t Offset;
-        unsigned Alignment = 1;
-        if (const Value *Base =
-                GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
-          // TODO: Use AAAlign for the base too.
-          Align PA = Base->getPointerAlignment(DL);
-          // BasePointerAddr + Offset = Alignment * Q for some integer Q.
-          // So we can say that the maximum power of two which is a divisor of
-          // gcd(Offset, Alignment) is an alignment.
-
-          uint32_t gcd =
-              std::gcd(uint32_t(abs((int32_t)Offset)), uint32_t(PA.value()));
-          Alignment = llvm::bit_floor(gcd);
-        } else {
-          Alignment = V.getPointerAlignment(DL).value();
-        }
-        // Use only IR information if we did not strip anything.
-        T.takeKnownMaximum(Alignment);
-        T.indicatePessimisticFixpoint();
-      } else {
-        // Use abstract attribute information.
-        const AAAlign::StateType &DS = AA->getState();
-        T ^= DS;
-      }
-      return T.isValidState();
-    };
-
-    for (const auto &VAC : Values) {
-      if (!VisitValueCB(*VAC.getValue()))
-        return indicatePessimisticFixpoint();
-    }
-
-    //  TODO: If we know we visited all incoming values, thus no are assumed
-    //  dead, we can take the known information from the state T.
-    return clampStateAndIndicateChange(getState(), T);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
-};
-
-/// Align attribute for function return value.
-struct AAAlignReturned final
-    : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
-  using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
-  AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
-};
-
-/// Align attribute for function argument.
-struct AAAlignArgument final
-    : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
-  using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
-  AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // If the associated argument is involved in a must-tail call we give up
-    // because we would need to keep the argument alignments of caller and
-    // callee in-sync. Just does not seem worth the trouble right now.
-    if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
-      return ChangeStatus::UNCHANGED;
-    return Base::manifest(A);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
-};
-
-struct AAAlignCallSiteArgument final : AAAlignFloating {
-  AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAAlignFloating(IRP, A) {}
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // If the associated argument is involved in a must-tail call we give up
-    // because we would need to keep the argument alignments of caller and
-    // callee in-sync. Just does not seem worth the trouble right now.
-    if (Argument *Arg = getAssociatedArgument())
-      if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
-        return ChangeStatus::UNCHANGED;
-    ChangeStatus Changed = AAAlignImpl::manifest(A);
-    Align InheritAlign =
-        getAssociatedValue().getPointerAlignment(A.getDataLayout());
-    if (InheritAlign >= getAssumedAlign())
-      Changed = ChangeStatus::UNCHANGED;
-    return Changed;
-  }
-
-  /// See AbstractAttribute::updateImpl(Attributor &A).
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Changed = AAAlignFloating::updateImpl(A);
-    if (Argument *Arg = getAssociatedArgument()) {
-      // We only take known information from the argument
-      // so we do not need to track a dependence.
-      const auto *ArgAlignAA = A.getAAFor<AAAlign>(
-          *this, IRPosition::argument(*Arg), DepClassTy::NONE);
-      if (ArgAlignAA)
-        takeKnownMaximum(ArgAlignAA->getKnownAlign().value());
-    }
-    return Changed;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
-};
-
-/// Align attribute deduction for a call site return value.
-struct AAAlignCallSiteReturned final
-    : AACalleeToCallSite<AAAlign, AAAlignImpl> {
-  using Base = AACalleeToCallSite<AAAlign, AAAlignImpl>;
-  AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
-};
-} // namespace
-
-/// ------------------ Function No-Return Attribute ----------------------------
-namespace {
-struct AANoReturnImpl : public AANoReturn {
-  AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::NoReturn>(
-        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "noreturn" : "may-return";
-  }
-
-  /// See AbstractAttribute::updateImpl(Attributor &A).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto CheckForNoReturn = [](Instruction &) { return false; };
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllInstructions(CheckForNoReturn, *this,
-                                   {(unsigned)Instruction::Ret},
-                                   UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-    return ChangeStatus::UNCHANGED;
-  }
-};
-
-struct AANoReturnFunction final : AANoReturnImpl {
-  AANoReturnFunction(const IRPosition &IRP, Attributor &A)
-      : AANoReturnImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
-};
-
-/// NoReturn attribute deduction for a call sites.
-struct AANoReturnCallSite final
-    : AACalleeToCallSite<AANoReturn, AANoReturnImpl> {
-  AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoReturn, AANoReturnImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
-};
-} // namespace
-
-/// ----------------------- Instance Info ---------------------------------
-
-namespace {
-/// A class to hold the state of for no-capture attributes.
-struct AAInstanceInfoImpl : public AAInstanceInfo {
-  AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
-      : AAInstanceInfo(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    Value &V = getAssociatedValue();
-    if (auto *C = dyn_cast<Constant>(&V)) {
-      if (C->isThreadDependent())
-        indicatePessimisticFixpoint();
-      else
-        indicateOptimisticFixpoint();
-      return;
-    }
-    if (auto *CB = dyn_cast<CallBase>(&V))
-      if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
-          !CB->mayReadFromMemory()) {
-        indicateOptimisticFixpoint();
-        return;
-      }
-    if (auto *I = dyn_cast<Instruction>(&V)) {
-      const auto *CI =
-          A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(
-              *I->getFunction());
-      if (mayBeInCycle(CI, I, /* HeaderOnly */ false)) {
-        indicatePessimisticFixpoint();
-        return;
-      }
-    }
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-
-    Value &V = getAssociatedValue();
-    const Function *Scope = nullptr;
-    if (auto *I = dyn_cast<Instruction>(&V))
-      Scope = I->getFunction();
-    if (auto *A = dyn_cast<Argument>(&V)) {
-      Scope = A->getParent();
-      if (!Scope->hasLocalLinkage())
-        return Changed;
-    }
-    if (!Scope)
-      return indicateOptimisticFixpoint();
-
-    bool IsKnownNoRecurse;
-    if (AA::hasAssumedIRAttr<Attribute::NoRecurse>(
-            A, this, IRPosition::function(*Scope), DepClassTy::OPTIONAL,
-            IsKnownNoRecurse))
-      return Changed;
-
-    auto UsePred = [&](const Use &U, bool &Follow) {
-      const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
-      if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
-          isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
-        Follow = true;
-        return true;
-      }
-      if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
-          (isa<StoreInst>(UserI) &&
-           cast<StoreInst>(UserI)->getValueOperand() != U.get()))
-        return true;
-      if (auto *CB = dyn_cast<CallBase>(UserI)) {
-        // This check is not guaranteeing uniqueness but for now that we cannot
-        // end up with two versions of \p U thinking it was one.
-        auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
-        if (!Callee || !Callee->hasLocalLinkage())
-          return true;
-        if (!CB->isArgOperand(&U))
-          return false;
-        const auto *ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
-            *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
-            DepClassTy::OPTIONAL);
-        if (!ArgInstanceInfoAA ||
-            !ArgInstanceInfoAA->isAssumedUniqueForAnalysis())
-          return false;
-        // If this call base might reach the scope again we might forward the
-        // argument back here. This is very conservative.
-        if (AA::isPotentiallyReachable(
-                A, *CB, *Scope, *this, /* ExclusionSet */ nullptr,
-                [Scope](const Function &Fn) { return &Fn != Scope; }))
-          return false;
-        return true;
-      }
-      return false;
-    };
-
-    auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
-      if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
-        auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
-        if ((isa<AllocaInst>(Ptr) || isNoAliasCall(Ptr)) &&
-            AA::isDynamicallyUnique(A, *this, *Ptr))
-          return true;
-      }
-      return false;
-    };
-
-    if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
-                           DepClassTy::OPTIONAL,
-                           /* IgnoreDroppableUses */ true, EquivalentUseCB))
-      return indicatePessimisticFixpoint();
-
-    return Changed;
-  }
-
-  /// See AbstractState::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-};
-
-/// InstanceInfo attribute for floating values.
-struct AAInstanceInfoFloating : AAInstanceInfoImpl {
-  AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
-      : AAInstanceInfoImpl(IRP, A) {}
-};
-
-/// NoCapture attribute for function arguments.
-struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
-  AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
-      : AAInstanceInfoFloating(IRP, A) {}
-};
-
-/// InstanceInfo attribute for call site arguments.
-struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
-  AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAInstanceInfoImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Argument *Arg = getAssociatedArgument();
-    if (!Arg)
-      return indicatePessimisticFixpoint();
-    const IRPosition &ArgPos = IRPosition::argument(*Arg);
-    auto *ArgAA =
-        A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
-    if (!ArgAA)
-      return indicatePessimisticFixpoint();
-    return clampStateAndIndicateChange(getState(), ArgAA->getState());
-  }
-};
-
-/// InstanceInfo attribute for function return value.
-struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
-  AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
-      : AAInstanceInfoImpl(IRP, A) {
-    llvm_unreachable("InstanceInfo is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    llvm_unreachable("InstanceInfo is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable("InstanceInfo is not applicable to function returns!");
-  }
-};
-
-/// InstanceInfo attribute deduction for a call site return value.
-struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
-  AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAInstanceInfoFloating(IRP, A) {}
-};
-} // namespace
-
-/// ----------------------- Variable Capturing ---------------------------------
-bool AANoCapture::isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                                Attribute::AttrKind ImpliedAttributeKind,
-                                bool IgnoreSubsumingPositions) {
-  assert(ImpliedAttributeKind == Attribute::NoCapture &&
-         "Unexpected attribute kind");
-  Value &V = IRP.getAssociatedValue();
-  if (!IRP.isArgumentPosition())
-    return V.use_empty();
-
-  // You cannot "capture" null in the default address space.
-  if (isa<UndefValue>(V) || (isa<ConstantPointerNull>(V) &&
-                             V.getType()->getPointerAddressSpace() == 0)) {
-    return true;
-  }
-
-  if (A.hasAttr(IRP, {Attribute::NoCapture},
-                /* IgnoreSubsumingPositions */ true, Attribute::NoCapture))
-    return true;
-
-  if (IRP.getPositionKind() == IRP_CALL_SITE_ARGUMENT)
-    if (Argument *Arg = IRP.getAssociatedArgument())
-      if (A.hasAttr(IRPosition::argument(*Arg),
-                    {Attribute::NoCapture, Attribute::ByVal},
-                    /* IgnoreSubsumingPositions */ true)) {
-        A.manifestAttrs(IRP,
-                        Attribute::get(V.getContext(), Attribute::NoCapture));
-        return true;
-      }
-
-  if (const Function *F = IRP.getAssociatedFunction()) {
-    // Check what state the associated function can actually capture.
-    AANoCapture::StateType State;
-    determineFunctionCaptureCapabilities(IRP, *F, State);
-    if (State.isKnown(NO_CAPTURE)) {
-      A.manifestAttrs(IRP,
-                      Attribute::get(V.getContext(), Attribute::NoCapture));
-      return true;
-    }
-  }
-
-  return false;
-}
-
-/// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
-/// depending on the ability of the function associated with \p IRP to capture
-/// state in memory and through "returning/throwing", respectively.
-void AANoCapture::determineFunctionCaptureCapabilities(const IRPosition &IRP,
-                                                       const Function &F,
-                                                       BitIntegerState &State) {
-  // TODO: Once we have memory behavior attributes we should use them here.
-
-  // If we know we cannot communicate or write to memory, we do not care about
-  // ptr2int anymore.
-  bool ReadOnly = F.onlyReadsMemory();
-  bool NoThrow = F.doesNotThrow();
-  bool IsVoidReturn = F.getReturnType()->isVoidTy();
-  if (ReadOnly && NoThrow && IsVoidReturn) {
-    State.addKnownBits(NO_CAPTURE);
-    return;
-  }
-
-  // A function cannot capture state in memory if it only reads memory, it can
-  // however return/throw state and the state might be influenced by the
-  // pointer value, e.g., loading from a returned pointer might reveal a bit.
-  if (ReadOnly)
-    State.addKnownBits(NOT_CAPTURED_IN_MEM);
-
-  // A function cannot communicate state back if it does not through
-  // exceptions and doesn not return values.
-  if (NoThrow && IsVoidReturn)
-    State.addKnownBits(NOT_CAPTURED_IN_RET);
-
-  // Check existing "returned" attributes.
-  int ArgNo = IRP.getCalleeArgNo();
-  if (!NoThrow || ArgNo < 0 ||
-      !F.getAttributes().hasAttrSomewhere(Attribute::Returned))
-    return;
-
-  for (unsigned U = 0, E = F.arg_size(); U < E; ++U)
-    if (F.hasParamAttribute(U, Attribute::Returned)) {
-      if (U == unsigned(ArgNo))
-        State.removeAssumedBits(NOT_CAPTURED_IN_RET);
-      else if (ReadOnly)
-        State.addKnownBits(NO_CAPTURE);
-      else
-        State.addKnownBits(NOT_CAPTURED_IN_RET);
-      break;
-    }
-}
-
-namespace {
-/// A class to hold the state of for no-capture attributes.
-struct AANoCaptureImpl : public AANoCapture {
-  AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    bool IsKnown;
-    assert(!AA::hasAssumedIRAttr<Attribute::NoCapture>(
-        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
-    (void)IsKnown;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override;
-
-  /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
-  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                            SmallVectorImpl<Attribute> &Attrs) const override {
-    if (!isAssumedNoCaptureMaybeReturned())
-      return;
-
-    if (isArgumentPosition()) {
-      if (isAssumedNoCapture())
-        Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
-      else if (ManifestInternal)
-        Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
-    }
-  }
-
-  /// See AbstractState::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    if (isKnownNoCapture())
-      return "known not-captured";
-    if (isAssumedNoCapture())
-      return "assumed not-captured";
-    if (isKnownNoCaptureMaybeReturned())
-      return "known not-captured-maybe-returned";
-    if (isAssumedNoCaptureMaybeReturned())
-      return "assumed not-captured-maybe-returned";
-    return "assumed-captured";
-  }
-
-  /// Check the use \p U and update \p State accordingly. Return true if we
-  /// should continue to update the state.
-  bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
-                bool &Follow) {
-    Instruction *UInst = cast<Instruction>(U.getUser());
-    LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
-                      << *UInst << "\n");
-
-    // Deal with ptr2int by following uses.
-    if (isa<PtrToIntInst>(UInst)) {
-      LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
-      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
-                          /* Return */ true);
-    }
-
-    // For stores we already checked if we can follow them, if they make it
-    // here we give up.
-    if (isa<StoreInst>(UInst))
-      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
-                          /* Return */ true);
-
-    // Explicitly catch return instructions.
-    if (isa<ReturnInst>(UInst)) {
-      if (UInst->getFunction() == getAnchorScope())
-        return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
-                            /* Return */ true);
-      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
-                          /* Return */ true);
-    }
-
-    // For now we only use special logic for call sites. However, the tracker
-    // itself knows about a lot of other non-capturing cases already.
-    auto *CB = dyn_cast<CallBase>(UInst);
-    if (!CB || !CB->isArgOperand(&U))
-      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
-                          /* Return */ true);
-
-    unsigned ArgNo = CB->getArgOperandNo(&U);
-    const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
-    // If we have a abstract no-capture attribute for the argument we can use
-    // it to justify a non-capture attribute here. This allows recursion!
-    bool IsKnownNoCapture;
-    const AANoCapture *ArgNoCaptureAA = nullptr;
-    bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
-        A, this, CSArgPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
-        &ArgNoCaptureAA);
-    if (IsAssumedNoCapture)
-      return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
-                          /* Return */ false);
-    if (ArgNoCaptureAA && ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned()) {
-      Follow = true;
-      return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
-                          /* Return */ false);
-    }
-
-    // Lastly, we could not find a reason no-capture can be assumed so we don't.
-    return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
-                        /* Return */ true);
-  }
-
-  /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
-  /// \p CapturedInRet, then return true if we should continue updating the
-  /// state.
-  static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
-                           bool CapturedInInt, bool CapturedInRet) {
-    LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
-                      << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
-    if (CapturedInMem)
-      State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
-    if (CapturedInInt)
-      State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
-    if (CapturedInRet)
-      State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
-    return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
-  }
-};
-
-ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
-  const IRPosition &IRP = getIRPosition();
-  Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
-                                  : &IRP.getAssociatedValue();
-  if (!V)
-    return indicatePessimisticFixpoint();
-
-  const Function *F =
-      isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
-  assert(F && "Expected a function!");
-  const IRPosition &FnPos = IRPosition::function(*F);
-
-  AANoCapture::StateType T;
-
-  // Readonly means we cannot capture through memory.
-  bool IsKnown;
-  if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
-    T.addKnownBits(NOT_CAPTURED_IN_MEM);
-    if (IsKnown)
-      addKnownBits(NOT_CAPTURED_IN_MEM);
-  }
-
-  // Make sure all returned values are different than the underlying value.
-  // TODO: we could do this in a more sophisticated way inside
-  //       AAReturnedValues, e.g., track all values that escape through returns
-  //       directly somehow.
-  auto CheckReturnedArgs = [&](bool &UsedAssumedInformation) {
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(IRPosition::returned(*F), this, Values,
-                                      AA::ValueScope::Intraprocedural,
-                                      UsedAssumedInformation))
-      return false;
-    bool SeenConstant = false;
-    for (const AA::ValueAndContext &VAC : Values) {
-      if (isa<Constant>(VAC.getValue())) {
-        if (SeenConstant)
-          return false;
-        SeenConstant = true;
-      } else if (!isa<Argument>(VAC.getValue()) ||
-                 VAC.getValue() == getAssociatedArgument())
-        return false;
-    }
-    return true;
-  };
-
-  bool IsKnownNoUnwind;
-  if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
-          A, this, FnPos, DepClassTy::OPTIONAL, IsKnownNoUnwind)) {
-    bool IsVoidTy = F->getReturnType()->isVoidTy();
-    bool UsedAssumedInformation = false;
-    if (IsVoidTy || CheckReturnedArgs(UsedAssumedInformation)) {
-      T.addKnownBits(NOT_CAPTURED_IN_RET);
-      if (T.isKnown(NOT_CAPTURED_IN_MEM))
-        return ChangeStatus::UNCHANGED;
-      if (IsKnownNoUnwind && (IsVoidTy || !UsedAssumedInformation)) {
-        addKnownBits(NOT_CAPTURED_IN_RET);
-        if (isKnown(NOT_CAPTURED_IN_MEM))
-          return indicateOptimisticFixpoint();
-      }
-    }
-  }
-
-  auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
-    const auto *DerefAA = A.getAAFor<AADereferenceable>(
-        *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
-    return DerefAA && DerefAA->getAssumedDereferenceableBytes();
-  };
-
-  auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
-    switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
-    case UseCaptureKind::NO_CAPTURE:
-      return true;
-    case UseCaptureKind::MAY_CAPTURE:
-      return checkUse(A, T, U, Follow);
-    case UseCaptureKind::PASSTHROUGH:
-      Follow = true;
-      return true;
-    }
-    llvm_unreachable("Unexpected use capture kind!");
-  };
-
-  if (!A.checkForAllUses(UseCheck, *this, *V))
-    return indicatePessimisticFixpoint();
-
-  AANoCapture::StateType &S = getState();
-  auto Assumed = S.getAssumed();
-  S.intersectAssumedBits(T.getAssumed());
-  if (!isAssumedNoCaptureMaybeReturned())
-    return indicatePessimisticFixpoint();
-  return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
-                                   : ChangeStatus::CHANGED;
-}
-
-/// NoCapture attribute for function arguments.
-struct AANoCaptureArgument final : AANoCaptureImpl {
-  AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
-      : AANoCaptureImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
-};
-
-/// NoCapture attribute for call site arguments.
-struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
-  AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AANoCaptureImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Argument *Arg = getAssociatedArgument();
-    if (!Arg)
-      return indicatePessimisticFixpoint();
-    const IRPosition &ArgPos = IRPosition::argument(*Arg);
-    bool IsKnownNoCapture;
-    const AANoCapture *ArgAA = nullptr;
-    if (AA::hasAssumedIRAttr<Attribute::NoCapture>(
-            A, this, ArgPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
-            &ArgAA))
-      return ChangeStatus::UNCHANGED;
-    if (!ArgAA || !ArgAA->isAssumedNoCaptureMaybeReturned())
-      return indicatePessimisticFixpoint();
-    return clampStateAndIndicateChange(getState(), ArgAA->getState());
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
-};
-
-/// NoCapture attribute for floating values.
-struct AANoCaptureFloating final : AANoCaptureImpl {
-  AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
-      : AANoCaptureImpl(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(nocapture)
-  }
-};
-
-/// NoCapture attribute for function return value.
-struct AANoCaptureReturned final : AANoCaptureImpl {
-  AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
-      : AANoCaptureImpl(IRP, A) {
-    llvm_unreachable("NoCapture is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    llvm_unreachable("NoCapture is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable("NoCapture is not applicable to function returns!");
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-};
-
-/// NoCapture attribute deduction for a call site return value.
-struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
-  AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AANoCaptureImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    const Function *F = getAnchorScope();
-    // Check what state the associated function can actually capture.
-    determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(nocapture)
-  }
-};
-} // namespace
-
-/// ------------------ Value Simplify Attribute ----------------------------
-
-bool ValueSimplifyStateType::unionAssumed(std::optional<Value *> Other) {
-  // FIXME: Add a typecast support.
-  SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
-      SimplifiedAssociatedValue, Other, Ty);
-  if (SimplifiedAssociatedValue == std::optional<Value *>(nullptr))
-    return false;
-
-  LLVM_DEBUG({
-    if (SimplifiedAssociatedValue)
-      dbgs() << "[ValueSimplify] is assumed to be "
-             << **SimplifiedAssociatedValue << "\n";
-    else
-      dbgs() << "[ValueSimplify] is assumed to be <none>\n";
-  });
-  return true;
-}
-
-namespace {
-struct AAValueSimplifyImpl : AAValueSimplify {
-  AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplify(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    if (getAssociatedValue().getType()->isVoidTy())
-      indicatePessimisticFixpoint();
-    if (A.hasSimplificationCallback(getIRPosition()))
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    LLVM_DEBUG({
-      dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
-      if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
-        dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
-    });
-    return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
-                          : "not-simple";
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-
-  /// See AAValueSimplify::getAssumedSimplifiedValue()
-  std::optional<Value *>
-  getAssumedSimplifiedValue(Attributor &A) const override {
-    return SimplifiedAssociatedValue;
-  }
-
-  /// Ensure the return value is \p V with type \p Ty, if not possible return
-  /// nullptr. If \p Check is true we will only verify such an operation would
-  /// suceed and return a non-nullptr value if that is the case. No IR is
-  /// generated or modified.
-  static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
-                           bool Check) {
-    if (auto *TypedV = AA::getWithType(V, Ty))
-      return TypedV;
-    if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
-      return Check ? &V
-                   : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
-                         &V, &Ty, "", CtxI->getIterator());
-    return nullptr;
-  }
-
-  /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
-  /// If \p Check is true we will only verify such an operation would suceed and
-  /// return a non-nullptr value if that is the case. No IR is generated or
-  /// modified.
-  static Value *reproduceInst(Attributor &A,
-                              const AbstractAttribute &QueryingAA,
-                              Instruction &I, Type &Ty, Instruction *CtxI,
-                              bool Check, ValueToValueMapTy &VMap) {
-    assert(CtxI && "Cannot reproduce an instruction without context!");
-    if (Check && (I.mayReadFromMemory() ||
-                  !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
-                                                /* TLI */ nullptr)))
-      return nullptr;
-    for (Value *Op : I.operands()) {
-      Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
-      if (!NewOp) {
-        assert(Check && "Manifest of new value unexpectedly failed!");
-        return nullptr;
-      }
-      if (!Check)
-        VMap[Op] = NewOp;
-    }
-    if (Check)
-      return &I;
-
-    Instruction *CloneI = I.clone();
-    // TODO: Try to salvage debug information here.
-    CloneI->setDebugLoc(DebugLoc());
-    VMap[&I] = CloneI;
-    CloneI->insertBefore(CtxI);
-    RemapInstruction(CloneI, VMap);
-    return CloneI;
-  }
-
-  /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
-  /// If \p Check is true we will only verify such an operation would suceed and
-  /// return a non-nullptr value if that is the case. No IR is generated or
-  /// modified.
-  static Value *reproduceValue(Attributor &A,
-                               const AbstractAttribute &QueryingAA, Value &V,
-                               Type &Ty, Instruction *CtxI, bool Check,
-                               ValueToValueMapTy &VMap) {
-    if (const auto &NewV = VMap.lookup(&V))
-      return NewV;
-    bool UsedAssumedInformation = false;
-    std::optional<Value *> SimpleV = A.getAssumedSimplified(
-        V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
-    if (!SimpleV.has_value())
-      return PoisonValue::get(&Ty);
-    Value *EffectiveV = &V;
-    if (*SimpleV)
-      EffectiveV = *SimpleV;
-    if (auto *C = dyn_cast<Constant>(EffectiveV))
-      return C;
-    if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
-                                      A.getInfoCache()))
-      return ensureType(A, *EffectiveV, Ty, CtxI, Check);
-    if (auto *I = dyn_cast<Instruction>(EffectiveV))
-      if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
-        return ensureType(A, *NewV, Ty, CtxI, Check);
-    return nullptr;
-  }
-
-  /// Return a value we can use as replacement for the associated one, or
-  /// nullptr if we don't have one that makes sense.
-  Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
-    Value *NewV = SimplifiedAssociatedValue
-                      ? *SimplifiedAssociatedValue
-                      : UndefValue::get(getAssociatedType());
-    if (NewV && NewV != &getAssociatedValue()) {
-      ValueToValueMapTy VMap;
-      // First verify we can reprduce the value with the required type at the
-      // context location before we actually start modifying the IR.
-      if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
-                         /* CheckOnly */ true, VMap))
-        return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
-                              /* CheckOnly */ false, VMap);
-    }
-    return nullptr;
-  }
-
-  /// Helper function for querying AAValueSimplify and updating candidate.
-  /// \param IRP The value position we are trying to unify with SimplifiedValue
-  bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
-                      const IRPosition &IRP, bool Simplify = true) {
-    bool UsedAssumedInformation = false;
-    std::optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
-    if (Simplify)
-      QueryingValueSimplified = A.getAssumedSimplified(
-          IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
-    return unionAssumed(QueryingValueSimplified);
-  }
-
-  /// Returns a candidate is found or not
-  template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
-    if (!getAssociatedValue().getType()->isIntegerTy())
-      return false;
-
-    // This will also pass the call base context.
-    const auto *AA =
-        A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
-    if (!AA)
-      return false;
-
-    std::optional<Constant *> COpt = AA->getAssumedConstant(A);
-
-    if (!COpt) {
-      SimplifiedAssociatedValue = std::nullopt;
-      A.recordDependence(*AA, *this, DepClassTy::OPTIONAL);
-      return true;
-    }
-    if (auto *C = *COpt) {
-      SimplifiedAssociatedValue = C;
-      A.recordDependence(*AA, *this, DepClassTy::OPTIONAL);
-      return true;
-    }
-    return false;
-  }
-
-  bool askSimplifiedValueForOtherAAs(Attributor &A) {
-    if (askSimplifiedValueFor<AAValueConstantRange>(A))
-      return true;
-    if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
-      return true;
-    return false;
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    for (auto &U : getAssociatedValue().uses()) {
-      // Check if we need to adjust the insertion point to make sure the IR is
-      // valid.
-      Instruction *IP = dyn_cast<Instruction>(U.getUser());
-      if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
-        IP = PHI->getIncomingBlock(U)->getTerminator();
-      if (auto *NewV = manifestReplacementValue(A, IP)) {
-        LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
-                          << " -> " << *NewV << " :: " << *this << "\n");
-        if (A.changeUseAfterManifest(U, *NewV))
-          Changed = ChangeStatus::CHANGED;
-      }
-    }
-
-    return Changed | AAValueSimplify::manifest(A);
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...).
-  ChangeStatus indicatePessimisticFixpoint() override {
-    SimplifiedAssociatedValue = &getAssociatedValue();
-    return AAValueSimplify::indicatePessimisticFixpoint();
-  }
-};
-
-struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
-  AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyImpl(IRP, A) {}
-
-  void initialize(Attributor &A) override {
-    AAValueSimplifyImpl::initialize(A);
-    if (A.hasAttr(getIRPosition(),
-                  {Attribute::InAlloca, Attribute::Preallocated,
-                   Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
-                  /* IgnoreSubsumingPositions */ true))
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // Byval is only replacable if it is readonly otherwise we would write into
-    // the replaced value and not the copy that byval creates implicitly.
-    Argument *Arg = getAssociatedArgument();
-    if (Arg->hasByValAttr()) {
-      // TODO: We probably need to verify synchronization is not an issue, e.g.,
-      //       there is no race by not copying a constant byval.
-      bool IsKnown;
-      if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
-        return indicatePessimisticFixpoint();
-    }
-
-    auto Before = SimplifiedAssociatedValue;
-
-    auto PredForCallSite = [&](AbstractCallSite ACS) {
-      const IRPosition &ACSArgPos =
-          IRPosition::callsite_argument(ACS, getCallSiteArgNo());
-      // Check if a coresponding argument was found or if it is on not
-      // associated (which can happen for callback calls).
-      if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
-        return false;
-
-      // Simplify the argument operand explicitly and check if the result is
-      // valid in the current scope. This avoids refering to simplified values
-      // in other functions, e.g., we don't want to say a an argument in a
-      // static function is actually an argument in a different function.
-      bool UsedAssumedInformation = false;
-      std::optional<Constant *> SimpleArgOp =
-          A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
-      if (!SimpleArgOp)
-        return true;
-      if (!*SimpleArgOp)
-        return false;
-      if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
-        return false;
-      return unionAssumed(*SimpleArgOp);
-    };
-
-    // Generate a answer specific to a call site context.
-    bool Success;
-    bool UsedAssumedInformation = false;
-    if (hasCallBaseContext() &&
-        getCallBaseContext()->getCalledOperand() == Arg->getParent())
-      Success = PredForCallSite(
-          AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
-    else
-      Success = A.checkForAllCallSites(PredForCallSite, *this, true,
-                                       UsedAssumedInformation);
-
-    if (!Success)
-      if (!askSimplifiedValueForOtherAAs(A))
-        return indicatePessimisticFixpoint();
-
-    // If a candidate was found in this update, return CHANGED.
-    return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
-                                               : ChangeStatus ::CHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(value_simplify)
-  }
-};
-
-struct AAValueSimplifyReturned : AAValueSimplifyImpl {
-  AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyImpl(IRP, A) {}
-
-  /// See AAValueSimplify::getAssumedSimplifiedValue()
-  std::optional<Value *>
-  getAssumedSimplifiedValue(Attributor &A) const override {
-    if (!isValidState())
-      return nullptr;
-    return SimplifiedAssociatedValue;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto Before = SimplifiedAssociatedValue;
-
-    auto ReturnInstCB = [&](Instruction &I) {
-      auto &RI = cast<ReturnInst>(I);
-      return checkAndUpdate(
-          A, *this,
-          IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
-    };
-
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
-                                   UsedAssumedInformation))
-      if (!askSimplifiedValueForOtherAAs(A))
-        return indicatePessimisticFixpoint();
-
-    // If a candidate was found in this update, return CHANGED.
-    return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
-                                               : ChangeStatus ::CHANGED;
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    // We queried AAValueSimplify for the returned values so they will be
-    // replaced if a simplified form was found. Nothing to do here.
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(value_simplify)
-  }
-};
-
-struct AAValueSimplifyFloating : AAValueSimplifyImpl {
-  AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAValueSimplifyImpl::initialize(A);
-    Value &V = getAnchorValue();
-
-    // TODO: add other stuffs
-    if (isa<Constant>(V))
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto Before = SimplifiedAssociatedValue;
-    if (!askSimplifiedValueForOtherAAs(A))
-      return indicatePessimisticFixpoint();
-
-    // If a candidate was found in this update, return CHANGED.
-    return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
-                                               : ChangeStatus ::CHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
-  }
-};
-
-struct AAValueSimplifyFunction : AAValueSimplifyImpl {
-  AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    SimplifiedAssociatedValue = nullptr;
-    indicateOptimisticFixpoint();
-  }
-  /// See AbstractAttribute::initialize(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable(
-        "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
-  }
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FN_ATTR(value_simplify)
-  }
-};
-
-struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
-  AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyFunction(IRP, A) {}
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CS_ATTR(value_simplify)
-  }
-};
-
-struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
-  AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyImpl(IRP, A) {}
-
-  void initialize(Attributor &A) override {
-    AAValueSimplifyImpl::initialize(A);
-    Function *Fn = getAssociatedFunction();
-    assert(Fn && "Did expect an associted function");
-    for (Argument &Arg : Fn->args()) {
-      if (Arg.hasReturnedAttr()) {
-        auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
-                                                 Arg.getArgNo());
-        if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
-            checkAndUpdate(A, *this, IRP))
-          indicateOptimisticFixpoint();
-        else
-          indicatePessimisticFixpoint();
-        return;
-      }
-    }
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    return indicatePessimisticFixpoint();
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(value_simplify)
-  }
-};
-
-struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
-  AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAValueSimplifyFloating(IRP, A) {}
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    // TODO: We should avoid simplification duplication to begin with.
-    auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
-        IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
-    if (FloatAA && FloatAA->getState().isValidState())
-      return Changed;
-
-    if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
-      Use &U = cast<CallBase>(&getAnchorValue())
-                   ->getArgOperandUse(getCallSiteArgNo());
-      if (A.changeUseAfterManifest(U, *NewV))
-        Changed = ChangeStatus::CHANGED;
-    }
-
-    return Changed | AAValueSimplify::manifest(A);
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(value_simplify)
-  }
-};
-} // namespace
-
-/// ----------------------- Heap-To-Stack Conversion ---------------------------
-namespace {
-struct AAHeapToStackFunction final : public AAHeapToStack {
-
-  struct AllocationInfo {
-    /// The call that allocates the memory.
-    CallBase *const CB;
-
-    /// The library function id for the allocation.
-    LibFunc LibraryFunctionId = NotLibFunc;
-
-    /// The status wrt. a rewrite.
-    enum {
-      STACK_DUE_TO_USE,
-      STACK_DUE_TO_FREE,
-      INVALID,
-    } Status = STACK_DUE_TO_USE;
-
-    /// Flag to indicate if we encountered a use that might free this allocation
-    /// but which is not in the deallocation infos.
-    bool HasPotentiallyFreeingUnknownUses = false;
-
-    /// Flag to indicate that we should place the new alloca in the function
-    /// entry block rather than where the call site (CB) is.
-    bool MoveAllocaIntoEntry = true;
-
-    /// The set of free calls that use this allocation.
-    SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
-  };
-
-  struct DeallocationInfo {
-    /// The call that deallocates the memory.
-    CallBase *const CB;
-    /// The value freed by the call.
-    Value *FreedOp;
-
-    /// Flag to indicate if we don't know all objects this deallocation might
-    /// free.
-    bool MightFreeUnknownObjects = false;
-
-    /// The set of allocation calls that are potentially freed.
-    SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
-  };
-
-  AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
-      : AAHeapToStack(IRP, A) {}
-
-  ~AAHeapToStackFunction() {
-    // Ensure we call the destructor so we release any memory allocated in the
-    // sets.
-    for (auto &It : AllocationInfos)
-      It.second->~AllocationInfo();
-    for (auto &It : DeallocationInfos)
-      It.second->~DeallocationInfo();
-  }
-
-  void initialize(Attributor &A) override {
-    AAHeapToStack::initialize(A);
-
-    const Function *F = getAnchorScope();
-    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-
-    auto AllocationIdentifierCB = [&](Instruction &I) {
-      CallBase *CB = dyn_cast<CallBase>(&I);
-      if (!CB)
-        return true;
-      if (Value *FreedOp = getFreedOperand(CB, TLI)) {
-        DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB, FreedOp};
-        return true;
-      }
-      // To do heap to stack, we need to know that the allocation itself is
-      // removable once uses are rewritten, and that we can initialize the
-      // alloca to the same pattern as the original allocation result.
-      if (isRemovableAlloc(CB, TLI)) {
-        auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
-        if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
-          AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
-          AllocationInfos[CB] = AI;
-          if (TLI)
-            TLI->getLibFunc(*CB, AI->LibraryFunctionId);
-        }
-      }
-      return true;
-    };
-
-    bool UsedAssumedInformation = false;
-    bool Success = A.checkForAllCallLikeInstructions(
-        AllocationIdentifierCB, *this, UsedAssumedInformation,
-        /* CheckBBLivenessOnly */ false,
-        /* CheckPotentiallyDead */ true);
-    (void)Success;
-    assert(Success && "Did not expect the call base visit callback to fail!");
-
-    Attributor::SimplifictionCallbackTy SCB =
-        [](const IRPosition &, const AbstractAttribute *,
-           bool &) -> std::optional<Value *> { return nullptr; };
-    for (const auto &It : AllocationInfos)
-      A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
-                                       SCB);
-    for (const auto &It : DeallocationInfos)
-      A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
-                                       SCB);
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
-    for (const auto &It : AllocationInfos) {
-      if (It.second->Status == AllocationInfo::INVALID)
-        ++NumInvalidMallocs;
-      else
-        ++NumH2SMallocs;
-    }
-    return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
-           std::to_string(NumInvalidMallocs);
-  }
-
-  /// See AbstractAttribute::trackStatistics().
-  void trackStatistics() const override {
-    STATS_DECL(
-        MallocCalls, Function,
-        "Number of malloc/calloc/aligned_alloc calls converted to allocas");
-    for (const auto &It : AllocationInfos)
-      if (It.second->Status != AllocationInfo::INVALID)
-        ++BUILD_STAT_NAME(MallocCalls, Function);
-  }
-
-  bool isAssumedHeapToStack(const CallBase &CB) const override {
-    if (isValidState())
-      if (AllocationInfo *AI =
-              AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
-        return AI->Status != AllocationInfo::INVALID;
-    return false;
-  }
-
-  bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
-    if (!isValidState())
-      return false;
-
-    for (const auto &It : AllocationInfos) {
-      AllocationInfo &AI = *It.second;
-      if (AI.Status == AllocationInfo::INVALID)
-        continue;
-
-      if (AI.PotentialFreeCalls.count(&CB))
-        return true;
-    }
-
-    return false;
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    assert(getState().isValidState() &&
-           "Attempted to manifest an invalid state!");
-
-    ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
-    Function *F = getAnchorScope();
-    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-
-    for (auto &It : AllocationInfos) {
-      AllocationInfo &AI = *It.second;
-      if (AI.Status == AllocationInfo::INVALID)
-        continue;
-
-      for (CallBase *FreeCall : AI.PotentialFreeCalls) {
-        LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
-        A.deleteAfterManifest(*FreeCall);
-        HasChanged = ChangeStatus::CHANGED;
-      }
-
-      LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
-                        << "\n");
-
-      auto Remark = [&](OptimizationRemark OR) {
-        LibFunc IsAllocShared;
-        if (TLI->getLibFunc(*AI.CB, IsAllocShared))
-          if (IsAllocShared == LibFunc___kmpc_alloc_shared)
-            return OR << "Moving globalized variable to the stack.";
-        return OR << "Moving memory allocation from the heap to the stack.";
-      };
-      if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
-        A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
-      else
-        A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
-
-      const DataLayout &DL = A.getInfoCache().getDL();
-      Value *Size;
-      std::optional<APInt> SizeAPI = getSize(A, *this, AI);
-      if (SizeAPI) {
-        Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
-      } else {
-        LLVMContext &Ctx = AI.CB->getContext();
-        ObjectSizeOpts Opts;
-        ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
-        SizeOffsetValue SizeOffsetPair = Eval.compute(AI.CB);
-        assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
-               cast<ConstantInt>(SizeOffsetPair.Offset)->isZero());
-        Size = SizeOffsetPair.Size;
-      }
-
-      BasicBlock::iterator IP = AI.MoveAllocaIntoEntry
-                                    ? F->getEntryBlock().begin()
-                                    : AI.CB->getIterator();
-
-      Align Alignment(1);
-      if (MaybeAlign RetAlign = AI.CB->getRetAlign())
-        Alignment = std::max(Alignment, *RetAlign);
-      if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
-        std::optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
-        assert(AlignmentAPI && AlignmentAPI->getZExtValue() > 0 &&
-               "Expected an alignment during manifest!");
-        Alignment =
-            std::max(Alignment, assumeAligned(AlignmentAPI->getZExtValue()));
-      }
-
-      // TODO: Hoist the alloca towards the function entry.
-      unsigned AS = DL.getAllocaAddrSpace();
-      Instruction *Alloca =
-          new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
-                         AI.CB->getName() + ".h2s", IP);
-
-      if (Alloca->getType() != AI.CB->getType())
-        Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
-            Alloca, AI.CB->getType(), "malloc_cast", AI.CB->getIterator());
-
-      auto *I8Ty = Type::getInt8Ty(F->getContext());
-      auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
-      assert(InitVal &&
-             "Must be able to materialize initial memory state of allocation");
-
-      A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
-
-      if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
-        auto *NBB = II->getNormalDest();
-        BranchInst::Create(NBB, AI.CB->getParent());
-        A.deleteAfterManifest(*AI.CB);
-      } else {
-        A.deleteAfterManifest(*AI.CB);
-      }
-
-      // Initialize the alloca with the same value as used by the allocation
-      // function.  We can skip undef as the initial value of an alloc is
-      // undef, and the memset would simply end up being DSEd.
-      if (!isa<UndefValue>(InitVal)) {
-        IRBuilder<> Builder(Alloca->getNextNode());
-        // TODO: Use alignment above if align!=1
-        Builder.CreateMemSet(Alloca, InitVal, Size, std::nullopt);
-      }
-      HasChanged = ChangeStatus::CHANGED;
-    }
-
-    return HasChanged;
-  }
-
-  std::optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
-                                Value &V) {
-    bool UsedAssumedInformation = false;
-    std::optional<Constant *> SimpleV =
-        A.getAssumedConstant(V, AA, UsedAssumedInformation);
-    if (!SimpleV)
-      return APInt(64, 0);
-    if (auto *CI = dyn_cast_or_null<ConstantInt>(*SimpleV))
-      return CI->getValue();
-    return std::nullopt;
-  }
-
-  std::optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
-                               AllocationInfo &AI) {
-    auto Mapper = [&](const Value *V) -> const Value * {
-      bool UsedAssumedInformation = false;
-      if (std::optional<Constant *> SimpleV =
-              A.getAssumedConstant(*V, AA, UsedAssumedInformation))
-        if (*SimpleV)
-          return *SimpleV;
-      return V;
-    };
-
-    const Function *F = getAnchorScope();
-    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-    return getAllocSize(AI.CB, TLI, Mapper);
-  }
-
-  /// Collection of all malloc-like calls in a function with associated
-  /// information.
-  MapVector<CallBase *, AllocationInfo *> AllocationInfos;
-
-  /// Collection of all free-like calls in a function with associated
-  /// information.
-  MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
-
-  ChangeStatus updateImpl(Attributor &A) override;
-};
-
-ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
-  ChangeStatus Changed = ChangeStatus::UNCHANGED;
-  const Function *F = getAnchorScope();
-  const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-
-  const auto *LivenessAA =
-      A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
-
-  MustBeExecutedContextExplorer *Explorer =
-      A.getInfoCache().getMustBeExecutedContextExplorer();
-
-  bool StackIsAccessibleByOtherThreads =
-      A.getInfoCache().stackIsAccessibleByOtherThreads();
-
-  LoopInfo *LI =
-      A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
-  std::optional<bool> MayContainIrreducibleControl;
-  auto IsInLoop = [&](BasicBlock &BB) {
-    if (&F->getEntryBlock() == &BB)
-      return false;
-    if (!MayContainIrreducibleControl.has_value())
-      MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
-    if (*MayContainIrreducibleControl)
-      return true;
-    if (!LI)
-      return true;
-    return LI->getLoopFor(&BB) != nullptr;
-  };
-
-  // Flag to ensure we update our deallocation information at most once per
-  // updateImpl call and only if we use the free check reasoning.
-  bool HasUpdatedFrees = false;
-
-  auto UpdateFrees = [&]() {
-    HasUpdatedFrees = true;
-
-    for (auto &It : DeallocationInfos) {
-      DeallocationInfo &DI = *It.second;
-      // For now we cannot use deallocations that have unknown inputs, skip
-      // them.
-      if (DI.MightFreeUnknownObjects)
-        continue;
-
-      // No need to analyze dead calls, ignore them instead.
-      bool UsedAssumedInformation = false;
-      if (A.isAssumedDead(*DI.CB, this, LivenessAA, UsedAssumedInformation,
-                          /* CheckBBLivenessOnly */ true))
-        continue;
-
-      // Use the non-optimistic version to get the freed object.
-      Value *Obj = getUnderlyingObject(DI.FreedOp);
-      if (!Obj) {
-        LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
-        DI.MightFreeUnknownObjects = true;
-        continue;
-      }
-
-      // Free of null and undef can be ignored as no-ops (or UB in the latter
-      // case).
-      if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
-        continue;
-
-      CallBase *ObjCB = dyn_cast<CallBase>(Obj);
-      if (!ObjCB) {
-        LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
-                          << "\n");
-        DI.MightFreeUnknownObjects = true;
-        continue;
-      }
-
-      AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
-      if (!AI) {
-        LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
-                          << "\n");
-        DI.MightFreeUnknownObjects = true;
-        continue;
-      }
-
-      DI.PotentialAllocationCalls.insert(ObjCB);
-    }
-  };
-
-  auto FreeCheck = [&](AllocationInfo &AI) {
-    // If the stack is not accessible by other threads, the "must-free" logic
-    // doesn't apply as the pointer could be shared and needs to be places in
-    // "shareable" memory.
-    if (!StackIsAccessibleByOtherThreads) {
-      bool IsKnownNoSycn;
-      if (!AA::hasAssumedIRAttr<Attribute::NoSync>(
-              A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNoSycn)) {
-        LLVM_DEBUG(
-            dbgs() << "[H2S] found an escaping use, stack is not accessible by "
-                      "other threads and function is not nosync:\n");
-        return false;
-      }
-    }
-    if (!HasUpdatedFrees)
-      UpdateFrees();
-
-    // TODO: Allow multi exit functions that have different free calls.
-    if (AI.PotentialFreeCalls.size() != 1) {
-      LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
-                        << AI.PotentialFreeCalls.size() << "\n");
-      return false;
-    }
-    CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
-    DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
-    if (!DI) {
-      LLVM_DEBUG(
-          dbgs() << "[H2S] unique free call was not known as deallocation call "
-                 << *UniqueFree << "\n");
-      return false;
-    }
-    if (DI->MightFreeUnknownObjects) {
-      LLVM_DEBUG(
-          dbgs() << "[H2S] unique free call might free unknown allocations\n");
-      return false;
-    }
-    if (DI->PotentialAllocationCalls.empty())
-      return true;
-    if (DI->PotentialAllocationCalls.size() > 1) {
-      LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
-                        << DI->PotentialAllocationCalls.size()
-                        << " different allocations\n");
-      return false;
-    }
-    if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
-      LLVM_DEBUG(
-          dbgs()
-          << "[H2S] unique free call not known to free this allocation but "
-          << **DI->PotentialAllocationCalls.begin() << "\n");
-      return false;
-    }
-
-    // __kmpc_alloc_shared and __kmpc_alloc_free are by construction matched.
-    if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared) {
-      Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
-      if (!Explorer || !Explorer->findInContextOf(UniqueFree, CtxI)) {
-        LLVM_DEBUG(
-            dbgs()
-            << "[H2S] unique free call might not be executed with the allocation "
-            << *UniqueFree << "\n");
-        return false;
-      }
-    }
-    return true;
-  };
-
-  auto UsesCheck = [&](AllocationInfo &AI) {
-    bool ValidUsesOnly = true;
-
-    auto Pred = [&](const Use &U, bool &Follow) -> bool {
-      Instruction *UserI = cast<Instruction>(U.getUser());
-      if (isa<LoadInst>(UserI))
-        return true;
-      if (auto *SI = dyn_cast<StoreInst>(UserI)) {
-        if (SI->getValueOperand() == U.get()) {
-          LLVM_DEBUG(dbgs()
-                     << "[H2S] escaping store to memory: " << *UserI << "\n");
-          ValidUsesOnly = false;
-        } else {
-          // A store into the malloc'ed memory is fine.
-        }
-        return true;
-      }
-      if (auto *CB = dyn_cast<CallBase>(UserI)) {
-        if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
-          return true;
-        if (DeallocationInfos.count(CB)) {
-          AI.PotentialFreeCalls.insert(CB);
-          return true;
-        }
-
-        unsigned ArgNo = CB->getArgOperandNo(&U);
-        auto CBIRP = IRPosition::callsite_argument(*CB, ArgNo);
-
-        bool IsKnownNoCapture;
-        bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
-            A, this, CBIRP, DepClassTy::OPTIONAL, IsKnownNoCapture);
-
-        // If a call site argument use is nofree, we are fine.
-        bool IsKnownNoFree;
-        bool IsAssumedNoFree = AA::hasAssumedIRAttr<Attribute::NoFree>(
-            A, this, CBIRP, DepClassTy::OPTIONAL, IsKnownNoFree);
-
-        if (!IsAssumedNoCapture ||
-            (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
-             !IsAssumedNoFree)) {
-          AI.HasPotentiallyFreeingUnknownUses |= !IsAssumedNoFree;
-
-          // Emit a missed remark if this is missed OpenMP globalization.
-          auto Remark = [&](OptimizationRemarkMissed ORM) {
-            return ORM
-                   << "Could not move globalized variable to the stack. "
-                      "Variable is potentially captured in call. Mark "
-                      "parameter as `__attribute__((noescape))` to override.";
-          };
-
-          if (ValidUsesOnly &&
-              AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
-            A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
-
-          LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
-          ValidUsesOnly = false;
-        }
-        return true;
-      }
-
-      if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
-          isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
-        Follow = true;
-        return true;
-      }
-      // Unknown user for which we can not track uses further (in a way that
-      // makes sense).
-      LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
-      ValidUsesOnly = false;
-      return true;
-    };
-    if (!A.checkForAllUses(Pred, *this, *AI.CB, /* CheckBBLivenessOnly */ false,
-                           DepClassTy::OPTIONAL, /* IgnoreDroppableUses */ true,
-                           [&](const Use &OldU, const Use &NewU) {
-                             auto *SI = dyn_cast<StoreInst>(OldU.getUser());
-                             return !SI || StackIsAccessibleByOtherThreads ||
-                                    AA::isAssumedThreadLocalObject(
-                                        A, *SI->getPointerOperand(), *this);
-                           }))
-      return false;
-    return ValidUsesOnly;
-  };
-
-  // The actual update starts here. We look at all allocations and depending on
-  // their status perform the appropriate check(s).
-  for (auto &It : AllocationInfos) {
-    AllocationInfo &AI = *It.second;
-    if (AI.Status == AllocationInfo::INVALID)
-      continue;
-
-    if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
-      std::optional<APInt> APAlign = getAPInt(A, *this, *Align);
-      if (!APAlign) {
-        // Can't generate an alloca which respects the required alignment
-        // on the allocation.
-        LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
-                          << "\n");
-        AI.Status = AllocationInfo::INVALID;
-        Changed = ChangeStatus::CHANGED;
-        continue;
-      }
-      if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
-          !APAlign->isPowerOf2()) {
-        LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
-                          << "\n");
-        AI.Status = AllocationInfo::INVALID;
-        Changed = ChangeStatus::CHANGED;
-        continue;
-      }
-    }
-
-    std::optional<APInt> Size = getSize(A, *this, AI);
-    if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
-        MaxHeapToStackSize != -1) {
-      if (!Size || Size->ugt(MaxHeapToStackSize)) {
-        LLVM_DEBUG({
-          if (!Size)
-            dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
-          else
-            dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
-                   << MaxHeapToStackSize << "\n";
-        });
-
-        AI.Status = AllocationInfo::INVALID;
-        Changed = ChangeStatus::CHANGED;
-        continue;
-      }
-    }
-
-    switch (AI.Status) {
-    case AllocationInfo::STACK_DUE_TO_USE:
-      if (UsesCheck(AI))
-        break;
-      AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
-      [[fallthrough]];
-    case AllocationInfo::STACK_DUE_TO_FREE:
-      if (FreeCheck(AI))
-        break;
-      AI.Status = AllocationInfo::INVALID;
-      Changed = ChangeStatus::CHANGED;
-      break;
-    case AllocationInfo::INVALID:
-      llvm_unreachable("Invalid allocations should never reach this point!");
-    };
-
-    // Check if we still think we can move it into the entry block. If the
-    // alloca comes from a converted __kmpc_alloc_shared then we can usually
-    // ignore the potential compilations associated with loops.
-    bool IsGlobalizedLocal =
-        AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared;
-    if (AI.MoveAllocaIntoEntry &&
-        (!Size.has_value() ||
-         (!IsGlobalizedLocal && IsInLoop(*AI.CB->getParent()))))
-      AI.MoveAllocaIntoEntry = false;
-  }
-
-  return Changed;
-}
-} // namespace
-
-/// ----------------------- Privatizable Pointers ------------------------------
-namespace {
-struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
-  AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
-      : AAPrivatizablePtr(IRP, A), PrivatizableType(std::nullopt) {}
-
-  ChangeStatus indicatePessimisticFixpoint() override {
-    AAPrivatizablePtr::indicatePessimisticFixpoint();
-    PrivatizableType = nullptr;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// Identify the type we can chose for a private copy of the underlying
-  /// argument. std::nullopt means it is not clear yet, nullptr means there is
-  /// none.
-  virtual std::optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
-
-  /// Return a privatizable type that encloses both T0 and T1.
-  /// TODO: This is merely a stub for now as we should manage a mapping as well.
-  std::optional<Type *> combineTypes(std::optional<Type *> T0,
-                                     std::optional<Type *> T1) {
-    if (!T0)
-      return T1;
-    if (!T1)
-      return T0;
-    if (T0 == T1)
-      return T0;
-    return nullptr;
-  }
-
-  std::optional<Type *> getPrivatizableType() const override {
-    return PrivatizableType;
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
-  }
-
-protected:
-  std::optional<Type *> PrivatizableType;
-};
-
-// TODO: Do this for call site arguments (probably also other values) as well.
-
-struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
-  AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
-      : AAPrivatizablePtrImpl(IRP, A) {}
-
-  /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
-  std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
-    // If this is a byval argument and we know all the call sites (so we can
-    // rewrite them), there is no need to check them explicitly.
-    bool UsedAssumedInformation = false;
-    SmallVector<Attribute, 1> Attrs;
-    A.getAttrs(getIRPosition(), {Attribute::ByVal}, Attrs,
-               /* IgnoreSubsumingPositions */ true);
-    if (!Attrs.empty() &&
-        A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
-                               true, UsedAssumedInformation))
-      return Attrs[0].getValueAsType();
-
-    std::optional<Type *> Ty;
-    unsigned ArgNo = getIRPosition().getCallSiteArgNo();
-
-    // Make sure the associated call site argument has the same type at all call
-    // sites and it is an allocation we know is safe to privatize, for now that
-    // means we only allow alloca instructions.
-    // TODO: We can additionally analyze the accesses in the callee to  create
-    //       the type from that information instead. That is a little more
-    //       involved and will be done in a follow up patch.
-    auto CallSiteCheck = [&](AbstractCallSite ACS) {
-      IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
-      // Check if a coresponding argument was found or if it is one not
-      // associated (which can happen for callback calls).
-      if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
-        return false;
-
-      // Check that all call sites agree on a type.
-      auto *PrivCSArgAA =
-          A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
-      if (!PrivCSArgAA)
-        return false;
-      std::optional<Type *> CSTy = PrivCSArgAA->getPrivatizableType();
-
-      LLVM_DEBUG({
-        dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
-        if (CSTy && *CSTy)
-          (*CSTy)->print(dbgs());
-        else if (CSTy)
-          dbgs() << "<nullptr>";
-        else
-          dbgs() << "<none>";
-      });
-
-      Ty = combineTypes(Ty, CSTy);
-
-      LLVM_DEBUG({
-        dbgs() << " : New Type: ";
-        if (Ty && *Ty)
-          (*Ty)->print(dbgs());
-        else if (Ty)
-          dbgs() << "<nullptr>";
-        else
-          dbgs() << "<none>";
-        dbgs() << "\n";
-      });
-
-      return !Ty || *Ty;
-    };
-
-    if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
-                                UsedAssumedInformation))
-      return nullptr;
-    return Ty;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    PrivatizableType = identifyPrivatizableType(A);
-    if (!PrivatizableType)
-      return ChangeStatus::UNCHANGED;
-    if (!*PrivatizableType)
-      return indicatePessimisticFixpoint();
-
-    // The dependence is optional so we don't give up once we give up on the
-    // alignment.
-    A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
-                        DepClassTy::OPTIONAL);
-
-    // Avoid arguments with padding for now.
-    if (!A.hasAttr(getIRPosition(), Attribute::ByVal) &&
-        !isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    // Collect the types that will replace the privatizable type in the function
-    // signature.
-    SmallVector<Type *, 16> ReplacementTypes;
-    identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
-
-    // Verify callee and caller agree on how the promoted argument would be
-    // passed.
-    Function &Fn = *getIRPosition().getAnchorScope();
-    const auto *TTI =
-        A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
-    if (!TTI) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
-                        << Fn.getName() << "\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    auto CallSiteCheck = [&](AbstractCallSite ACS) {
-      CallBase *CB = ACS.getInstruction();
-      return TTI->areTypesABICompatible(
-          CB->getCaller(),
-          dyn_cast_if_present<Function>(CB->getCalledOperand()),
-          ReplacementTypes);
-    };
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
-                                UsedAssumedInformation)) {
-      LLVM_DEBUG(
-          dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
-                 << Fn.getName() << "\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    // Register a rewrite of the argument.
-    Argument *Arg = getAssociatedArgument();
-    if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    unsigned ArgNo = Arg->getArgNo();
-
-    // Helper to check if for the given call site the associated argument is
-    // passed to a callback where the privatization would be different.
-    auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
-      SmallVector<const Use *, 4> CallbackUses;
-      AbstractCallSite::getCallbackUses(CB, CallbackUses);
-      for (const Use *U : CallbackUses) {
-        AbstractCallSite CBACS(U);
-        assert(CBACS && CBACS.isCallbackCall());
-        for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
-          int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
-
-          LLVM_DEBUG({
-            dbgs()
-                << "[AAPrivatizablePtr] Argument " << *Arg
-                << "check if can be privatized in the context of its parent ("
-                << Arg->getParent()->getName()
-                << ")\n[AAPrivatizablePtr] because it is an argument in a "
-                   "callback ("
-                << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
-                << ")\n[AAPrivatizablePtr] " << CBArg << " : "
-                << CBACS.getCallArgOperand(CBArg) << " vs "
-                << CB.getArgOperand(ArgNo) << "\n"
-                << "[AAPrivatizablePtr] " << CBArg << " : "
-                << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
-          });
-
-          if (CBArgNo != int(ArgNo))
-            continue;
-          const auto *CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
-              *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
-          if (CBArgPrivAA && CBArgPrivAA->isValidState()) {
-            auto CBArgPrivTy = CBArgPrivAA->getPrivatizableType();
-            if (!CBArgPrivTy)
-              continue;
-            if (*CBArgPrivTy == PrivatizableType)
-              continue;
-          }
-
-          LLVM_DEBUG({
-            dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
-                   << " cannot be privatized in the context of its parent ("
-                   << Arg->getParent()->getName()
-                   << ")\n[AAPrivatizablePtr] because it is an argument in a "
-                      "callback ("
-                   << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
-                   << ").\n[AAPrivatizablePtr] for which the argument "
-                      "privatization is not compatible.\n";
-          });
-          return false;
-        }
-      }
-      return true;
-    };
-
-    // Helper to check if for the given call site the associated argument is
-    // passed to a direct call where the privatization would be different.
-    auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
-      CallBase *DC = cast<CallBase>(ACS.getInstruction());
-      int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
-      assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
-             "Expected a direct call operand for callback call operand");
-
-      Function *DCCallee =
-          dyn_cast_if_present<Function>(DC->getCalledOperand());
-      LLVM_DEBUG({
-        dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
-               << " check if be privatized in the context of its parent ("
-               << Arg->getParent()->getName()
-               << ")\n[AAPrivatizablePtr] because it is an argument in a "
-                  "direct call of ("
-               << DCArgNo << "@" << DCCallee->getName() << ").\n";
-      });
-
-      if (unsigned(DCArgNo) < DCCallee->arg_size()) {
-        const auto *DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
-            *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
-            DepClassTy::REQUIRED);
-        if (DCArgPrivAA && DCArgPrivAA->isValidState()) {
-          auto DCArgPrivTy = DCArgPrivAA->getPrivatizableType();
-          if (!DCArgPrivTy)
-            return true;
-          if (*DCArgPrivTy == PrivatizableType)
-            return true;
-        }
-      }
-
-      LLVM_DEBUG({
-        dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
-               << " cannot be privatized in the context of its parent ("
-               << Arg->getParent()->getName()
-               << ")\n[AAPrivatizablePtr] because it is an argument in a "
-                  "direct call of ("
-               << ACS.getInstruction()->getCalledOperand()->getName()
-               << ").\n[AAPrivatizablePtr] for which the argument "
-                  "privatization is not compatible.\n";
-      });
-      return false;
-    };
-
-    // Helper to check if the associated argument is used at the given abstract
-    // call site in a way that is incompatible with the privatization assumed
-    // here.
-    auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
-      if (ACS.isDirectCall())
-        return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
-      if (ACS.isCallbackCall())
-        return IsCompatiblePrivArgOfDirectCS(ACS);
-      return false;
-    };
-
-    if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
-                                UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// Given a type to private \p PrivType, collect the constituates (which are
-  /// used) in \p ReplacementTypes.
-  static void
-  identifyReplacementTypes(Type *PrivType,
-                           SmallVectorImpl<Type *> &ReplacementTypes) {
-    // TODO: For now we expand the privatization type to the fullest which can
-    //       lead to dead arguments that need to be removed later.
-    assert(PrivType && "Expected privatizable type!");
-
-    // Traverse the type, extract constituate types on the outermost level.
-    if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
-      for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
-        ReplacementTypes.push_back(PrivStructType->getElementType(u));
-    } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
-      ReplacementTypes.append(PrivArrayType->getNumElements(),
-                              PrivArrayType->getElementType());
-    } else {
-      ReplacementTypes.push_back(PrivType);
-    }
-  }
-
-  /// Initialize \p Base according to the type \p PrivType at position \p IP.
-  /// The values needed are taken from the arguments of \p F starting at
-  /// position \p ArgNo.
-  static void createInitialization(Type *PrivType, Value &Base, Function &F,
-                                   unsigned ArgNo, BasicBlock::iterator IP) {
-    assert(PrivType && "Expected privatizable type!");
-
-    IRBuilder<NoFolder> IRB(IP->getParent(), IP);
-    const DataLayout &DL = F.getParent()->getDataLayout();
-
-    // Traverse the type, build GEPs and stores.
-    if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
-      const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
-      for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
-        Value *Ptr =
-            constructPointer(&Base, PrivStructLayout->getElementOffset(u), IRB);
-        new StoreInst(F.getArg(ArgNo + u), Ptr, IP);
-      }
-    } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
-      Type *PointeeTy = PrivArrayType->getElementType();
-      uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
-      for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
-        Value *Ptr = constructPointer(&Base, u * PointeeTySize, IRB);
-        new StoreInst(F.getArg(ArgNo + u), Ptr, IP);
-      }
-    } else {
-      new StoreInst(F.getArg(ArgNo), &Base, IP);
-    }
-  }
-
-  /// Extract values from \p Base according to the type \p PrivType at the
-  /// call position \p ACS. The values are appended to \p ReplacementValues.
-  void createReplacementValues(Align Alignment, Type *PrivType,
-                               AbstractCallSite ACS, Value *Base,
-                               SmallVectorImpl<Value *> &ReplacementValues) {
-    assert(Base && "Expected base value!");
-    assert(PrivType && "Expected privatizable type!");
-    Instruction *IP = ACS.getInstruction();
-
-    IRBuilder<NoFolder> IRB(IP);
-    const DataLayout &DL = IP->getModule()->getDataLayout();
-
-    // Traverse the type, build GEPs and loads.
-    if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
-      const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
-      for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
-        Type *PointeeTy = PrivStructType->getElementType(u);
-        Value *Ptr =
-            constructPointer(Base, PrivStructLayout->getElementOffset(u), IRB);
-        LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP->getIterator());
-        L->setAlignment(Alignment);
-        ReplacementValues.push_back(L);
-      }
-    } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
-      Type *PointeeTy = PrivArrayType->getElementType();
-      uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
-      for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
-        Value *Ptr = constructPointer(Base, u * PointeeTySize, IRB);
-        LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP->getIterator());
-        L->setAlignment(Alignment);
-        ReplacementValues.push_back(L);
-      }
-    } else {
-      LoadInst *L = new LoadInst(PrivType, Base, "", IP->getIterator());
-      L->setAlignment(Alignment);
-      ReplacementValues.push_back(L);
-    }
-  }
-
-  /// See AbstractAttribute::manifest(...)
-  ChangeStatus manifest(Attributor &A) override {
-    if (!PrivatizableType)
-      return ChangeStatus::UNCHANGED;
-    assert(*PrivatizableType && "Expected privatizable type!");
-
-    // Collect all tail calls in the function as we cannot allow new allocas to
-    // escape into tail recursion.
-    // TODO: Be smarter about new allocas escaping into tail calls.
-    SmallVector<CallInst *, 16> TailCalls;
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllInstructions(
-            [&](Instruction &I) {
-              CallInst &CI = cast<CallInst>(I);
-              if (CI.isTailCall())
-                TailCalls.push_back(&CI);
-              return true;
-            },
-            *this, {Instruction::Call}, UsedAssumedInformation))
-      return ChangeStatus::UNCHANGED;
-
-    Argument *Arg = getAssociatedArgument();
-    // Query AAAlign attribute for alignment of associated argument to
-    // determine the best alignment of loads.
-    const auto *AlignAA =
-        A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
-
-    // Callback to repair the associated function. A new alloca is placed at the
-    // beginning and initialized with the values passed through arguments. The
-    // new alloca replaces the use of the old pointer argument.
-    Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
-        [=](const Attributor::ArgumentReplacementInfo &ARI,
-            Function &ReplacementFn, Function::arg_iterator ArgIt) {
-          BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
-          BasicBlock::iterator IP = EntryBB.getFirstInsertionPt();
-          const DataLayout &DL = IP->getModule()->getDataLayout();
-          unsigned AS = DL.getAllocaAddrSpace();
-          Instruction *AI = new AllocaInst(*PrivatizableType, AS,
-                                           Arg->getName() + ".priv", IP);
-          createInitialization(*PrivatizableType, *AI, ReplacementFn,
-                               ArgIt->getArgNo(), IP);
-
-          if (AI->getType() != Arg->getType())
-            AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
-                AI, Arg->getType(), "", IP);
-          Arg->replaceAllUsesWith(AI);
-
-          for (CallInst *CI : TailCalls)
-            CI->setTailCall(false);
-        };
-
-    // Callback to repair a call site of the associated function. The elements
-    // of the privatizable type are loaded prior to the call and passed to the
-    // new function version.
-    Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
-        [=](const Attributor::ArgumentReplacementInfo &ARI,
-            AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) {
-          // When no alignment is specified for the load instruction,
-          // natural alignment is assumed.
-          createReplacementValues(
-              AlignAA ? AlignAA->getAssumedAlign() : Align(0),
-              *PrivatizableType, ACS,
-              ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
-              NewArgOperands);
-        };
-
-    // Collect the types that will replace the privatizable type in the function
-    // signature.
-    SmallVector<Type *, 16> ReplacementTypes;
-    identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
-
-    // Register a rewrite of the argument.
-    if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
-                                           std::move(FnRepairCB),
-                                           std::move(ACSRepairCB)))
-      return ChangeStatus::CHANGED;
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
-  }
-};
-
-struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
-  AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
-      : AAPrivatizablePtrImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: We can privatize more than arguments.
-    indicatePessimisticFixpoint();
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
-                     "updateImpl will not be called");
-  }
-
-  /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
-  std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
-    Value *Obj = getUnderlyingObject(&getAssociatedValue());
-    if (!Obj) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
-      return nullptr;
-    }
-
-    if (auto *AI = dyn_cast<AllocaInst>(Obj))
-      if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
-        if (CI->isOne())
-          return AI->getAllocatedType();
-    if (auto *Arg = dyn_cast<Argument>(Obj)) {
-      auto *PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
-          *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
-      if (PrivArgAA && PrivArgAA->isAssumedPrivatizablePtr())
-        return PrivArgAA->getPrivatizableType();
-    }
-
-    LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
-                         "alloca nor privatizable argument: "
-                      << *Obj << "!\n");
-    return nullptr;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
-  }
-};
-
-struct AAPrivatizablePtrCallSiteArgument final
-    : public AAPrivatizablePtrFloating {
-  AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAPrivatizablePtrFloating(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    if (A.hasAttr(getIRPosition(), Attribute::ByVal))
-      indicateOptimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    PrivatizableType = identifyPrivatizableType(A);
-    if (!PrivatizableType)
-      return ChangeStatus::UNCHANGED;
-    if (!*PrivatizableType)
-      return indicatePessimisticFixpoint();
-
-    const IRPosition &IRP = getIRPosition();
-    bool IsKnownNoCapture;
-    bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
-        A, this, IRP, DepClassTy::REQUIRED, IsKnownNoCapture);
-    if (!IsAssumedNoCapture) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    bool IsKnownNoAlias;
-    if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
-            A, this, IRP, DepClassTy::REQUIRED, IsKnownNoAlias)) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    bool IsKnown;
-    if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
-      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
-      return indicatePessimisticFixpoint();
-    }
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
-  }
-};
-
-struct AAPrivatizablePtrCallSiteReturned final
-    : public AAPrivatizablePtrFloating {
-  AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAPrivatizablePtrFloating(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: We can privatize more than arguments.
-    indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
-  }
-};
-
-struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
-  AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
-      : AAPrivatizablePtrFloating(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: We can privatize more than arguments.
-    indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
-  }
-};
-} // namespace
-
-/// -------------------- Memory Behavior Attributes ----------------------------
-/// Includes read-none, read-only, and write-only.
-/// ----------------------------------------------------------------------------
-namespace {
-struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
-  AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
-      : AAMemoryBehavior(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    intersectAssumedBits(BEST_STATE);
-    getKnownStateFromValue(A, getIRPosition(), getState());
-    AAMemoryBehavior::initialize(A);
-  }
-
-  /// Return the memory behavior information encoded in the IR for \p IRP.
-  static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
-                                     BitIntegerState &State,
-                                     bool IgnoreSubsumingPositions = false) {
-    SmallVector<Attribute, 2> Attrs;
-    A.getAttrs(IRP, AttrKinds, Attrs, IgnoreSubsumingPositions);
-    for (const Attribute &Attr : Attrs) {
-      switch (Attr.getKindAsEnum()) {
-      case Attribute::ReadNone:
-        State.addKnownBits(NO_ACCESSES);
-        break;
-      case Attribute::ReadOnly:
-        State.addKnownBits(NO_WRITES);
-        break;
-      case Attribute::WriteOnly:
-        State.addKnownBits(NO_READS);
-        break;
-      default:
-        llvm_unreachable("Unexpected attribute!");
-      }
-    }
-
-    if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
-      if (!I->mayReadFromMemory())
-        State.addKnownBits(NO_READS);
-      if (!I->mayWriteToMemory())
-        State.addKnownBits(NO_WRITES);
-    }
-  }
-
-  /// See AbstractAttribute::getDeducedAttributes(...).
-  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                            SmallVectorImpl<Attribute> &Attrs) const override {
-    assert(Attrs.size() == 0);
-    if (isAssumedReadNone())
-      Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
-    else if (isAssumedReadOnly())
-      Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
-    else if (isAssumedWriteOnly())
-      Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
-    assert(Attrs.size() <= 1);
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    const IRPosition &IRP = getIRPosition();
-
-    if (A.hasAttr(IRP, Attribute::ReadNone,
-                  /* IgnoreSubsumingPositions */ true))
-      return ChangeStatus::UNCHANGED;
-
-    // Check if we would improve the existing attributes first.
-    SmallVector<Attribute, 4> DeducedAttrs;
-    getDeducedAttributes(A, IRP.getAnchorValue().getContext(), DeducedAttrs);
-    if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
-          return A.hasAttr(IRP, Attr.getKindAsEnum(),
-                           /* IgnoreSubsumingPositions */ true);
-        }))
-      return ChangeStatus::UNCHANGED;
-
-    // Clear existing attributes.
-    A.removeAttrs(IRP, AttrKinds);
-    // Clear conflicting writable attribute.
-    if (isAssumedReadOnly())
-      A.removeAttrs(IRP, Attribute::Writable);
-
-    // Use the generic manifest method.
-    return IRAttribute::manifest(A);
-  }
-
-  /// See AbstractState::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    if (isAssumedReadNone())
-      return "readnone";
-    if (isAssumedReadOnly())
-      return "readonly";
-    if (isAssumedWriteOnly())
-      return "writeonly";
-    return "may-read/write";
-  }
-
-  /// The set of IR attributes AAMemoryBehavior deals with.
-  static const Attribute::AttrKind AttrKinds[3];
-};
-
-const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
-    Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
-
-/// Memory behavior attribute for a floating value.
-struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
-  AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
-      : AAMemoryBehaviorImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override;
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_FLOATING_ATTR(readnone)
-    else if (isAssumedReadOnly())
-      STATS_DECLTRACK_FLOATING_ATTR(readonly)
-    else if (isAssumedWriteOnly())
-      STATS_DECLTRACK_FLOATING_ATTR(writeonly)
-  }
-
-private:
-  /// Return true if users of \p UserI might access the underlying
-  /// variable/location described by \p U and should therefore be analyzed.
-  bool followUsersOfUseIn(Attributor &A, const Use &U,
-                          const Instruction *UserI);
-
-  /// Update the state according to the effect of use \p U in \p UserI.
-  void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
-};
-
-/// Memory behavior attribute for function argument.
-struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
-  AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
-      : AAMemoryBehaviorFloating(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    intersectAssumedBits(BEST_STATE);
-    const IRPosition &IRP = getIRPosition();
-    // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
-    // can query it when we use has/getAttr. That would allow us to reuse the
-    // initialize of the base class here.
-    bool HasByVal = A.hasAttr(IRP, {Attribute::ByVal},
-                              /* IgnoreSubsumingPositions */ true);
-    getKnownStateFromValue(A, IRP, getState(),
-                           /* IgnoreSubsumingPositions */ HasByVal);
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    // TODO: Pointer arguments are not supported on vectors of pointers yet.
-    if (!getAssociatedValue().getType()->isPointerTy())
-      return ChangeStatus::UNCHANGED;
-
-    // TODO: From readattrs.ll: "inalloca parameters are always
-    //                           considered written"
-    if (A.hasAttr(getIRPosition(),
-                  {Attribute::InAlloca, Attribute::Preallocated})) {
-      removeKnownBits(NO_WRITES);
-      removeAssumedBits(NO_WRITES);
-    }
-    A.removeAttrs(getIRPosition(), AttrKinds);
-    return AAMemoryBehaviorFloating::manifest(A);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_ARG_ATTR(readnone)
-    else if (isAssumedReadOnly())
-      STATS_DECLTRACK_ARG_ATTR(readonly)
-    else if (isAssumedWriteOnly())
-      STATS_DECLTRACK_ARG_ATTR(writeonly)
-  }
-};
-
-struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
-  AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAMemoryBehaviorArgument(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // If we don't have an associated attribute this is either a variadic call
-    // or an indirect call, either way, nothing to do here.
-    Argument *Arg = getAssociatedArgument();
-    if (!Arg) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-    if (Arg->hasByValAttr()) {
-      addKnownBits(NO_WRITES);
-      removeKnownBits(NO_READS);
-      removeAssumedBits(NO_READS);
-    }
-    AAMemoryBehaviorArgument::initialize(A);
-    if (getAssociatedFunction()->isDeclaration())
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Argument *Arg = getAssociatedArgument();
-    const IRPosition &ArgPos = IRPosition::argument(*Arg);
-    auto *ArgAA =
-        A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
-    if (!ArgAA)
-      return indicatePessimisticFixpoint();
-    return clampStateAndIndicateChange(getState(), ArgAA->getState());
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_CSARG_ATTR(readnone)
-    else if (isAssumedReadOnly())
-      STATS_DECLTRACK_CSARG_ATTR(readonly)
-    else if (isAssumedWriteOnly())
-      STATS_DECLTRACK_CSARG_ATTR(writeonly)
-  }
-};
-
-/// Memory behavior attribute for a call site return position.
-struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
-  AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAMemoryBehaviorFloating(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAMemoryBehaviorImpl::initialize(A);
-  }
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // We do not annotate returned values.
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-};
-
-/// An AA to represent the memory behavior function attributes.
-struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
-  AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
-      : AAMemoryBehaviorImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(Attributor &A).
-  ChangeStatus updateImpl(Attributor &A) override;
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // TODO: It would be better to merge this with AAMemoryLocation, so that
-    // we could determine read/write per location. This would also have the
-    // benefit of only one place trying to manifest the memory attribute.
-    Function &F = cast<Function>(getAnchorValue());
-    MemoryEffects ME = MemoryEffects::unknown();
-    if (isAssumedReadNone())
-      ME = MemoryEffects::none();
-    else if (isAssumedReadOnly())
-      ME = MemoryEffects::readOnly();
-    else if (isAssumedWriteOnly())
-      ME = MemoryEffects::writeOnly();
-
-    A.removeAttrs(getIRPosition(), AttrKinds);
-    // Clear conflicting writable attribute.
-    if (ME.onlyReadsMemory())
-      for (Argument &Arg : F.args())
-        A.removeAttrs(IRPosition::argument(Arg), Attribute::Writable);
-    return A.manifestAttrs(getIRPosition(),
-                           Attribute::getWithMemoryEffects(F.getContext(), ME));
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_FN_ATTR(readnone)
-    else if (isAssumedReadOnly())
-      STATS_DECLTRACK_FN_ATTR(readonly)
-    else if (isAssumedWriteOnly())
-      STATS_DECLTRACK_FN_ATTR(writeonly)
-  }
-};
-
-/// AAMemoryBehavior attribute for call sites.
-struct AAMemoryBehaviorCallSite final
-    : AACalleeToCallSite<AAMemoryBehavior, AAMemoryBehaviorImpl> {
-  AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AAMemoryBehavior, AAMemoryBehaviorImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // TODO: Deduplicate this with AAMemoryBehaviorFunction.
-    CallBase &CB = cast<CallBase>(getAnchorValue());
-    MemoryEffects ME = MemoryEffects::unknown();
-    if (isAssumedReadNone())
-      ME = MemoryEffects::none();
-    else if (isAssumedReadOnly())
-      ME = MemoryEffects::readOnly();
-    else if (isAssumedWriteOnly())
-      ME = MemoryEffects::writeOnly();
-
-    A.removeAttrs(getIRPosition(), AttrKinds);
-    // Clear conflicting writable attribute.
-    if (ME.onlyReadsMemory())
-      for (Use &U : CB.args())
-        A.removeAttrs(IRPosition::callsite_argument(CB, U.getOperandNo()),
-                      Attribute::Writable);
-    return A.manifestAttrs(
-        getIRPosition(), Attribute::getWithMemoryEffects(CB.getContext(), ME));
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_CS_ATTR(readnone)
-    else if (isAssumedReadOnly())
-      STATS_DECLTRACK_CS_ATTR(readonly)
-    else if (isAssumedWriteOnly())
-      STATS_DECLTRACK_CS_ATTR(writeonly)
-  }
-};
-
-ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
-
-  // The current assumed state used to determine a change.
-  auto AssumedState = getAssumed();
-
-  auto CheckRWInst = [&](Instruction &I) {
-    // If the instruction has an own memory behavior state, use it to restrict
-    // the local state. No further analysis is required as the other memory
-    // state is as optimistic as it gets.
-    if (const auto *CB = dyn_cast<CallBase>(&I)) {
-      const auto *MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
-          *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
-      if (MemBehaviorAA) {
-        intersectAssumedBits(MemBehaviorAA->getAssumed());
-        return !isAtFixpoint();
-      }
-    }
-
-    // Remove access kind modifiers if necessary.
-    if (I.mayReadFromMemory())
-      removeAssumedBits(NO_READS);
-    if (I.mayWriteToMemory())
-      removeAssumedBits(NO_WRITES);
-    return !isAtFixpoint();
-  };
-
-  bool UsedAssumedInformation = false;
-  if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
-                                          UsedAssumedInformation))
-    return indicatePessimisticFixpoint();
-
-  return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
-                                        : ChangeStatus::UNCHANGED;
-}
-
-ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
-
-  const IRPosition &IRP = getIRPosition();
-  const IRPosition &FnPos = IRPosition::function_scope(IRP);
-  AAMemoryBehavior::StateType &S = getState();
-
-  // First, check the function scope. We take the known information and we avoid
-  // work if the assumed information implies the current assumed information for
-  // this attribute. This is a valid for all but byval arguments.
-  Argument *Arg = IRP.getAssociatedArgument();
-  AAMemoryBehavior::base_t FnMemAssumedState =
-      AAMemoryBehavior::StateType::getWorstState();
-  if (!Arg || !Arg->hasByValAttr()) {
-    const auto *FnMemAA =
-        A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
-    if (FnMemAA) {
-      FnMemAssumedState = FnMemAA->getAssumed();
-      S.addKnownBits(FnMemAA->getKnown());
-      if ((S.getAssumed() & FnMemAA->getAssumed()) == S.getAssumed())
-        return ChangeStatus::UNCHANGED;
-    }
-  }
-
-  // The current assumed state used to determine a change.
-  auto AssumedState = S.getAssumed();
-
-  // Make sure the value is not captured (except through "return"), if
-  // it is, any information derived would be irrelevant anyway as we cannot
-  // check the potential aliases introduced by the capture. However, no need
-  // to fall back to anythign less optimistic than the function state.
-  bool IsKnownNoCapture;
-  const AANoCapture *ArgNoCaptureAA = nullptr;
-  bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
-      A, this, IRP, DepClassTy::OPTIONAL, IsKnownNoCapture, false,
-      &ArgNoCaptureAA);
-
-  if (!IsAssumedNoCapture &&
-      (!ArgNoCaptureAA || !ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned())) {
-    S.intersectAssumedBits(FnMemAssumedState);
-    return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
-                                          : ChangeStatus::UNCHANGED;
-  }
-
-  // Visit and expand uses until all are analyzed or a fixpoint is reached.
-  auto UsePred = [&](const Use &U, bool &Follow) -> bool {
-    Instruction *UserI = cast<Instruction>(U.getUser());
-    LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
-                      << " \n");
-
-    // Droppable users, e.g., llvm::assume does not actually perform any action.
-    if (UserI->isDroppable())
-      return true;
-
-    // Check if the users of UserI should also be visited.
-    Follow = followUsersOfUseIn(A, U, UserI);
-
-    // If UserI might touch memory we analyze the use in detail.
-    if (UserI->mayReadOrWriteMemory())
-      analyzeUseIn(A, U, UserI);
-
-    return !isAtFixpoint();
-  };
-
-  if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
-    return indicatePessimisticFixpoint();
-
-  return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
-                                        : ChangeStatus::UNCHANGED;
-}
-
-bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
-                                                  const Instruction *UserI) {
-  // The loaded value is unrelated to the pointer argument, no need to
-  // follow the users of the load.
-  if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
-    return false;
-
-  // By default we follow all uses assuming UserI might leak information on U,
-  // we have special handling for call sites operands though.
-  const auto *CB = dyn_cast<CallBase>(UserI);
-  if (!CB || !CB->isArgOperand(&U))
-    return true;
-
-  // If the use is a call argument known not to be captured, the users of
-  // the call do not need to be visited because they have to be unrelated to
-  // the input. Note that this check is not trivial even though we disallow
-  // general capturing of the underlying argument. The reason is that the
-  // call might the argument "through return", which we allow and for which we
-  // need to check call users.
-  if (U.get()->getType()->isPointerTy()) {
-    unsigned ArgNo = CB->getArgOperandNo(&U);
-    bool IsKnownNoCapture;
-    return !AA::hasAssumedIRAttr<Attribute::NoCapture>(
-        A, this, IRPosition::callsite_argument(*CB, ArgNo),
-        DepClassTy::OPTIONAL, IsKnownNoCapture);
-  }
-
-  return true;
-}
-
-void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
-                                            const Instruction *UserI) {
-  assert(UserI->mayReadOrWriteMemory());
-
-  switch (UserI->getOpcode()) {
-  default:
-    // TODO: Handle all atomics and other side-effect operations we know of.
-    break;
-  case Instruction::Load:
-    // Loads cause the NO_READS property to disappear.
-    removeAssumedBits(NO_READS);
-    return;
-
-  case Instruction::Store:
-    // Stores cause the NO_WRITES property to disappear if the use is the
-    // pointer operand. Note that while capturing was taken care of somewhere
-    // else we need to deal with stores of the value that is not looked through.
-    if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
-      removeAssumedBits(NO_WRITES);
-    else
-      indicatePessimisticFixpoint();
-    return;
-
-  case Instruction::Call:
-  case Instruction::CallBr:
-  case Instruction::Invoke: {
-    // For call sites we look at the argument memory behavior attribute (this
-    // could be recursive!) in order to restrict our own state.
-    const auto *CB = cast<CallBase>(UserI);
-
-    // Give up on operand bundles.
-    if (CB->isBundleOperand(&U)) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-
-    // Calling a function does read the function pointer, maybe write it if the
-    // function is self-modifying.
-    if (CB->isCallee(&U)) {
-      removeAssumedBits(NO_READS);
-      break;
-    }
-
-    // Adjust the possible access behavior based on the information on the
-    // argument.
-    IRPosition Pos;
-    if (U.get()->getType()->isPointerTy())
-      Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
-    else
-      Pos = IRPosition::callsite_function(*CB);
-    const auto *MemBehaviorAA =
-        A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
-    if (!MemBehaviorAA)
-      break;
-    // "assumed" has at most the same bits as the MemBehaviorAA assumed
-    // and at least "known".
-    intersectAssumedBits(MemBehaviorAA->getAssumed());
-    return;
-  }
-  };
-
-  // Generally, look at the "may-properties" and adjust the assumed state if we
-  // did not trigger special handling before.
-  if (UserI->mayReadFromMemory())
-    removeAssumedBits(NO_READS);
-  if (UserI->mayWriteToMemory())
-    removeAssumedBits(NO_WRITES);
-}
-} // namespace
-
-/// -------------------- Memory Locations Attributes ---------------------------
-/// Includes read-none, argmemonly, inaccessiblememonly,
-/// inaccessiblememorargmemonly
-/// ----------------------------------------------------------------------------
-
-std::string AAMemoryLocation::getMemoryLocationsAsStr(
-    AAMemoryLocation::MemoryLocationsKind MLK) {
-  if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
-    return "all memory";
-  if (MLK == AAMemoryLocation::NO_LOCATIONS)
-    return "no memory";
-  std::string S = "memory:";
-  if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
-    S += "stack,";
-  if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
-    S += "constant,";
-  if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
-    S += "internal global,";
-  if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
-    S += "external global,";
-  if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
-    S += "argument,";
-  if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
-    S += "inaccessible,";
-  if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
-    S += "malloced,";
-  if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
-    S += "unknown,";
-  S.pop_back();
-  return S;
-}
-
-namespace {
-struct AAMemoryLocationImpl : public AAMemoryLocation {
-
-  AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
-      : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
-    AccessKind2Accesses.fill(nullptr);
-  }
-
-  ~AAMemoryLocationImpl() {
-    // The AccessSets are allocated via a BumpPtrAllocator, we call
-    // the destructor manually.
-    for (AccessSet *AS : AccessKind2Accesses)
-      if (AS)
-        AS->~AccessSet();
-  }
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    intersectAssumedBits(BEST_STATE);
-    getKnownStateFromValue(A, getIRPosition(), getState());
-    AAMemoryLocation::initialize(A);
-  }
-
-  /// Return the memory behavior information encoded in the IR for \p IRP.
-  static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
-                                     BitIntegerState &State,
-                                     bool IgnoreSubsumingPositions = false) {
-    // For internal functions we ignore `argmemonly` and
-    // `inaccessiblememorargmemonly` as we might break it via interprocedural
-    // constant propagation. It is unclear if this is the best way but it is
-    // unlikely this will cause real performance problems. If we are deriving
-    // attributes for the anchor function we even remove the attribute in
-    // addition to ignoring it.
-    // TODO: A better way to handle this would be to add ~NO_GLOBAL_MEM /
-    // MemoryEffects::Other as a possible location.
-    bool UseArgMemOnly = true;
-    Function *AnchorFn = IRP.getAnchorScope();
-    if (AnchorFn && A.isRunOn(*AnchorFn))
-      UseArgMemOnly = !AnchorFn->hasLocalLinkage();
-
-    SmallVector<Attribute, 2> Attrs;
-    A.getAttrs(IRP, {Attribute::Memory}, Attrs, IgnoreSubsumingPositions);
-    for (const Attribute &Attr : Attrs) {
-      // TODO: We can map MemoryEffects to Attributor locations more precisely.
-      MemoryEffects ME = Attr.getMemoryEffects();
-      if (ME.doesNotAccessMemory()) {
-        State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
-        continue;
-      }
-      if (ME.onlyAccessesInaccessibleMem()) {
-        State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
-        continue;
-      }
-      if (ME.onlyAccessesArgPointees()) {
-        if (UseArgMemOnly)
-          State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
-        else {
-          // Remove location information, only keep read/write info.
-          ME = MemoryEffects(ME.getModRef());
-          A.manifestAttrs(IRP,
-                          Attribute::getWithMemoryEffects(
-                              IRP.getAnchorValue().getContext(), ME),
-                          /*ForceReplace*/ true);
-        }
-        continue;
-      }
-      if (ME.onlyAccessesInaccessibleOrArgMem()) {
-        if (UseArgMemOnly)
-          State.addKnownBits(inverseLocation(
-              NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
-        else {
-          // Remove location information, only keep read/write info.
-          ME = MemoryEffects(ME.getModRef());
-          A.manifestAttrs(IRP,
-                          Attribute::getWithMemoryEffects(
-                              IRP.getAnchorValue().getContext(), ME),
-                          /*ForceReplace*/ true);
-        }
-        continue;
-      }
-    }
-  }
-
-  /// See AbstractAttribute::getDeducedAttributes(...).
-  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                            SmallVectorImpl<Attribute> &Attrs) const override {
-    // TODO: We can map Attributor locations to MemoryEffects more precisely.
-    assert(Attrs.size() == 0);
-    if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
-      if (isAssumedReadNone())
-        Attrs.push_back(
-            Attribute::getWithMemoryEffects(Ctx, MemoryEffects::none()));
-      else if (isAssumedInaccessibleMemOnly())
-        Attrs.push_back(Attribute::getWithMemoryEffects(
-            Ctx, MemoryEffects::inaccessibleMemOnly()));
-      else if (isAssumedArgMemOnly())
-        Attrs.push_back(
-            Attribute::getWithMemoryEffects(Ctx, MemoryEffects::argMemOnly()));
-      else if (isAssumedInaccessibleOrArgMemOnly())
-        Attrs.push_back(Attribute::getWithMemoryEffects(
-            Ctx, MemoryEffects::inaccessibleOrArgMemOnly()));
-    }
-    assert(Attrs.size() <= 1);
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // TODO: If AAMemoryLocation and AAMemoryBehavior are merged, we could
-    // provide per-location modref information here.
-    const IRPosition &IRP = getIRPosition();
-
-    SmallVector<Attribute, 1> DeducedAttrs;
-    getDeducedAttributes(A, IRP.getAnchorValue().getContext(), DeducedAttrs);
-    if (DeducedAttrs.size() != 1)
-      return ChangeStatus::UNCHANGED;
-    MemoryEffects ME = DeducedAttrs[0].getMemoryEffects();
-
-    return A.manifestAttrs(IRP, Attribute::getWithMemoryEffects(
-                                    IRP.getAnchorValue().getContext(), ME));
-  }
-
-  /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
-  bool checkForAllAccessesToMemoryKind(
-      function_ref<bool(const Instruction *, const Value *, AccessKind,
-                        MemoryLocationsKind)>
-          Pred,
-      MemoryLocationsKind RequestedMLK) const override {
-    if (!isValidState())
-      return false;
-
-    MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
-    if (AssumedMLK == NO_LOCATIONS)
-      return true;
-
-    unsigned Idx = 0;
-    for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
-         CurMLK *= 2, ++Idx) {
-      if (CurMLK & RequestedMLK)
-        continue;
-
-      if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
-        for (const AccessInfo &AI : *Accesses)
-          if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
-            return false;
-    }
-
-    return true;
-  }
-
-  ChangeStatus indicatePessimisticFixpoint() override {
-    // If we give up and indicate a pessimistic fixpoint this instruction will
-    // become an access for all potential access kinds:
-    // TODO: Add pointers for argmemonly and globals to improve the results of
-    //       checkForAllAccessesToMemoryKind.
-    bool Changed = false;
-    MemoryLocationsKind KnownMLK = getKnown();
-    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
-    for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
-      if (!(CurMLK & KnownMLK))
-        updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
-                                  getAccessKindFromInst(I));
-    return AAMemoryLocation::indicatePessimisticFixpoint();
-  }
-
-protected:
-  /// Helper struct to tie together an instruction that has a read or write
-  /// effect with the pointer it accesses (if any).
-  struct AccessInfo {
-
-    /// The instruction that caused the access.
-    const Instruction *I;
-
-    /// The base pointer that is accessed, or null if unknown.
-    const Value *Ptr;
-
-    /// The kind of access (read/write/read+write).
-    AccessKind Kind;
-
-    bool operator==(const AccessInfo &RHS) const {
-      return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
-    }
-    bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
-      if (LHS.I != RHS.I)
-        return LHS.I < RHS.I;
-      if (LHS.Ptr != RHS.Ptr)
-        return LHS.Ptr < RHS.Ptr;
-      if (LHS.Kind != RHS.Kind)
-        return LHS.Kind < RHS.Kind;
-      return false;
-    }
-  };
-
-  /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
-  /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
-  using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
-  std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses;
-
-  /// Categorize the pointer arguments of CB that might access memory in
-  /// AccessedLoc and update the state and access map accordingly.
-  void
-  categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
-                                     AAMemoryLocation::StateType &AccessedLocs,
-                                     bool &Changed);
-
-  /// Return the kind(s) of location that may be accessed by \p V.
-  AAMemoryLocation::MemoryLocationsKind
-  categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
-
-  /// Return the access kind as determined by \p I.
-  AccessKind getAccessKindFromInst(const Instruction *I) {
-    AccessKind AK = READ_WRITE;
-    if (I) {
-      AK = I->mayReadFromMemory() ? READ : NONE;
-      AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
-    }
-    return AK;
-  }
-
-  /// Update the state \p State and the AccessKind2Accesses given that \p I is
-  /// an access of kind \p AK to a \p MLK memory location with the access
-  /// pointer \p Ptr.
-  void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
-                                 MemoryLocationsKind MLK, const Instruction *I,
-                                 const Value *Ptr, bool &Changed,
-                                 AccessKind AK = READ_WRITE) {
-
-    assert(isPowerOf2_32(MLK) && "Expected a single location set!");
-    auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
-    if (!Accesses)
-      Accesses = new (Allocator) AccessSet();
-    Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
-    if (MLK == NO_UNKOWN_MEM)
-      MLK = NO_LOCATIONS;
-    State.removeAssumedBits(MLK);
-  }
-
-  /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
-  /// arguments, and update the state and access map accordingly.
-  void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
-                          AAMemoryLocation::StateType &State, bool &Changed,
-                          unsigned AccessAS = 0);
-
-  /// Used to allocate access sets.
-  BumpPtrAllocator &Allocator;
-};
-
-void AAMemoryLocationImpl::categorizePtrValue(
-    Attributor &A, const Instruction &I, const Value &Ptr,
-    AAMemoryLocation::StateType &State, bool &Changed, unsigned AccessAS) {
-  LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
-                    << Ptr << " ["
-                    << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
-
-  auto Pred = [&](Value &Obj) {
-    unsigned ObjectAS = Obj.getType()->getPointerAddressSpace();
-    // TODO: recognize the TBAA used for constant accesses.
-    MemoryLocationsKind MLK = NO_LOCATIONS;
-
-    // Filter accesses to constant (GPU) memory if we have an AS at the access
-    // site or the object is known to actually have the associated AS.
-    if ((AccessAS == (unsigned)AA::GPUAddressSpace::Constant ||
-         (ObjectAS == (unsigned)AA::GPUAddressSpace::Constant &&
-          isIdentifiedObject(&Obj))) &&
-        AA::isGPU(*I.getModule()))
-      return true;
-
-    if (isa<UndefValue>(&Obj))
-      return true;
-    if (isa<Argument>(&Obj)) {
-      // TODO: For now we do not treat byval arguments as local copies performed
-      // on the call edge, though, we should. To make that happen we need to
-      // teach various passes, e.g., DSE, about the copy effect of a byval. That
-      // would also allow us to mark functions only accessing byval arguments as
-      // readnone again, arguably their accesses have no effect outside of the
-      // function, like accesses to allocas.
-      MLK = NO_ARGUMENT_MEM;
-    } else if (auto *GV = dyn_cast<GlobalValue>(&Obj)) {
-      // Reading constant memory is not treated as a read "effect" by the
-      // function attr pass so we won't neither. Constants defined by TBAA are
-      // similar. (We know we do not write it because it is constant.)
-      if (auto *GVar = dyn_cast<GlobalVariable>(GV))
-        if (GVar->isConstant())
-          return true;
-
-      if (GV->hasLocalLinkage())
-        MLK = NO_GLOBAL_INTERNAL_MEM;
-      else
-        MLK = NO_GLOBAL_EXTERNAL_MEM;
-    } else if (isa<ConstantPointerNull>(&Obj) &&
-               (!NullPointerIsDefined(getAssociatedFunction(), AccessAS) ||
-                !NullPointerIsDefined(getAssociatedFunction(), ObjectAS))) {
-      return true;
-    } else if (isa<AllocaInst>(&Obj)) {
-      MLK = NO_LOCAL_MEM;
-    } else if (const auto *CB = dyn_cast<CallBase>(&Obj)) {
-      bool IsKnownNoAlias;
-      if (AA::hasAssumedIRAttr<Attribute::NoAlias>(
-              A, this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL,
-              IsKnownNoAlias))
-        MLK = NO_MALLOCED_MEM;
-      else
-        MLK = NO_UNKOWN_MEM;
-    } else {
-      MLK = NO_UNKOWN_MEM;
-    }
-
-    assert(MLK != NO_LOCATIONS && "No location specified!");
-    LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
-                      << Obj << " -> " << getMemoryLocationsAsStr(MLK) << "\n");
-    updateStateAndAccessesMap(State, MLK, &I, &Obj, Changed,
-                              getAccessKindFromInst(&I));
-
-    return true;
-  };
-
-  const auto *AA = A.getAAFor<AAUnderlyingObjects>(
-      *this, IRPosition::value(Ptr), DepClassTy::OPTIONAL);
-  if (!AA || !AA->forallUnderlyingObjects(Pred, AA::Intraprocedural)) {
-    LLVM_DEBUG(
-        dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
-    updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
-                              getAccessKindFromInst(&I));
-    return;
-  }
-
-  LLVM_DEBUG(
-      dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
-             << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
-}
-
-void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
-    Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
-    bool &Changed) {
-  for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
-
-    // Skip non-pointer arguments.
-    const Value *ArgOp = CB.getArgOperand(ArgNo);
-    if (!ArgOp->getType()->isPtrOrPtrVectorTy())
-      continue;
-
-    // Skip readnone arguments.
-    const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
-    const auto *ArgOpMemLocationAA =
-        A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
-
-    if (ArgOpMemLocationAA && ArgOpMemLocationAA->isAssumedReadNone())
-      continue;
-
-    // Categorize potentially accessed pointer arguments as if there was an
-    // access instruction with them as pointer.
-    categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
-  }
-}
-
-AAMemoryLocation::MemoryLocationsKind
-AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
-                                                  bool &Changed) {
-  LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
-                    << I << "\n");
-
-  AAMemoryLocation::StateType AccessedLocs;
-  AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
-
-  if (auto *CB = dyn_cast<CallBase>(&I)) {
-
-    // First check if we assume any memory is access is visible.
-    const auto *CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
-        *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
-    LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
-                      << " [" << CBMemLocationAA << "]\n");
-    if (!CBMemLocationAA) {
-      updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr,
-                                Changed, getAccessKindFromInst(&I));
-      return NO_UNKOWN_MEM;
-    }
-
-    if (CBMemLocationAA->isAssumedReadNone())
-      return NO_LOCATIONS;
-
-    if (CBMemLocationAA->isAssumedInaccessibleMemOnly()) {
-      updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
-                                Changed, getAccessKindFromInst(&I));
-      return AccessedLocs.getAssumed();
-    }
-
-    uint32_t CBAssumedNotAccessedLocs =
-        CBMemLocationAA->getAssumedNotAccessedLocation();
-
-    // Set the argmemonly and global bit as we handle them separately below.
-    uint32_t CBAssumedNotAccessedLocsNoArgMem =
-        CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
-
-    for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
-      if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
-        continue;
-      updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
-                                getAccessKindFromInst(&I));
-    }
-
-    // Now handle global memory if it might be accessed. This is slightly tricky
-    // as NO_GLOBAL_MEM has multiple bits set.
-    bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
-    if (HasGlobalAccesses) {
-      auto AccessPred = [&](const Instruction *, const Value *Ptr,
-                            AccessKind Kind, MemoryLocationsKind MLK) {
-        updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
-                                  getAccessKindFromInst(&I));
-        return true;
-      };
-      if (!CBMemLocationAA->checkForAllAccessesToMemoryKind(
-              AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
-        return AccessedLocs.getWorstState();
-    }
-
-    LLVM_DEBUG(
-        dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
-               << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
-
-    // Now handle argument memory if it might be accessed.
-    bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
-    if (HasArgAccesses)
-      categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
-
-    LLVM_DEBUG(
-        dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
-               << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
-
-    return AccessedLocs.getAssumed();
-  }
-
-  if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
-    LLVM_DEBUG(
-        dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
-               << I << " [" << *Ptr << "]\n");
-    categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed,
-                       Ptr->getType()->getPointerAddressSpace());
-    return AccessedLocs.getAssumed();
-  }
-
-  LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
-                    << I << "\n");
-  updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
-                            getAccessKindFromInst(&I));
-  return AccessedLocs.getAssumed();
-}
-
-/// An AA to represent the memory behavior function attributes.
-struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
-  AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
-      : AAMemoryLocationImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(Attributor &A).
-  ChangeStatus updateImpl(Attributor &A) override {
-
-    const auto *MemBehaviorAA =
-        A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
-    if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) {
-      if (MemBehaviorAA->isKnownReadNone())
-        return indicateOptimisticFixpoint();
-      assert(isAssumedReadNone() &&
-             "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
-      A.recordDependence(*MemBehaviorAA, *this, DepClassTy::OPTIONAL);
-      return ChangeStatus::UNCHANGED;
-    }
-
-    // The current assumed state used to determine a change.
-    auto AssumedState = getAssumed();
-    bool Changed = false;
-
-    auto CheckRWInst = [&](Instruction &I) {
-      MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
-      LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
-                        << ": " << getMemoryLocationsAsStr(MLK) << "\n");
-      removeAssumedBits(inverseLocation(MLK, false, false));
-      // Stop once only the valid bit set in the *not assumed location*, thus
-      // once we don't actually exclude any memory locations in the state.
-      return getAssumedNotAccessedLocation() != VALID_STATE;
-    };
-
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
-                                            UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    Changed |= AssumedState != getAssumed();
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_FN_ATTR(readnone)
-    else if (isAssumedArgMemOnly())
-      STATS_DECLTRACK_FN_ATTR(argmemonly)
-    else if (isAssumedInaccessibleMemOnly())
-      STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
-    else if (isAssumedInaccessibleOrArgMemOnly())
-      STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
-  }
-};
-
-/// AAMemoryLocation attribute for call sites.
-struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
-  AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
-      : AAMemoryLocationImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    // TODO: Once we have call site specific value information we can provide
-    //       call site specific liveness liveness information and then it makes
-    //       sense to specialize attributes for call sites arguments instead of
-    //       redirecting requests to the callee argument.
-    Function *F = getAssociatedFunction();
-    const IRPosition &FnPos = IRPosition::function(*F);
-    auto *FnAA =
-        A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
-    if (!FnAA)
-      return indicatePessimisticFixpoint();
-    bool Changed = false;
-    auto AccessPred = [&](const Instruction *I, const Value *Ptr,
-                          AccessKind Kind, MemoryLocationsKind MLK) {
-      updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
-                                getAccessKindFromInst(I));
-      return true;
-    };
-    if (!FnAA->checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
-      return indicatePessimisticFixpoint();
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    if (isAssumedReadNone())
-      STATS_DECLTRACK_CS_ATTR(readnone)
-  }
-};
-} // namespace
-
-/// ------------------ denormal-fp-math Attribute -------------------------
-
-namespace {
-struct AADenormalFPMathImpl : public AADenormalFPMath {
-  AADenormalFPMathImpl(const IRPosition &IRP, Attributor &A)
-      : AADenormalFPMath(IRP, A) {}
-
-  const std::string getAsStr(Attributor *A) const override {
-    std::string Str("AADenormalFPMath[");
-    raw_string_ostream OS(Str);
-
-    DenormalState Known = getKnown();
-    if (Known.Mode.isValid())
-      OS << "denormal-fp-math=" << Known.Mode;
-    else
-      OS << "invalid";
-
-    if (Known.ModeF32.isValid())
-      OS << " denormal-fp-math-f32=" << Known.ModeF32;
-    OS << ']';
-    return OS.str();
-  }
-};
-
-struct AADenormalFPMathFunction final : AADenormalFPMathImpl {
-  AADenormalFPMathFunction(const IRPosition &IRP, Attributor &A)
-      : AADenormalFPMathImpl(IRP, A) {}
-
-  void initialize(Attributor &A) override {
-    const Function *F = getAnchorScope();
-    DenormalMode Mode = F->getDenormalModeRaw();
-    DenormalMode ModeF32 = F->getDenormalModeF32Raw();
-
-    // TODO: Handling this here prevents handling the case where a callee has a
-    // fixed denormal-fp-math with dynamic denormal-fp-math-f32, but called from
-    // a function with a fully fixed mode.
-    if (ModeF32 == DenormalMode::getInvalid())
-      ModeF32 = Mode;
-    Known = DenormalState{Mode, ModeF32};
-    if (isModeFixed())
-      indicateFixpoint();
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Change = ChangeStatus::UNCHANGED;
-
-    auto CheckCallSite = [=, &Change, &A](AbstractCallSite CS) {
-      Function *Caller = CS.getInstruction()->getFunction();
-      LLVM_DEBUG(dbgs() << "[AADenormalFPMath] Call " << Caller->getName()
-                        << "->" << getAssociatedFunction()->getName() << '\n');
-
-      const auto *CallerInfo = A.getAAFor<AADenormalFPMath>(
-          *this, IRPosition::function(*Caller), DepClassTy::REQUIRED);
-      if (!CallerInfo)
-        return false;
-
-      Change = Change | clampStateAndIndicateChange(this->getState(),
-                                                    CallerInfo->getState());
-      return true;
-    };
-
-    bool AllCallSitesKnown = true;
-    if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown))
-      return indicatePessimisticFixpoint();
-
-    if (Change == ChangeStatus::CHANGED && isModeFixed())
-      indicateFixpoint();
-    return Change;
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    LLVMContext &Ctx = getAssociatedFunction()->getContext();
-
-    SmallVector<Attribute, 2> AttrToAdd;
-    SmallVector<StringRef, 2> AttrToRemove;
-    if (Known.Mode == DenormalMode::getDefault()) {
-      AttrToRemove.push_back("denormal-fp-math");
-    } else {
-      AttrToAdd.push_back(
-          Attribute::get(Ctx, "denormal-fp-math", Known.Mode.str()));
-    }
-
-    if (Known.ModeF32 != Known.Mode) {
-      AttrToAdd.push_back(
-          Attribute::get(Ctx, "denormal-fp-math-f32", Known.ModeF32.str()));
-    } else {
-      AttrToRemove.push_back("denormal-fp-math-f32");
-    }
-
-    auto &IRP = getIRPosition();
-
-    // TODO: There should be a combined add and remove API.
-    return A.removeAttrs(IRP, AttrToRemove) |
-           A.manifestAttrs(IRP, AttrToAdd, /*ForceReplace=*/true);
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FN_ATTR(denormal_fp_math)
-  }
-};
-} // namespace
-
-/// ------------------ Value Constant Range Attribute -------------------------
-
-namespace {
-struct AAValueConstantRangeImpl : AAValueConstantRange {
-  using StateType = IntegerRangeState;
-  AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
-      : AAValueConstantRange(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    if (A.hasSimplificationCallback(getIRPosition())) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-
-    // Intersect a range given by SCEV.
-    intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
-
-    // Intersect a range given by LVI.
-    intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    std::string Str;
-    llvm::raw_string_ostream OS(Str);
-    OS << "range(" << getBitWidth() << ")<";
-    getKnown().print(OS);
-    OS << " / ";
-    getAssumed().print(OS);
-    OS << ">";
-    return OS.str();
-  }
-
-  /// Helper function to get a SCEV expr for the associated value at program
-  /// point \p I.
-  const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
-    if (!getAnchorScope())
-      return nullptr;
-
-    ScalarEvolution *SE =
-        A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
-            *getAnchorScope());
-
-    LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
-        *getAnchorScope());
-
-    if (!SE || !LI)
-      return nullptr;
-
-    const SCEV *S = SE->getSCEV(&getAssociatedValue());
-    if (!I)
-      return S;
-
-    return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
-  }
-
-  /// Helper function to get a range from SCEV for the associated value at
-  /// program point \p I.
-  ConstantRange getConstantRangeFromSCEV(Attributor &A,
-                                         const Instruction *I = nullptr) const {
-    if (!getAnchorScope())
-      return getWorstState(getBitWidth());
-
-    ScalarEvolution *SE =
-        A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
-            *getAnchorScope());
-
-    const SCEV *S = getSCEV(A, I);
-    if (!SE || !S)
-      return getWorstState(getBitWidth());
-
-    return SE->getUnsignedRange(S);
-  }
-
-  /// Helper function to get a range from LVI for the associated value at
-  /// program point \p I.
-  ConstantRange
-  getConstantRangeFromLVI(Attributor &A,
-                          const Instruction *CtxI = nullptr) const {
-    if (!getAnchorScope())
-      return getWorstState(getBitWidth());
-
-    LazyValueInfo *LVI =
-        A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
-            *getAnchorScope());
-
-    if (!LVI || !CtxI)
-      return getWorstState(getBitWidth());
-    return LVI->getConstantRange(&getAssociatedValue(),
-                                 const_cast<Instruction *>(CtxI),
-                                 /*UndefAllowed*/ false);
-  }
-
-  /// Return true if \p CtxI is valid for querying outside analyses.
-  /// This basically makes sure we do not ask intra-procedural analysis
-  /// about a context in the wrong function or a context that violates
-  /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
-  /// if the original context of this AA is OK or should be considered invalid.
-  bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
-                                               const Instruction *CtxI,
-                                               bool AllowAACtxI) const {
-    if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
-      return false;
-
-    // Our context might be in a different function, neither intra-procedural
-    // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
-    if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
-      return false;
-
-    // If the context is not dominated by the value there are paths to the
-    // context that do not define the value. This cannot be handled by
-    // LazyValueInfo so we need to bail.
-    if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
-      InformationCache &InfoCache = A.getInfoCache();
-      const DominatorTree *DT =
-          InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
-              *I->getFunction());
-      return DT && DT->dominates(I, CtxI);
-    }
-
-    return true;
-  }
-
-  /// See AAValueConstantRange::getKnownConstantRange(..).
-  ConstantRange
-  getKnownConstantRange(Attributor &A,
-                        const Instruction *CtxI = nullptr) const override {
-    if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
-                                                 /* AllowAACtxI */ false))
-      return getKnown();
-
-    ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
-    ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
-    return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
-  }
-
-  /// See AAValueConstantRange::getAssumedConstantRange(..).
-  ConstantRange
-  getAssumedConstantRange(Attributor &A,
-                          const Instruction *CtxI = nullptr) const override {
-    // TODO: Make SCEV use Attributor assumption.
-    //       We may be able to bound a variable range via assumptions in
-    //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
-    //       evolve to x^2 + x, then we can say that y is in [2, 12].
-    if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
-                                                 /* AllowAACtxI */ false))
-      return getAssumed();
-
-    ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
-    ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
-    return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
-  }
-
-  /// Helper function to create MDNode for range metadata.
-  static MDNode *
-  getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
-                            const ConstantRange &AssumedConstantRange) {
-    Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
-                                  Ty, AssumedConstantRange.getLower())),
-                              ConstantAsMetadata::get(ConstantInt::get(
-                                  Ty, AssumedConstantRange.getUpper()))};
-    return MDNode::get(Ctx, LowAndHigh);
-  }
-
-  /// Return true if \p Assumed is included in \p KnownRanges.
-  static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
-
-    if (Assumed.isFullSet())
-      return false;
-
-    if (!KnownRanges)
-      return true;
-
-    // If multiple ranges are annotated in IR, we give up to annotate assumed
-    // range for now.
-
-    // TODO:  If there exists a known range which containts assumed range, we
-    // can say assumed range is better.
-    if (KnownRanges->getNumOperands() > 2)
-      return false;
-
-    ConstantInt *Lower =
-        mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
-    ConstantInt *Upper =
-        mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
-
-    ConstantRange Known(Lower->getValue(), Upper->getValue());
-    return Known.contains(Assumed) && Known != Assumed;
-  }
-
-  /// Helper function to set range metadata.
-  static bool
-  setRangeMetadataIfisBetterRange(Instruction *I,
-                                  const ConstantRange &AssumedConstantRange) {
-    auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
-    if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
-      if (!AssumedConstantRange.isEmptySet()) {
-        I->setMetadata(LLVMContext::MD_range,
-                       getMDNodeForConstantRange(I->getType(), I->getContext(),
-                                                 AssumedConstantRange));
-        return true;
-      }
-    }
-    return false;
-  }
-
-  /// See AbstractAttribute::manifest()
-  ChangeStatus manifest(Attributor &A) override {
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
-    assert(!AssumedConstantRange.isFullSet() && "Invalid state");
-
-    auto &V = getAssociatedValue();
-    if (!AssumedConstantRange.isEmptySet() &&
-        !AssumedConstantRange.isSingleElement()) {
-      if (Instruction *I = dyn_cast<Instruction>(&V)) {
-        assert(I == getCtxI() && "Should not annotate an instruction which is "
-                                 "not the context instruction");
-        if (isa<CallInst>(I) || isa<LoadInst>(I))
-          if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
-            Changed = ChangeStatus::CHANGED;
-      }
-    }
-
-    return Changed;
-  }
-};
-
-struct AAValueConstantRangeArgument final
-    : AAArgumentFromCallSiteArguments<
-          AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
-          true /* BridgeCallBaseContext */> {
-  using Base = AAArgumentFromCallSiteArguments<
-      AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
-      true /* BridgeCallBaseContext */>;
-  AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(value_range)
-  }
-};
-
-struct AAValueConstantRangeReturned
-    : AAReturnedFromReturnedValues<AAValueConstantRange,
-                                   AAValueConstantRangeImpl,
-                                   AAValueConstantRangeImpl::StateType,
-                                   /* PropogateCallBaseContext */ true> {
-  using Base =
-      AAReturnedFromReturnedValues<AAValueConstantRange,
-                                   AAValueConstantRangeImpl,
-                                   AAValueConstantRangeImpl::StateType,
-                                   /* PropogateCallBaseContext */ true>;
-  AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    if (!A.isFunctionIPOAmendable(*getAssociatedFunction()))
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(value_range)
-  }
-};
-
-struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
-  AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
-      : AAValueConstantRangeImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AAValueConstantRangeImpl::initialize(A);
-    if (isAtFixpoint())
-      return;
-
-    Value &V = getAssociatedValue();
-
-    if (auto *C = dyn_cast<ConstantInt>(&V)) {
-      unionAssumed(ConstantRange(C->getValue()));
-      indicateOptimisticFixpoint();
-      return;
-    }
-
-    if (isa<UndefValue>(&V)) {
-      // Collapse the undef state to 0.
-      unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
-      indicateOptimisticFixpoint();
-      return;
-    }
-
-    if (isa<CallBase>(&V))
-      return;
-
-    if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
-      return;
-
-    // If it is a load instruction with range metadata, use it.
-    if (LoadInst *LI = dyn_cast<LoadInst>(&V))
-      if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
-        intersectKnown(getConstantRangeFromMetadata(*RangeMD));
-        return;
-      }
-
-    // We can work with PHI and select instruction as we traverse their operands
-    // during update.
-    if (isa<SelectInst>(V) || isa<PHINode>(V))
-      return;
-
-    // Otherwise we give up.
-    indicatePessimisticFixpoint();
-
-    LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
-                      << getAssociatedValue() << "\n");
-  }
-
-  bool calculateBinaryOperator(
-      Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
-      const Instruction *CtxI,
-      SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
-    Value *LHS = BinOp->getOperand(0);
-    Value *RHS = BinOp->getOperand(1);
-
-    // Simplify the operands first.
-    bool UsedAssumedInformation = false;
-    const auto &SimplifiedLHS = A.getAssumedSimplified(
-        IRPosition::value(*LHS, getCallBaseContext()), *this,
-        UsedAssumedInformation, AA::Interprocedural);
-    if (!SimplifiedLHS.has_value())
-      return true;
-    if (!*SimplifiedLHS)
-      return false;
-    LHS = *SimplifiedLHS;
-
-    const auto &SimplifiedRHS = A.getAssumedSimplified(
-        IRPosition::value(*RHS, getCallBaseContext()), *this,
-        UsedAssumedInformation, AA::Interprocedural);
-    if (!SimplifiedRHS.has_value())
-      return true;
-    if (!*SimplifiedRHS)
-      return false;
-    RHS = *SimplifiedRHS;
-
-    // TODO: Allow non integers as well.
-    if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
-      return false;
-
-    auto *LHSAA = A.getAAFor<AAValueConstantRange>(
-        *this, IRPosition::value(*LHS, getCallBaseContext()),
-        DepClassTy::REQUIRED);
-    if (!LHSAA)
-      return false;
-    QuerriedAAs.push_back(LHSAA);
-    auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI);
-
-    auto *RHSAA = A.getAAFor<AAValueConstantRange>(
-        *this, IRPosition::value(*RHS, getCallBaseContext()),
-        DepClassTy::REQUIRED);
-    if (!RHSAA)
-      return false;
-    QuerriedAAs.push_back(RHSAA);
-    auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI);
-
-    auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
-
-    T.unionAssumed(AssumedRange);
-
-    // TODO: Track a known state too.
-
-    return T.isValidState();
-  }
-
-  bool calculateCastInst(
-      Attributor &A, CastInst *CastI, IntegerRangeState &T,
-      const Instruction *CtxI,
-      SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
-    assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
-    // TODO: Allow non integers as well.
-    Value *OpV = CastI->getOperand(0);
-
-    // Simplify the operand first.
-    bool UsedAssumedInformation = false;
-    const auto &SimplifiedOpV = A.getAssumedSimplified(
-        IRPosition::value(*OpV, getCallBaseContext()), *this,
-        UsedAssumedInformation, AA::Interprocedural);
-    if (!SimplifiedOpV.has_value())
-      return true;
-    if (!*SimplifiedOpV)
-      return false;
-    OpV = *SimplifiedOpV;
-
-    if (!OpV->getType()->isIntegerTy())
-      return false;
-
-    auto *OpAA = A.getAAFor<AAValueConstantRange>(
-        *this, IRPosition::value(*OpV, getCallBaseContext()),
-        DepClassTy::REQUIRED);
-    if (!OpAA)
-      return false;
-    QuerriedAAs.push_back(OpAA);
-    T.unionAssumed(OpAA->getAssumed().castOp(CastI->getOpcode(),
-                                             getState().getBitWidth()));
-    return T.isValidState();
-  }
-
-  bool
-  calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
-                   const Instruction *CtxI,
-                   SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
-    Value *LHS = CmpI->getOperand(0);
-    Value *RHS = CmpI->getOperand(1);
-
-    // Simplify the operands first.
-    bool UsedAssumedInformation = false;
-    const auto &SimplifiedLHS = A.getAssumedSimplified(
-        IRPosition::value(*LHS, getCallBaseContext()), *this,
-        UsedAssumedInformation, AA::Interprocedural);
-    if (!SimplifiedLHS.has_value())
-      return true;
-    if (!*SimplifiedLHS)
-      return false;
-    LHS = *SimplifiedLHS;
-
-    const auto &SimplifiedRHS = A.getAssumedSimplified(
-        IRPosition::value(*RHS, getCallBaseContext()), *this,
-        UsedAssumedInformation, AA::Interprocedural);
-    if (!SimplifiedRHS.has_value())
-      return true;
-    if (!*SimplifiedRHS)
-      return false;
-    RHS = *SimplifiedRHS;
-
-    // TODO: Allow non integers as well.
-    if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
-      return false;
-
-    auto *LHSAA = A.getAAFor<AAValueConstantRange>(
-        *this, IRPosition::value(*LHS, getCallBaseContext()),
-        DepClassTy::REQUIRED);
-    if (!LHSAA)
-      return false;
-    QuerriedAAs.push_back(LHSAA);
-    auto *RHSAA = A.getAAFor<AAValueConstantRange>(
-        *this, IRPosition::value(*RHS, getCallBaseContext()),
-        DepClassTy::REQUIRED);
-    if (!RHSAA)
-      return false;
-    QuerriedAAs.push_back(RHSAA);
-    auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI);
-    auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI);
-
-    // If one of them is empty set, we can't decide.
-    if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
-      return true;
-
-    bool MustTrue = false, MustFalse = false;
-
-    auto AllowedRegion =
-        ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
-
-    if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
-      MustFalse = true;
-
-    if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
-      MustTrue = true;
-
-    assert((!MustTrue || !MustFalse) &&
-           "Either MustTrue or MustFalse should be false!");
-
-    if (MustTrue)
-      T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
-    else if (MustFalse)
-      T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
-    else
-      T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
-
-    LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " after "
-                      << (MustTrue ? "true" : (MustFalse ? "false" : "unknown"))
-                      << ": " << T << "\n\t" << *LHSAA << "\t<op>\n\t"
-                      << *RHSAA);
-
-    // TODO: Track a known state too.
-    return T.isValidState();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-
-    IntegerRangeState T(getBitWidth());
-    auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
-      Instruction *I = dyn_cast<Instruction>(&V);
-      if (!I || isa<CallBase>(I)) {
-
-        // Simplify the operand first.
-        bool UsedAssumedInformation = false;
-        const auto &SimplifiedOpV = A.getAssumedSimplified(
-            IRPosition::value(V, getCallBaseContext()), *this,
-            UsedAssumedInformation, AA::Interprocedural);
-        if (!SimplifiedOpV.has_value())
-          return true;
-        if (!*SimplifiedOpV)
-          return false;
-        Value *VPtr = *SimplifiedOpV;
-
-        // If the value is not instruction, we query AA to Attributor.
-        const auto *AA = A.getAAFor<AAValueConstantRange>(
-            *this, IRPosition::value(*VPtr, getCallBaseContext()),
-            DepClassTy::REQUIRED);
-
-        // Clamp operator is not used to utilize a program point CtxI.
-        if (AA)
-          T.unionAssumed(AA->getAssumedConstantRange(A, CtxI));
-        else
-          return false;
-
-        return T.isValidState();
-      }
-
-      SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
-      if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
-        if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
-          return false;
-      } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
-        if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
-          return false;
-      } else if (auto *CastI = dyn_cast<CastInst>(I)) {
-        if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
-          return false;
-      } else {
-        // Give up with other instructions.
-        // TODO: Add other instructions
-
-        T.indicatePessimisticFixpoint();
-        return false;
-      }
-
-      // Catch circular reasoning in a pessimistic way for now.
-      // TODO: Check how the range evolves and if we stripped anything, see also
-      //       AADereferenceable or AAAlign for similar situations.
-      for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
-        if (QueriedAA != this)
-          continue;
-        // If we are in a stady state we do not need to worry.
-        if (T.getAssumed() == getState().getAssumed())
-          continue;
-        T.indicatePessimisticFixpoint();
-      }
-
-      return T.isValidState();
-    };
-
-    if (!VisitValueCB(getAssociatedValue(), getCtxI()))
-      return indicatePessimisticFixpoint();
-
-    // Ensure that long def-use chains can't cause circular reasoning either by
-    // introducing a cutoff below.
-    if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
-      return ChangeStatus::UNCHANGED;
-    if (++NumChanges > MaxNumChanges) {
-      LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
-                        << " but only " << MaxNumChanges
-                        << " are allowed to avoid cyclic reasoning.");
-      return indicatePessimisticFixpoint();
-    }
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(value_range)
-  }
-
-  /// Tracker to bail after too many widening steps of the constant range.
-  int NumChanges = 0;
-
-  /// Upper bound for the number of allowed changes (=widening steps) for the
-  /// constant range before we give up.
-  static constexpr int MaxNumChanges = 5;
-};
-
-struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
-  AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
-      : AAValueConstantRangeImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
-                     "not be called");
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
-};
-
-struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
-  AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
-      : AAValueConstantRangeFunction(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
-};
-
-struct AAValueConstantRangeCallSiteReturned
-    : AACalleeToCallSite<AAValueConstantRange, AAValueConstantRangeImpl,
-                         AAValueConstantRangeImpl::StateType,
-                         /* IntroduceCallBaseContext */ true> {
-  AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AAValueConstantRange, AAValueConstantRangeImpl,
-                           AAValueConstantRangeImpl::StateType,
-                           /* IntroduceCallBaseContext */ true>(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // If it is a load instruction with range metadata, use the metadata.
-    if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
-      if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
-        intersectKnown(getConstantRangeFromMetadata(*RangeMD));
-
-    AAValueConstantRangeImpl::initialize(A);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(value_range)
-  }
-};
-struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
-  AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAValueConstantRangeFloating(IRP, A) {}
-
-  /// See AbstractAttribute::manifest()
-  ChangeStatus manifest(Attributor &A) override {
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(value_range)
-  }
-};
-} // namespace
-
-/// ------------------ Potential Values Attribute -------------------------
-
-namespace {
-struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
-  using StateType = PotentialConstantIntValuesState;
-
-  AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
-      : AAPotentialConstantValues(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    if (A.hasSimplificationCallback(getIRPosition()))
-      indicatePessimisticFixpoint();
-    else
-      AAPotentialConstantValues::initialize(A);
-  }
-
-  bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
-                                 bool &ContainsUndef, bool ForSelf) {
-    SmallVector<AA::ValueAndContext> Values;
-    bool UsedAssumedInformation = false;
-    if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
-                                      UsedAssumedInformation)) {
-      // Avoid recursion when the caller is computing constant values for this
-      // IRP itself.
-      if (ForSelf)
-        return false;
-      if (!IRP.getAssociatedType()->isIntegerTy())
-        return false;
-      auto *PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
-          *this, IRP, DepClassTy::REQUIRED);
-      if (!PotentialValuesAA || !PotentialValuesAA->getState().isValidState())
-        return false;
-      ContainsUndef = PotentialValuesAA->getState().undefIsContained();
-      S = PotentialValuesAA->getState().getAssumedSet();
-      return true;
-    }
-
-    // Copy all the constant values, except UndefValue. ContainsUndef is true
-    // iff Values contains only UndefValue instances. If there are other known
-    // constants, then UndefValue is dropped.
-    ContainsUndef = false;
-    for (auto &It : Values) {
-      if (isa<UndefValue>(It.getValue())) {
-        ContainsUndef = true;
-        continue;
-      }
-      auto *CI = dyn_cast<ConstantInt>(It.getValue());
-      if (!CI)
-        return false;
-      S.insert(CI->getValue());
-    }
-    ContainsUndef &= S.empty();
-
-    return true;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    std::string Str;
-    llvm::raw_string_ostream OS(Str);
-    OS << getState();
-    return OS.str();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    return indicatePessimisticFixpoint();
-  }
-};
-
-struct AAPotentialConstantValuesArgument final
-    : AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
-                                      AAPotentialConstantValuesImpl,
-                                      PotentialConstantIntValuesState> {
-  using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
-                                               AAPotentialConstantValuesImpl,
-                                               PotentialConstantIntValuesState>;
-  AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialConstantValuesReturned
-    : AAReturnedFromReturnedValues<AAPotentialConstantValues,
-                                   AAPotentialConstantValuesImpl> {
-  using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
-                                            AAPotentialConstantValuesImpl>;
-  AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  void initialize(Attributor &A) override {
-    if (!A.isFunctionIPOAmendable(*getAssociatedFunction()))
-      indicatePessimisticFixpoint();
-    Base::initialize(A);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
-  AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
-      : AAPotentialConstantValuesImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    AAPotentialConstantValuesImpl::initialize(A);
-    if (isAtFixpoint())
-      return;
-
-    Value &V = getAssociatedValue();
-
-    if (auto *C = dyn_cast<ConstantInt>(&V)) {
-      unionAssumed(C->getValue());
-      indicateOptimisticFixpoint();
-      return;
-    }
-
-    if (isa<UndefValue>(&V)) {
-      unionAssumedWithUndef();
-      indicateOptimisticFixpoint();
-      return;
-    }
-
-    if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
-      return;
-
-    if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
-      return;
-
-    indicatePessimisticFixpoint();
-
-    LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
-                      << getAssociatedValue() << "\n");
-  }
-
-  static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
-                                const APInt &RHS) {
-    return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
-  }
-
-  static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
-                                 uint32_t ResultBitWidth) {
-    Instruction::CastOps CastOp = CI->getOpcode();
-    switch (CastOp) {
-    default:
-      llvm_unreachable("unsupported or not integer cast");
-    case Instruction::Trunc:
-      return Src.trunc(ResultBitWidth);
-    case Instruction::SExt:
-      return Src.sext(ResultBitWidth);
-    case Instruction::ZExt:
-      return Src.zext(ResultBitWidth);
-    case Instruction::BitCast:
-      return Src;
-    }
-  }
-
-  static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
-                                       const APInt &LHS, const APInt &RHS,
-                                       bool &SkipOperation, bool &Unsupported) {
-    Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
-    // Unsupported is set to true when the binary operator is not supported.
-    // SkipOperation is set to true when UB occur with the given operand pair
-    // (LHS, RHS).
-    // TODO: we should look at nsw and nuw keywords to handle operations
-    //       that create poison or undef value.
-    switch (BinOpcode) {
-    default:
-      Unsupported = true;
-      return LHS;
-    case Instruction::Add:
-      return LHS + RHS;
-    case Instruction::Sub:
-      return LHS - RHS;
-    case Instruction::Mul:
-      return LHS * RHS;
-    case Instruction::UDiv:
-      if (RHS.isZero()) {
-        SkipOperation = true;
-        return LHS;
-      }
-      return LHS.udiv(RHS);
-    case Instruction::SDiv:
-      if (RHS.isZero()) {
-        SkipOperation = true;
-        return LHS;
-      }
-      return LHS.sdiv(RHS);
-    case Instruction::URem:
-      if (RHS.isZero()) {
-        SkipOperation = true;
-        return LHS;
-      }
-      return LHS.urem(RHS);
-    case Instruction::SRem:
-      if (RHS.isZero()) {
-        SkipOperation = true;
-        return LHS;
-      }
-      return LHS.srem(RHS);
-    case Instruction::Shl:
-      return LHS.shl(RHS);
-    case Instruction::LShr:
-      return LHS.lshr(RHS);
-    case Instruction::AShr:
-      return LHS.ashr(RHS);
-    case Instruction::And:
-      return LHS & RHS;
-    case Instruction::Or:
-      return LHS | RHS;
-    case Instruction::Xor:
-      return LHS ^ RHS;
-    }
-  }
-
-  bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
-                                           const APInt &LHS, const APInt &RHS) {
-    bool SkipOperation = false;
-    bool Unsupported = false;
-    APInt Result =
-        calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
-    if (Unsupported)
-      return false;
-    // If SkipOperation is true, we can ignore this operand pair (L, R).
-    if (!SkipOperation)
-      unionAssumed(Result);
-    return isValidState();
-  }
-
-  ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
-    auto AssumedBefore = getAssumed();
-    Value *LHS = ICI->getOperand(0);
-    Value *RHS = ICI->getOperand(1);
-
-    bool LHSContainsUndef = false, RHSContainsUndef = false;
-    SetTy LHSAAPVS, RHSAAPVS;
-    if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
-                                   LHSContainsUndef, /* ForSelf */ false) ||
-        !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
-                                   RHSContainsUndef, /* ForSelf */ false))
-      return indicatePessimisticFixpoint();
-
-    // TODO: make use of undef flag to limit potential values aggressively.
-    bool MaybeTrue = false, MaybeFalse = false;
-    const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
-    if (LHSContainsUndef && RHSContainsUndef) {
-      // The result of any comparison between undefs can be soundly replaced
-      // with undef.
-      unionAssumedWithUndef();
-    } else if (LHSContainsUndef) {
-      for (const APInt &R : RHSAAPVS) {
-        bool CmpResult = calculateICmpInst(ICI, Zero, R);
-        MaybeTrue |= CmpResult;
-        MaybeFalse |= !CmpResult;
-        if (MaybeTrue & MaybeFalse)
-          return indicatePessimisticFixpoint();
-      }
-    } else if (RHSContainsUndef) {
-      for (const APInt &L : LHSAAPVS) {
-        bool CmpResult = calculateICmpInst(ICI, L, Zero);
-        MaybeTrue |= CmpResult;
-        MaybeFalse |= !CmpResult;
-        if (MaybeTrue & MaybeFalse)
-          return indicatePessimisticFixpoint();
-      }
-    } else {
-      for (const APInt &L : LHSAAPVS) {
-        for (const APInt &R : RHSAAPVS) {
-          bool CmpResult = calculateICmpInst(ICI, L, R);
-          MaybeTrue |= CmpResult;
-          MaybeFalse |= !CmpResult;
-          if (MaybeTrue & MaybeFalse)
-            return indicatePessimisticFixpoint();
-        }
-      }
-    }
-    if (MaybeTrue)
-      unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
-    if (MaybeFalse)
-      unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
-    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
-                                         : ChangeStatus::CHANGED;
-  }
-
-  ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
-    auto AssumedBefore = getAssumed();
-    Value *LHS = SI->getTrueValue();
-    Value *RHS = SI->getFalseValue();
-
-    bool UsedAssumedInformation = false;
-    std::optional<Constant *> C = A.getAssumedConstant(
-        *SI->getCondition(), *this, UsedAssumedInformation);
-
-    // Check if we only need one operand.
-    bool OnlyLeft = false, OnlyRight = false;
-    if (C && *C && (*C)->isOneValue())
-      OnlyLeft = true;
-    else if (C && *C && (*C)->isZeroValue())
-      OnlyRight = true;
-
-    bool LHSContainsUndef = false, RHSContainsUndef = false;
-    SetTy LHSAAPVS, RHSAAPVS;
-    if (!OnlyRight &&
-        !fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
-                                   LHSContainsUndef, /* ForSelf */ false))
-      return indicatePessimisticFixpoint();
-
-    if (!OnlyLeft &&
-        !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
-                                   RHSContainsUndef, /* ForSelf */ false))
-      return indicatePessimisticFixpoint();
-
-    if (OnlyLeft || OnlyRight) {
-      // select (true/false), lhs, rhs
-      auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
-      auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
-
-      if (Undef)
-        unionAssumedWithUndef();
-      else {
-        for (const auto &It : *OpAA)
-          unionAssumed(It);
-      }
-
-    } else if (LHSContainsUndef && RHSContainsUndef) {
-      // select i1 *, undef , undef => undef
-      unionAssumedWithUndef();
-    } else {
-      for (const auto &It : LHSAAPVS)
-        unionAssumed(It);
-      for (const auto &It : RHSAAPVS)
-        unionAssumed(It);
-    }
-    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
-                                         : ChangeStatus::CHANGED;
-  }
-
-  ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
-    auto AssumedBefore = getAssumed();
-    if (!CI->isIntegerCast())
-      return indicatePessimisticFixpoint();
-    assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
-    uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
-    Value *Src = CI->getOperand(0);
-
-    bool SrcContainsUndef = false;
-    SetTy SrcPVS;
-    if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
-                                   SrcContainsUndef, /* ForSelf */ false))
-      return indicatePessimisticFixpoint();
-
-    if (SrcContainsUndef)
-      unionAssumedWithUndef();
-    else {
-      for (const APInt &S : SrcPVS) {
-        APInt T = calculateCastInst(CI, S, ResultBitWidth);
-        unionAssumed(T);
-      }
-    }
-    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
-                                         : ChangeStatus::CHANGED;
-  }
-
-  ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
-    auto AssumedBefore = getAssumed();
-    Value *LHS = BinOp->getOperand(0);
-    Value *RHS = BinOp->getOperand(1);
-
-    bool LHSContainsUndef = false, RHSContainsUndef = false;
-    SetTy LHSAAPVS, RHSAAPVS;
-    if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
-                                   LHSContainsUndef, /* ForSelf */ false) ||
-        !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
-                                   RHSContainsUndef, /* ForSelf */ false))
-      return indicatePessimisticFixpoint();
-
-    const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
-
-    // TODO: make use of undef flag to limit potential values aggressively.
-    if (LHSContainsUndef && RHSContainsUndef) {
-      if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
-        return indicatePessimisticFixpoint();
-    } else if (LHSContainsUndef) {
-      for (const APInt &R : RHSAAPVS) {
-        if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
-          return indicatePessimisticFixpoint();
-      }
-    } else if (RHSContainsUndef) {
-      for (const APInt &L : LHSAAPVS) {
-        if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
-          return indicatePessimisticFixpoint();
-      }
-    } else {
-      for (const APInt &L : LHSAAPVS) {
-        for (const APInt &R : RHSAAPVS) {
-          if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
-            return indicatePessimisticFixpoint();
-        }
-      }
-    }
-    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
-                                         : ChangeStatus::CHANGED;
-  }
-
-  ChangeStatus updateWithInstruction(Attributor &A, Instruction *Inst) {
-    auto AssumedBefore = getAssumed();
-    SetTy Incoming;
-    bool ContainsUndef;
-    if (!fillSetWithConstantValues(A, IRPosition::value(*Inst), Incoming,
-                                   ContainsUndef, /* ForSelf */ true))
-      return indicatePessimisticFixpoint();
-    if (ContainsUndef) {
-      unionAssumedWithUndef();
-    } else {
-      for (const auto &It : Incoming)
-        unionAssumed(It);
-    }
-    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
-                                         : ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    Value &V = getAssociatedValue();
-    Instruction *I = dyn_cast<Instruction>(&V);
-
-    if (auto *ICI = dyn_cast<ICmpInst>(I))
-      return updateWithICmpInst(A, ICI);
-
-    if (auto *SI = dyn_cast<SelectInst>(I))
-      return updateWithSelectInst(A, SI);
-
-    if (auto *CI = dyn_cast<CastInst>(I))
-      return updateWithCastInst(A, CI);
-
-    if (auto *BinOp = dyn_cast<BinaryOperator>(I))
-      return updateWithBinaryOperator(A, BinOp);
-
-    if (isa<PHINode>(I) || isa<LoadInst>(I))
-      return updateWithInstruction(A, I);
-
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
-  AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
-      : AAPotentialConstantValuesImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable(
-        "AAPotentialConstantValues(Function|CallSite)::updateImpl will "
-        "not be called");
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FN_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
-  AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
-      : AAPotentialConstantValuesFunction(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CS_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialConstantValuesCallSiteReturned
-    : AACalleeToCallSite<AAPotentialConstantValues,
-                         AAPotentialConstantValuesImpl> {
-  AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
-                                            Attributor &A)
-      : AACalleeToCallSite<AAPotentialConstantValues,
-                           AAPotentialConstantValuesImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialConstantValuesCallSiteArgument
-    : AAPotentialConstantValuesFloating {
-  AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
-                                            Attributor &A)
-      : AAPotentialConstantValuesFloating(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    AAPotentialConstantValuesImpl::initialize(A);
-    if (isAtFixpoint())
-      return;
-
-    Value &V = getAssociatedValue();
-
-    if (auto *C = dyn_cast<ConstantInt>(&V)) {
-      unionAssumed(C->getValue());
-      indicateOptimisticFixpoint();
-      return;
-    }
-
-    if (isa<UndefValue>(&V)) {
-      unionAssumedWithUndef();
-      indicateOptimisticFixpoint();
-      return;
-    }
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    Value &V = getAssociatedValue();
-    auto AssumedBefore = getAssumed();
-    auto *AA = A.getAAFor<AAPotentialConstantValues>(
-        *this, IRPosition::value(V), DepClassTy::REQUIRED);
-    if (!AA)
-      return indicatePessimisticFixpoint();
-    const auto &S = AA->getAssumed();
-    unionAssumed(S);
-    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
-                                         : ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(potential_values)
-  }
-};
-} // namespace
-
-/// ------------------------ NoUndef Attribute ---------------------------------
-bool AANoUndef::isImpliedByIR(Attributor &A, const IRPosition &IRP,
-                              Attribute::AttrKind ImpliedAttributeKind,
-                              bool IgnoreSubsumingPositions) {
-  assert(ImpliedAttributeKind == Attribute::NoUndef &&
-         "Unexpected attribute kind");
-  if (A.hasAttr(IRP, {Attribute::NoUndef}, IgnoreSubsumingPositions,
-                Attribute::NoUndef))
-    return true;
-
-  Value &Val = IRP.getAssociatedValue();
-  if (IRP.getPositionKind() != IRPosition::IRP_RETURNED &&
-      isGuaranteedNotToBeUndefOrPoison(&Val)) {
-    LLVMContext &Ctx = Val.getContext();
-    A.manifestAttrs(IRP, Attribute::get(Ctx, Attribute::NoUndef));
-    return true;
-  }
-
-  return false;
-}
-
-namespace {
-struct AANoUndefImpl : AANoUndef {
-  AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    Value &V = getAssociatedValue();
-    if (isa<UndefValue>(V))
-      indicatePessimisticFixpoint();
-    assert(!isImpliedByIR(A, getIRPosition(), Attribute::NoUndef));
-  }
-
-  /// See followUsesInMBEC
-  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
-                       AANoUndef::StateType &State) {
-    const Value *UseV = U->get();
-    const DominatorTree *DT = nullptr;
-    AssumptionCache *AC = nullptr;
-    InformationCache &InfoCache = A.getInfoCache();
-    if (Function *F = getAnchorScope()) {
-      DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
-      AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
-    }
-    State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
-    bool TrackUse = false;
-    // Track use for instructions which must produce undef or poison bits when
-    // at least one operand contains such bits.
-    if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
-      TrackUse = true;
-    return TrackUse;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return getAssumed() ? "noundef" : "may-undef-or-poison";
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    // We don't manifest noundef attribute for dead positions because the
-    // associated values with dead positions would be replaced with undef
-    // values.
-    bool UsedAssumedInformation = false;
-    if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
-                        UsedAssumedInformation))
-      return ChangeStatus::UNCHANGED;
-    // A position whose simplified value does not have any value is
-    // considered to be dead. We don't manifest noundef in such positions for
-    // the same reason above.
-    if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
-                                AA::Interprocedural)
-             .has_value())
-      return ChangeStatus::UNCHANGED;
-    return AANoUndef::manifest(A);
-  }
-};
-
-struct AANoUndefFloating : public AANoUndefImpl {
-  AANoUndefFloating(const IRPosition &IRP, Attributor &A)
-      : AANoUndefImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    AANoUndefImpl::initialize(A);
-    if (!getState().isAtFixpoint() && getAnchorScope() &&
-        !getAnchorScope()->isDeclaration())
-      if (Instruction *CtxI = getCtxI())
-        followUsesInMBEC(*this, A, getState(), *CtxI);
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto VisitValueCB = [&](const IRPosition &IRP) -> bool {
-      bool IsKnownNoUndef;
-      return AA::hasAssumedIRAttr<Attribute::NoUndef>(
-          A, this, IRP, DepClassTy::REQUIRED, IsKnownNoUndef);
-    };
-
-    bool Stripped;
-    bool UsedAssumedInformation = false;
-    Value *AssociatedValue = &getAssociatedValue();
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
-                                      AA::AnyScope, UsedAssumedInformation))
-      Stripped = false;
-    else
-      Stripped =
-          Values.size() != 1 || Values.front().getValue() != AssociatedValue;
-
-    if (!Stripped) {
-      // If we haven't stripped anything we might still be able to use a
-      // different AA, but only if the IRP changes. Effectively when we
-      // interpret this not as a call site value but as a floating/argument
-      // value.
-      const IRPosition AVIRP = IRPosition::value(*AssociatedValue);
-      if (AVIRP == getIRPosition() || !VisitValueCB(AVIRP))
-        return indicatePessimisticFixpoint();
-      return ChangeStatus::UNCHANGED;
-    }
-
-    for (const auto &VAC : Values)
-      if (!VisitValueCB(IRPosition::value(*VAC.getValue())))
-        return indicatePessimisticFixpoint();
-
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
-};
-
-struct AANoUndefReturned final
-    : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
-  AANoUndefReturned(const IRPosition &IRP, Attributor &A)
-      : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
-};
-
-struct AANoUndefArgument final
-    : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
-  AANoUndefArgument(const IRPosition &IRP, Attributor &A)
-      : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
-};
-
-struct AANoUndefCallSiteArgument final : AANoUndefFloating {
-  AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AANoUndefFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
-};
-
-struct AANoUndefCallSiteReturned final
-    : AACalleeToCallSite<AANoUndef, AANoUndefImpl> {
-  AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoUndef, AANoUndefImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
-};
-
-/// ------------------------ NoFPClass Attribute -------------------------------
-
-struct AANoFPClassImpl : AANoFPClass {
-  AANoFPClassImpl(const IRPosition &IRP, Attributor &A) : AANoFPClass(IRP, A) {}
-
-  void initialize(Attributor &A) override {
-    const IRPosition &IRP = getIRPosition();
-
-    Value &V = IRP.getAssociatedValue();
-    if (isa<UndefValue>(V)) {
-      indicateOptimisticFixpoint();
-      return;
-    }
-
-    SmallVector<Attribute> Attrs;
-    A.getAttrs(getIRPosition(), {Attribute::NoFPClass}, Attrs, false);
-    for (const auto &Attr : Attrs) {
-      addKnownBits(Attr.getNoFPClass());
-    }
-
-    const DataLayout &DL = A.getDataLayout();
-    if (getPositionKind() != IRPosition::IRP_RETURNED) {
-      KnownFPClass KnownFPClass = computeKnownFPClass(&V, DL);
-      addKnownBits(~KnownFPClass.KnownFPClasses);
-    }
-
-    if (Instruction *CtxI = getCtxI())
-      followUsesInMBEC(*this, A, getState(), *CtxI);
-  }
-
-  /// See followUsesInMBEC
-  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
-                       AANoFPClass::StateType &State) {
-    const Value *UseV = U->get();
-    const DominatorTree *DT = nullptr;
-    AssumptionCache *AC = nullptr;
-    const TargetLibraryInfo *TLI = nullptr;
-    InformationCache &InfoCache = A.getInfoCache();
-
-    if (Function *F = getAnchorScope()) {
-      DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
-      AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
-      TLI = InfoCache.getTargetLibraryInfoForFunction(*F);
-    }
-
-    const DataLayout &DL = A.getDataLayout();
-
-    KnownFPClass KnownFPClass =
-        computeKnownFPClass(UseV, DL,
-                            /*InterestedClasses=*/fcAllFlags,
-                            /*Depth=*/0, TLI, AC, I, DT);
-    State.addKnownBits(~KnownFPClass.KnownFPClasses);
-
-    if (auto *CI = dyn_cast<CallInst>(UseV)) {
-      // Special case FP intrinsic with struct return type.
-      switch (CI->getIntrinsicID()) {
-      case Intrinsic::frexp:
-        return true;
-      case Intrinsic::not_intrinsic:
-        // TODO: Could recognize math libcalls
-        return false;
-      default:
-        break;
-      }
-    }
-
-    if (!UseV->getType()->isFPOrFPVectorTy())
-      return false;
-    return !isa<LoadInst, AtomicRMWInst>(UseV);
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    std::string Result = "nofpclass";
-    raw_string_ostream OS(Result);
-    OS << getAssumedNoFPClass();
-    return Result;
-  }
-
-  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
-                            SmallVectorImpl<Attribute> &Attrs) const override {
-    Attrs.emplace_back(Attribute::getWithNoFPClass(Ctx, getAssumedNoFPClass()));
-  }
-};
-
-struct AANoFPClassFloating : public AANoFPClassImpl {
-  AANoFPClassFloating(const IRPosition &IRP, Attributor &A)
-      : AANoFPClassImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    SmallVector<AA::ValueAndContext> Values;
-    bool UsedAssumedInformation = false;
-    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
-                                      AA::AnyScope, UsedAssumedInformation)) {
-      Values.push_back({getAssociatedValue(), getCtxI()});
-    }
-
-    StateType T;
-    auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
-      const auto *AA = A.getAAFor<AANoFPClass>(*this, IRPosition::value(V),
-                                               DepClassTy::REQUIRED);
-      if (!AA || this == AA) {
-        T.indicatePessimisticFixpoint();
-      } else {
-        const AANoFPClass::StateType &S =
-            static_cast<const AANoFPClass::StateType &>(AA->getState());
-        T ^= S;
-      }
-      return T.isValidState();
-    };
-
-    for (const auto &VAC : Values)
-      if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
-        return indicatePessimisticFixpoint();
-
-    return clampStateAndIndicateChange(getState(), T);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(nofpclass)
-  }
-};
-
-struct AANoFPClassReturned final
-    : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl,
-                                   AANoFPClassImpl::StateType, false, Attribute::None, false> {
-  AANoFPClassReturned(const IRPosition &IRP, Attributor &A)
-      : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl,
-                                     AANoFPClassImpl::StateType, false, Attribute::None, false>(
-            IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(nofpclass)
-  }
-};
-
-struct AANoFPClassArgument final
-    : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl> {
-  AANoFPClassArgument(const IRPosition &IRP, Attributor &A)
-      : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofpclass) }
-};
-
-struct AANoFPClassCallSiteArgument final : AANoFPClassFloating {
-  AANoFPClassCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AANoFPClassFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(nofpclass)
-  }
-};
-
-struct AANoFPClassCallSiteReturned final
-    : AACalleeToCallSite<AANoFPClass, AANoFPClassImpl> {
-  AANoFPClassCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AACalleeToCallSite<AANoFPClass, AANoFPClassImpl>(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(nofpclass)
-  }
-};
-
-struct AACallEdgesImpl : public AACallEdges {
-  AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
-
-  const SetVector<Function *> &getOptimisticEdges() const override {
-    return CalledFunctions;
-  }
-
-  bool hasUnknownCallee() const override { return HasUnknownCallee; }
-
-  bool hasNonAsmUnknownCallee() const override {
-    return HasUnknownCalleeNonAsm;
-  }
-
-  const std::string getAsStr(Attributor *A) const override {
-    return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
-           std::to_string(CalledFunctions.size()) + "]";
-  }
-
-  void trackStatistics() const override {}
-
-protected:
-  void addCalledFunction(Function *Fn, ChangeStatus &Change) {
-    if (CalledFunctions.insert(Fn)) {
-      Change = ChangeStatus::CHANGED;
-      LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
-                        << "\n");
-    }
-  }
-
-  void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
-    if (!HasUnknownCallee)
-      Change = ChangeStatus::CHANGED;
-    if (NonAsm && !HasUnknownCalleeNonAsm)
-      Change = ChangeStatus::CHANGED;
-    HasUnknownCalleeNonAsm |= NonAsm;
-    HasUnknownCallee = true;
-  }
-
-private:
-  /// Optimistic set of functions that might be called by this position.
-  SetVector<Function *> CalledFunctions;
-
-  /// Is there any call with a unknown callee.
-  bool HasUnknownCallee = false;
-
-  /// Is there any call with a unknown callee, excluding any inline asm.
-  bool HasUnknownCalleeNonAsm = false;
-};
-
-struct AACallEdgesCallSite : public AACallEdgesImpl {
-  AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
-      : AACallEdgesImpl(IRP, A) {}
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Change = ChangeStatus::UNCHANGED;
-
-    auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
-      if (Function *Fn = dyn_cast<Function>(&V)) {
-        addCalledFunction(Fn, Change);
-      } else {
-        LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
-        setHasUnknownCallee(true, Change);
-      }
-
-      // Explore all values.
-      return true;
-    };
-
-    SmallVector<AA::ValueAndContext> Values;
-    // Process any value that we might call.
-    auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
-      if (isa<Constant>(V)) {
-        VisitValue(*V, CtxI);
-        return;
-      }
-
-      bool UsedAssumedInformation = false;
-      Values.clear();
-      if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
-                                        AA::AnyScope, UsedAssumedInformation)) {
-        Values.push_back({*V, CtxI});
-      }
-      for (auto &VAC : Values)
-        VisitValue(*VAC.getValue(), VAC.getCtxI());
-    };
-
-    CallBase *CB = cast<CallBase>(getCtxI());
-
-    if (auto *IA = dyn_cast<InlineAsm>(CB->getCalledOperand())) {
-      if (IA->hasSideEffects() &&
-          !hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
-          !hasAssumption(*CB, "ompx_no_call_asm")) {
-        setHasUnknownCallee(false, Change);
-      }
-      return Change;
-    }
-
-    if (CB->isIndirectCall())
-      if (auto *IndirectCallAA = A.getAAFor<AAIndirectCallInfo>(
-              *this, getIRPosition(), DepClassTy::OPTIONAL))
-        if (IndirectCallAA->foreachCallee(
-                [&](Function *Fn) { return VisitValue(*Fn, CB); }))
-          return Change;
-
-    // The most simple case.
-    ProcessCalledOperand(CB->getCalledOperand(), CB);
-
-    // Process callback functions.
-    SmallVector<const Use *, 4u> CallbackUses;
-    AbstractCallSite::getCallbackUses(*CB, CallbackUses);
-    for (const Use *U : CallbackUses)
-      ProcessCalledOperand(U->get(), CB);
-
-    return Change;
-  }
-};
-
-struct AACallEdgesFunction : public AACallEdgesImpl {
-  AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
-      : AACallEdgesImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    ChangeStatus Change = ChangeStatus::UNCHANGED;
-
-    auto ProcessCallInst = [&](Instruction &Inst) {
-      CallBase &CB = cast<CallBase>(Inst);
-
-      auto *CBEdges = A.getAAFor<AACallEdges>(
-          *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
-      if (!CBEdges)
-        return false;
-      if (CBEdges->hasNonAsmUnknownCallee())
-        setHasUnknownCallee(true, Change);
-      if (CBEdges->hasUnknownCallee())
-        setHasUnknownCallee(false, Change);
-
-      for (Function *F : CBEdges->getOptimisticEdges())
-        addCalledFunction(F, Change);
-
-      return true;
-    };
-
-    // Visit all callable instructions.
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
-                                           UsedAssumedInformation,
-                                           /* CheckBBLivenessOnly */ true)) {
-      // If we haven't looked at all call like instructions, assume that there
-      // are unknown callees.
-      setHasUnknownCallee(true, Change);
-    }
-
-    return Change;
-  }
-};
-
-/// -------------------AAInterFnReachability Attribute--------------------------
-
-struct AAInterFnReachabilityFunction
-    : public CachedReachabilityAA<AAInterFnReachability, Function> {
-  using Base = CachedReachabilityAA<AAInterFnReachability, Function>;
-  AAInterFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  bool instructionCanReach(
-      Attributor &A, const Instruction &From, const Function &To,
-      const AA::InstExclusionSetTy *ExclusionSet) const override {
-    assert(From.getFunction() == getAnchorScope() && "Queried the wrong AA!");
-    auto *NonConstThis = const_cast<AAInterFnReachabilityFunction *>(this);
-
-    RQITy StackRQI(A, From, To, ExclusionSet, false);
-    typename RQITy::Reachable Result;
-    if (!NonConstThis->checkQueryCache(A, StackRQI, Result))
-      return NonConstThis->isReachableImpl(A, StackRQI,
-                                           /*IsTemporaryRQI=*/true);
-    return Result == RQITy::Reachable::Yes;
-  }
-
-  bool isReachableImpl(Attributor &A, RQITy &RQI,
-                       bool IsTemporaryRQI) override {
-    const Instruction *EntryI =
-        &RQI.From->getFunction()->getEntryBlock().front();
-    if (EntryI != RQI.From &&
-        !instructionCanReach(A, *EntryI, *RQI.To, nullptr))
-      return rememberResult(A, RQITy::Reachable::No, RQI, false,
-                            IsTemporaryRQI);
-
-    auto CheckReachableCallBase = [&](CallBase *CB) {
-      auto *CBEdges = A.getAAFor<AACallEdges>(
-          *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
-      if (!CBEdges || !CBEdges->getState().isValidState())
-        return false;
-      // TODO Check To backwards in this case.
-      if (CBEdges->hasUnknownCallee())
-        return false;
-
-      for (Function *Fn : CBEdges->getOptimisticEdges()) {
-        if (Fn == RQI.To)
-          return false;
-
-        if (Fn->isDeclaration()) {
-          if (Fn->hasFnAttribute(Attribute::NoCallback))
-            continue;
-          // TODO Check To backwards in this case.
-          return false;
-        }
-
-        if (Fn == getAnchorScope()) {
-          if (EntryI == RQI.From)
-            continue;
-          return false;
-        }
-
-        const AAInterFnReachability *InterFnReachability =
-            A.getAAFor<AAInterFnReachability>(*this, IRPosition::function(*Fn),
-                                              DepClassTy::OPTIONAL);
-
-        const Instruction &FnFirstInst = Fn->getEntryBlock().front();
-        if (!InterFnReachability ||
-            InterFnReachability->instructionCanReach(A, FnFirstInst, *RQI.To,
-                                                     RQI.ExclusionSet))
-          return false;
-      }
-      return true;
-    };
-
-    const auto *IntraFnReachability = A.getAAFor<AAIntraFnReachability>(
-        *this, IRPosition::function(*RQI.From->getFunction()),
-        DepClassTy::OPTIONAL);
-
-    // Determine call like instructions that we can reach from the inst.
-    auto CheckCallBase = [&](Instruction &CBInst) {
-      // There are usually less nodes in the call graph, check inter function
-      // reachability first.
-      if (CheckReachableCallBase(cast<CallBase>(&CBInst)))
-        return true;
-      return IntraFnReachability && !IntraFnReachability->isAssumedReachable(
-                                        A, *RQI.From, CBInst, RQI.ExclusionSet);
-    };
-
-    bool UsedExclusionSet = /* conservative */ true;
-    bool UsedAssumedInformation = false;
-    if (!A.checkForAllCallLikeInstructions(CheckCallBase, *this,
-                                           UsedAssumedInformation,
-                                           /* CheckBBLivenessOnly */ true))
-      return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
-                            IsTemporaryRQI);
-
-    return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
-                          IsTemporaryRQI);
-  }
-
-  void trackStatistics() const override {}
-};
-} // namespace
-
-template <typename AAType>
-static std::optional<Constant *>
-askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
-                      const IRPosition &IRP, Type &Ty) {
-  if (!Ty.isIntegerTy())
-    return nullptr;
-
-  // This will also pass the call base context.
-  const auto *AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
-  if (!AA)
-    return nullptr;
-
-  std::optional<Constant *> COpt = AA->getAssumedConstant(A);
-
-  if (!COpt.has_value()) {
-    A.recordDependence(*AA, QueryingAA, DepClassTy::OPTIONAL);
-    return std::nullopt;
-  }
-  if (auto *C = *COpt) {
-    A.recordDependence(*AA, QueryingAA, DepClassTy::OPTIONAL);
-    return C;
-  }
-  return nullptr;
-}
-
-Value *AAPotentialValues::getSingleValue(
-    Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
-    SmallVectorImpl<AA::ValueAndContext> &Values) {
-  Type &Ty = *IRP.getAssociatedType();
-  std::optional<Value *> V;
-  for (auto &It : Values) {
-    V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
-    if (V.has_value() && !*V)
-      break;
-  }
-  if (!V.has_value())
-    return UndefValue::get(&Ty);
-  return *V;
-}
-
-namespace {
-struct AAPotentialValuesImpl : AAPotentialValues {
-  using StateType = PotentialLLVMValuesState;
-
-  AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
-      : AAPotentialValues(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    if (A.hasSimplificationCallback(getIRPosition())) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-    Value *Stripped = getAssociatedValue().stripPointerCasts();
-    auto *CE = dyn_cast<ConstantExpr>(Stripped);
-    if (isa<Constant>(Stripped) &&
-        (!CE || CE->getOpcode() != Instruction::ICmp)) {
-      addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
-               getAnchorScope());
-      indicateOptimisticFixpoint();
-      return;
-    }
-    AAPotentialValues::initialize(A);
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    std::string Str;
-    llvm::raw_string_ostream OS(Str);
-    OS << getState();
-    return OS.str();
-  }
-
-  template <typename AAType>
-  static std::optional<Value *> askOtherAA(Attributor &A,
-                                           const AbstractAttribute &AA,
-                                           const IRPosition &IRP, Type &Ty) {
-    if (isa<Constant>(IRP.getAssociatedValue()))
-      return &IRP.getAssociatedValue();
-    std::optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
-    if (!C)
-      return std::nullopt;
-    if (*C)
-      if (auto *CC = AA::getWithType(**C, Ty))
-        return CC;
-    return nullptr;
-  }
-
-  virtual void addValue(Attributor &A, StateType &State, Value &V,
-                        const Instruction *CtxI, AA::ValueScope S,
-                        Function *AnchorScope) const {
-
-    IRPosition ValIRP = IRPosition::value(V);
-    if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
-      for (const auto &U : CB->args()) {
-        if (U.get() != &V)
-          continue;
-        ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
-        break;
-      }
-    }
-
-    Value *VPtr = &V;
-    if (ValIRP.getAssociatedType()->isIntegerTy()) {
-      Type &Ty = *getAssociatedType();
-      std::optional<Value *> SimpleV =
-          askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
-      if (SimpleV.has_value() && !*SimpleV) {
-        auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
-            *this, ValIRP, DepClassTy::OPTIONAL);
-        if (PotentialConstantsAA && PotentialConstantsAA->isValidState()) {
-          for (const auto &It : PotentialConstantsAA->getAssumedSet())
-            State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
-          if (PotentialConstantsAA->undefIsContained())
-            State.unionAssumed({{*UndefValue::get(&Ty), nullptr}, S});
-          return;
-        }
-      }
-      if (!SimpleV.has_value())
-        return;
-
-      if (*SimpleV)
-        VPtr = *SimpleV;
-    }
-
-    if (isa<ConstantInt>(VPtr))
-      CtxI = nullptr;
-    if (!AA::isValidInScope(*VPtr, AnchorScope))
-      S = AA::ValueScope(S | AA::Interprocedural);
-
-    State.unionAssumed({{*VPtr, CtxI}, S});
-  }
-
-  /// Helper struct to tie a value+context pair together with the scope for
-  /// which this is the simplified version.
-  struct ItemInfo {
-    AA::ValueAndContext I;
-    AA::ValueScope S;
-
-    bool operator==(const ItemInfo &II) const {
-      return II.I == I && II.S == S;
-    };
-    bool operator<(const ItemInfo &II) const {
-      if (I == II.I)
-        return S < II.S;
-      return I < II.I;
-    };
-  };
-
-  bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
-    SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
-    for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
-      if (!(CS & S))
-        continue;
-
-      bool UsedAssumedInformation = false;
-      SmallVector<AA::ValueAndContext> Values;
-      if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
-                                        UsedAssumedInformation))
-        return false;
-
-      for (auto &It : Values)
-        ValueScopeMap[It] += CS;
-    }
-    for (auto &It : ValueScopeMap)
-      addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
-               AA::ValueScope(It.second), getAnchorScope());
-
-    return true;
-  }
-
-  void giveUpOnIntraprocedural(Attributor &A) {
-    auto NewS = StateType::getBestState(getState());
-    for (const auto &It : getAssumedSet()) {
-      if (It.second == AA::Intraprocedural)
-        continue;
-      addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
-               AA::Interprocedural, getAnchorScope());
-    }
-    assert(!undefIsContained() && "Undef should be an explicit value!");
-    addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
-             getAnchorScope());
-    getState() = NewS;
-  }
-
-  /// See AbstractState::indicatePessimisticFixpoint(...).
-  ChangeStatus indicatePessimisticFixpoint() override {
-    getState() = StateType::getBestState(getState());
-    getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
-    AAPotentialValues::indicateOptimisticFixpoint();
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    return indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    SmallVector<AA::ValueAndContext> Values;
-    for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
-      Values.clear();
-      if (!getAssumedSimplifiedValues(A, Values, S))
-        continue;
-      Value &OldV = getAssociatedValue();
-      if (isa<UndefValue>(OldV))
-        continue;
-      Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
-      if (!NewV || NewV == &OldV)
-        continue;
-      if (getCtxI() &&
-          !AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
-        continue;
-      if (A.changeAfterManifest(getIRPosition(), *NewV))
-        return ChangeStatus::CHANGED;
-    }
-    return ChangeStatus::UNCHANGED;
-  }
-
-  bool getAssumedSimplifiedValues(
-      Attributor &A, SmallVectorImpl<AA::ValueAndContext> &Values,
-      AA::ValueScope S, bool RecurseForSelectAndPHI = false) const override {
-    if (!isValidState())
-      return false;
-    bool UsedAssumedInformation = false;
-    for (const auto &It : getAssumedSet())
-      if (It.second & S) {
-        if (RecurseForSelectAndPHI && (isa<PHINode>(It.first.getValue()) ||
-                                       isa<SelectInst>(It.first.getValue()))) {
-          if (A.getAssumedSimplifiedValues(
-                  IRPosition::inst(*cast<Instruction>(It.first.getValue())),
-                  this, Values, S, UsedAssumedInformation))
-            continue;
-        }
-        Values.push_back(It.first);
-      }
-    assert(!undefIsContained() && "Undef should be an explicit value!");
-    return true;
-  }
-};
-
-struct AAPotentialValuesFloating : AAPotentialValuesImpl {
-  AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
-      : AAPotentialValuesImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto AssumedBefore = getAssumed();
-
-    genericValueTraversal(A, &getAssociatedValue());
-
-    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
-                                           : ChangeStatus::CHANGED;
-  }
-
-  /// Helper struct to remember which AAIsDead instances we actually used.
-  struct LivenessInfo {
-    const AAIsDead *LivenessAA = nullptr;
-    bool AnyDead = false;
-  };
-
-  /// Check if \p Cmp is a comparison we can simplify.
-  ///
-  /// We handle multiple cases, one in which at least one operand is an
-  /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
-  /// operand. Return true if successful, in that case Worklist will be updated.
-  bool handleCmp(Attributor &A, Value &Cmp, Value *LHS, Value *RHS,
-                 CmpInst::Predicate Pred, ItemInfo II,
-                 SmallVectorImpl<ItemInfo> &Worklist) {
-
-    // Simplify the operands first.
-    bool UsedAssumedInformation = false;
-    SmallVector<AA::ValueAndContext> LHSValues, RHSValues;
-    auto GetSimplifiedValues = [&](Value &V,
-                                   SmallVector<AA::ValueAndContext> &Values) {
-      if (!A.getAssumedSimplifiedValues(
-              IRPosition::value(V, getCallBaseContext()), this, Values,
-              AA::Intraprocedural, UsedAssumedInformation)) {
-        Values.clear();
-        Values.push_back(AA::ValueAndContext{V, II.I.getCtxI()});
-      }
-      return Values.empty();
-    };
-    if (GetSimplifiedValues(*LHS, LHSValues))
-      return true;
-    if (GetSimplifiedValues(*RHS, RHSValues))
-      return true;
-
-    LLVMContext &Ctx = LHS->getContext();
-
-    InformationCache &InfoCache = A.getInfoCache();
-    Instruction *CmpI = dyn_cast<Instruction>(&Cmp);
-    Function *F = CmpI ? CmpI->getFunction() : nullptr;
-    const auto *DT =
-        F ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F)
-          : nullptr;
-    const auto *TLI =
-        F ? A.getInfoCache().getTargetLibraryInfoForFunction(*F) : nullptr;
-    auto *AC =
-        F ? InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F)
-          : nullptr;
-
-    const DataLayout &DL = A.getDataLayout();
-    SimplifyQuery Q(DL, TLI, DT, AC, CmpI);
-
-    auto CheckPair = [&](Value &LHSV, Value &RHSV) {
-      if (isa<UndefValue>(LHSV) || isa<UndefValue>(RHSV)) {
-        addValue(A, getState(), *UndefValue::get(Cmp.getType()),
-                 /* CtxI */ nullptr, II.S, getAnchorScope());
-        return true;
-      }
-
-      // Handle the trivial case first in which we don't even need to think
-      // about null or non-null.
-      if (&LHSV == &RHSV &&
-          (CmpInst::isTrueWhenEqual(Pred) || CmpInst::isFalseWhenEqual(Pred))) {
-        Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
-                                          CmpInst::isTrueWhenEqual(Pred));
-        addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
-                 getAnchorScope());
-        return true;
-      }
-
-      auto *TypedLHS = AA::getWithType(LHSV, *LHS->getType());
-      auto *TypedRHS = AA::getWithType(RHSV, *RHS->getType());
-      if (TypedLHS && TypedRHS) {
-        Value *NewV = simplifyCmpInst(Pred, TypedLHS, TypedRHS, Q);
-        if (NewV && NewV != &Cmp) {
-          addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
-                   getAnchorScope());
-          return true;
-        }
-      }
-
-      // From now on we only handle equalities (==, !=).
-      if (!CmpInst::isEquality(Pred))
-        return false;
-
-      bool LHSIsNull = isa<ConstantPointerNull>(LHSV);
-      bool RHSIsNull = isa<ConstantPointerNull>(RHSV);
-      if (!LHSIsNull && !RHSIsNull)
-        return false;
-
-      // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
-      // non-nullptr operand and if we assume it's non-null we can conclude the
-      // result of the comparison.
-      assert((LHSIsNull || RHSIsNull) &&
-             "Expected nullptr versus non-nullptr comparison at this point");
-
-      // The index is the operand that we assume is not null.
-      unsigned PtrIdx = LHSIsNull;
-      bool IsKnownNonNull;
-      bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
-          A, this, IRPosition::value(*(PtrIdx ? &RHSV : &LHSV)),
-          DepClassTy::REQUIRED, IsKnownNonNull);
-      if (!IsAssumedNonNull)
-        return false;
-
-      // The new value depends on the predicate, true for != and false for ==.
-      Constant *NewV =
-          ConstantInt::get(Type::getInt1Ty(Ctx), Pred == CmpInst::ICMP_NE);
-      addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
-               getAnchorScope());
-      return true;
-    };
-
-    for (auto &LHSValue : LHSValues)
-      for (auto &RHSValue : RHSValues)
-        if (!CheckPair(*LHSValue.getValue(), *RHSValue.getValue()))
-          return false;
-    return true;
-  }
-
-  bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
-                        SmallVectorImpl<ItemInfo> &Worklist) {
-    const Instruction *CtxI = II.I.getCtxI();
-    bool UsedAssumedInformation = false;
-
-    std::optional<Constant *> C =
-        A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
-    bool NoValueYet = !C.has_value();
-    if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
-      return true;
-    if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
-      if (CI->isZero())
-        Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
-      else
-        Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
-    } else if (&SI == &getAssociatedValue()) {
-      // We could not simplify the condition, assume both values.
-      Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
-      Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
-    } else {
-      std::optional<Value *> SimpleV = A.getAssumedSimplified(
-          IRPosition::inst(SI), *this, UsedAssumedInformation, II.S);
-      if (!SimpleV.has_value())
-        return true;
-      if (*SimpleV) {
-        addValue(A, getState(), **SimpleV, CtxI, II.S, getAnchorScope());
-        return true;
-      }
-      return false;
-    }
-    return true;
-  }
-
-  bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
-                      SmallVectorImpl<ItemInfo> &Worklist) {
-    SmallSetVector<Value *, 4> PotentialCopies;
-    SmallSetVector<Instruction *, 4> PotentialValueOrigins;
-    bool UsedAssumedInformation = false;
-    if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
-                                        PotentialValueOrigins, *this,
-                                        UsedAssumedInformation,
-                                        /* OnlyExact */ true)) {
-      LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
-                           "loaded values for load instruction "
-                        << LI << "\n");
-      return false;
-    }
-
-    // Do not simplify loads that are only used in llvm.assume if we cannot also
-    // remove all stores that may feed into the load. The reason is that the
-    // assume is probably worth something as long as the stores are around.
-    InformationCache &InfoCache = A.getInfoCache();
-    if (InfoCache.isOnlyUsedByAssume(LI)) {
-      if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
-            if (!I || isa<AssumeInst>(I))
-              return true;
-            if (auto *SI = dyn_cast<StoreInst>(I))
-              return A.isAssumedDead(SI->getOperandUse(0), this,
-                                     /* LivenessAA */ nullptr,
-                                     UsedAssumedInformation,
-                                     /* CheckBBLivenessOnly */ false);
-            return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
-                                   UsedAssumedInformation,
-                                   /* CheckBBLivenessOnly */ false);
-          })) {
-        LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
-                             "and we cannot delete all the stores: "
-                          << LI << "\n");
-        return false;
-      }
-    }
-
-    // Values have to be dynamically unique or we loose the fact that a
-    // single llvm::Value might represent two runtime values (e.g.,
-    // stack locations in different recursive calls).
-    const Instruction *CtxI = II.I.getCtxI();
-    bool ScopeIsLocal = (II.S & AA::Intraprocedural);
-    bool AllLocal = ScopeIsLocal;
-    bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
-      AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
-      return AA::isDynamicallyUnique(A, *this, *PC);
-    });
-    if (!DynamicallyUnique) {
-      LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
-                           "values are dynamically unique: "
-                        << LI << "\n");
-      return false;
-    }
-
-    for (auto *PotentialCopy : PotentialCopies) {
-      if (AllLocal) {
-        Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
-      } else {
-        Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
-      }
-    }
-    if (!AllLocal && ScopeIsLocal)
-      addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
-    return true;
-  }
-
-  bool handlePHINode(
-      Attributor &A, PHINode &PHI, ItemInfo II,
-      SmallVectorImpl<ItemInfo> &Worklist,
-      SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
-    auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
-      LivenessInfo &LI = LivenessAAs[&F];
-      if (!LI.LivenessAA)
-        LI.LivenessAA = A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
-                                             DepClassTy::NONE);
-      return LI;
-    };
-
-    if (&PHI == &getAssociatedValue()) {
-      LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
-      const auto *CI =
-          A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(
-              *PHI.getFunction());
-
-      Cycle *C = nullptr;
-      bool CyclePHI = mayBeInCycle(CI, &PHI, /* HeaderOnly */ true, &C);
-      for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
-        BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
-        if (LI.LivenessAA &&
-            LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
-          LI.AnyDead = true;
-          continue;
-        }
-        Value *V = PHI.getIncomingValue(u);
-        if (V == &PHI)
-          continue;
-
-        // If the incoming value is not the PHI but an instruction in the same
-        // cycle we might have multiple versions of it flying around.
-        if (CyclePHI && isa<Instruction>(V) &&
-            (!C || C->contains(cast<Instruction>(V)->getParent())))
-          return false;
-
-        Worklist.push_back({{*V, IncomingBB->getTerminator()}, II.S});
-      }
-      return true;
-    }
-
-    bool UsedAssumedInformation = false;
-    std::optional<Value *> SimpleV = A.getAssumedSimplified(
-        IRPosition::inst(PHI), *this, UsedAssumedInformation, II.S);
-    if (!SimpleV.has_value())
-      return true;
-    if (!(*SimpleV))
-      return false;
-    addValue(A, getState(), **SimpleV, &PHI, II.S, getAnchorScope());
-    return true;
-  }
-
-  /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
-  /// simplify any operand of the instruction \p I. Return true if successful,
-  /// in that case Worklist will be updated.
-  bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
-                         SmallVectorImpl<ItemInfo> &Worklist) {
-    bool SomeSimplified = false;
-    bool UsedAssumedInformation = false;
-
-    SmallVector<Value *, 8> NewOps(I.getNumOperands());
-    int Idx = 0;
-    for (Value *Op : I.operands()) {
-      const auto &SimplifiedOp = A.getAssumedSimplified(
-          IRPosition::value(*Op, getCallBaseContext()), *this,
-          UsedAssumedInformation, AA::Intraprocedural);
-      // If we are not sure about any operand we are not sure about the entire
-      // instruction, we'll wait.
-      if (!SimplifiedOp.has_value())
-        return true;
-
-      if (*SimplifiedOp)
-        NewOps[Idx] = *SimplifiedOp;
-      else
-        NewOps[Idx] = Op;
-
-      SomeSimplified |= (NewOps[Idx] != Op);
-      ++Idx;
-    }
-
-    // We won't bother with the InstSimplify interface if we didn't simplify any
-    // operand ourselves.
-    if (!SomeSimplified)
-      return false;
-
-    InformationCache &InfoCache = A.getInfoCache();
-    Function *F = I.getFunction();
-    const auto *DT =
-        InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
-    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-    auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
-
-    const DataLayout &DL = I.getModule()->getDataLayout();
-    SimplifyQuery Q(DL, TLI, DT, AC, &I);
-    Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q);
-    if (!NewV || NewV == &I)
-      return false;
-
-    LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
-                      << *NewV << "\n");
-    Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
-    return true;
-  }
-
-  bool simplifyInstruction(
-      Attributor &A, Instruction &I, ItemInfo II,
-      SmallVectorImpl<ItemInfo> &Worklist,
-      SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
-    if (auto *CI = dyn_cast<CmpInst>(&I))
-      return handleCmp(A, *CI, CI->getOperand(0), CI->getOperand(1),
-                       CI->getPredicate(), II, Worklist);
-
-    switch (I.getOpcode()) {
-    case Instruction::Select:
-      return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
-    case Instruction::PHI:
-      return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
-    case Instruction::Load:
-      return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
-    default:
-      return handleGenericInst(A, I, II, Worklist);
-    };
-    return false;
-  }
-
-  void genericValueTraversal(Attributor &A, Value *InitialV) {
-    SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
-
-    SmallSet<ItemInfo, 16> Visited;
-    SmallVector<ItemInfo, 16> Worklist;
-    Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
-
-    int Iteration = 0;
-    do {
-      ItemInfo II = Worklist.pop_back_val();
-      Value *V = II.I.getValue();
-      assert(V);
-      const Instruction *CtxI = II.I.getCtxI();
-      AA::ValueScope S = II.S;
-
-      // Check if we should process the current value. To prevent endless
-      // recursion keep a record of the values we followed!
-      if (!Visited.insert(II).second)
-        continue;
-
-      // Make sure we limit the compile time for complex expressions.
-      if (Iteration++ >= MaxPotentialValuesIterations) {
-        LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
-                          << Iteration << "!\n");
-        addValue(A, getState(), *V, CtxI, S, getAnchorScope());
-        continue;
-      }
-
-      // Explicitly look through calls with a "returned" attribute if we do
-      // not have a pointer as stripPointerCasts only works on them.
-      Value *NewV = nullptr;
-      if (V->getType()->isPointerTy()) {
-        NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
-      } else {
-        if (auto *CB = dyn_cast<CallBase>(V))
-          if (auto *Callee =
-                  dyn_cast_if_present<Function>(CB->getCalledOperand())) {
-            for (Argument &Arg : Callee->args())
-              if (Arg.hasReturnedAttr()) {
-                NewV = CB->getArgOperand(Arg.getArgNo());
-                break;
-              }
-          }
-      }
-      if (NewV && NewV != V) {
-        Worklist.push_back({{*NewV, CtxI}, S});
-        continue;
-      }
-
-      if (auto *CE = dyn_cast<ConstantExpr>(V)) {
-        if (CE->getOpcode() == Instruction::ICmp)
-          if (handleCmp(A, *CE, CE->getOperand(0), CE->getOperand(1),
-                        CmpInst::Predicate(CE->getPredicate()), II, Worklist))
-            continue;
-      }
-
-      if (auto *I = dyn_cast<Instruction>(V)) {
-        if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
-          continue;
-      }
-
-      if (V != InitialV || isa<Argument>(V))
-        if (recurseForValue(A, IRPosition::value(*V), II.S))
-          continue;
-
-      // If we haven't stripped anything we give up.
-      if (V == InitialV && CtxI == getCtxI()) {
-        indicatePessimisticFixpoint();
-        return;
-      }
-
-      addValue(A, getState(), *V, CtxI, S, getAnchorScope());
-    } while (!Worklist.empty());
-
-    // If we actually used liveness information so we have to record a
-    // dependence.
-    for (auto &It : LivenessAAs)
-      if (It.second.AnyDead)
-        A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
-  using Base = AAPotentialValuesImpl;
-  AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    auto &Arg = cast<Argument>(getAssociatedValue());
-    if (Arg.hasPointeeInMemoryValueAttr())
-      indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto AssumedBefore = getAssumed();
-
-    unsigned ArgNo = getCalleeArgNo();
-
-    bool UsedAssumedInformation = false;
-    SmallVector<AA::ValueAndContext> Values;
-    auto CallSitePred = [&](AbstractCallSite ACS) {
-      const auto CSArgIRP = IRPosition::callsite_argument(ACS, ArgNo);
-      if (CSArgIRP.getPositionKind() == IRP_INVALID)
-        return false;
-
-      if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
-                                        AA::Interprocedural,
-                                        UsedAssumedInformation))
-        return false;
-
-      return isValidState();
-    };
-
-    if (!A.checkForAllCallSites(CallSitePred, *this,
-                                /* RequireAllCallSites */ true,
-                                UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    Function *Fn = getAssociatedFunction();
-    bool AnyNonLocal = false;
-    for (auto &It : Values) {
-      if (isa<Constant>(It.getValue())) {
-        addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
-                 getAnchorScope());
-        continue;
-      }
-      if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
-        return indicatePessimisticFixpoint();
-
-      if (auto *Arg = dyn_cast<Argument>(It.getValue()))
-        if (Arg->getParent() == Fn) {
-          addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
-                   getAnchorScope());
-          continue;
-        }
-      addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
-               getAnchorScope());
-      AnyNonLocal = true;
-    }
-    assert(!undefIsContained() && "Undef should be an explicit value!");
-    if (AnyNonLocal)
-      giveUpOnIntraprocedural(A);
-
-    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
-                                           : ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialValuesReturned : public AAPotentialValuesFloating {
-  using Base = AAPotentialValuesFloating;
-  AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
-      : Base(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(..).
-  void initialize(Attributor &A) override {
-    Function *F = getAssociatedFunction();
-    if (!F || F->isDeclaration() || F->getReturnType()->isVoidTy()) {
-      indicatePessimisticFixpoint();
-      return;
-    }
-
-    for (Argument &Arg : F->args())
-      if (Arg.hasReturnedAttr()) {
-        addValue(A, getState(), Arg, nullptr, AA::AnyScope, F);
-        ReturnedArg = &Arg;
-        break;
-      }
-    if (!A.isFunctionIPOAmendable(*F) ||
-        A.hasSimplificationCallback(getIRPosition())) {
-      if (!ReturnedArg)
-        indicatePessimisticFixpoint();
-      else
-        indicateOptimisticFixpoint();
-    }
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto AssumedBefore = getAssumed();
-    bool UsedAssumedInformation = false;
-
-    SmallVector<AA::ValueAndContext> Values;
-    Function *AnchorScope = getAnchorScope();
-    auto HandleReturnedValue = [&](Value &V, Instruction *CtxI,
-                                   bool AddValues) {
-      for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
-        Values.clear();
-        if (!A.getAssumedSimplifiedValues(IRPosition::value(V), this, Values, S,
-                                          UsedAssumedInformation,
-                                          /* RecurseForSelectAndPHI */ true))
-          return false;
-        if (!AddValues)
-          continue;
-        for (const AA::ValueAndContext &VAC : Values)
-          addValue(A, getState(), *VAC.getValue(),
-                   VAC.getCtxI() ? VAC.getCtxI() : CtxI, S, AnchorScope);
-      }
-      return true;
-    };
-
-    if (ReturnedArg) {
-      HandleReturnedValue(*ReturnedArg, nullptr, true);
-    } else {
-      auto RetInstPred = [&](Instruction &RetI) {
-        bool AddValues = true;
-        if (isa<PHINode>(RetI.getOperand(0)) ||
-            isa<SelectInst>(RetI.getOperand(0))) {
-          addValue(A, getState(), *RetI.getOperand(0), &RetI, AA::AnyScope,
-                   AnchorScope);
-          AddValues = false;
-        }
-        return HandleReturnedValue(*RetI.getOperand(0), &RetI, AddValues);
-      };
-
-      if (!A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
-                                     UsedAssumedInformation,
-                                     /* CheckBBLivenessOnly */ true))
-        return indicatePessimisticFixpoint();
-    }
-
-    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
-                                           : ChangeStatus::CHANGED;
-  }
-
-  void addValue(Attributor &A, StateType &State, Value &V,
-                const Instruction *CtxI, AA::ValueScope S,
-                Function *AnchorScope) const override {
-    Function *F = getAssociatedFunction();
-    if (auto *CB = dyn_cast<CallBase>(&V))
-      if (CB->getCalledOperand() == F)
-        return;
-    Base::addValue(A, State, V, CtxI, S, AnchorScope);
-  }
-
-  ChangeStatus manifest(Attributor &A) override {
-    if (ReturnedArg)
-      return ChangeStatus::UNCHANGED;
-    SmallVector<AA::ValueAndContext> Values;
-    if (!getAssumedSimplifiedValues(A, Values, AA::ValueScope::Intraprocedural,
-                                    /* RecurseForSelectAndPHI */ true))
-      return ChangeStatus::UNCHANGED;
-    Value *NewVal = getSingleValue(A, *this, getIRPosition(), Values);
-    if (!NewVal)
-      return ChangeStatus::UNCHANGED;
-
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    if (auto *Arg = dyn_cast<Argument>(NewVal)) {
-      STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
-                      "Number of function with unique return");
-      Changed |= A.manifestAttrs(
-          IRPosition::argument(*Arg),
-          {Attribute::get(Arg->getContext(), Attribute::Returned)});
-      STATS_DECLTRACK_ARG_ATTR(returned);
-    }
-
-    auto RetInstPred = [&](Instruction &RetI) {
-      Value *RetOp = RetI.getOperand(0);
-      if (isa<UndefValue>(RetOp) || RetOp == NewVal)
-        return true;
-      if (AA::isValidAtPosition({*NewVal, RetI}, A.getInfoCache()))
-        if (A.changeUseAfterManifest(RetI.getOperandUse(0), *NewVal))
-          Changed = ChangeStatus::CHANGED;
-      return true;
-    };
-    bool UsedAssumedInformation = false;
-    (void)A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
-                                    UsedAssumedInformation,
-                                    /* CheckBBLivenessOnly */ true);
-    return Changed;
-  }
-
-  ChangeStatus indicatePessimisticFixpoint() override {
-    return AAPotentialValues::indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override{
-      STATS_DECLTRACK_FNRET_ATTR(potential_values)}
-
-  /// The argumented with an existing `returned` attribute.
-  Argument *ReturnedArg = nullptr;
-};
-
-struct AAPotentialValuesFunction : AAPotentialValuesImpl {
-  AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
-      : AAPotentialValuesImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
-                     "not be called");
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FN_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
-  AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
-      : AAPotentialValuesFunction(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CS_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
-  AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAPotentialValuesImpl(IRP, A) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto AssumedBefore = getAssumed();
-
-    Function *Callee = getAssociatedFunction();
-    if (!Callee)
-      return indicatePessimisticFixpoint();
-
-    bool UsedAssumedInformation = false;
-    auto *CB = cast<CallBase>(getCtxI());
-    if (CB->isMustTailCall() &&
-        !A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
-                         UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
-                                      Values, AA::Intraprocedural,
-                                      UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    Function *Caller = CB->getCaller();
-
-    bool AnyNonLocal = false;
-    for (auto &It : Values) {
-      Value *V = It.getValue();
-      std::optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
-          V, *CB, *this, UsedAssumedInformation);
-      if (!CallerV.has_value()) {
-        // Nothing to do as long as no value was determined.
-        continue;
-      }
-      V = *CallerV ? *CallerV : V;
-      if (AA::isDynamicallyUnique(A, *this, *V) &&
-          AA::isValidInScope(*V, Caller)) {
-        if (*CallerV) {
-          SmallVector<AA::ValueAndContext> ArgValues;
-          IRPosition IRP = IRPosition::value(*V);
-          if (auto *Arg = dyn_cast<Argument>(V))
-            if (Arg->getParent() == CB->getCalledOperand())
-              IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
-          if (recurseForValue(A, IRP, AA::AnyScope))
-            continue;
-        }
-        addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
-      } else {
-        AnyNonLocal = true;
-        break;
-      }
-    }
-    if (AnyNonLocal) {
-      Values.clear();
-      if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
-                                        Values, AA::Interprocedural,
-                                        UsedAssumedInformation))
-        return indicatePessimisticFixpoint();
-      AnyNonLocal = false;
-      getState() = PotentialLLVMValuesState::getBestState();
-      for (auto &It : Values) {
-        Value *V = It.getValue();
-        if (!AA::isDynamicallyUnique(A, *this, *V))
-          return indicatePessimisticFixpoint();
-        if (AA::isValidInScope(*V, Caller)) {
-          addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
-        } else {
-          AnyNonLocal = true;
-          addValue(A, getState(), *V, CB, AA::Interprocedural,
-                   getAnchorScope());
-        }
-      }
-      if (AnyNonLocal)
-        giveUpOnIntraprocedural(A);
-    }
-    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
-                                           : ChangeStatus::CHANGED;
-  }
-
-  ChangeStatus indicatePessimisticFixpoint() override {
-    return AAPotentialValues::indicatePessimisticFixpoint();
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(potential_values)
-  }
-};
-
-struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
-  AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAPotentialValuesFloating(IRP, A) {}
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(potential_values)
-  }
-};
-} // namespace
-
-/// ---------------------- Assumption Propagation ------------------------------
-namespace {
-struct AAAssumptionInfoImpl : public AAAssumptionInfo {
-  AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
-                       const DenseSet<StringRef> &Known)
-      : AAAssumptionInfo(IRP, A, Known) {}
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // Don't manifest a universal set if it somehow made it here.
-    if (getKnown().isUniversal())
-      return ChangeStatus::UNCHANGED;
-
-    const IRPosition &IRP = getIRPosition();
-    return A.manifestAttrs(
-        IRP,
-        Attribute::get(IRP.getAnchorValue().getContext(), AssumptionAttrKey,
-                       llvm::join(getAssumed().getSet(), ",")),
-        /* ForceReplace */ true);
-  }
-
-  bool hasAssumption(const StringRef Assumption) const override {
-    return isValidState() && setContains(Assumption);
-  }
-
-  /// See AbstractAttribute::getAsStr()
-  const std::string getAsStr(Attributor *A) const override {
-    const SetContents &Known = getKnown();
-    const SetContents &Assumed = getAssumed();
-
-    const std::string KnownStr =
-        llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
-    const std::string AssumedStr =
-        (Assumed.isUniversal())
-            ? "Universal"
-            : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
-
-    return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
-  }
-};
-
-/// Propagates assumption information from parent functions to all of their
-/// successors. An assumption can be propagated if the containing function
-/// dominates the called function.
-///
-/// We start with a "known" set of assumptions already valid for the associated
-/// function and an "assumed" set that initially contains all possible
-/// assumptions. The assumed set is inter-procedurally updated by narrowing its
-/// contents as concrete values are known. The concrete values are seeded by the
-/// first nodes that are either entries into the call graph, or contains no
-/// assumptions. Each node is updated as the intersection of the assumed state
-/// with all of its predecessors.
-struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
-  AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
-      : AAAssumptionInfoImpl(IRP, A,
-                             getAssumptions(*IRP.getAssociatedFunction())) {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    bool Changed = false;
-
-    auto CallSitePred = [&](AbstractCallSite ACS) {
-      const auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>(
-          *this, IRPosition::callsite_function(*ACS.getInstruction()),
-          DepClassTy::REQUIRED);
-      if (!AssumptionAA)
-        return false;
-      // Get the set of assumptions shared by all of this function's callers.
-      Changed |= getIntersection(AssumptionAA->getAssumed());
-      return !getAssumed().empty() || !getKnown().empty();
-    };
-
-    bool UsedAssumedInformation = false;
-    // Get the intersection of all assumptions held by this node's predecessors.
-    // If we don't know all the call sites then this is either an entry into the
-    // call graph or an empty node. This node is known to only contain its own
-    // assumptions and can be propagated to its successors.
-    if (!A.checkForAllCallSites(CallSitePred, *this, true,
-                                UsedAssumedInformation))
-      return indicatePessimisticFixpoint();
-
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  void trackStatistics() const override {}
-};
-
-/// Assumption Info defined for call sites.
-struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
-
-  AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
-      : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
-    A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
-  }
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
-    auto *AssumptionAA =
-        A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
-    if (!AssumptionAA)
-      return indicatePessimisticFixpoint();
-    bool Changed = getIntersection(AssumptionAA->getAssumed());
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-
-private:
-  /// Helper to initialized the known set as all the assumptions this call and
-  /// the callee contain.
-  DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
-    const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
-    auto Assumptions = getAssumptions(CB);
-    if (const Function *F = CB.getCaller())
-      set_union(Assumptions, getAssumptions(*F));
-    if (Function *F = IRP.getAssociatedFunction())
-      set_union(Assumptions, getAssumptions(*F));
-    return Assumptions;
-  }
-};
-} // namespace
-
-AACallGraphNode *AACallEdgeIterator::operator*() const {
-  return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
-      A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
-}
-
-void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
-
-/// ------------------------ UnderlyingObjects ---------------------------------
-
-namespace {
-struct AAUnderlyingObjectsImpl
-    : StateWrapper<BooleanState, AAUnderlyingObjects> {
-  using BaseTy = StateWrapper<BooleanState, AAUnderlyingObjects>;
-  AAUnderlyingObjectsImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return std::string("UnderlyingObjects ") +
-           (isValidState()
-                ? (std::string("inter #") +
-                   std::to_string(InterAssumedUnderlyingObjects.size()) +
-                   " objs" + std::string(", intra #") +
-                   std::to_string(IntraAssumedUnderlyingObjects.size()) +
-                   " objs")
-                : "<invalid>");
-  }
-
-  /// See AbstractAttribute::trackStatistics()
-  void trackStatistics() const override {}
-
-  /// See AbstractAttribute::updateImpl(...).
-  ChangeStatus updateImpl(Attributor &A) override {
-    auto &Ptr = getAssociatedValue();
-
-    auto DoUpdate = [&](SmallSetVector<Value *, 8> &UnderlyingObjects,
-                        AA::ValueScope Scope) {
-      bool UsedAssumedInformation = false;
-      SmallPtrSet<Value *, 8> SeenObjects;
-      SmallVector<AA::ValueAndContext> Values;
-
-      if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), *this, Values,
-                                        Scope, UsedAssumedInformation))
-        return UnderlyingObjects.insert(&Ptr);
-
-      bool Changed = false;
-
-      for (unsigned I = 0; I < Values.size(); ++I) {
-        auto &VAC = Values[I];
-        auto *Obj = VAC.getValue();
-        Value *UO = getUnderlyingObject(Obj);
-        if (UO && UO != VAC.getValue() && SeenObjects.insert(UO).second) {
-          const auto *OtherAA = A.getAAFor<AAUnderlyingObjects>(
-              *this, IRPosition::value(*UO), DepClassTy::OPTIONAL);
-          auto Pred = [&Values](Value &V) {
-            Values.emplace_back(V, nullptr);
-            return true;
-          };
-
-          if (!OtherAA || !OtherAA->forallUnderlyingObjects(Pred, Scope))
-            llvm_unreachable(
-                "The forall call should not return false at this position");
-
-          continue;
-        }
-
-        if (isa<SelectInst>(Obj)) {
-          Changed |= handleIndirect(A, *Obj, UnderlyingObjects, Scope);
-          continue;
-        }
-        if (auto *PHI = dyn_cast<PHINode>(Obj)) {
-          // Explicitly look through PHIs as we do not care about dynamically
-          // uniqueness.
-          for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
-            Changed |= handleIndirect(A, *PHI->getIncomingValue(u),
-                                      UnderlyingObjects, Scope);
-          }
-          continue;
-        }
-
-        Changed |= UnderlyingObjects.insert(Obj);
-      }
-
-      return Changed;
-    };
-
-    bool Changed = false;
-    Changed |= DoUpdate(IntraAssumedUnderlyingObjects, AA::Intraprocedural);
-    Changed |= DoUpdate(InterAssumedUnderlyingObjects, AA::Interprocedural);
-
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  bool forallUnderlyingObjects(
-      function_ref<bool(Value &)> Pred,
-      AA::ValueScope Scope = AA::Interprocedural) const override {
-    if (!isValidState())
-      return Pred(getAssociatedValue());
-
-    auto &AssumedUnderlyingObjects = Scope == AA::Intraprocedural
-                                         ? IntraAssumedUnderlyingObjects
-                                         : InterAssumedUnderlyingObjects;
-    for (Value *Obj : AssumedUnderlyingObjects)
-      if (!Pred(*Obj))
-        return false;
-
-    return true;
-  }
-
-private:
-  /// Handle the case where the value is not the actual underlying value, such
-  /// as a phi node or a select instruction.
-  bool handleIndirect(Attributor &A, Value &V,
-                      SmallSetVector<Value *, 8> &UnderlyingObjects,
-                      AA::ValueScope Scope) {
-    bool Changed = false;
-    const auto *AA = A.getAAFor<AAUnderlyingObjects>(
-        *this, IRPosition::value(V), DepClassTy::OPTIONAL);
-    auto Pred = [&](Value &V) {
-      Changed |= UnderlyingObjects.insert(&V);
-      return true;
-    };
-    if (!AA || !AA->forallUnderlyingObjects(Pred, Scope))
-      llvm_unreachable(
-          "The forall call should not return false at this position");
-    return Changed;
-  }
-
-  /// All the underlying objects collected so far via intra procedural scope.
-  SmallSetVector<Value *, 8> IntraAssumedUnderlyingObjects;
-  /// All the underlying objects collected so far via inter procedural scope.
-  SmallSetVector<Value *, 8> InterAssumedUnderlyingObjects;
-};
-
-struct AAUnderlyingObjectsFloating final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsFloating(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-
-struct AAUnderlyingObjectsArgument final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsArgument(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-
-struct AAUnderlyingObjectsCallSite final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsCallSite(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-
-struct AAUnderlyingObjectsCallSiteArgument final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-
-struct AAUnderlyingObjectsReturned final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsReturned(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-
-struct AAUnderlyingObjectsCallSiteReturned final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-
-struct AAUnderlyingObjectsFunction final : AAUnderlyingObjectsImpl {
-  AAUnderlyingObjectsFunction(const IRPosition &IRP, Attributor &A)
-      : AAUnderlyingObjectsImpl(IRP, A) {}
-};
-} // namespace
-
-/// ------------------------ Global Value Info  -------------------------------
-namespace {
-struct AAGlobalValueInfoFloating : public AAGlobalValueInfo {
-  AAGlobalValueInfoFloating(const IRPosition &IRP, Attributor &A)
-      : AAGlobalValueInfo(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {}
-
-  bool checkUse(Attributor &A, const Use &U, bool &Follow,
-                SmallVectorImpl<const Value *> &Worklist) {
-    Instruction *UInst = dyn_cast<Instruction>(U.getUser());
-    if (!UInst) {
-      Follow = true;
-      return true;
-    }
-
-    LLVM_DEBUG(dbgs() << "[AAGlobalValueInfo] Check use: " << *U.get() << " in "
-                      << *UInst << "\n");
-
-    if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
-      int Idx = &Cmp->getOperandUse(0) == &U;
-      if (isa<Constant>(Cmp->getOperand(Idx)))
-        return true;
-      return U == &getAnchorValue();
-    }
-
-    // Explicitly catch return instructions.
-    if (isa<ReturnInst>(UInst)) {
-      auto CallSitePred = [&](AbstractCallSite ACS) {
-        Worklist.push_back(ACS.getInstruction());
-        return true;
-      };
-      bool UsedAssumedInformation = false;
-      // TODO: We should traverse the uses or add a "non-call-site" CB.
-      if (!A.checkForAllCallSites(CallSitePred, *UInst->getFunction(),
-                                  /*RequireAllCallSites=*/true, this,
-                                  UsedAssumedInformation))
-        return false;
-      return true;
-    }
-
-    // For now we only use special logic for call sites. However, the tracker
-    // itself knows about a lot of other non-capturing cases already.
-    auto *CB = dyn_cast<CallBase>(UInst);
-    if (!CB)
-      return false;
-    // Direct calls are OK uses.
-    if (CB->isCallee(&U))
-      return true;
-    // Non-argument uses are scary.
-    if (!CB->isArgOperand(&U))
-      return false;
-    // TODO: Iterate callees.
-    auto *Fn = dyn_cast<Function>(CB->getCalledOperand());
-    if (!Fn || !A.isFunctionIPOAmendable(*Fn))
-      return false;
-
-    unsigned ArgNo = CB->getArgOperandNo(&U);
-    Worklist.push_back(Fn->getArg(ArgNo));
-    return true;
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-    unsigned NumUsesBefore = Uses.size();
-
-    SmallPtrSet<const Value *, 8> Visited;
-    SmallVector<const Value *> Worklist;
-    Worklist.push_back(&getAnchorValue());
-
-    auto UsePred = [&](const Use &U, bool &Follow) -> bool {
-      Uses.insert(&U);
-      switch (DetermineUseCaptureKind(U, nullptr)) {
-      case UseCaptureKind::NO_CAPTURE:
-        return checkUse(A, U, Follow, Worklist);
-      case UseCaptureKind::MAY_CAPTURE:
-        return checkUse(A, U, Follow, Worklist);
-      case UseCaptureKind::PASSTHROUGH:
-        Follow = true;
-        return true;
-      }
-      return true;
-    };
-    auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
-      Uses.insert(&OldU);
-      return true;
-    };
-
-    while (!Worklist.empty()) {
-      const Value *V = Worklist.pop_back_val();
-      if (!Visited.insert(V).second)
-        continue;
-      if (!A.checkForAllUses(UsePred, *this, *V,
-                             /* CheckBBLivenessOnly */ true,
-                             DepClassTy::OPTIONAL,
-                             /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
-        return indicatePessimisticFixpoint();
-      }
-    }
-
-    return Uses.size() == NumUsesBefore ? ChangeStatus::UNCHANGED
-                                        : ChangeStatus::CHANGED;
-  }
-
-  bool isPotentialUse(const Use &U) const override {
-    return !isValidState() || Uses.contains(&U);
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    return ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return "[" + std::to_string(Uses.size()) + " uses]";
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(GlobalValuesTracked);
-  }
-
-private:
-  /// Set of (transitive) uses of this GlobalValue.
-  SmallPtrSet<const Use *, 8> Uses;
-};
-} // namespace
-
-/// ------------------------ Indirect Call Info  -------------------------------
-namespace {
-struct AAIndirectCallInfoCallSite : public AAIndirectCallInfo {
-  AAIndirectCallInfoCallSite(const IRPosition &IRP, Attributor &A)
-      : AAIndirectCallInfo(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees);
-    if (!MD && !A.isClosedWorldModule())
-      return;
-
-    if (MD) {
-      for (const auto &Op : MD->operands())
-        if (Function *Callee = mdconst::dyn_extract_or_null<Function>(Op))
-          PotentialCallees.insert(Callee);
-    } else if (A.isClosedWorldModule()) {
-      ArrayRef<Function *> IndirectlyCallableFunctions =
-          A.getInfoCache().getIndirectlyCallableFunctions(A);
-      PotentialCallees.insert(IndirectlyCallableFunctions.begin(),
-                              IndirectlyCallableFunctions.end());
-    }
-
-    if (PotentialCallees.empty())
-      indicateOptimisticFixpoint();
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-    CallBase *CB = cast<CallBase>(getCtxI());
-    const Use &CalleeUse = CB->getCalledOperandUse();
-    Value *FP = CB->getCalledOperand();
-
-    SmallSetVector<Function *, 4> AssumedCalleesNow;
-    bool AllCalleesKnownNow = AllCalleesKnown;
-
-    auto CheckPotentialCalleeUse = [&](Function &PotentialCallee,
-                                       bool &UsedAssumedInformation) {
-      const auto *GIAA = A.getAAFor<AAGlobalValueInfo>(
-          *this, IRPosition::value(PotentialCallee), DepClassTy::OPTIONAL);
-      if (!GIAA || GIAA->isPotentialUse(CalleeUse))
-        return true;
-      UsedAssumedInformation = !GIAA->isAtFixpoint();
-      return false;
-    };
-
-    auto AddPotentialCallees = [&]() {
-      for (auto *PotentialCallee : PotentialCallees) {
-        bool UsedAssumedInformation = false;
-        if (CheckPotentialCalleeUse(*PotentialCallee, UsedAssumedInformation))
-          AssumedCalleesNow.insert(PotentialCallee);
-      }
-    };
-
-    // Use simplification to find potential callees, if !callees was present,
-    // fallback to that set if necessary.
-    bool UsedAssumedInformation = false;
-    SmallVector<AA::ValueAndContext> Values;
-    if (!A.getAssumedSimplifiedValues(IRPosition::value(*FP), this, Values,
-                                      AA::ValueScope::AnyScope,
-                                      UsedAssumedInformation)) {
-      if (PotentialCallees.empty())
-        return indicatePessimisticFixpoint();
-      AddPotentialCallees();
-    }
-
-    // Try to find a reason for \p Fn not to be a potential callee. If none was
-    // found, add it to the assumed callees set.
-    auto CheckPotentialCallee = [&](Function &Fn) {
-      if (!PotentialCallees.empty() && !PotentialCallees.count(&Fn))
-        return false;
-
-      auto &CachedResult = FilterResults[&Fn];
-      if (CachedResult.has_value())
-        return CachedResult.value();
-
-      bool UsedAssumedInformation = false;
-      if (!CheckPotentialCalleeUse(Fn, UsedAssumedInformation)) {
-        if (!UsedAssumedInformation)
-          CachedResult = false;
-        return false;
-      }
-
-      int NumFnArgs = Fn.arg_size();
-      int NumCBArgs = CB->arg_size();
-
-      // Check if any excess argument (which we fill up with poison) is known to
-      // be UB on undef.
-      for (int I = NumCBArgs; I < NumFnArgs; ++I) {
-        bool IsKnown = false;
-        if (AA::hasAssumedIRAttr<Attribute::NoUndef>(
-                A, this, IRPosition::argument(*Fn.getArg(I)),
-                DepClassTy::OPTIONAL, IsKnown)) {
-          if (IsKnown)
-            CachedResult = false;
-          return false;
-        }
-      }
-
-      CachedResult = true;
-      return true;
-    };
-
-    // Check simplification result, prune known UB callees, also restrict it to
-    // the !callees set, if present.
-    for (auto &VAC : Values) {
-      if (isa<UndefValue>(VAC.getValue()))
-        continue;
-      if (isa<ConstantPointerNull>(VAC.getValue()) &&
-          VAC.getValue()->getType()->getPointerAddressSpace() == 0)
-        continue;
-      // TODO: Check for known UB, e.g., poison + noundef.
-      if (auto *VACFn = dyn_cast<Function>(VAC.getValue())) {
-        if (CheckPotentialCallee(*VACFn))
-          AssumedCalleesNow.insert(VACFn);
-        continue;
-      }
-      if (!PotentialCallees.empty()) {
-        AddPotentialCallees();
-        break;
-      }
-      AllCalleesKnownNow = false;
-    }
-
-    if (AssumedCalleesNow == AssumedCallees &&
-        AllCalleesKnown == AllCalleesKnownNow)
-      return ChangeStatus::UNCHANGED;
-
-    std::swap(AssumedCallees, AssumedCalleesNow);
-    AllCalleesKnown = AllCalleesKnownNow;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    // If we can't specialize at all, give up now.
-    if (!AllCalleesKnown && AssumedCallees.empty())
-      return ChangeStatus::UNCHANGED;
-
-    CallBase *CB = cast<CallBase>(getCtxI());
-    bool UsedAssumedInformation = false;
-    if (A.isAssumedDead(*CB, this, /*LivenessAA=*/nullptr,
-                        UsedAssumedInformation))
-      return ChangeStatus::UNCHANGED;
-
-    ChangeStatus Changed = ChangeStatus::UNCHANGED;
-    Value *FP = CB->getCalledOperand();
-    if (FP->getType()->getPointerAddressSpace())
-      FP = new AddrSpaceCastInst(FP, PointerType::get(FP->getType(), 0),
-                                 FP->getName() + ".as0", CB->getIterator());
-
-    bool CBIsVoid = CB->getType()->isVoidTy();
-    BasicBlock::iterator IP = CB->getIterator();
-    FunctionType *CSFT = CB->getFunctionType();
-    SmallVector<Value *> CSArgs(CB->arg_begin(), CB->arg_end());
-
-    // If we know all callees and there are none, the call site is (effectively)
-    // dead (or UB).
-    if (AssumedCallees.empty()) {
-      assert(AllCalleesKnown &&
-             "Expected all callees to be known if there are none.");
-      A.changeToUnreachableAfterManifest(CB);
-      return ChangeStatus::CHANGED;
-    }
-
-    // Special handling for the single callee case.
-    if (AllCalleesKnown && AssumedCallees.size() == 1) {
-      auto *NewCallee = AssumedCallees.front();
-      if (isLegalToPromote(*CB, NewCallee)) {
-        promoteCall(*CB, NewCallee, nullptr);
-        return ChangeStatus::CHANGED;
-      }
-      Instruction *NewCall =
-          CallInst::Create(FunctionCallee(CSFT, NewCallee), CSArgs,
-                           CB->getName(), CB->getIterator());
-      if (!CBIsVoid)
-        A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewCall);
-      A.deleteAfterManifest(*CB);
-      return ChangeStatus::CHANGED;
-    }
-
-    // For each potential value we create a conditional
-    //
-    // ```
-    // if (ptr == value) value(args);
-    // else ...
-    // ```
-    //
-    bool SpecializedForAnyCallees = false;
-    bool SpecializedForAllCallees = AllCalleesKnown;
-    ICmpInst *LastCmp = nullptr;
-    SmallVector<Function *, 8> SkippedAssumedCallees;
-    SmallVector<std::pair<CallInst *, Instruction *>> NewCalls;
-    for (Function *NewCallee : AssumedCallees) {
-      if (!A.shouldSpecializeCallSiteForCallee(*this, *CB, *NewCallee)) {
-        SkippedAssumedCallees.push_back(NewCallee);
-        SpecializedForAllCallees = false;
-        continue;
-      }
-      SpecializedForAnyCallees = true;
-
-      LastCmp = new ICmpInst(IP, llvm::CmpInst::ICMP_EQ, FP, NewCallee);
-      Instruction *ThenTI =
-          SplitBlockAndInsertIfThen(LastCmp, IP, /* Unreachable */ false);
-      BasicBlock *CBBB = CB->getParent();
-      A.registerManifestAddedBasicBlock(*ThenTI->getParent());
-      A.registerManifestAddedBasicBlock(*IP->getParent());
-      auto *SplitTI = cast<BranchInst>(LastCmp->getNextNode());
-      BasicBlock *ElseBB;
-      if (&*IP == CB) {
-        ElseBB = BasicBlock::Create(ThenTI->getContext(), "",
-                                    ThenTI->getFunction(), CBBB);
-        A.registerManifestAddedBasicBlock(*ElseBB);
-        IP = BranchInst::Create(CBBB, ElseBB)->getIterator();
-        SplitTI->replaceUsesOfWith(CBBB, ElseBB);
-      } else {
-        ElseBB = IP->getParent();
-        ThenTI->replaceUsesOfWith(ElseBB, CBBB);
-      }
-      CastInst *RetBC = nullptr;
-      CallInst *NewCall = nullptr;
-      if (isLegalToPromote(*CB, NewCallee)) {
-        auto *CBClone = cast<CallBase>(CB->clone());
-        CBClone->insertBefore(ThenTI);
-        NewCall = &cast<CallInst>(promoteCall(*CBClone, NewCallee, &RetBC));
-      } else {
-        NewCall = CallInst::Create(FunctionCallee(CSFT, NewCallee), CSArgs,
-                                   CB->getName(), ThenTI->getIterator());
-      }
-      NewCalls.push_back({NewCall, RetBC});
-    }
-
-    auto AttachCalleeMetadata = [&](CallBase &IndirectCB) {
-      if (!AllCalleesKnown)
-        return ChangeStatus::UNCHANGED;
-      MDBuilder MDB(IndirectCB.getContext());
-      MDNode *Callees = MDB.createCallees(SkippedAssumedCallees);
-      IndirectCB.setMetadata(LLVMContext::MD_callees, Callees);
-      return ChangeStatus::CHANGED;
-    };
-
-    if (!SpecializedForAnyCallees)
-      return AttachCalleeMetadata(*CB);
-
-    // Check if we need the fallback indirect call still.
-    if (SpecializedForAllCallees) {
-      LastCmp->replaceAllUsesWith(ConstantInt::getTrue(LastCmp->getContext()));
-      LastCmp->eraseFromParent();
-      new UnreachableInst(IP->getContext(), IP);
-      IP->eraseFromParent();
-    } else {
-      auto *CBClone = cast<CallInst>(CB->clone());
-      CBClone->setName(CB->getName());
-      CBClone->insertBefore(*IP->getParent(), IP);
-      NewCalls.push_back({CBClone, nullptr});
-      AttachCalleeMetadata(*CBClone);
-    }
-
-    // Check if we need a PHI to merge the results.
-    if (!CBIsVoid) {
-      auto *PHI = PHINode::Create(CB->getType(), NewCalls.size(),
-                                  CB->getName() + ".phi",
-                                  CB->getParent()->getFirstInsertionPt());
-      for (auto &It : NewCalls) {
-        CallBase *NewCall = It.first;
-        Instruction *CallRet = It.second ? It.second : It.first;
-        if (CallRet->getType() == CB->getType())
-          PHI->addIncoming(CallRet, CallRet->getParent());
-        else if (NewCall->getType()->isVoidTy())
-          PHI->addIncoming(PoisonValue::get(CB->getType()),
-                           NewCall->getParent());
-        else
-          llvm_unreachable("Call return should match or be void!");
-      }
-      A.changeAfterManifest(IRPosition::callsite_returned(*CB), *PHI);
-    }
-
-    A.deleteAfterManifest(*CB);
-    Changed = ChangeStatus::CHANGED;
-
-    return Changed;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    return std::string(AllCalleesKnown ? "eliminate" : "specialize") +
-           " indirect call site with " + std::to_string(AssumedCallees.size()) +
-           " functions";
-  }
-
-  void trackStatistics() const override {
-    if (AllCalleesKnown) {
-      STATS_DECLTRACK(
-          Eliminated, CallSites,
-          "Number of indirect call sites eliminated via specialization")
-    } else {
-      STATS_DECLTRACK(Specialized, CallSites,
-                      "Number of indirect call sites specialized")
-    }
-  }
-
-  bool foreachCallee(function_ref<bool(Function *)> CB) const override {
-    return isValidState() && AllCalleesKnown && all_of(AssumedCallees, CB);
-  }
-
-private:
-  /// Map to remember filter results.
-  DenseMap<Function *, std::optional<bool>> FilterResults;
-
-  /// If the !callee metadata was present, this set will contain all potential
-  /// callees (superset).
-  SmallSetVector<Function *, 4> PotentialCallees;
-
-  /// This set contains all currently assumed calllees, which might grow over
-  /// time.
-  SmallSetVector<Function *, 4> AssumedCallees;
-
-  /// Flag to indicate if all possible callees are in the AssumedCallees set or
-  /// if there could be others.
-  bool AllCalleesKnown = true;
-};
-} // namespace
-
-/// ------------------------ Address Space  ------------------------------------
-namespace {
-struct AAAddressSpaceImpl : public AAAddressSpace {
-  AAAddressSpaceImpl(const IRPosition &IRP, Attributor &A)
-      : AAAddressSpace(IRP, A) {}
-
-  int32_t getAddressSpace() const override {
-    assert(isValidState() && "the AA is invalid");
-    return AssumedAddressSpace;
-  }
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    assert(getAssociatedType()->isPtrOrPtrVectorTy() &&
-           "Associated value is not a pointer");
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-    int32_t OldAddressSpace = AssumedAddressSpace;
-    auto *AUO = A.getOrCreateAAFor<AAUnderlyingObjects>(getIRPosition(), this,
-                                                        DepClassTy::REQUIRED);
-    auto Pred = [&](Value &Obj) {
-      if (isa<UndefValue>(&Obj))
-        return true;
-      return takeAddressSpace(Obj.getType()->getPointerAddressSpace());
-    };
-
-    if (!AUO->forallUnderlyingObjects(Pred))
-      return indicatePessimisticFixpoint();
-
-    return OldAddressSpace == AssumedAddressSpace ? ChangeStatus::UNCHANGED
-                                                  : ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-    Value *AssociatedValue = &getAssociatedValue();
-    Value *OriginalValue = peelAddrspacecast(AssociatedValue);
-    if (getAddressSpace() == NoAddressSpace ||
-        static_cast<uint32_t>(getAddressSpace()) ==
-            getAssociatedType()->getPointerAddressSpace())
-      return ChangeStatus::UNCHANGED;
-
-    Type *NewPtrTy = PointerType::get(getAssociatedType()->getContext(),
-                                      static_cast<uint32_t>(getAddressSpace()));
-    bool UseOriginalValue =
-        OriginalValue->getType()->getPointerAddressSpace() ==
-        static_cast<uint32_t>(getAddressSpace());
-
-    bool Changed = false;
-
-    auto MakeChange = [&](Instruction *I, Use &U) {
-      Changed = true;
-      if (UseOriginalValue) {
-        A.changeUseAfterManifest(U, *OriginalValue);
-        return;
-      }
-      Instruction *CastInst = new AddrSpaceCastInst(OriginalValue, NewPtrTy);
-      CastInst->insertBefore(cast<Instruction>(I));
-      A.changeUseAfterManifest(U, *CastInst);
-    };
-
-    auto Pred = [&](const Use &U, bool &) {
-      if (U.get() != AssociatedValue)
-        return true;
-      auto *Inst = dyn_cast<Instruction>(U.getUser());
-      if (!Inst)
-        return true;
-      // This is a WA to make sure we only change uses from the corresponding
-      // CGSCC if the AA is run on CGSCC instead of the entire module.
-      if (!A.isRunOn(Inst->getFunction()))
-        return true;
-      if (isa<LoadInst>(Inst))
-        MakeChange(Inst, const_cast<Use &>(U));
-      if (isa<StoreInst>(Inst)) {
-        // We only make changes if the use is the pointer operand.
-        if (U.getOperandNo() == 1)
-          MakeChange(Inst, const_cast<Use &>(U));
-      }
-      return true;
-    };
-
-    // It doesn't matter if we can't check all uses as we can simply
-    // conservatively ignore those that can not be visited.
-    (void)A.checkForAllUses(Pred, *this, getAssociatedValue(),
-                            /* CheckBBLivenessOnly */ true);
-
-    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    if (!isValidState())
-      return "addrspace(<invalid>)";
-    return "addrspace(" +
-           (AssumedAddressSpace == NoAddressSpace
-                ? "none"
-                : std::to_string(AssumedAddressSpace)) +
-           ")";
-  }
-
-private:
-  int32_t AssumedAddressSpace = NoAddressSpace;
-
-  bool takeAddressSpace(int32_t AS) {
-    if (AssumedAddressSpace == NoAddressSpace) {
-      AssumedAddressSpace = AS;
-      return true;
-    }
-    return AssumedAddressSpace == AS;
-  }
-
-  static Value *peelAddrspacecast(Value *V) {
-    if (auto *I = dyn_cast<AddrSpaceCastInst>(V))
-      return peelAddrspacecast(I->getPointerOperand());
-    if (auto *C = dyn_cast<ConstantExpr>(V))
-      if (C->getOpcode() == Instruction::AddrSpaceCast)
-        return peelAddrspacecast(C->getOperand(0));
-    return V;
-  }
-};
-
-struct AAAddressSpaceFloating final : AAAddressSpaceImpl {
-  AAAddressSpaceFloating(const IRPosition &IRP, Attributor &A)
-      : AAAddressSpaceImpl(IRP, A) {}
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(addrspace);
-  }
-};
-
-struct AAAddressSpaceReturned final : AAAddressSpaceImpl {
-  AAAddressSpaceReturned(const IRPosition &IRP, Attributor &A)
-      : AAAddressSpaceImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: we don't rewrite function argument for now because it will need to
-    // rewrite the function signature and all call sites.
-    (void)indicatePessimisticFixpoint();
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(addrspace);
-  }
-};
-
-struct AAAddressSpaceCallSiteReturned final : AAAddressSpaceImpl {
-  AAAddressSpaceCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAAddressSpaceImpl(IRP, A) {}
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(addrspace);
-  }
-};
-
-struct AAAddressSpaceArgument final : AAAddressSpaceImpl {
-  AAAddressSpaceArgument(const IRPosition &IRP, Attributor &A)
-      : AAAddressSpaceImpl(IRP, A) {}
-
-  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(addrspace); }
-};
-
-struct AAAddressSpaceCallSiteArgument final : AAAddressSpaceImpl {
-  AAAddressSpaceCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAAddressSpaceImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: we don't rewrite call site argument for now because it will need to
-    // rewrite the function signature of the callee.
-    (void)indicatePessimisticFixpoint();
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(addrspace);
-  }
-};
-} // namespace
-
-/// ----------- Allocation Info ----------
-namespace {
-struct AAAllocationInfoImpl : public AAAllocationInfo {
-  AAAllocationInfoImpl(const IRPosition &IRP, Attributor &A)
-      : AAAllocationInfo(IRP, A) {}
-
-  std::optional<TypeSize> getAllocatedSize() const override {
-    assert(isValidState() && "the AA is invalid");
-    return AssumedAllocatedSize;
-  }
-
-  const NewOffsetsTy &getNewOffsets() const override {
-    assert(isValidState() && "the AA is invalid");
-    return NewComputedOffsets;
-  }
-
-  std::optional<TypeSize> findInitialAllocationSize(Instruction *I,
-                                                    const DataLayout &DL) {
-
-    // TODO: implement case for malloc like instructions
-    switch (I->getOpcode()) {
-    case Instruction::Alloca: {
-      AllocaInst *AI = cast<AllocaInst>(I);
-      return AI->getAllocationSize(DL);
-    }
-    default:
-      return std::nullopt;
-    }
-  }
-
-  ChangeStatus updateImpl(Attributor &A) override {
-
-    const IRPosition &IRP = getIRPosition();
-    Instruction *I = IRP.getCtxI();
-
-    // TODO: update check for malloc like calls
-    if (!isa<AllocaInst>(I))
-      return indicatePessimisticFixpoint();
-
-    bool IsKnownNoCapture;
-    if (!AA::hasAssumedIRAttr<Attribute::NoCapture>(
-            A, this, IRP, DepClassTy::OPTIONAL, IsKnownNoCapture))
-      return indicatePessimisticFixpoint();
-
-    const AAPointerInfo *PI =
-        A.getOrCreateAAFor<AAPointerInfo>(IRP, *this, DepClassTy::REQUIRED);
-
-    if (!PI)
-      return indicatePessimisticFixpoint();
-
-    if (!PI->getState().isValidState())
-      return indicatePessimisticFixpoint();
-
-    const DataLayout &DL = A.getDataLayout();
-    const auto AllocationSize = findInitialAllocationSize(I, DL);
-
-    // If allocation size is nullopt, we give up.
-    if (!AllocationSize)
-      return indicatePessimisticFixpoint();
-
-    // For zero sized allocations, we give up.
-    // Since we can't reduce further
-    if (*AllocationSize == 0)
-      return indicatePessimisticFixpoint();
-
-    int64_t NumBins = PI->numOffsetBins();
-
-    if (NumBins == 0) {
-      auto NewAllocationSize = std::optional<TypeSize>(TypeSize(0, false));
-      if (!changeAllocationSize(NewAllocationSize))
-        return ChangeStatus::UNCHANGED;
-      return ChangeStatus::CHANGED;
-    }
-
-    // For each access bin
-    // Compute its new start Offset and store the results in a new map
-    // (NewOffsetBins).
-    int64_t PrevBinEndOffset = 0;
-    bool ChangedOffsets = false;
-    for (AAPointerInfo::OffsetBinsTy::const_iterator It = PI->begin();
-         It != PI->end(); It++) {
-      const AA::RangeTy &OldRange = It->getFirst();
-      int64_t NewStartOffset = PrevBinEndOffset;
-      int64_t NewEndOffset = NewStartOffset + OldRange.Size;
-      PrevBinEndOffset = NewEndOffset;
-
-      ChangedOffsets |= setNewOffsets(OldRange, OldRange.Offset, NewStartOffset,
-                                      OldRange.Size);
-    }
-
-    // Set the new size of the allocation, the new size of the Allocation should
-    // be the size of NewEndOffset * 8, in bits.
-    auto NewAllocationSize =
-        std::optional<TypeSize>(TypeSize(PrevBinEndOffset * 8, false));
-
-    if (!changeAllocationSize(NewAllocationSize))
-      return ChangeStatus::UNCHANGED;
-
-    if (!ChangedOffsets)
-      return ChangeStatus::UNCHANGED;
-
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::manifest(...).
-  ChangeStatus manifest(Attributor &A) override {
-
-    assert(isValidState() &&
-           "Manifest should only be called if the state is valid.");
-
-    bool Changed = false;
-    const IRPosition &IRP = getIRPosition();
-    Instruction *I = IRP.getCtxI();
-
-    auto FixedAllocatedSizeInBits = getAllocatedSize()->getFixedValue();
-
-    unsigned long NumBytesToAllocate = (FixedAllocatedSizeInBits + 7) / 8;
-    switch (I->getOpcode()) {
-    // TODO: add case for malloc like calls
-    case Instruction::Alloca: {
-
-      AllocaInst *AI = cast<AllocaInst>(I);
-
-      Type *CharType = Type::getInt8Ty(I->getContext());
-
-      Type *CharArrayType = ArrayType::get(CharType, NumBytesToAllocate);
-
-      BasicBlock::iterator insertPt = AI->getIterator();
-      insertPt = std::next(insertPt);
-      AllocaInst *NewAllocaInst = new AllocaInst(
-          CharArrayType, AI->getAddressSpace(), AI->getName(), insertPt);
-
-      Changed |= A.changeAfterManifest(IRPosition::inst(*AI), *NewAllocaInst);
-      break;
-    }
-    default:
-      break;
-    }
-
-    const AAPointerInfo *PI =
-        A.getOrCreateAAFor<AAPointerInfo>(IRP, *this, DepClassTy::REQUIRED);
-
-    if (!PI)
-      return ChangeStatus::UNCHANGED;
-
-    if (!PI->getState().isValidState())
-      return ChangeStatus::UNCHANGED;
-
-    const auto &NewOffsetsMap = getNewOffsets();
-    for (AAPointerInfo::OffsetBinsTy::const_iterator It = PI->begin();
-         It != PI->end(); It++) {
-
-      const auto &OldOffsetRange = It->getFirst();
-
-      // If the OldOffsetRange is not in the map, offsets for that bin did not
-      // change We should just continue and skip changing the offsets in that
-      // case
-      if (!NewOffsetsMap.contains(OldOffsetRange))
-        continue;
-
-      const auto &NewOffsetRange = NewOffsetsMap.lookup(OldOffsetRange);
-      for (const auto AccIndex : It->getSecond()) {
-
-        const auto &AccessInstruction = PI->getBinAccess(AccIndex);
-        auto *LocalInst = AccessInstruction.getLocalInst();
-
-        switch (LocalInst->getOpcode()) {
-        case Instruction::Load: {
-          LoadInst *OldLoadInst = cast<LoadInst>(LocalInst);
-          Value *PointerOperand = OldLoadInst->getPointerOperand();
-
-          IntegerType *Int8TyInteger =
-              IntegerType::get(LocalInst->getContext(), 8);
-          IntegerType *Int64TyInteger =
-              IntegerType::get(LocalInst->getContext(), 64);
-          Value *indexList[2] = {
-              ConstantInt::get(Int64TyInteger, 0),
-              ConstantInt::get(Int64TyInteger,
-                               NewOffsetRange.Offset - OldOffsetRange.Offset)};
-          Value *GepToNewAddress = GetElementPtrInst::Create(
-              Int8TyInteger, PointerOperand, indexList, "NewGep", OldLoadInst);
-
-          LoadInst *NewLoadInst =
-              new LoadInst(OldLoadInst->getType(), GepToNewAddress,
-                           OldLoadInst->getName(), OldLoadInst);
-          Changed |= A.changeAfterManifest(IRPosition::inst(*OldLoadInst),
-                                           *NewLoadInst);
-          break;
-        }
-        case Instruction::Store: {
-          StoreInst *OldStoreInst = cast<StoreInst>(LocalInst);
-          Value *PointerOperand = OldStoreInst->getPointerOperand();
-
-          IntegerType *Int8TyInteger =
-              IntegerType::get(LocalInst->getContext(), 8);
-          IntegerType *Int64TyInteger =
-              IntegerType::get(LocalInst->getContext(), 64);
-          Value *indexList[2] = {
-              ConstantInt::get(Int64TyInteger, 0),
-              ConstantInt::get(Int64TyInteger,
-                               NewOffsetRange.Offset - OldOffsetRange.Offset)};
-          Value *GepToNewAddress = GetElementPtrInst::Create(
-              Int8TyInteger, PointerOperand, indexList, "NewGep", OldStoreInst);
-
-          StoreInst *NewStoreInst = new StoreInst(
-              OldStoreInst->getValueOperand(), GepToNewAddress, OldStoreInst);
-          Changed |= A.changeAfterManifest(IRPosition::inst(*OldStoreInst),
-                                           *NewStoreInst);
-          break;
-        }
-        }
-      }
-    }
-
-    if (!Changed)
-      return ChangeStatus::UNCHANGED;
-    return ChangeStatus::CHANGED;
-  }
-
-  /// See AbstractAttribute::getAsStr().
-  const std::string getAsStr(Attributor *A) const override {
-    if (!isValidState())
-      return "allocationinfo(<invalid>)";
-    return "allocationinfo(" +
-           (AssumedAllocatedSize == HasNoAllocationSize
-                ? "none"
-                : std::to_string(AssumedAllocatedSize->getFixedValue())) +
-           ")";
-  }
-
-  void dumpNewOffsetBins(raw_ostream &O) {
-
-    O << "Printing Map from [OldOffsetsRange] : [NewOffsetsRange] if the "
-         "offsets changed."
-      << "\n";
-    const auto &NewOffsetsMap = getNewOffsets();
-    for (auto It = NewOffsetsMap.begin(); It != NewOffsetsMap.end(); It++) {
-
-      const auto &OldRange = It->getFirst();
-      const auto &NewRange = It->getSecond();
-
-      O << "[" << OldRange.Offset << "," << OldRange.Offset + OldRange.Size
-        << "] : ";
-      O << "[" << NewRange.Offset << "," << NewRange.Offset + NewRange.Size
-        << "]";
-      O << "\n";
-    }
-  }
-
-private:
-  std::optional<TypeSize> AssumedAllocatedSize = HasNoAllocationSize;
-  NewOffsetsTy NewComputedOffsets;
-
-  // Maintain the computed allocation size of the object.
-  // Returns (bool) weather the size of the allocation was modified or not.
-  bool changeAllocationSize(std::optional<TypeSize> Size) {
-    if (AssumedAllocatedSize == HasNoAllocationSize ||
-        AssumedAllocatedSize != Size) {
-      AssumedAllocatedSize = Size;
-      return true;
-    }
-    return false;
-  }
-
-  // Maps an old byte range to its new Offset range in the new allocation.
-  // Returns (bool) weather the old byte range's offsets changed or not.
-  bool setNewOffsets(const AA::RangeTy &OldRange, int64_t OldOffset,
-                     int64_t NewComputedOffset, int64_t Size) {
-
-    if (OldOffset == NewComputedOffset)
-      return false;
-
-    AA::RangeTy &NewRange = NewComputedOffsets.getOrInsertDefault(OldRange);
-    NewRange.Offset = NewComputedOffset;
-    NewRange.Size = Size;
-
-    return true;
-  }
-};
-
-struct AAAllocationInfoFloating : AAAllocationInfoImpl {
-  AAAllocationInfoFloating(const IRPosition &IRP, Attributor &A)
-      : AAAllocationInfoImpl(IRP, A) {}
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FLOATING_ATTR(allocationinfo);
-  }
-};
-
-struct AAAllocationInfoReturned : AAAllocationInfoImpl {
-  AAAllocationInfoReturned(const IRPosition &IRP, Attributor &A)
-      : AAAllocationInfoImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-    // TODO: we don't rewrite function argument for now because it will need to
-    // rewrite the function signature and all call sites
-    (void)indicatePessimisticFixpoint();
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_FNRET_ATTR(allocationinfo);
-  }
-};
-
-struct AAAllocationInfoCallSiteReturned : AAAllocationInfoImpl {
-  AAAllocationInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
-      : AAAllocationInfoImpl(IRP, A) {}
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSRET_ATTR(allocationinfo);
-  }
-};
-
-struct AAAllocationInfoArgument : AAAllocationInfoImpl {
-  AAAllocationInfoArgument(const IRPosition &IRP, Attributor &A)
-      : AAAllocationInfoImpl(IRP, A) {}
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_ARG_ATTR(allocationinfo);
-  }
-};
-
-struct AAAllocationInfoCallSiteArgument : AAAllocationInfoImpl {
-  AAAllocationInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
-      : AAAllocationInfoImpl(IRP, A) {}
-
-  /// See AbstractAttribute::initialize(...).
-  void initialize(Attributor &A) override {
-
-    (void)indicatePessimisticFixpoint();
-  }
-
-  void trackStatistics() const override {
-    STATS_DECLTRACK_CSARG_ATTR(allocationinfo);
-  }
-};
-} // namespace
-
-const char AANoUnwind::ID = 0;
-const char AANoSync::ID = 0;
-const char AANoFree::ID = 0;
-const char AANonNull::ID = 0;
-const char AAMustProgress::ID = 0;
-const char AANoRecurse::ID = 0;
-const char AANonConvergent::ID = 0;
-const char AAWillReturn::ID = 0;
-const char AAUndefinedBehavior::ID = 0;
-const char AANoAlias::ID = 0;
-const char AAIntraFnReachability::ID = 0;
-const char AANoReturn::ID = 0;
-const char AAIsDead::ID = 0;
-const char AADereferenceable::ID = 0;
-const char AAAlign::ID = 0;
-const char AAInstanceInfo::ID = 0;
-const char AANoCapture::ID = 0;
-const char AAValueSimplify::ID = 0;
-const char AAHeapToStack::ID = 0;
-const char AAPrivatizablePtr::ID = 0;
-const char AAMemoryBehavior::ID = 0;
-const char AAMemoryLocation::ID = 0;
-const char AAValueConstantRange::ID = 0;
-const char AAPotentialConstantValues::ID = 0;
-const char AAPotentialValues::ID = 0;
-const char AANoUndef::ID = 0;
-const char AANoFPClass::ID = 0;
-const char AACallEdges::ID = 0;
-const char AAInterFnReachability::ID = 0;
-const char AAPointerInfo::ID = 0;
-const char AAAssumptionInfo::ID = 0;
-const char AAUnderlyingObjects::ID = 0;
-const char AAAddressSpace::ID = 0;
-const char AAAllocationInfo::ID = 0;
-const char AAIndirectCallInfo::ID = 0;
-const char AAGlobalValueInfo::ID = 0;
-const char AADenormalFPMath::ID = 0;
-
-// Macro magic to create the static generator function for attributes that
-// follow the naming scheme.
-
-#define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
-  case IRPosition::PK:                                                         \
-    llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
-
-#define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
-  case IRPosition::PK:                                                         \
-    AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
-    ++NumAAs;                                                                  \
-    break;
-
-#define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
-  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
-    CLASS *AA = nullptr;                                                       \
-    switch (IRP.getPositionKind()) {                                           \
-      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
-      SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
-      SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
-      SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
-      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
-      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
-    }                                                                          \
-    return *AA;                                                                \
-  }
-
-#define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
-  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
-    CLASS *AA = nullptr;                                                       \
-    switch (IRP.getPositionKind()) {                                           \
-      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
-      SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
-      SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
-    }                                                                          \
-    return *AA;                                                                \
-  }
-
-#define CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(POS, SUFFIX, CLASS)         \
-  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
-    CLASS *AA = nullptr;                                                       \
-    switch (IRP.getPositionKind()) {                                           \
-      SWITCH_PK_CREATE(CLASS, IRP, POS, SUFFIX)                                \
-    default:                                                                   \
-      llvm_unreachable("Cannot create " #CLASS " for position otherthan " #POS \
-                       " position!");                                          \
-    }                                                                          \
-    return *AA;                                                                \
-  }
-
-#define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
-  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
-    CLASS *AA = nullptr;                                                       \
-    switch (IRP.getPositionKind()) {                                           \
-      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
-    }                                                                          \
-    return *AA;                                                                \
-  }
-
-#define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
-  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
-    CLASS *AA = nullptr;                                                       \
-    switch (IRP.getPositionKind()) {                                           \
-      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
-      SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
-      SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
-      SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
-      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
-      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
-      SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
-    }                                                                          \
-    return *AA;                                                                \
-  }
-
-#define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
-  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
-    CLASS *AA = nullptr;                                                       \
-    switch (IRP.getPositionKind()) {                                           \
-      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
-      SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
-      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
-    }                                                                          \
-    return *AA;                                                                \
-  }
-
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMustProgress)
-
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFPClass)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAddressSpace)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAllocationInfo)
-
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUnderlyingObjects)
-
-CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(IRP_CALL_SITE, CallSite,
-                                           AAIndirectCallInfo)
-CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(IRP_FLOAT, Floating,
-                                           AAGlobalValueInfo)
-
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonConvergent)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIntraFnReachability)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInterFnReachability)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADenormalFPMath)
-
-CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
-
-#undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION
-#undef SWITCH_PK_CREATE
-#undef SWITCH_PK_INV
diff --git a/llvm/test/Transforms/Attributor/allocator.ll b/llvm/test/Transforms/Attributor/allocator.ll
index 860f4a63e6754..dea385f52c204 100644
--- a/llvm/test/Transforms/Attributor/allocator.ll
+++ b/llvm/test/Transforms/Attributor/allocator.ll
@@ -13,14 +13,14 @@ define dso_local void @positive_alloca_1(i32 noundef %val) #0 {
 ; CHECK-LABEL: define dso_local void @positive_alloca_1
 ; CHECK-SAME: (i32 noundef [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca i64, align 4
-; CHECK-NEXT:    [[F:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
-; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR]], align 4
-; CHECK-NEXT:    store i32 10, ptr [[F]], align 4
-; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[F]], align 4
+; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca [4 x i8], align 1
+; CHECK-NEXT:    [[F2:%.*]] = alloca [4 x i8], align 1
+; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR1]], align 4
+; CHECK-NEXT:    store i32 10, ptr [[F2]], align 4
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[F2]], align 4
 ; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP0]], 1
-; CHECK-NEXT:    store i32 [[ADD]], ptr [[F]], align 4
-; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[F]], align 4
+; CHECK-NEXT:    store i32 [[ADD]], ptr [[F2]], align 4
+; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[F2]], align 4
 ; CHECK-NEXT:    [[ADD3:%.*]] = add nsw i32 [[TMP1]], [[VAL]]
 ; CHECK-NEXT:    [[CALL:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[ADD3]])
 ; CHECK-NEXT:    ret void
@@ -49,11 +49,11 @@ define dso_local void @positive_malloc_1(ptr noundef %val) #0 {
 ; CHECK-LABEL: define dso_local void @positive_malloc_1
 ; CHECK-SAME: (ptr nocapture nofree noundef readonly [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[F:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    store ptr [[VAL]], ptr [[VAL_ADDR]], align 8
+; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    [[F2:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    store ptr [[VAL]], ptr [[VAL_ADDR1]], align 8
 ; CHECK-NEXT:    [[CALL:%.*]] = call noalias ptr @malloc(i64 noundef 12)
-; CHECK-NEXT:    store ptr [[CALL]], ptr [[F]], align 8
+; CHECK-NEXT:    store ptr [[CALL]], ptr [[F2]], align 8
 ; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[VAL]], align 4
 ; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP0]], 10
 ; CHECK-NEXT:    store i32 [[ADD]], ptr [[CALL]], align 4
@@ -86,11 +86,11 @@ define dso_local void @positive_malloc_2(ptr noundef %val) #0 {
 ; CHECK-LABEL: define dso_local void @positive_malloc_2
 ; CHECK-SAME: (ptr nocapture nofree noundef readonly [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[F:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    store ptr [[VAL]], ptr [[VAL_ADDR]], align 8
+; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    [[F3:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    store ptr [[VAL]], ptr [[VAL_ADDR1]], align 8
 ; CHECK-NEXT:    [[CALL:%.*]] = call noalias ptr @malloc(i64 noundef 60)
-; CHECK-NEXT:    store ptr [[CALL]], ptr [[F]], align 8
+; CHECK-NEXT:    store ptr [[CALL]], ptr [[F3]], align 8
 ; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[VAL]], align 4
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[CALL]], align 4
 ; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[CALL]], align 4
@@ -125,19 +125,19 @@ define dso_local ptr @negative_test_escaping_pointer(i32 noundef %val) #0 {
 ; CHECK-LABEL: define dso_local ptr @negative_test_escaping_pointer
 ; CHECK-SAME: (i32 noundef [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca i32, align 4
-; CHECK-NEXT:    [[F:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR]], align 4
+; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca [4 x i8], align 1
+; CHECK-NEXT:    [[F2:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR1]], align 4
 ; CHECK-NEXT:    [[CALL:%.*]] = call noalias ptr @malloc(i64 noundef 16)
-; CHECK-NEXT:    store ptr [[CALL]], ptr [[F]], align 8
-; CHECK-NEXT:    [[TMP0:%.*]] = load ptr, ptr [[F]], align 8
+; CHECK-NEXT:    store ptr [[CALL]], ptr [[F2]], align 8
+; CHECK-NEXT:    [[TMP0:%.*]] = load ptr, ptr [[F2]], align 8
 ; CHECK-NEXT:    store i32 2, ptr [[TMP0]], align 8
 ; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 10, [[VAL]]
-; CHECK-NEXT:    [[TMP1:%.*]] = load ptr, ptr [[F]], align 8
+; CHECK-NEXT:    [[TMP1:%.*]] = load ptr, ptr [[F2]], align 8
 ; CHECK-NEXT:    [[TMP2:%.*]] = load i32, ptr [[TMP1]], align 8
 ; CHECK-NEXT:    [[ADD2:%.*]] = add nsw i32 [[TMP2]], [[ADD]]
 ; CHECK-NEXT:    store i32 [[ADD2]], ptr [[TMP1]], align 8
-; CHECK-NEXT:    [[TMP3:%.*]] = load ptr, ptr [[F]], align 8
+; CHECK-NEXT:    [[TMP3:%.*]] = load ptr, ptr [[F2]], align 8
 ; CHECK-NEXT:    ret ptr [[TMP3]]
 ;
 entry:
@@ -168,14 +168,27 @@ define dso_local void @positive_test_not_a_single_start_offset(i32 noundef %val)
 ; CHECK-LABEL: define dso_local void @positive_test_not_a_single_start_offset
 ; CHECK-SAME: (i32 noundef [[VAL:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca i32, align 4
-; CHECK-NEXT:    [[F:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
-; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR]], align 4
+; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca [4 x i8], align 1
+; CHECK-NEXT:    [[F2:%.*]] = alloca [5 x i8], align 1
+; CHECK-NEXT:    store i32 [[VAL]], ptr [[VAL_ADDR1]], align 4
 ; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 2, [[VAL]]
-; CHECK-NEXT:    store i32 [[MUL]], ptr [[F]], align 4
-; CHECK-NEXT:    [[CALL:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[MUL]])
-; CHECK-NEXT:    [[C:%.*]] = getelementptr inbounds [[STRUCT_FOO]], ptr [[F]], i32 0, i32 2
-; CHECK-NEXT:    [[CALL3:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef 67)
+; CHECK-NEXT:    store i32 [[MUL]], ptr [[F2]], align 4
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[F2]], align 4
+; CHECK-NEXT:    [[CALL:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[TMP0]])
+; CHECK-NEXT:    [[C:%.*]] = getelementptr inbounds [[STRUCT_FOO:%.*]], ptr [[F2]], i32 0, i32 2
+; CHECK-NEXT:    [[CONV1:%.*]] = trunc i32 [[TMP0]] to i8
+; CHECK-NEXT:    [[TMP1:%.*]] = ptrtoint ptr [[C]] to i32
+; CHECK-NEXT:    [[TMP2:%.*]] = sub i32 [[TMP1]], 4
+; CHECK-NEXT:    [[TMP3:%.*]] = inttoptr i32 [[TMP2]] to ptr
+; CHECK-NEXT:    store i8 [[CONV1]], ptr [[TMP3]], align 1
+; CHECK-NEXT:    store i8 [[CONV1]], ptr [[C]], align 4
+; CHECK-NEXT:    [[C2:%.*]] = getelementptr inbounds [[STRUCT_FOO]], ptr [[F2]], i32 0, i32 2
+; CHECK-NEXT:    [[TMP4:%.*]] = ptrtoint ptr [[C2]] to i32
+; CHECK-NEXT:    [[TMP5:%.*]] = sub i32 [[TMP4]], 4
+; CHECK-NEXT:    [[TMP6:%.*]] = inttoptr i32 [[TMP5]] to ptr
+; CHECK-NEXT:    [[TMP7:%.*]] = load i8, ptr [[TMP6]], align 1
+; CHECK-NEXT:    [[CONV:%.*]] = sext i8 [[TMP7]] to i32
+; CHECK-NEXT:    [[CALL3:%.*]] = call i32 (ptr, ...) @printf(ptr noundef nonnull dereferenceable(17) @.str, i32 noundef [[CONV]])
 ; CHECK-NEXT:    ret void
 ;
 entry:
@@ -190,7 +203,8 @@ entry:
   %1 = load i32, ptr %a1, align 4
   %call = call i32 (ptr, ...) @printf(ptr noundef @.str, i32 noundef %1)
   %c = getelementptr inbounds %struct.Foo, ptr %f, i32 0, i32 2
-  store i8 67, ptr %c, align 4
+  %conv1 = trunc i32 %1 to i8
+  store i8 %conv1, ptr %c, align 4
   %c2 = getelementptr inbounds %struct.Foo, ptr %f, i32 0, i32 2
   %2 = load i8, ptr %c2, align 4
   %conv = sext i8 %2 to i32
@@ -202,7 +216,7 @@ entry:
 define dso_local void @positive_test_reduce_array_allocation_1() {
 ; CHECK-LABEL: define dso_local void @positive_test_reduce_array_allocation_1() {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca ptr, i32 10, align 8
+; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca [4 x i8], align 1
 ; CHECK-NEXT:    store i32 0, ptr [[ARRAY1]], align 8
 ; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[ARRAY1]], align 8
 ; CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[TMP0]], 2
@@ -239,15 +253,15 @@ define dso_local void @baz(ptr noundef %val, i32 noundef %arrayLength) #0 {
 ; CHECK-LABEL: define dso_local void @baz
 ; CHECK-SAME: (ptr nocapture nofree noundef readonly [[VAL:%.*]], i32 noundef [[ARRAYLENGTH:%.*]]) {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[VAL_ADDR:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[ARRAYLENGTH_ADDR:%.*]] = alloca i32, align 4
-; CHECK-NEXT:    [[F:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    store ptr [[VAL]], ptr [[VAL_ADDR]], align 8
-; CHECK-NEXT:    store i32 [[ARRAYLENGTH]], ptr [[ARRAYLENGTH_ADDR]], align 4
+; CHECK-NEXT:    [[VAL_ADDR1:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    [[ARRAYLENGTH_ADDR2:%.*]] = alloca [4 x i8], align 1
+; CHECK-NEXT:    [[F3:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    store ptr [[VAL]], ptr [[VAL_ADDR1]], align 8
+; CHECK-NEXT:    store i32 [[ARRAYLENGTH]], ptr [[ARRAYLENGTH_ADDR2]], align 4
 ; CHECK-NEXT:    [[CONV:%.*]] = sext i32 [[ARRAYLENGTH]] to i64
 ; CHECK-NEXT:    [[MUL:%.*]] = mul i64 4, [[CONV]]
 ; CHECK-NEXT:    [[CALL:%.*]] = call noalias ptr @malloc(i64 noundef [[MUL]])
-; CHECK-NEXT:    store ptr [[CALL]], ptr [[F]], align 8
+; CHECK-NEXT:    store ptr [[CALL]], ptr [[F3]], align 8
 ; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[VAL]], align 4
 ; CHECK-NEXT:    store i32 [[TMP0]], ptr [[CALL]], align 4
 ; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[CALL]], align 4
@@ -283,8 +297,8 @@ entry:
 define dso_local void @positive_test_reduce_array_allocation_2() #0 {
 ; CHECK-LABEL: define dso_local void @positive_test_reduce_array_allocation_2() {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca ptr, align 8
-; CHECK-NEXT:    [[I2:%.*]] = alloca i32, align 4
+; CHECK-NEXT:    [[ARRAY1:%.*]] = alloca [8 x i8], align 1
+; CHECK-NEXT:    [[I2:%.*]] = alloca [4 x i8], align 1
 ; CHECK-NEXT:    [[CALL:%.*]] = call noalias ptr @malloc(i64 noundef 40000)
 ; CHECK-NEXT:    store ptr [[CALL]], ptr [[ARRAY1]], align 8
 ; CHECK-NEXT:    store i32 0, ptr [[I2]], align 4
@@ -433,20 +447,21 @@ define dso_local void @pthread_test(){
 ; TUNIT-LABEL: define dso_local void @pthread_test() {
 ; TUNIT-NEXT:    [[ARG1:%.*]] = alloca i8, align 8
 ; TUNIT-NEXT:    [[THREAD:%.*]] = alloca i64, align 8
-; TUNIT-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
-; TUNIT-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(12) undef)
+; TUNIT-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
+; TUNIT-NEXT:    [[F1:%.*]] = alloca [4 x i8], align 1
+; TUNIT-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr noalias nocapture nofree nonnull readnone align 4 dereferenceable(12) undef)
 ; TUNIT-NEXT:    [[F2:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
-; TUNIT-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
+; TUNIT-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
 ; TUNIT-NEXT:    ret void
 ;
 ; CGSCC-LABEL: define dso_local void @pthread_test() {
 ; CGSCC-NEXT:    [[ARG1:%.*]] = alloca i8, align 8
 ; CGSCC-NEXT:    [[THREAD:%.*]] = alloca i64, align 8
-; CGSCC-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
+; CGSCC-NEXT:    [[CALL1:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_remain_same, ptr noundef nonnull align 8 dereferenceable(1) [[ARG1]])
 ; CGSCC-NEXT:    [[F:%.*]] = alloca [[STRUCT_FOO:%.*]], align 4
-; CGSCC-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr nofree noundef nonnull readonly align 4 dereferenceable(12) [[F]])
+; CGSCC-NEXT:    [[CALL2:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_allocation_should_be_reduced, ptr noalias nocapture nofree noundef nonnull readonly align 4 dereferenceable(12) [[F]])
 ; CGSCC-NEXT:    [[F2:%.*]] = alloca [[STRUCT_FOO]], align 4
-; CGSCC-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noalias nocapture noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
+; CGSCC-NEXT:    [[CALL3:%.*]] = call i32 @pthread_create(ptr noundef nonnull align 8 dereferenceable(8) [[THREAD]], ptr noundef align 4294967296 null, ptr noundef nonnull @pthread_check_captured_pointer, ptr noundef nonnull align 4 dereferenceable(12) [[F2]])
 ; CGSCC-NEXT:    ret void
 ;
   %arg1 = alloca i8, align 8
@@ -511,19 +526,19 @@ define dso_local void @alloca_array_multi_offset(){
 ; CHECK-LABEL: define dso_local void @alloca_array_multi_offset
 ; CHECK-SAME: () #[[ATTR0:[0-9]+]] {
 ; CHECK-NEXT:  entry:
-; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
-; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
+; CHECK-NEXT:    [[I2:%.*]] = alloca [4 x i8], align 1
+; CHECK-NEXT:    store i32 0, ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND:%.*]]
 ; CHECK:       for.cond:
-; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[TMP0]], 10
 ; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY:%.*]], label [[FOR_END:%.*]]
 ; CHECK:       for.body:
 ; CHECK-NEXT:    br label [[FOR_INC:%.*]]
 ; CHECK:       for.inc:
-; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[I]], align 4
+; CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[I2]], align 4
 ; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[TMP1]], 2
-; CHECK-NEXT:    store i32 [[ADD]], ptr [[I]], align 4
+; CHECK-NEXT:    store i32 [[ADD]], ptr [[I2]], align 4
 ; CHECK-NEXT:    br label [[FOR_COND]]
 ; CHECK:       for.end:
 ; CHECK-NEXT:    ret void
@@ -570,9 +585,9 @@ declare i32 @printf(ptr noundef, ...) #1
 ; Function Attrs: nounwind allocsize(0)
 declare noalias ptr @malloc(i64 noundef) #1
 ;.
-; TUNIT: attributes #[[ATTR0]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
+; TUNIT: attributes #[[ATTR0]] = { nofree norecurse nosync nounwind memory(none) }
 ;.
-; CGSCC: attributes #[[ATTR0]] = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
+; CGSCC: attributes #[[ATTR0]] = { nofree norecurse nosync nounwind memory(none) }
 ;.
 ; TUNIT: [[META0:![0-9]+]] = !{[[META1:![0-9]+]]}
 ; TUNIT: [[META1]] = !{i64 2, i64 3, i1 false}

>From 83f9d7458d19a3698184bab3cfabab5cad7767ff Mon Sep 17 00:00:00 2001
From: Vidush Singhal <singhal2 at ruby963.llnl.gov>
Date: Thu, 23 May 2024 15:57:11 -0700
Subject: [PATCH 3/3] Fix files that got accidently deleted

---
 llvm/include/llvm/Transforms/IPO/Attributor.h |  6483 ++++++++
 .../Transforms/IPO/AttributorAttributes.cpp   | 13228 ++++++++++++++++
 2 files changed, 19711 insertions(+)

diff --git a/llvm/include/llvm/Transforms/IPO/Attributor.h b/llvm/include/llvm/Transforms/IPO/Attributor.h
index e69de29bb2d1d..fb96e52121f82 100644
--- a/llvm/include/llvm/Transforms/IPO/Attributor.h
+++ b/llvm/include/llvm/Transforms/IPO/Attributor.h
@@ -0,0 +1,6483 @@
+//===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Attributor: An inter procedural (abstract) "attribute" deduction framework.
+//
+// The Attributor framework is an inter procedural abstract analysis (fixpoint
+// iteration analysis). The goal is to allow easy deduction of new attributes as
+// well as information exchange between abstract attributes in-flight.
+//
+// The Attributor class is the driver and the link between the various abstract
+// attributes. The Attributor will iterate until a fixpoint state is reached by
+// all abstract attributes in-flight, or until it will enforce a pessimistic fix
+// point because an iteration limit is reached.
+//
+// Abstract attributes, derived from the AbstractAttribute class, actually
+// describe properties of the code. They can correspond to actual LLVM-IR
+// attributes, or they can be more general, ultimately unrelated to LLVM-IR
+// attributes. The latter is useful when an abstract attributes provides
+// information to other abstract attributes in-flight but we might not want to
+// manifest the information. The Attributor allows to query in-flight abstract
+// attributes through the `Attributor::getAAFor` method (see the method
+// description for an example). If the method is used by an abstract attribute
+// P, and it results in an abstract attribute Q, the Attributor will
+// automatically capture a potential dependence from Q to P. This dependence
+// will cause P to be reevaluated whenever Q changes in the future.
+//
+// The Attributor will only reevaluate abstract attributes that might have
+// changed since the last iteration. That means that the Attribute will not
+// revisit all instructions/blocks/functions in the module but only query
+// an update from a subset of the abstract attributes.
+//
+// The update method `AbstractAttribute::updateImpl` is implemented by the
+// specific "abstract attribute" subclasses. The method is invoked whenever the
+// currently assumed state (see the AbstractState class) might not be valid
+// anymore. This can, for example, happen if the state was dependent on another
+// abstract attribute that changed. In every invocation, the update method has
+// to adjust the internal state of an abstract attribute to a point that is
+// justifiable by the underlying IR and the current state of abstract attributes
+// in-flight. Since the IR is given and assumed to be valid, the information
+// derived from it can be assumed to hold. However, information derived from
+// other abstract attributes is conditional on various things. If the justifying
+// state changed, the `updateImpl` has to revisit the situation and potentially
+// find another justification or limit the optimistic assumes made.
+//
+// Change is the key in this framework. Until a state of no-change, thus a
+// fixpoint, is reached, the Attributor will query the abstract attributes
+// in-flight to re-evaluate their state. If the (current) state is too
+// optimistic, hence it cannot be justified anymore through other abstract
+// attributes or the state of the IR, the state of the abstract attribute will
+// have to change. Generally, we assume abstract attribute state to be a finite
+// height lattice and the update function to be monotone. However, these
+// conditions are not enforced because the iteration limit will guarantee
+// termination. If an optimistic fixpoint is reached, or a pessimistic fix
+// point is enforced after a timeout, the abstract attributes are tasked to
+// manifest their result in the IR for passes to come.
+//
+// Attribute manifestation is not mandatory. If desired, there is support to
+// generate a single or multiple LLVM-IR attributes already in the helper struct
+// IRAttribute. In the simplest case, a subclass inherits from IRAttribute with
+// a proper Attribute::AttrKind as template parameter. The Attributor
+// manifestation framework will then create and place a new attribute if it is
+// allowed to do so (based on the abstract state). Other use cases can be
+// achieved by overloading AbstractAttribute or IRAttribute methods.
+//
+//
+// The "mechanics" of adding a new "abstract attribute":
+// - Define a class (transitively) inheriting from AbstractAttribute and one
+//   (which could be the same) that (transitively) inherits from AbstractState.
+//   For the latter, consider the already available BooleanState and
+//   {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a
+//   number tracking or bit-encoding.
+// - Implement all pure methods. Also use overloading if the attribute is not
+//   conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for
+//   an argument, call site argument, function return value, or function. See
+//   the class and method descriptions for more information on the two
+//   "Abstract" classes and their respective methods.
+// - Register opportunities for the new abstract attribute in the
+//   `Attributor::identifyDefaultAbstractAttributes` method if it should be
+//   counted as a 'default' attribute.
+// - Add sufficient tests.
+// - Add a Statistics object for bookkeeping. If it is a simple (set of)
+//   attribute(s) manifested through the Attributor manifestation framework, see
+//   the bookkeeping function in Attributor.cpp.
+// - If instructions with a certain opcode are interesting to the attribute, add
+//   that opcode to the switch in `Attributor::identifyAbstractAttributes`. This
+//   will make it possible to query all those instructions through the
+//   `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the
+//   need to traverse the IR repeatedly.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
+#define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/Analysis/AssumeBundleQueries.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/CGSCCPassManager.h"
+#include "llvm/Analysis/LazyCallGraph.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/AbstractCallSite.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/DOTGraphTraits.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ModRef.h"
+#include "llvm/Support/TimeProfiler.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/TargetParser/Triple.h"
+#include "llvm/Transforms/Utils/CallGraphUpdater.h"
+
+#include <limits>
+#include <map>
+#include <optional>
+
+namespace llvm {
+
+class DataLayout;
+class LLVMContext;
+class Pass;
+template <typename Fn> class function_ref;
+struct AADepGraphNode;
+struct AADepGraph;
+struct Attributor;
+struct AbstractAttribute;
+struct InformationCache;
+struct AAIsDead;
+struct AttributorCallGraph;
+struct IRPosition;
+
+class Function;
+
+/// Abstract Attribute helper functions.
+namespace AA {
+using InstExclusionSetTy = SmallPtrSet<Instruction *, 4>;
+
+enum class GPUAddressSpace : unsigned {
+  Generic = 0,
+  Global = 1,
+  Shared = 3,
+  Constant = 4,
+  Local = 5,
+};
+
+/// Return true iff \p M target a GPU (and we can use GPU AS reasoning).
+bool isGPU(const Module &M);
+
+/// Flags to distinguish intra-procedural queries from *potentially*
+/// inter-procedural queries. Not that information can be valid for both and
+/// therefore both bits might be set.
+enum ValueScope : uint8_t {
+  Intraprocedural = 1,
+  Interprocedural = 2,
+  AnyScope = Intraprocedural | Interprocedural,
+};
+
+struct ValueAndContext : public std::pair<Value *, const Instruction *> {
+  using Base = std::pair<Value *, const Instruction *>;
+  ValueAndContext(const Base &B) : Base(B) {}
+  ValueAndContext(Value &V, const Instruction *CtxI) : Base(&V, CtxI) {}
+  ValueAndContext(Value &V, const Instruction &CtxI) : Base(&V, &CtxI) {}
+
+  Value *getValue() const { return this->first; }
+  const Instruction *getCtxI() const { return this->second; }
+};
+
+/// Return true if \p I is a `nosync` instruction. Use generic reasoning and
+/// potentially the corresponding AANoSync.
+bool isNoSyncInst(Attributor &A, const Instruction &I,
+                  const AbstractAttribute &QueryingAA);
+
+/// Return true if \p V is dynamically unique, that is, there are no two
+/// "instances" of \p V at runtime with different values.
+/// Note: If \p ForAnalysisOnly is set we only check that the Attributor will
+/// never use \p V to represent two "instances" not that \p V could not
+/// technically represent them.
+bool isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
+                         const Value &V, bool ForAnalysisOnly = true);
+
+/// Return true if \p V is a valid value in \p Scope, that is a constant or an
+/// instruction/argument of \p Scope.
+bool isValidInScope(const Value &V, const Function *Scope);
+
+/// Return true if the value of \p VAC is a valid at the position of \p VAC,
+/// that is a constant, an argument of the same function, or an instruction in
+/// that function that dominates the position.
+bool isValidAtPosition(const ValueAndContext &VAC, InformationCache &InfoCache);
+
+/// Try to convert \p V to type \p Ty without introducing new instructions. If
+/// this is not possible return `nullptr`. Note: this function basically knows
+/// how to cast various constants.
+Value *getWithType(Value &V, Type &Ty);
+
+/// Return the combination of \p A and \p B such that the result is a possible
+/// value of both. \p B is potentially casted to match the type \p Ty or the
+/// type of \p A if \p Ty is null.
+///
+/// Examples:
+///        X + none  => X
+/// not_none + undef => not_none
+///          V1 + V2 => nullptr
+std::optional<Value *>
+combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A,
+                                     const std::optional<Value *> &B, Type *Ty);
+
+/// Helper to represent an access offset and size, with logic to deal with
+/// uncertainty and check for overlapping accesses.
+struct RangeTy {
+  int64_t Offset = Unassigned;
+  int64_t Size = Unassigned;
+
+  RangeTy(int64_t Offset, int64_t Size) : Offset(Offset), Size(Size) {}
+  RangeTy() = default;
+  static RangeTy getUnknown() { return RangeTy{Unknown, Unknown}; }
+
+  /// Return true if offset or size are unknown.
+  bool offsetOrSizeAreUnknown() const {
+    return Offset == RangeTy::Unknown || Size == RangeTy::Unknown;
+  }
+
+  /// Return true if offset and size are unknown, thus this is the default
+  /// unknown object.
+  bool offsetAndSizeAreUnknown() const {
+    return Offset == RangeTy::Unknown && Size == RangeTy::Unknown;
+  }
+
+  /// Return true if the offset and size are unassigned.
+  bool isUnassigned() const {
+    assert((Offset == RangeTy::Unassigned) == (Size == RangeTy::Unassigned) &&
+           "Inconsistent state!");
+    return Offset == RangeTy::Unassigned;
+  }
+
+  /// Return true if this offset and size pair might describe an address that
+  /// overlaps with \p Range.
+  bool mayOverlap(const RangeTy &Range) const {
+    // Any unknown value and we are giving up -> overlap.
+    if (offsetOrSizeAreUnknown() || Range.offsetOrSizeAreUnknown())
+      return true;
+
+    // Check if one offset point is in the other interval [offset,
+    // offset+size].
+    return Range.Offset + Range.Size > Offset && Range.Offset < Offset + Size;
+  }
+
+  RangeTy &operator&=(const RangeTy &R) {
+    if (R.isUnassigned())
+      return *this;
+    if (isUnassigned())
+      return *this = R;
+    if (Offset == Unknown || R.Offset == Unknown)
+      Offset = Unknown;
+    if (Size == Unknown || R.Size == Unknown)
+      Size = Unknown;
+    if (offsetAndSizeAreUnknown())
+      return *this;
+    if (Offset == Unknown) {
+      Size = std::max(Size, R.Size);
+    } else if (Size == Unknown) {
+      Offset = std::min(Offset, R.Offset);
+    } else {
+      Offset = std::min(Offset, R.Offset);
+      Size = std::max(Offset + Size, R.Offset + R.Size) - Offset;
+    }
+    return *this;
+  }
+
+  /// Comparison for sorting ranges by offset.
+  ///
+  /// Returns true if the offset \p L is less than that of \p R.
+  inline static bool OffsetLessThan(const RangeTy &L, const RangeTy &R) {
+    return L.Offset < R.Offset;
+  }
+
+  /// Constants used to represent special offsets or sizes.
+  /// - We cannot assume that Offsets and Size are non-negative.
+  /// - The constants should not clash with DenseMapInfo, such as EmptyKey
+  ///   (INT64_MAX) and TombstoneKey (INT64_MIN).
+  /// We use values "in the middle" of the 64 bit range to represent these
+  /// special cases.
+  static constexpr int64_t Unassigned = std::numeric_limits<int32_t>::min();
+  static constexpr int64_t Unknown = std::numeric_limits<int32_t>::max();
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const RangeTy &R) {
+  OS << "[" << R.Offset << ", " << R.Size << "]";
+  return OS;
+}
+
+inline bool operator==(const RangeTy &A, const RangeTy &B) {
+  return A.Offset == B.Offset && A.Size == B.Size;
+}
+
+inline bool operator!=(const RangeTy &A, const RangeTy &B) { return !(A == B); }
+
+/// Return the initial value of \p Obj with type \p Ty if that is a constant.
+Constant *getInitialValueForObj(Attributor &A,
+                                const AbstractAttribute &QueryingAA, Value &Obj,
+                                Type &Ty, const TargetLibraryInfo *TLI,
+                                const DataLayout &DL,
+                                RangeTy *RangePtr = nullptr);
+
+/// Collect all potential values \p LI could read into \p PotentialValues. That
+/// is, the only values read by \p LI are assumed to be known and all are in
+/// \p PotentialValues. \p PotentialValueOrigins will contain all the
+/// instructions that might have put a potential value into \p PotentialValues.
+/// Dependences onto \p QueryingAA are properly tracked, \p
+/// UsedAssumedInformation will inform the caller if assumed information was
+/// used.
+///
+/// \returns True if the assumed potential copies are all in \p PotentialValues,
+///          false if something went wrong and the copies could not be
+///          determined.
+bool getPotentiallyLoadedValues(
+    Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
+    SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
+    const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
+    bool OnlyExact = false);
+
+/// Collect all potential values of the one stored by \p SI into
+/// \p PotentialCopies. That is, the only copies that were made via the
+/// store are assumed to be known and all are in \p PotentialCopies. Dependences
+/// onto \p QueryingAA are properly tracked, \p UsedAssumedInformation will
+/// inform the caller if assumed information was used.
+///
+/// \returns True if the assumed potential copies are all in \p PotentialCopies,
+///          false if something went wrong and the copies could not be
+///          determined.
+bool getPotentialCopiesOfStoredValue(
+    Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
+    const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
+    bool OnlyExact = false);
+
+/// Return true if \p IRP is readonly. This will query respective AAs that
+/// deduce the information and introduce dependences for \p QueryingAA.
+bool isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
+                       const AbstractAttribute &QueryingAA, bool &IsKnown);
+
+/// Return true if \p IRP is readnone. This will query respective AAs that
+/// deduce the information and introduce dependences for \p QueryingAA.
+bool isAssumedReadNone(Attributor &A, const IRPosition &IRP,
+                       const AbstractAttribute &QueryingAA, bool &IsKnown);
+
+/// Return true if \p ToI is potentially reachable from \p FromI without running
+/// into any instruction in \p ExclusionSet The two instructions do not need to
+/// be in the same function. \p GoBackwardsCB can be provided to convey domain
+/// knowledge about the "lifespan" the user is interested in. By default, the
+/// callers of \p FromI are checked as well to determine if \p ToI can be
+/// reached. If the query is not interested in callers beyond a certain point,
+/// e.g., a GPU kernel entry or the function containing an alloca, the
+/// \p GoBackwardsCB should return false.
+bool isPotentiallyReachable(
+    Attributor &A, const Instruction &FromI, const Instruction &ToI,
+    const AbstractAttribute &QueryingAA,
+    const AA::InstExclusionSetTy *ExclusionSet = nullptr,
+    std::function<bool(const Function &F)> GoBackwardsCB = nullptr);
+
+/// Same as above but it is sufficient to reach any instruction in \p ToFn.
+bool isPotentiallyReachable(
+    Attributor &A, const Instruction &FromI, const Function &ToFn,
+    const AbstractAttribute &QueryingAA,
+    const AA::InstExclusionSetTy *ExclusionSet = nullptr,
+    std::function<bool(const Function &F)> GoBackwardsCB = nullptr);
+
+/// Return true if \p Obj is assumed to be a thread local object.
+bool isAssumedThreadLocalObject(Attributor &A, Value &Obj,
+                                const AbstractAttribute &QueryingAA);
+
+/// Return true if \p I is potentially affected by a barrier.
+bool isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I,
+                                    const AbstractAttribute &QueryingAA);
+bool isPotentiallyAffectedByBarrier(Attributor &A, ArrayRef<const Value *> Ptrs,
+                                    const AbstractAttribute &QueryingAA,
+                                    const Instruction *CtxI);
+} // namespace AA
+
+template <>
+struct DenseMapInfo<AA::ValueAndContext>
+    : public DenseMapInfo<AA::ValueAndContext::Base> {
+  using Base = DenseMapInfo<AA::ValueAndContext::Base>;
+  static inline AA::ValueAndContext getEmptyKey() {
+    return Base::getEmptyKey();
+  }
+  static inline AA::ValueAndContext getTombstoneKey() {
+    return Base::getTombstoneKey();
+  }
+  static unsigned getHashValue(const AA::ValueAndContext &VAC) {
+    return Base::getHashValue(VAC);
+  }
+
+  static bool isEqual(const AA::ValueAndContext &LHS,
+                      const AA::ValueAndContext &RHS) {
+    return Base::isEqual(LHS, RHS);
+  }
+};
+
+template <>
+struct DenseMapInfo<AA::ValueScope> : public DenseMapInfo<unsigned char> {
+  using Base = DenseMapInfo<unsigned char>;
+  static inline AA::ValueScope getEmptyKey() {
+    return AA::ValueScope(Base::getEmptyKey());
+  }
+  static inline AA::ValueScope getTombstoneKey() {
+    return AA::ValueScope(Base::getTombstoneKey());
+  }
+  static unsigned getHashValue(const AA::ValueScope &S) {
+    return Base::getHashValue(S);
+  }
+
+  static bool isEqual(const AA::ValueScope &LHS, const AA::ValueScope &RHS) {
+    return Base::isEqual(LHS, RHS);
+  }
+};
+
+template <>
+struct DenseMapInfo<const AA::InstExclusionSetTy *>
+    : public DenseMapInfo<void *> {
+  using super = DenseMapInfo<void *>;
+  static inline const AA::InstExclusionSetTy *getEmptyKey() {
+    return static_cast<const AA::InstExclusionSetTy *>(super::getEmptyKey());
+  }
+  static inline const AA::InstExclusionSetTy *getTombstoneKey() {
+    return static_cast<const AA::InstExclusionSetTy *>(
+        super::getTombstoneKey());
+  }
+  static unsigned getHashValue(const AA::InstExclusionSetTy *BES) {
+    unsigned H = 0;
+    if (BES)
+      for (const auto *II : *BES)
+        H += DenseMapInfo<const Instruction *>::getHashValue(II);
+    return H;
+  }
+  static bool isEqual(const AA::InstExclusionSetTy *LHS,
+                      const AA::InstExclusionSetTy *RHS) {
+    if (LHS == RHS)
+      return true;
+    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
+        LHS == getTombstoneKey() || RHS == getTombstoneKey())
+      return false;
+    auto SizeLHS = LHS ? LHS->size() : 0;
+    auto SizeRHS = RHS ? RHS->size() : 0;
+    if (SizeLHS != SizeRHS)
+      return false;
+    if (SizeRHS == 0)
+      return true;
+    return llvm::set_is_subset(*LHS, *RHS);
+  }
+};
+
+/// The value passed to the line option that defines the maximal initialization
+/// chain length.
+extern unsigned MaxInitializationChainLength;
+
+///{
+enum class ChangeStatus {
+  CHANGED,
+  UNCHANGED,
+};
+
+ChangeStatus operator|(ChangeStatus l, ChangeStatus r);
+ChangeStatus &operator|=(ChangeStatus &l, ChangeStatus r);
+ChangeStatus operator&(ChangeStatus l, ChangeStatus r);
+ChangeStatus &operator&=(ChangeStatus &l, ChangeStatus r);
+
+enum class DepClassTy {
+  REQUIRED, ///< The target cannot be valid if the source is not.
+  OPTIONAL, ///< The target may be valid if the source is not.
+  NONE,     ///< Do not track a dependence between source and target.
+};
+///}
+
+/// The data structure for the nodes of a dependency graph
+struct AADepGraphNode {
+public:
+  virtual ~AADepGraphNode() = default;
+  using DepTy = PointerIntPair<AADepGraphNode *, 1>;
+  using DepSetTy = SmallSetVector<DepTy, 2>;
+
+protected:
+  /// Set of dependency graph nodes which should be updated if this one
+  /// is updated. The bit encodes if it is optional.
+  DepSetTy Deps;
+
+  static AADepGraphNode *DepGetVal(const DepTy &DT) { return DT.getPointer(); }
+  static AbstractAttribute *DepGetValAA(const DepTy &DT) {
+    return cast<AbstractAttribute>(DT.getPointer());
+  }
+
+  operator AbstractAttribute *() { return cast<AbstractAttribute>(this); }
+
+public:
+  using iterator = mapped_iterator<DepSetTy::iterator, decltype(&DepGetVal)>;
+  using aaiterator =
+      mapped_iterator<DepSetTy::iterator, decltype(&DepGetValAA)>;
+
+  aaiterator begin() { return aaiterator(Deps.begin(), &DepGetValAA); }
+  aaiterator end() { return aaiterator(Deps.end(), &DepGetValAA); }
+  iterator child_begin() { return iterator(Deps.begin(), &DepGetVal); }
+  iterator child_end() { return iterator(Deps.end(), &DepGetVal); }
+
+  void print(raw_ostream &OS) const { print(nullptr, OS); }
+  virtual void print(Attributor *, raw_ostream &OS) const {
+    OS << "AADepNode Impl\n";
+  }
+  DepSetTy &getDeps() { return Deps; }
+
+  friend struct Attributor;
+  friend struct AADepGraph;
+};
+
+/// The data structure for the dependency graph
+///
+/// Note that in this graph if there is an edge from A to B (A -> B),
+/// then it means that B depends on A, and when the state of A is
+/// updated, node B should also be updated
+struct AADepGraph {
+  AADepGraph() = default;
+  ~AADepGraph() = default;
+
+  using DepTy = AADepGraphNode::DepTy;
+  static AADepGraphNode *DepGetVal(const DepTy &DT) { return DT.getPointer(); }
+  using iterator =
+      mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>;
+
+  /// There is no root node for the dependency graph. But the SCCIterator
+  /// requires a single entry point, so we maintain a fake("synthetic") root
+  /// node that depends on every node.
+  AADepGraphNode SyntheticRoot;
+  AADepGraphNode *GetEntryNode() { return &SyntheticRoot; }
+
+  iterator begin() { return SyntheticRoot.child_begin(); }
+  iterator end() { return SyntheticRoot.child_end(); }
+
+  void viewGraph();
+
+  /// Dump graph to file
+  void dumpGraph();
+
+  /// Print dependency graph
+  void print();
+};
+
+/// Helper to describe and deal with positions in the LLVM-IR.
+///
+/// A position in the IR is described by an anchor value and an "offset" that
+/// could be the argument number, for call sites and arguments, or an indicator
+/// of the "position kind". The kinds, specified in the Kind enum below, include
+/// the locations in the attribute list, i.a., function scope and return value,
+/// as well as a distinction between call sites and functions. Finally, there
+/// are floating values that do not have a corresponding attribute list
+/// position.
+struct IRPosition {
+  // NOTE: In the future this definition can be changed to support recursive
+  // functions.
+  using CallBaseContext = CallBase;
+
+  /// The positions we distinguish in the IR.
+  enum Kind : char {
+    IRP_INVALID,  ///< An invalid position.
+    IRP_FLOAT,    ///< A position that is not associated with a spot suitable
+                  ///< for attributes. This could be any value or instruction.
+    IRP_RETURNED, ///< An attribute for the function return value.
+    IRP_CALL_SITE_RETURNED, ///< An attribute for a call site return value.
+    IRP_FUNCTION,           ///< An attribute for a function (scope).
+    IRP_CALL_SITE,          ///< An attribute for a call site (function scope).
+    IRP_ARGUMENT,           ///< An attribute for a function argument.
+    IRP_CALL_SITE_ARGUMENT, ///< An attribute for a call site argument.
+  };
+
+  /// Default constructor available to create invalid positions implicitly. All
+  /// other positions need to be created explicitly through the appropriate
+  /// static member function.
+  IRPosition() : Enc(nullptr, ENC_VALUE) { verify(); }
+
+  /// Create a position describing the value of \p V.
+  static const IRPosition value(const Value &V,
+                                const CallBaseContext *CBContext = nullptr) {
+    if (auto *Arg = dyn_cast<Argument>(&V))
+      return IRPosition::argument(*Arg, CBContext);
+    if (auto *CB = dyn_cast<CallBase>(&V))
+      return IRPosition::callsite_returned(*CB);
+    return IRPosition(const_cast<Value &>(V), IRP_FLOAT, CBContext);
+  }
+
+  /// Create a position describing the instruction \p I. This is different from
+  /// the value version because call sites are treated as intrusctions rather
+  /// than their return value in this function.
+  static const IRPosition inst(const Instruction &I,
+                               const CallBaseContext *CBContext = nullptr) {
+    return IRPosition(const_cast<Instruction &>(I), IRP_FLOAT, CBContext);
+  }
+
+  /// Create a position describing the function scope of \p F.
+  /// \p CBContext is used for call base specific analysis.
+  static const IRPosition function(const Function &F,
+                                   const CallBaseContext *CBContext = nullptr) {
+    return IRPosition(const_cast<Function &>(F), IRP_FUNCTION, CBContext);
+  }
+
+  /// Create a position describing the returned value of \p F.
+  /// \p CBContext is used for call base specific analysis.
+  static const IRPosition returned(const Function &F,
+                                   const CallBaseContext *CBContext = nullptr) {
+    return IRPosition(const_cast<Function &>(F), IRP_RETURNED, CBContext);
+  }
+
+  /// Create a position describing the argument \p Arg.
+  /// \p CBContext is used for call base specific analysis.
+  static const IRPosition argument(const Argument &Arg,
+                                   const CallBaseContext *CBContext = nullptr) {
+    return IRPosition(const_cast<Argument &>(Arg), IRP_ARGUMENT, CBContext);
+  }
+
+  /// Create a position describing the function scope of \p CB.
+  static const IRPosition callsite_function(const CallBase &CB) {
+    return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE);
+  }
+
+  /// Create a position describing the returned value of \p CB.
+  static const IRPosition callsite_returned(const CallBase &CB) {
+    return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE_RETURNED);
+  }
+
+  /// Create a position describing the argument of \p CB at position \p ArgNo.
+  static const IRPosition callsite_argument(const CallBase &CB,
+                                            unsigned ArgNo) {
+    return IRPosition(const_cast<Use &>(CB.getArgOperandUse(ArgNo)),
+                      IRP_CALL_SITE_ARGUMENT);
+  }
+
+  /// Create a position describing the argument of \p ACS at position \p ArgNo.
+  static const IRPosition callsite_argument(AbstractCallSite ACS,
+                                            unsigned ArgNo) {
+    if (ACS.getNumArgOperands() <= ArgNo)
+      return IRPosition();
+    int CSArgNo = ACS.getCallArgOperandNo(ArgNo);
+    if (CSArgNo >= 0)
+      return IRPosition::callsite_argument(
+          cast<CallBase>(*ACS.getInstruction()), CSArgNo);
+    return IRPosition();
+  }
+
+  /// Create a position with function scope matching the "context" of \p IRP.
+  /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result
+  /// will be a call site position, otherwise the function position of the
+  /// associated function.
+  static const IRPosition
+  function_scope(const IRPosition &IRP,
+                 const CallBaseContext *CBContext = nullptr) {
+    if (IRP.isAnyCallSitePosition()) {
+      return IRPosition::callsite_function(
+          cast<CallBase>(IRP.getAnchorValue()));
+    }
+    assert(IRP.getAssociatedFunction());
+    return IRPosition::function(*IRP.getAssociatedFunction(), CBContext);
+  }
+
+  bool operator==(const IRPosition &RHS) const {
+    return Enc == RHS.Enc && RHS.CBContext == CBContext;
+  }
+  bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); }
+
+  /// Return the value this abstract attribute is anchored with.
+  ///
+  /// The anchor value might not be the associated value if the latter is not
+  /// sufficient to determine where arguments will be manifested. This is, so
+  /// far, only the case for call site arguments as the value is not sufficient
+  /// to pinpoint them. Instead, we can use the call site as an anchor.
+  Value &getAnchorValue() const {
+    switch (getEncodingBits()) {
+    case ENC_VALUE:
+    case ENC_RETURNED_VALUE:
+    case ENC_FLOATING_FUNCTION:
+      return *getAsValuePtr();
+    case ENC_CALL_SITE_ARGUMENT_USE:
+      return *(getAsUsePtr()->getUser());
+    default:
+      llvm_unreachable("Unkown encoding!");
+    };
+  }
+
+  /// Return the associated function, if any.
+  Function *getAssociatedFunction() const {
+    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue())) {
+      // We reuse the logic that associates callback calles to arguments of a
+      // call site here to identify the callback callee as the associated
+      // function.
+      if (Argument *Arg = getAssociatedArgument())
+        return Arg->getParent();
+      return dyn_cast_if_present<Function>(
+          CB->getCalledOperand()->stripPointerCasts());
+    }
+    return getAnchorScope();
+  }
+
+  /// Return the associated argument, if any.
+  Argument *getAssociatedArgument() const;
+
+  /// Return true if the position refers to a function interface, that is the
+  /// function scope, the function return, or an argument.
+  bool isFnInterfaceKind() const {
+    switch (getPositionKind()) {
+    case IRPosition::IRP_FUNCTION:
+    case IRPosition::IRP_RETURNED:
+    case IRPosition::IRP_ARGUMENT:
+      return true;
+    default:
+      return false;
+    }
+  }
+
+  /// Return true if this is a function or call site position.
+  bool isFunctionScope() const {
+    switch (getPositionKind()) {
+    case IRPosition::IRP_CALL_SITE:
+    case IRPosition::IRP_FUNCTION:
+      return true;
+    default:
+      return false;
+    };
+  }
+
+  /// Return the Function surrounding the anchor value.
+  Function *getAnchorScope() const {
+    Value &V = getAnchorValue();
+    if (isa<Function>(V))
+      return &cast<Function>(V);
+    if (isa<Argument>(V))
+      return cast<Argument>(V).getParent();
+    if (isa<Instruction>(V))
+      return cast<Instruction>(V).getFunction();
+    return nullptr;
+  }
+
+  /// Return the context instruction, if any.
+  Instruction *getCtxI() const {
+    Value &V = getAnchorValue();
+    if (auto *I = dyn_cast<Instruction>(&V))
+      return I;
+    if (auto *Arg = dyn_cast<Argument>(&V))
+      if (!Arg->getParent()->isDeclaration())
+        return &Arg->getParent()->getEntryBlock().front();
+    if (auto *F = dyn_cast<Function>(&V))
+      if (!F->isDeclaration())
+        return &(F->getEntryBlock().front());
+    return nullptr;
+  }
+
+  /// Return the value this abstract attribute is associated with.
+  Value &getAssociatedValue() const {
+    if (getCallSiteArgNo() < 0 || isa<Argument>(&getAnchorValue()))
+      return getAnchorValue();
+    assert(isa<CallBase>(&getAnchorValue()) && "Expected a call base!");
+    return *cast<CallBase>(&getAnchorValue())
+                ->getArgOperand(getCallSiteArgNo());
+  }
+
+  /// Return the type this abstract attribute is associated with.
+  Type *getAssociatedType() const {
+    if (getPositionKind() == IRPosition::IRP_RETURNED)
+      return getAssociatedFunction()->getReturnType();
+    return getAssociatedValue().getType();
+  }
+
+  /// Return the callee argument number of the associated value if it is an
+  /// argument or call site argument, otherwise a negative value. In contrast to
+  /// `getCallSiteArgNo` this method will always return the "argument number"
+  /// from the perspective of the callee. This may not the same as the call site
+  /// if this is a callback call.
+  int getCalleeArgNo() const {
+    return getArgNo(/* CallbackCalleeArgIfApplicable */ true);
+  }
+
+  /// Return the call site argument number of the associated value if it is an
+  /// argument or call site argument, otherwise a negative value. In contrast to
+  /// `getCalleArgNo` this method will always return the "operand number" from
+  /// the perspective of the call site. This may not the same as the callee
+  /// perspective if this is a callback call.
+  int getCallSiteArgNo() const {
+    return getArgNo(/* CallbackCalleeArgIfApplicable */ false);
+  }
+
+  /// Return the index in the attribute list for this position.
+  unsigned getAttrIdx() const {
+    switch (getPositionKind()) {
+    case IRPosition::IRP_INVALID:
+    case IRPosition::IRP_FLOAT:
+      break;
+    case IRPosition::IRP_FUNCTION:
+    case IRPosition::IRP_CALL_SITE:
+      return AttributeList::FunctionIndex;
+    case IRPosition::IRP_RETURNED:
+    case IRPosition::IRP_CALL_SITE_RETURNED:
+      return AttributeList::ReturnIndex;
+    case IRPosition::IRP_ARGUMENT:
+      return getCalleeArgNo() + AttributeList::FirstArgIndex;
+    case IRPosition::IRP_CALL_SITE_ARGUMENT:
+      return getCallSiteArgNo() + AttributeList::FirstArgIndex;
+    }
+    llvm_unreachable(
+        "There is no attribute index for a floating or invalid position!");
+  }
+
+  /// Return the value attributes are attached to.
+  Value *getAttrListAnchor() const {
+    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
+      return CB;
+    return getAssociatedFunction();
+  }
+
+  /// Return the attributes associated with this function or call site scope.
+  AttributeList getAttrList() const {
+    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
+      return CB->getAttributes();
+    return getAssociatedFunction()->getAttributes();
+  }
+
+  /// Update the attributes associated with this function or call site scope.
+  void setAttrList(const AttributeList &AttrList) const {
+    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
+      return CB->setAttributes(AttrList);
+    return getAssociatedFunction()->setAttributes(AttrList);
+  }
+
+  /// Return the number of arguments associated with this function or call site
+  /// scope.
+  unsigned getNumArgs() const {
+    assert((getPositionKind() == IRP_CALL_SITE ||
+            getPositionKind() == IRP_FUNCTION) &&
+           "Only valid for function/call site positions!");
+    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
+      return CB->arg_size();
+    return getAssociatedFunction()->arg_size();
+  }
+
+  /// Return theargument \p ArgNo associated with this function or call site
+  /// scope.
+  Value *getArg(unsigned ArgNo) const {
+    assert((getPositionKind() == IRP_CALL_SITE ||
+            getPositionKind() == IRP_FUNCTION) &&
+           "Only valid for function/call site positions!");
+    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
+      return CB->getArgOperand(ArgNo);
+    return getAssociatedFunction()->getArg(ArgNo);
+  }
+
+  /// Return the associated position kind.
+  Kind getPositionKind() const {
+    char EncodingBits = getEncodingBits();
+    if (EncodingBits == ENC_CALL_SITE_ARGUMENT_USE)
+      return IRP_CALL_SITE_ARGUMENT;
+    if (EncodingBits == ENC_FLOATING_FUNCTION)
+      return IRP_FLOAT;
+
+    Value *V = getAsValuePtr();
+    if (!V)
+      return IRP_INVALID;
+    if (isa<Argument>(V))
+      return IRP_ARGUMENT;
+    if (isa<Function>(V))
+      return isReturnPosition(EncodingBits) ? IRP_RETURNED : IRP_FUNCTION;
+    if (isa<CallBase>(V))
+      return isReturnPosition(EncodingBits) ? IRP_CALL_SITE_RETURNED
+                                            : IRP_CALL_SITE;
+    return IRP_FLOAT;
+  }
+
+  bool isAnyCallSitePosition() const {
+    switch (getPositionKind()) {
+    case IRPosition::IRP_CALL_SITE:
+    case IRPosition::IRP_CALL_SITE_RETURNED:
+    case IRPosition::IRP_CALL_SITE_ARGUMENT:
+      return true;
+    default:
+      return false;
+    }
+  }
+
+  /// Return true if the position is an argument or call site argument.
+  bool isArgumentPosition() const {
+    switch (getPositionKind()) {
+    case IRPosition::IRP_ARGUMENT:
+    case IRPosition::IRP_CALL_SITE_ARGUMENT:
+      return true;
+    default:
+      return false;
+    }
+  }
+
+  /// Return the same position without the call base context.
+  IRPosition stripCallBaseContext() const {
+    IRPosition Result = *this;
+    Result.CBContext = nullptr;
+    return Result;
+  }
+
+  /// Get the call base context from the position.
+  const CallBaseContext *getCallBaseContext() const { return CBContext; }
+
+  /// Check if the position has any call base context.
+  bool hasCallBaseContext() const { return CBContext != nullptr; }
+
+  /// Special DenseMap key values.
+  ///
+  ///{
+  static const IRPosition EmptyKey;
+  static const IRPosition TombstoneKey;
+  ///}
+
+  /// Conversion into a void * to allow reuse of pointer hashing.
+  operator void *() const { return Enc.getOpaqueValue(); }
+
+private:
+  /// Private constructor for special values only!
+  explicit IRPosition(void *Ptr, const CallBaseContext *CBContext = nullptr)
+      : CBContext(CBContext) {
+    Enc.setFromOpaqueValue(Ptr);
+  }
+
+  /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK.
+  explicit IRPosition(Value &AnchorVal, Kind PK,
+                      const CallBaseContext *CBContext = nullptr)
+      : CBContext(CBContext) {
+    switch (PK) {
+    case IRPosition::IRP_INVALID:
+      llvm_unreachable("Cannot create invalid IRP with an anchor value!");
+      break;
+    case IRPosition::IRP_FLOAT:
+      // Special case for floating functions.
+      if (isa<Function>(AnchorVal) || isa<CallBase>(AnchorVal))
+        Enc = {&AnchorVal, ENC_FLOATING_FUNCTION};
+      else
+        Enc = {&AnchorVal, ENC_VALUE};
+      break;
+    case IRPosition::IRP_FUNCTION:
+    case IRPosition::IRP_CALL_SITE:
+      Enc = {&AnchorVal, ENC_VALUE};
+      break;
+    case IRPosition::IRP_RETURNED:
+    case IRPosition::IRP_CALL_SITE_RETURNED:
+      Enc = {&AnchorVal, ENC_RETURNED_VALUE};
+      break;
+    case IRPosition::IRP_ARGUMENT:
+      Enc = {&AnchorVal, ENC_VALUE};
+      break;
+    case IRPosition::IRP_CALL_SITE_ARGUMENT:
+      llvm_unreachable(
+          "Cannot create call site argument IRP with an anchor value!");
+      break;
+    }
+    verify();
+  }
+
+  /// Return the callee argument number of the associated value if it is an
+  /// argument or call site argument. See also `getCalleeArgNo` and
+  /// `getCallSiteArgNo`.
+  int getArgNo(bool CallbackCalleeArgIfApplicable) const {
+    if (CallbackCalleeArgIfApplicable)
+      if (Argument *Arg = getAssociatedArgument())
+        return Arg->getArgNo();
+    switch (getPositionKind()) {
+    case IRPosition::IRP_ARGUMENT:
+      return cast<Argument>(getAsValuePtr())->getArgNo();
+    case IRPosition::IRP_CALL_SITE_ARGUMENT: {
+      Use &U = *getAsUsePtr();
+      return cast<CallBase>(U.getUser())->getArgOperandNo(&U);
+    }
+    default:
+      return -1;
+    }
+  }
+
+  /// IRPosition for the use \p U. The position kind \p PK needs to be
+  /// IRP_CALL_SITE_ARGUMENT, the anchor value is the user, the associated value
+  /// the used value.
+  explicit IRPosition(Use &U, Kind PK) {
+    assert(PK == IRP_CALL_SITE_ARGUMENT &&
+           "Use constructor is for call site arguments only!");
+    Enc = {&U, ENC_CALL_SITE_ARGUMENT_USE};
+    verify();
+  }
+
+  /// Verify internal invariants.
+  void verify();
+
+  /// Return the underlying pointer as Value *, valid for all positions but
+  /// IRP_CALL_SITE_ARGUMENT.
+  Value *getAsValuePtr() const {
+    assert(getEncodingBits() != ENC_CALL_SITE_ARGUMENT_USE &&
+           "Not a value pointer!");
+    return reinterpret_cast<Value *>(Enc.getPointer());
+  }
+
+  /// Return the underlying pointer as Use *, valid only for
+  /// IRP_CALL_SITE_ARGUMENT positions.
+  Use *getAsUsePtr() const {
+    assert(getEncodingBits() == ENC_CALL_SITE_ARGUMENT_USE &&
+           "Not a value pointer!");
+    return reinterpret_cast<Use *>(Enc.getPointer());
+  }
+
+  /// Return true if \p EncodingBits describe a returned or call site returned
+  /// position.
+  static bool isReturnPosition(char EncodingBits) {
+    return EncodingBits == ENC_RETURNED_VALUE;
+  }
+
+  /// Return true if the encoding bits describe a returned or call site returned
+  /// position.
+  bool isReturnPosition() const { return isReturnPosition(getEncodingBits()); }
+
+  /// The encoding of the IRPosition is a combination of a pointer and two
+  /// encoding bits. The values of the encoding bits are defined in the enum
+  /// below. The pointer is either a Value* (for the first three encoding bit
+  /// combinations) or Use* (for ENC_CALL_SITE_ARGUMENT_USE).
+  ///
+  ///{
+  enum {
+    ENC_VALUE = 0b00,
+    ENC_RETURNED_VALUE = 0b01,
+    ENC_FLOATING_FUNCTION = 0b10,
+    ENC_CALL_SITE_ARGUMENT_USE = 0b11,
+  };
+
+  // Reserve the maximal amount of bits so there is no need to mask out the
+  // remaining ones. We will not encode anything else in the pointer anyway.
+  static constexpr int NumEncodingBits =
+      PointerLikeTypeTraits<void *>::NumLowBitsAvailable;
+  static_assert(NumEncodingBits >= 2, "At least two bits are required!");
+
+  /// The pointer with the encoding bits.
+  PointerIntPair<void *, NumEncodingBits, char> Enc;
+  ///}
+
+  /// Call base context. Used for callsite specific analysis.
+  const CallBaseContext *CBContext = nullptr;
+
+  /// Return the encoding bits.
+  char getEncodingBits() const { return Enc.getInt(); }
+};
+
+/// Helper that allows IRPosition as a key in a DenseMap.
+template <> struct DenseMapInfo<IRPosition> {
+  static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; }
+  static inline IRPosition getTombstoneKey() {
+    return IRPosition::TombstoneKey;
+  }
+  static unsigned getHashValue(const IRPosition &IRP) {
+    return (DenseMapInfo<void *>::getHashValue(IRP) << 4) ^
+           (DenseMapInfo<Value *>::getHashValue(IRP.getCallBaseContext()));
+  }
+
+  static bool isEqual(const IRPosition &a, const IRPosition &b) {
+    return a == b;
+  }
+};
+
+/// A visitor class for IR positions.
+///
+/// Given a position P, the SubsumingPositionIterator allows to visit "subsuming
+/// positions" wrt. attributes/information. Thus, if a piece of information
+/// holds for a subsuming position, it also holds for the position P.
+///
+/// The subsuming positions always include the initial position and then,
+/// depending on the position kind, additionally the following ones:
+/// - for IRP_RETURNED:
+///   - the function (IRP_FUNCTION)
+/// - for IRP_ARGUMENT:
+///   - the function (IRP_FUNCTION)
+/// - for IRP_CALL_SITE:
+///   - the callee (IRP_FUNCTION), if known
+/// - for IRP_CALL_SITE_RETURNED:
+///   - the callee (IRP_RETURNED), if known
+///   - the call site (IRP_FUNCTION)
+///   - the callee (IRP_FUNCTION), if known
+/// - for IRP_CALL_SITE_ARGUMENT:
+///   - the argument of the callee (IRP_ARGUMENT), if known
+///   - the callee (IRP_FUNCTION), if known
+///   - the position the call site argument is associated with if it is not
+///     anchored to the call site, e.g., if it is an argument then the argument
+///     (IRP_ARGUMENT)
+class SubsumingPositionIterator {
+  SmallVector<IRPosition, 4> IRPositions;
+  using iterator = decltype(IRPositions)::iterator;
+
+public:
+  SubsumingPositionIterator(const IRPosition &IRP);
+  iterator begin() { return IRPositions.begin(); }
+  iterator end() { return IRPositions.end(); }
+};
+
+/// Wrapper for FunctionAnalysisManager.
+struct AnalysisGetter {
+  // The client may be running the old pass manager, in which case, we need to
+  // map the requested Analysis to its equivalent wrapper in the old pass
+  // manager. The scheme implemented here does not require every Analysis to be
+  // updated. Only those new analyses that the client cares about in the old
+  // pass manager need to expose a LegacyWrapper type, and that wrapper should
+  // support a getResult() method that matches the new Analysis.
+  //
+  // We need SFINAE to check for the LegacyWrapper, but function templates don't
+  // allow partial specialization, which is needed in this case. So instead, we
+  // use a constexpr bool to perform the SFINAE, and then use this information
+  // inside the function template.
+  template <typename, typename = void>
+  static constexpr bool HasLegacyWrapper = false;
+
+  template <typename Analysis>
+  typename Analysis::Result *getAnalysis(const Function &F,
+                                         bool RequestCachedOnly = false) {
+    if (!LegacyPass && !FAM)
+      return nullptr;
+    if (FAM) {
+      if (CachedOnly || RequestCachedOnly)
+        return FAM->getCachedResult<Analysis>(const_cast<Function &>(F));
+      return &FAM->getResult<Analysis>(const_cast<Function &>(F));
+    }
+    if constexpr (HasLegacyWrapper<Analysis>) {
+      if (!CachedOnly && !RequestCachedOnly)
+        return &LegacyPass
+                    ->getAnalysis<typename Analysis::LegacyWrapper>(
+                        const_cast<Function &>(F))
+                    .getResult();
+      if (auto *P =
+              LegacyPass
+                  ->getAnalysisIfAvailable<typename Analysis::LegacyWrapper>())
+        return &P->getResult();
+    }
+    return nullptr;
+  }
+
+  /// Invalidates the analyses. Valid only when using the new pass manager.
+  void invalidateAnalyses() {
+    assert(FAM && "Can only be used from the new PM!");
+    FAM->clear();
+  }
+
+  AnalysisGetter(FunctionAnalysisManager &FAM, bool CachedOnly = false)
+      : FAM(&FAM), CachedOnly(CachedOnly) {}
+  AnalysisGetter(Pass *P, bool CachedOnly = false)
+      : LegacyPass(P), CachedOnly(CachedOnly) {}
+  AnalysisGetter() = default;
+
+private:
+  FunctionAnalysisManager *FAM = nullptr;
+  Pass *LegacyPass = nullptr;
+
+  /// If \p CachedOnly is true, no pass is created, just existing results are
+  /// used. Also available per request.
+  bool CachedOnly = false;
+};
+
+template <typename Analysis>
+constexpr bool AnalysisGetter::HasLegacyWrapper<
+    Analysis, std::void_t<typename Analysis::LegacyWrapper>> = true;
+
+/// Data structure to hold cached (LLVM-IR) information.
+///
+/// All attributes are given an InformationCache object at creation time to
+/// avoid inspection of the IR by all of them individually. This default
+/// InformationCache will hold information required by 'default' attributes,
+/// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..)
+/// is called.
+///
+/// If custom abstract attributes, registered manually through
+/// Attributor::registerAA(...), need more information, especially if it is not
+/// reusable, it is advised to inherit from the InformationCache and cast the
+/// instance down in the abstract attributes.
+struct InformationCache {
+  InformationCache(const Module &M, AnalysisGetter &AG,
+                   BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC,
+                   bool UseExplorer = true)
+      : CGSCC(CGSCC), DL(M.getDataLayout()), Allocator(Allocator), AG(AG),
+        TargetTriple(M.getTargetTriple()) {
+    if (UseExplorer)
+      Explorer = new (Allocator) MustBeExecutedContextExplorer(
+          /* ExploreInterBlock */ true, /* ExploreCFGForward */ true,
+          /* ExploreCFGBackward */ true,
+          /* LIGetter */
+          [&](const Function &F) { return AG.getAnalysis<LoopAnalysis>(F); },
+          /* DTGetter */
+          [&](const Function &F) {
+            return AG.getAnalysis<DominatorTreeAnalysis>(F);
+          },
+          /* PDTGetter */
+          [&](const Function &F) {
+            return AG.getAnalysis<PostDominatorTreeAnalysis>(F);
+          });
+  }
+
+  ~InformationCache() {
+    // The FunctionInfo objects are allocated via a BumpPtrAllocator, we call
+    // the destructor manually.
+    for (auto &It : FuncInfoMap)
+      It.getSecond()->~FunctionInfo();
+    // Same is true for the instruction exclusions sets.
+    using AA::InstExclusionSetTy;
+    for (auto *BES : BESets)
+      BES->~InstExclusionSetTy();
+    if (Explorer)
+      Explorer->~MustBeExecutedContextExplorer();
+  }
+
+  /// Apply \p CB to all uses of \p F. If \p LookThroughConstantExprUses is
+  /// true, constant expression users are not given to \p CB but their uses are
+  /// traversed transitively.
+  template <typename CBTy>
+  static void foreachUse(Function &F, CBTy CB,
+                         bool LookThroughConstantExprUses = true) {
+    SmallVector<Use *, 8> Worklist(make_pointer_range(F.uses()));
+
+    for (unsigned Idx = 0; Idx < Worklist.size(); ++Idx) {
+      Use &U = *Worklist[Idx];
+
+      // Allow use in constant bitcasts and simply look through them.
+      if (LookThroughConstantExprUses && isa<ConstantExpr>(U.getUser())) {
+        for (Use &CEU : cast<ConstantExpr>(U.getUser())->uses())
+          Worklist.push_back(&CEU);
+        continue;
+      }
+
+      CB(U);
+    }
+  }
+
+  /// The CG-SCC the pass is run on, or nullptr if it is a module pass.
+  const SetVector<Function *> *const CGSCC = nullptr;
+
+  /// A vector type to hold instructions.
+  using InstructionVectorTy = SmallVector<Instruction *, 8>;
+
+  /// A map type from opcodes to instructions with this opcode.
+  using OpcodeInstMapTy = DenseMap<unsigned, InstructionVectorTy *>;
+
+  /// Return the map that relates "interesting" opcodes with all instructions
+  /// with that opcode in \p F.
+  OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) {
+    return getFunctionInfo(F).OpcodeInstMap;
+  }
+
+  /// Return the instructions in \p F that may read or write memory.
+  InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) {
+    return getFunctionInfo(F).RWInsts;
+  }
+
+  /// Return MustBeExecutedContextExplorer
+  MustBeExecutedContextExplorer *getMustBeExecutedContextExplorer() {
+    return Explorer;
+  }
+
+  /// Return TargetLibraryInfo for function \p F.
+  TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) {
+    return AG.getAnalysis<TargetLibraryAnalysis>(F);
+  }
+
+  /// Return true if \p Arg is involved in a must-tail call, thus the argument
+  /// of the caller or callee.
+  bool isInvolvedInMustTailCall(const Argument &Arg) {
+    FunctionInfo &FI = getFunctionInfo(*Arg.getParent());
+    return FI.CalledViaMustTail || FI.ContainsMustTailCall;
+  }
+
+  bool isOnlyUsedByAssume(const Instruction &I) const {
+    return AssumeOnlyValues.contains(&I);
+  }
+
+  /// Invalidates the cached analyses. Valid only when using the new pass
+  /// manager.
+  void invalidateAnalyses() { AG.invalidateAnalyses(); }
+
+  /// Return the analysis result from a pass \p AP for function \p F.
+  template <typename AP>
+  typename AP::Result *getAnalysisResultForFunction(const Function &F,
+                                                    bool CachedOnly = false) {
+    return AG.getAnalysis<AP>(F, CachedOnly);
+  }
+
+  /// Return datalayout used in the module.
+  const DataLayout &getDL() { return DL; }
+
+  /// Return the map conaining all the knowledge we have from `llvm.assume`s.
+  const RetainedKnowledgeMap &getKnowledgeMap() const { return KnowledgeMap; }
+
+  /// Given \p BES, return a uniqued version.
+  const AA::InstExclusionSetTy *
+  getOrCreateUniqueBlockExecutionSet(const AA::InstExclusionSetTy *BES) {
+    auto It = BESets.find(BES);
+    if (It != BESets.end())
+      return *It;
+    auto *UniqueBES = new (Allocator) AA::InstExclusionSetTy(*BES);
+    bool Success = BESets.insert(UniqueBES).second;
+    (void)Success;
+    assert(Success && "Expected only new entries to be added");
+    return UniqueBES;
+  }
+
+  /// Return true if the stack (llvm::Alloca) can be accessed by other threads.
+  bool stackIsAccessibleByOtherThreads() { return !targetIsGPU(); }
+
+  /// Return true if the target is a GPU.
+  bool targetIsGPU() {
+    return TargetTriple.isAMDGPU() || TargetTriple.isNVPTX();
+  }
+
+  /// Return all functions that might be called indirectly, only valid for
+  /// closed world modules (see isClosedWorldModule).
+  const ArrayRef<Function *>
+  getIndirectlyCallableFunctions(Attributor &A) const;
+
+private:
+  struct FunctionInfo {
+    ~FunctionInfo();
+
+    /// A nested map that remembers all instructions in a function with a
+    /// certain instruction opcode (Instruction::getOpcode()).
+    OpcodeInstMapTy OpcodeInstMap;
+
+    /// A map from functions to their instructions that may read or write
+    /// memory.
+    InstructionVectorTy RWInsts;
+
+    /// Function is called by a `musttail` call.
+    bool CalledViaMustTail;
+
+    /// Function contains a `musttail` call.
+    bool ContainsMustTailCall;
+  };
+
+  /// A map type from functions to informatio about it.
+  DenseMap<const Function *, FunctionInfo *> FuncInfoMap;
+
+  /// Return information about the function \p F, potentially by creating it.
+  FunctionInfo &getFunctionInfo(const Function &F) {
+    FunctionInfo *&FI = FuncInfoMap[&F];
+    if (!FI) {
+      FI = new (Allocator) FunctionInfo();
+      initializeInformationCache(F, *FI);
+    }
+    return *FI;
+  }
+
+  /// Vector of functions that might be callable indirectly, i.a., via a
+  /// function pointer.
+  SmallVector<Function *> IndirectlyCallableFunctions;
+
+  /// Initialize the function information cache \p FI for the function \p F.
+  ///
+  /// This method needs to be called for all function that might be looked at
+  /// through the information cache interface *prior* to looking at them.
+  void initializeInformationCache(const Function &F, FunctionInfo &FI);
+
+  /// The datalayout used in the module.
+  const DataLayout &DL;
+
+  /// The allocator used to allocate memory, e.g. for `FunctionInfo`s.
+  BumpPtrAllocator &Allocator;
+
+  /// MustBeExecutedContextExplorer
+  MustBeExecutedContextExplorer *Explorer = nullptr;
+
+  /// A map with knowledge retained in `llvm.assume` instructions.
+  RetainedKnowledgeMap KnowledgeMap;
+
+  /// A container for all instructions that are only used by `llvm.assume`.
+  SetVector<const Instruction *> AssumeOnlyValues;
+
+  /// Cache for block sets to allow reuse.
+  DenseSet<const AA::InstExclusionSetTy *> BESets;
+
+  /// Getters for analysis.
+  AnalysisGetter &AG;
+
+  /// Set of inlineable functions
+  SmallPtrSet<const Function *, 8> InlineableFunctions;
+
+  /// The triple describing the target machine.
+  Triple TargetTriple;
+
+  /// Give the Attributor access to the members so
+  /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them.
+  friend struct Attributor;
+};
+
+/// Configuration for the Attributor.
+struct AttributorConfig {
+
+  AttributorConfig(CallGraphUpdater &CGUpdater) : CGUpdater(CGUpdater) {}
+
+  /// Is the user of the Attributor a module pass or not. This determines what
+  /// IR we can look at and modify. If it is a module pass we might deduce facts
+  /// outside the initial function set and modify functions outside that set,
+  /// but only as part of the optimization of the functions in the initial
+  /// function set. For CGSCC passes we can look at the IR of the module slice
+  /// but never run any deduction, or perform any modification, outside the
+  /// initial function set (which we assume is the SCC).
+  bool IsModulePass = true;
+
+  /// Flag to determine if we can delete functions or keep dead ones around.
+  bool DeleteFns = true;
+
+  /// Flag to determine if we rewrite function signatures.
+  bool RewriteSignatures = true;
+
+  /// Flag to determine if we want to initialize all default AAs for an internal
+  /// function marked live. See also: InitializationCallback>
+  bool DefaultInitializeLiveInternals = true;
+
+  /// Flag to determine if we should skip all liveness checks early on.
+  bool UseLiveness = true;
+
+  /// Flag to indicate if the entire world is contained in this module, that
+  /// is, no outside functions exist.
+  bool IsClosedWorldModule = false;
+
+  /// Callback function to be invoked on internal functions marked live.
+  std::function<void(Attributor &A, const Function &F)> InitializationCallback =
+      nullptr;
+
+  /// Callback function to determine if an indirect call targets should be made
+  /// direct call targets (with an if-cascade).
+  std::function<bool(Attributor &A, const AbstractAttribute &AA, CallBase &CB,
+                     Function &AssummedCallee)>
+      IndirectCalleeSpecializationCallback = nullptr;
+
+  /// Helper to update an underlying call graph and to delete functions.
+  CallGraphUpdater &CGUpdater;
+
+  /// If not null, a set limiting the attribute opportunities.
+  DenseSet<const char *> *Allowed = nullptr;
+
+  /// Maximum number of iterations to run until fixpoint.
+  std::optional<unsigned> MaxFixpointIterations;
+
+  /// A callback function that returns an ORE object from a Function pointer.
+  ///{
+  using OptimizationRemarkGetter =
+      function_ref<OptimizationRemarkEmitter &(Function *)>;
+  OptimizationRemarkGetter OREGetter = nullptr;
+  ///}
+
+  /// The name of the pass running the attributor, used to emit remarks.
+  const char *PassName = nullptr;
+
+  using IPOAmendableCBTy = function_ref<bool(const Function &F)>;
+  IPOAmendableCBTy IPOAmendableCB;
+};
+
+/// A debug counter to limit the number of AAs created.
+DEBUG_COUNTER(NumAbstractAttributes, "num-abstract-attributes",
+              "How many AAs should be initialized");
+
+/// The fixpoint analysis framework that orchestrates the attribute deduction.
+///
+/// The Attributor provides a general abstract analysis framework (guided
+/// fixpoint iteration) as well as helper functions for the deduction of
+/// (LLVM-IR) attributes. However, also other code properties can be deduced,
+/// propagated, and ultimately manifested through the Attributor framework. This
+/// is particularly useful if these properties interact with attributes and a
+/// co-scheduled deduction allows to improve the solution. Even if not, thus if
+/// attributes/properties are completely isolated, they should use the
+/// Attributor framework to reduce the number of fixpoint iteration frameworks
+/// in the code base. Note that the Attributor design makes sure that isolated
+/// attributes are not impacted, in any way, by others derived at the same time
+/// if there is no cross-reasoning performed.
+///
+/// The public facing interface of the Attributor is kept simple and basically
+/// allows abstract attributes to one thing, query abstract attributes
+/// in-flight. There are two reasons to do this:
+///    a) The optimistic state of one abstract attribute can justify an
+///       optimistic state of another, allowing to framework to end up with an
+///       optimistic (=best possible) fixpoint instead of one based solely on
+///       information in the IR.
+///    b) This avoids reimplementing various kinds of lookups, e.g., to check
+///       for existing IR attributes, in favor of a single lookups interface
+///       provided by an abstract attribute subclass.
+///
+/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
+///       described in the file comment.
+struct Attributor {
+
+  /// Constructor
+  ///
+  /// \param Functions The set of functions we are deriving attributes for.
+  /// \param InfoCache Cache to hold various information accessible for
+  ///                  the abstract attributes.
+  /// \param Configuration The Attributor configuration which determines what
+  ///                      generic features to use.
+  Attributor(SetVector<Function *> &Functions, InformationCache &InfoCache,
+             AttributorConfig Configuration);
+
+  ~Attributor();
+
+  /// Run the analyses until a fixpoint is reached or enforced (timeout).
+  ///
+  /// The attributes registered with this Attributor can be used after as long
+  /// as the Attributor is not destroyed (it owns the attributes now).
+  ///
+  /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED.
+  ChangeStatus run();
+
+  /// Lookup an abstract attribute of type \p AAType at position \p IRP. While
+  /// no abstract attribute is found equivalent positions are checked, see
+  /// SubsumingPositionIterator. Thus, the returned abstract attribute
+  /// might be anchored at a different position, e.g., the callee if \p IRP is a
+  /// call base.
+  ///
+  /// This method is the only (supported) way an abstract attribute can retrieve
+  /// information from another abstract attribute. As an example, take an
+  /// abstract attribute that determines the memory access behavior for a
+  /// argument (readnone, readonly, ...). It should use `getAAFor` to get the
+  /// most optimistic information for other abstract attributes in-flight, e.g.
+  /// the one reasoning about the "captured" state for the argument or the one
+  /// reasoning on the memory access behavior of the function as a whole.
+  ///
+  /// If the DepClass enum is set to `DepClassTy::None` the dependence from
+  /// \p QueryingAA to the return abstract attribute is not automatically
+  /// recorded. This should only be used if the caller will record the
+  /// dependence explicitly if necessary, thus if it the returned abstract
+  /// attribute is used for reasoning. To record the dependences explicitly use
+  /// the `Attributor::recordDependence` method.
+  template <typename AAType>
+  const AAType *getAAFor(const AbstractAttribute &QueryingAA,
+                         const IRPosition &IRP, DepClassTy DepClass) {
+    return getOrCreateAAFor<AAType>(IRP, &QueryingAA, DepClass,
+                                    /* ForceUpdate */ false);
+  }
+
+  /// The version of getAAFor that allows to omit a querying abstract
+  /// attribute. Using this after Attributor started running is restricted to
+  /// only the Attributor itself. Initial seeding of AAs can be done via this
+  /// function.
+  /// NOTE: ForceUpdate is ignored in any stage other than the update stage.
+  template <typename AAType>
+  const AAType *getOrCreateAAFor(IRPosition IRP,
+                                 const AbstractAttribute *QueryingAA,
+                                 DepClassTy DepClass, bool ForceUpdate = false,
+                                 bool UpdateAfterInit = true) {
+    if (!shouldPropagateCallBaseContext(IRP))
+      IRP = IRP.stripCallBaseContext();
+
+    if (AAType *AAPtr = lookupAAFor<AAType>(IRP, QueryingAA, DepClass,
+                                            /* AllowInvalidState */ true)) {
+      if (ForceUpdate && Phase == AttributorPhase::UPDATE)
+        updateAA(*AAPtr);
+      return AAPtr;
+    }
+
+    bool ShouldUpdateAA;
+    if (!shouldInitialize<AAType>(IRP, ShouldUpdateAA))
+      return nullptr;
+
+    if (!DebugCounter::shouldExecute(NumAbstractAttributes))
+      return nullptr;
+
+    // No matching attribute found, create one.
+    // Use the static create method.
+    auto &AA = AAType::createForPosition(IRP, *this);
+
+    // Always register a new attribute to make sure we clean up the allocated
+    // memory properly.
+    registerAA(AA);
+
+    // If we are currenty seeding attributes, enforce seeding rules.
+    if (Phase == AttributorPhase::SEEDING && !shouldSeedAttribute(AA)) {
+      AA.getState().indicatePessimisticFixpoint();
+      return &AA;
+    }
+
+    // Bootstrap the new attribute with an initial update to propagate
+    // information, e.g., function -> call site.
+    {
+      TimeTraceScope TimeScope("initialize", [&]() {
+        return AA.getName() +
+               std::to_string(AA.getIRPosition().getPositionKind());
+      });
+      ++InitializationChainLength;
+      AA.initialize(*this);
+      --InitializationChainLength;
+    }
+
+    if (!ShouldUpdateAA) {
+      AA.getState().indicatePessimisticFixpoint();
+      return &AA;
+    }
+
+    // Allow seeded attributes to declare dependencies.
+    // Remember the seeding state.
+    if (UpdateAfterInit) {
+      AttributorPhase OldPhase = Phase;
+      Phase = AttributorPhase::UPDATE;
+
+      updateAA(AA);
+
+      Phase = OldPhase;
+    }
+
+    if (QueryingAA && AA.getState().isValidState())
+      recordDependence(AA, const_cast<AbstractAttribute &>(*QueryingAA),
+                       DepClass);
+    return &AA;
+  }
+
+  template <typename AAType>
+  const AAType *getOrCreateAAFor(const IRPosition &IRP) {
+    return getOrCreateAAFor<AAType>(IRP, /* QueryingAA */ nullptr,
+                                    DepClassTy::NONE);
+  }
+
+  /// Return the attribute of \p AAType for \p IRP if existing and valid. This
+  /// also allows non-AA users lookup.
+  template <typename AAType>
+  AAType *lookupAAFor(const IRPosition &IRP,
+                      const AbstractAttribute *QueryingAA = nullptr,
+                      DepClassTy DepClass = DepClassTy::OPTIONAL,
+                      bool AllowInvalidState = false) {
+    static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
+                  "Cannot query an attribute with a type not derived from "
+                  "'AbstractAttribute'!");
+    // Lookup the abstract attribute of type AAType. If found, return it after
+    // registering a dependence of QueryingAA on the one returned attribute.
+    AbstractAttribute *AAPtr = AAMap.lookup({&AAType::ID, IRP});
+    if (!AAPtr)
+      return nullptr;
+
+    AAType *AA = static_cast<AAType *>(AAPtr);
+
+    // Do not register a dependence on an attribute with an invalid state.
+    if (DepClass != DepClassTy::NONE && QueryingAA &&
+        AA->getState().isValidState())
+      recordDependence(*AA, const_cast<AbstractAttribute &>(*QueryingAA),
+                       DepClass);
+
+    // Return nullptr if this attribute has an invalid state.
+    if (!AllowInvalidState && !AA->getState().isValidState())
+      return nullptr;
+    return AA;
+  }
+
+  /// Allows a query AA to request an update if a new query was received.
+  void registerForUpdate(AbstractAttribute &AA);
+
+  /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if
+  /// \p FromAA changes \p ToAA should be updated as well.
+  ///
+  /// This method should be used in conjunction with the `getAAFor` method and
+  /// with the DepClass enum passed to the method set to None. This can
+  /// be beneficial to avoid false dependences but it requires the users of
+  /// `getAAFor` to explicitly record true dependences through this method.
+  /// The \p DepClass flag indicates if the dependence is striclty necessary.
+  /// That means for required dependences, if \p FromAA changes to an invalid
+  /// state, \p ToAA can be moved to a pessimistic fixpoint because it required
+  /// information from \p FromAA but none are available anymore.
+  void recordDependence(const AbstractAttribute &FromAA,
+                        const AbstractAttribute &ToAA, DepClassTy DepClass);
+
+  /// Introduce a new abstract attribute into the fixpoint analysis.
+  ///
+  /// Note that ownership of the attribute is given to the Attributor. It will
+  /// invoke delete for the Attributor on destruction of the Attributor.
+  ///
+  /// Attributes are identified by their IR position (AAType::getIRPosition())
+  /// and the address of their static member (see AAType::ID).
+  template <typename AAType> AAType &registerAA(AAType &AA) {
+    static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
+                  "Cannot register an attribute with a type not derived from "
+                  "'AbstractAttribute'!");
+    // Put the attribute in the lookup map structure and the container we use to
+    // keep track of all attributes.
+    const IRPosition &IRP = AA.getIRPosition();
+    AbstractAttribute *&AAPtr = AAMap[{&AAType::ID, IRP}];
+
+    assert(!AAPtr && "Attribute already in map!");
+    AAPtr = &AA;
+
+    // Register AA with the synthetic root only before the manifest stage.
+    if (Phase == AttributorPhase::SEEDING || Phase == AttributorPhase::UPDATE)
+      DG.SyntheticRoot.Deps.insert(
+          AADepGraphNode::DepTy(&AA, unsigned(DepClassTy::REQUIRED)));
+
+    return AA;
+  }
+
+  /// Return the internal information cache.
+  InformationCache &getInfoCache() { return InfoCache; }
+
+  /// Return true if this is a module pass, false otherwise.
+  bool isModulePass() const { return Configuration.IsModulePass; }
+
+  /// Return true if we should specialize the call site \b CB for the potential
+  /// callee \p Fn.
+  bool shouldSpecializeCallSiteForCallee(const AbstractAttribute &AA,
+                                         CallBase &CB, Function &Callee) {
+    return Configuration.IndirectCalleeSpecializationCallback
+               ? Configuration.IndirectCalleeSpecializationCallback(*this, AA,
+                                                                    CB, Callee)
+               : true;
+  }
+
+  /// Return true if the module contains the whole world, thus, no outside
+  /// functions exist.
+  bool isClosedWorldModule() const;
+
+  /// Return true if we derive attributes for \p Fn
+  bool isRunOn(Function &Fn) const { return isRunOn(&Fn); }
+  bool isRunOn(Function *Fn) const {
+    return Functions.empty() || Functions.count(Fn);
+  }
+
+  template <typename AAType> bool shouldUpdateAA(const IRPosition &IRP) {
+    // If this is queried in the manifest stage, we force the AA to indicate
+    // pessimistic fixpoint immediately.
+    if (Phase == AttributorPhase::MANIFEST || Phase == AttributorPhase::CLEANUP)
+      return false;
+
+    Function *AssociatedFn = IRP.getAssociatedFunction();
+
+    if (IRP.isAnyCallSitePosition()) {
+      // Check if we require a callee but there is none.
+      if (!AssociatedFn && AAType::requiresCalleeForCallBase())
+        return false;
+
+      // Check if we require non-asm but it is inline asm.
+      if (AAType::requiresNonAsmForCallBase() &&
+          cast<CallBase>(IRP.getAnchorValue()).isInlineAsm())
+        return false;
+    }
+
+    // Check if we require a calles but we can't see all.
+    if (AAType::requiresCallersForArgOrFunction())
+      if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION ||
+          IRP.getPositionKind() == IRPosition::IRP_ARGUMENT)
+        if (!AssociatedFn->hasLocalLinkage())
+          return false;
+
+    if (!AAType::isValidIRPositionForUpdate(*this, IRP))
+      return false;
+
+    // We update only AAs associated with functions in the Functions set or
+    // call sites of them.
+    return (!AssociatedFn || isModulePass() || isRunOn(AssociatedFn) ||
+            isRunOn(IRP.getAnchorScope()));
+  }
+
+  template <typename AAType>
+  bool shouldInitialize(const IRPosition &IRP, bool &ShouldUpdateAA) {
+    if (!AAType::isValidIRPositionForInit(*this, IRP))
+      return false;
+
+    if (Configuration.Allowed && !Configuration.Allowed->count(&AAType::ID))
+      return false;
+
+    // For now we skip anything in naked and optnone functions.
+    const Function *AnchorFn = IRP.getAnchorScope();
+    if (AnchorFn && (AnchorFn->hasFnAttribute(Attribute::Naked) ||
+                     AnchorFn->hasFnAttribute(Attribute::OptimizeNone)))
+      return false;
+
+    // Avoid too many nested initializations to prevent a stack overflow.
+    if (InitializationChainLength > MaxInitializationChainLength)
+      return false;
+
+    ShouldUpdateAA = shouldUpdateAA<AAType>(IRP);
+
+    return !AAType::hasTrivialInitializer() || ShouldUpdateAA;
+  }
+
+  /// Determine opportunities to derive 'default' attributes in \p F and create
+  /// abstract attribute objects for them.
+  ///
+  /// \param F The function that is checked for attribute opportunities.
+  ///
+  /// Note that abstract attribute instances are generally created even if the
+  /// IR already contains the information they would deduce. The most important
+  /// reason for this is the single interface, the one of the abstract attribute
+  /// instance, which can be queried without the need to look at the IR in
+  /// various places.
+  void identifyDefaultAbstractAttributes(Function &F);
+
+  /// Determine whether the function \p F is IPO amendable
+  ///
+  /// If a function is exactly defined or it has alwaysinline attribute
+  /// and is viable to be inlined, we say it is IPO amendable
+  bool isFunctionIPOAmendable(const Function &F) {
+    return F.hasExactDefinition() || InfoCache.InlineableFunctions.count(&F) ||
+           (Configuration.IPOAmendableCB && Configuration.IPOAmendableCB(F));
+  }
+
+  /// Mark the internal function \p F as live.
+  ///
+  /// This will trigger the identification and initialization of attributes for
+  /// \p F.
+  void markLiveInternalFunction(const Function &F) {
+    assert(F.hasLocalLinkage() &&
+           "Only local linkage is assumed dead initially.");
+
+    if (Configuration.DefaultInitializeLiveInternals)
+      identifyDefaultAbstractAttributes(const_cast<Function &>(F));
+    if (Configuration.InitializationCallback)
+      Configuration.InitializationCallback(*this, F);
+  }
+
+  /// Helper function to remove callsite.
+  void removeCallSite(CallInst *CI) {
+    if (!CI)
+      return;
+
+    Configuration.CGUpdater.removeCallSite(*CI);
+  }
+
+  /// Record that \p U is to be replaces with \p NV after information was
+  /// manifested. This also triggers deletion of trivially dead istructions.
+  bool changeUseAfterManifest(Use &U, Value &NV) {
+    Value *&V = ToBeChangedUses[&U];
+    if (V && (V->stripPointerCasts() == NV.stripPointerCasts() ||
+              isa_and_nonnull<UndefValue>(V)))
+      return false;
+    assert((!V || V == &NV || isa<UndefValue>(NV)) &&
+           "Use was registered twice for replacement with different values!");
+    V = &NV;
+    return true;
+  }
+
+  /// Helper function to replace all uses associated with \p IRP with \p NV.
+  /// Return true if there is any change. The flag \p ChangeDroppable indicates
+  /// if dropppable uses should be changed too.
+  bool changeAfterManifest(const IRPosition IRP, Value &NV,
+                           bool ChangeDroppable = true) {
+    if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT) {
+      auto *CB = cast<CallBase>(IRP.getCtxI());
+      return changeUseAfterManifest(
+          CB->getArgOperandUse(IRP.getCallSiteArgNo()), NV);
+    }
+    Value &V = IRP.getAssociatedValue();
+    auto &Entry = ToBeChangedValues[&V];
+    Value *CurNV = get<0>(Entry);
+    if (CurNV && (CurNV->stripPointerCasts() == NV.stripPointerCasts() ||
+                  isa<UndefValue>(CurNV)))
+      return false;
+    assert((!CurNV || CurNV == &NV || isa<UndefValue>(NV)) &&
+           "Value replacement was registered twice with different values!");
+    Entry = {&NV, ChangeDroppable};
+    return true;
+  }
+
+  /// Record that \p I is to be replaced with `unreachable` after information
+  /// was manifested.
+  void changeToUnreachableAfterManifest(Instruction *I) {
+    ToBeChangedToUnreachableInsts.insert(I);
+  }
+
+  /// Record that \p II has at least one dead successor block. This information
+  /// is used, e.g., to replace \p II with a call, after information was
+  /// manifested.
+  void registerInvokeWithDeadSuccessor(InvokeInst &II) {
+    InvokeWithDeadSuccessor.insert(&II);
+  }
+
+  /// Record that \p I is deleted after information was manifested. This also
+  /// triggers deletion of trivially dead istructions.
+  void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); }
+
+  /// Record that \p BB is deleted after information was manifested. This also
+  /// triggers deletion of trivially dead istructions.
+  void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); }
+
+  // Record that \p BB is added during the manifest of an AA. Added basic blocks
+  // are preserved in the IR.
+  void registerManifestAddedBasicBlock(BasicBlock &BB) {
+    ManifestAddedBlocks.insert(&BB);
+  }
+
+  /// Record that \p F is deleted after information was manifested.
+  void deleteAfterManifest(Function &F) {
+    if (Configuration.DeleteFns)
+      ToBeDeletedFunctions.insert(&F);
+  }
+
+  /// Return the attributes of kind \p AK existing in the IR as operand bundles
+  /// of an llvm.assume.
+  bool getAttrsFromAssumes(const IRPosition &IRP, Attribute::AttrKind AK,
+                           SmallVectorImpl<Attribute> &Attrs);
+
+  /// Return true if any kind in \p AKs existing in the IR at a position that
+  /// will affect this one. See also getAttrs(...).
+  /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
+  ///                                 e.g., the function position if this is an
+  ///                                 argument position, should be ignored.
+  bool hasAttr(const IRPosition &IRP, ArrayRef<Attribute::AttrKind> AKs,
+               bool IgnoreSubsumingPositions = false,
+               Attribute::AttrKind ImpliedAttributeKind = Attribute::None);
+
+  /// Return the attributes of any kind in \p AKs existing in the IR at a
+  /// position that will affect this one. While each position can only have a
+  /// single attribute of any kind in \p AKs, there are "subsuming" positions
+  /// that could have an attribute as well. This method returns all attributes
+  /// found in \p Attrs.
+  /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
+  ///                                 e.g., the function position if this is an
+  ///                                 argument position, should be ignored.
+  void getAttrs(const IRPosition &IRP, ArrayRef<Attribute::AttrKind> AKs,
+                SmallVectorImpl<Attribute> &Attrs,
+                bool IgnoreSubsumingPositions = false);
+
+  /// Remove all \p AttrKinds attached to \p IRP.
+  ChangeStatus removeAttrs(const IRPosition &IRP,
+                           ArrayRef<Attribute::AttrKind> AttrKinds);
+  ChangeStatus removeAttrs(const IRPosition &IRP, ArrayRef<StringRef> Attrs);
+
+  /// Attach \p DeducedAttrs to \p IRP, if \p ForceReplace is set we do this
+  /// even if the same attribute kind was already present.
+  ChangeStatus manifestAttrs(const IRPosition &IRP,
+                             ArrayRef<Attribute> DeducedAttrs,
+                             bool ForceReplace = false);
+
+private:
+  /// Helper to check \p Attrs for \p AK, if not found, check if \p
+  /// AAType::isImpliedByIR is true, and if not, create AAType for \p IRP.
+  template <Attribute::AttrKind AK, typename AAType>
+  void checkAndQueryIRAttr(const IRPosition &IRP, AttributeSet Attrs);
+
+  /// Helper to apply \p CB on all attributes of type \p AttrDescs of \p IRP.
+  template <typename DescTy>
+  ChangeStatus updateAttrMap(const IRPosition &IRP, ArrayRef<DescTy> AttrDescs,
+                             function_ref<bool(const DescTy &, AttributeSet,
+                                               AttributeMask &, AttrBuilder &)>
+                                 CB);
+
+  /// Mapping from functions/call sites to their attributes.
+  DenseMap<Value *, AttributeList> AttrsMap;
+
+public:
+  /// If \p IRP is assumed to be a constant, return it, if it is unclear yet,
+  /// return std::nullopt, otherwise return `nullptr`.
+  std::optional<Constant *> getAssumedConstant(const IRPosition &IRP,
+                                               const AbstractAttribute &AA,
+                                               bool &UsedAssumedInformation);
+  std::optional<Constant *> getAssumedConstant(const Value &V,
+                                               const AbstractAttribute &AA,
+                                               bool &UsedAssumedInformation) {
+    return getAssumedConstant(IRPosition::value(V), AA, UsedAssumedInformation);
+  }
+
+  /// If \p V is assumed simplified, return it, if it is unclear yet,
+  /// return std::nullopt, otherwise return `nullptr`.
+  std::optional<Value *> getAssumedSimplified(const IRPosition &IRP,
+                                              const AbstractAttribute &AA,
+                                              bool &UsedAssumedInformation,
+                                              AA::ValueScope S) {
+    return getAssumedSimplified(IRP, &AA, UsedAssumedInformation, S);
+  }
+  std::optional<Value *> getAssumedSimplified(const Value &V,
+                                              const AbstractAttribute &AA,
+                                              bool &UsedAssumedInformation,
+                                              AA::ValueScope S) {
+    return getAssumedSimplified(IRPosition::value(V), AA,
+                                UsedAssumedInformation, S);
+  }
+
+  /// If \p V is assumed simplified, return it, if it is unclear yet,
+  /// return std::nullopt, otherwise return `nullptr`. Same as the public
+  /// version except that it can be used without recording dependences on any \p
+  /// AA.
+  std::optional<Value *> getAssumedSimplified(const IRPosition &V,
+                                              const AbstractAttribute *AA,
+                                              bool &UsedAssumedInformation,
+                                              AA::ValueScope S);
+
+  /// Try to simplify \p IRP and in the scope \p S. If successful, true is
+  /// returned and all potential values \p IRP can take are put into \p Values.
+  /// If the result in \p Values contains select or PHI instructions it means
+  /// those could not be simplified to a single value. Recursive calls with
+  /// these instructions will yield their respective potential values. If false
+  /// is returned no other information is valid.
+  bool getAssumedSimplifiedValues(const IRPosition &IRP,
+                                  const AbstractAttribute *AA,
+                                  SmallVectorImpl<AA::ValueAndContext> &Values,
+                                  AA::ValueScope S,
+                                  bool &UsedAssumedInformation,
+                                  bool RecurseForSelectAndPHI = true);
+
+  /// Register \p CB as a simplification callback.
+  /// `Attributor::getAssumedSimplified` will use these callbacks before
+  /// we it will ask `AAValueSimplify`. It is important to ensure this
+  /// is called before `identifyDefaultAbstractAttributes`, assuming the
+  /// latter is called at all.
+  using SimplifictionCallbackTy = std::function<std::optional<Value *>(
+      const IRPosition &, const AbstractAttribute *, bool &)>;
+  void registerSimplificationCallback(const IRPosition &IRP,
+                                      const SimplifictionCallbackTy &CB) {
+    SimplificationCallbacks[IRP].emplace_back(CB);
+  }
+
+  /// Return true if there is a simplification callback for \p IRP.
+  bool hasSimplificationCallback(const IRPosition &IRP) {
+    return SimplificationCallbacks.count(IRP);
+  }
+
+  /// Register \p CB as a simplification callback.
+  /// Similar to \p registerSimplificationCallback, the call back will be called
+  /// first when we simplify a global variable \p GV.
+  using GlobalVariableSimplifictionCallbackTy =
+      std::function<std::optional<Constant *>(
+          const GlobalVariable &, const AbstractAttribute *, bool &)>;
+  void registerGlobalVariableSimplificationCallback(
+      const GlobalVariable &GV,
+      const GlobalVariableSimplifictionCallbackTy &CB) {
+    GlobalVariableSimplificationCallbacks[&GV].emplace_back(CB);
+  }
+
+  /// Return true if there is a simplification callback for \p GV.
+  bool hasGlobalVariableSimplificationCallback(const GlobalVariable &GV) {
+    return GlobalVariableSimplificationCallbacks.count(&GV);
+  }
+
+  /// Return \p std::nullopt if there is no call back registered for \p GV or
+  /// the call back is still not sure if \p GV can be simplified. Return \p
+  /// nullptr if \p GV can't be simplified.
+  std::optional<Constant *>
+  getAssumedInitializerFromCallBack(const GlobalVariable &GV,
+                                    const AbstractAttribute *AA,
+                                    bool &UsedAssumedInformation) {
+    assert(GlobalVariableSimplificationCallbacks.contains(&GV));
+    for (auto &CB : GlobalVariableSimplificationCallbacks.lookup(&GV)) {
+      auto SimplifiedGV = CB(GV, AA, UsedAssumedInformation);
+      // For now we assume the call back will not return a std::nullopt.
+      assert(SimplifiedGV.has_value() && "SimplifiedGV has not value");
+      return *SimplifiedGV;
+    }
+    llvm_unreachable("there must be a callback registered");
+  }
+
+  using VirtualUseCallbackTy =
+      std::function<bool(Attributor &, const AbstractAttribute *)>;
+  void registerVirtualUseCallback(const Value &V,
+                                  const VirtualUseCallbackTy &CB) {
+    VirtualUseCallbacks[&V].emplace_back(CB);
+  }
+
+private:
+  /// The vector with all simplification callbacks registered by outside AAs.
+  DenseMap<IRPosition, SmallVector<SimplifictionCallbackTy, 1>>
+      SimplificationCallbacks;
+
+  /// The vector with all simplification callbacks for global variables
+  /// registered by outside AAs.
+  DenseMap<const GlobalVariable *,
+           SmallVector<GlobalVariableSimplifictionCallbackTy, 1>>
+      GlobalVariableSimplificationCallbacks;
+
+  DenseMap<const Value *, SmallVector<VirtualUseCallbackTy, 1>>
+      VirtualUseCallbacks;
+
+public:
+  /// Translate \p V from the callee context into the call site context.
+  std::optional<Value *>
+  translateArgumentToCallSiteContent(std::optional<Value *> V, CallBase &CB,
+                                     const AbstractAttribute &AA,
+                                     bool &UsedAssumedInformation);
+
+  /// Return true if \p AA (or its context instruction) is assumed dead.
+  ///
+  /// If \p LivenessAA is not provided it is queried.
+  bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA,
+                     bool &UsedAssumedInformation,
+                     bool CheckBBLivenessOnly = false,
+                     DepClassTy DepClass = DepClassTy::OPTIONAL);
+
+  /// Return true if \p I is assumed dead.
+  ///
+  /// If \p LivenessAA is not provided it is queried.
+  bool isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA,
+                     const AAIsDead *LivenessAA, bool &UsedAssumedInformation,
+                     bool CheckBBLivenessOnly = false,
+                     DepClassTy DepClass = DepClassTy::OPTIONAL,
+                     bool CheckForDeadStore = false);
+
+  /// Return true if \p U is assumed dead.
+  ///
+  /// If \p FnLivenessAA is not provided it is queried.
+  bool isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA,
+                     const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation,
+                     bool CheckBBLivenessOnly = false,
+                     DepClassTy DepClass = DepClassTy::OPTIONAL);
+
+  /// Return true if \p IRP is assumed dead.
+  ///
+  /// If \p FnLivenessAA is not provided it is queried.
+  bool isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA,
+                     const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation,
+                     bool CheckBBLivenessOnly = false,
+                     DepClassTy DepClass = DepClassTy::OPTIONAL);
+
+  /// Return true if \p BB is assumed dead.
+  ///
+  /// If \p LivenessAA is not provided it is queried.
+  bool isAssumedDead(const BasicBlock &BB, const AbstractAttribute *QueryingAA,
+                     const AAIsDead *FnLivenessAA,
+                     DepClassTy DepClass = DepClassTy::OPTIONAL);
+
+  /// Check \p Pred on all potential Callees of \p CB.
+  ///
+  /// This method will evaluate \p Pred with all potential callees of \p CB as
+  /// input and return true if \p Pred does. If some callees might be unknown
+  /// this function will return false.
+  bool checkForAllCallees(
+      function_ref<bool(ArrayRef<const Function *> Callees)> Pred,
+      const AbstractAttribute &QueryingAA, const CallBase &CB);
+
+  /// Check \p Pred on all (transitive) uses of \p V.
+  ///
+  /// This method will evaluate \p Pred on all (transitive) uses of the
+  /// associated value and return true if \p Pred holds every time.
+  /// If uses are skipped in favor of equivalent ones, e.g., if we look through
+  /// memory, the \p EquivalentUseCB will be used to give the caller an idea
+  /// what original used was replaced by a new one (or new ones). The visit is
+  /// cut short if \p EquivalentUseCB returns false and the function will return
+  /// false as well.
+  bool checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
+                       const AbstractAttribute &QueryingAA, const Value &V,
+                       bool CheckBBLivenessOnly = false,
+                       DepClassTy LivenessDepClass = DepClassTy::OPTIONAL,
+                       bool IgnoreDroppableUses = true,
+                       function_ref<bool(const Use &OldU, const Use &NewU)>
+                           EquivalentUseCB = nullptr);
+
+  /// Emit a remark generically.
+  ///
+  /// This template function can be used to generically emit a remark. The
+  /// RemarkKind should be one of the following:
+  ///   - OptimizationRemark to indicate a successful optimization attempt
+  ///   - OptimizationRemarkMissed to report a failed optimization attempt
+  ///   - OptimizationRemarkAnalysis to provide additional information about an
+  ///     optimization attempt
+  ///
+  /// The remark is built using a callback function \p RemarkCB that takes a
+  /// RemarkKind as input and returns a RemarkKind.
+  template <typename RemarkKind, typename RemarkCallBack>
+  void emitRemark(Instruction *I, StringRef RemarkName,
+                  RemarkCallBack &&RemarkCB) const {
+    if (!Configuration.OREGetter)
+      return;
+
+    Function *F = I->getFunction();
+    auto &ORE = Configuration.OREGetter(F);
+
+    if (RemarkName.starts_with("OMP"))
+      ORE.emit([&]() {
+        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I))
+               << " [" << RemarkName << "]";
+      });
+    else
+      ORE.emit([&]() {
+        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I));
+      });
+  }
+
+  /// Emit a remark on a function.
+  template <typename RemarkKind, typename RemarkCallBack>
+  void emitRemark(Function *F, StringRef RemarkName,
+                  RemarkCallBack &&RemarkCB) const {
+    if (!Configuration.OREGetter)
+      return;
+
+    auto &ORE = Configuration.OREGetter(F);
+
+    if (RemarkName.starts_with("OMP"))
+      ORE.emit([&]() {
+        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F))
+               << " [" << RemarkName << "]";
+      });
+    else
+      ORE.emit([&]() {
+        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F));
+      });
+  }
+
+  /// Helper struct used in the communication between an abstract attribute (AA)
+  /// that wants to change the signature of a function and the Attributor which
+  /// applies the changes. The struct is partially initialized with the
+  /// information from the AA (see the constructor). All other members are
+  /// provided by the Attributor prior to invoking any callbacks.
+  struct ArgumentReplacementInfo {
+    /// Callee repair callback type
+    ///
+    /// The function repair callback is invoked once to rewire the replacement
+    /// arguments in the body of the new function. The argument replacement info
+    /// is passed, as build from the registerFunctionSignatureRewrite call, as
+    /// well as the replacement function and an iteratore to the first
+    /// replacement argument.
+    using CalleeRepairCBTy = std::function<void(
+        const ArgumentReplacementInfo &, Function &, Function::arg_iterator)>;
+
+    /// Abstract call site (ACS) repair callback type
+    ///
+    /// The abstract call site repair callback is invoked once on every abstract
+    /// call site of the replaced function (\see ReplacedFn). The callback needs
+    /// to provide the operands for the call to the new replacement function.
+    /// The number and type of the operands appended to the provided vector
+    /// (second argument) is defined by the number and types determined through
+    /// the replacement type vector (\see ReplacementTypes). The first argument
+    /// is the ArgumentReplacementInfo object registered with the Attributor
+    /// through the registerFunctionSignatureRewrite call.
+    using ACSRepairCBTy =
+        std::function<void(const ArgumentReplacementInfo &, AbstractCallSite,
+                           SmallVectorImpl<Value *> &)>;
+
+    /// Simple getters, see the corresponding members for details.
+    ///{
+
+    Attributor &getAttributor() const { return A; }
+    const Function &getReplacedFn() const { return ReplacedFn; }
+    const Argument &getReplacedArg() const { return ReplacedArg; }
+    unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); }
+    const SmallVectorImpl<Type *> &getReplacementTypes() const {
+      return ReplacementTypes;
+    }
+
+    ///}
+
+  private:
+    /// Constructor that takes the argument to be replaced, the types of
+    /// the replacement arguments, as well as callbacks to repair the call sites
+    /// and new function after the replacement happened.
+    ArgumentReplacementInfo(Attributor &A, Argument &Arg,
+                            ArrayRef<Type *> ReplacementTypes,
+                            CalleeRepairCBTy &&CalleeRepairCB,
+                            ACSRepairCBTy &&ACSRepairCB)
+        : A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg),
+          ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()),
+          CalleeRepairCB(std::move(CalleeRepairCB)),
+          ACSRepairCB(std::move(ACSRepairCB)) {}
+
+    /// Reference to the attributor to allow access from the callbacks.
+    Attributor &A;
+
+    /// The "old" function replaced by ReplacementFn.
+    const Function &ReplacedFn;
+
+    /// The "old" argument replaced by new ones defined via ReplacementTypes.
+    const Argument &ReplacedArg;
+
+    /// The types of the arguments replacing ReplacedArg.
+    const SmallVector<Type *, 8> ReplacementTypes;
+
+    /// Callee repair callback, see CalleeRepairCBTy.
+    const CalleeRepairCBTy CalleeRepairCB;
+
+    /// Abstract call site (ACS) repair callback, see ACSRepairCBTy.
+    const ACSRepairCBTy ACSRepairCB;
+
+    /// Allow access to the private members from the Attributor.
+    friend struct Attributor;
+  };
+
+  /// Check if we can rewrite a function signature.
+  ///
+  /// The argument \p Arg is replaced with new ones defined by the number,
+  /// order, and types in \p ReplacementTypes.
+  ///
+  /// \returns True, if the replacement can be registered, via
+  /// registerFunctionSignatureRewrite, false otherwise.
+  bool isValidFunctionSignatureRewrite(Argument &Arg,
+                                       ArrayRef<Type *> ReplacementTypes);
+
+  /// Register a rewrite for a function signature.
+  ///
+  /// The argument \p Arg is replaced with new ones defined by the number,
+  /// order, and types in \p ReplacementTypes. The rewiring at the call sites is
+  /// done through \p ACSRepairCB and at the callee site through
+  /// \p CalleeRepairCB.
+  ///
+  /// \returns True, if the replacement was registered, false otherwise.
+  bool registerFunctionSignatureRewrite(
+      Argument &Arg, ArrayRef<Type *> ReplacementTypes,
+      ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
+      ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB);
+
+  /// Check \p Pred on all function call sites.
+  ///
+  /// This method will evaluate \p Pred on call sites and return
+  /// true if \p Pred holds in every call sites. However, this is only possible
+  /// all call sites are known, hence the function has internal linkage.
+  /// If true is returned, \p UsedAssumedInformation is set if assumed
+  /// information was used to skip or simplify potential call sites.
+  bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
+                            const AbstractAttribute &QueryingAA,
+                            bool RequireAllCallSites,
+                            bool &UsedAssumedInformation);
+
+  /// Check \p Pred on all call sites of \p Fn.
+  ///
+  /// This method will evaluate \p Pred on call sites and return
+  /// true if \p Pred holds in every call sites. However, this is only possible
+  /// all call sites are known, hence the function has internal linkage.
+  /// If true is returned, \p UsedAssumedInformation is set if assumed
+  /// information was used to skip or simplify potential call sites.
+  bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
+                            const Function &Fn, bool RequireAllCallSites,
+                            const AbstractAttribute *QueryingAA,
+                            bool &UsedAssumedInformation,
+                            bool CheckPotentiallyDead = false);
+
+  /// Check \p Pred on all values potentially returned by the function
+  /// associated with \p QueryingAA.
+  ///
+  /// This is the context insensitive version of the method above.
+  bool
+  checkForAllReturnedValues(function_ref<bool(Value &)> Pred,
+                            const AbstractAttribute &QueryingAA,
+                            AA::ValueScope S = AA::ValueScope::Intraprocedural,
+                            bool RecurseForSelectAndPHI = true);
+
+  /// Check \p Pred on all instructions in \p Fn with an opcode present in
+  /// \p Opcodes.
+  ///
+  /// This method will evaluate \p Pred on all instructions with an opcode
+  /// present in \p Opcode and return true if \p Pred holds on all of them.
+  bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
+                               const Function *Fn,
+                               const AbstractAttribute *QueryingAA,
+                               ArrayRef<unsigned> Opcodes,
+                               bool &UsedAssumedInformation,
+                               bool CheckBBLivenessOnly = false,
+                               bool CheckPotentiallyDead = false);
+
+  /// Check \p Pred on all instructions with an opcode present in \p Opcodes.
+  ///
+  /// This method will evaluate \p Pred on all instructions with an opcode
+  /// present in \p Opcode and return true if \p Pred holds on all of them.
+  bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
+                               const AbstractAttribute &QueryingAA,
+                               ArrayRef<unsigned> Opcodes,
+                               bool &UsedAssumedInformation,
+                               bool CheckBBLivenessOnly = false,
+                               bool CheckPotentiallyDead = false);
+
+  /// Check \p Pred on all call-like instructions (=CallBased derived).
+  ///
+  /// See checkForAllCallLikeInstructions(...) for more information.
+  bool checkForAllCallLikeInstructions(function_ref<bool(Instruction &)> Pred,
+                                       const AbstractAttribute &QueryingAA,
+                                       bool &UsedAssumedInformation,
+                                       bool CheckBBLivenessOnly = false,
+                                       bool CheckPotentiallyDead = false) {
+    return checkForAllInstructions(
+        Pred, QueryingAA,
+        {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
+         (unsigned)Instruction::Call},
+        UsedAssumedInformation, CheckBBLivenessOnly, CheckPotentiallyDead);
+  }
+
+  /// Check \p Pred on all Read/Write instructions.
+  ///
+  /// This method will evaluate \p Pred on all instructions that read or write
+  /// to memory present in the information cache and return true if \p Pred
+  /// holds on all of them.
+  bool checkForAllReadWriteInstructions(function_ref<bool(Instruction &)> Pred,
+                                        AbstractAttribute &QueryingAA,
+                                        bool &UsedAssumedInformation);
+
+  /// Create a shallow wrapper for \p F such that \p F has internal linkage
+  /// afterwards. It also sets the original \p F 's name to anonymous
+  ///
+  /// A wrapper is a function with the same type (and attributes) as \p F
+  /// that will only call \p F and return the result, if any.
+  ///
+  /// Assuming the declaration of looks like:
+  ///   rty F(aty0 arg0, ..., atyN argN);
+  ///
+  /// The wrapper will then look as follows:
+  ///   rty wrapper(aty0 arg0, ..., atyN argN) {
+  ///     return F(arg0, ..., argN);
+  ///   }
+  ///
+  static void createShallowWrapper(Function &F);
+
+  /// Returns true if the function \p F can be internalized. i.e. it has a
+  /// compatible linkage.
+  static bool isInternalizable(Function &F);
+
+  /// Make another copy of the function \p F such that the copied version has
+  /// internal linkage afterwards and can be analysed. Then we replace all uses
+  /// of the original function to the copied one
+  ///
+  /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr`
+  /// linkage can be internalized because these linkages guarantee that other
+  /// definitions with the same name have the same semantics as this one.
+  ///
+  /// This will only be run if the `attributor-allow-deep-wrappers` option is
+  /// set, or if the function is called with \p Force set to true.
+  ///
+  /// If the function \p F failed to be internalized the return value will be a
+  /// null pointer.
+  static Function *internalizeFunction(Function &F, bool Force = false);
+
+  /// Make copies of each function in the set \p FnSet such that the copied
+  /// version has internal linkage afterwards and can be analysed. Then we
+  /// replace all uses of the original function to the copied one. The map
+  /// \p FnMap contains a mapping of functions to their internalized versions.
+  ///
+  /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr`
+  /// linkage can be internalized because these linkages guarantee that other
+  /// definitions with the same name have the same semantics as this one.
+  ///
+  /// This version will internalize all the functions in the set \p FnSet at
+  /// once and then replace the uses. This prevents internalized functions being
+  /// called by external functions when there is an internalized version in the
+  /// module.
+  static bool internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
+                                   DenseMap<Function *, Function *> &FnMap);
+
+  /// Return the data layout associated with the anchor scope.
+  const DataLayout &getDataLayout() const { return InfoCache.DL; }
+
+  /// The allocator used to allocate memory, e.g. for `AbstractAttribute`s.
+  BumpPtrAllocator &Allocator;
+
+  const SmallSetVector<Function *, 8> &getModifiedFunctions() {
+    return CGModifiedFunctions;
+  }
+
+private:
+  /// This method will do fixpoint iteration until fixpoint or the
+  /// maximum iteration count is reached.
+  ///
+  /// If the maximum iteration count is reached, This method will
+  /// indicate pessimistic fixpoint on attributes that transitively depend
+  /// on attributes that were scheduled for an update.
+  void runTillFixpoint();
+
+  /// Gets called after scheduling, manifests attributes to the LLVM IR.
+  ChangeStatus manifestAttributes();
+
+  /// Gets called after attributes have been manifested, cleans up the IR.
+  /// Deletes dead functions, blocks and instructions.
+  /// Rewrites function signitures and updates the call graph.
+  ChangeStatus cleanupIR();
+
+  /// Identify internal functions that are effectively dead, thus not reachable
+  /// from a live entry point. The functions are added to ToBeDeletedFunctions.
+  void identifyDeadInternalFunctions();
+
+  /// Run `::update` on \p AA and track the dependences queried while doing so.
+  /// Also adjust the state if we know further updates are not necessary.
+  ChangeStatus updateAA(AbstractAttribute &AA);
+
+  /// Remember the dependences on the top of the dependence stack such that they
+  /// may trigger further updates. (\see DependenceStack)
+  void rememberDependences();
+
+  /// Determine if CallBase context in \p IRP should be propagated.
+  bool shouldPropagateCallBaseContext(const IRPosition &IRP);
+
+  /// Apply all requested function signature rewrites
+  /// (\see registerFunctionSignatureRewrite) and return Changed if the module
+  /// was altered.
+  ChangeStatus
+  rewriteFunctionSignatures(SmallSetVector<Function *, 8> &ModifiedFns);
+
+  /// Check if the Attribute \p AA should be seeded.
+  /// See getOrCreateAAFor.
+  bool shouldSeedAttribute(AbstractAttribute &AA);
+
+  /// A nested map to lookup abstract attributes based on the argument position
+  /// on the outer level, and the addresses of the static member (AAType::ID) on
+  /// the inner level.
+  ///{
+  using AAMapKeyTy = std::pair<const char *, IRPosition>;
+  DenseMap<AAMapKeyTy, AbstractAttribute *> AAMap;
+  ///}
+
+  /// Map to remember all requested signature changes (= argument replacements).
+  DenseMap<Function *, SmallVector<std::unique_ptr<ArgumentReplacementInfo>, 8>>
+      ArgumentReplacementMap;
+
+  /// The set of functions we are deriving attributes for.
+  SetVector<Function *> &Functions;
+
+  /// The information cache that holds pre-processed (LLVM-IR) information.
+  InformationCache &InfoCache;
+
+  /// Abstract Attribute dependency graph
+  AADepGraph DG;
+
+  /// Set of functions for which we modified the content such that it might
+  /// impact the call graph.
+  SmallSetVector<Function *, 8> CGModifiedFunctions;
+
+  /// Information about a dependence. If FromAA is changed ToAA needs to be
+  /// updated as well.
+  struct DepInfo {
+    const AbstractAttribute *FromAA;
+    const AbstractAttribute *ToAA;
+    DepClassTy DepClass;
+  };
+
+  /// The dependence stack is used to track dependences during an
+  /// `AbstractAttribute::update` call. As `AbstractAttribute::update` can be
+  /// recursive we might have multiple vectors of dependences in here. The stack
+  /// size, should be adjusted according to the expected recursion depth and the
+  /// inner dependence vector size to the expected number of dependences per
+  /// abstract attribute. Since the inner vectors are actually allocated on the
+  /// stack we can be generous with their size.
+  using DependenceVector = SmallVector<DepInfo, 8>;
+  SmallVector<DependenceVector *, 16> DependenceStack;
+
+  /// A set to remember the functions we already assume to be live and visited.
+  DenseSet<const Function *> VisitedFunctions;
+
+  /// Uses we replace with a new value after manifest is done. We will remove
+  /// then trivially dead instructions as well.
+  SmallMapVector<Use *, Value *, 32> ToBeChangedUses;
+
+  /// Values we replace with a new value after manifest is done. We will remove
+  /// then trivially dead instructions as well.
+  SmallMapVector<Value *, PointerIntPair<Value *, 1, bool>, 32>
+      ToBeChangedValues;
+
+  /// Instructions we replace with `unreachable` insts after manifest is done.
+  SmallSetVector<WeakVH, 16> ToBeChangedToUnreachableInsts;
+
+  /// Invoke instructions with at least a single dead successor block.
+  SmallSetVector<WeakVH, 16> InvokeWithDeadSuccessor;
+
+  /// A flag that indicates which stage of the process we are in. Initially, the
+  /// phase is SEEDING. Phase is changed in `Attributor::run()`
+  enum class AttributorPhase {
+    SEEDING,
+    UPDATE,
+    MANIFEST,
+    CLEANUP,
+  } Phase = AttributorPhase::SEEDING;
+
+  /// The current initialization chain length. Tracked to avoid stack overflows.
+  unsigned InitializationChainLength = 0;
+
+  /// Functions, blocks, and instructions we delete after manifest is done.
+  ///
+  ///{
+  SmallPtrSet<BasicBlock *, 8> ManifestAddedBlocks;
+  SmallSetVector<Function *, 8> ToBeDeletedFunctions;
+  SmallSetVector<BasicBlock *, 8> ToBeDeletedBlocks;
+  SmallSetVector<WeakVH, 8> ToBeDeletedInsts;
+  ///}
+
+  /// Container with all the query AAs that requested an update via
+  /// registerForUpdate.
+  SmallSetVector<AbstractAttribute *, 16> QueryAAsAwaitingUpdate;
+
+  /// User provided configuration for this Attributor instance.
+  const AttributorConfig Configuration;
+
+  friend AADepGraph;
+  friend AttributorCallGraph;
+};
+
+/// An interface to query the internal state of an abstract attribute.
+///
+/// The abstract state is a minimal interface that allows the Attributor to
+/// communicate with the abstract attributes about their internal state without
+/// enforcing or exposing implementation details, e.g., the (existence of an)
+/// underlying lattice.
+///
+/// It is sufficient to be able to query if a state is (1) valid or invalid, (2)
+/// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint
+/// was reached or (4) a pessimistic fixpoint was enforced.
+///
+/// All methods need to be implemented by the subclass. For the common use case,
+/// a single boolean state or a bit-encoded state, the BooleanState and
+/// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract
+/// attribute can inherit from them to get the abstract state interface and
+/// additional methods to directly modify the state based if needed. See the
+/// class comments for help.
+struct AbstractState {
+  virtual ~AbstractState() = default;
+
+  /// Return if this abstract state is in a valid state. If false, no
+  /// information provided should be used.
+  virtual bool isValidState() const = 0;
+
+  /// Return if this abstract state is fixed, thus does not need to be updated
+  /// if information changes as it cannot change itself.
+  virtual bool isAtFixpoint() const = 0;
+
+  /// Indicate that the abstract state should converge to the optimistic state.
+  ///
+  /// This will usually make the optimistically assumed state the known to be
+  /// true state.
+  ///
+  /// \returns ChangeStatus::UNCHANGED as the assumed value should not change.
+  virtual ChangeStatus indicateOptimisticFixpoint() = 0;
+
+  /// Indicate that the abstract state should converge to the pessimistic state.
+  ///
+  /// This will usually revert the optimistically assumed state to the known to
+  /// be true state.
+  ///
+  /// \returns ChangeStatus::CHANGED as the assumed value may change.
+  virtual ChangeStatus indicatePessimisticFixpoint() = 0;
+};
+
+/// Simple state with integers encoding.
+///
+/// The interface ensures that the assumed bits are always a subset of the known
+/// bits. Users can only add known bits and, except through adding known bits,
+/// they can only remove assumed bits. This should guarantee monotonicity and
+/// thereby the existence of a fixpoint (if used correctly). The fixpoint is
+/// reached when the assumed and known state/bits are equal. Users can
+/// force/inidicate a fixpoint. If an optimistic one is indicated, the known
+/// state will catch up with the assumed one, for a pessimistic fixpoint it is
+/// the other way around.
+template <typename base_ty, base_ty BestState, base_ty WorstState>
+struct IntegerStateBase : public AbstractState {
+  using base_t = base_ty;
+
+  IntegerStateBase() = default;
+  IntegerStateBase(base_t Assumed) : Assumed(Assumed) {}
+
+  /// Return the best possible representable state.
+  static constexpr base_t getBestState() { return BestState; }
+  static constexpr base_t getBestState(const IntegerStateBase &) {
+    return getBestState();
+  }
+
+  /// Return the worst possible representable state.
+  static constexpr base_t getWorstState() { return WorstState; }
+  static constexpr base_t getWorstState(const IntegerStateBase &) {
+    return getWorstState();
+  }
+
+  /// See AbstractState::isValidState()
+  /// NOTE: For now we simply pretend that the worst possible state is invalid.
+  bool isValidState() const override { return Assumed != getWorstState(); }
+
+  /// See AbstractState::isAtFixpoint()
+  bool isAtFixpoint() const override { return Assumed == Known; }
+
+  /// See AbstractState::indicateOptimisticFixpoint(...)
+  ChangeStatus indicateOptimisticFixpoint() override {
+    Known = Assumed;
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...)
+  ChangeStatus indicatePessimisticFixpoint() override {
+    Assumed = Known;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// Return the known state encoding
+  base_t getKnown() const { return Known; }
+
+  /// Return the assumed state encoding.
+  base_t getAssumed() const { return Assumed; }
+
+  /// Equality for IntegerStateBase.
+  bool
+  operator==(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
+    return this->getAssumed() == R.getAssumed() &&
+           this->getKnown() == R.getKnown();
+  }
+
+  /// Inequality for IntegerStateBase.
+  bool
+  operator!=(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
+    return !(*this == R);
+  }
+
+  /// "Clamp" this state with \p R. The result is subtype dependent but it is
+  /// intended that only information assumed in both states will be assumed in
+  /// this one afterwards.
+  void operator^=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
+    handleNewAssumedValue(R.getAssumed());
+  }
+
+  /// "Clamp" this state with \p R. The result is subtype dependent but it is
+  /// intended that information known in either state will be known in
+  /// this one afterwards.
+  void operator+=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
+    handleNewKnownValue(R.getKnown());
+  }
+
+  void operator|=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
+    joinOR(R.getAssumed(), R.getKnown());
+  }
+
+  void operator&=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
+    joinAND(R.getAssumed(), R.getKnown());
+  }
+
+protected:
+  /// Handle a new assumed value \p Value. Subtype dependent.
+  virtual void handleNewAssumedValue(base_t Value) = 0;
+
+  /// Handle a new known value \p Value. Subtype dependent.
+  virtual void handleNewKnownValue(base_t Value) = 0;
+
+  /// Handle a  value \p Value. Subtype dependent.
+  virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0;
+
+  /// Handle a new assumed value \p Value. Subtype dependent.
+  virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0;
+
+  /// The known state encoding in an integer of type base_t.
+  base_t Known = getWorstState();
+
+  /// The assumed state encoding in an integer of type base_t.
+  base_t Assumed = getBestState();
+};
+
+/// Specialization of the integer state for a bit-wise encoding.
+template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
+          base_ty WorstState = 0>
+struct BitIntegerState
+    : public IntegerStateBase<base_ty, BestState, WorstState> {
+  using super = IntegerStateBase<base_ty, BestState, WorstState>;
+  using base_t = base_ty;
+  BitIntegerState() = default;
+  BitIntegerState(base_t Assumed) : super(Assumed) {}
+
+  /// Return true if the bits set in \p BitsEncoding are "known bits".
+  bool isKnown(base_t BitsEncoding = BestState) const {
+    return (this->Known & BitsEncoding) == BitsEncoding;
+  }
+
+  /// Return true if the bits set in \p BitsEncoding are "assumed bits".
+  bool isAssumed(base_t BitsEncoding = BestState) const {
+    return (this->Assumed & BitsEncoding) == BitsEncoding;
+  }
+
+  /// Add the bits in \p BitsEncoding to the "known bits".
+  BitIntegerState &addKnownBits(base_t Bits) {
+    // Make sure we never miss any "known bits".
+    this->Assumed |= Bits;
+    this->Known |= Bits;
+    return *this;
+  }
+
+  /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known.
+  BitIntegerState &removeAssumedBits(base_t BitsEncoding) {
+    return intersectAssumedBits(~BitsEncoding);
+  }
+
+  /// Remove the bits in \p BitsEncoding from the "known bits".
+  BitIntegerState &removeKnownBits(base_t BitsEncoding) {
+    this->Known = (this->Known & ~BitsEncoding);
+    return *this;
+  }
+
+  /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones.
+  BitIntegerState &intersectAssumedBits(base_t BitsEncoding) {
+    // Make sure we never lose any "known bits".
+    this->Assumed = (this->Assumed & BitsEncoding) | this->Known;
+    return *this;
+  }
+
+private:
+  void handleNewAssumedValue(base_t Value) override {
+    intersectAssumedBits(Value);
+  }
+  void handleNewKnownValue(base_t Value) override { addKnownBits(Value); }
+  void joinOR(base_t AssumedValue, base_t KnownValue) override {
+    this->Known |= KnownValue;
+    this->Assumed |= AssumedValue;
+  }
+  void joinAND(base_t AssumedValue, base_t KnownValue) override {
+    this->Known &= KnownValue;
+    this->Assumed &= AssumedValue;
+  }
+};
+
+/// Specialization of the integer state for an increasing value, hence ~0u is
+/// the best state and 0 the worst.
+template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
+          base_ty WorstState = 0>
+struct IncIntegerState
+    : public IntegerStateBase<base_ty, BestState, WorstState> {
+  using super = IntegerStateBase<base_ty, BestState, WorstState>;
+  using base_t = base_ty;
+
+  IncIntegerState() : super() {}
+  IncIntegerState(base_t Assumed) : super(Assumed) {}
+
+  /// Return the best possible representable state.
+  static constexpr base_t getBestState() { return BestState; }
+  static constexpr base_t
+  getBestState(const IncIntegerState<base_ty, BestState, WorstState> &) {
+    return getBestState();
+  }
+
+  /// Take minimum of assumed and \p Value.
+  IncIntegerState &takeAssumedMinimum(base_t Value) {
+    // Make sure we never lose "known value".
+    this->Assumed = std::max(std::min(this->Assumed, Value), this->Known);
+    return *this;
+  }
+
+  /// Take maximum of known and \p Value.
+  IncIntegerState &takeKnownMaximum(base_t Value) {
+    // Make sure we never lose "known value".
+    this->Assumed = std::max(Value, this->Assumed);
+    this->Known = std::max(Value, this->Known);
+    return *this;
+  }
+
+private:
+  void handleNewAssumedValue(base_t Value) override {
+    takeAssumedMinimum(Value);
+  }
+  void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); }
+  void joinOR(base_t AssumedValue, base_t KnownValue) override {
+    this->Known = std::max(this->Known, KnownValue);
+    this->Assumed = std::max(this->Assumed, AssumedValue);
+  }
+  void joinAND(base_t AssumedValue, base_t KnownValue) override {
+    this->Known = std::min(this->Known, KnownValue);
+    this->Assumed = std::min(this->Assumed, AssumedValue);
+  }
+};
+
+/// Specialization of the integer state for a decreasing value, hence 0 is the
+/// best state and ~0u the worst.
+template <typename base_ty = uint32_t>
+struct DecIntegerState : public IntegerStateBase<base_ty, 0, ~base_ty(0)> {
+  using base_t = base_ty;
+
+  /// Take maximum of assumed and \p Value.
+  DecIntegerState &takeAssumedMaximum(base_t Value) {
+    // Make sure we never lose "known value".
+    this->Assumed = std::min(std::max(this->Assumed, Value), this->Known);
+    return *this;
+  }
+
+  /// Take minimum of known and \p Value.
+  DecIntegerState &takeKnownMinimum(base_t Value) {
+    // Make sure we never lose "known value".
+    this->Assumed = std::min(Value, this->Assumed);
+    this->Known = std::min(Value, this->Known);
+    return *this;
+  }
+
+private:
+  void handleNewAssumedValue(base_t Value) override {
+    takeAssumedMaximum(Value);
+  }
+  void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); }
+  void joinOR(base_t AssumedValue, base_t KnownValue) override {
+    this->Assumed = std::min(this->Assumed, KnownValue);
+    this->Assumed = std::min(this->Assumed, AssumedValue);
+  }
+  void joinAND(base_t AssumedValue, base_t KnownValue) override {
+    this->Assumed = std::max(this->Assumed, KnownValue);
+    this->Assumed = std::max(this->Assumed, AssumedValue);
+  }
+};
+
+/// Simple wrapper for a single bit (boolean) state.
+struct BooleanState : public IntegerStateBase<bool, true, false> {
+  using super = IntegerStateBase<bool, true, false>;
+  using base_t = IntegerStateBase::base_t;
+
+  BooleanState() = default;
+  BooleanState(base_t Assumed) : super(Assumed) {}
+
+  /// Set the assumed value to \p Value but never below the known one.
+  void setAssumed(bool Value) { Assumed &= (Known | Value); }
+
+  /// Set the known and asssumed value to \p Value.
+  void setKnown(bool Value) {
+    Known |= Value;
+    Assumed |= Value;
+  }
+
+  /// Return true if the state is assumed to hold.
+  bool isAssumed() const { return getAssumed(); }
+
+  /// Return true if the state is known to hold.
+  bool isKnown() const { return getKnown(); }
+
+private:
+  void handleNewAssumedValue(base_t Value) override {
+    if (!Value)
+      Assumed = Known;
+  }
+  void handleNewKnownValue(base_t Value) override {
+    if (Value)
+      Known = (Assumed = Value);
+  }
+  void joinOR(base_t AssumedValue, base_t KnownValue) override {
+    Known |= KnownValue;
+    Assumed |= AssumedValue;
+  }
+  void joinAND(base_t AssumedValue, base_t KnownValue) override {
+    Known &= KnownValue;
+    Assumed &= AssumedValue;
+  }
+};
+
+/// State for an integer range.
+struct IntegerRangeState : public AbstractState {
+
+  /// Bitwidth of the associated value.
+  uint32_t BitWidth;
+
+  /// State representing assumed range, initially set to empty.
+  ConstantRange Assumed;
+
+  /// State representing known range, initially set to [-inf, inf].
+  ConstantRange Known;
+
+  IntegerRangeState(uint32_t BitWidth)
+      : BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)),
+        Known(ConstantRange::getFull(BitWidth)) {}
+
+  IntegerRangeState(const ConstantRange &CR)
+      : BitWidth(CR.getBitWidth()), Assumed(CR),
+        Known(getWorstState(CR.getBitWidth())) {}
+
+  /// Return the worst possible representable state.
+  static ConstantRange getWorstState(uint32_t BitWidth) {
+    return ConstantRange::getFull(BitWidth);
+  }
+
+  /// Return the best possible representable state.
+  static ConstantRange getBestState(uint32_t BitWidth) {
+    return ConstantRange::getEmpty(BitWidth);
+  }
+  static ConstantRange getBestState(const IntegerRangeState &IRS) {
+    return getBestState(IRS.getBitWidth());
+  }
+
+  /// Return associated values' bit width.
+  uint32_t getBitWidth() const { return BitWidth; }
+
+  /// See AbstractState::isValidState()
+  bool isValidState() const override {
+    return BitWidth > 0 && !Assumed.isFullSet();
+  }
+
+  /// See AbstractState::isAtFixpoint()
+  bool isAtFixpoint() const override { return Assumed == Known; }
+
+  /// See AbstractState::indicateOptimisticFixpoint(...)
+  ChangeStatus indicateOptimisticFixpoint() override {
+    Known = Assumed;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...)
+  ChangeStatus indicatePessimisticFixpoint() override {
+    Assumed = Known;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// Return the known state encoding
+  ConstantRange getKnown() const { return Known; }
+
+  /// Return the assumed state encoding.
+  ConstantRange getAssumed() const { return Assumed; }
+
+  /// Unite assumed range with the passed state.
+  void unionAssumed(const ConstantRange &R) {
+    // Don't lose a known range.
+    Assumed = Assumed.unionWith(R).intersectWith(Known);
+  }
+
+  /// See IntegerRangeState::unionAssumed(..).
+  void unionAssumed(const IntegerRangeState &R) {
+    unionAssumed(R.getAssumed());
+  }
+
+  /// Intersect known range with the passed state.
+  void intersectKnown(const ConstantRange &R) {
+    Assumed = Assumed.intersectWith(R);
+    Known = Known.intersectWith(R);
+  }
+
+  /// See IntegerRangeState::intersectKnown(..).
+  void intersectKnown(const IntegerRangeState &R) {
+    intersectKnown(R.getKnown());
+  }
+
+  /// Equality for IntegerRangeState.
+  bool operator==(const IntegerRangeState &R) const {
+    return getAssumed() == R.getAssumed() && getKnown() == R.getKnown();
+  }
+
+  /// "Clamp" this state with \p R. The result is subtype dependent but it is
+  /// intended that only information assumed in both states will be assumed in
+  /// this one afterwards.
+  IntegerRangeState operator^=(const IntegerRangeState &R) {
+    // NOTE: `^=` operator seems like `intersect` but in this case, we need to
+    // take `union`.
+    unionAssumed(R);
+    return *this;
+  }
+
+  IntegerRangeState operator&=(const IntegerRangeState &R) {
+    // NOTE: `&=` operator seems like `intersect` but in this case, we need to
+    // take `union`.
+    Known = Known.unionWith(R.getKnown());
+    Assumed = Assumed.unionWith(R.getAssumed());
+    return *this;
+  }
+};
+
+/// Simple state for a set.
+///
+/// This represents a state containing a set of values. The interface supports
+/// modelling sets that contain all possible elements. The state's internal
+/// value is modified using union or intersection operations.
+template <typename BaseTy> struct SetState : public AbstractState {
+  /// A wrapper around a set that has semantics for handling unions and
+  /// intersections with a "universal" set that contains all elements.
+  struct SetContents {
+    /// Creates a universal set with no concrete elements or an empty set.
+    SetContents(bool Universal) : Universal(Universal) {}
+
+    /// Creates a non-universal set with concrete values.
+    SetContents(const DenseSet<BaseTy> &Assumptions)
+        : Universal(false), Set(Assumptions) {}
+
+    SetContents(bool Universal, const DenseSet<BaseTy> &Assumptions)
+        : Universal(Universal), Set(Assumptions) {}
+
+    const DenseSet<BaseTy> &getSet() const { return Set; }
+
+    bool isUniversal() const { return Universal; }
+
+    bool empty() const { return Set.empty() && !Universal; }
+
+    /// Finds A := A ^ B where A or B could be the "Universal" set which
+    /// contains every possible attribute. Returns true if changes were made.
+    bool getIntersection(const SetContents &RHS) {
+      bool IsUniversal = Universal;
+      unsigned Size = Set.size();
+
+      // A := A ^ U = A
+      if (RHS.isUniversal())
+        return false;
+
+      // A := U ^ B = B
+      if (Universal)
+        Set = RHS.getSet();
+      else
+        set_intersect(Set, RHS.getSet());
+
+      Universal &= RHS.isUniversal();
+      return IsUniversal != Universal || Size != Set.size();
+    }
+
+    /// Finds A := A u B where A or B could be the "Universal" set which
+    /// contains every possible attribute. returns true if changes were made.
+    bool getUnion(const SetContents &RHS) {
+      bool IsUniversal = Universal;
+      unsigned Size = Set.size();
+
+      // A := A u U = U = U u B
+      if (!RHS.isUniversal() && !Universal)
+        set_union(Set, RHS.getSet());
+
+      Universal |= RHS.isUniversal();
+      return IsUniversal != Universal || Size != Set.size();
+    }
+
+  private:
+    /// Indicates if this set is "universal", containing every possible element.
+    bool Universal;
+
+    /// The set of currently active assumptions.
+    DenseSet<BaseTy> Set;
+  };
+
+  SetState() : Known(false), Assumed(true), IsAtFixedpoint(false) {}
+
+  /// Initializes the known state with an initial set and initializes the
+  /// assumed state as universal.
+  SetState(const DenseSet<BaseTy> &Known)
+      : Known(Known), Assumed(true), IsAtFixedpoint(false) {}
+
+  /// See AbstractState::isValidState()
+  bool isValidState() const override { return !Assumed.empty(); }
+
+  /// See AbstractState::isAtFixpoint()
+  bool isAtFixpoint() const override { return IsAtFixedpoint; }
+
+  /// See AbstractState::indicateOptimisticFixpoint(...)
+  ChangeStatus indicateOptimisticFixpoint() override {
+    IsAtFixedpoint = true;
+    Known = Assumed;
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...)
+  ChangeStatus indicatePessimisticFixpoint() override {
+    IsAtFixedpoint = true;
+    Assumed = Known;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// Return the known state encoding.
+  const SetContents &getKnown() const { return Known; }
+
+  /// Return the assumed state encoding.
+  const SetContents &getAssumed() const { return Assumed; }
+
+  /// Returns if the set state contains the element.
+  bool setContains(const BaseTy &Elem) const {
+    return Assumed.getSet().contains(Elem) || Known.getSet().contains(Elem);
+  }
+
+  /// Performs the set intersection between this set and \p RHS. Returns true if
+  /// changes were made.
+  bool getIntersection(const SetContents &RHS) {
+    bool IsUniversal = Assumed.isUniversal();
+    unsigned SizeBefore = Assumed.getSet().size();
+
+    // Get intersection and make sure that the known set is still a proper
+    // subset of the assumed set. A := K u (A ^ R).
+    Assumed.getIntersection(RHS);
+    Assumed.getUnion(Known);
+
+    return SizeBefore != Assumed.getSet().size() ||
+           IsUniversal != Assumed.isUniversal();
+  }
+
+  /// Performs the set union between this set and \p RHS. Returns true if
+  /// changes were made.
+  bool getUnion(const SetContents &RHS) { return Assumed.getUnion(RHS); }
+
+private:
+  /// The set of values known for this state.
+  SetContents Known;
+
+  /// The set of assumed values for this state.
+  SetContents Assumed;
+
+  bool IsAtFixedpoint;
+};
+
+/// Helper to tie a abstract state implementation to an abstract attribute.
+template <typename StateTy, typename BaseType, class... Ts>
+struct StateWrapper : public BaseType, public StateTy {
+  /// Provide static access to the type of the state.
+  using StateType = StateTy;
+
+  StateWrapper(const IRPosition &IRP, Ts... Args)
+      : BaseType(IRP), StateTy(Args...) {}
+
+  /// See AbstractAttribute::getState(...).
+  StateType &getState() override { return *this; }
+
+  /// See AbstractAttribute::getState(...).
+  const StateType &getState() const override { return *this; }
+};
+
+/// Helper class that provides common functionality to manifest IR attributes.
+template <Attribute::AttrKind AK, typename BaseType, typename AAType>
+struct IRAttribute : public BaseType {
+  IRAttribute(const IRPosition &IRP) : BaseType(IRP) {}
+
+  /// Most boolean IRAttribute AAs don't do anything non-trivial
+  /// in their initializers while non-boolean ones often do. Subclasses can
+  /// change this.
+  static bool hasTrivialInitializer() { return Attribute::isEnumAttrKind(AK); }
+
+  /// Compile time access to the IR attribute kind.
+  static constexpr Attribute::AttrKind IRAttributeKind = AK;
+
+  /// Return true if the IR attribute(s) associated with this AA are implied for
+  /// an undef value.
+  static bool isImpliedByUndef() { return true; }
+
+  /// Return true if the IR attribute(s) associated with this AA are implied for
+  /// an poison value.
+  static bool isImpliedByPoison() { return true; }
+
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind = AK,
+                            bool IgnoreSubsumingPositions = false) {
+    if (AAType::isImpliedByUndef() && isa<UndefValue>(IRP.getAssociatedValue()))
+      return true;
+    if (AAType::isImpliedByPoison() &&
+        isa<PoisonValue>(IRP.getAssociatedValue()))
+      return true;
+    return A.hasAttr(IRP, {ImpliedAttributeKind}, IgnoreSubsumingPositions,
+                     ImpliedAttributeKind);
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    if (isa<UndefValue>(this->getIRPosition().getAssociatedValue()))
+      return ChangeStatus::UNCHANGED;
+    SmallVector<Attribute, 4> DeducedAttrs;
+    getDeducedAttributes(A, this->getAnchorValue().getContext(), DeducedAttrs);
+    if (DeducedAttrs.empty())
+      return ChangeStatus::UNCHANGED;
+    return A.manifestAttrs(this->getIRPosition(), DeducedAttrs);
+  }
+
+  /// Return the kind that identifies the abstract attribute implementation.
+  Attribute::AttrKind getAttrKind() const { return AK; }
+
+  /// Return the deduced attributes in \p Attrs.
+  virtual void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                                    SmallVectorImpl<Attribute> &Attrs) const {
+    Attrs.emplace_back(Attribute::get(Ctx, getAttrKind()));
+  }
+};
+
+/// Base struct for all "concrete attribute" deductions.
+///
+/// The abstract attribute is a minimal interface that allows the Attributor to
+/// orchestrate the abstract/fixpoint analysis. The design allows to hide away
+/// implementation choices made for the subclasses but also to structure their
+/// implementation and simplify the use of other abstract attributes in-flight.
+///
+/// To allow easy creation of new attributes, most methods have default
+/// implementations. The ones that do not are generally straight forward, except
+/// `AbstractAttribute::updateImpl` which is the location of most reasoning
+/// associated with the abstract attribute. The update is invoked by the
+/// Attributor in case the situation used to justify the current optimistic
+/// state might have changed. The Attributor determines this automatically
+/// by monitoring the `Attributor::getAAFor` calls made by abstract attributes.
+///
+/// The `updateImpl` method should inspect the IR and other abstract attributes
+/// in-flight to justify the best possible (=optimistic) state. The actual
+/// implementation is, similar to the underlying abstract state encoding, not
+/// exposed. In the most common case, the `updateImpl` will go through a list of
+/// reasons why its optimistic state is valid given the current information. If
+/// any combination of them holds and is sufficient to justify the current
+/// optimistic state, the method shall return UNCHAGED. If not, the optimistic
+/// state is adjusted to the situation and the method shall return CHANGED.
+///
+/// If the manifestation of the "concrete attribute" deduced by the subclass
+/// differs from the "default" behavior, which is a (set of) LLVM-IR
+/// attribute(s) for an argument, call site argument, function return value, or
+/// function, the `AbstractAttribute::manifest` method should be overloaded.
+///
+/// NOTE: If the state obtained via getState() is INVALID, thus if
+///       AbstractAttribute::getState().isValidState() returns false, no
+///       information provided by the methods of this class should be used.
+/// NOTE: The Attributor currently has certain limitations to what we can do.
+///       As a general rule of thumb, "concrete" abstract attributes should *for
+///       now* only perform "backward" information propagation. That means
+///       optimistic information obtained through abstract attributes should
+///       only be used at positions that precede the origin of the information
+///       with regards to the program flow. More practically, information can
+///       *now* be propagated from instructions to their enclosing function, but
+///       *not* from call sites to the called function. The mechanisms to allow
+///       both directions will be added in the future.
+/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
+///       described in the file comment.
+struct AbstractAttribute : public IRPosition, public AADepGraphNode {
+  using StateType = AbstractState;
+
+  AbstractAttribute(const IRPosition &IRP) : IRPosition(IRP) {}
+
+  /// Virtual destructor.
+  virtual ~AbstractAttribute() = default;
+
+  /// Compile time access to the IR attribute kind.
+  static constexpr Attribute::AttrKind IRAttributeKind = Attribute::None;
+
+  /// This function is used to identify if an \p DGN is of type
+  /// AbstractAttribute so that the dyn_cast and cast can use such information
+  /// to cast an AADepGraphNode to an AbstractAttribute.
+  ///
+  /// We eagerly return true here because all AADepGraphNodes except for the
+  /// Synthethis Node are of type AbstractAttribute
+  static bool classof(const AADepGraphNode *DGN) { return true; }
+
+  /// Return false if this AA does anything non-trivial (hence not done by
+  /// default) in its initializer.
+  static bool hasTrivialInitializer() { return false; }
+
+  /// Return true if this AA requires a "callee" (or an associted function) for
+  /// a call site positon. Default is optimistic to minimize AAs.
+  static bool requiresCalleeForCallBase() { return false; }
+
+  /// Return true if this AA requires non-asm "callee" for a call site positon.
+  static bool requiresNonAsmForCallBase() { return true; }
+
+  /// Return true if this AA requires all callees for an argument or function
+  /// positon.
+  static bool requiresCallersForArgOrFunction() { return false; }
+
+  /// Return false if an AA should not be created for \p IRP.
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    return true;
+  }
+
+  /// Return false if an AA should not be updated for \p IRP.
+  static bool isValidIRPositionForUpdate(Attributor &A, const IRPosition &IRP) {
+    Function *AssociatedFn = IRP.getAssociatedFunction();
+    bool IsFnInterface = IRP.isFnInterfaceKind();
+    assert((!IsFnInterface || AssociatedFn) &&
+           "Function interface without a function?");
+
+    // TODO: Not all attributes require an exact definition. Find a way to
+    //       enable deduction for some but not all attributes in case the
+    //       definition might be changed at runtime, see also
+    //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
+    // TODO: We could always determine abstract attributes and if sufficient
+    //       information was found we could duplicate the functions that do not
+    //       have an exact definition.
+    return !IsFnInterface || A.isFunctionIPOAmendable(*AssociatedFn);
+  }
+
+  /// Initialize the state with the information in the Attributor \p A.
+  ///
+  /// This function is called by the Attributor once all abstract attributes
+  /// have been identified. It can and shall be used for task like:
+  ///  - identify existing knowledge in the IR and use it for the "known state"
+  ///  - perform any work that is not going to change over time, e.g., determine
+  ///    a subset of the IR, or attributes in-flight, that have to be looked at
+  ///    in the `updateImpl` method.
+  virtual void initialize(Attributor &A) {}
+
+  /// A query AA is always scheduled as long as we do updates because it does
+  /// lazy computation that cannot be determined to be done from the outside.
+  /// However, while query AAs will not be fixed if they do not have outstanding
+  /// dependences, we will only schedule them like other AAs. If a query AA that
+  /// received a new query it needs to request an update via
+  /// `Attributor::requestUpdateForAA`.
+  virtual bool isQueryAA() const { return false; }
+
+  /// Return the internal abstract state for inspection.
+  virtual StateType &getState() = 0;
+  virtual const StateType &getState() const = 0;
+
+  /// Return an IR position, see struct IRPosition.
+  const IRPosition &getIRPosition() const { return *this; };
+  IRPosition &getIRPosition() { return *this; };
+
+  /// Helper functions, for debug purposes only.
+  ///{
+  void print(raw_ostream &OS) const { print(nullptr, OS); }
+  void print(Attributor *, raw_ostream &OS) const override;
+  virtual void printWithDeps(raw_ostream &OS) const;
+  void dump() const { this->print(dbgs()); }
+
+  /// This function should return the "summarized" assumed state as string.
+  virtual const std::string getAsStr(Attributor *A) const = 0;
+
+  /// This function should return the name of the AbstractAttribute
+  virtual const std::string getName() const = 0;
+
+  /// This function should return the address of the ID of the AbstractAttribute
+  virtual const char *getIdAddr() const = 0;
+  ///}
+
+  /// Allow the Attributor access to the protected methods.
+  friend struct Attributor;
+
+protected:
+  /// Hook for the Attributor to trigger an update of the internal state.
+  ///
+  /// If this attribute is already fixed, this method will return UNCHANGED,
+  /// otherwise it delegates to `AbstractAttribute::updateImpl`.
+  ///
+  /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
+  ChangeStatus update(Attributor &A);
+
+  /// Hook for the Attributor to trigger the manifestation of the information
+  /// represented by the abstract attribute in the LLVM-IR.
+  ///
+  /// \Return CHANGED if the IR was altered, otherwise UNCHANGED.
+  virtual ChangeStatus manifest(Attributor &A) {
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// Hook to enable custom statistic tracking, called after manifest that
+  /// resulted in a change if statistics are enabled.
+  ///
+  /// We require subclasses to provide an implementation so we remember to
+  /// add statistics for them.
+  virtual void trackStatistics() const = 0;
+
+  /// The actual update/transfer function which has to be implemented by the
+  /// derived classes.
+  ///
+  /// If it is called, the environment has changed and we have to determine if
+  /// the current information is still valid or adjust it otherwise.
+  ///
+  /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
+  virtual ChangeStatus updateImpl(Attributor &A) = 0;
+};
+
+/// Forward declarations of output streams for debug purposes.
+///
+///{
+raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA);
+raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S);
+raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind);
+raw_ostream &operator<<(raw_ostream &OS, const IRPosition &);
+raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State);
+template <typename base_ty, base_ty BestState, base_ty WorstState>
+raw_ostream &
+operator<<(raw_ostream &OS,
+           const IntegerStateBase<base_ty, BestState, WorstState> &S) {
+  return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
+            << static_cast<const AbstractState &>(S);
+}
+raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State);
+///}
+
+struct AttributorPass : public PassInfoMixin<AttributorPass> {
+  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
+};
+struct AttributorCGSCCPass : public PassInfoMixin<AttributorCGSCCPass> {
+  PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
+                        LazyCallGraph &CG, CGSCCUpdateResult &UR);
+};
+
+/// A more lightweight version of the Attributor which only runs attribute
+/// inference but no simplifications.
+struct AttributorLightPass : public PassInfoMixin<AttributorLightPass> {
+  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
+};
+
+/// A more lightweight version of the Attributor which only runs attribute
+/// inference but no simplifications.
+struct AttributorLightCGSCCPass
+    : public PassInfoMixin<AttributorLightCGSCCPass> {
+  PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
+                        LazyCallGraph &CG, CGSCCUpdateResult &UR);
+};
+
+/// Helper function to clamp a state \p S of type \p StateType with the
+/// information in \p R and indicate/return if \p S did change (as-in update is
+/// required to be run again).
+template <typename StateType>
+ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
+  auto Assumed = S.getAssumed();
+  S ^= R;
+  return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
+                                   : ChangeStatus::CHANGED;
+}
+
+/// ----------------------------------------------------------------------------
+///                       Abstract Attribute Classes
+/// ----------------------------------------------------------------------------
+
+struct AANoUnwind
+    : public IRAttribute<Attribute::NoUnwind,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoUnwind> {
+  AANoUnwind(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// Returns true if nounwind is assumed.
+  bool isAssumedNoUnwind() const { return getAssumed(); }
+
+  /// Returns true if nounwind is known.
+  bool isKnownNoUnwind() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoUnwind"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoUnwind
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+struct AANoSync
+    : public IRAttribute<Attribute::NoSync,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoSync> {
+  AANoSync(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false) {
+    // Note: This is also run for non-IPO amendable functions.
+    assert(ImpliedAttributeKind == Attribute::NoSync);
+    if (A.hasAttr(IRP, {Attribute::NoSync}, IgnoreSubsumingPositions,
+                  Attribute::NoSync))
+      return true;
+
+    // Check for readonly + non-convergent.
+    // TODO: We should be able to use hasAttr for Attributes, not only
+    // AttrKinds.
+    Function *F = IRP.getAssociatedFunction();
+    if (!F || F->isConvergent())
+      return false;
+
+    SmallVector<Attribute, 2> Attrs;
+    A.getAttrs(IRP, {Attribute::Memory}, Attrs, IgnoreSubsumingPositions);
+
+    MemoryEffects ME = MemoryEffects::unknown();
+    for (const Attribute &Attr : Attrs)
+      ME &= Attr.getMemoryEffects();
+
+    if (!ME.onlyReadsMemory())
+      return false;
+
+    A.manifestAttrs(IRP, Attribute::get(F->getContext(), Attribute::NoSync));
+    return true;
+  }
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.isFunctionScope() &&
+        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Returns true if "nosync" is assumed.
+  bool isAssumedNoSync() const { return getAssumed(); }
+
+  /// Returns true if "nosync" is known.
+  bool isKnownNoSync() const { return getKnown(); }
+
+  /// Helper function used to determine whether an instruction is non-relaxed
+  /// atomic. In other words, if an atomic instruction does not have unordered
+  /// or monotonic ordering
+  static bool isNonRelaxedAtomic(const Instruction *I);
+
+  /// Helper function specific for intrinsics which are potentially volatile.
+  static bool isNoSyncIntrinsic(const Instruction *I);
+
+  /// Helper function to determine if \p CB is an aligned (GPU) barrier. Aligned
+  /// barriers have to be executed by all threads. The flag \p ExecutedAligned
+  /// indicates if the call is executed by all threads in a (thread) block in an
+  /// aligned way. If that is the case, non-aligned barriers are effectively
+  /// aligned barriers.
+  static bool isAlignedBarrier(const CallBase &CB, bool ExecutedAligned);
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoSync"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoSync
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for all nonnull attributes.
+struct AAMustProgress
+    : public IRAttribute<Attribute::MustProgress,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AAMustProgress> {
+  AAMustProgress(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false) {
+    // Note: This is also run for non-IPO amendable functions.
+    assert(ImpliedAttributeKind == Attribute::MustProgress);
+    return A.hasAttr(IRP, {Attribute::MustProgress, Attribute::WillReturn},
+                     IgnoreSubsumingPositions, Attribute::MustProgress);
+  }
+
+  /// Return true if we assume that the underlying value is nonnull.
+  bool isAssumedMustProgress() const { return getAssumed(); }
+
+  /// Return true if we know that underlying value is nonnull.
+  bool isKnownMustProgress() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAMustProgress &createForPosition(const IRPosition &IRP,
+                                           Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAMustProgress"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAMustProgress
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for all nonnull attributes.
+struct AANonNull
+    : public IRAttribute<Attribute::NonNull,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANonNull> {
+  AANonNull(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::hasTrivialInitializer.
+  static bool hasTrivialInitializer() { return false; }
+
+  /// See IRAttribute::isImpliedByUndef.
+  /// Undef is not necessarily nonnull as nonnull + noundef would cause poison.
+  /// Poison implies nonnull though.
+  static bool isImpliedByUndef() { return false; }
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// See AbstractAttribute::isImpliedByIR(...).
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false);
+
+  /// Return true if we assume that the underlying value is nonnull.
+  bool isAssumedNonNull() const { return getAssumed(); }
+
+  /// Return true if we know that underlying value is nonnull.
+  bool isKnownNonNull() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANonNull"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANonNull
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract attribute for norecurse.
+struct AANoRecurse
+    : public IRAttribute<Attribute::NoRecurse,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoRecurse> {
+  AANoRecurse(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// Return true if "norecurse" is assumed.
+  bool isAssumedNoRecurse() const { return getAssumed(); }
+
+  /// Return true if "norecurse" is known.
+  bool isKnownNoRecurse() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoRecurse"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoRecurse
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract attribute for willreturn.
+struct AAWillReturn
+    : public IRAttribute<Attribute::WillReturn,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AAWillReturn> {
+  AAWillReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false) {
+    // Note: This is also run for non-IPO amendable functions.
+    assert(ImpliedAttributeKind == Attribute::WillReturn);
+    if (IRAttribute::isImpliedByIR(A, IRP, ImpliedAttributeKind,
+                                   IgnoreSubsumingPositions))
+      return true;
+    if (!isImpliedByMustprogressAndReadonly(A, IRP))
+      return false;
+    A.manifestAttrs(IRP, Attribute::get(IRP.getAnchorValue().getContext(),
+                                        Attribute::WillReturn));
+    return true;
+  }
+
+  /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
+  static bool isImpliedByMustprogressAndReadonly(Attributor &A,
+                                                 const IRPosition &IRP) {
+    // Check for `mustprogress` in the scope and the associated function which
+    // might be different if this is a call site.
+    if (!A.hasAttr(IRP, {Attribute::MustProgress}))
+      return false;
+
+    SmallVector<Attribute, 2> Attrs;
+    A.getAttrs(IRP, {Attribute::Memory}, Attrs,
+               /* IgnoreSubsumingPositions */ false);
+
+    MemoryEffects ME = MemoryEffects::unknown();
+    for (const Attribute &Attr : Attrs)
+      ME &= Attr.getMemoryEffects();
+    return ME.onlyReadsMemory();
+  }
+
+  /// Return true if "willreturn" is assumed.
+  bool isAssumedWillReturn() const { return getAssumed(); }
+
+  /// Return true if "willreturn" is known.
+  bool isKnownWillReturn() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAWillReturn"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AAWillReturn
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract attribute for undefined behavior.
+struct AAUndefinedBehavior
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+  AAUndefinedBehavior(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// Return true if "undefined behavior" is assumed.
+  bool isAssumedToCauseUB() const { return getAssumed(); }
+
+  /// Return true if "undefined behavior" is assumed for a specific instruction.
+  virtual bool isAssumedToCauseUB(Instruction *I) const = 0;
+
+  /// Return true if "undefined behavior" is known.
+  bool isKnownToCauseUB() const { return getKnown(); }
+
+  /// Return true if "undefined behavior" is known for a specific instruction.
+  virtual bool isKnownToCauseUB(Instruction *I) const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAUndefinedBehavior &createForPosition(const IRPosition &IRP,
+                                                Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAUndefinedBehavior"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAUndefineBehavior
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface to determine reachability of point A to B.
+struct AAIntraFnReachability
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+  AAIntraFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// Returns true if 'From' instruction is assumed to reach, 'To' instruction.
+  /// Users should provide two positions they are interested in, and the class
+  /// determines (and caches) reachability.
+  virtual bool isAssumedReachable(
+      Attributor &A, const Instruction &From, const Instruction &To,
+      const AA::InstExclusionSetTy *ExclusionSet = nullptr) const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAIntraFnReachability &createForPosition(const IRPosition &IRP,
+                                                  Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAIntraFnReachability"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAIntraFnReachability
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for all noalias attributes.
+struct AANoAlias
+    : public IRAttribute<Attribute::NoAlias,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoAlias> {
+  AANoAlias(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// See IRAttribute::isImpliedByIR
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false);
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// Return true if we assume that the underlying value is alias.
+  bool isAssumedNoAlias() const { return getAssumed(); }
+
+  /// Return true if we know that underlying value is noalias.
+  bool isKnownNoAlias() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoAlias"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoAlias
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An AbstractAttribute for nofree.
+struct AANoFree
+    : public IRAttribute<Attribute::NoFree,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoFree> {
+  AANoFree(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See IRAttribute::isImpliedByIR
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false) {
+    // Note: This is also run for non-IPO amendable functions.
+    assert(ImpliedAttributeKind == Attribute::NoFree);
+    return A.hasAttr(
+        IRP, {Attribute::ReadNone, Attribute::ReadOnly, Attribute::NoFree},
+        IgnoreSubsumingPositions, Attribute::NoFree);
+  }
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.isFunctionScope() &&
+        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Return true if "nofree" is assumed.
+  bool isAssumedNoFree() const { return getAssumed(); }
+
+  /// Return true if "nofree" is known.
+  bool isKnownNoFree() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoFree"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoFree
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An AbstractAttribute for noreturn.
+struct AANoReturn
+    : public IRAttribute<Attribute::NoReturn,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoReturn> {
+  AANoReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// Return true if the underlying object is assumed to never return.
+  bool isAssumedNoReturn() const { return getAssumed(); }
+
+  /// Return true if the underlying object is known to never return.
+  bool isKnownNoReturn() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoReturn"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoReturn
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for liveness abstract attribute.
+struct AAIsDead
+    : public StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute> {
+  using Base = StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute>;
+  AAIsDead(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION)
+      return isa<Function>(IRP.getAnchorValue()) &&
+             !cast<Function>(IRP.getAnchorValue()).isDeclaration();
+    return true;
+  }
+
+  /// State encoding bits. A set bit in the state means the property holds.
+  enum {
+    HAS_NO_EFFECT = 1 << 0,
+    IS_REMOVABLE = 1 << 1,
+
+    IS_DEAD = HAS_NO_EFFECT | IS_REMOVABLE,
+  };
+  static_assert(IS_DEAD == getBestState(), "Unexpected BEST_STATE value");
+
+protected:
+  /// The query functions are protected such that other attributes need to go
+  /// through the Attributor interfaces: `Attributor::isAssumedDead(...)`
+
+  /// Returns true if the underlying value is assumed dead.
+  virtual bool isAssumedDead() const = 0;
+
+  /// Returns true if the underlying value is known dead.
+  virtual bool isKnownDead() const = 0;
+
+  /// Returns true if \p BB is known dead.
+  virtual bool isKnownDead(const BasicBlock *BB) const = 0;
+
+  /// Returns true if \p I is assumed dead.
+  virtual bool isAssumedDead(const Instruction *I) const = 0;
+
+  /// Returns true if \p I is known dead.
+  virtual bool isKnownDead(const Instruction *I) const = 0;
+
+  /// Return true if the underlying value is a store that is known to be
+  /// removable. This is different from dead stores as the removable store
+  /// can have an effect on live values, especially loads, but that effect
+  /// is propagated which allows us to remove the store in turn.
+  virtual bool isRemovableStore() const { return false; }
+
+  /// This method is used to check if at least one instruction in a collection
+  /// of instructions is live.
+  template <typename T> bool isLiveInstSet(T begin, T end) const {
+    for (const auto &I : llvm::make_range(begin, end)) {
+      assert(I->getFunction() == getIRPosition().getAssociatedFunction() &&
+             "Instruction must be in the same anchor scope function.");
+
+      if (!isAssumedDead(I))
+        return true;
+    }
+
+    return false;
+  }
+
+public:
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// Determine if \p F might catch asynchronous exceptions.
+  static bool mayCatchAsynchronousExceptions(const Function &F) {
+    return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
+  }
+
+  /// Returns true if \p BB is assumed dead.
+  virtual bool isAssumedDead(const BasicBlock *BB) const = 0;
+
+  /// Return if the edge from \p From BB to \p To BB is assumed dead.
+  /// This is specifically useful in AAReachability.
+  virtual bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const {
+    return false;
+  }
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAIsDead"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AAIsDead
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+
+  friend struct Attributor;
+};
+
+/// State for dereferenceable attribute
+struct DerefState : AbstractState {
+
+  static DerefState getBestState() { return DerefState(); }
+  static DerefState getBestState(const DerefState &) { return getBestState(); }
+
+  /// Return the worst possible representable state.
+  static DerefState getWorstState() {
+    DerefState DS;
+    DS.indicatePessimisticFixpoint();
+    return DS;
+  }
+  static DerefState getWorstState(const DerefState &) {
+    return getWorstState();
+  }
+
+  /// State representing for dereferenceable bytes.
+  IncIntegerState<> DerefBytesState;
+
+  /// Map representing for accessed memory offsets and sizes.
+  /// A key is Offset and a value is size.
+  /// If there is a load/store instruction something like,
+  ///   p[offset] = v;
+  /// (offset, sizeof(v)) will be inserted to this map.
+  /// std::map is used because we want to iterate keys in ascending order.
+  std::map<int64_t, uint64_t> AccessedBytesMap;
+
+  /// Helper function to calculate dereferenceable bytes from current known
+  /// bytes and accessed bytes.
+  ///
+  /// int f(int *A){
+  ///    *A = 0;
+  ///    *(A+2) = 2;
+  ///    *(A+1) = 1;
+  ///    *(A+10) = 10;
+  /// }
+  /// ```
+  /// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`.
+  /// AccessedBytesMap is std::map so it is iterated in accending order on
+  /// key(Offset). So KnownBytes will be updated like this:
+  ///
+  /// |Access | KnownBytes
+  /// |(0, 4)| 0 -> 4
+  /// |(4, 4)| 4 -> 8
+  /// |(8, 4)| 8 -> 12
+  /// |(40, 4) | 12 (break)
+  void computeKnownDerefBytesFromAccessedMap() {
+    int64_t KnownBytes = DerefBytesState.getKnown();
+    for (auto &Access : AccessedBytesMap) {
+      if (KnownBytes < Access.first)
+        break;
+      KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second);
+    }
+
+    DerefBytesState.takeKnownMaximum(KnownBytes);
+  }
+
+  /// State representing that whether the value is globaly dereferenceable.
+  BooleanState GlobalState;
+
+  /// See AbstractState::isValidState()
+  bool isValidState() const override { return DerefBytesState.isValidState(); }
+
+  /// See AbstractState::isAtFixpoint()
+  bool isAtFixpoint() const override {
+    return !isValidState() ||
+           (DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint());
+  }
+
+  /// See AbstractState::indicateOptimisticFixpoint(...)
+  ChangeStatus indicateOptimisticFixpoint() override {
+    DerefBytesState.indicateOptimisticFixpoint();
+    GlobalState.indicateOptimisticFixpoint();
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...)
+  ChangeStatus indicatePessimisticFixpoint() override {
+    DerefBytesState.indicatePessimisticFixpoint();
+    GlobalState.indicatePessimisticFixpoint();
+    return ChangeStatus::CHANGED;
+  }
+
+  /// Update known dereferenceable bytes.
+  void takeKnownDerefBytesMaximum(uint64_t Bytes) {
+    DerefBytesState.takeKnownMaximum(Bytes);
+
+    // Known bytes might increase.
+    computeKnownDerefBytesFromAccessedMap();
+  }
+
+  /// Update assumed dereferenceable bytes.
+  void takeAssumedDerefBytesMinimum(uint64_t Bytes) {
+    DerefBytesState.takeAssumedMinimum(Bytes);
+  }
+
+  /// Add accessed bytes to the map.
+  void addAccessedBytes(int64_t Offset, uint64_t Size) {
+    uint64_t &AccessedBytes = AccessedBytesMap[Offset];
+    AccessedBytes = std::max(AccessedBytes, Size);
+
+    // Known bytes might increase.
+    computeKnownDerefBytesFromAccessedMap();
+  }
+
+  /// Equality for DerefState.
+  bool operator==(const DerefState &R) const {
+    return this->DerefBytesState == R.DerefBytesState &&
+           this->GlobalState == R.GlobalState;
+  }
+
+  /// Inequality for DerefState.
+  bool operator!=(const DerefState &R) const { return !(*this == R); }
+
+  /// See IntegerStateBase::operator^=
+  DerefState operator^=(const DerefState &R) {
+    DerefBytesState ^= R.DerefBytesState;
+    GlobalState ^= R.GlobalState;
+    return *this;
+  }
+
+  /// See IntegerStateBase::operator+=
+  DerefState operator+=(const DerefState &R) {
+    DerefBytesState += R.DerefBytesState;
+    GlobalState += R.GlobalState;
+    return *this;
+  }
+
+  /// See IntegerStateBase::operator&=
+  DerefState operator&=(const DerefState &R) {
+    DerefBytesState &= R.DerefBytesState;
+    GlobalState &= R.GlobalState;
+    return *this;
+  }
+
+  /// See IntegerStateBase::operator|=
+  DerefState operator|=(const DerefState &R) {
+    DerefBytesState |= R.DerefBytesState;
+    GlobalState |= R.GlobalState;
+    return *this;
+  }
+};
+
+/// An abstract interface for all dereferenceable attribute.
+struct AADereferenceable
+    : public IRAttribute<Attribute::Dereferenceable,
+                         StateWrapper<DerefState, AbstractAttribute>,
+                         AADereferenceable> {
+  AADereferenceable(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Return true if we assume that underlying value is
+  /// dereferenceable(_or_null) globally.
+  bool isAssumedGlobal() const { return GlobalState.getAssumed(); }
+
+  /// Return true if we know that underlying value is
+  /// dereferenceable(_or_null) globally.
+  bool isKnownGlobal() const { return GlobalState.getKnown(); }
+
+  /// Return assumed dereferenceable bytes.
+  uint32_t getAssumedDereferenceableBytes() const {
+    return DerefBytesState.getAssumed();
+  }
+
+  /// Return known dereferenceable bytes.
+  uint32_t getKnownDereferenceableBytes() const {
+    return DerefBytesState.getKnown();
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AADereferenceable &createForPosition(const IRPosition &IRP,
+                                              Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AADereferenceable"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AADereferenceable
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+using AAAlignmentStateType =
+    IncIntegerState<uint64_t, Value::MaximumAlignment, 1>;
+/// An abstract interface for all align attributes.
+struct AAAlign
+    : public IRAttribute<Attribute::Alignment,
+                         StateWrapper<AAAlignmentStateType, AbstractAttribute>,
+                         AAAlign> {
+  AAAlign(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Return assumed alignment.
+  Align getAssumedAlign() const { return Align(getAssumed()); }
+
+  /// Return known alignment.
+  Align getKnownAlign() const { return Align(getKnown()); }
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAAlign"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AAAlign
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface to track if a value leaves it's defining function
+/// instance.
+/// TODO: We should make it a ternary AA tracking uniqueness, and uniqueness
+/// wrt. the Attributor analysis separately.
+struct AAInstanceInfo : public StateWrapper<BooleanState, AbstractAttribute> {
+  AAInstanceInfo(const IRPosition &IRP, Attributor &A)
+      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
+
+  /// Return true if we know that the underlying value is unique in its scope
+  /// wrt. the Attributor analysis. That means it might not be unique but we can
+  /// still use pointer equality without risking to represent two instances with
+  /// one `llvm::Value`.
+  bool isKnownUniqueForAnalysis() const { return isKnown(); }
+
+  /// Return true if we assume that the underlying value is unique in its scope
+  /// wrt. the Attributor analysis. That means it might not be unique but we can
+  /// still use pointer equality without risking to represent two instances with
+  /// one `llvm::Value`.
+  bool isAssumedUniqueForAnalysis() const { return isAssumed(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAInstanceInfo &createForPosition(const IRPosition &IRP,
+                                           Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAInstanceInfo"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAInstanceInfo
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for all nocapture attributes.
+struct AANoCapture
+    : public IRAttribute<
+          Attribute::NoCapture,
+          StateWrapper<BitIntegerState<uint16_t, 7, 0>, AbstractAttribute>,
+          AANoCapture> {
+  AANoCapture(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See IRAttribute::isImpliedByIR
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false);
+
+  /// Update \p State according to the capture capabilities of \p F for position
+  /// \p IRP.
+  static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
+                                                   const Function &F,
+                                                   BitIntegerState &State);
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// State encoding bits. A set bit in the state means the property holds.
+  /// NO_CAPTURE is the best possible state, 0 the worst possible state.
+  enum {
+    NOT_CAPTURED_IN_MEM = 1 << 0,
+    NOT_CAPTURED_IN_INT = 1 << 1,
+    NOT_CAPTURED_IN_RET = 1 << 2,
+
+    /// If we do not capture the value in memory or through integers we can only
+    /// communicate it back as a derived pointer.
+    NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT,
+
+    /// If we do not capture the value in memory, through integers, or as a
+    /// derived pointer we know it is not captured.
+    NO_CAPTURE =
+        NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET,
+  };
+
+  /// Return true if we know that the underlying value is not captured in its
+  /// respective scope.
+  bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); }
+
+  /// Return true if we assume that the underlying value is not captured in its
+  /// respective scope.
+  bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); }
+
+  /// Return true if we know that the underlying value is not captured in its
+  /// respective scope but we allow it to escape through a "return".
+  bool isKnownNoCaptureMaybeReturned() const {
+    return isKnown(NO_CAPTURE_MAYBE_RETURNED);
+  }
+
+  /// Return true if we assume that the underlying value is not captured in its
+  /// respective scope but we allow it to escape through a "return".
+  bool isAssumedNoCaptureMaybeReturned() const {
+    return isAssumed(NO_CAPTURE_MAYBE_RETURNED);
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoCapture"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoCapture
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+struct ValueSimplifyStateType : public AbstractState {
+
+  ValueSimplifyStateType(Type *Ty) : Ty(Ty) {}
+
+  static ValueSimplifyStateType getBestState(Type *Ty) {
+    return ValueSimplifyStateType(Ty);
+  }
+  static ValueSimplifyStateType getBestState(const ValueSimplifyStateType &VS) {
+    return getBestState(VS.Ty);
+  }
+
+  /// Return the worst possible representable state.
+  static ValueSimplifyStateType getWorstState(Type *Ty) {
+    ValueSimplifyStateType DS(Ty);
+    DS.indicatePessimisticFixpoint();
+    return DS;
+  }
+  static ValueSimplifyStateType
+  getWorstState(const ValueSimplifyStateType &VS) {
+    return getWorstState(VS.Ty);
+  }
+
+  /// See AbstractState::isValidState(...)
+  bool isValidState() const override { return BS.isValidState(); }
+
+  /// See AbstractState::isAtFixpoint(...)
+  bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
+
+  /// Return the assumed state encoding.
+  ValueSimplifyStateType getAssumed() { return *this; }
+  const ValueSimplifyStateType &getAssumed() const { return *this; }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...)
+  ChangeStatus indicatePessimisticFixpoint() override {
+    return BS.indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractState::indicateOptimisticFixpoint(...)
+  ChangeStatus indicateOptimisticFixpoint() override {
+    return BS.indicateOptimisticFixpoint();
+  }
+
+  /// "Clamp" this state with \p PVS.
+  ValueSimplifyStateType operator^=(const ValueSimplifyStateType &VS) {
+    BS ^= VS.BS;
+    unionAssumed(VS.SimplifiedAssociatedValue);
+    return *this;
+  }
+
+  bool operator==(const ValueSimplifyStateType &RHS) const {
+    if (isValidState() != RHS.isValidState())
+      return false;
+    if (!isValidState() && !RHS.isValidState())
+      return true;
+    return SimplifiedAssociatedValue == RHS.SimplifiedAssociatedValue;
+  }
+
+protected:
+  /// The type of the original value.
+  Type *Ty;
+
+  /// Merge \p Other into the currently assumed simplified value
+  bool unionAssumed(std::optional<Value *> Other);
+
+  /// Helper to track validity and fixpoint
+  BooleanState BS;
+
+  /// An assumed simplified value. Initially, it is set to std::nullopt, which
+  /// means that the value is not clear under current assumption. If in the
+  /// pessimistic state, getAssumedSimplifiedValue doesn't return this value but
+  /// returns orignal associated value.
+  std::optional<Value *> SimplifiedAssociatedValue;
+};
+
+/// An abstract interface for value simplify abstract attribute.
+struct AAValueSimplify
+    : public StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *> {
+  using Base = StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *>;
+  AAValueSimplify(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, IRP.getAssociatedType()) {}
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAValueSimplify &createForPosition(const IRPosition &IRP,
+                                            Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAValueSimplify"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAValueSimplify
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+
+private:
+  /// Return an assumed simplified value if a single candidate is found. If
+  /// there cannot be one, return original value. If it is not clear yet, return
+  /// std::nullopt.
+  ///
+  /// Use `Attributor::getAssumedSimplified` for value simplification.
+  virtual std::optional<Value *>
+  getAssumedSimplifiedValue(Attributor &A) const = 0;
+
+  friend struct Attributor;
+};
+
+struct AAHeapToStack : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+  AAHeapToStack(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// Returns true if HeapToStack conversion is assumed to be possible.
+  virtual bool isAssumedHeapToStack(const CallBase &CB) const = 0;
+
+  /// Returns true if HeapToStack conversion is assumed and the CB is a
+  /// callsite to a free operation to be removed.
+  virtual bool isAssumedHeapToStackRemovedFree(CallBase &CB) const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAHeapToStack"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AAHeapToStack
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for privatizability.
+///
+/// A pointer is privatizable if it can be replaced by a new, private one.
+/// Privatizing pointer reduces the use count, interaction between unrelated
+/// code parts.
+///
+/// In order for a pointer to be privatizable its value cannot be observed
+/// (=nocapture), it is (for now) not written (=readonly & noalias), we know
+/// what values are necessary to make the private copy look like the original
+/// one, and the values we need can be loaded (=dereferenceable).
+struct AAPrivatizablePtr
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+  AAPrivatizablePtr(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Returns true if pointer privatization is assumed to be possible.
+  bool isAssumedPrivatizablePtr() const { return getAssumed(); }
+
+  /// Returns true if pointer privatization is known to be possible.
+  bool isKnownPrivatizablePtr() const { return getKnown(); }
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// Return the type we can choose for a private copy of the underlying
+  /// value. std::nullopt means it is not clear yet, nullptr means there is
+  /// none.
+  virtual std::optional<Type *> getPrivatizableType() const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAPrivatizablePtr &createForPosition(const IRPosition &IRP,
+                                              Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAPrivatizablePtr"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAPricatizablePtr
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for memory access kind related attributes
+/// (readnone/readonly/writeonly).
+struct AAMemoryBehavior
+    : public IRAttribute<
+          Attribute::None,
+          StateWrapper<BitIntegerState<uint8_t, 3>, AbstractAttribute>,
+          AAMemoryBehavior> {
+  AAMemoryBehavior(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::hasTrivialInitializer.
+  static bool hasTrivialInitializer() { return false; }
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.isFunctionScope() &&
+        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// State encoding bits. A set bit in the state means the property holds.
+  /// BEST_STATE is the best possible state, 0 the worst possible state.
+  enum {
+    NO_READS = 1 << 0,
+    NO_WRITES = 1 << 1,
+    NO_ACCESSES = NO_READS | NO_WRITES,
+
+    BEST_STATE = NO_ACCESSES,
+  };
+  static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
+
+  /// Return true if we know that the underlying value is not read or accessed
+  /// in its respective scope.
+  bool isKnownReadNone() const { return isKnown(NO_ACCESSES); }
+
+  /// Return true if we assume that the underlying value is not read or accessed
+  /// in its respective scope.
+  bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); }
+
+  /// Return true if we know that the underlying value is not accessed
+  /// (=written) in its respective scope.
+  bool isKnownReadOnly() const { return isKnown(NO_WRITES); }
+
+  /// Return true if we assume that the underlying value is not accessed
+  /// (=written) in its respective scope.
+  bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); }
+
+  /// Return true if we know that the underlying value is not read in its
+  /// respective scope.
+  bool isKnownWriteOnly() const { return isKnown(NO_READS); }
+
+  /// Return true if we assume that the underlying value is not read in its
+  /// respective scope.
+  bool isAssumedWriteOnly() const { return isAssumed(NO_READS); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAMemoryBehavior &createForPosition(const IRPosition &IRP,
+                                             Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAMemoryBehavior"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAMemoryBehavior
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for all memory location attributes
+/// (readnone/argmemonly/inaccessiblememonly/inaccessibleorargmemonly).
+struct AAMemoryLocation
+    : public IRAttribute<
+          Attribute::None,
+          StateWrapper<BitIntegerState<uint32_t, 511>, AbstractAttribute>,
+          AAMemoryLocation> {
+  using MemoryLocationsKind = StateType::base_t;
+
+  AAMemoryLocation(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::requiresCalleeForCallBase.
+  static bool requiresCalleeForCallBase() { return true; }
+
+  /// See AbstractAttribute::hasTrivialInitializer.
+  static bool hasTrivialInitializer() { return false; }
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.isFunctionScope() &&
+        !IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return IRAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Encoding of different locations that could be accessed by a memory
+  /// access.
+  enum {
+    ALL_LOCATIONS = 0,
+    NO_LOCAL_MEM = 1 << 0,
+    NO_CONST_MEM = 1 << 1,
+    NO_GLOBAL_INTERNAL_MEM = 1 << 2,
+    NO_GLOBAL_EXTERNAL_MEM = 1 << 3,
+    NO_GLOBAL_MEM = NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM,
+    NO_ARGUMENT_MEM = 1 << 4,
+    NO_INACCESSIBLE_MEM = 1 << 5,
+    NO_MALLOCED_MEM = 1 << 6,
+    NO_UNKOWN_MEM = 1 << 7,
+    NO_LOCATIONS = NO_LOCAL_MEM | NO_CONST_MEM | NO_GLOBAL_INTERNAL_MEM |
+                   NO_GLOBAL_EXTERNAL_MEM | NO_ARGUMENT_MEM |
+                   NO_INACCESSIBLE_MEM | NO_MALLOCED_MEM | NO_UNKOWN_MEM,
+
+    // Helper bit to track if we gave up or not.
+    VALID_STATE = NO_LOCATIONS + 1,
+
+    BEST_STATE = NO_LOCATIONS | VALID_STATE,
+  };
+  static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
+
+  /// Return true if we know that the associated functions has no observable
+  /// accesses.
+  bool isKnownReadNone() const { return isKnown(NO_LOCATIONS); }
+
+  /// Return true if we assume that the associated functions has no observable
+  /// accesses.
+  bool isAssumedReadNone() const {
+    return isAssumed(NO_LOCATIONS) || isAssumedStackOnly();
+  }
+
+  /// Return true if we know that the associated functions has at most
+  /// local/stack accesses.
+  bool isKnowStackOnly() const {
+    return isKnown(inverseLocation(NO_LOCAL_MEM, true, true));
+  }
+
+  /// Return true if we assume that the associated functions has at most
+  /// local/stack accesses.
+  bool isAssumedStackOnly() const {
+    return isAssumed(inverseLocation(NO_LOCAL_MEM, true, true));
+  }
+
+  /// Return true if we know that the underlying value will only access
+  /// inaccesible memory only (see Attribute::InaccessibleMemOnly).
+  bool isKnownInaccessibleMemOnly() const {
+    return isKnown(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
+  }
+
+  /// Return true if we assume that the underlying value will only access
+  /// inaccesible memory only (see Attribute::InaccessibleMemOnly).
+  bool isAssumedInaccessibleMemOnly() const {
+    return isAssumed(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
+  }
+
+  /// Return true if we know that the underlying value will only access
+  /// argument pointees (see Attribute::ArgMemOnly).
+  bool isKnownArgMemOnly() const {
+    return isKnown(inverseLocation(NO_ARGUMENT_MEM, true, true));
+  }
+
+  /// Return true if we assume that the underlying value will only access
+  /// argument pointees (see Attribute::ArgMemOnly).
+  bool isAssumedArgMemOnly() const {
+    return isAssumed(inverseLocation(NO_ARGUMENT_MEM, true, true));
+  }
+
+  /// Return true if we know that the underlying value will only access
+  /// inaccesible memory or argument pointees (see
+  /// Attribute::InaccessibleOrArgMemOnly).
+  bool isKnownInaccessibleOrArgMemOnly() const {
+    return isKnown(
+        inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
+  }
+
+  /// Return true if we assume that the underlying value will only access
+  /// inaccesible memory or argument pointees (see
+  /// Attribute::InaccessibleOrArgMemOnly).
+  bool isAssumedInaccessibleOrArgMemOnly() const {
+    return isAssumed(
+        inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
+  }
+
+  /// Return true if the underlying value may access memory through arguement
+  /// pointers of the associated function, if any.
+  bool mayAccessArgMem() const { return !isAssumed(NO_ARGUMENT_MEM); }
+
+  /// Return true if only the memory locations specififed by \p MLK are assumed
+  /// to be accessed by the associated function.
+  bool isAssumedSpecifiedMemOnly(MemoryLocationsKind MLK) const {
+    return isAssumed(MLK);
+  }
+
+  /// Return the locations that are assumed to be not accessed by the associated
+  /// function, if any.
+  MemoryLocationsKind getAssumedNotAccessedLocation() const {
+    return getAssumed();
+  }
+
+  /// Return the inverse of location \p Loc, thus for NO_XXX the return
+  /// describes ONLY_XXX. The flags \p AndLocalMem and \p AndConstMem determine
+  /// if local (=stack) and constant memory are allowed as well. Most of the
+  /// time we do want them to be included, e.g., argmemonly allows accesses via
+  /// argument pointers or local or constant memory accesses.
+  static MemoryLocationsKind
+  inverseLocation(MemoryLocationsKind Loc, bool AndLocalMem, bool AndConstMem) {
+    return NO_LOCATIONS & ~(Loc | (AndLocalMem ? NO_LOCAL_MEM : 0) |
+                            (AndConstMem ? NO_CONST_MEM : 0));
+  };
+
+  /// Return the locations encoded by \p MLK as a readable string.
+  static std::string getMemoryLocationsAsStr(MemoryLocationsKind MLK);
+
+  /// Simple enum to distinguish read/write/read-write accesses.
+  enum AccessKind {
+    NONE = 0,
+    READ = 1 << 0,
+    WRITE = 1 << 1,
+    READ_WRITE = READ | WRITE,
+  };
+
+  /// Check \p Pred on all accesses to the memory kinds specified by \p MLK.
+  ///
+  /// This method will evaluate \p Pred on all accesses (access instruction +
+  /// underlying accessed memory pointer) and it will return true if \p Pred
+  /// holds every time.
+  virtual bool checkForAllAccessesToMemoryKind(
+      function_ref<bool(const Instruction *, const Value *, AccessKind,
+                        MemoryLocationsKind)>
+          Pred,
+      MemoryLocationsKind MLK) const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAMemoryLocation &createForPosition(const IRPosition &IRP,
+                                             Attributor &A);
+
+  /// See AbstractState::getAsStr(Attributor).
+  const std::string getAsStr(Attributor *A) const override {
+    return getMemoryLocationsAsStr(getAssumedNotAccessedLocation());
+  }
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAMemoryLocation"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAMemoryLocation
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for range value analysis.
+struct AAValueConstantRange
+    : public StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t> {
+  using Base = StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t>;
+  AAValueConstantRange(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, IRP.getAssociatedType()->getIntegerBitWidth()) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isIntegerTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// See AbstractAttribute::getState(...).
+  IntegerRangeState &getState() override { return *this; }
+  const IntegerRangeState &getState() const override { return *this; }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAValueConstantRange &createForPosition(const IRPosition &IRP,
+                                                 Attributor &A);
+
+  /// Return an assumed range for the associated value a program point \p CtxI.
+  /// If \p I is nullptr, simply return an assumed range.
+  virtual ConstantRange
+  getAssumedConstantRange(Attributor &A,
+                          const Instruction *CtxI = nullptr) const = 0;
+
+  /// Return a known range for the associated value at a program point \p CtxI.
+  /// If \p I is nullptr, simply return a known range.
+  virtual ConstantRange
+  getKnownConstantRange(Attributor &A,
+                        const Instruction *CtxI = nullptr) const = 0;
+
+  /// Return an assumed constant for the associated value a program point \p
+  /// CtxI.
+  std::optional<Constant *>
+  getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const {
+    ConstantRange RangeV = getAssumedConstantRange(A, CtxI);
+    if (auto *C = RangeV.getSingleElement()) {
+      Type *Ty = getAssociatedValue().getType();
+      return cast_or_null<Constant>(
+          AA::getWithType(*ConstantInt::get(Ty->getContext(), *C), *Ty));
+    }
+    if (RangeV.isEmptySet())
+      return std::nullopt;
+    return nullptr;
+  }
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAValueConstantRange"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAValueConstantRange
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// A class for a set state.
+/// The assumed boolean state indicates whether the corresponding set is full
+/// set or not. If the assumed state is false, this is the worst state. The
+/// worst state (invalid state) of set of potential values is when the set
+/// contains every possible value (i.e. we cannot in any way limit the value
+/// that the target position can take). That never happens naturally, we only
+/// force it. As for the conditions under which we force it, see
+/// AAPotentialConstantValues.
+template <typename MemberTy> struct PotentialValuesState : AbstractState {
+  using SetTy = SmallSetVector<MemberTy, 8>;
+
+  PotentialValuesState() : IsValidState(true), UndefIsContained(false) {}
+
+  PotentialValuesState(bool IsValid)
+      : IsValidState(IsValid), UndefIsContained(false) {}
+
+  /// See AbstractState::isValidState(...)
+  bool isValidState() const override { return IsValidState.isValidState(); }
+
+  /// See AbstractState::isAtFixpoint(...)
+  bool isAtFixpoint() const override { return IsValidState.isAtFixpoint(); }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...)
+  ChangeStatus indicatePessimisticFixpoint() override {
+    return IsValidState.indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractState::indicateOptimisticFixpoint(...)
+  ChangeStatus indicateOptimisticFixpoint() override {
+    return IsValidState.indicateOptimisticFixpoint();
+  }
+
+  /// Return the assumed state
+  PotentialValuesState &getAssumed() { return *this; }
+  const PotentialValuesState &getAssumed() const { return *this; }
+
+  /// Return this set. We should check whether this set is valid or not by
+  /// isValidState() before calling this function.
+  const SetTy &getAssumedSet() const {
+    assert(isValidState() && "This set shoud not be used when it is invalid!");
+    return Set;
+  }
+
+  /// Returns whether this state contains an undef value or not.
+  bool undefIsContained() const {
+    assert(isValidState() && "This flag shoud not be used when it is invalid!");
+    return UndefIsContained;
+  }
+
+  bool operator==(const PotentialValuesState &RHS) const {
+    if (isValidState() != RHS.isValidState())
+      return false;
+    if (!isValidState() && !RHS.isValidState())
+      return true;
+    if (undefIsContained() != RHS.undefIsContained())
+      return false;
+    return Set == RHS.getAssumedSet();
+  }
+
+  /// Maximum number of potential values to be tracked.
+  /// This is set by -attributor-max-potential-values command line option
+  static unsigned MaxPotentialValues;
+
+  /// Return empty set as the best state of potential values.
+  static PotentialValuesState getBestState() {
+    return PotentialValuesState(true);
+  }
+
+  static PotentialValuesState getBestState(const PotentialValuesState &PVS) {
+    return getBestState();
+  }
+
+  /// Return full set as the worst state of potential values.
+  static PotentialValuesState getWorstState() {
+    return PotentialValuesState(false);
+  }
+
+  /// Union assumed set with the passed value.
+  void unionAssumed(const MemberTy &C) { insert(C); }
+
+  /// Union assumed set with assumed set of the passed state \p PVS.
+  void unionAssumed(const PotentialValuesState &PVS) { unionWith(PVS); }
+
+  /// Union assumed set with an undef value.
+  void unionAssumedWithUndef() { unionWithUndef(); }
+
+  /// "Clamp" this state with \p PVS.
+  PotentialValuesState operator^=(const PotentialValuesState &PVS) {
+    IsValidState ^= PVS.IsValidState;
+    unionAssumed(PVS);
+    return *this;
+  }
+
+  PotentialValuesState operator&=(const PotentialValuesState &PVS) {
+    IsValidState &= PVS.IsValidState;
+    unionAssumed(PVS);
+    return *this;
+  }
+
+  bool contains(const MemberTy &V) const {
+    return !isValidState() ? true : Set.contains(V);
+  }
+
+protected:
+  SetTy &getAssumedSet() {
+    assert(isValidState() && "This set shoud not be used when it is invalid!");
+    return Set;
+  }
+
+private:
+  /// Check the size of this set, and invalidate when the size is no
+  /// less than \p MaxPotentialValues threshold.
+  void checkAndInvalidate() {
+    if (Set.size() >= MaxPotentialValues)
+      indicatePessimisticFixpoint();
+    else
+      reduceUndefValue();
+  }
+
+  /// If this state contains both undef and not undef, we can reduce
+  /// undef to the not undef value.
+  void reduceUndefValue() { UndefIsContained = UndefIsContained & Set.empty(); }
+
+  /// Insert an element into this set.
+  void insert(const MemberTy &C) {
+    if (!isValidState())
+      return;
+    Set.insert(C);
+    checkAndInvalidate();
+  }
+
+  /// Take union with R.
+  void unionWith(const PotentialValuesState &R) {
+    /// If this is a full set, do nothing.
+    if (!isValidState())
+      return;
+    /// If R is full set, change L to a full set.
+    if (!R.isValidState()) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+    for (const MemberTy &C : R.Set)
+      Set.insert(C);
+    UndefIsContained |= R.undefIsContained();
+    checkAndInvalidate();
+  }
+
+  /// Take union with an undef value.
+  void unionWithUndef() {
+    UndefIsContained = true;
+    reduceUndefValue();
+  }
+
+  /// Take intersection with R.
+  void intersectWith(const PotentialValuesState &R) {
+    /// If R is a full set, do nothing.
+    if (!R.isValidState())
+      return;
+    /// If this is a full set, change this to R.
+    if (!isValidState()) {
+      *this = R;
+      return;
+    }
+    SetTy IntersectSet;
+    for (const MemberTy &C : Set) {
+      if (R.Set.count(C))
+        IntersectSet.insert(C);
+    }
+    Set = IntersectSet;
+    UndefIsContained &= R.undefIsContained();
+    reduceUndefValue();
+  }
+
+  /// A helper state which indicate whether this state is valid or not.
+  BooleanState IsValidState;
+
+  /// Container for potential values
+  SetTy Set;
+
+  /// Flag for undef value
+  bool UndefIsContained;
+};
+
+struct DenormalFPMathState : public AbstractState {
+  struct DenormalState {
+    DenormalMode Mode = DenormalMode::getInvalid();
+    DenormalMode ModeF32 = DenormalMode::getInvalid();
+
+    bool operator==(const DenormalState Other) const {
+      return Mode == Other.Mode && ModeF32 == Other.ModeF32;
+    }
+
+    bool operator!=(const DenormalState Other) const {
+      return Mode != Other.Mode || ModeF32 != Other.ModeF32;
+    }
+
+    bool isValid() const {
+      return Mode.isValid() && ModeF32.isValid();
+    }
+
+    static DenormalMode::DenormalModeKind
+    unionDenormalKind(DenormalMode::DenormalModeKind Callee,
+                      DenormalMode::DenormalModeKind Caller) {
+      if (Caller == Callee)
+        return Caller;
+      if (Callee == DenormalMode::Dynamic)
+        return Caller;
+      if (Caller == DenormalMode::Dynamic)
+        return Callee;
+      return DenormalMode::Invalid;
+    }
+
+    static DenormalMode unionAssumed(DenormalMode Callee, DenormalMode Caller) {
+      return DenormalMode{unionDenormalKind(Callee.Output, Caller.Output),
+                          unionDenormalKind(Callee.Input, Caller.Input)};
+    }
+
+    DenormalState unionWith(DenormalState Caller) const {
+      DenormalState Callee(*this);
+      Callee.Mode = unionAssumed(Callee.Mode, Caller.Mode);
+      Callee.ModeF32 = unionAssumed(Callee.ModeF32, Caller.ModeF32);
+      return Callee;
+    }
+  };
+
+  DenormalState Known;
+
+  /// Explicitly track whether we've hit a fixed point.
+  bool IsAtFixedpoint = false;
+
+  DenormalFPMathState() = default;
+
+  DenormalState getKnown() const { return Known; }
+
+  // There's only really known or unknown, there's no speculatively assumable
+  // state.
+  DenormalState getAssumed() const { return Known; }
+
+  bool isValidState() const override {
+    return Known.isValid();
+  }
+
+  /// Return true if there are no dynamic components to the denormal mode worth
+  /// specializing.
+  bool isModeFixed() const {
+    return Known.Mode.Input != DenormalMode::Dynamic &&
+           Known.Mode.Output != DenormalMode::Dynamic &&
+           Known.ModeF32.Input != DenormalMode::Dynamic &&
+           Known.ModeF32.Output != DenormalMode::Dynamic;
+  }
+
+  bool isAtFixpoint() const override {
+    return IsAtFixedpoint;
+  }
+
+  ChangeStatus indicateFixpoint() {
+    bool Changed = !IsAtFixedpoint;
+    IsAtFixedpoint = true;
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  ChangeStatus indicateOptimisticFixpoint() override {
+    return indicateFixpoint();
+  }
+
+  ChangeStatus indicatePessimisticFixpoint() override {
+    return indicateFixpoint();
+  }
+
+  DenormalFPMathState operator^=(const DenormalFPMathState &Caller) {
+    Known = Known.unionWith(Caller.getKnown());
+    return *this;
+  }
+};
+
+using PotentialConstantIntValuesState = PotentialValuesState<APInt>;
+using PotentialLLVMValuesState =
+    PotentialValuesState<std::pair<AA::ValueAndContext, AA::ValueScope>>;
+
+raw_ostream &operator<<(raw_ostream &OS,
+                        const PotentialConstantIntValuesState &R);
+raw_ostream &operator<<(raw_ostream &OS, const PotentialLLVMValuesState &R);
+
+/// An abstract interface for potential values analysis.
+///
+/// This AA collects potential values for each IR position.
+/// An assumed set of potential values is initialized with the empty set (the
+/// best state) and it will grow monotonically as we find more potential values
+/// for this position.
+/// The set might be forced to the worst state, that is, to contain every
+/// possible value for this position in 2 cases.
+///   1. We surpassed the \p MaxPotentialValues threshold. This includes the
+///      case that this position is affected (e.g. because of an operation) by a
+///      Value that is in the worst state.
+///   2. We tried to initialize on a Value that we cannot handle (e.g. an
+///      operator we do not currently handle).
+///
+/// For non constant integers see AAPotentialValues.
+struct AAPotentialConstantValues
+    : public StateWrapper<PotentialConstantIntValuesState, AbstractAttribute> {
+  using Base = StateWrapper<PotentialConstantIntValuesState, AbstractAttribute>;
+  AAPotentialConstantValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isIntegerTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// See AbstractAttribute::getState(...).
+  PotentialConstantIntValuesState &getState() override { return *this; }
+  const PotentialConstantIntValuesState &getState() const override {
+    return *this;
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAPotentialConstantValues &createForPosition(const IRPosition &IRP,
+                                                      Attributor &A);
+
+  /// Return assumed constant for the associated value
+  std::optional<Constant *>
+  getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const {
+    if (!isValidState())
+      return nullptr;
+    if (getAssumedSet().size() == 1) {
+      Type *Ty = getAssociatedValue().getType();
+      return cast_or_null<Constant>(AA::getWithType(
+          *ConstantInt::get(Ty->getContext(), *(getAssumedSet().begin())),
+          *Ty));
+    }
+    if (getAssumedSet().size() == 0) {
+      if (undefIsContained())
+        return UndefValue::get(getAssociatedValue().getType());
+      return std::nullopt;
+    }
+
+    return nullptr;
+  }
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override {
+    return "AAPotentialConstantValues";
+  }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAPotentialConstantValues
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+struct AAPotentialValues
+    : public StateWrapper<PotentialLLVMValuesState, AbstractAttribute> {
+  using Base = StateWrapper<PotentialLLVMValuesState, AbstractAttribute>;
+  AAPotentialValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// See AbstractAttribute::getState(...).
+  PotentialLLVMValuesState &getState() override { return *this; }
+  const PotentialLLVMValuesState &getState() const override { return *this; }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAPotentialValues &createForPosition(const IRPosition &IRP,
+                                              Attributor &A);
+
+  /// Extract the single value in \p Values if any.
+  static Value *getSingleValue(Attributor &A, const AbstractAttribute &AA,
+                               const IRPosition &IRP,
+                               SmallVectorImpl<AA::ValueAndContext> &Values);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAPotentialValues"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAPotentialValues
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+
+private:
+  virtual bool getAssumedSimplifiedValues(
+      Attributor &A, SmallVectorImpl<AA::ValueAndContext> &Values,
+      AA::ValueScope, bool RecurseForSelectAndPHI = false) const = 0;
+
+  friend struct Attributor;
+};
+
+/// An abstract interface for all noundef attributes.
+struct AANoUndef
+    : public IRAttribute<Attribute::NoUndef,
+                         StateWrapper<BooleanState, AbstractAttribute>,
+                         AANoUndef> {
+  AANoUndef(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See IRAttribute::isImpliedByUndef
+  static bool isImpliedByUndef() { return false; }
+
+  /// See IRAttribute::isImpliedByPoison
+  static bool isImpliedByPoison() { return false; }
+
+  /// See IRAttribute::isImpliedByIR
+  static bool isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                            Attribute::AttrKind ImpliedAttributeKind,
+                            bool IgnoreSubsumingPositions = false);
+
+  /// Return true if we assume that the underlying value is noundef.
+  bool isAssumedNoUndef() const { return getAssumed(); }
+
+  /// Return true if we know that underlying value is noundef.
+  bool isKnownNoUndef() const { return getKnown(); }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoUndef &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoUndef"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoUndef
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+struct AANoFPClass
+    : public IRAttribute<
+          Attribute::NoFPClass,
+          StateWrapper<BitIntegerState<uint32_t, fcAllFlags, fcNone>,
+                       AbstractAttribute>,
+          AANoFPClass> {
+  using Base = StateWrapper<BitIntegerState<uint32_t, fcAllFlags, fcNone>,
+                            AbstractAttribute>;
+
+  AANoFPClass(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    Type *Ty = IRP.getAssociatedType();
+    do {
+      if (Ty->isFPOrFPVectorTy())
+        return IRAttribute::isValidIRPositionForInit(A, IRP);
+      if (!Ty->isArrayTy())
+        break;
+      Ty = Ty->getArrayElementType();
+    } while (true);
+    return false;
+  }
+
+  /// Return true if we assume that the underlying value is nofpclass.
+  FPClassTest getAssumedNoFPClass() const {
+    return static_cast<FPClassTest>(getAssumed());
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANoFPClass &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANoFPClass"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AANoFPClass
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+struct AACallGraphNode;
+struct AACallEdges;
+
+/// An Iterator for call edges, creates AACallEdges attributes in a lazy way.
+/// This iterator becomes invalid if the underlying edge list changes.
+/// So This shouldn't outlive a iteration of Attributor.
+class AACallEdgeIterator
+    : public iterator_adaptor_base<AACallEdgeIterator,
+                                   SetVector<Function *>::iterator> {
+  AACallEdgeIterator(Attributor &A, SetVector<Function *>::iterator Begin)
+      : iterator_adaptor_base(Begin), A(A) {}
+
+public:
+  AACallGraphNode *operator*() const;
+
+private:
+  Attributor &A;
+  friend AACallEdges;
+  friend AttributorCallGraph;
+};
+
+struct AACallGraphNode {
+  AACallGraphNode(Attributor &A) : A(A) {}
+  virtual ~AACallGraphNode() = default;
+
+  virtual AACallEdgeIterator optimisticEdgesBegin() const = 0;
+  virtual AACallEdgeIterator optimisticEdgesEnd() const = 0;
+
+  /// Iterator range for exploring the call graph.
+  iterator_range<AACallEdgeIterator> optimisticEdgesRange() const {
+    return iterator_range<AACallEdgeIterator>(optimisticEdgesBegin(),
+                                              optimisticEdgesEnd());
+  }
+
+protected:
+  /// Reference to Attributor needed for GraphTraits implementation.
+  Attributor &A;
+};
+
+/// An abstract state for querying live call edges.
+/// This interface uses the Attributor's optimistic liveness
+/// information to compute the edges that are alive.
+struct AACallEdges : public StateWrapper<BooleanState, AbstractAttribute>,
+                     AACallGraphNode {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+
+  AACallEdges(const IRPosition &IRP, Attributor &A)
+      : Base(IRP), AACallGraphNode(A) {}
+
+  /// See AbstractAttribute::requiresNonAsmForCallBase.
+  static bool requiresNonAsmForCallBase() { return false; }
+
+  /// Get the optimistic edges.
+  virtual const SetVector<Function *> &getOptimisticEdges() const = 0;
+
+  /// Is there any call with a unknown callee.
+  virtual bool hasUnknownCallee() const = 0;
+
+  /// Is there any call with a unknown callee, excluding any inline asm.
+  virtual bool hasNonAsmUnknownCallee() const = 0;
+
+  /// Iterator for exploring the call graph.
+  AACallEdgeIterator optimisticEdgesBegin() const override {
+    return AACallEdgeIterator(A, getOptimisticEdges().begin());
+  }
+
+  /// Iterator for exploring the call graph.
+  AACallEdgeIterator optimisticEdgesEnd() const override {
+    return AACallEdgeIterator(A, getOptimisticEdges().end());
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AACallEdges &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AACallEdges"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AACallEdges.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+// Synthetic root node for the Attributor's internal call graph.
+struct AttributorCallGraph : public AACallGraphNode {
+  AttributorCallGraph(Attributor &A) : AACallGraphNode(A) {}
+  virtual ~AttributorCallGraph() = default;
+
+  AACallEdgeIterator optimisticEdgesBegin() const override {
+    return AACallEdgeIterator(A, A.Functions.begin());
+  }
+
+  AACallEdgeIterator optimisticEdgesEnd() const override {
+    return AACallEdgeIterator(A, A.Functions.end());
+  }
+
+  /// Force populate the entire call graph.
+  void populateAll() const {
+    for (const AACallGraphNode *AA : optimisticEdgesRange()) {
+      // Nothing else to do here.
+      (void)AA;
+    }
+  }
+
+  void print();
+};
+
+template <> struct GraphTraits<AACallGraphNode *> {
+  using NodeRef = AACallGraphNode *;
+  using ChildIteratorType = AACallEdgeIterator;
+
+  static AACallEdgeIterator child_begin(AACallGraphNode *Node) {
+    return Node->optimisticEdgesBegin();
+  }
+
+  static AACallEdgeIterator child_end(AACallGraphNode *Node) {
+    return Node->optimisticEdgesEnd();
+  }
+};
+
+template <>
+struct GraphTraits<AttributorCallGraph *>
+    : public GraphTraits<AACallGraphNode *> {
+  using nodes_iterator = AACallEdgeIterator;
+
+  static AACallGraphNode *getEntryNode(AttributorCallGraph *G) {
+    return static_cast<AACallGraphNode *>(G);
+  }
+
+  static AACallEdgeIterator nodes_begin(const AttributorCallGraph *G) {
+    return G->optimisticEdgesBegin();
+  }
+
+  static AACallEdgeIterator nodes_end(const AttributorCallGraph *G) {
+    return G->optimisticEdgesEnd();
+  }
+};
+
+template <>
+struct DOTGraphTraits<AttributorCallGraph *> : public DefaultDOTGraphTraits {
+  DOTGraphTraits(bool Simple = false) : DefaultDOTGraphTraits(Simple) {}
+
+  std::string getNodeLabel(const AACallGraphNode *Node,
+                           const AttributorCallGraph *Graph) {
+    const AACallEdges *AACE = static_cast<const AACallEdges *>(Node);
+    return AACE->getAssociatedFunction()->getName().str();
+  }
+
+  static bool isNodeHidden(const AACallGraphNode *Node,
+                           const AttributorCallGraph *Graph) {
+    // Hide the synth root.
+    return static_cast<const AACallGraphNode *>(Graph) == Node;
+  }
+};
+
+struct AAExecutionDomain
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+  AAExecutionDomain(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// Summary about the execution domain of a block or instruction.
+  struct ExecutionDomainTy {
+    using BarriersSetTy = SmallPtrSet<CallBase *, 2>;
+    using AssumesSetTy = SmallPtrSet<AssumeInst *, 4>;
+
+    void addAssumeInst(Attributor &A, AssumeInst &AI) {
+      EncounteredAssumes.insert(&AI);
+    }
+
+    void addAlignedBarrier(Attributor &A, CallBase &CB) {
+      AlignedBarriers.insert(&CB);
+    }
+
+    void clearAssumeInstAndAlignedBarriers() {
+      EncounteredAssumes.clear();
+      AlignedBarriers.clear();
+    }
+
+    bool IsExecutedByInitialThreadOnly = true;
+    bool IsReachedFromAlignedBarrierOnly = true;
+    bool IsReachingAlignedBarrierOnly = true;
+    bool EncounteredNonLocalSideEffect = false;
+    BarriersSetTy AlignedBarriers;
+    AssumesSetTy EncounteredAssumes;
+  };
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAExecutionDomain &createForPosition(const IRPosition &IRP,
+                                              Attributor &A);
+
+  /// See AbstractAttribute::getName().
+  const std::string getName() const override { return "AAExecutionDomain"; }
+
+  /// See AbstractAttribute::getIdAddr().
+  const char *getIdAddr() const override { return &ID; }
+
+  /// Check if an instruction is executed only by the initial thread.
+  bool isExecutedByInitialThreadOnly(const Instruction &I) const {
+    return isExecutedByInitialThreadOnly(*I.getParent());
+  }
+
+  /// Check if a basic block is executed only by the initial thread.
+  virtual bool isExecutedByInitialThreadOnly(const BasicBlock &) const = 0;
+
+  /// Check if the instruction \p I is executed in an aligned region, that is,
+  /// the synchronizing effects before and after \p I are both aligned barriers.
+  /// This effectively means all threads execute \p I together.
+  virtual bool isExecutedInAlignedRegion(Attributor &A,
+                                         const Instruction &I) const = 0;
+
+  virtual ExecutionDomainTy getExecutionDomain(const BasicBlock &) const = 0;
+  /// Return the execution domain with which the call \p CB is entered and the
+  /// one with which it is left.
+  virtual std::pair<ExecutionDomainTy, ExecutionDomainTy>
+  getExecutionDomain(const CallBase &CB) const = 0;
+  virtual ExecutionDomainTy getFunctionExecutionDomain() const = 0;
+
+  /// Helper function to determine if \p FI is a no-op given the information
+  /// about its execution from \p ExecDomainAA.
+  virtual bool isNoOpFence(const FenceInst &FI) const = 0;
+
+  /// This function should return true if the type of the \p AA is
+  /// AAExecutionDomain.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract Attribute for computing reachability between functions.
+struct AAInterFnReachability
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+
+  AAInterFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// If the function represented by this possition can reach \p Fn.
+  bool canReach(Attributor &A, const Function &Fn) const {
+    Function *Scope = getAnchorScope();
+    if (!Scope || Scope->isDeclaration())
+      return true;
+    return instructionCanReach(A, Scope->getEntryBlock().front(), Fn);
+  }
+
+  /// Can  \p Inst reach \p Fn.
+  /// See also AA::isPotentiallyReachable.
+  virtual bool instructionCanReach(
+      Attributor &A, const Instruction &Inst, const Function &Fn,
+      const AA::InstExclusionSetTy *ExclusionSet = nullptr) const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAInterFnReachability &createForPosition(const IRPosition &IRP,
+                                                  Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAInterFnReachability"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is AACallEdges.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract Attribute for determining the necessity of the convergent
+/// attribute.
+struct AANonConvergent : public StateWrapper<BooleanState, AbstractAttribute> {
+  using Base = StateWrapper<BooleanState, AbstractAttribute>;
+
+  AANonConvergent(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AANonConvergent &createForPosition(const IRPosition &IRP,
+                                            Attributor &A);
+
+  /// Return true if "non-convergent" is assumed.
+  bool isAssumedNotConvergent() const { return getAssumed(); }
+
+  /// Return true if "non-convergent" is known.
+  bool isKnownNotConvergent() const { return getKnown(); }
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AANonConvergent"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AANonConvergent.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for struct information.
+struct AAPointerInfo : public AbstractAttribute {
+  AAPointerInfo(const IRPosition &IRP) : AbstractAttribute(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  enum AccessKind {
+    // First two bits to distinguish may and must accesses.
+    AK_MUST = 1 << 0,
+    AK_MAY = 1 << 1,
+
+    // Then two bits for read and write. These are not exclusive.
+    AK_R = 1 << 2,
+    AK_W = 1 << 3,
+    AK_RW = AK_R | AK_W,
+
+    // One special case for assumptions about memory content. These
+    // are neither reads nor writes. They are however always modeled
+    // as read to avoid using them for write removal.
+    AK_ASSUMPTION = (1 << 4) | AK_MUST,
+
+    // Helper for easy access.
+    AK_MAY_READ = AK_MAY | AK_R,
+    AK_MAY_WRITE = AK_MAY | AK_W,
+    AK_MAY_READ_WRITE = AK_MAY | AK_R | AK_W,
+    AK_MUST_READ = AK_MUST | AK_R,
+    AK_MUST_WRITE = AK_MUST | AK_W,
+    AK_MUST_READ_WRITE = AK_MUST | AK_R | AK_W,
+  };
+
+  /// A container for a list of ranges.
+  struct RangeList {
+    // The set of ranges rarely contains more than one element, and is unlikely
+    // to contain more than say four elements. So we find the middle-ground with
+    // a sorted vector. This avoids hard-coding a rarely used number like "four"
+    // into every instance of a SmallSet.
+    using RangeTy = AA::RangeTy;
+    using VecTy = SmallVector<RangeTy>;
+    using iterator = VecTy::iterator;
+    using const_iterator = VecTy::const_iterator;
+    VecTy Ranges;
+
+    RangeList(const RangeTy &R) { Ranges.push_back(R); }
+    RangeList(ArrayRef<int64_t> Offsets, int64_t Size) {
+      Ranges.reserve(Offsets.size());
+      for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
+        assert(((i + 1 == e) || Offsets[i] < Offsets[i + 1]) &&
+               "Expected strictly ascending offsets.");
+        Ranges.emplace_back(Offsets[i], Size);
+      }
+    }
+    RangeList() = default;
+
+    iterator begin() { return Ranges.begin(); }
+    iterator end() { return Ranges.end(); }
+    const_iterator begin() const { return Ranges.begin(); }
+    const_iterator end() const { return Ranges.end(); }
+
+    // Helpers required for std::set_difference
+    using value_type = RangeTy;
+    void push_back(const RangeTy &R) {
+      assert((Ranges.empty() || RangeTy::OffsetLessThan(Ranges.back(), R)) &&
+             "Ensure the last element is the greatest.");
+      Ranges.push_back(R);
+    }
+
+    /// Copy ranges from \p L that are not in \p R, into \p D.
+    static void set_difference(const RangeList &L, const RangeList &R,
+                               RangeList &D) {
+      std::set_difference(L.begin(), L.end(), R.begin(), R.end(),
+                          std::back_inserter(D), RangeTy::OffsetLessThan);
+    }
+
+    unsigned size() const { return Ranges.size(); }
+
+    bool operator==(const RangeList &OI) const { return Ranges == OI.Ranges; }
+
+    /// Merge the ranges in \p RHS into the current ranges.
+    /// - Merging a list of  unknown ranges makes the current list unknown.
+    /// - Ranges with the same offset are merged according to RangeTy::operator&
+    /// \return true if the current RangeList changed.
+    bool merge(const RangeList &RHS) {
+      if (isUnknown())
+        return false;
+      if (RHS.isUnknown()) {
+        setUnknown();
+        return true;
+      }
+
+      if (Ranges.empty()) {
+        Ranges = RHS.Ranges;
+        return true;
+      }
+
+      bool Changed = false;
+      auto LPos = Ranges.begin();
+      for (auto &R : RHS.Ranges) {
+        auto Result = insert(LPos, R);
+        if (isUnknown())
+          return true;
+        LPos = Result.first;
+        Changed |= Result.second;
+      }
+      return Changed;
+    }
+
+    /// Insert \p R at the given iterator \p Pos, and merge if necessary.
+    ///
+    /// This assumes that all ranges before \p Pos are OffsetLessThan \p R, and
+    /// then maintains the sorted order for the suffix list.
+    ///
+    /// \return The place of insertion and true iff anything changed.
+    std::pair<iterator, bool> insert(iterator Pos, const RangeTy &R) {
+      if (isUnknown())
+        return std::make_pair(Ranges.begin(), false);
+      if (R.offsetOrSizeAreUnknown()) {
+        return std::make_pair(setUnknown(), true);
+      }
+
+      // Maintain this as a sorted vector of unique entries.
+      auto LB = std::lower_bound(Pos, Ranges.end(), R, RangeTy::OffsetLessThan);
+      if (LB == Ranges.end() || LB->Offset != R.Offset)
+        return std::make_pair(Ranges.insert(LB, R), true);
+      bool Changed = *LB != R;
+      *LB &= R;
+      if (LB->offsetOrSizeAreUnknown())
+        return std::make_pair(setUnknown(), true);
+      return std::make_pair(LB, Changed);
+    }
+
+    /// Insert the given range \p R, maintaining sorted order.
+    ///
+    /// \return The place of insertion and true iff anything changed.
+    std::pair<iterator, bool> insert(const RangeTy &R) {
+      return insert(Ranges.begin(), R);
+    }
+
+    /// Add the increment \p Inc to the offset of every range.
+    void addToAllOffsets(int64_t Inc) {
+      assert(!isUnassigned() &&
+             "Cannot increment if the offset is not yet computed!");
+      if (isUnknown())
+        return;
+      for (auto &R : Ranges) {
+        R.Offset += Inc;
+      }
+    }
+
+    /// Return true iff there is exactly one range and it is known.
+    bool isUnique() const {
+      return Ranges.size() == 1 && !Ranges.front().offsetOrSizeAreUnknown();
+    }
+
+    /// Return the unique range, assuming it exists.
+    const RangeTy &getUnique() const {
+      assert(isUnique() && "No unique range to return!");
+      return Ranges.front();
+    }
+
+    /// Return true iff the list contains an unknown range.
+    bool isUnknown() const {
+      if (isUnassigned())
+        return false;
+      if (Ranges.front().offsetOrSizeAreUnknown()) {
+        assert(Ranges.size() == 1 && "Unknown is a singleton range.");
+        return true;
+      }
+      return false;
+    }
+
+    /// Discard all ranges and insert a single unknown range.
+    iterator setUnknown() {
+      Ranges.clear();
+      Ranges.push_back(RangeTy::getUnknown());
+      return Ranges.begin();
+    }
+
+    /// Return true if no ranges have been inserted.
+    bool isUnassigned() const { return Ranges.size() == 0; }
+  };
+
+  /// An access description.
+  struct Access {
+    Access(Instruction *I, int64_t Offset, int64_t Size,
+           std::optional<Value *> Content, AccessKind Kind, Type *Ty)
+        : LocalI(I), RemoteI(I), Content(Content), Ranges(Offset, Size),
+          Kind(Kind), Ty(Ty) {
+      verify();
+    }
+    Access(Instruction *LocalI, Instruction *RemoteI, const RangeList &Ranges,
+           std::optional<Value *> Content, AccessKind K, Type *Ty)
+        : LocalI(LocalI), RemoteI(RemoteI), Content(Content), Ranges(Ranges),
+          Kind(K), Ty(Ty) {
+      if (Ranges.size() > 1) {
+        Kind = AccessKind(Kind | AK_MAY);
+        Kind = AccessKind(Kind & ~AK_MUST);
+      }
+      verify();
+    }
+    Access(Instruction *LocalI, Instruction *RemoteI, int64_t Offset,
+           int64_t Size, std::optional<Value *> Content, AccessKind Kind,
+           Type *Ty)
+        : LocalI(LocalI), RemoteI(RemoteI), Content(Content),
+          Ranges(Offset, Size), Kind(Kind), Ty(Ty) {
+      verify();
+    }
+    Access(const Access &Other) = default;
+
+    Access &operator=(const Access &Other) = default;
+    bool operator==(const Access &R) const {
+      return LocalI == R.LocalI && RemoteI == R.RemoteI && Ranges == R.Ranges &&
+             Content == R.Content && Kind == R.Kind;
+    }
+    bool operator!=(const Access &R) const { return !(*this == R); }
+
+    Access &operator&=(const Access &R) {
+      assert(RemoteI == R.RemoteI && "Expected same instruction!");
+      assert(LocalI == R.LocalI && "Expected same instruction!");
+
+      // Note that every Access object corresponds to a unique Value, and only
+      // accesses to the same Value are merged. Hence we assume that all ranges
+      // are the same size. If ranges can be different size, then the contents
+      // must be dropped.
+      Ranges.merge(R.Ranges);
+      Content =
+          AA::combineOptionalValuesInAAValueLatice(Content, R.Content, Ty);
+
+      // Combine the access kind, which results in a bitwise union.
+      // If there is more than one range, then this must be a MAY.
+      // If we combine a may and a must access we clear the must bit.
+      Kind = AccessKind(Kind | R.Kind);
+      if ((Kind & AK_MAY) || Ranges.size() > 1) {
+        Kind = AccessKind(Kind | AK_MAY);
+        Kind = AccessKind(Kind & ~AK_MUST);
+      }
+      verify();
+      return *this;
+    }
+
+    void verify() {
+      assert(isMustAccess() + isMayAccess() == 1 &&
+             "Expect must or may access, not both.");
+      assert(isAssumption() + isWrite() <= 1 &&
+             "Expect assumption access or write access, never both.");
+      assert((isMayAccess() || Ranges.size() == 1) &&
+             "Cannot be a must access if there are multiple ranges.");
+    }
+
+    /// Return the access kind.
+    AccessKind getKind() const { return Kind; }
+
+    /// Return true if this is a read access.
+    bool isRead() const { return Kind & AK_R; }
+
+    /// Return true if this is a write access.
+    bool isWrite() const { return Kind & AK_W; }
+
+    /// Return true if this is a write access.
+    bool isWriteOrAssumption() const { return isWrite() || isAssumption(); }
+
+    /// Return true if this is an assumption access.
+    bool isAssumption() const { return Kind == AK_ASSUMPTION; }
+
+    bool isMustAccess() const {
+      bool MustAccess = Kind & AK_MUST;
+      assert((!MustAccess || Ranges.size() < 2) &&
+             "Cannot be a must access if there are multiple ranges.");
+      return MustAccess;
+    }
+
+    bool isMayAccess() const {
+      bool MayAccess = Kind & AK_MAY;
+      assert((MayAccess || Ranges.size() < 2) &&
+             "Cannot be a must access if there are multiple ranges.");
+      return MayAccess;
+    }
+
+    /// Return the instruction that causes the access with respect to the local
+    /// scope of the associated attribute.
+    Instruction *getLocalInst() const { return LocalI; }
+
+    /// Return the actual instruction that causes the access.
+    Instruction *getRemoteInst() const { return RemoteI; }
+
+    /// Return true if the value written is not known yet.
+    bool isWrittenValueYetUndetermined() const { return !Content; }
+
+    /// Return true if the value written cannot be determined at all.
+    bool isWrittenValueUnknown() const {
+      return Content.has_value() && !*Content;
+    }
+
+    /// Set the value written to nullptr, i.e., unknown.
+    void setWrittenValueUnknown() { Content = nullptr; }
+
+    /// Return the type associated with the access, if known.
+    Type *getType() const { return Ty; }
+
+    /// Return the value writen, if any.
+    Value *getWrittenValue() const {
+      assert(!isWrittenValueYetUndetermined() &&
+             "Value needs to be determined before accessing it.");
+      return *Content;
+    }
+
+    /// Return the written value which can be `llvm::null` if it is not yet
+    /// determined.
+    std::optional<Value *> getContent() const { return Content; }
+
+    bool hasUniqueRange() const { return Ranges.isUnique(); }
+    const AA::RangeTy &getUniqueRange() const { return Ranges.getUnique(); }
+
+    /// Add a range accessed by this Access.
+    ///
+    /// If there are multiple ranges, then this is a "may access".
+    void addRange(int64_t Offset, int64_t Size) {
+      Ranges.insert({Offset, Size});
+      if (!hasUniqueRange()) {
+        Kind = AccessKind(Kind | AK_MAY);
+        Kind = AccessKind(Kind & ~AK_MUST);
+      }
+    }
+
+    const RangeList &getRanges() const { return Ranges; }
+
+    using const_iterator = RangeList::const_iterator;
+    const_iterator begin() const { return Ranges.begin(); }
+    const_iterator end() const { return Ranges.end(); }
+
+  private:
+    /// The instruction responsible for the access with respect to the local
+    /// scope of the associated attribute.
+    Instruction *LocalI;
+
+    /// The instruction responsible for the access.
+    Instruction *RemoteI;
+
+    /// The value written, if any. `std::nullopt` means "not known yet",
+    /// `nullptr` cannot be determined.
+    std::optional<Value *> Content;
+
+    /// Set of potential ranges accessed from the base pointer.
+    RangeList Ranges;
+
+    /// The access kind, e.g., READ, as bitset (could be more than one).
+    AccessKind Kind;
+
+    /// The type of the content, thus the type read/written, can be null if not
+    /// available.
+    Type *Ty;
+  };
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAPointerInfo &createForPosition(const IRPosition &IRP, Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAPointerInfo"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  using OffsetBinsTy = DenseMap<AA::RangeTy, SmallSet<unsigned, 4>>;
+  using const_bin_iterator = OffsetBinsTy::const_iterator;
+  virtual const_bin_iterator begin() const = 0;
+  virtual const_bin_iterator end() const = 0;
+  virtual int64_t numOffsetBins() const = 0;
+  virtual void dumpState(raw_ostream &O) const = 0;
+  virtual const Access &getBinAccess(unsigned Index) const = 0;
+
+  /// Call \p CB on all accesses that might interfere with \p Range and return
+  /// true if all such accesses were known and the callback returned true for
+  /// all of them, false otherwise. An access interferes with an offset-size
+  /// pair if it might read or write that memory region.
+  virtual bool forallInterferingAccesses(
+      AA::RangeTy Range, function_ref<bool(const Access &, bool)> CB) const = 0;
+
+  /// Call \p CB on all accesses that might interfere with \p I and
+  /// return true if all such accesses were known and the callback returned true
+  /// for all of them, false otherwise. In contrast to forallInterferingAccesses
+  /// this function will perform reasoning to exclude write accesses that cannot
+  /// affect the load even if they on the surface look as if they would. The
+  /// flag \p HasBeenWrittenTo will be set to true if we know that \p I does not
+  /// read the initial value of the underlying memory. If \p SkipCB is given and
+  /// returns false for a potentially interfering access, that access is not
+  /// checked for actual interference.
+  virtual bool forallInterferingAccesses(
+      Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
+      bool FindInterferingWrites, bool FindInterferingReads,
+      function_ref<bool(const Access &, bool)> CB, bool &HasBeenWrittenTo,
+      AA::RangeTy &Range,
+      function_ref<bool(const Access &)> SkipCB = nullptr) const = 0;
+
+  /// This function should return true if the type of the \p AA is AAPointerInfo
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+raw_ostream &operator<<(raw_ostream &, const AAPointerInfo::Access &);
+
+/// An abstract attribute for getting assumption information.
+struct AAAssumptionInfo
+    : public StateWrapper<SetState<StringRef>, AbstractAttribute,
+                          DenseSet<StringRef>> {
+  using Base =
+      StateWrapper<SetState<StringRef>, AbstractAttribute, DenseSet<StringRef>>;
+
+  AAAssumptionInfo(const IRPosition &IRP, Attributor &A,
+                   const DenseSet<StringRef> &Known)
+      : Base(IRP, Known) {}
+
+  /// Returns true if the assumption set contains the assumption \p Assumption.
+  virtual bool hasAssumption(const StringRef Assumption) const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAAssumptionInfo &createForPosition(const IRPosition &IRP,
+                                             Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAAssumptionInfo"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAAssumptionInfo
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract attribute for getting all assumption underlying objects.
+struct AAUnderlyingObjects : AbstractAttribute {
+  AAUnderlyingObjects(const IRPosition &IRP) : AbstractAttribute(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// Create an abstract attribute biew for the position \p IRP.
+  static AAUnderlyingObjects &createForPosition(const IRPosition &IRP,
+                                                Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAUnderlyingObjects"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAUnderlyingObjects.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+
+  /// Check \p Pred on all underlying objects in \p Scope collected so far.
+  ///
+  /// This method will evaluate \p Pred on all underlying objects in \p Scope
+  /// collected so far and return true if \p Pred holds on all of them.
+  virtual bool
+  forallUnderlyingObjects(function_ref<bool(Value &)> Pred,
+                          AA::ValueScope Scope = AA::Interprocedural) const = 0;
+};
+
+/// An abstract interface for address space information.
+struct AAAddressSpace : public StateWrapper<BooleanState, AbstractAttribute> {
+  AAAddressSpace(const IRPosition &IRP, Attributor &A)
+      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// See AbstractAttribute::requiresCallersForArgOrFunction
+  static bool requiresCallersForArgOrFunction() { return true; }
+
+  /// Return the address space of the associated value. \p NoAddressSpace is
+  /// returned if the associated value is dead. This functions is not supposed
+  /// to be called if the AA is invalid.
+  virtual int32_t getAddressSpace() const = 0;
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAAddressSpace &createForPosition(const IRPosition &IRP,
+                                           Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAAddressSpace"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAAssumptionInfo
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  // No address space which indicates the associated value is dead.
+  static const int32_t NoAddressSpace = -1;
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+struct AAAllocationInfo : public StateWrapper<BooleanState, AbstractAttribute> {
+  AAAllocationInfo(const IRPosition &IRP, Attributor &A)
+      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (!IRP.getAssociatedType()->isPtrOrPtrVectorTy())
+      return false;
+    return AbstractAttribute::isValidIRPositionForInit(A, IRP);
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAAllocationInfo &createForPosition(const IRPosition &IRP,
+                                             Attributor &A);
+
+  virtual std::optional<TypeSize> getAllocatedSize() const = 0;
+
+  using NewOffsetsTy = DenseMap<AA::RangeTy, AA::RangeTy>;
+  virtual const NewOffsetsTy &getNewOffsets() const = 0;
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAAllocationInfo"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAAllocationInfo
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  constexpr static const std::optional<TypeSize> HasNoAllocationSize =
+      std::optional<TypeSize>(TypeSize(-1, true));
+
+  static const char ID;
+};
+
+/// An abstract interface for llvm::GlobalValue information interference.
+struct AAGlobalValueInfo
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  AAGlobalValueInfo(const IRPosition &IRP, Attributor &A)
+      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (IRP.getPositionKind() != IRPosition::IRP_FLOAT)
+      return false;
+    auto *GV = dyn_cast<GlobalValue>(&IRP.getAnchorValue());
+    if (!GV)
+      return false;
+    return GV->hasLocalLinkage();
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAGlobalValueInfo &createForPosition(const IRPosition &IRP,
+                                              Attributor &A);
+
+  /// Return true iff \p U is a potential use of the associated global value.
+  virtual bool isPotentialUse(const Use &U) const = 0;
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAGlobalValueInfo"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAGlobalValueInfo
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract interface for indirect call information interference.
+struct AAIndirectCallInfo
+    : public StateWrapper<BooleanState, AbstractAttribute> {
+  AAIndirectCallInfo(const IRPosition &IRP, Attributor &A)
+      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
+
+  /// See AbstractAttribute::isValidIRPositionForInit
+  static bool isValidIRPositionForInit(Attributor &A, const IRPosition &IRP) {
+    if (IRP.getPositionKind() != IRPosition::IRP_CALL_SITE)
+      return false;
+    auto *CB = cast<CallBase>(IRP.getCtxI());
+    return CB->getOpcode() == Instruction::Call && CB->isIndirectCall() &&
+           !CB->isMustTailCall();
+  }
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AAIndirectCallInfo &createForPosition(const IRPosition &IRP,
+                                               Attributor &A);
+
+  /// Call \CB on each potential callee value and return true if all were known
+  /// and \p CB returned true on all of them. Otherwise, return false.
+  virtual bool foreachCallee(function_ref<bool(Function *)> CB) const = 0;
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AAIndirectCallInfo"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AAIndirectCallInfo
+  /// This function should return true if the type of the \p AA is
+  /// AADenormalFPMath.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+/// An abstract Attribute for specializing "dynamic" components of
+/// "denormal-fp-math" and "denormal-fp-math-f32" to a known denormal mode.
+struct AADenormalFPMath
+    : public StateWrapper<DenormalFPMathState, AbstractAttribute> {
+  using Base = StateWrapper<DenormalFPMathState, AbstractAttribute>;
+
+  AADenormalFPMath(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+  /// Create an abstract attribute view for the position \p IRP.
+  static AADenormalFPMath &createForPosition(const IRPosition &IRP,
+                                             Attributor &A);
+
+  /// See AbstractAttribute::getName()
+  const std::string getName() const override { return "AADenormalFPMath"; }
+
+  /// See AbstractAttribute::getIdAddr()
+  const char *getIdAddr() const override { return &ID; }
+
+  /// This function should return true if the type of the \p AA is
+  /// AADenormalFPMath.
+  static bool classof(const AbstractAttribute *AA) {
+    return (AA->getIdAddr() == &ID);
+  }
+
+  /// Unique ID (due to the unique address)
+  static const char ID;
+};
+
+raw_ostream &operator<<(raw_ostream &, const AAPointerInfo::Access &);
+
+/// Run options, used by the pass manager.
+enum AttributorRunOption {
+  NONE = 0,
+  MODULE = 1 << 0,
+  CGSCC = 1 << 1,
+  ALL = MODULE | CGSCC
+};
+
+namespace AA {
+/// Helper to avoid creating an AA for IR Attributes that might already be set.
+template <Attribute::AttrKind AK, typename AAType = AbstractAttribute>
+bool hasAssumedIRAttr(Attributor &A, const AbstractAttribute *QueryingAA,
+                      const IRPosition &IRP, DepClassTy DepClass, bool &IsKnown,
+                      bool IgnoreSubsumingPositions = false,
+                      const AAType **AAPtr = nullptr) {
+  IsKnown = false;
+  switch (AK) {
+#define CASE(ATTRNAME, AANAME, ...)                                            \
+  case Attribute::ATTRNAME: {                                                  \
+    if (AANAME::isImpliedByIR(A, IRP, AK, IgnoreSubsumingPositions))           \
+      return IsKnown = true;                                                   \
+    if (!QueryingAA)                                                           \
+      return false;                                                            \
+    const auto *AA = A.getAAFor<AANAME>(*QueryingAA, IRP, DepClass);           \
+    if (AAPtr)                                                                 \
+      *AAPtr = reinterpret_cast<const AAType *>(AA);                           \
+    if (!AA || !AA->isAssumed(__VA_ARGS__))                                    \
+      return false;                                                            \
+    IsKnown = AA->isKnown(__VA_ARGS__);                                        \
+    return true;                                                               \
+  }
+    CASE(NoUnwind, AANoUnwind, );
+    CASE(WillReturn, AAWillReturn, );
+    CASE(NoFree, AANoFree, );
+    CASE(NoCapture, AANoCapture, );
+    CASE(NoRecurse, AANoRecurse, );
+    CASE(NoReturn, AANoReturn, );
+    CASE(NoSync, AANoSync, );
+    CASE(NoAlias, AANoAlias, );
+    CASE(NonNull, AANonNull, );
+    CASE(MustProgress, AAMustProgress, );
+    CASE(NoUndef, AANoUndef, );
+    CASE(ReadNone, AAMemoryBehavior, AAMemoryBehavior::NO_ACCESSES);
+    CASE(ReadOnly, AAMemoryBehavior, AAMemoryBehavior::NO_WRITES);
+    CASE(WriteOnly, AAMemoryBehavior, AAMemoryBehavior::NO_READS);
+#undef CASE
+  default:
+    llvm_unreachable("hasAssumedIRAttr not available for this attribute kind");
+  };
+}
+} // namespace AA
+
+} // end namespace llvm
+
+#endif // LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
diff --git a/llvm/lib/Transforms/IPO/AttributorAttributes.cpp b/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
index e69de29bb2d1d..24bc6b9ebfc02 100644
--- a/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
+++ b/llvm/lib/Transforms/IPO/AttributorAttributes.cpp
@@ -0,0 +1,13228 @@
+//===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// See the Attributor.h file comment and the class descriptions in that file for
+// more information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/Attributor.h"
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumeBundleQueries.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/CycleAnalysis.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Assumptions.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+#include "llvm/IR/IntrinsicsNVPTX.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/CallPromotionUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <cassert>
+#include <numeric>
+#include <optional>
+#include <string>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "attributor"
+
+static cl::opt<bool> ManifestInternal(
+    "attributor-manifest-internal", cl::Hidden,
+    cl::desc("Manifest Attributor internal string attributes."),
+    cl::init(false));
+
+static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
+                                       cl::Hidden);
+
+template <>
+unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
+
+template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
+
+static cl::opt<unsigned, true> MaxPotentialValues(
+    "attributor-max-potential-values", cl::Hidden,
+    cl::desc("Maximum number of potential values to be "
+             "tracked for each position."),
+    cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
+    cl::init(7));
+
+static cl::opt<int> MaxPotentialValuesIterations(
+    "attributor-max-potential-values-iterations", cl::Hidden,
+    cl::desc(
+        "Maximum number of iterations we keep dismantling potential values."),
+    cl::init(64));
+
+STATISTIC(NumAAs, "Number of abstract attributes created");
+
+// Some helper macros to deal with statistics tracking.
+//
+// Usage:
+// For simple IR attribute tracking overload trackStatistics in the abstract
+// attribute and choose the right STATS_DECLTRACK_********* macro,
+// e.g.,:
+//  void trackStatistics() const override {
+//    STATS_DECLTRACK_ARG_ATTR(returned)
+//  }
+// If there is a single "increment" side one can use the macro
+// STATS_DECLTRACK with a custom message. If there are multiple increment
+// sides, STATS_DECL and STATS_TRACK can also be used separately.
+//
+#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
+  ("Number of " #TYPE " marked '" #NAME "'")
+#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
+#define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
+#define STATS_DECL(NAME, TYPE, MSG)                                            \
+  STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
+#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
+#define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
+  {                                                                            \
+    STATS_DECL(NAME, TYPE, MSG)                                                \
+    STATS_TRACK(NAME, TYPE)                                                    \
+  }
+#define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
+  STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
+#define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
+  STATS_DECLTRACK(NAME, CSArguments,                                           \
+                  BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
+#define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
+  STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
+#define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
+  STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
+#define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
+  STATS_DECLTRACK(NAME, FunctionReturn,                                        \
+                  BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
+#define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
+  STATS_DECLTRACK(NAME, CSReturn,                                              \
+                  BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
+#define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
+  STATS_DECLTRACK(NAME, Floating,                                              \
+                  ("Number of floating values known to be '" #NAME "'"))
+
+// Specialization of the operator<< for abstract attributes subclasses. This
+// disambiguates situations where multiple operators are applicable.
+namespace llvm {
+#define PIPE_OPERATOR(CLASS)                                                   \
+  raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
+    return OS << static_cast<const AbstractAttribute &>(AA);                   \
+  }
+
+PIPE_OPERATOR(AAIsDead)
+PIPE_OPERATOR(AANoUnwind)
+PIPE_OPERATOR(AANoSync)
+PIPE_OPERATOR(AANoRecurse)
+PIPE_OPERATOR(AANonConvergent)
+PIPE_OPERATOR(AAWillReturn)
+PIPE_OPERATOR(AANoReturn)
+PIPE_OPERATOR(AANonNull)
+PIPE_OPERATOR(AAMustProgress)
+PIPE_OPERATOR(AANoAlias)
+PIPE_OPERATOR(AADereferenceable)
+PIPE_OPERATOR(AAAlign)
+PIPE_OPERATOR(AAInstanceInfo)
+PIPE_OPERATOR(AANoCapture)
+PIPE_OPERATOR(AAValueSimplify)
+PIPE_OPERATOR(AANoFree)
+PIPE_OPERATOR(AAHeapToStack)
+PIPE_OPERATOR(AAIntraFnReachability)
+PIPE_OPERATOR(AAMemoryBehavior)
+PIPE_OPERATOR(AAMemoryLocation)
+PIPE_OPERATOR(AAValueConstantRange)
+PIPE_OPERATOR(AAPrivatizablePtr)
+PIPE_OPERATOR(AAUndefinedBehavior)
+PIPE_OPERATOR(AAPotentialConstantValues)
+PIPE_OPERATOR(AAPotentialValues)
+PIPE_OPERATOR(AANoUndef)
+PIPE_OPERATOR(AANoFPClass)
+PIPE_OPERATOR(AACallEdges)
+PIPE_OPERATOR(AAInterFnReachability)
+PIPE_OPERATOR(AAPointerInfo)
+PIPE_OPERATOR(AAAssumptionInfo)
+PIPE_OPERATOR(AAUnderlyingObjects)
+PIPE_OPERATOR(AAAddressSpace)
+PIPE_OPERATOR(AAAllocationInfo)
+PIPE_OPERATOR(AAIndirectCallInfo)
+PIPE_OPERATOR(AAGlobalValueInfo)
+PIPE_OPERATOR(AADenormalFPMath)
+
+#undef PIPE_OPERATOR
+
+template <>
+ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
+                                                     const DerefState &R) {
+  ChangeStatus CS0 =
+      clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
+  ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
+  return CS0 | CS1;
+}
+
+} // namespace llvm
+
+static bool mayBeInCycle(const CycleInfo *CI, const Instruction *I,
+                         bool HeaderOnly, Cycle **CPtr = nullptr) {
+  if (!CI)
+    return true;
+  auto *BB = I->getParent();
+  auto *C = CI->getCycle(BB);
+  if (!C)
+    return false;
+  if (CPtr)
+    *CPtr = C;
+  return !HeaderOnly || BB == C->getHeader();
+}
+
+/// Checks if a type could have padding bytes.
+static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
+  // There is no size information, so be conservative.
+  if (!Ty->isSized())
+    return false;
+
+  // If the alloc size is not equal to the storage size, then there are padding
+  // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
+  if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
+    return false;
+
+  // FIXME: This isn't the right way to check for padding in vectors with
+  // non-byte-size elements.
+  if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
+    return isDenselyPacked(SeqTy->getElementType(), DL);
+
+  // For array types, check for padding within members.
+  if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
+    return isDenselyPacked(SeqTy->getElementType(), DL);
+
+  if (!isa<StructType>(Ty))
+    return true;
+
+  // Check for padding within and between elements of a struct.
+  StructType *StructTy = cast<StructType>(Ty);
+  const StructLayout *Layout = DL.getStructLayout(StructTy);
+  uint64_t StartPos = 0;
+  for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
+    Type *ElTy = StructTy->getElementType(I);
+    if (!isDenselyPacked(ElTy, DL))
+      return false;
+    if (StartPos != Layout->getElementOffsetInBits(I))
+      return false;
+    StartPos += DL.getTypeAllocSizeInBits(ElTy);
+  }
+
+  return true;
+}
+
+/// Get pointer operand of memory accessing instruction. If \p I is
+/// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
+/// is set to false and the instruction is volatile, return nullptr.
+static const Value *getPointerOperand(const Instruction *I,
+                                      bool AllowVolatile) {
+  if (!AllowVolatile && I->isVolatile())
+    return nullptr;
+
+  if (auto *LI = dyn_cast<LoadInst>(I)) {
+    return LI->getPointerOperand();
+  }
+
+  if (auto *SI = dyn_cast<StoreInst>(I)) {
+    return SI->getPointerOperand();
+  }
+
+  if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
+    return CXI->getPointerOperand();
+  }
+
+  if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
+    return RMWI->getPointerOperand();
+  }
+
+  return nullptr;
+}
+
+/// Helper function to create a pointer based on \p Ptr, and advanced by \p
+/// Offset bytes.
+static Value *constructPointer(Value *Ptr, int64_t Offset,
+                               IRBuilder<NoFolder> &IRB) {
+  LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
+                    << "-bytes\n");
+
+  if (Offset)
+    Ptr = IRB.CreatePtrAdd(Ptr, IRB.getInt64(Offset),
+                           Ptr->getName() + ".b" + Twine(Offset));
+  return Ptr;
+}
+
+static const Value *
+stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
+                          const Value *Val, const DataLayout &DL, APInt &Offset,
+                          bool GetMinOffset, bool AllowNonInbounds,
+                          bool UseAssumed = false) {
+
+  auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
+    const IRPosition &Pos = IRPosition::value(V);
+    // Only track dependence if we are going to use the assumed info.
+    const AAValueConstantRange *ValueConstantRangeAA =
+        A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
+                                         UseAssumed ? DepClassTy::OPTIONAL
+                                                    : DepClassTy::NONE);
+    if (!ValueConstantRangeAA)
+      return false;
+    ConstantRange Range = UseAssumed ? ValueConstantRangeAA->getAssumed()
+                                     : ValueConstantRangeAA->getKnown();
+    if (Range.isFullSet())
+      return false;
+
+    // We can only use the lower part of the range because the upper part can
+    // be higher than what the value can really be.
+    if (GetMinOffset)
+      ROffset = Range.getSignedMin();
+    else
+      ROffset = Range.getSignedMax();
+    return true;
+  };
+
+  return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
+                                                /* AllowInvariant */ true,
+                                                AttributorAnalysis);
+}
+
+static const Value *
+getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
+                        const Value *Ptr, int64_t &BytesOffset,
+                        const DataLayout &DL, bool AllowNonInbounds = false) {
+  APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
+  const Value *Base =
+      stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
+                                /* GetMinOffset */ true, AllowNonInbounds);
+
+  BytesOffset = OffsetAPInt.getSExtValue();
+  return Base;
+}
+
+/// Clamp the information known for all returned values of a function
+/// (identified by \p QueryingAA) into \p S.
+template <typename AAType, typename StateType = typename AAType::StateType,
+          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind,
+          bool RecurseForSelectAndPHI = true>
+static void clampReturnedValueStates(
+    Attributor &A, const AAType &QueryingAA, StateType &S,
+    const IRPosition::CallBaseContext *CBContext = nullptr) {
+  LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
+                    << QueryingAA << " into " << S << "\n");
+
+  assert((QueryingAA.getIRPosition().getPositionKind() ==
+              IRPosition::IRP_RETURNED ||
+          QueryingAA.getIRPosition().getPositionKind() ==
+              IRPosition::IRP_CALL_SITE_RETURNED) &&
+         "Can only clamp returned value states for a function returned or call "
+         "site returned position!");
+
+  // Use an optional state as there might not be any return values and we want
+  // to join (IntegerState::operator&) the state of all there are.
+  std::optional<StateType> T;
+
+  // Callback for each possibly returned value.
+  auto CheckReturnValue = [&](Value &RV) -> bool {
+    const IRPosition &RVPos = IRPosition::value(RV, CBContext);
+    // If possible, use the hasAssumedIRAttr interface.
+    if (Attribute::isEnumAttrKind(IRAttributeKind)) {
+      bool IsKnown;
+      return AA::hasAssumedIRAttr<IRAttributeKind>(
+          A, &QueryingAA, RVPos, DepClassTy::REQUIRED, IsKnown);
+    }
+
+    const AAType *AA =
+        A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
+    if (!AA)
+      return false;
+    LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV
+                      << " AA: " << AA->getAsStr(&A) << " @ " << RVPos << "\n");
+    const StateType &AAS = AA->getState();
+    if (!T)
+      T = StateType::getBestState(AAS);
+    *T &= AAS;
+    LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
+                      << "\n");
+    return T->isValidState();
+  };
+
+  if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA,
+                                   AA::ValueScope::Intraprocedural,
+                                   RecurseForSelectAndPHI))
+    S.indicatePessimisticFixpoint();
+  else if (T)
+    S ^= *T;
+}
+
+namespace {
+/// Helper class for generic deduction: return value -> returned position.
+template <typename AAType, typename BaseType,
+          typename StateType = typename BaseType::StateType,
+          bool PropagateCallBaseContext = false,
+          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind,
+          bool RecurseForSelectAndPHI = true>
+struct AAReturnedFromReturnedValues : public BaseType {
+  AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
+      : BaseType(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    StateType S(StateType::getBestState(this->getState()));
+    clampReturnedValueStates<AAType, StateType, IRAttributeKind, RecurseForSelectAndPHI>(
+        A, *this, S,
+        PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
+    // TODO: If we know we visited all returned values, thus no are assumed
+    // dead, we can take the known information from the state T.
+    return clampStateAndIndicateChange<StateType>(this->getState(), S);
+  }
+};
+
+/// Clamp the information known at all call sites for a given argument
+/// (identified by \p QueryingAA) into \p S.
+template <typename AAType, typename StateType = typename AAType::StateType,
+          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
+static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
+                                        StateType &S) {
+  LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
+                    << QueryingAA << " into " << S << "\n");
+
+  assert(QueryingAA.getIRPosition().getPositionKind() ==
+             IRPosition::IRP_ARGUMENT &&
+         "Can only clamp call site argument states for an argument position!");
+
+  // Use an optional state as there might not be any return values and we want
+  // to join (IntegerState::operator&) the state of all there are.
+  std::optional<StateType> T;
+
+  // The argument number which is also the call site argument number.
+  unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
+
+  auto CallSiteCheck = [&](AbstractCallSite ACS) {
+    const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
+    // Check if a coresponding argument was found or if it is on not associated
+    // (which can happen for callback calls).
+    if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
+      return false;
+
+    // If possible, use the hasAssumedIRAttr interface.
+    if (Attribute::isEnumAttrKind(IRAttributeKind)) {
+      bool IsKnown;
+      return AA::hasAssumedIRAttr<IRAttributeKind>(
+          A, &QueryingAA, ACSArgPos, DepClassTy::REQUIRED, IsKnown);
+    }
+
+    const AAType *AA =
+        A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
+    if (!AA)
+      return false;
+    LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
+                      << " AA: " << AA->getAsStr(&A) << " @" << ACSArgPos
+                      << "\n");
+    const StateType &AAS = AA->getState();
+    if (!T)
+      T = StateType::getBestState(AAS);
+    *T &= AAS;
+    LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
+                      << "\n");
+    return T->isValidState();
+  };
+
+  bool UsedAssumedInformation = false;
+  if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
+                              UsedAssumedInformation))
+    S.indicatePessimisticFixpoint();
+  else if (T)
+    S ^= *T;
+}
+
+/// This function is the bridge between argument position and the call base
+/// context.
+template <typename AAType, typename BaseType,
+          typename StateType = typename AAType::StateType,
+          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
+bool getArgumentStateFromCallBaseContext(Attributor &A,
+                                         BaseType &QueryingAttribute,
+                                         IRPosition &Pos, StateType &State) {
+  assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
+         "Expected an 'argument' position !");
+  const CallBase *CBContext = Pos.getCallBaseContext();
+  if (!CBContext)
+    return false;
+
+  int ArgNo = Pos.getCallSiteArgNo();
+  assert(ArgNo >= 0 && "Invalid Arg No!");
+  const IRPosition CBArgPos = IRPosition::callsite_argument(*CBContext, ArgNo);
+
+  // If possible, use the hasAssumedIRAttr interface.
+  if (Attribute::isEnumAttrKind(IRAttributeKind)) {
+    bool IsKnown;
+    return AA::hasAssumedIRAttr<IRAttributeKind>(
+        A, &QueryingAttribute, CBArgPos, DepClassTy::REQUIRED, IsKnown);
+  }
+
+  const auto *AA =
+      A.getAAFor<AAType>(QueryingAttribute, CBArgPos, DepClassTy::REQUIRED);
+  if (!AA)
+    return false;
+  const StateType &CBArgumentState =
+      static_cast<const StateType &>(AA->getState());
+
+  LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
+                    << "Position:" << Pos << "CB Arg state:" << CBArgumentState
+                    << "\n");
+
+  // NOTE: If we want to do call site grouping it should happen here.
+  State ^= CBArgumentState;
+  return true;
+}
+
+/// Helper class for generic deduction: call site argument -> argument position.
+template <typename AAType, typename BaseType,
+          typename StateType = typename AAType::StateType,
+          bool BridgeCallBaseContext = false,
+          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
+struct AAArgumentFromCallSiteArguments : public BaseType {
+  AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
+      : BaseType(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    StateType S = StateType::getBestState(this->getState());
+
+    if (BridgeCallBaseContext) {
+      bool Success =
+          getArgumentStateFromCallBaseContext<AAType, BaseType, StateType,
+                                              IRAttributeKind>(
+              A, *this, this->getIRPosition(), S);
+      if (Success)
+        return clampStateAndIndicateChange<StateType>(this->getState(), S);
+    }
+    clampCallSiteArgumentStates<AAType, StateType, IRAttributeKind>(A, *this,
+                                                                    S);
+
+    // TODO: If we know we visited all incoming values, thus no are assumed
+    // dead, we can take the known information from the state T.
+    return clampStateAndIndicateChange<StateType>(this->getState(), S);
+  }
+};
+
+/// Helper class for generic replication: function returned -> cs returned.
+template <typename AAType, typename BaseType,
+          typename StateType = typename BaseType::StateType,
+          bool IntroduceCallBaseContext = false,
+          Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind>
+struct AACalleeToCallSite : public BaseType {
+  AACalleeToCallSite(const IRPosition &IRP, Attributor &A) : BaseType(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto IRPKind = this->getIRPosition().getPositionKind();
+    assert((IRPKind == IRPosition::IRP_CALL_SITE_RETURNED ||
+            IRPKind == IRPosition::IRP_CALL_SITE) &&
+           "Can only wrap function returned positions for call site "
+           "returned positions!");
+    auto &S = this->getState();
+
+    CallBase &CB = cast<CallBase>(this->getAnchorValue());
+    if (IntroduceCallBaseContext)
+      LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:" << CB
+                        << "\n");
+
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    auto CalleePred = [&](ArrayRef<const Function *> Callees) {
+      for (const Function *Callee : Callees) {
+        IRPosition FnPos =
+            IRPKind == llvm::IRPosition::IRP_CALL_SITE_RETURNED
+                ? IRPosition::returned(*Callee,
+                                       IntroduceCallBaseContext ? &CB : nullptr)
+                : IRPosition::function(
+                      *Callee, IntroduceCallBaseContext ? &CB : nullptr);
+        // If possible, use the hasAssumedIRAttr interface.
+        if (Attribute::isEnumAttrKind(IRAttributeKind)) {
+          bool IsKnown;
+          if (!AA::hasAssumedIRAttr<IRAttributeKind>(
+                  A, this, FnPos, DepClassTy::REQUIRED, IsKnown))
+            return false;
+          continue;
+        }
+
+        const AAType *AA =
+            A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
+        if (!AA)
+          return false;
+        Changed |= clampStateAndIndicateChange(S, AA->getState());
+        if (S.isAtFixpoint())
+          return S.isValidState();
+      }
+      return true;
+    };
+    if (!A.checkForAllCallees(CalleePred, *this, CB))
+      return S.indicatePessimisticFixpoint();
+    return Changed;
+  }
+};
+
+/// Helper function to accumulate uses.
+template <class AAType, typename StateType = typename AAType::StateType>
+static void followUsesInContext(AAType &AA, Attributor &A,
+                                MustBeExecutedContextExplorer &Explorer,
+                                const Instruction *CtxI,
+                                SetVector<const Use *> &Uses,
+                                StateType &State) {
+  auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
+  for (unsigned u = 0; u < Uses.size(); ++u) {
+    const Use *U = Uses[u];
+    if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
+      bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
+      if (Found && AA.followUseInMBEC(A, U, UserI, State))
+        for (const Use &Us : UserI->uses())
+          Uses.insert(&Us);
+    }
+  }
+}
+
+/// Use the must-be-executed-context around \p I to add information into \p S.
+/// The AAType class is required to have `followUseInMBEC` method with the
+/// following signature and behaviour:
+///
+/// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
+/// U - Underlying use.
+/// I - The user of the \p U.
+/// Returns true if the value should be tracked transitively.
+///
+template <class AAType, typename StateType = typename AAType::StateType>
+static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
+                             Instruction &CtxI) {
+  MustBeExecutedContextExplorer *Explorer =
+      A.getInfoCache().getMustBeExecutedContextExplorer();
+  if (!Explorer)
+    return;
+
+  // Container for (transitive) uses of the associated value.
+  SetVector<const Use *> Uses;
+  for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
+    Uses.insert(&U);
+
+  followUsesInContext<AAType>(AA, A, *Explorer, &CtxI, Uses, S);
+
+  if (S.isAtFixpoint())
+    return;
+
+  SmallVector<const BranchInst *, 4> BrInsts;
+  auto Pred = [&](const Instruction *I) {
+    if (const BranchInst *Br = dyn_cast<BranchInst>(I))
+      if (Br->isConditional())
+        BrInsts.push_back(Br);
+    return true;
+  };
+
+  // Here, accumulate conditional branch instructions in the context. We
+  // explore the child paths and collect the known states. The disjunction of
+  // those states can be merged to its own state. Let ParentState_i be a state
+  // to indicate the known information for an i-th branch instruction in the
+  // context. ChildStates are created for its successors respectively.
+  //
+  // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
+  // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
+  //      ...
+  // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
+  //
+  // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
+  //
+  // FIXME: Currently, recursive branches are not handled. For example, we
+  // can't deduce that ptr must be dereferenced in below function.
+  //
+  // void f(int a, int c, int *ptr) {
+  //    if(a)
+  //      if (b) {
+  //        *ptr = 0;
+  //      } else {
+  //        *ptr = 1;
+  //      }
+  //    else {
+  //      if (b) {
+  //        *ptr = 0;
+  //      } else {
+  //        *ptr = 1;
+  //      }
+  //    }
+  // }
+
+  Explorer->checkForAllContext(&CtxI, Pred);
+  for (const BranchInst *Br : BrInsts) {
+    StateType ParentState;
+
+    // The known state of the parent state is a conjunction of children's
+    // known states so it is initialized with a best state.
+    ParentState.indicateOptimisticFixpoint();
+
+    for (const BasicBlock *BB : Br->successors()) {
+      StateType ChildState;
+
+      size_t BeforeSize = Uses.size();
+      followUsesInContext(AA, A, *Explorer, &BB->front(), Uses, ChildState);
+
+      // Erase uses which only appear in the child.
+      for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
+        It = Uses.erase(It);
+
+      ParentState &= ChildState;
+    }
+
+    // Use only known state.
+    S += ParentState;
+  }
+}
+} // namespace
+
+/// ------------------------ PointerInfo ---------------------------------------
+
+namespace llvm {
+namespace AA {
+namespace PointerInfo {
+
+struct State;
+
+} // namespace PointerInfo
+} // namespace AA
+
+/// Helper for AA::PointerInfo::Access DenseMap/Set usage.
+template <>
+struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
+  using Access = AAPointerInfo::Access;
+  static inline Access getEmptyKey();
+  static inline Access getTombstoneKey();
+  static unsigned getHashValue(const Access &A);
+  static bool isEqual(const Access &LHS, const Access &RHS);
+};
+
+/// Helper that allows RangeTy as a key in a DenseMap.
+template <> struct DenseMapInfo<AA::RangeTy> {
+  static inline AA::RangeTy getEmptyKey() {
+    auto EmptyKey = DenseMapInfo<int64_t>::getEmptyKey();
+    return AA::RangeTy{EmptyKey, EmptyKey};
+  }
+
+  static inline AA::RangeTy getTombstoneKey() {
+    auto TombstoneKey = DenseMapInfo<int64_t>::getTombstoneKey();
+    return AA::RangeTy{TombstoneKey, TombstoneKey};
+  }
+
+  static unsigned getHashValue(const AA::RangeTy &Range) {
+    return detail::combineHashValue(
+        DenseMapInfo<int64_t>::getHashValue(Range.Offset),
+        DenseMapInfo<int64_t>::getHashValue(Range.Size));
+  }
+
+  static bool isEqual(const AA::RangeTy &A, const AA::RangeTy B) {
+    return A == B;
+  }
+};
+
+/// Helper for AA::PointerInfo::Access DenseMap/Set usage ignoring everythign
+/// but the instruction
+struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
+  using Base = DenseMapInfo<Instruction *>;
+  using Access = AAPointerInfo::Access;
+  static inline Access getEmptyKey();
+  static inline Access getTombstoneKey();
+  static unsigned getHashValue(const Access &A);
+  static bool isEqual(const Access &LHS, const Access &RHS);
+};
+
+} // namespace llvm
+
+/// A type to track pointer/struct usage and accesses for AAPointerInfo.
+struct AA::PointerInfo::State : public AbstractState {
+  /// Return the best possible representable state.
+  static State getBestState(const State &SIS) { return State(); }
+
+  /// Return the worst possible representable state.
+  static State getWorstState(const State &SIS) {
+    State R;
+    R.indicatePessimisticFixpoint();
+    return R;
+  }
+
+  State() = default;
+  State(State &&SIS) = default;
+
+  const State &getAssumed() const { return *this; }
+
+  /// See AbstractState::isValidState().
+  bool isValidState() const override { return BS.isValidState(); }
+
+  /// See AbstractState::isAtFixpoint().
+  bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
+
+  /// See AbstractState::indicateOptimisticFixpoint().
+  ChangeStatus indicateOptimisticFixpoint() override {
+    BS.indicateOptimisticFixpoint();
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint().
+  ChangeStatus indicatePessimisticFixpoint() override {
+    BS.indicatePessimisticFixpoint();
+    return ChangeStatus::CHANGED;
+  }
+
+  State &operator=(const State &R) {
+    if (this == &R)
+      return *this;
+    BS = R.BS;
+    AccessList = R.AccessList;
+    OffsetBins = R.OffsetBins;
+    RemoteIMap = R.RemoteIMap;
+    return *this;
+  }
+
+  State &operator=(State &&R) {
+    if (this == &R)
+      return *this;
+    std::swap(BS, R.BS);
+    std::swap(AccessList, R.AccessList);
+    std::swap(OffsetBins, R.OffsetBins);
+    std::swap(RemoteIMap, R.RemoteIMap);
+    return *this;
+  }
+
+  /// Add a new Access to the state at offset \p Offset and with size \p Size.
+  /// The access is associated with \p I, writes \p Content (if anything), and
+  /// is of kind \p Kind. If an Access already exists for the same \p I and same
+  /// \p RemoteI, the two are combined, potentially losing information about
+  /// offset and size. The resulting access must now be moved from its original
+  /// OffsetBin to the bin for its new offset.
+  ///
+  /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
+  ChangeStatus addAccess(Attributor &A, const AAPointerInfo::RangeList &Ranges,
+                         Instruction &I, std::optional<Value *> Content,
+                         AAPointerInfo::AccessKind Kind, Type *Ty,
+                         Instruction *RemoteI = nullptr);
+
+  AAPointerInfo::const_bin_iterator begin() const { return OffsetBins.begin(); }
+  AAPointerInfo::const_bin_iterator end() const { return OffsetBins.end(); }
+  int64_t numOffsetBins() const { return OffsetBins.size(); }
+
+  const AAPointerInfo::Access &getAccess(unsigned Index) const {
+    return AccessList[Index];
+  }
+
+protected:
+  // Every memory instruction results in an Access object. We maintain a list of
+  // all Access objects that we own, along with the following maps:
+  //
+  // - OffsetBins: RangeTy -> { Access }
+  // - RemoteIMap: RemoteI x LocalI -> Access
+  //
+  // A RemoteI is any instruction that accesses memory. RemoteI is different
+  // from LocalI if and only if LocalI is a call; then RemoteI is some
+  // instruction in the callgraph starting from LocalI. Multiple paths in the
+  // callgraph from LocalI to RemoteI may produce multiple accesses, but these
+  // are all combined into a single Access object. This may result in loss of
+  // information in RangeTy in the Access object.
+  SmallVector<AAPointerInfo::Access> AccessList;
+  AAPointerInfo::OffsetBinsTy OffsetBins;
+  DenseMap<const Instruction *, SmallVector<unsigned>> RemoteIMap;
+
+  /// See AAPointerInfo::forallInterferingAccesses.
+  bool forallInterferingAccesses(
+      AA::RangeTy Range,
+      function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
+    if (!isValidState())
+      return false;
+
+    for (const auto &It : OffsetBins) {
+      AA::RangeTy ItRange = It.getFirst();
+      if (!Range.mayOverlap(ItRange))
+        continue;
+      bool IsExact = Range == ItRange && !Range.offsetOrSizeAreUnknown();
+      for (auto Index : It.getSecond()) {
+        auto &Access = AccessList[Index];
+        if (!CB(Access, IsExact))
+          return false;
+      }
+    }
+    return true;
+  }
+
+  /// See AAPointerInfo::forallInterferingAccesses.
+  bool forallInterferingAccesses(
+      Instruction &I,
+      function_ref<bool(const AAPointerInfo::Access &, bool)> CB,
+      AA::RangeTy &Range) const {
+    if (!isValidState())
+      return false;
+
+    auto LocalList = RemoteIMap.find(&I);
+    if (LocalList == RemoteIMap.end()) {
+      return true;
+    }
+
+    for (unsigned Index : LocalList->getSecond()) {
+      for (auto &R : AccessList[Index]) {
+        Range &= R;
+        if (Range.offsetAndSizeAreUnknown())
+          break;
+      }
+    }
+    return forallInterferingAccesses(Range, CB);
+  }
+
+private:
+  /// State to track fixpoint and validity.
+  BooleanState BS;
+};
+
+ChangeStatus AA::PointerInfo::State::addAccess(
+    Attributor &A, const AAPointerInfo::RangeList &Ranges, Instruction &I,
+    std::optional<Value *> Content, AAPointerInfo::AccessKind Kind, Type *Ty,
+    Instruction *RemoteI) {
+  RemoteI = RemoteI ? RemoteI : &I;
+
+  // Check if we have an access for this instruction, if not, simply add it.
+  auto &LocalList = RemoteIMap[RemoteI];
+  bool AccExists = false;
+  unsigned AccIndex = AccessList.size();
+  for (auto Index : LocalList) {
+    auto &A = AccessList[Index];
+    if (A.getLocalInst() == &I) {
+      AccExists = true;
+      AccIndex = Index;
+      break;
+    }
+  }
+
+  auto AddToBins = [&](const AAPointerInfo::RangeList &ToAdd) {
+    LLVM_DEBUG(if (ToAdd.size()) dbgs()
+                   << "[AAPointerInfo] Inserting access in new offset bins\n";);
+
+    for (auto Key : ToAdd) {
+      LLVM_DEBUG(dbgs() << "    key " << Key << "\n");
+      OffsetBins[Key].insert(AccIndex);
+    }
+  };
+
+  if (!AccExists) {
+    AccessList.emplace_back(&I, RemoteI, Ranges, Content, Kind, Ty);
+    assert((AccessList.size() == AccIndex + 1) &&
+           "New Access should have been at AccIndex");
+    LocalList.push_back(AccIndex);
+    AddToBins(AccessList[AccIndex].getRanges());
+    return ChangeStatus::CHANGED;
+  }
+
+  // Combine the new Access with the existing Access, and then update the
+  // mapping in the offset bins.
+  AAPointerInfo::Access Acc(&I, RemoteI, Ranges, Content, Kind, Ty);
+  auto &Current = AccessList[AccIndex];
+  auto Before = Current;
+  Current &= Acc;
+  if (Current == Before)
+    return ChangeStatus::UNCHANGED;
+
+  auto &ExistingRanges = Before.getRanges();
+  auto &NewRanges = Current.getRanges();
+
+  // Ranges that are in the old access but not the new access need to be removed
+  // from the offset bins.
+  AAPointerInfo::RangeList ToRemove;
+  AAPointerInfo::RangeList::set_difference(ExistingRanges, NewRanges, ToRemove);
+  LLVM_DEBUG(if (ToRemove.size()) dbgs()
+                 << "[AAPointerInfo] Removing access from old offset bins\n";);
+
+  for (auto Key : ToRemove) {
+    LLVM_DEBUG(dbgs() << "    key " << Key << "\n");
+    assert(OffsetBins.count(Key) && "Existing Access must be in some bin.");
+    auto &Bin = OffsetBins[Key];
+    assert(Bin.count(AccIndex) &&
+           "Expected bin to actually contain the Access.");
+    Bin.erase(AccIndex);
+  }
+
+  // Ranges that are in the new access but not the old access need to be added
+  // to the offset bins.
+  AAPointerInfo::RangeList ToAdd;
+  AAPointerInfo::RangeList::set_difference(NewRanges, ExistingRanges, ToAdd);
+  AddToBins(ToAdd);
+  return ChangeStatus::CHANGED;
+}
+
+namespace {
+
+/// A helper containing a list of offsets computed for a Use. Ideally this
+/// list should be strictly ascending, but we ensure that only when we
+/// actually translate the list of offsets to a RangeList.
+struct OffsetInfo {
+  using VecTy = SmallVector<int64_t>;
+  using const_iterator = VecTy::const_iterator;
+  VecTy Offsets;
+
+  const_iterator begin() const { return Offsets.begin(); }
+  const_iterator end() const { return Offsets.end(); }
+
+  bool operator==(const OffsetInfo &RHS) const {
+    return Offsets == RHS.Offsets;
+  }
+
+  bool operator!=(const OffsetInfo &RHS) const { return !(*this == RHS); }
+
+  void insert(int64_t Offset) { Offsets.push_back(Offset); }
+  bool isUnassigned() const { return Offsets.size() == 0; }
+
+  bool isUnknown() const {
+    if (isUnassigned())
+      return false;
+    if (Offsets.size() == 1)
+      return Offsets.front() == AA::RangeTy::Unknown;
+    return false;
+  }
+
+  void setUnknown() {
+    Offsets.clear();
+    Offsets.push_back(AA::RangeTy::Unknown);
+  }
+
+  void addToAll(int64_t Inc) {
+    for (auto &Offset : Offsets) {
+      Offset += Inc;
+    }
+  }
+
+  /// Copy offsets from \p R into the current list.
+  ///
+  /// Ideally all lists should be strictly ascending, but we defer that to the
+  /// actual use of the list. So we just blindly append here.
+  void merge(const OffsetInfo &R) { Offsets.append(R.Offsets); }
+};
+
+#ifndef NDEBUG
+static raw_ostream &operator<<(raw_ostream &OS, const OffsetInfo &OI) {
+  ListSeparator LS;
+  OS << "[";
+  for (auto Offset : OI) {
+    OS << LS << Offset;
+  }
+  OS << "]";
+  return OS;
+}
+#endif // NDEBUG
+
+struct AAPointerInfoImpl
+    : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
+  using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
+  AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return std::string("PointerInfo ") +
+           (isValidState() ? (std::string("#") +
+                              std::to_string(OffsetBins.size()) + " bins")
+                           : "<invalid>");
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    return AAPointerInfo::manifest(A);
+  }
+
+  virtual const_bin_iterator begin() const override { return State::begin(); }
+  virtual const_bin_iterator end() const override { return State::end(); }
+  virtual int64_t numOffsetBins() const override {
+    return State::numOffsetBins();
+  }
+
+  virtual const Access &getBinAccess(unsigned Index) const override {
+    return getAccess(Index);
+  }
+
+  bool forallInterferingAccesses(
+      AA::RangeTy Range,
+      function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
+      const override {
+    return State::forallInterferingAccesses(Range, CB);
+  }
+
+  bool forallInterferingAccesses(
+      Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
+      bool FindInterferingWrites, bool FindInterferingReads,
+      function_ref<bool(const Access &, bool)> UserCB, bool &HasBeenWrittenTo,
+      AA::RangeTy &Range,
+      function_ref<bool(const Access &)> SkipCB) const override {
+    HasBeenWrittenTo = false;
+
+    SmallPtrSet<const Access *, 8> DominatingWrites;
+    SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
+
+    Function &Scope = *I.getFunction();
+    bool IsKnownNoSync;
+    bool IsAssumedNoSync = AA::hasAssumedIRAttr<Attribute::NoSync>(
+        A, &QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL,
+        IsKnownNoSync);
+    const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
+        IRPosition::function(Scope), &QueryingAA, DepClassTy::NONE);
+    bool AllInSameNoSyncFn = IsAssumedNoSync;
+    bool InstIsExecutedByInitialThreadOnly =
+        ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I);
+
+    // If the function is not ending in aligned barriers, we need the stores to
+    // be in aligned barriers. The load being in one is not sufficient since the
+    // store might be executed by a thread that disappears after, causing the
+    // aligned barrier guarding the load to unblock and the load to read a value
+    // that has no CFG path to the load.
+    bool InstIsExecutedInAlignedRegion =
+        FindInterferingReads && ExecDomainAA &&
+        ExecDomainAA->isExecutedInAlignedRegion(A, I);
+
+    if (InstIsExecutedInAlignedRegion || InstIsExecutedByInitialThreadOnly)
+      A.recordDependence(*ExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
+
+    InformationCache &InfoCache = A.getInfoCache();
+    bool IsThreadLocalObj =
+        AA::isAssumedThreadLocalObject(A, getAssociatedValue(), *this);
+
+    // Helper to determine if we need to consider threading, which we cannot
+    // right now. However, if the function is (assumed) nosync or the thread
+    // executing all instructions is the main thread only we can ignore
+    // threading. Also, thread-local objects do not require threading reasoning.
+    // Finally, we can ignore threading if either access is executed in an
+    // aligned region.
+    auto CanIgnoreThreadingForInst = [&](const Instruction &I) -> bool {
+      if (IsThreadLocalObj || AllInSameNoSyncFn)
+        return true;
+      const auto *FnExecDomainAA =
+          I.getFunction() == &Scope
+              ? ExecDomainAA
+              : A.lookupAAFor<AAExecutionDomain>(
+                    IRPosition::function(*I.getFunction()), &QueryingAA,
+                    DepClassTy::NONE);
+      if (!FnExecDomainAA)
+        return false;
+      if (InstIsExecutedInAlignedRegion ||
+          (FindInterferingWrites &&
+           FnExecDomainAA->isExecutedInAlignedRegion(A, I))) {
+        A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
+        return true;
+      }
+      if (InstIsExecutedByInitialThreadOnly &&
+          FnExecDomainAA->isExecutedByInitialThreadOnly(I)) {
+        A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
+        return true;
+      }
+      return false;
+    };
+
+    // Helper to determine if the access is executed by the same thread as the
+    // given instruction, for now it is sufficient to avoid any potential
+    // threading effects as we cannot deal with them anyway.
+    auto CanIgnoreThreading = [&](const Access &Acc) -> bool {
+      return CanIgnoreThreadingForInst(*Acc.getRemoteInst()) ||
+             (Acc.getRemoteInst() != Acc.getLocalInst() &&
+              CanIgnoreThreadingForInst(*Acc.getLocalInst()));
+    };
+
+    // TODO: Use inter-procedural reachability and dominance.
+    bool IsKnownNoRecurse;
+    AA::hasAssumedIRAttr<Attribute::NoRecurse>(
+        A, this, IRPosition::function(Scope), DepClassTy::OPTIONAL,
+        IsKnownNoRecurse);
+
+    // TODO: Use reaching kernels from AAKernelInfo (or move it to
+    // AAExecutionDomain) such that we allow scopes other than kernels as long
+    // as the reaching kernels are disjoint.
+    bool InstInKernel = Scope.hasFnAttribute("kernel");
+    bool ObjHasKernelLifetime = false;
+    const bool UseDominanceReasoning =
+        FindInterferingWrites && IsKnownNoRecurse;
+    const DominatorTree *DT =
+        InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(Scope);
+
+    // Helper to check if a value has "kernel lifetime", that is it will not
+    // outlive a GPU kernel. This is true for shared, constant, and local
+    // globals on AMD and NVIDIA GPUs.
+    auto HasKernelLifetime = [&](Value *V, Module &M) {
+      if (!AA::isGPU(M))
+        return false;
+      switch (AA::GPUAddressSpace(V->getType()->getPointerAddressSpace())) {
+      case AA::GPUAddressSpace::Shared:
+      case AA::GPUAddressSpace::Constant:
+      case AA::GPUAddressSpace::Local:
+        return true;
+      default:
+        return false;
+      };
+    };
+
+    // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
+    // to determine if we should look at reachability from the callee. For
+    // certain pointers we know the lifetime and we do not have to step into the
+    // callee to determine reachability as the pointer would be dead in the
+    // callee. See the conditional initialization below.
+    std::function<bool(const Function &)> IsLiveInCalleeCB;
+
+    if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
+      // If the alloca containing function is not recursive the alloca
+      // must be dead in the callee.
+      const Function *AIFn = AI->getFunction();
+      ObjHasKernelLifetime = AIFn->hasFnAttribute("kernel");
+      bool IsKnownNoRecurse;
+      if (AA::hasAssumedIRAttr<Attribute::NoRecurse>(
+              A, this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL,
+              IsKnownNoRecurse)) {
+        IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
+      }
+    } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
+      // If the global has kernel lifetime we can stop if we reach a kernel
+      // as it is "dead" in the (unknown) callees.
+      ObjHasKernelLifetime = HasKernelLifetime(GV, *GV->getParent());
+      if (ObjHasKernelLifetime)
+        IsLiveInCalleeCB = [](const Function &Fn) {
+          return !Fn.hasFnAttribute("kernel");
+        };
+    }
+
+    // Set of accesses/instructions that will overwrite the result and are
+    // therefore blockers in the reachability traversal.
+    AA::InstExclusionSetTy ExclusionSet;
+
+    auto AccessCB = [&](const Access &Acc, bool Exact) {
+      Function *AccScope = Acc.getRemoteInst()->getFunction();
+      bool AccInSameScope = AccScope == &Scope;
+
+      // If the object has kernel lifetime we can ignore accesses only reachable
+      // by other kernels. For now we only skip accesses *in* other kernels.
+      if (InstInKernel && ObjHasKernelLifetime && !AccInSameScope &&
+          AccScope->hasFnAttribute("kernel"))
+        return true;
+
+      if (Exact && Acc.isMustAccess() && Acc.getRemoteInst() != &I) {
+        if (Acc.isWrite() || (isa<LoadInst>(I) && Acc.isWriteOrAssumption()))
+          ExclusionSet.insert(Acc.getRemoteInst());
+      }
+
+      if ((!FindInterferingWrites || !Acc.isWriteOrAssumption()) &&
+          (!FindInterferingReads || !Acc.isRead()))
+        return true;
+
+      bool Dominates = FindInterferingWrites && DT && Exact &&
+                       Acc.isMustAccess() && AccInSameScope &&
+                       DT->dominates(Acc.getRemoteInst(), &I);
+      if (Dominates)
+        DominatingWrites.insert(&Acc);
+
+      // Track if all interesting accesses are in the same `nosync` function as
+      // the given instruction.
+      AllInSameNoSyncFn &= Acc.getRemoteInst()->getFunction() == &Scope;
+
+      InterferingAccesses.push_back({&Acc, Exact});
+      return true;
+    };
+    if (!State::forallInterferingAccesses(I, AccessCB, Range))
+      return false;
+
+    HasBeenWrittenTo = !DominatingWrites.empty();
+
+    // Dominating writes form a chain, find the least/lowest member.
+    Instruction *LeastDominatingWriteInst = nullptr;
+    for (const Access *Acc : DominatingWrites) {
+      if (!LeastDominatingWriteInst) {
+        LeastDominatingWriteInst = Acc->getRemoteInst();
+      } else if (DT->dominates(LeastDominatingWriteInst,
+                               Acc->getRemoteInst())) {
+        LeastDominatingWriteInst = Acc->getRemoteInst();
+      }
+    }
+
+    // Helper to determine if we can skip a specific write access.
+    auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
+      if (SkipCB && SkipCB(Acc))
+        return true;
+      if (!CanIgnoreThreading(Acc))
+        return false;
+
+      // Check read (RAW) dependences and write (WAR) dependences as necessary.
+      // If we successfully excluded all effects we are interested in, the
+      // access can be skipped.
+      bool ReadChecked = !FindInterferingReads;
+      bool WriteChecked = !FindInterferingWrites;
+
+      // If the instruction cannot reach the access, the former does not
+      // interfere with what the access reads.
+      if (!ReadChecked) {
+        if (!AA::isPotentiallyReachable(A, I, *Acc.getRemoteInst(), QueryingAA,
+                                        &ExclusionSet, IsLiveInCalleeCB))
+          ReadChecked = true;
+      }
+      // If the instruction cannot be reach from the access, the latter does not
+      // interfere with what the instruction reads.
+      if (!WriteChecked) {
+        if (!AA::isPotentiallyReachable(A, *Acc.getRemoteInst(), I, QueryingAA,
+                                        &ExclusionSet, IsLiveInCalleeCB))
+          WriteChecked = true;
+      }
+
+      // If we still might be affected by the write of the access but there are
+      // dominating writes in the function of the instruction
+      // (HasBeenWrittenTo), we can try to reason that the access is overwritten
+      // by them. This would have happend above if they are all in the same
+      // function, so we only check the inter-procedural case. Effectively, we
+      // want to show that there is no call after the dominting write that might
+      // reach the access, and when it returns reach the instruction with the
+      // updated value. To this end, we iterate all call sites, check if they
+      // might reach the instruction without going through another access
+      // (ExclusionSet) and at the same time might reach the access. However,
+      // that is all part of AAInterFnReachability.
+      if (!WriteChecked && HasBeenWrittenTo &&
+          Acc.getRemoteInst()->getFunction() != &Scope) {
+
+        const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>(
+            QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
+
+        // Without going backwards in the call tree, can we reach the access
+        // from the least dominating write. Do not allow to pass the instruction
+        // itself either.
+        bool Inserted = ExclusionSet.insert(&I).second;
+
+        if (!FnReachabilityAA ||
+            !FnReachabilityAA->instructionCanReach(
+                A, *LeastDominatingWriteInst,
+                *Acc.getRemoteInst()->getFunction(), &ExclusionSet))
+          WriteChecked = true;
+
+        if (Inserted)
+          ExclusionSet.erase(&I);
+      }
+
+      if (ReadChecked && WriteChecked)
+        return true;
+
+      if (!DT || !UseDominanceReasoning)
+        return false;
+      if (!DominatingWrites.count(&Acc))
+        return false;
+      return LeastDominatingWriteInst != Acc.getRemoteInst();
+    };
+
+    // Run the user callback on all accesses we cannot skip and return if
+    // that succeeded for all or not.
+    for (auto &It : InterferingAccesses) {
+      if ((!AllInSameNoSyncFn && !IsThreadLocalObj && !ExecDomainAA) ||
+          !CanSkipAccess(*It.first, It.second)) {
+        if (!UserCB(*It.first, It.second))
+          return false;
+      }
+    }
+    return true;
+  }
+
+  ChangeStatus translateAndAddStateFromCallee(Attributor &A,
+                                              const AAPointerInfo &OtherAA,
+                                              CallBase &CB) {
+    using namespace AA::PointerInfo;
+    if (!OtherAA.getState().isValidState() || !isValidState())
+      return indicatePessimisticFixpoint();
+
+    const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
+    bool IsByval = OtherAAImpl.getAssociatedArgument()->hasByValAttr();
+
+    // Combine the accesses bin by bin.
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    const auto &State = OtherAAImpl.getState();
+    for (const auto &It : State) {
+      for (auto Index : It.getSecond()) {
+        const auto &RAcc = State.getAccess(Index);
+        if (IsByval && !RAcc.isRead())
+          continue;
+        bool UsedAssumedInformation = false;
+        AccessKind AK = RAcc.getKind();
+        auto Content = A.translateArgumentToCallSiteContent(
+            RAcc.getContent(), CB, *this, UsedAssumedInformation);
+        AK = AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW));
+        AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST));
+
+        Changed |= addAccess(A, RAcc.getRanges(), CB, Content, AK,
+                             RAcc.getType(), RAcc.getRemoteInst());
+      }
+    }
+    return Changed;
+  }
+
+  ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
+                                    const OffsetInfo &Offsets, CallBase &CB) {
+    using namespace AA::PointerInfo;
+    if (!OtherAA.getState().isValidState() || !isValidState())
+      return indicatePessimisticFixpoint();
+
+    const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
+
+    // Combine the accesses bin by bin.
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    const auto &State = OtherAAImpl.getState();
+    for (const auto &It : State) {
+      for (auto Index : It.getSecond()) {
+        const auto &RAcc = State.getAccess(Index);
+        for (auto Offset : Offsets) {
+          auto NewRanges = Offset == AA::RangeTy::Unknown
+                               ? AA::RangeTy::getUnknown()
+                               : RAcc.getRanges();
+          if (!NewRanges.isUnknown()) {
+            NewRanges.addToAllOffsets(Offset);
+          }
+          Changed |=
+              addAccess(A, NewRanges, CB, RAcc.getContent(), RAcc.getKind(),
+                        RAcc.getType(), RAcc.getRemoteInst());
+        }
+      }
+    }
+    return Changed;
+  }
+
+  /// Statistic tracking for all AAPointerInfo implementations.
+  /// See AbstractAttribute::trackStatistics().
+  void trackPointerInfoStatistics(const IRPosition &IRP) const {}
+
+  /// Dump the state into \p O.
+  virtual void dumpState(raw_ostream &O) const override {
+    for (auto &It : OffsetBins) {
+      O << "[" << It.first.Offset << "-" << It.first.Offset + It.first.Size
+        << "] : " << It.getSecond().size() << "\n";
+      for (auto AccIndex : It.getSecond()) {
+        auto &Acc = AccessList[AccIndex];
+        O << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
+        if (Acc.getLocalInst() != Acc.getRemoteInst())
+          O << "     -->                         " << *Acc.getRemoteInst()
+            << "\n";
+        if (!Acc.isWrittenValueYetUndetermined()) {
+          if (isa_and_nonnull<Function>(Acc.getWrittenValue()))
+            O << "       - c: func " << Acc.getWrittenValue()->getName()
+              << "\n";
+          else if (Acc.getWrittenValue())
+            O << "       - c: " << *Acc.getWrittenValue() << "\n";
+          else
+            O << "       - c: <unknown>\n";
+        }
+      }
+    }
+  }
+};
+
+struct AAPointerInfoFloating : public AAPointerInfoImpl {
+  using AccessKind = AAPointerInfo::AccessKind;
+  AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
+      : AAPointerInfoImpl(IRP, A) {}
+
+  /// Deal with an access and signal if it was handled successfully.
+  bool handleAccess(Attributor &A, Instruction &I,
+                    std::optional<Value *> Content, AccessKind Kind,
+                    SmallVectorImpl<int64_t> &Offsets, ChangeStatus &Changed,
+                    Type &Ty) {
+    using namespace AA::PointerInfo;
+    auto Size = AA::RangeTy::Unknown;
+    const DataLayout &DL = A.getDataLayout();
+    TypeSize AccessSize = DL.getTypeStoreSize(&Ty);
+    if (!AccessSize.isScalable())
+      Size = AccessSize.getFixedValue();
+
+    // Make a strictly ascending list of offsets as required by addAccess()
+    llvm::sort(Offsets);
+    auto *Last = std::unique(Offsets.begin(), Offsets.end());
+    Offsets.erase(Last, Offsets.end());
+
+    VectorType *VT = dyn_cast<VectorType>(&Ty);
+    if (!VT || VT->getElementCount().isScalable() ||
+        !Content.value_or(nullptr) || !isa<Constant>(*Content) ||
+        (*Content)->getType() != VT ||
+        DL.getTypeStoreSize(VT->getElementType()).isScalable()) {
+      Changed = Changed | addAccess(A, {Offsets, Size}, I, Content, Kind, &Ty);
+    } else {
+      // Handle vector stores with constant content element-wise.
+      // TODO: We could look for the elements or create instructions
+      //       representing them.
+      // TODO: We need to push the Content into the range abstraction
+      //       (AA::RangeTy) to allow different content values for different
+      //       ranges. ranges. Hence, support vectors storing different values.
+      Type *ElementType = VT->getElementType();
+      int64_t ElementSize = DL.getTypeStoreSize(ElementType).getFixedValue();
+      auto *ConstContent = cast<Constant>(*Content);
+      Type *Int32Ty = Type::getInt32Ty(ElementType->getContext());
+      SmallVector<int64_t> ElementOffsets(Offsets.begin(), Offsets.end());
+
+      for (int i = 0, e = VT->getElementCount().getFixedValue(); i != e; ++i) {
+        Value *ElementContent = ConstantExpr::getExtractElement(
+            ConstContent, ConstantInt::get(Int32Ty, i));
+
+        // Add the element access.
+        Changed = Changed | addAccess(A, {ElementOffsets, ElementSize}, I,
+                                      ElementContent, Kind, ElementType);
+
+        // Advance the offsets for the next element.
+        for (auto &ElementOffset : ElementOffsets)
+          ElementOffset += ElementSize;
+      }
+    }
+    return true;
+  };
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override;
+
+  /// If the indices to \p GEP can be traced to constants, incorporate all
+  /// of these into \p UsrOI.
+  ///
+  /// \return true iff \p UsrOI is updated.
+  bool collectConstantsForGEP(Attributor &A, const DataLayout &DL,
+                              OffsetInfo &UsrOI, const OffsetInfo &PtrOI,
+                              const GEPOperator *GEP);
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
+  }
+};
+
+bool AAPointerInfoFloating::collectConstantsForGEP(Attributor &A,
+                                                   const DataLayout &DL,
+                                                   OffsetInfo &UsrOI,
+                                                   const OffsetInfo &PtrOI,
+                                                   const GEPOperator *GEP) {
+  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
+  MapVector<Value *, APInt> VariableOffsets;
+  APInt ConstantOffset(BitWidth, 0);
+
+  assert(!UsrOI.isUnknown() && !PtrOI.isUnknown() &&
+         "Don't look for constant values if the offset has already been "
+         "determined to be unknown.");
+
+  if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
+    UsrOI.setUnknown();
+    return true;
+  }
+
+  LLVM_DEBUG(dbgs() << "[AAPointerInfo] GEP offset is "
+                    << (VariableOffsets.empty() ? "" : "not") << " constant "
+                    << *GEP << "\n");
+
+  auto Union = PtrOI;
+  Union.addToAll(ConstantOffset.getSExtValue());
+
+  // Each VI in VariableOffsets has a set of potential constant values. Every
+  // combination of elements, picked one each from these sets, is separately
+  // added to the original set of offsets, thus resulting in more offsets.
+  for (const auto &VI : VariableOffsets) {
+    auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
+        *this, IRPosition::value(*VI.first), DepClassTy::OPTIONAL);
+    if (!PotentialConstantsAA || !PotentialConstantsAA->isValidState()) {
+      UsrOI.setUnknown();
+      return true;
+    }
+
+    // UndefValue is treated as a zero, which leaves Union as is.
+    if (PotentialConstantsAA->undefIsContained())
+      continue;
+
+    // We need at least one constant in every set to compute an actual offset.
+    // Otherwise, we end up pessimizing AAPointerInfo by respecting offsets that
+    // don't actually exist. In other words, the absence of constant values
+    // implies that the operation can be assumed dead for now.
+    auto &AssumedSet = PotentialConstantsAA->getAssumedSet();
+    if (AssumedSet.empty())
+      return false;
+
+    OffsetInfo Product;
+    for (const auto &ConstOffset : AssumedSet) {
+      auto CopyPerOffset = Union;
+      CopyPerOffset.addToAll(ConstOffset.getSExtValue() *
+                             VI.second.getZExtValue());
+      Product.merge(CopyPerOffset);
+    }
+    Union = Product;
+  }
+
+  UsrOI = std::move(Union);
+  return true;
+}
+
+ChangeStatus AAPointerInfoFloating::updateImpl(Attributor &A) {
+  using namespace AA::PointerInfo;
+  ChangeStatus Changed = ChangeStatus::UNCHANGED;
+  const DataLayout &DL = A.getDataLayout();
+  Value &AssociatedValue = getAssociatedValue();
+
+  DenseMap<Value *, OffsetInfo> OffsetInfoMap;
+  OffsetInfoMap[&AssociatedValue].insert(0);
+
+  auto HandlePassthroughUser = [&](Value *Usr, Value *CurPtr, bool &Follow) {
+    // One does not simply walk into a map and assign a reference to a possibly
+    // new location. That can cause an invalidation before the assignment
+    // happens, like so:
+    //
+    //   OffsetInfoMap[Usr] = OffsetInfoMap[CurPtr]; /* bad idea! */
+    //
+    // The RHS is a reference that may be invalidated by an insertion caused by
+    // the LHS. So we ensure that the side-effect of the LHS happens first.
+    auto &UsrOI = OffsetInfoMap[Usr];
+    auto &PtrOI = OffsetInfoMap[CurPtr];
+    assert(!PtrOI.isUnassigned() &&
+           "Cannot pass through if the input Ptr was not visited!");
+    UsrOI = PtrOI;
+    Follow = true;
+    return true;
+  };
+
+  const auto *F = getAnchorScope();
+  const auto *CI =
+      F ? A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(*F)
+        : nullptr;
+  const auto *TLI =
+      F ? A.getInfoCache().getTargetLibraryInfoForFunction(*F) : nullptr;
+
+  auto UsePred = [&](const Use &U, bool &Follow) -> bool {
+    Value *CurPtr = U.get();
+    User *Usr = U.getUser();
+    LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in " << *Usr
+                      << "\n");
+    assert(OffsetInfoMap.count(CurPtr) &&
+           "The current pointer offset should have been seeded!");
+
+    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
+      if (CE->isCast())
+        return HandlePassthroughUser(Usr, CurPtr, Follow);
+      if (CE->isCompare())
+        return true;
+      if (!isa<GEPOperator>(CE)) {
+        LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
+                          << "\n");
+        return false;
+      }
+    }
+    if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
+      // Note the order here, the Usr access might change the map, CurPtr is
+      // already in it though.
+      auto &UsrOI = OffsetInfoMap[Usr];
+      auto &PtrOI = OffsetInfoMap[CurPtr];
+
+      if (UsrOI.isUnknown())
+        return true;
+
+      if (PtrOI.isUnknown()) {
+        Follow = true;
+        UsrOI.setUnknown();
+        return true;
+      }
+
+      Follow = collectConstantsForGEP(A, DL, UsrOI, PtrOI, GEP);
+      return true;
+    }
+    if (isa<PtrToIntInst>(Usr))
+      return false;
+    if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
+      return HandlePassthroughUser(Usr, CurPtr, Follow);
+
+    // For PHIs we need to take care of the recurrence explicitly as the value
+    // might change while we iterate through a loop. For now, we give up if
+    // the PHI is not invariant.
+    if (isa<PHINode>(Usr)) {
+      // Note the order here, the Usr access might change the map, CurPtr is
+      // already in it though.
+      bool IsFirstPHIUser = !OffsetInfoMap.count(Usr);
+      auto &UsrOI = OffsetInfoMap[Usr];
+      auto &PtrOI = OffsetInfoMap[CurPtr];
+
+      // Check if the PHI operand has already an unknown offset as we can't
+      // improve on that anymore.
+      if (PtrOI.isUnknown()) {
+        LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand offset unknown "
+                          << *CurPtr << " in " << *Usr << "\n");
+        Follow = !UsrOI.isUnknown();
+        UsrOI.setUnknown();
+        return true;
+      }
+
+      // Check if the PHI is invariant (so far).
+      if (UsrOI == PtrOI) {
+        assert(!PtrOI.isUnassigned() &&
+               "Cannot assign if the current Ptr was not visited!");
+        LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant (so far)");
+        return true;
+      }
+
+      // Check if the PHI operand can be traced back to AssociatedValue.
+      APInt Offset(
+          DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
+          0);
+      Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets(
+          DL, Offset, /* AllowNonInbounds */ true);
+      auto It = OffsetInfoMap.find(CurPtrBase);
+      if (It == OffsetInfoMap.end()) {
+        LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
+                          << *CurPtr << " in " << *Usr << "\n");
+        UsrOI.setUnknown();
+        Follow = true;
+        return true;
+      }
+
+      // Check if the PHI operand is not dependent on the PHI itself. Every
+      // recurrence is a cyclic net of PHIs in the data flow, and has an
+      // equivalent Cycle in the control flow. One of those PHIs must be in the
+      // header of that control flow Cycle. This is independent of the choice of
+      // Cycles reported by CycleInfo. It is sufficient to check the PHIs in
+      // every Cycle header; if such a node is marked unknown, this will
+      // eventually propagate through the whole net of PHIs in the recurrence.
+      if (mayBeInCycle(CI, cast<Instruction>(Usr), /* HeaderOnly */ true)) {
+        auto BaseOI = It->getSecond();
+        BaseOI.addToAll(Offset.getZExtValue());
+        if (IsFirstPHIUser || BaseOI == UsrOI) {
+          LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant " << *CurPtr
+                            << " in " << *Usr << "\n");
+          return HandlePassthroughUser(Usr, CurPtr, Follow);
+        }
+
+        LLVM_DEBUG(
+            dbgs() << "[AAPointerInfo] PHI operand pointer offset mismatch "
+                   << *CurPtr << " in " << *Usr << "\n");
+        UsrOI.setUnknown();
+        Follow = true;
+        return true;
+      }
+
+      UsrOI.merge(PtrOI);
+      Follow = true;
+      return true;
+    }
+
+    if (auto *LoadI = dyn_cast<LoadInst>(Usr)) {
+      // If the access is to a pointer that may or may not be the associated
+      // value, e.g. due to a PHI, we cannot assume it will be read.
+      AccessKind AK = AccessKind::AK_R;
+      if (getUnderlyingObject(CurPtr) == &AssociatedValue)
+        AK = AccessKind(AK | AccessKind::AK_MUST);
+      else
+        AK = AccessKind(AK | AccessKind::AK_MAY);
+      if (!handleAccess(A, *LoadI, /* Content */ nullptr, AK,
+                        OffsetInfoMap[CurPtr].Offsets, Changed,
+                        *LoadI->getType()))
+        return false;
+
+      auto IsAssumption = [](Instruction &I) {
+        if (auto *II = dyn_cast<IntrinsicInst>(&I))
+          return II->isAssumeLikeIntrinsic();
+        return false;
+      };
+
+      auto IsImpactedInRange = [&](Instruction *FromI, Instruction *ToI) {
+        // Check if the assumption and the load are executed together without
+        // memory modification.
+        do {
+          if (FromI->mayWriteToMemory() && !IsAssumption(*FromI))
+            return true;
+          FromI = FromI->getNextNonDebugInstruction();
+        } while (FromI && FromI != ToI);
+        return false;
+      };
+
+      BasicBlock *BB = LoadI->getParent();
+      auto IsValidAssume = [&](IntrinsicInst &IntrI) {
+        if (IntrI.getIntrinsicID() != Intrinsic::assume)
+          return false;
+        BasicBlock *IntrBB = IntrI.getParent();
+        if (IntrI.getParent() == BB) {
+          if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(), &IntrI))
+            return false;
+        } else {
+          auto PredIt = pred_begin(IntrBB);
+          if (PredIt == pred_end(IntrBB))
+            return false;
+          if ((*PredIt) != BB)
+            return false;
+          if (++PredIt != pred_end(IntrBB))
+            return false;
+          for (auto *SuccBB : successors(BB)) {
+            if (SuccBB == IntrBB)
+              continue;
+            if (isa<UnreachableInst>(SuccBB->getTerminator()))
+              continue;
+            return false;
+          }
+          if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(),
+                                BB->getTerminator()))
+            return false;
+          if (IsImpactedInRange(&IntrBB->front(), &IntrI))
+            return false;
+        }
+        return true;
+      };
+
+      std::pair<Value *, IntrinsicInst *> Assumption;
+      for (const Use &LoadU : LoadI->uses()) {
+        if (auto *CmpI = dyn_cast<CmpInst>(LoadU.getUser())) {
+          if (!CmpI->isEquality() || !CmpI->isTrueWhenEqual())
+            continue;
+          for (const Use &CmpU : CmpI->uses()) {
+            if (auto *IntrI = dyn_cast<IntrinsicInst>(CmpU.getUser())) {
+              if (!IsValidAssume(*IntrI))
+                continue;
+              int Idx = CmpI->getOperandUse(0) == LoadU;
+              Assumption = {CmpI->getOperand(Idx), IntrI};
+              break;
+            }
+          }
+        }
+        if (Assumption.first)
+          break;
+      }
+
+      // Check if we found an assumption associated with this load.
+      if (!Assumption.first || !Assumption.second)
+        return true;
+
+      LLVM_DEBUG(dbgs() << "[AAPointerInfo] Assumption found "
+                        << *Assumption.second << ": " << *LoadI
+                        << " == " << *Assumption.first << "\n");
+      bool UsedAssumedInformation = false;
+      std::optional<Value *> Content = nullptr;
+      if (Assumption.first)
+        Content =
+            A.getAssumedSimplified(*Assumption.first, *this,
+                                   UsedAssumedInformation, AA::Interprocedural);
+      return handleAccess(
+          A, *Assumption.second, Content, AccessKind::AK_ASSUMPTION,
+          OffsetInfoMap[CurPtr].Offsets, Changed, *LoadI->getType());
+    }
+
+    auto HandleStoreLike = [&](Instruction &I, Value *ValueOp, Type &ValueTy,
+                               ArrayRef<Value *> OtherOps, AccessKind AK) {
+      for (auto *OtherOp : OtherOps) {
+        if (OtherOp == CurPtr) {
+          LLVM_DEBUG(
+              dbgs()
+              << "[AAPointerInfo] Escaping use in store like instruction " << I
+              << "\n");
+          return false;
+        }
+      }
+
+      // If the access is to a pointer that may or may not be the associated
+      // value, e.g. due to a PHI, we cannot assume it will be written.
+      if (getUnderlyingObject(CurPtr) == &AssociatedValue)
+        AK = AccessKind(AK | AccessKind::AK_MUST);
+      else
+        AK = AccessKind(AK | AccessKind::AK_MAY);
+      bool UsedAssumedInformation = false;
+      std::optional<Value *> Content = nullptr;
+      if (ValueOp)
+        Content = A.getAssumedSimplified(
+            *ValueOp, *this, UsedAssumedInformation, AA::Interprocedural);
+      return handleAccess(A, I, Content, AK, OffsetInfoMap[CurPtr].Offsets,
+                          Changed, ValueTy);
+    };
+
+    if (auto *StoreI = dyn_cast<StoreInst>(Usr))
+      return HandleStoreLike(*StoreI, StoreI->getValueOperand(),
+                             *StoreI->getValueOperand()->getType(),
+                             {StoreI->getValueOperand()}, AccessKind::AK_W);
+    if (auto *RMWI = dyn_cast<AtomicRMWInst>(Usr))
+      return HandleStoreLike(*RMWI, nullptr, *RMWI->getValOperand()->getType(),
+                             {RMWI->getValOperand()}, AccessKind::AK_RW);
+    if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(Usr))
+      return HandleStoreLike(
+          *CXI, nullptr, *CXI->getNewValOperand()->getType(),
+          {CXI->getCompareOperand(), CXI->getNewValOperand()},
+          AccessKind::AK_RW);
+
+    if (auto *CB = dyn_cast<CallBase>(Usr)) {
+      if (CB->isLifetimeStartOrEnd())
+        return true;
+      if (getFreedOperand(CB, TLI) == U)
+        return true;
+      if (CB->isArgOperand(&U)) {
+        unsigned ArgNo = CB->getArgOperandNo(&U);
+        const auto *CSArgPI = A.getAAFor<AAPointerInfo>(
+            *this, IRPosition::callsite_argument(*CB, ArgNo),
+            DepClassTy::REQUIRED);
+        if (!CSArgPI)
+          return false;
+        Changed =
+            translateAndAddState(A, *CSArgPI, OffsetInfoMap[CurPtr], *CB) |
+            Changed;
+        return isValidState();
+      }
+      LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
+                        << "\n");
+      // TODO: Allow some call uses
+      return false;
+    }
+
+    LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
+    return false;
+  };
+  auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
+    assert(OffsetInfoMap.count(OldU) && "Old use should be known already!");
+    if (OffsetInfoMap.count(NewU)) {
+      LLVM_DEBUG({
+        if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
+          dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
+                 << OffsetInfoMap[NewU] << " vs " << OffsetInfoMap[OldU]
+                 << "\n";
+        }
+      });
+      return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
+    }
+    OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
+    return true;
+  };
+  if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
+                         /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
+                         /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
+    LLVM_DEBUG(dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
+    return indicatePessimisticFixpoint();
+  }
+
+  LLVM_DEBUG({
+    dbgs() << "Accesses by bin after update:\n";
+    dumpState(dbgs());
+  });
+
+  return Changed;
+}
+
+struct AAPointerInfoReturned final : AAPointerInfoImpl {
+  AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
+      : AAPointerInfoImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
+  }
+};
+
+struct AAPointerInfoArgument final : AAPointerInfoFloating {
+  AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
+      : AAPointerInfoFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
+  }
+};
+
+struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
+  AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAPointerInfoFloating(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    using namespace AA::PointerInfo;
+    // We handle memory intrinsics explicitly, at least the first (=
+    // destination) and second (=source) arguments as we know how they are
+    // accessed.
+    if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
+      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+      int64_t LengthVal = AA::RangeTy::Unknown;
+      if (Length)
+        LengthVal = Length->getSExtValue();
+      unsigned ArgNo = getIRPosition().getCallSiteArgNo();
+      ChangeStatus Changed = ChangeStatus::UNCHANGED;
+      if (ArgNo > 1) {
+        LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
+                          << *MI << "\n");
+        return indicatePessimisticFixpoint();
+      } else {
+        auto Kind =
+            ArgNo == 0 ? AccessKind::AK_MUST_WRITE : AccessKind::AK_MUST_READ;
+        Changed =
+            Changed | addAccess(A, {0, LengthVal}, *MI, nullptr, Kind, nullptr);
+      }
+      LLVM_DEBUG({
+        dbgs() << "Accesses by bin after update:\n";
+        dumpState(dbgs());
+      });
+
+      return Changed;
+    }
+
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Argument *Arg = getAssociatedArgument();
+    if (Arg) {
+      const IRPosition &ArgPos = IRPosition::argument(*Arg);
+      auto *ArgAA =
+          A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
+      if (ArgAA && ArgAA->getState().isValidState())
+        return translateAndAddStateFromCallee(A, *ArgAA,
+                                              *cast<CallBase>(getCtxI()));
+      if (!Arg->getParent()->isDeclaration())
+        return indicatePessimisticFixpoint();
+    }
+
+    bool IsKnownNoCapture;
+    if (!AA::hasAssumedIRAttr<Attribute::NoCapture>(
+            A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNoCapture))
+      return indicatePessimisticFixpoint();
+
+    bool IsKnown = false;
+    if (AA::isAssumedReadNone(A, getIRPosition(), *this, IsKnown))
+      return ChangeStatus::UNCHANGED;
+    bool ReadOnly = AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown);
+    auto Kind =
+        ReadOnly ? AccessKind::AK_MAY_READ : AccessKind::AK_MAY_READ_WRITE;
+    return addAccess(A, AA::RangeTy::getUnknown(), *getCtxI(), nullptr, Kind,
+                     nullptr);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
+  }
+};
+
+struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
+  AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAPointerInfoFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
+  }
+};
+} // namespace
+
+/// -----------------------NoUnwind Function Attribute--------------------------
+
+namespace {
+struct AANoUnwindImpl : AANoUnwind {
+  AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::NoUnwind>(
+        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "nounwind" : "may-unwind";
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto Opcodes = {
+        (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
+        (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
+        (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
+
+    auto CheckForNoUnwind = [&](Instruction &I) {
+      if (!I.mayThrow(/* IncludePhaseOneUnwind */ true))
+        return true;
+
+      if (const auto *CB = dyn_cast<CallBase>(&I)) {
+        bool IsKnownNoUnwind;
+        return AA::hasAssumedIRAttr<Attribute::NoUnwind>(
+            A, this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED,
+            IsKnownNoUnwind);
+      }
+      return false;
+    };
+
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
+                                   UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+};
+
+struct AANoUnwindFunction final : public AANoUnwindImpl {
+  AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
+      : AANoUnwindImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
+};
+
+/// NoUnwind attribute deduction for a call sites.
+struct AANoUnwindCallSite final
+    : AACalleeToCallSite<AANoUnwind, AANoUnwindImpl> {
+  AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoUnwind, AANoUnwindImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
+};
+} // namespace
+
+/// ------------------------ NoSync Function Attribute -------------------------
+
+bool AANoSync::isAlignedBarrier(const CallBase &CB, bool ExecutedAligned) {
+  switch (CB.getIntrinsicID()) {
+  case Intrinsic::nvvm_barrier0:
+  case Intrinsic::nvvm_barrier0_and:
+  case Intrinsic::nvvm_barrier0_or:
+  case Intrinsic::nvvm_barrier0_popc:
+    return true;
+  case Intrinsic::amdgcn_s_barrier:
+    if (ExecutedAligned)
+      return true;
+    break;
+  default:
+    break;
+  }
+  return hasAssumption(CB, KnownAssumptionString("ompx_aligned_barrier"));
+}
+
+bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
+  if (!I->isAtomic())
+    return false;
+
+  if (auto *FI = dyn_cast<FenceInst>(I))
+    // All legal orderings for fence are stronger than monotonic.
+    return FI->getSyncScopeID() != SyncScope::SingleThread;
+  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
+    // Unordered is not a legal ordering for cmpxchg.
+    return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
+            AI->getFailureOrdering() != AtomicOrdering::Monotonic);
+  }
+
+  AtomicOrdering Ordering;
+  switch (I->getOpcode()) {
+  case Instruction::AtomicRMW:
+    Ordering = cast<AtomicRMWInst>(I)->getOrdering();
+    break;
+  case Instruction::Store:
+    Ordering = cast<StoreInst>(I)->getOrdering();
+    break;
+  case Instruction::Load:
+    Ordering = cast<LoadInst>(I)->getOrdering();
+    break;
+  default:
+    llvm_unreachable(
+        "New atomic operations need to be known in the attributor.");
+  }
+
+  return (Ordering != AtomicOrdering::Unordered &&
+          Ordering != AtomicOrdering::Monotonic);
+}
+
+/// Return true if this intrinsic is nosync.  This is only used for intrinsics
+/// which would be nosync except that they have a volatile flag.  All other
+/// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
+bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
+  if (auto *MI = dyn_cast<MemIntrinsic>(I))
+    return !MI->isVolatile();
+  return false;
+}
+
+namespace {
+struct AANoSyncImpl : AANoSync {
+  AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::NoSync>(A, nullptr, getIRPosition(),
+                                                    DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "nosync" : "may-sync";
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override;
+};
+
+ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
+
+  auto CheckRWInstForNoSync = [&](Instruction &I) {
+    return AA::isNoSyncInst(A, I, *this);
+  };
+
+  auto CheckForNoSync = [&](Instruction &I) {
+    // At this point we handled all read/write effects and they are all
+    // nosync, so they can be skipped.
+    if (I.mayReadOrWriteMemory())
+      return true;
+
+    bool IsKnown;
+    CallBase &CB = cast<CallBase>(I);
+    if (AA::hasAssumedIRAttr<Attribute::NoSync>(
+            A, this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL,
+            IsKnown))
+      return true;
+
+    // non-convergent and readnone imply nosync.
+    return !CB.isConvergent();
+  };
+
+  bool UsedAssumedInformation = false;
+  if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
+                                          UsedAssumedInformation) ||
+      !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
+                                         UsedAssumedInformation))
+    return indicatePessimisticFixpoint();
+
+  return ChangeStatus::UNCHANGED;
+}
+
+struct AANoSyncFunction final : public AANoSyncImpl {
+  AANoSyncFunction(const IRPosition &IRP, Attributor &A)
+      : AANoSyncImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
+};
+
+/// NoSync attribute deduction for a call sites.
+struct AANoSyncCallSite final : AACalleeToCallSite<AANoSync, AANoSyncImpl> {
+  AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoSync, AANoSyncImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
+};
+} // namespace
+
+/// ------------------------ No-Free Attributes ----------------------------
+
+namespace {
+struct AANoFreeImpl : public AANoFree {
+  AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::NoFree>(A, nullptr, getIRPosition(),
+                                                    DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto CheckForNoFree = [&](Instruction &I) {
+      bool IsKnown;
+      return AA::hasAssumedIRAttr<Attribute::NoFree>(
+          A, this, IRPosition::callsite_function(cast<CallBase>(I)),
+          DepClassTy::REQUIRED, IsKnown);
+    };
+
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
+                                           UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "nofree" : "may-free";
+  }
+};
+
+struct AANoFreeFunction final : public AANoFreeImpl {
+  AANoFreeFunction(const IRPosition &IRP, Attributor &A)
+      : AANoFreeImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
+};
+
+/// NoFree attribute deduction for a call sites.
+struct AANoFreeCallSite final : AACalleeToCallSite<AANoFree, AANoFreeImpl> {
+  AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoFree, AANoFreeImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
+};
+
+/// NoFree attribute for floating values.
+struct AANoFreeFloating : AANoFreeImpl {
+  AANoFreeFloating(const IRPosition &IRP, Attributor &A)
+      : AANoFreeImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
+
+  /// See Abstract Attribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    const IRPosition &IRP = getIRPosition();
+
+    bool IsKnown;
+    if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this,
+                                                IRPosition::function_scope(IRP),
+                                                DepClassTy::OPTIONAL, IsKnown))
+      return ChangeStatus::UNCHANGED;
+
+    Value &AssociatedValue = getIRPosition().getAssociatedValue();
+    auto Pred = [&](const Use &U, bool &Follow) -> bool {
+      Instruction *UserI = cast<Instruction>(U.getUser());
+      if (auto *CB = dyn_cast<CallBase>(UserI)) {
+        if (CB->isBundleOperand(&U))
+          return false;
+        if (!CB->isArgOperand(&U))
+          return true;
+        unsigned ArgNo = CB->getArgOperandNo(&U);
+
+        bool IsKnown;
+        return AA::hasAssumedIRAttr<Attribute::NoFree>(
+            A, this, IRPosition::callsite_argument(*CB, ArgNo),
+            DepClassTy::REQUIRED, IsKnown);
+      }
+
+      if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
+          isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
+        Follow = true;
+        return true;
+      }
+      if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
+          isa<ReturnInst>(UserI))
+        return true;
+
+      // Unknown user.
+      return false;
+    };
+    if (!A.checkForAllUses(Pred, *this, AssociatedValue))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+};
+
+/// NoFree attribute for a call site argument.
+struct AANoFreeArgument final : AANoFreeFloating {
+  AANoFreeArgument(const IRPosition &IRP, Attributor &A)
+      : AANoFreeFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
+};
+
+/// NoFree attribute for call site arguments.
+struct AANoFreeCallSiteArgument final : AANoFreeFloating {
+  AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AANoFreeFloating(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Argument *Arg = getAssociatedArgument();
+    if (!Arg)
+      return indicatePessimisticFixpoint();
+    const IRPosition &ArgPos = IRPosition::argument(*Arg);
+    bool IsKnown;
+    if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this, ArgPos,
+                                                DepClassTy::REQUIRED, IsKnown))
+      return ChangeStatus::UNCHANGED;
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
+};
+
+/// NoFree attribute for function return value.
+struct AANoFreeReturned final : AANoFreeFloating {
+  AANoFreeReturned(const IRPosition &IRP, Attributor &A)
+      : AANoFreeFloating(IRP, A) {
+    llvm_unreachable("NoFree is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    llvm_unreachable("NoFree is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable("NoFree is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+};
+
+/// NoFree attribute deduction for a call site return value.
+struct AANoFreeCallSiteReturned final : AANoFreeFloating {
+  AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AANoFreeFloating(IRP, A) {}
+
+  ChangeStatus manifest(Attributor &A) override {
+    return ChangeStatus::UNCHANGED;
+  }
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
+};
+} // namespace
+
+/// ------------------------ NonNull Argument Attribute ------------------------
+
+bool AANonNull::isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                              Attribute::AttrKind ImpliedAttributeKind,
+                              bool IgnoreSubsumingPositions) {
+  SmallVector<Attribute::AttrKind, 2> AttrKinds;
+  AttrKinds.push_back(Attribute::NonNull);
+  if (!NullPointerIsDefined(IRP.getAnchorScope(),
+                            IRP.getAssociatedType()->getPointerAddressSpace()))
+    AttrKinds.push_back(Attribute::Dereferenceable);
+  if (A.hasAttr(IRP, AttrKinds, IgnoreSubsumingPositions, Attribute::NonNull))
+    return true;
+
+  DominatorTree *DT = nullptr;
+  AssumptionCache *AC = nullptr;
+  InformationCache &InfoCache = A.getInfoCache();
+  if (const Function *Fn = IRP.getAnchorScope()) {
+    if (!Fn->isDeclaration()) {
+      DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
+      AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
+    }
+  }
+
+  SmallVector<AA::ValueAndContext> Worklist;
+  if (IRP.getPositionKind() != IRP_RETURNED) {
+    Worklist.push_back({IRP.getAssociatedValue(), IRP.getCtxI()});
+  } else {
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllInstructions(
+            [&](Instruction &I) {
+              Worklist.push_back({*cast<ReturnInst>(I).getReturnValue(), &I});
+              return true;
+            },
+            IRP.getAssociatedFunction(), nullptr, {Instruction::Ret},
+            UsedAssumedInformation))
+      return false;
+  }
+
+  if (llvm::any_of(Worklist, [&](AA::ValueAndContext VAC) {
+        return !isKnownNonZero(
+            VAC.getValue(),
+            SimplifyQuery(A.getDataLayout(), DT, AC, VAC.getCtxI()));
+      }))
+    return false;
+
+  A.manifestAttrs(IRP, {Attribute::get(IRP.getAnchorValue().getContext(),
+                                       Attribute::NonNull)});
+  return true;
+}
+
+namespace {
+static int64_t getKnownNonNullAndDerefBytesForUse(
+    Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
+    const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
+  TrackUse = false;
+
+  const Value *UseV = U->get();
+  if (!UseV->getType()->isPointerTy())
+    return 0;
+
+  // We need to follow common pointer manipulation uses to the accesses they
+  // feed into. We can try to be smart to avoid looking through things we do not
+  // like for now, e.g., non-inbounds GEPs.
+  if (isa<CastInst>(I)) {
+    TrackUse = true;
+    return 0;
+  }
+
+  if (isa<GetElementPtrInst>(I)) {
+    TrackUse = true;
+    return 0;
+  }
+
+  Type *PtrTy = UseV->getType();
+  const Function *F = I->getFunction();
+  bool NullPointerIsDefined =
+      F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
+  const DataLayout &DL = A.getInfoCache().getDL();
+  if (const auto *CB = dyn_cast<CallBase>(I)) {
+    if (CB->isBundleOperand(U)) {
+      if (RetainedKnowledge RK = getKnowledgeFromUse(
+              U, {Attribute::NonNull, Attribute::Dereferenceable})) {
+        IsNonNull |=
+            (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
+        return RK.ArgValue;
+      }
+      return 0;
+    }
+
+    if (CB->isCallee(U)) {
+      IsNonNull |= !NullPointerIsDefined;
+      return 0;
+    }
+
+    unsigned ArgNo = CB->getArgOperandNo(U);
+    IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
+    // As long as we only use known information there is no need to track
+    // dependences here.
+    bool IsKnownNonNull;
+    AA::hasAssumedIRAttr<Attribute::NonNull>(A, &QueryingAA, IRP,
+                                             DepClassTy::NONE, IsKnownNonNull);
+    IsNonNull |= IsKnownNonNull;
+    auto *DerefAA =
+        A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
+    return DerefAA ? DerefAA->getKnownDereferenceableBytes() : 0;
+  }
+
+  std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
+  if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() ||
+      Loc->Size.isScalable() || I->isVolatile())
+    return 0;
+
+  int64_t Offset;
+  const Value *Base =
+      getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
+  if (Base && Base == &AssociatedValue) {
+    int64_t DerefBytes = Loc->Size.getValue() + Offset;
+    IsNonNull |= !NullPointerIsDefined;
+    return std::max(int64_t(0), DerefBytes);
+  }
+
+  /// Corner case when an offset is 0.
+  Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
+                                          /*AllowNonInbounds*/ true);
+  if (Base && Base == &AssociatedValue && Offset == 0) {
+    int64_t DerefBytes = Loc->Size.getValue();
+    IsNonNull |= !NullPointerIsDefined;
+    return std::max(int64_t(0), DerefBytes);
+  }
+
+  return 0;
+}
+
+struct AANonNullImpl : AANonNull {
+  AANonNullImpl(const IRPosition &IRP, Attributor &A) : AANonNull(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    Value &V = *getAssociatedValue().stripPointerCasts();
+    if (isa<ConstantPointerNull>(V)) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+
+    if (Instruction *CtxI = getCtxI())
+      followUsesInMBEC(*this, A, getState(), *CtxI);
+  }
+
+  /// See followUsesInMBEC
+  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
+                       AANonNull::StateType &State) {
+    bool IsNonNull = false;
+    bool TrackUse = false;
+    getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
+                                       IsNonNull, TrackUse);
+    State.setKnown(IsNonNull);
+    return TrackUse;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "nonnull" : "may-null";
+  }
+};
+
+/// NonNull attribute for a floating value.
+struct AANonNullFloating : public AANonNullImpl {
+  AANonNullFloating(const IRPosition &IRP, Attributor &A)
+      : AANonNullImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto CheckIRP = [&](const IRPosition &IRP) {
+      bool IsKnownNonNull;
+      return AA::hasAssumedIRAttr<Attribute::NonNull>(
+          A, *this, IRP, DepClassTy::OPTIONAL, IsKnownNonNull);
+    };
+
+    bool Stripped;
+    bool UsedAssumedInformation = false;
+    Value *AssociatedValue = &getAssociatedValue();
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
+                                      AA::AnyScope, UsedAssumedInformation))
+      Stripped = false;
+    else
+      Stripped =
+          Values.size() != 1 || Values.front().getValue() != AssociatedValue;
+
+    if (!Stripped) {
+      bool IsKnown;
+      if (auto *PHI = dyn_cast<PHINode>(AssociatedValue))
+        if (llvm::all_of(PHI->incoming_values(), [&](Value *Op) {
+              return AA::hasAssumedIRAttr<Attribute::NonNull>(
+                  A, this, IRPosition::value(*Op), DepClassTy::OPTIONAL,
+                  IsKnown);
+            }))
+          return ChangeStatus::UNCHANGED;
+      if (auto *Select = dyn_cast<SelectInst>(AssociatedValue))
+        if (AA::hasAssumedIRAttr<Attribute::NonNull>(
+                A, this, IRPosition::value(*Select->getFalseValue()),
+                DepClassTy::OPTIONAL, IsKnown) &&
+            AA::hasAssumedIRAttr<Attribute::NonNull>(
+                A, this, IRPosition::value(*Select->getTrueValue()),
+                DepClassTy::OPTIONAL, IsKnown))
+          return ChangeStatus::UNCHANGED;
+
+      // If we haven't stripped anything we might still be able to use a
+      // different AA, but only if the IRP changes. Effectively when we
+      // interpret this not as a call site value but as a floating/argument
+      // value.
+      const IRPosition AVIRP = IRPosition::value(*AssociatedValue);
+      if (AVIRP == getIRPosition() || !CheckIRP(AVIRP))
+        return indicatePessimisticFixpoint();
+      return ChangeStatus::UNCHANGED;
+    }
+
+    for (const auto &VAC : Values)
+      if (!CheckIRP(IRPosition::value(*VAC.getValue())))
+        return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
+};
+
+/// NonNull attribute for function return value.
+struct AANonNullReturned final
+    : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType,
+                                   false, AANonNull::IRAttributeKind, false> {
+  AANonNullReturned(const IRPosition &IRP, Attributor &A)
+      : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType,
+                                     false, Attribute::NonNull, false>(IRP, A) {
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "nonnull" : "may-null";
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
+};
+
+/// NonNull attribute for function argument.
+struct AANonNullArgument final
+    : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
+  AANonNullArgument(const IRPosition &IRP, Attributor &A)
+      : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
+};
+
+struct AANonNullCallSiteArgument final : AANonNullFloating {
+  AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AANonNullFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
+};
+
+/// NonNull attribute for a call site return position.
+struct AANonNullCallSiteReturned final
+    : AACalleeToCallSite<AANonNull, AANonNullImpl> {
+  AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANonNull, AANonNullImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
+};
+} // namespace
+
+/// ------------------------ Must-Progress Attributes --------------------------
+namespace {
+struct AAMustProgressImpl : public AAMustProgress {
+  AAMustProgressImpl(const IRPosition &IRP, Attributor &A)
+      : AAMustProgress(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::MustProgress>(
+        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  /// See AbstractAttribute::getAsStr()
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "mustprogress" : "may-not-progress";
+  }
+};
+
+struct AAMustProgressFunction final : AAMustProgressImpl {
+  AAMustProgressFunction(const IRPosition &IRP, Attributor &A)
+      : AAMustProgressImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    bool IsKnown;
+    if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
+            A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnown)) {
+      if (IsKnown)
+        return indicateOptimisticFixpoint();
+      return ChangeStatus::UNCHANGED;
+    }
+
+    auto CheckForMustProgress = [&](AbstractCallSite ACS) {
+      IRPosition IPos = IRPosition::callsite_function(*ACS.getInstruction());
+      bool IsKnownMustProgress;
+      return AA::hasAssumedIRAttr<Attribute::MustProgress>(
+          A, this, IPos, DepClassTy::REQUIRED, IsKnownMustProgress,
+          /* IgnoreSubsumingPositions */ true);
+    };
+
+    bool AllCallSitesKnown = true;
+    if (!A.checkForAllCallSites(CheckForMustProgress, *this,
+                                /* RequireAllCallSites */ true,
+                                AllCallSitesKnown))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FN_ATTR(mustprogress)
+  }
+};
+
+/// MustProgress attribute deduction for a call sites.
+struct AAMustProgressCallSite final : AAMustProgressImpl {
+  AAMustProgressCallSite(const IRPosition &IRP, Attributor &A)
+      : AAMustProgressImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
+    bool IsKnownMustProgress;
+    if (!AA::hasAssumedIRAttr<Attribute::MustProgress>(
+            A, this, FnPos, DepClassTy::REQUIRED, IsKnownMustProgress))
+      return indicatePessimisticFixpoint();
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CS_ATTR(mustprogress);
+  }
+};
+} // namespace
+
+/// ------------------------ No-Recurse Attributes ----------------------------
+
+namespace {
+struct AANoRecurseImpl : public AANoRecurse {
+  AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
+        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  /// See AbstractAttribute::getAsStr()
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "norecurse" : "may-recurse";
+  }
+};
+
+struct AANoRecurseFunction final : AANoRecurseImpl {
+  AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
+      : AANoRecurseImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+
+    // If all live call sites are known to be no-recurse, we are as well.
+    auto CallSitePred = [&](AbstractCallSite ACS) {
+      bool IsKnownNoRecurse;
+      if (!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
+              A, this,
+              IRPosition::function(*ACS.getInstruction()->getFunction()),
+              DepClassTy::NONE, IsKnownNoRecurse))
+        return false;
+      return IsKnownNoRecurse;
+    };
+    bool UsedAssumedInformation = false;
+    if (A.checkForAllCallSites(CallSitePred, *this, true,
+                               UsedAssumedInformation)) {
+      // If we know all call sites and all are known no-recurse, we are done.
+      // If all known call sites, which might not be all that exist, are known
+      // to be no-recurse, we are not done but we can continue to assume
+      // no-recurse. If one of the call sites we have not visited will become
+      // live, another update is triggered.
+      if (!UsedAssumedInformation)
+        indicateOptimisticFixpoint();
+      return ChangeStatus::UNCHANGED;
+    }
+
+    const AAInterFnReachability *EdgeReachability =
+        A.getAAFor<AAInterFnReachability>(*this, getIRPosition(),
+                                          DepClassTy::REQUIRED);
+    if (EdgeReachability && EdgeReachability->canReach(A, *getAnchorScope()))
+      return indicatePessimisticFixpoint();
+    return ChangeStatus::UNCHANGED;
+  }
+
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
+};
+
+/// NoRecurse attribute deduction for a call sites.
+struct AANoRecurseCallSite final
+    : AACalleeToCallSite<AANoRecurse, AANoRecurseImpl> {
+  AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoRecurse, AANoRecurseImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
+};
+} // namespace
+
+/// ------------------------ No-Convergent Attribute --------------------------
+
+namespace {
+struct AANonConvergentImpl : public AANonConvergent {
+  AANonConvergentImpl(const IRPosition &IRP, Attributor &A)
+      : AANonConvergent(IRP, A) {}
+
+  /// See AbstractAttribute::getAsStr()
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "non-convergent" : "may-be-convergent";
+  }
+};
+
+struct AANonConvergentFunction final : AANonConvergentImpl {
+  AANonConvergentFunction(const IRPosition &IRP, Attributor &A)
+      : AANonConvergentImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // If all function calls are known to not be convergent, we are not
+    // convergent.
+    auto CalleeIsNotConvergent = [&](Instruction &Inst) {
+      CallBase &CB = cast<CallBase>(Inst);
+      auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
+      if (!Callee || Callee->isIntrinsic()) {
+        return false;
+      }
+      if (Callee->isDeclaration()) {
+        return !Callee->hasFnAttribute(Attribute::Convergent);
+      }
+      const auto *ConvergentAA = A.getAAFor<AANonConvergent>(
+          *this, IRPosition::function(*Callee), DepClassTy::REQUIRED);
+      return ConvergentAA && ConvergentAA->isAssumedNotConvergent();
+    };
+
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllCallLikeInstructions(CalleeIsNotConvergent, *this,
+                                           UsedAssumedInformation)) {
+      return indicatePessimisticFixpoint();
+    }
+    return ChangeStatus::UNCHANGED;
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    if (isKnownNotConvergent() &&
+        A.hasAttr(getIRPosition(), Attribute::Convergent)) {
+      A.removeAttrs(getIRPosition(), {Attribute::Convergent});
+      return ChangeStatus::CHANGED;
+    }
+    return ChangeStatus::UNCHANGED;
+  }
+
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(convergent) }
+};
+} // namespace
+
+/// -------------------- Undefined-Behavior Attributes ------------------------
+
+namespace {
+struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
+  AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
+      : AAUndefinedBehavior(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  // through a pointer (i.e. also branches etc.)
+  ChangeStatus updateImpl(Attributor &A) override {
+    const size_t UBPrevSize = KnownUBInsts.size();
+    const size_t NoUBPrevSize = AssumedNoUBInsts.size();
+
+    auto InspectMemAccessInstForUB = [&](Instruction &I) {
+      // Lang ref now states volatile store is not UB, let's skip them.
+      if (I.isVolatile() && I.mayWriteToMemory())
+        return true;
+
+      // Skip instructions that are already saved.
+      if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
+        return true;
+
+      // If we reach here, we know we have an instruction
+      // that accesses memory through a pointer operand,
+      // for which getPointerOperand() should give it to us.
+      Value *PtrOp =
+          const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
+      assert(PtrOp &&
+             "Expected pointer operand of memory accessing instruction");
+
+      // Either we stopped and the appropriate action was taken,
+      // or we got back a simplified value to continue.
+      std::optional<Value *> SimplifiedPtrOp =
+          stopOnUndefOrAssumed(A, PtrOp, &I);
+      if (!SimplifiedPtrOp || !*SimplifiedPtrOp)
+        return true;
+      const Value *PtrOpVal = *SimplifiedPtrOp;
+
+      // A memory access through a pointer is considered UB
+      // only if the pointer has constant null value.
+      // TODO: Expand it to not only check constant values.
+      if (!isa<ConstantPointerNull>(PtrOpVal)) {
+        AssumedNoUBInsts.insert(&I);
+        return true;
+      }
+      const Type *PtrTy = PtrOpVal->getType();
+
+      // Because we only consider instructions inside functions,
+      // assume that a parent function exists.
+      const Function *F = I.getFunction();
+
+      // A memory access using constant null pointer is only considered UB
+      // if null pointer is _not_ defined for the target platform.
+      if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
+        AssumedNoUBInsts.insert(&I);
+      else
+        KnownUBInsts.insert(&I);
+      return true;
+    };
+
+    auto InspectBrInstForUB = [&](Instruction &I) {
+      // A conditional branch instruction is considered UB if it has `undef`
+      // condition.
+
+      // Skip instructions that are already saved.
+      if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
+        return true;
+
+      // We know we have a branch instruction.
+      auto *BrInst = cast<BranchInst>(&I);
+
+      // Unconditional branches are never considered UB.
+      if (BrInst->isUnconditional())
+        return true;
+
+      // Either we stopped and the appropriate action was taken,
+      // or we got back a simplified value to continue.
+      std::optional<Value *> SimplifiedCond =
+          stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
+      if (!SimplifiedCond || !*SimplifiedCond)
+        return true;
+      AssumedNoUBInsts.insert(&I);
+      return true;
+    };
+
+    auto InspectCallSiteForUB = [&](Instruction &I) {
+      // Check whether a callsite always cause UB or not
+
+      // Skip instructions that are already saved.
+      if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
+        return true;
+
+      // Check nonnull and noundef argument attribute violation for each
+      // callsite.
+      CallBase &CB = cast<CallBase>(I);
+      auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
+      if (!Callee)
+        return true;
+      for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
+        // If current argument is known to be simplified to null pointer and the
+        // corresponding argument position is known to have nonnull attribute,
+        // the argument is poison. Furthermore, if the argument is poison and
+        // the position is known to have noundef attriubte, this callsite is
+        // considered UB.
+        if (idx >= Callee->arg_size())
+          break;
+        Value *ArgVal = CB.getArgOperand(idx);
+        if (!ArgVal)
+          continue;
+        // Here, we handle three cases.
+        //   (1) Not having a value means it is dead. (we can replace the value
+        //       with undef)
+        //   (2) Simplified to undef. The argument violate noundef attriubte.
+        //   (3) Simplified to null pointer where known to be nonnull.
+        //       The argument is a poison value and violate noundef attribute.
+        IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
+        bool IsKnownNoUndef;
+        AA::hasAssumedIRAttr<Attribute::NoUndef>(
+            A, this, CalleeArgumentIRP, DepClassTy::NONE, IsKnownNoUndef);
+        if (!IsKnownNoUndef)
+          continue;
+        bool UsedAssumedInformation = false;
+        std::optional<Value *> SimplifiedVal =
+            A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
+                                   UsedAssumedInformation, AA::Interprocedural);
+        if (UsedAssumedInformation)
+          continue;
+        if (SimplifiedVal && !*SimplifiedVal)
+          return true;
+        if (!SimplifiedVal || isa<UndefValue>(**SimplifiedVal)) {
+          KnownUBInsts.insert(&I);
+          continue;
+        }
+        if (!ArgVal->getType()->isPointerTy() ||
+            !isa<ConstantPointerNull>(**SimplifiedVal))
+          continue;
+        bool IsKnownNonNull;
+        AA::hasAssumedIRAttr<Attribute::NonNull>(
+            A, this, CalleeArgumentIRP, DepClassTy::NONE, IsKnownNonNull);
+        if (IsKnownNonNull)
+          KnownUBInsts.insert(&I);
+      }
+      return true;
+    };
+
+    auto InspectReturnInstForUB = [&](Instruction &I) {
+      auto &RI = cast<ReturnInst>(I);
+      // Either we stopped and the appropriate action was taken,
+      // or we got back a simplified return value to continue.
+      std::optional<Value *> SimplifiedRetValue =
+          stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
+      if (!SimplifiedRetValue || !*SimplifiedRetValue)
+        return true;
+
+      // Check if a return instruction always cause UB or not
+      // Note: It is guaranteed that the returned position of the anchor
+      //       scope has noundef attribute when this is called.
+      //       We also ensure the return position is not "assumed dead"
+      //       because the returned value was then potentially simplified to
+      //       `undef` in AAReturnedValues without removing the `noundef`
+      //       attribute yet.
+
+      // When the returned position has noundef attriubte, UB occurs in the
+      // following cases.
+      //   (1) Returned value is known to be undef.
+      //   (2) The value is known to be a null pointer and the returned
+      //       position has nonnull attribute (because the returned value is
+      //       poison).
+      if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
+        bool IsKnownNonNull;
+        AA::hasAssumedIRAttr<Attribute::NonNull>(
+            A, this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE,
+            IsKnownNonNull);
+        if (IsKnownNonNull)
+          KnownUBInsts.insert(&I);
+      }
+
+      return true;
+    };
+
+    bool UsedAssumedInformation = false;
+    A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
+                              {Instruction::Load, Instruction::Store,
+                               Instruction::AtomicCmpXchg,
+                               Instruction::AtomicRMW},
+                              UsedAssumedInformation,
+                              /* CheckBBLivenessOnly */ true);
+    A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
+                              UsedAssumedInformation,
+                              /* CheckBBLivenessOnly */ true);
+    A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
+                                      UsedAssumedInformation);
+
+    // If the returned position of the anchor scope has noundef attriubte, check
+    // all returned instructions.
+    if (!getAnchorScope()->getReturnType()->isVoidTy()) {
+      const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
+      if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
+        bool IsKnownNoUndef;
+        AA::hasAssumedIRAttr<Attribute::NoUndef>(
+            A, this, ReturnIRP, DepClassTy::NONE, IsKnownNoUndef);
+        if (IsKnownNoUndef)
+          A.checkForAllInstructions(InspectReturnInstForUB, *this,
+                                    {Instruction::Ret}, UsedAssumedInformation,
+                                    /* CheckBBLivenessOnly */ true);
+      }
+    }
+
+    if (NoUBPrevSize != AssumedNoUBInsts.size() ||
+        UBPrevSize != KnownUBInsts.size())
+      return ChangeStatus::CHANGED;
+    return ChangeStatus::UNCHANGED;
+  }
+
+  bool isKnownToCauseUB(Instruction *I) const override {
+    return KnownUBInsts.count(I);
+  }
+
+  bool isAssumedToCauseUB(Instruction *I) const override {
+    // In simple words, if an instruction is not in the assumed to _not_
+    // cause UB, then it is assumed UB (that includes those
+    // in the KnownUBInsts set). The rest is boilerplate
+    // is to ensure that it is one of the instructions we test
+    // for UB.
+
+    switch (I->getOpcode()) {
+    case Instruction::Load:
+    case Instruction::Store:
+    case Instruction::AtomicCmpXchg:
+    case Instruction::AtomicRMW:
+      return !AssumedNoUBInsts.count(I);
+    case Instruction::Br: {
+      auto *BrInst = cast<BranchInst>(I);
+      if (BrInst->isUnconditional())
+        return false;
+      return !AssumedNoUBInsts.count(I);
+    } break;
+    default:
+      return false;
+    }
+    return false;
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    if (KnownUBInsts.empty())
+      return ChangeStatus::UNCHANGED;
+    for (Instruction *I : KnownUBInsts)
+      A.changeToUnreachableAfterManifest(I);
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::getAsStr()
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "undefined-behavior" : "no-ub";
+  }
+
+  /// Note: The correctness of this analysis depends on the fact that the
+  /// following 2 sets will stop changing after some point.
+  /// "Change" here means that their size changes.
+  /// The size of each set is monotonically increasing
+  /// (we only add items to them) and it is upper bounded by the number of
+  /// instructions in the processed function (we can never save more
+  /// elements in either set than this number). Hence, at some point,
+  /// they will stop increasing.
+  /// Consequently, at some point, both sets will have stopped
+  /// changing, effectively making the analysis reach a fixpoint.
+
+  /// Note: These 2 sets are disjoint and an instruction can be considered
+  /// one of 3 things:
+  /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
+  ///    the KnownUBInsts set.
+  /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
+  ///    has a reason to assume it).
+  /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
+  ///    could not find a reason to assume or prove that it can cause UB,
+  ///    hence it assumes it doesn't. We have a set for these instructions
+  ///    so that we don't reprocess them in every update.
+  ///    Note however that instructions in this set may cause UB.
+
+protected:
+  /// A set of all live instructions _known_ to cause UB.
+  SmallPtrSet<Instruction *, 8> KnownUBInsts;
+
+private:
+  /// A set of all the (live) instructions that are assumed to _not_ cause UB.
+  SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
+
+  // Should be called on updates in which if we're processing an instruction
+  // \p I that depends on a value \p V, one of the following has to happen:
+  // - If the value is assumed, then stop.
+  // - If the value is known but undef, then consider it UB.
+  // - Otherwise, do specific processing with the simplified value.
+  // We return std::nullopt in the first 2 cases to signify that an appropriate
+  // action was taken and the caller should stop.
+  // Otherwise, we return the simplified value that the caller should
+  // use for specific processing.
+  std::optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
+                                              Instruction *I) {
+    bool UsedAssumedInformation = false;
+    std::optional<Value *> SimplifiedV =
+        A.getAssumedSimplified(IRPosition::value(*V), *this,
+                               UsedAssumedInformation, AA::Interprocedural);
+    if (!UsedAssumedInformation) {
+      // Don't depend on assumed values.
+      if (!SimplifiedV) {
+        // If it is known (which we tested above) but it doesn't have a value,
+        // then we can assume `undef` and hence the instruction is UB.
+        KnownUBInsts.insert(I);
+        return std::nullopt;
+      }
+      if (!*SimplifiedV)
+        return nullptr;
+      V = *SimplifiedV;
+    }
+    if (isa<UndefValue>(V)) {
+      KnownUBInsts.insert(I);
+      return std::nullopt;
+    }
+    return V;
+  }
+};
+
+struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
+  AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
+      : AAUndefinedBehaviorImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECL(UndefinedBehaviorInstruction, Instruction,
+               "Number of instructions known to have UB");
+    BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
+        KnownUBInsts.size();
+  }
+};
+} // namespace
+
+/// ------------------------ Will-Return Attributes ----------------------------
+
+namespace {
+// Helper function that checks whether a function has any cycle which we don't
+// know if it is bounded or not.
+// Loops with maximum trip count are considered bounded, any other cycle not.
+static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
+  ScalarEvolution *SE =
+      A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
+  LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
+  // If either SCEV or LoopInfo is not available for the function then we assume
+  // any cycle to be unbounded cycle.
+  // We use scc_iterator which uses Tarjan algorithm to find all the maximal
+  // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
+  if (!SE || !LI) {
+    for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
+      if (SCCI.hasCycle())
+        return true;
+    return false;
+  }
+
+  // If there's irreducible control, the function may contain non-loop cycles.
+  if (mayContainIrreducibleControl(F, LI))
+    return true;
+
+  // Any loop that does not have a max trip count is considered unbounded cycle.
+  for (auto *L : LI->getLoopsInPreorder()) {
+    if (!SE->getSmallConstantMaxTripCount(L))
+      return true;
+  }
+  return false;
+}
+
+struct AAWillReturnImpl : public AAWillReturn {
+  AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
+      : AAWillReturn(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::WillReturn>(
+        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
+  bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
+    if (!A.hasAttr(getIRPosition(), {Attribute::MustProgress}))
+      return false;
+
+    bool IsKnown;
+    if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
+      return IsKnown || !KnownOnly;
+    return false;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
+      return ChangeStatus::UNCHANGED;
+
+    auto CheckForWillReturn = [&](Instruction &I) {
+      IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
+      bool IsKnown;
+      if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
+              A, this, IPos, DepClassTy::REQUIRED, IsKnown)) {
+        if (IsKnown)
+          return true;
+      } else {
+        return false;
+      }
+      bool IsKnownNoRecurse;
+      return AA::hasAssumedIRAttr<Attribute::NoRecurse>(
+          A, this, IPos, DepClassTy::REQUIRED, IsKnownNoRecurse);
+    };
+
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
+                                           UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::getAsStr()
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "willreturn" : "may-noreturn";
+  }
+};
+
+struct AAWillReturnFunction final : AAWillReturnImpl {
+  AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
+      : AAWillReturnImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAWillReturnImpl::initialize(A);
+
+    Function *F = getAnchorScope();
+    assert(F && "Did expect an anchor function");
+    if (F->isDeclaration() || mayContainUnboundedCycle(*F, A))
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
+};
+
+/// WillReturn attribute deduction for a call sites.
+struct AAWillReturnCallSite final
+    : AACalleeToCallSite<AAWillReturn, AAWillReturnImpl> {
+  AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AAWillReturn, AAWillReturnImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
+      return ChangeStatus::UNCHANGED;
+
+    return AACalleeToCallSite::updateImpl(A);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
+};
+} // namespace
+
+/// -------------------AAIntraFnReachability Attribute--------------------------
+
+/// All information associated with a reachability query. This boilerplate code
+/// is used by both AAIntraFnReachability and AAInterFnReachability, with
+/// different \p ToTy values.
+template <typename ToTy> struct ReachabilityQueryInfo {
+  enum class Reachable {
+    No,
+    Yes,
+  };
+
+  /// Start here,
+  const Instruction *From = nullptr;
+  /// reach this place,
+  const ToTy *To = nullptr;
+  /// without going through any of these instructions,
+  const AA::InstExclusionSetTy *ExclusionSet = nullptr;
+  /// and remember if it worked:
+  Reachable Result = Reachable::No;
+
+  /// Precomputed hash for this RQI.
+  unsigned Hash = 0;
+
+  unsigned computeHashValue() const {
+    assert(Hash == 0 && "Computed hash twice!");
+    using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>;
+    using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>;
+    return const_cast<ReachabilityQueryInfo<ToTy> *>(this)->Hash =
+               detail::combineHashValue(PairDMI ::getHashValue({From, To}),
+                                        InstSetDMI::getHashValue(ExclusionSet));
+  }
+
+  ReachabilityQueryInfo(const Instruction *From, const ToTy *To)
+      : From(From), To(To) {}
+
+  /// Constructor replacement to ensure unique and stable sets are used for the
+  /// cache.
+  ReachabilityQueryInfo(Attributor &A, const Instruction &From, const ToTy &To,
+                        const AA::InstExclusionSetTy *ES, bool MakeUnique)
+      : From(&From), To(&To), ExclusionSet(ES) {
+
+    if (!ES || ES->empty()) {
+      ExclusionSet = nullptr;
+    } else if (MakeUnique) {
+      ExclusionSet = A.getInfoCache().getOrCreateUniqueBlockExecutionSet(ES);
+    }
+  }
+
+  ReachabilityQueryInfo(const ReachabilityQueryInfo &RQI)
+      : From(RQI.From), To(RQI.To), ExclusionSet(RQI.ExclusionSet) {}
+};
+
+namespace llvm {
+template <typename ToTy> struct DenseMapInfo<ReachabilityQueryInfo<ToTy> *> {
+  using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>;
+  using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>;
+
+  static ReachabilityQueryInfo<ToTy> EmptyKey;
+  static ReachabilityQueryInfo<ToTy> TombstoneKey;
+
+  static inline ReachabilityQueryInfo<ToTy> *getEmptyKey() { return &EmptyKey; }
+  static inline ReachabilityQueryInfo<ToTy> *getTombstoneKey() {
+    return &TombstoneKey;
+  }
+  static unsigned getHashValue(const ReachabilityQueryInfo<ToTy> *RQI) {
+    return RQI->Hash ? RQI->Hash : RQI->computeHashValue();
+  }
+  static bool isEqual(const ReachabilityQueryInfo<ToTy> *LHS,
+                      const ReachabilityQueryInfo<ToTy> *RHS) {
+    if (!PairDMI::isEqual({LHS->From, LHS->To}, {RHS->From, RHS->To}))
+      return false;
+    return InstSetDMI::isEqual(LHS->ExclusionSet, RHS->ExclusionSet);
+  }
+};
+
+#define DefineKeys(ToTy)                                                       \
+  template <>                                                                  \
+  ReachabilityQueryInfo<ToTy>                                                  \
+      DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::EmptyKey =                  \
+          ReachabilityQueryInfo<ToTy>(                                         \
+              DenseMapInfo<const Instruction *>::getEmptyKey(),                \
+              DenseMapInfo<const ToTy *>::getEmptyKey());                      \
+  template <>                                                                  \
+  ReachabilityQueryInfo<ToTy>                                                  \
+      DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::TombstoneKey =              \
+          ReachabilityQueryInfo<ToTy>(                                         \
+              DenseMapInfo<const Instruction *>::getTombstoneKey(),            \
+              DenseMapInfo<const ToTy *>::getTombstoneKey());
+
+DefineKeys(Instruction) DefineKeys(Function)
+#undef DefineKeys
+
+} // namespace llvm
+
+namespace {
+
+template <typename BaseTy, typename ToTy>
+struct CachedReachabilityAA : public BaseTy {
+  using RQITy = ReachabilityQueryInfo<ToTy>;
+
+  CachedReachabilityAA(const IRPosition &IRP, Attributor &A) : BaseTy(IRP, A) {}
+
+  /// See AbstractAttribute::isQueryAA.
+  bool isQueryAA() const override { return true; }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    for (unsigned u = 0, e = QueryVector.size(); u < e; ++u) {
+      RQITy *RQI = QueryVector[u];
+      if (RQI->Result == RQITy::Reachable::No &&
+          isReachableImpl(A, *RQI, /*IsTemporaryRQI=*/false))
+        Changed = ChangeStatus::CHANGED;
+    }
+    return Changed;
+  }
+
+  virtual bool isReachableImpl(Attributor &A, RQITy &RQI,
+                               bool IsTemporaryRQI) = 0;
+
+  bool rememberResult(Attributor &A, typename RQITy::Reachable Result,
+                      RQITy &RQI, bool UsedExclusionSet, bool IsTemporaryRQI) {
+    RQI.Result = Result;
+
+    // Remove the temporary RQI from the cache.
+    if (IsTemporaryRQI)
+      QueryCache.erase(&RQI);
+
+    // Insert a plain RQI (w/o exclusion set) if that makes sense. Two options:
+    // 1) If it is reachable, it doesn't matter if we have an exclusion set for
+    // this query. 2) We did not use the exclusion set, potentially because
+    // there is none.
+    if (Result == RQITy::Reachable::Yes || !UsedExclusionSet) {
+      RQITy PlainRQI(RQI.From, RQI.To);
+      if (!QueryCache.count(&PlainRQI)) {
+        RQITy *RQIPtr = new (A.Allocator) RQITy(RQI.From, RQI.To);
+        RQIPtr->Result = Result;
+        QueryVector.push_back(RQIPtr);
+        QueryCache.insert(RQIPtr);
+      }
+    }
+
+    // Check if we need to insert a new permanent RQI with the exclusion set.
+    if (IsTemporaryRQI && Result != RQITy::Reachable::Yes && UsedExclusionSet) {
+      assert((!RQI.ExclusionSet || !RQI.ExclusionSet->empty()) &&
+             "Did not expect empty set!");
+      RQITy *RQIPtr = new (A.Allocator)
+          RQITy(A, *RQI.From, *RQI.To, RQI.ExclusionSet, true);
+      assert(RQIPtr->Result == RQITy::Reachable::No && "Already reachable?");
+      RQIPtr->Result = Result;
+      assert(!QueryCache.count(RQIPtr));
+      QueryVector.push_back(RQIPtr);
+      QueryCache.insert(RQIPtr);
+    }
+
+    if (Result == RQITy::Reachable::No && IsTemporaryRQI)
+      A.registerForUpdate(*this);
+    return Result == RQITy::Reachable::Yes;
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    // TODO: Return the number of reachable queries.
+    return "#queries(" + std::to_string(QueryVector.size()) + ")";
+  }
+
+  bool checkQueryCache(Attributor &A, RQITy &StackRQI,
+                       typename RQITy::Reachable &Result) {
+    if (!this->getState().isValidState()) {
+      Result = RQITy::Reachable::Yes;
+      return true;
+    }
+
+    // If we have an exclusion set we might be able to find our answer by
+    // ignoring it first.
+    if (StackRQI.ExclusionSet) {
+      RQITy PlainRQI(StackRQI.From, StackRQI.To);
+      auto It = QueryCache.find(&PlainRQI);
+      if (It != QueryCache.end() && (*It)->Result == RQITy::Reachable::No) {
+        Result = RQITy::Reachable::No;
+        return true;
+      }
+    }
+
+    auto It = QueryCache.find(&StackRQI);
+    if (It != QueryCache.end()) {
+      Result = (*It)->Result;
+      return true;
+    }
+
+    // Insert a temporary for recursive queries. We will replace it with a
+    // permanent entry later.
+    QueryCache.insert(&StackRQI);
+    return false;
+  }
+
+private:
+  SmallVector<RQITy *> QueryVector;
+  DenseSet<RQITy *> QueryCache;
+};
+
+struct AAIntraFnReachabilityFunction final
+    : public CachedReachabilityAA<AAIntraFnReachability, Instruction> {
+  using Base = CachedReachabilityAA<AAIntraFnReachability, Instruction>;
+  AAIntraFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {
+    DT = A.getInfoCache().getAnalysisResultForFunction<DominatorTreeAnalysis>(
+        *IRP.getAssociatedFunction());
+  }
+
+  bool isAssumedReachable(
+      Attributor &A, const Instruction &From, const Instruction &To,
+      const AA::InstExclusionSetTy *ExclusionSet) const override {
+    auto *NonConstThis = const_cast<AAIntraFnReachabilityFunction *>(this);
+    if (&From == &To)
+      return true;
+
+    RQITy StackRQI(A, From, To, ExclusionSet, false);
+    typename RQITy::Reachable Result;
+    if (!NonConstThis->checkQueryCache(A, StackRQI, Result))
+      return NonConstThis->isReachableImpl(A, StackRQI,
+                                           /*IsTemporaryRQI=*/true);
+    return Result == RQITy::Reachable::Yes;
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+    // We only depend on liveness. DeadEdges is all we care about, check if any
+    // of them changed.
+    auto *LivenessAA =
+        A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
+    if (LivenessAA &&
+        llvm::all_of(DeadEdges,
+                     [&](const auto &DeadEdge) {
+                       return LivenessAA->isEdgeDead(DeadEdge.first,
+                                                     DeadEdge.second);
+                     }) &&
+        llvm::all_of(DeadBlocks, [&](const BasicBlock *BB) {
+          return LivenessAA->isAssumedDead(BB);
+        })) {
+      return ChangeStatus::UNCHANGED;
+    }
+    DeadEdges.clear();
+    DeadBlocks.clear();
+    return Base::updateImpl(A);
+  }
+
+  bool isReachableImpl(Attributor &A, RQITy &RQI,
+                       bool IsTemporaryRQI) override {
+    const Instruction *Origin = RQI.From;
+    bool UsedExclusionSet = false;
+
+    auto WillReachInBlock = [&](const Instruction &From, const Instruction &To,
+                                const AA::InstExclusionSetTy *ExclusionSet) {
+      const Instruction *IP = &From;
+      while (IP && IP != &To) {
+        if (ExclusionSet && IP != Origin && ExclusionSet->count(IP)) {
+          UsedExclusionSet = true;
+          break;
+        }
+        IP = IP->getNextNode();
+      }
+      return IP == &To;
+    };
+
+    const BasicBlock *FromBB = RQI.From->getParent();
+    const BasicBlock *ToBB = RQI.To->getParent();
+    assert(FromBB->getParent() == ToBB->getParent() &&
+           "Not an intra-procedural query!");
+
+    // Check intra-block reachability, however, other reaching paths are still
+    // possible.
+    if (FromBB == ToBB &&
+        WillReachInBlock(*RQI.From, *RQI.To, RQI.ExclusionSet))
+      return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
+                            IsTemporaryRQI);
+
+    // Check if reaching the ToBB block is sufficient or if even that would not
+    // ensure reaching the target. In the latter case we are done.
+    if (!WillReachInBlock(ToBB->front(), *RQI.To, RQI.ExclusionSet))
+      return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
+                            IsTemporaryRQI);
+
+    const Function *Fn = FromBB->getParent();
+    SmallPtrSet<const BasicBlock *, 16> ExclusionBlocks;
+    if (RQI.ExclusionSet)
+      for (auto *I : *RQI.ExclusionSet)
+        if (I->getFunction() == Fn)
+          ExclusionBlocks.insert(I->getParent());
+
+    // Check if we make it out of the FromBB block at all.
+    if (ExclusionBlocks.count(FromBB) &&
+        !WillReachInBlock(*RQI.From, *FromBB->getTerminator(),
+                          RQI.ExclusionSet))
+      return rememberResult(A, RQITy::Reachable::No, RQI, true, IsTemporaryRQI);
+
+    auto *LivenessAA =
+        A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
+    if (LivenessAA && LivenessAA->isAssumedDead(ToBB)) {
+      DeadBlocks.insert(ToBB);
+      return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
+                            IsTemporaryRQI);
+    }
+
+    SmallPtrSet<const BasicBlock *, 16> Visited;
+    SmallVector<const BasicBlock *, 16> Worklist;
+    Worklist.push_back(FromBB);
+
+    DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> LocalDeadEdges;
+    while (!Worklist.empty()) {
+      const BasicBlock *BB = Worklist.pop_back_val();
+      if (!Visited.insert(BB).second)
+        continue;
+      for (const BasicBlock *SuccBB : successors(BB)) {
+        if (LivenessAA && LivenessAA->isEdgeDead(BB, SuccBB)) {
+          LocalDeadEdges.insert({BB, SuccBB});
+          continue;
+        }
+        // We checked before if we just need to reach the ToBB block.
+        if (SuccBB == ToBB)
+          return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
+                                IsTemporaryRQI);
+        if (DT && ExclusionBlocks.empty() && DT->dominates(BB, ToBB))
+          return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
+                                IsTemporaryRQI);
+
+        if (ExclusionBlocks.count(SuccBB)) {
+          UsedExclusionSet = true;
+          continue;
+        }
+        Worklist.push_back(SuccBB);
+      }
+    }
+
+    DeadEdges.insert(LocalDeadEdges.begin(), LocalDeadEdges.end());
+    return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
+                          IsTemporaryRQI);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+
+private:
+  // Set of assumed dead blocks we used in the last query. If any changes we
+  // update the state.
+  DenseSet<const BasicBlock *> DeadBlocks;
+
+  // Set of assumed dead edges we used in the last query. If any changes we
+  // update the state.
+  DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> DeadEdges;
+
+  /// The dominator tree of the function to short-circuit reasoning.
+  const DominatorTree *DT = nullptr;
+};
+} // namespace
+
+/// ------------------------ NoAlias Argument Attribute ------------------------
+
+bool AANoAlias::isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                              Attribute::AttrKind ImpliedAttributeKind,
+                              bool IgnoreSubsumingPositions) {
+  assert(ImpliedAttributeKind == Attribute::NoAlias &&
+         "Unexpected attribute kind");
+  Value *Val = &IRP.getAssociatedValue();
+  if (IRP.getPositionKind() != IRP_CALL_SITE_ARGUMENT) {
+    if (isa<AllocaInst>(Val))
+      return true;
+  } else {
+    IgnoreSubsumingPositions = true;
+  }
+
+  if (isa<UndefValue>(Val))
+    return true;
+
+  if (isa<ConstantPointerNull>(Val) &&
+      !NullPointerIsDefined(IRP.getAnchorScope(),
+                            Val->getType()->getPointerAddressSpace()))
+    return true;
+
+  if (A.hasAttr(IRP, {Attribute::ByVal, Attribute::NoAlias},
+                IgnoreSubsumingPositions, Attribute::NoAlias))
+    return true;
+
+  return false;
+}
+
+namespace {
+struct AANoAliasImpl : AANoAlias {
+  AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
+    assert(getAssociatedType()->isPointerTy() &&
+           "Noalias is a pointer attribute");
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "noalias" : "may-alias";
+  }
+};
+
+/// NoAlias attribute for a floating value.
+struct AANoAliasFloating final : AANoAliasImpl {
+  AANoAliasFloating(const IRPosition &IRP, Attributor &A)
+      : AANoAliasImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Implement this.
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(noalias)
+  }
+};
+
+/// NoAlias attribute for an argument.
+struct AANoAliasArgument final
+    : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
+  using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
+  AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
+
+  /// See AbstractAttribute::update(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // We have to make sure no-alias on the argument does not break
+    // synchronization when this is a callback argument, see also [1] below.
+    // If synchronization cannot be affected, we delegate to the base updateImpl
+    // function, otherwise we give up for now.
+
+    // If the function is no-sync, no-alias cannot break synchronization.
+    bool IsKnownNoSycn;
+    if (AA::hasAssumedIRAttr<Attribute::NoSync>(
+            A, this, IRPosition::function_scope(getIRPosition()),
+            DepClassTy::OPTIONAL, IsKnownNoSycn))
+      return Base::updateImpl(A);
+
+    // If the argument is read-only, no-alias cannot break synchronization.
+    bool IsKnown;
+    if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
+      return Base::updateImpl(A);
+
+    // If the argument is never passed through callbacks, no-alias cannot break
+    // synchronization.
+    bool UsedAssumedInformation = false;
+    if (A.checkForAllCallSites(
+            [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
+            true, UsedAssumedInformation))
+      return Base::updateImpl(A);
+
+    // TODO: add no-alias but make sure it doesn't break synchronization by
+    // introducing fake uses. See:
+    // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
+    //     International Workshop on OpenMP 2018,
+    //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
+
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
+};
+
+struct AANoAliasCallSiteArgument final : AANoAliasImpl {
+  AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AANoAliasImpl(IRP, A) {}
+
+  /// Determine if the underlying value may alias with the call site argument
+  /// \p OtherArgNo of \p ICS (= the underlying call site).
+  bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
+                            const AAMemoryBehavior &MemBehaviorAA,
+                            const CallBase &CB, unsigned OtherArgNo) {
+    // We do not need to worry about aliasing with the underlying IRP.
+    if (this->getCalleeArgNo() == (int)OtherArgNo)
+      return false;
+
+    // If it is not a pointer or pointer vector we do not alias.
+    const Value *ArgOp = CB.getArgOperand(OtherArgNo);
+    if (!ArgOp->getType()->isPtrOrPtrVectorTy())
+      return false;
+
+    auto *CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
+        *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
+
+    // If the argument is readnone, there is no read-write aliasing.
+    if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadNone()) {
+      A.recordDependence(*CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
+      return false;
+    }
+
+    // If the argument is readonly and the underlying value is readonly, there
+    // is no read-write aliasing.
+    bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
+    if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadOnly() &&
+        IsReadOnly) {
+      A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
+      A.recordDependence(*CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
+      return false;
+    }
+
+    // We have to utilize actual alias analysis queries so we need the object.
+    if (!AAR)
+      AAR = A.getInfoCache().getAnalysisResultForFunction<AAManager>(
+          *getAnchorScope());
+
+    // Try to rule it out at the call site.
+    bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
+    LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
+                         "callsite arguments: "
+                      << getAssociatedValue() << " " << *ArgOp << " => "
+                      << (IsAliasing ? "" : "no-") << "alias \n");
+
+    return IsAliasing;
+  }
+
+  bool isKnownNoAliasDueToNoAliasPreservation(
+      Attributor &A, AAResults *&AAR, const AAMemoryBehavior &MemBehaviorAA) {
+    // We can deduce "noalias" if the following conditions hold.
+    // (i)   Associated value is assumed to be noalias in the definition.
+    // (ii)  Associated value is assumed to be no-capture in all the uses
+    //       possibly executed before this callsite.
+    // (iii) There is no other pointer argument which could alias with the
+    //       value.
+
+    auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
+      const auto *DerefAA = A.getAAFor<AADereferenceable>(
+          *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
+      return DerefAA ? DerefAA->getAssumedDereferenceableBytes() : 0;
+    };
+
+    const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
+    const Function *ScopeFn = VIRP.getAnchorScope();
+    // Check whether the value is captured in the scope using AANoCapture.
+    // Look at CFG and check only uses possibly executed before this
+    // callsite.
+    auto UsePred = [&](const Use &U, bool &Follow) -> bool {
+      Instruction *UserI = cast<Instruction>(U.getUser());
+
+      // If UserI is the curr instruction and there is a single potential use of
+      // the value in UserI we allow the use.
+      // TODO: We should inspect the operands and allow those that cannot alias
+      //       with the value.
+      if (UserI == getCtxI() && UserI->getNumOperands() == 1)
+        return true;
+
+      if (ScopeFn) {
+        if (auto *CB = dyn_cast<CallBase>(UserI)) {
+          if (CB->isArgOperand(&U)) {
+
+            unsigned ArgNo = CB->getArgOperandNo(&U);
+
+            bool IsKnownNoCapture;
+            if (AA::hasAssumedIRAttr<Attribute::NoCapture>(
+                    A, this, IRPosition::callsite_argument(*CB, ArgNo),
+                    DepClassTy::OPTIONAL, IsKnownNoCapture))
+              return true;
+          }
+        }
+
+        if (!AA::isPotentiallyReachable(
+                A, *UserI, *getCtxI(), *this, /* ExclusionSet */ nullptr,
+                [ScopeFn](const Function &Fn) { return &Fn != ScopeFn; }))
+          return true;
+      }
+
+      // TODO: We should track the capturing uses in AANoCapture but the problem
+      //       is CGSCC runs. For those we would need to "allow" AANoCapture for
+      //       a value in the module slice.
+      switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
+      case UseCaptureKind::NO_CAPTURE:
+        return true;
+      case UseCaptureKind::MAY_CAPTURE:
+        LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
+                          << "\n");
+        return false;
+      case UseCaptureKind::PASSTHROUGH:
+        Follow = true;
+        return true;
+      }
+      llvm_unreachable("unknown UseCaptureKind");
+    };
+
+    bool IsKnownNoCapture;
+    const AANoCapture *NoCaptureAA = nullptr;
+    bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
+        A, this, VIRP, DepClassTy::NONE, IsKnownNoCapture, false, &NoCaptureAA);
+    if (!IsAssumedNoCapture &&
+        (!NoCaptureAA || !NoCaptureAA->isAssumedNoCaptureMaybeReturned())) {
+      if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
+        LLVM_DEBUG(
+            dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
+                   << " cannot be noalias as it is potentially captured\n");
+        return false;
+      }
+    }
+    if (NoCaptureAA)
+      A.recordDependence(*NoCaptureAA, *this, DepClassTy::OPTIONAL);
+
+    // Check there is no other pointer argument which could alias with the
+    // value passed at this call site.
+    // TODO: AbstractCallSite
+    const auto &CB = cast<CallBase>(getAnchorValue());
+    for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
+      if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
+        return false;
+
+    return true;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // If the argument is readnone we are done as there are no accesses via the
+    // argument.
+    auto *MemBehaviorAA =
+        A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
+    if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) {
+      A.recordDependence(*MemBehaviorAA, *this, DepClassTy::OPTIONAL);
+      return ChangeStatus::UNCHANGED;
+    }
+
+    bool IsKnownNoAlias;
+    const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
+    if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
+            A, this, VIRP, DepClassTy::REQUIRED, IsKnownNoAlias)) {
+      LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
+                        << " is not no-alias at the definition\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    AAResults *AAR = nullptr;
+    if (MemBehaviorAA &&
+        isKnownNoAliasDueToNoAliasPreservation(A, AAR, *MemBehaviorAA)) {
+      LLVM_DEBUG(
+          dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
+      return ChangeStatus::UNCHANGED;
+    }
+
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
+};
+
+/// NoAlias attribute for function return value.
+struct AANoAliasReturned final : AANoAliasImpl {
+  AANoAliasReturned(const IRPosition &IRP, Attributor &A)
+      : AANoAliasImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+
+    auto CheckReturnValue = [&](Value &RV) -> bool {
+      if (Constant *C = dyn_cast<Constant>(&RV))
+        if (C->isNullValue() || isa<UndefValue>(C))
+          return true;
+
+      /// For now, we can only deduce noalias if we have call sites.
+      /// FIXME: add more support.
+      if (!isa<CallBase>(&RV))
+        return false;
+
+      const IRPosition &RVPos = IRPosition::value(RV);
+      bool IsKnownNoAlias;
+      if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
+              A, this, RVPos, DepClassTy::REQUIRED, IsKnownNoAlias))
+        return false;
+
+      bool IsKnownNoCapture;
+      const AANoCapture *NoCaptureAA = nullptr;
+      bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
+          A, this, RVPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
+          &NoCaptureAA);
+      return IsAssumedNoCapture ||
+             (NoCaptureAA && NoCaptureAA->isAssumedNoCaptureMaybeReturned());
+    };
+
+    if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
+};
+
+/// NoAlias attribute deduction for a call site return value.
+struct AANoAliasCallSiteReturned final
+    : AACalleeToCallSite<AANoAlias, AANoAliasImpl> {
+  AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoAlias, AANoAliasImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
+};
+} // namespace
+
+/// -------------------AAIsDead Function Attribute-----------------------
+
+namespace {
+struct AAIsDeadValueImpl : public AAIsDead {
+  AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
+
+  /// See AAIsDead::isAssumedDead().
+  bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
+
+  /// See AAIsDead::isKnownDead().
+  bool isKnownDead() const override { return isKnown(IS_DEAD); }
+
+  /// See AAIsDead::isAssumedDead(BasicBlock *).
+  bool isAssumedDead(const BasicBlock *BB) const override { return false; }
+
+  /// See AAIsDead::isKnownDead(BasicBlock *).
+  bool isKnownDead(const BasicBlock *BB) const override { return false; }
+
+  /// See AAIsDead::isAssumedDead(Instruction *I).
+  bool isAssumedDead(const Instruction *I) const override {
+    return I == getCtxI() && isAssumedDead();
+  }
+
+  /// See AAIsDead::isKnownDead(Instruction *I).
+  bool isKnownDead(const Instruction *I) const override {
+    return isAssumedDead(I) && isKnownDead();
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return isAssumedDead() ? "assumed-dead" : "assumed-live";
+  }
+
+  /// Check if all uses are assumed dead.
+  bool areAllUsesAssumedDead(Attributor &A, Value &V) {
+    // Callers might not check the type, void has no uses.
+    if (V.getType()->isVoidTy() || V.use_empty())
+      return true;
+
+    // If we replace a value with a constant there are no uses left afterwards.
+    if (!isa<Constant>(V)) {
+      if (auto *I = dyn_cast<Instruction>(&V))
+        if (!A.isRunOn(*I->getFunction()))
+          return false;
+      bool UsedAssumedInformation = false;
+      std::optional<Constant *> C =
+          A.getAssumedConstant(V, *this, UsedAssumedInformation);
+      if (!C || *C)
+        return true;
+    }
+
+    auto UsePred = [&](const Use &U, bool &Follow) { return false; };
+    // Explicitly set the dependence class to required because we want a long
+    // chain of N dependent instructions to be considered live as soon as one is
+    // without going through N update cycles. This is not required for
+    // correctness.
+    return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
+                             DepClassTy::REQUIRED,
+                             /* IgnoreDroppableUses */ false);
+  }
+
+  /// Determine if \p I is assumed to be side-effect free.
+  bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
+    if (!I || wouldInstructionBeTriviallyDead(I))
+      return true;
+
+    auto *CB = dyn_cast<CallBase>(I);
+    if (!CB || isa<IntrinsicInst>(CB))
+      return false;
+
+    const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
+
+    bool IsKnownNoUnwind;
+    if (!AA::hasAssumedIRAttr<Attribute::NoUnwind>(
+            A, this, CallIRP, DepClassTy::OPTIONAL, IsKnownNoUnwind))
+      return false;
+
+    bool IsKnown;
+    return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
+  }
+};
+
+struct AAIsDeadFloating : public AAIsDeadValueImpl {
+  AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
+      : AAIsDeadValueImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAIsDeadValueImpl::initialize(A);
+
+    if (isa<UndefValue>(getAssociatedValue())) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+
+    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+    if (!isAssumedSideEffectFree(A, I)) {
+      if (!isa_and_nonnull<StoreInst>(I) && !isa_and_nonnull<FenceInst>(I))
+        indicatePessimisticFixpoint();
+      else
+        removeAssumedBits(HAS_NO_EFFECT);
+    }
+  }
+
+  bool isDeadFence(Attributor &A, FenceInst &FI) {
+    const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
+        IRPosition::function(*FI.getFunction()), *this, DepClassTy::NONE);
+    if (!ExecDomainAA || !ExecDomainAA->isNoOpFence(FI))
+      return false;
+    A.recordDependence(*ExecDomainAA, *this, DepClassTy::OPTIONAL);
+    return true;
+  }
+
+  bool isDeadStore(Attributor &A, StoreInst &SI,
+                   SmallSetVector<Instruction *, 8> *AssumeOnlyInst = nullptr) {
+    // Lang ref now states volatile store is not UB/dead, let's skip them.
+    if (SI.isVolatile())
+      return false;
+
+    // If we are collecting assumes to be deleted we are in the manifest stage.
+    // It's problematic to collect the potential copies again now so we use the
+    // cached ones.
+    bool UsedAssumedInformation = false;
+    if (!AssumeOnlyInst) {
+      PotentialCopies.clear();
+      if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
+                                               UsedAssumedInformation)) {
+        LLVM_DEBUG(
+            dbgs()
+            << "[AAIsDead] Could not determine potential copies of store!\n");
+        return false;
+      }
+    }
+    LLVM_DEBUG(dbgs() << "[AAIsDead] Store has " << PotentialCopies.size()
+                      << " potential copies.\n");
+
+    InformationCache &InfoCache = A.getInfoCache();
+    return llvm::all_of(PotentialCopies, [&](Value *V) {
+      if (A.isAssumedDead(IRPosition::value(*V), this, nullptr,
+                          UsedAssumedInformation))
+        return true;
+      if (auto *LI = dyn_cast<LoadInst>(V)) {
+        if (llvm::all_of(LI->uses(), [&](const Use &U) {
+              auto &UserI = cast<Instruction>(*U.getUser());
+              if (InfoCache.isOnlyUsedByAssume(UserI)) {
+                if (AssumeOnlyInst)
+                  AssumeOnlyInst->insert(&UserI);
+                return true;
+              }
+              return A.isAssumedDead(U, this, nullptr, UsedAssumedInformation);
+            })) {
+          return true;
+        }
+      }
+      LLVM_DEBUG(dbgs() << "[AAIsDead] Potential copy " << *V
+                        << " is assumed live!\n");
+      return false;
+    });
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+    if (isa_and_nonnull<StoreInst>(I))
+      if (isValidState())
+        return "assumed-dead-store";
+    if (isa_and_nonnull<FenceInst>(I))
+      if (isValidState())
+        return "assumed-dead-fence";
+    return AAIsDeadValueImpl::getAsStr(A);
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+    if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
+      if (!isDeadStore(A, *SI))
+        return indicatePessimisticFixpoint();
+    } else if (auto *FI = dyn_cast_or_null<FenceInst>(I)) {
+      if (!isDeadFence(A, *FI))
+        return indicatePessimisticFixpoint();
+    } else {
+      if (!isAssumedSideEffectFree(A, I))
+        return indicatePessimisticFixpoint();
+      if (!areAllUsesAssumedDead(A, getAssociatedValue()))
+        return indicatePessimisticFixpoint();
+    }
+    return ChangeStatus::UNCHANGED;
+  }
+
+  bool isRemovableStore() const override {
+    return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    Value &V = getAssociatedValue();
+    if (auto *I = dyn_cast<Instruction>(&V)) {
+      // If we get here we basically know the users are all dead. We check if
+      // isAssumedSideEffectFree returns true here again because it might not be
+      // the case and only the users are dead but the instruction (=call) is
+      // still needed.
+      if (auto *SI = dyn_cast<StoreInst>(I)) {
+        SmallSetVector<Instruction *, 8> AssumeOnlyInst;
+        bool IsDead = isDeadStore(A, *SI, &AssumeOnlyInst);
+        (void)IsDead;
+        assert(IsDead && "Store was assumed to be dead!");
+        A.deleteAfterManifest(*I);
+        for (size_t i = 0; i < AssumeOnlyInst.size(); ++i) {
+          Instruction *AOI = AssumeOnlyInst[i];
+          for (auto *Usr : AOI->users())
+            AssumeOnlyInst.insert(cast<Instruction>(Usr));
+          A.deleteAfterManifest(*AOI);
+        }
+        return ChangeStatus::CHANGED;
+      }
+      if (auto *FI = dyn_cast<FenceInst>(I)) {
+        assert(isDeadFence(A, *FI));
+        A.deleteAfterManifest(*FI);
+        return ChangeStatus::CHANGED;
+      }
+      if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
+        A.deleteAfterManifest(*I);
+        return ChangeStatus::CHANGED;
+      }
+    }
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(IsDead)
+  }
+
+private:
+  // The potential copies of a dead store, used for deletion during manifest.
+  SmallSetVector<Value *, 4> PotentialCopies;
+};
+
+struct AAIsDeadArgument : public AAIsDeadFloating {
+  AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
+      : AAIsDeadFloating(IRP, A) {}
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    Argument &Arg = *getAssociatedArgument();
+    if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
+      if (A.registerFunctionSignatureRewrite(
+              Arg, /* ReplacementTypes */ {},
+              Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
+              Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
+        return ChangeStatus::CHANGED;
+      }
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
+};
+
+struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
+  AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAIsDeadValueImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAIsDeadValueImpl::initialize(A);
+    if (isa<UndefValue>(getAssociatedValue()))
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Argument *Arg = getAssociatedArgument();
+    if (!Arg)
+      return indicatePessimisticFixpoint();
+    const IRPosition &ArgPos = IRPosition::argument(*Arg);
+    auto *ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
+    if (!ArgAA)
+      return indicatePessimisticFixpoint();
+    return clampStateAndIndicateChange(getState(), ArgAA->getState());
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    CallBase &CB = cast<CallBase>(getAnchorValue());
+    Use &U = CB.getArgOperandUse(getCallSiteArgNo());
+    assert(!isa<UndefValue>(U.get()) &&
+           "Expected undef values to be filtered out!");
+    UndefValue &UV = *UndefValue::get(U->getType());
+    if (A.changeUseAfterManifest(U, UV))
+      return ChangeStatus::CHANGED;
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
+};
+
+struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
+  AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAIsDeadFloating(IRP, A) {}
+
+  /// See AAIsDead::isAssumedDead().
+  bool isAssumedDead() const override {
+    return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
+  }
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAIsDeadFloating::initialize(A);
+    if (isa<UndefValue>(getAssociatedValue())) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+
+    // We track this separately as a secondary state.
+    IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
+      IsAssumedSideEffectFree = false;
+      Changed = ChangeStatus::CHANGED;
+    }
+    if (!areAllUsesAssumedDead(A, getAssociatedValue()))
+      return indicatePessimisticFixpoint();
+    return Changed;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (IsAssumedSideEffectFree)
+      STATS_DECLTRACK_CSRET_ATTR(IsDead)
+    else
+      STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return isAssumedDead()
+               ? "assumed-dead"
+               : (getAssumed() ? "assumed-dead-users" : "assumed-live");
+  }
+
+private:
+  bool IsAssumedSideEffectFree = true;
+};
+
+struct AAIsDeadReturned : public AAIsDeadValueImpl {
+  AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
+      : AAIsDeadValueImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+
+    bool UsedAssumedInformation = false;
+    A.checkForAllInstructions([](Instruction &) { return true; }, *this,
+                              {Instruction::Ret}, UsedAssumedInformation);
+
+    auto PredForCallSite = [&](AbstractCallSite ACS) {
+      if (ACS.isCallbackCall() || !ACS.getInstruction())
+        return false;
+      return areAllUsesAssumedDead(A, *ACS.getInstruction());
+    };
+
+    if (!A.checkForAllCallSites(PredForCallSite, *this, true,
+                                UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // TODO: Rewrite the signature to return void?
+    bool AnyChange = false;
+    UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
+    auto RetInstPred = [&](Instruction &I) {
+      ReturnInst &RI = cast<ReturnInst>(I);
+      if (!isa<UndefValue>(RI.getReturnValue()))
+        AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
+      return true;
+    };
+    bool UsedAssumedInformation = false;
+    A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
+                              UsedAssumedInformation);
+    return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
+};
+
+struct AAIsDeadFunction : public AAIsDead {
+  AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    Function *F = getAnchorScope();
+    assert(F && "Did expect an anchor function");
+    if (!isAssumedDeadInternalFunction(A)) {
+      ToBeExploredFrom.insert(&F->getEntryBlock().front());
+      assumeLive(A, F->getEntryBlock());
+    }
+  }
+
+  bool isAssumedDeadInternalFunction(Attributor &A) {
+    if (!getAnchorScope()->hasLocalLinkage())
+      return false;
+    bool UsedAssumedInformation = false;
+    return A.checkForAllCallSites([](AbstractCallSite) { return false; }, *this,
+                                  true, UsedAssumedInformation);
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
+           std::to_string(getAnchorScope()->size()) + "][#TBEP " +
+           std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
+           std::to_string(KnownDeadEnds.size()) + "]";
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    assert(getState().isValidState() &&
+           "Attempted to manifest an invalid state!");
+
+    ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+    Function &F = *getAnchorScope();
+
+    if (AssumedLiveBlocks.empty()) {
+      A.deleteAfterManifest(F);
+      return ChangeStatus::CHANGED;
+    }
+
+    // Flag to determine if we can change an invoke to a call assuming the
+    // callee is nounwind. This is not possible if the personality of the
+    // function allows to catch asynchronous exceptions.
+    bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
+
+    KnownDeadEnds.set_union(ToBeExploredFrom);
+    for (const Instruction *DeadEndI : KnownDeadEnds) {
+      auto *CB = dyn_cast<CallBase>(DeadEndI);
+      if (!CB)
+        continue;
+      bool IsKnownNoReturn;
+      bool MayReturn = !AA::hasAssumedIRAttr<Attribute::NoReturn>(
+          A, this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL,
+          IsKnownNoReturn);
+      if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
+        continue;
+
+      if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
+        A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
+      else
+        A.changeToUnreachableAfterManifest(
+            const_cast<Instruction *>(DeadEndI->getNextNode()));
+      HasChanged = ChangeStatus::CHANGED;
+    }
+
+    STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
+    for (BasicBlock &BB : F)
+      if (!AssumedLiveBlocks.count(&BB)) {
+        A.deleteAfterManifest(BB);
+        ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
+        HasChanged = ChangeStatus::CHANGED;
+      }
+
+    return HasChanged;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override;
+
+  bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
+    assert(From->getParent() == getAnchorScope() &&
+           To->getParent() == getAnchorScope() &&
+           "Used AAIsDead of the wrong function");
+    return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+
+  /// Returns true if the function is assumed dead.
+  bool isAssumedDead() const override { return false; }
+
+  /// See AAIsDead::isKnownDead().
+  bool isKnownDead() const override { return false; }
+
+  /// See AAIsDead::isAssumedDead(BasicBlock *).
+  bool isAssumedDead(const BasicBlock *BB) const override {
+    assert(BB->getParent() == getAnchorScope() &&
+           "BB must be in the same anchor scope function.");
+
+    if (!getAssumed())
+      return false;
+    return !AssumedLiveBlocks.count(BB);
+  }
+
+  /// See AAIsDead::isKnownDead(BasicBlock *).
+  bool isKnownDead(const BasicBlock *BB) const override {
+    return getKnown() && isAssumedDead(BB);
+  }
+
+  /// See AAIsDead::isAssumed(Instruction *I).
+  bool isAssumedDead(const Instruction *I) const override {
+    assert(I->getParent()->getParent() == getAnchorScope() &&
+           "Instruction must be in the same anchor scope function.");
+
+    if (!getAssumed())
+      return false;
+
+    // If it is not in AssumedLiveBlocks then it for sure dead.
+    // Otherwise, it can still be after noreturn call in a live block.
+    if (!AssumedLiveBlocks.count(I->getParent()))
+      return true;
+
+    // If it is not after a liveness barrier it is live.
+    const Instruction *PrevI = I->getPrevNode();
+    while (PrevI) {
+      if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
+        return true;
+      PrevI = PrevI->getPrevNode();
+    }
+    return false;
+  }
+
+  /// See AAIsDead::isKnownDead(Instruction *I).
+  bool isKnownDead(const Instruction *I) const override {
+    return getKnown() && isAssumedDead(I);
+  }
+
+  /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
+  /// that internal function called from \p BB should now be looked at.
+  bool assumeLive(Attributor &A, const BasicBlock &BB) {
+    if (!AssumedLiveBlocks.insert(&BB).second)
+      return false;
+
+    // We assume that all of BB is (probably) live now and if there are calls to
+    // internal functions we will assume that those are now live as well. This
+    // is a performance optimization for blocks with calls to a lot of internal
+    // functions. It can however cause dead functions to be treated as live.
+    for (const Instruction &I : BB)
+      if (const auto *CB = dyn_cast<CallBase>(&I))
+        if (auto *F = dyn_cast_if_present<Function>(CB->getCalledOperand()))
+          if (F->hasLocalLinkage())
+            A.markLiveInternalFunction(*F);
+    return true;
+  }
+
+  /// Collection of instructions that need to be explored again, e.g., we
+  /// did assume they do not transfer control to (one of their) successors.
+  SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
+
+  /// Collection of instructions that are known to not transfer control.
+  SmallSetVector<const Instruction *, 8> KnownDeadEnds;
+
+  /// Collection of all assumed live edges
+  DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
+
+  /// Collection of all assumed live BasicBlocks.
+  DenseSet<const BasicBlock *> AssumedLiveBlocks;
+};
+
+static bool
+identifyAliveSuccessors(Attributor &A, const CallBase &CB,
+                        AbstractAttribute &AA,
+                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+  const IRPosition &IPos = IRPosition::callsite_function(CB);
+
+  bool IsKnownNoReturn;
+  if (AA::hasAssumedIRAttr<Attribute::NoReturn>(
+          A, &AA, IPos, DepClassTy::OPTIONAL, IsKnownNoReturn))
+    return !IsKnownNoReturn;
+  if (CB.isTerminator())
+    AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
+  else
+    AliveSuccessors.push_back(CB.getNextNode());
+  return false;
+}
+
+static bool
+identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
+                        AbstractAttribute &AA,
+                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+  bool UsedAssumedInformation =
+      identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
+
+  // First, determine if we can change an invoke to a call assuming the
+  // callee is nounwind. This is not possible if the personality of the
+  // function allows to catch asynchronous exceptions.
+  if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
+    AliveSuccessors.push_back(&II.getUnwindDest()->front());
+  } else {
+    const IRPosition &IPos = IRPosition::callsite_function(II);
+
+    bool IsKnownNoUnwind;
+    if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
+            A, &AA, IPos, DepClassTy::OPTIONAL, IsKnownNoUnwind)) {
+      UsedAssumedInformation |= !IsKnownNoUnwind;
+    } else {
+      AliveSuccessors.push_back(&II.getUnwindDest()->front());
+    }
+  }
+  return UsedAssumedInformation;
+}
+
+static bool
+identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
+                        AbstractAttribute &AA,
+                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+  bool UsedAssumedInformation = false;
+  if (BI.getNumSuccessors() == 1) {
+    AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
+  } else {
+    std::optional<Constant *> C =
+        A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
+    if (!C || isa_and_nonnull<UndefValue>(*C)) {
+      // No value yet, assume both edges are dead.
+    } else if (isa_and_nonnull<ConstantInt>(*C)) {
+      const BasicBlock *SuccBB =
+          BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
+      AliveSuccessors.push_back(&SuccBB->front());
+    } else {
+      AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
+      AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
+      UsedAssumedInformation = false;
+    }
+  }
+  return UsedAssumedInformation;
+}
+
+static bool
+identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
+                        AbstractAttribute &AA,
+                        SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+  bool UsedAssumedInformation = false;
+  SmallVector<AA::ValueAndContext> Values;
+  if (!A.getAssumedSimplifiedValues(IRPosition::value(*SI.getCondition()), &AA,
+                                    Values, AA::AnyScope,
+                                    UsedAssumedInformation)) {
+    // Something went wrong, assume all successors are live.
+    for (const BasicBlock *SuccBB : successors(SI.getParent()))
+      AliveSuccessors.push_back(&SuccBB->front());
+    return false;
+  }
+
+  if (Values.empty() ||
+      (Values.size() == 1 &&
+       isa_and_nonnull<UndefValue>(Values.front().getValue()))) {
+    // No valid value yet, assume all edges are dead.
+    return UsedAssumedInformation;
+  }
+
+  Type &Ty = *SI.getCondition()->getType();
+  SmallPtrSet<ConstantInt *, 8> Constants;
+  auto CheckForConstantInt = [&](Value *V) {
+    if (auto *CI = dyn_cast_if_present<ConstantInt>(AA::getWithType(*V, Ty))) {
+      Constants.insert(CI);
+      return true;
+    }
+    return false;
+  };
+
+  if (!all_of(Values, [&](AA::ValueAndContext &VAC) {
+        return CheckForConstantInt(VAC.getValue());
+      })) {
+    for (const BasicBlock *SuccBB : successors(SI.getParent()))
+      AliveSuccessors.push_back(&SuccBB->front());
+    return UsedAssumedInformation;
+  }
+
+  unsigned MatchedCases = 0;
+  for (const auto &CaseIt : SI.cases()) {
+    if (Constants.count(CaseIt.getCaseValue())) {
+      ++MatchedCases;
+      AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
+    }
+  }
+
+  // If all potential values have been matched, we will not visit the default
+  // case.
+  if (MatchedCases < Constants.size())
+    AliveSuccessors.push_back(&SI.getDefaultDest()->front());
+  return UsedAssumedInformation;
+}
+
+ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
+  ChangeStatus Change = ChangeStatus::UNCHANGED;
+
+  if (AssumedLiveBlocks.empty()) {
+    if (isAssumedDeadInternalFunction(A))
+      return ChangeStatus::UNCHANGED;
+
+    Function *F = getAnchorScope();
+    ToBeExploredFrom.insert(&F->getEntryBlock().front());
+    assumeLive(A, F->getEntryBlock());
+    Change = ChangeStatus::CHANGED;
+  }
+
+  LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
+                    << getAnchorScope()->size() << "] BBs and "
+                    << ToBeExploredFrom.size() << " exploration points and "
+                    << KnownDeadEnds.size() << " known dead ends\n");
+
+  // Copy and clear the list of instructions we need to explore from. It is
+  // refilled with instructions the next update has to look at.
+  SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
+                                               ToBeExploredFrom.end());
+  decltype(ToBeExploredFrom) NewToBeExploredFrom;
+
+  SmallVector<const Instruction *, 8> AliveSuccessors;
+  while (!Worklist.empty()) {
+    const Instruction *I = Worklist.pop_back_val();
+    LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
+
+    // Fast forward for uninteresting instructions. We could look for UB here
+    // though.
+    while (!I->isTerminator() && !isa<CallBase>(I))
+      I = I->getNextNode();
+
+    AliveSuccessors.clear();
+
+    bool UsedAssumedInformation = false;
+    switch (I->getOpcode()) {
+    // TODO: look for (assumed) UB to backwards propagate "deadness".
+    default:
+      assert(I->isTerminator() &&
+             "Expected non-terminators to be handled already!");
+      for (const BasicBlock *SuccBB : successors(I->getParent()))
+        AliveSuccessors.push_back(&SuccBB->front());
+      break;
+    case Instruction::Call:
+      UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
+                                                       *this, AliveSuccessors);
+      break;
+    case Instruction::Invoke:
+      UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
+                                                       *this, AliveSuccessors);
+      break;
+    case Instruction::Br:
+      UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
+                                                       *this, AliveSuccessors);
+      break;
+    case Instruction::Switch:
+      UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
+                                                       *this, AliveSuccessors);
+      break;
+    }
+
+    if (UsedAssumedInformation) {
+      NewToBeExploredFrom.insert(I);
+    } else if (AliveSuccessors.empty() ||
+               (I->isTerminator() &&
+                AliveSuccessors.size() < I->getNumSuccessors())) {
+      if (KnownDeadEnds.insert(I))
+        Change = ChangeStatus::CHANGED;
+    }
+
+    LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
+                      << AliveSuccessors.size() << " UsedAssumedInformation: "
+                      << UsedAssumedInformation << "\n");
+
+    for (const Instruction *AliveSuccessor : AliveSuccessors) {
+      if (!I->isTerminator()) {
+        assert(AliveSuccessors.size() == 1 &&
+               "Non-terminator expected to have a single successor!");
+        Worklist.push_back(AliveSuccessor);
+      } else {
+        // record the assumed live edge
+        auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
+        if (AssumedLiveEdges.insert(Edge).second)
+          Change = ChangeStatus::CHANGED;
+        if (assumeLive(A, *AliveSuccessor->getParent()))
+          Worklist.push_back(AliveSuccessor);
+      }
+    }
+  }
+
+  // Check if the content of ToBeExploredFrom changed, ignore the order.
+  if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
+      llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
+        return !ToBeExploredFrom.count(I);
+      })) {
+    Change = ChangeStatus::CHANGED;
+    ToBeExploredFrom = std::move(NewToBeExploredFrom);
+  }
+
+  // If we know everything is live there is no need to query for liveness.
+  // Instead, indicating a pessimistic fixpoint will cause the state to be
+  // "invalid" and all queries to be answered conservatively without lookups.
+  // To be in this state we have to (1) finished the exploration and (3) not
+  // discovered any non-trivial dead end and (2) not ruled unreachable code
+  // dead.
+  if (ToBeExploredFrom.empty() &&
+      getAnchorScope()->size() == AssumedLiveBlocks.size() &&
+      llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
+        return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
+      }))
+    return indicatePessimisticFixpoint();
+  return Change;
+}
+
+/// Liveness information for a call sites.
+struct AAIsDeadCallSite final : AAIsDeadFunction {
+  AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
+      : AAIsDeadFunction(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites instead of
+    //       redirecting requests to the callee.
+    llvm_unreachable("Abstract attributes for liveness are not "
+                     "supported for call sites yet!");
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+};
+} // namespace
+
+/// -------------------- Dereferenceable Argument Attribute --------------------
+
+namespace {
+struct AADereferenceableImpl : AADereferenceable {
+  AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
+      : AADereferenceable(IRP, A) {}
+  using StateType = DerefState;
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    Value &V = *getAssociatedValue().stripPointerCasts();
+    SmallVector<Attribute, 4> Attrs;
+    A.getAttrs(getIRPosition(),
+               {Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
+               Attrs, /* IgnoreSubsumingPositions */ false);
+    for (const Attribute &Attr : Attrs)
+      takeKnownDerefBytesMaximum(Attr.getValueAsInt());
+
+    // Ensure we initialize the non-null AA (if necessary).
+    bool IsKnownNonNull;
+    AA::hasAssumedIRAttr<Attribute::NonNull>(
+        A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNonNull);
+
+    bool CanBeNull, CanBeFreed;
+    takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
+        A.getDataLayout(), CanBeNull, CanBeFreed));
+
+    if (Instruction *CtxI = getCtxI())
+      followUsesInMBEC(*this, A, getState(), *CtxI);
+  }
+
+  /// See AbstractAttribute::getState()
+  /// {
+  StateType &getState() override { return *this; }
+  const StateType &getState() const override { return *this; }
+  /// }
+
+  /// Helper function for collecting accessed bytes in must-be-executed-context
+  void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
+                              DerefState &State) {
+    const Value *UseV = U->get();
+    if (!UseV->getType()->isPointerTy())
+      return;
+
+    std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
+    if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
+      return;
+
+    int64_t Offset;
+    const Value *Base = GetPointerBaseWithConstantOffset(
+        Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
+    if (Base && Base == &getAssociatedValue())
+      State.addAccessedBytes(Offset, Loc->Size.getValue());
+  }
+
+  /// See followUsesInMBEC
+  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
+                       AADereferenceable::StateType &State) {
+    bool IsNonNull = false;
+    bool TrackUse = false;
+    int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
+        A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
+    LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
+                      << " for instruction " << *I << "\n");
+
+    addAccessedBytesForUse(A, U, I, State);
+    State.takeKnownDerefBytesMaximum(DerefBytes);
+    return TrackUse;
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    ChangeStatus Change = AADereferenceable::manifest(A);
+    bool IsKnownNonNull;
+    bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
+        A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
+    if (IsAssumedNonNull &&
+        A.hasAttr(getIRPosition(), Attribute::DereferenceableOrNull)) {
+      A.removeAttrs(getIRPosition(), {Attribute::DereferenceableOrNull});
+      return ChangeStatus::CHANGED;
+    }
+    return Change;
+  }
+
+  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                            SmallVectorImpl<Attribute> &Attrs) const override {
+    // TODO: Add *_globally support
+    bool IsKnownNonNull;
+    bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
+        A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
+    if (IsAssumedNonNull)
+      Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
+          Ctx, getAssumedDereferenceableBytes()));
+    else
+      Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
+          Ctx, getAssumedDereferenceableBytes()));
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    if (!getAssumedDereferenceableBytes())
+      return "unknown-dereferenceable";
+    bool IsKnownNonNull;
+    bool IsAssumedNonNull = false;
+    if (A)
+      IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
+          *A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
+    return std::string("dereferenceable") +
+           (IsAssumedNonNull ? "" : "_or_null") +
+           (isAssumedGlobal() ? "_globally" : "") + "<" +
+           std::to_string(getKnownDereferenceableBytes()) + "-" +
+           std::to_string(getAssumedDereferenceableBytes()) + ">" +
+           (!A ? " [non-null is unknown]" : "");
+  }
+};
+
+/// Dereferenceable attribute for a floating value.
+struct AADereferenceableFloating : AADereferenceableImpl {
+  AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
+      : AADereferenceableImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    bool Stripped;
+    bool UsedAssumedInformation = false;
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
+                                      AA::AnyScope, UsedAssumedInformation)) {
+      Values.push_back({getAssociatedValue(), getCtxI()});
+      Stripped = false;
+    } else {
+      Stripped = Values.size() != 1 ||
+                 Values.front().getValue() != &getAssociatedValue();
+    }
+
+    const DataLayout &DL = A.getDataLayout();
+    DerefState T;
+
+    auto VisitValueCB = [&](const Value &V) -> bool {
+      unsigned IdxWidth =
+          DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
+      APInt Offset(IdxWidth, 0);
+      const Value *Base = stripAndAccumulateOffsets(
+          A, *this, &V, DL, Offset, /* GetMinOffset */ false,
+          /* AllowNonInbounds */ true);
+
+      const auto *AA = A.getAAFor<AADereferenceable>(
+          *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
+      int64_t DerefBytes = 0;
+      if (!AA || (!Stripped && this == AA)) {
+        // Use IR information if we did not strip anything.
+        // TODO: track globally.
+        bool CanBeNull, CanBeFreed;
+        DerefBytes =
+            Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
+        T.GlobalState.indicatePessimisticFixpoint();
+      } else {
+        const DerefState &DS = AA->getState();
+        DerefBytes = DS.DerefBytesState.getAssumed();
+        T.GlobalState &= DS.GlobalState;
+      }
+
+      // For now we do not try to "increase" dereferenceability due to negative
+      // indices as we first have to come up with code to deal with loops and
+      // for overflows of the dereferenceable bytes.
+      int64_t OffsetSExt = Offset.getSExtValue();
+      if (OffsetSExt < 0)
+        OffsetSExt = 0;
+
+      T.takeAssumedDerefBytesMinimum(
+          std::max(int64_t(0), DerefBytes - OffsetSExt));
+
+      if (this == AA) {
+        if (!Stripped) {
+          // If nothing was stripped IR information is all we got.
+          T.takeKnownDerefBytesMaximum(
+              std::max(int64_t(0), DerefBytes - OffsetSExt));
+          T.indicatePessimisticFixpoint();
+        } else if (OffsetSExt > 0) {
+          // If something was stripped but there is circular reasoning we look
+          // for the offset. If it is positive we basically decrease the
+          // dereferenceable bytes in a circular loop now, which will simply
+          // drive them down to the known value in a very slow way which we
+          // can accelerate.
+          T.indicatePessimisticFixpoint();
+        }
+      }
+
+      return T.isValidState();
+    };
+
+    for (const auto &VAC : Values)
+      if (!VisitValueCB(*VAC.getValue()))
+        return indicatePessimisticFixpoint();
+
+    return clampStateAndIndicateChange(getState(), T);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
+  }
+};
+
+/// Dereferenceable attribute for a return value.
+struct AADereferenceableReturned final
+    : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
+  using Base =
+      AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>;
+  AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
+  }
+};
+
+/// Dereferenceable attribute for an argument
+struct AADereferenceableArgument final
+    : AAArgumentFromCallSiteArguments<AADereferenceable,
+                                      AADereferenceableImpl> {
+  using Base =
+      AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
+  AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(dereferenceable)
+  }
+};
+
+/// Dereferenceable attribute for a call site argument.
+struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
+  AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AADereferenceableFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
+  }
+};
+
+/// Dereferenceable attribute deduction for a call site return value.
+struct AADereferenceableCallSiteReturned final
+    : AACalleeToCallSite<AADereferenceable, AADereferenceableImpl> {
+  using Base = AACalleeToCallSite<AADereferenceable, AADereferenceableImpl>;
+  AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CS_ATTR(dereferenceable);
+  }
+};
+} // namespace
+
+// ------------------------ Align Argument Attribute ------------------------
+
+namespace {
+static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
+                                    Value &AssociatedValue, const Use *U,
+                                    const Instruction *I, bool &TrackUse) {
+  // We need to follow common pointer manipulation uses to the accesses they
+  // feed into.
+  if (isa<CastInst>(I)) {
+    // Follow all but ptr2int casts.
+    TrackUse = !isa<PtrToIntInst>(I);
+    return 0;
+  }
+  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
+    if (GEP->hasAllConstantIndices())
+      TrackUse = true;
+    return 0;
+  }
+
+  MaybeAlign MA;
+  if (const auto *CB = dyn_cast<CallBase>(I)) {
+    if (CB->isBundleOperand(U) || CB->isCallee(U))
+      return 0;
+
+    unsigned ArgNo = CB->getArgOperandNo(U);
+    IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
+    // As long as we only use known information there is no need to track
+    // dependences here.
+    auto *AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
+    if (AlignAA)
+      MA = MaybeAlign(AlignAA->getKnownAlign());
+  }
+
+  const DataLayout &DL = A.getDataLayout();
+  const Value *UseV = U->get();
+  if (auto *SI = dyn_cast<StoreInst>(I)) {
+    if (SI->getPointerOperand() == UseV)
+      MA = SI->getAlign();
+  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
+    if (LI->getPointerOperand() == UseV)
+      MA = LI->getAlign();
+  } else if (auto *AI = dyn_cast<AtomicRMWInst>(I)) {
+    if (AI->getPointerOperand() == UseV)
+      MA = AI->getAlign();
+  } else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
+    if (AI->getPointerOperand() == UseV)
+      MA = AI->getAlign();
+  }
+
+  if (!MA || *MA <= QueryingAA.getKnownAlign())
+    return 0;
+
+  unsigned Alignment = MA->value();
+  int64_t Offset;
+
+  if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
+    if (Base == &AssociatedValue) {
+      // BasePointerAddr + Offset = Alignment * Q for some integer Q.
+      // So we can say that the maximum power of two which is a divisor of
+      // gcd(Offset, Alignment) is an alignment.
+
+      uint32_t gcd = std::gcd(uint32_t(abs((int32_t)Offset)), Alignment);
+      Alignment = llvm::bit_floor(gcd);
+    }
+  }
+
+  return Alignment;
+}
+
+struct AAAlignImpl : AAAlign {
+  AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    SmallVector<Attribute, 4> Attrs;
+    A.getAttrs(getIRPosition(), {Attribute::Alignment}, Attrs);
+    for (const Attribute &Attr : Attrs)
+      takeKnownMaximum(Attr.getValueAsInt());
+
+    Value &V = *getAssociatedValue().stripPointerCasts();
+    takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
+
+    if (Instruction *CtxI = getCtxI())
+      followUsesInMBEC(*this, A, getState(), *CtxI);
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
+
+    // Check for users that allow alignment annotations.
+    Value &AssociatedValue = getAssociatedValue();
+    for (const Use &U : AssociatedValue.uses()) {
+      if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
+        if (SI->getPointerOperand() == &AssociatedValue)
+          if (SI->getAlign() < getAssumedAlign()) {
+            STATS_DECLTRACK(AAAlign, Store,
+                            "Number of times alignment added to a store");
+            SI->setAlignment(getAssumedAlign());
+            LoadStoreChanged = ChangeStatus::CHANGED;
+          }
+      } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
+        if (LI->getPointerOperand() == &AssociatedValue)
+          if (LI->getAlign() < getAssumedAlign()) {
+            LI->setAlignment(getAssumedAlign());
+            STATS_DECLTRACK(AAAlign, Load,
+                            "Number of times alignment added to a load");
+            LoadStoreChanged = ChangeStatus::CHANGED;
+          }
+      }
+    }
+
+    ChangeStatus Changed = AAAlign::manifest(A);
+
+    Align InheritAlign =
+        getAssociatedValue().getPointerAlignment(A.getDataLayout());
+    if (InheritAlign >= getAssumedAlign())
+      return LoadStoreChanged;
+    return Changed | LoadStoreChanged;
+  }
+
+  // TODO: Provide a helper to determine the implied ABI alignment and check in
+  //       the existing manifest method and a new one for AAAlignImpl that value
+  //       to avoid making the alignment explicit if it did not improve.
+
+  /// See AbstractAttribute::getDeducedAttributes
+  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                            SmallVectorImpl<Attribute> &Attrs) const override {
+    if (getAssumedAlign() > 1)
+      Attrs.emplace_back(
+          Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
+  }
+
+  /// See followUsesInMBEC
+  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
+                       AAAlign::StateType &State) {
+    bool TrackUse = false;
+
+    unsigned int KnownAlign =
+        getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
+    State.takeKnownMaximum(KnownAlign);
+
+    return TrackUse;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return "align<" + std::to_string(getKnownAlign().value()) + "-" +
+           std::to_string(getAssumedAlign().value()) + ">";
+  }
+};
+
+/// Align attribute for a floating value.
+struct AAAlignFloating : AAAlignImpl {
+  AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    const DataLayout &DL = A.getDataLayout();
+
+    bool Stripped;
+    bool UsedAssumedInformation = false;
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
+                                      AA::AnyScope, UsedAssumedInformation)) {
+      Values.push_back({getAssociatedValue(), getCtxI()});
+      Stripped = false;
+    } else {
+      Stripped = Values.size() != 1 ||
+                 Values.front().getValue() != &getAssociatedValue();
+    }
+
+    StateType T;
+    auto VisitValueCB = [&](Value &V) -> bool {
+      if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
+        return true;
+      const auto *AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
+                                           DepClassTy::REQUIRED);
+      if (!AA || (!Stripped && this == AA)) {
+        int64_t Offset;
+        unsigned Alignment = 1;
+        if (const Value *Base =
+                GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
+          // TODO: Use AAAlign for the base too.
+          Align PA = Base->getPointerAlignment(DL);
+          // BasePointerAddr + Offset = Alignment * Q for some integer Q.
+          // So we can say that the maximum power of two which is a divisor of
+          // gcd(Offset, Alignment) is an alignment.
+
+          uint32_t gcd =
+              std::gcd(uint32_t(abs((int32_t)Offset)), uint32_t(PA.value()));
+          Alignment = llvm::bit_floor(gcd);
+        } else {
+          Alignment = V.getPointerAlignment(DL).value();
+        }
+        // Use only IR information if we did not strip anything.
+        T.takeKnownMaximum(Alignment);
+        T.indicatePessimisticFixpoint();
+      } else {
+        // Use abstract attribute information.
+        const AAAlign::StateType &DS = AA->getState();
+        T ^= DS;
+      }
+      return T.isValidState();
+    };
+
+    for (const auto &VAC : Values) {
+      if (!VisitValueCB(*VAC.getValue()))
+        return indicatePessimisticFixpoint();
+    }
+
+    //  TODO: If we know we visited all incoming values, thus no are assumed
+    //  dead, we can take the known information from the state T.
+    return clampStateAndIndicateChange(getState(), T);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
+};
+
+/// Align attribute for function return value.
+struct AAAlignReturned final
+    : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
+  using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
+  AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
+};
+
+/// Align attribute for function argument.
+struct AAAlignArgument final
+    : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
+  using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
+  AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // If the associated argument is involved in a must-tail call we give up
+    // because we would need to keep the argument alignments of caller and
+    // callee in-sync. Just does not seem worth the trouble right now.
+    if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
+      return ChangeStatus::UNCHANGED;
+    return Base::manifest(A);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
+};
+
+struct AAAlignCallSiteArgument final : AAAlignFloating {
+  AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAAlignFloating(IRP, A) {}
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // If the associated argument is involved in a must-tail call we give up
+    // because we would need to keep the argument alignments of caller and
+    // callee in-sync. Just does not seem worth the trouble right now.
+    if (Argument *Arg = getAssociatedArgument())
+      if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
+        return ChangeStatus::UNCHANGED;
+    ChangeStatus Changed = AAAlignImpl::manifest(A);
+    Align InheritAlign =
+        getAssociatedValue().getPointerAlignment(A.getDataLayout());
+    if (InheritAlign >= getAssumedAlign())
+      Changed = ChangeStatus::UNCHANGED;
+    return Changed;
+  }
+
+  /// See AbstractAttribute::updateImpl(Attributor &A).
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Changed = AAAlignFloating::updateImpl(A);
+    if (Argument *Arg = getAssociatedArgument()) {
+      // We only take known information from the argument
+      // so we do not need to track a dependence.
+      const auto *ArgAlignAA = A.getAAFor<AAAlign>(
+          *this, IRPosition::argument(*Arg), DepClassTy::NONE);
+      if (ArgAlignAA)
+        takeKnownMaximum(ArgAlignAA->getKnownAlign().value());
+    }
+    return Changed;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
+};
+
+/// Align attribute deduction for a call site return value.
+struct AAAlignCallSiteReturned final
+    : AACalleeToCallSite<AAAlign, AAAlignImpl> {
+  using Base = AACalleeToCallSite<AAAlign, AAAlignImpl>;
+  AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
+};
+} // namespace
+
+/// ------------------ Function No-Return Attribute ----------------------------
+namespace {
+struct AANoReturnImpl : public AANoReturn {
+  AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::NoReturn>(
+        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "noreturn" : "may-return";
+  }
+
+  /// See AbstractAttribute::updateImpl(Attributor &A).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto CheckForNoReturn = [](Instruction &) { return false; };
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllInstructions(CheckForNoReturn, *this,
+                                   {(unsigned)Instruction::Ret},
+                                   UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+    return ChangeStatus::UNCHANGED;
+  }
+};
+
+struct AANoReturnFunction final : AANoReturnImpl {
+  AANoReturnFunction(const IRPosition &IRP, Attributor &A)
+      : AANoReturnImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
+};
+
+/// NoReturn attribute deduction for a call sites.
+struct AANoReturnCallSite final
+    : AACalleeToCallSite<AANoReturn, AANoReturnImpl> {
+  AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoReturn, AANoReturnImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
+};
+} // namespace
+
+/// ----------------------- Instance Info ---------------------------------
+
+namespace {
+/// A class to hold the state of for no-capture attributes.
+struct AAInstanceInfoImpl : public AAInstanceInfo {
+  AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
+      : AAInstanceInfo(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    Value &V = getAssociatedValue();
+    if (auto *C = dyn_cast<Constant>(&V)) {
+      if (C->isThreadDependent())
+        indicatePessimisticFixpoint();
+      else
+        indicateOptimisticFixpoint();
+      return;
+    }
+    if (auto *CB = dyn_cast<CallBase>(&V))
+      if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
+          !CB->mayReadFromMemory()) {
+        indicateOptimisticFixpoint();
+        return;
+      }
+    if (auto *I = dyn_cast<Instruction>(&V)) {
+      const auto *CI =
+          A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(
+              *I->getFunction());
+      if (mayBeInCycle(CI, I, /* HeaderOnly */ false)) {
+        indicatePessimisticFixpoint();
+        return;
+      }
+    }
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+
+    Value &V = getAssociatedValue();
+    const Function *Scope = nullptr;
+    if (auto *I = dyn_cast<Instruction>(&V))
+      Scope = I->getFunction();
+    if (auto *A = dyn_cast<Argument>(&V)) {
+      Scope = A->getParent();
+      if (!Scope->hasLocalLinkage())
+        return Changed;
+    }
+    if (!Scope)
+      return indicateOptimisticFixpoint();
+
+    bool IsKnownNoRecurse;
+    if (AA::hasAssumedIRAttr<Attribute::NoRecurse>(
+            A, this, IRPosition::function(*Scope), DepClassTy::OPTIONAL,
+            IsKnownNoRecurse))
+      return Changed;
+
+    auto UsePred = [&](const Use &U, bool &Follow) {
+      const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
+      if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
+          isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
+        Follow = true;
+        return true;
+      }
+      if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
+          (isa<StoreInst>(UserI) &&
+           cast<StoreInst>(UserI)->getValueOperand() != U.get()))
+        return true;
+      if (auto *CB = dyn_cast<CallBase>(UserI)) {
+        // This check is not guaranteeing uniqueness but for now that we cannot
+        // end up with two versions of \p U thinking it was one.
+        auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
+        if (!Callee || !Callee->hasLocalLinkage())
+          return true;
+        if (!CB->isArgOperand(&U))
+          return false;
+        const auto *ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
+            *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
+            DepClassTy::OPTIONAL);
+        if (!ArgInstanceInfoAA ||
+            !ArgInstanceInfoAA->isAssumedUniqueForAnalysis())
+          return false;
+        // If this call base might reach the scope again we might forward the
+        // argument back here. This is very conservative.
+        if (AA::isPotentiallyReachable(
+                A, *CB, *Scope, *this, /* ExclusionSet */ nullptr,
+                [Scope](const Function &Fn) { return &Fn != Scope; }))
+          return false;
+        return true;
+      }
+      return false;
+    };
+
+    auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
+      if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
+        auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
+        if ((isa<AllocaInst>(Ptr) || isNoAliasCall(Ptr)) &&
+            AA::isDynamicallyUnique(A, *this, *Ptr))
+          return true;
+      }
+      return false;
+    };
+
+    if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
+                           DepClassTy::OPTIONAL,
+                           /* IgnoreDroppableUses */ true, EquivalentUseCB))
+      return indicatePessimisticFixpoint();
+
+    return Changed;
+  }
+
+  /// See AbstractState::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+};
+
+/// InstanceInfo attribute for floating values.
+struct AAInstanceInfoFloating : AAInstanceInfoImpl {
+  AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
+      : AAInstanceInfoImpl(IRP, A) {}
+};
+
+/// NoCapture attribute for function arguments.
+struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
+  AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
+      : AAInstanceInfoFloating(IRP, A) {}
+};
+
+/// InstanceInfo attribute for call site arguments.
+struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
+  AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAInstanceInfoImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Argument *Arg = getAssociatedArgument();
+    if (!Arg)
+      return indicatePessimisticFixpoint();
+    const IRPosition &ArgPos = IRPosition::argument(*Arg);
+    auto *ArgAA =
+        A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
+    if (!ArgAA)
+      return indicatePessimisticFixpoint();
+    return clampStateAndIndicateChange(getState(), ArgAA->getState());
+  }
+};
+
+/// InstanceInfo attribute for function return value.
+struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
+  AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
+      : AAInstanceInfoImpl(IRP, A) {
+    llvm_unreachable("InstanceInfo is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    llvm_unreachable("InstanceInfo is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable("InstanceInfo is not applicable to function returns!");
+  }
+};
+
+/// InstanceInfo attribute deduction for a call site return value.
+struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
+  AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAInstanceInfoFloating(IRP, A) {}
+};
+} // namespace
+
+/// ----------------------- Variable Capturing ---------------------------------
+bool AANoCapture::isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                                Attribute::AttrKind ImpliedAttributeKind,
+                                bool IgnoreSubsumingPositions) {
+  assert(ImpliedAttributeKind == Attribute::NoCapture &&
+         "Unexpected attribute kind");
+  Value &V = IRP.getAssociatedValue();
+  if (!IRP.isArgumentPosition())
+    return V.use_empty();
+
+  // You cannot "capture" null in the default address space.
+  if (isa<UndefValue>(V) || (isa<ConstantPointerNull>(V) &&
+                             V.getType()->getPointerAddressSpace() == 0)) {
+    return true;
+  }
+
+  if (A.hasAttr(IRP, {Attribute::NoCapture},
+                /* IgnoreSubsumingPositions */ true, Attribute::NoCapture))
+    return true;
+
+  if (IRP.getPositionKind() == IRP_CALL_SITE_ARGUMENT)
+    if (Argument *Arg = IRP.getAssociatedArgument())
+      if (A.hasAttr(IRPosition::argument(*Arg),
+                    {Attribute::NoCapture, Attribute::ByVal},
+                    /* IgnoreSubsumingPositions */ true)) {
+        A.manifestAttrs(IRP,
+                        Attribute::get(V.getContext(), Attribute::NoCapture));
+        return true;
+      }
+
+  if (const Function *F = IRP.getAssociatedFunction()) {
+    // Check what state the associated function can actually capture.
+    AANoCapture::StateType State;
+    determineFunctionCaptureCapabilities(IRP, *F, State);
+    if (State.isKnown(NO_CAPTURE)) {
+      A.manifestAttrs(IRP,
+                      Attribute::get(V.getContext(), Attribute::NoCapture));
+      return true;
+    }
+  }
+
+  return false;
+}
+
+/// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
+/// depending on the ability of the function associated with \p IRP to capture
+/// state in memory and through "returning/throwing", respectively.
+void AANoCapture::determineFunctionCaptureCapabilities(const IRPosition &IRP,
+                                                       const Function &F,
+                                                       BitIntegerState &State) {
+  // TODO: Once we have memory behavior attributes we should use them here.
+
+  // If we know we cannot communicate or write to memory, we do not care about
+  // ptr2int anymore.
+  bool ReadOnly = F.onlyReadsMemory();
+  bool NoThrow = F.doesNotThrow();
+  bool IsVoidReturn = F.getReturnType()->isVoidTy();
+  if (ReadOnly && NoThrow && IsVoidReturn) {
+    State.addKnownBits(NO_CAPTURE);
+    return;
+  }
+
+  // A function cannot capture state in memory if it only reads memory, it can
+  // however return/throw state and the state might be influenced by the
+  // pointer value, e.g., loading from a returned pointer might reveal a bit.
+  if (ReadOnly)
+    State.addKnownBits(NOT_CAPTURED_IN_MEM);
+
+  // A function cannot communicate state back if it does not through
+  // exceptions and doesn not return values.
+  if (NoThrow && IsVoidReturn)
+    State.addKnownBits(NOT_CAPTURED_IN_RET);
+
+  // Check existing "returned" attributes.
+  int ArgNo = IRP.getCalleeArgNo();
+  if (!NoThrow || ArgNo < 0 ||
+      !F.getAttributes().hasAttrSomewhere(Attribute::Returned))
+    return;
+
+  for (unsigned U = 0, E = F.arg_size(); U < E; ++U)
+    if (F.hasParamAttribute(U, Attribute::Returned)) {
+      if (U == unsigned(ArgNo))
+        State.removeAssumedBits(NOT_CAPTURED_IN_RET);
+      else if (ReadOnly)
+        State.addKnownBits(NO_CAPTURE);
+      else
+        State.addKnownBits(NOT_CAPTURED_IN_RET);
+      break;
+    }
+}
+
+namespace {
+/// A class to hold the state of for no-capture attributes.
+struct AANoCaptureImpl : public AANoCapture {
+  AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    bool IsKnown;
+    assert(!AA::hasAssumedIRAttr<Attribute::NoCapture>(
+        A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
+    (void)IsKnown;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override;
+
+  /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
+  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                            SmallVectorImpl<Attribute> &Attrs) const override {
+    if (!isAssumedNoCaptureMaybeReturned())
+      return;
+
+    if (isArgumentPosition()) {
+      if (isAssumedNoCapture())
+        Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
+      else if (ManifestInternal)
+        Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
+    }
+  }
+
+  /// See AbstractState::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    if (isKnownNoCapture())
+      return "known not-captured";
+    if (isAssumedNoCapture())
+      return "assumed not-captured";
+    if (isKnownNoCaptureMaybeReturned())
+      return "known not-captured-maybe-returned";
+    if (isAssumedNoCaptureMaybeReturned())
+      return "assumed not-captured-maybe-returned";
+    return "assumed-captured";
+  }
+
+  /// Check the use \p U and update \p State accordingly. Return true if we
+  /// should continue to update the state.
+  bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
+                bool &Follow) {
+    Instruction *UInst = cast<Instruction>(U.getUser());
+    LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
+                      << *UInst << "\n");
+
+    // Deal with ptr2int by following uses.
+    if (isa<PtrToIntInst>(UInst)) {
+      LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
+      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
+                          /* Return */ true);
+    }
+
+    // For stores we already checked if we can follow them, if they make it
+    // here we give up.
+    if (isa<StoreInst>(UInst))
+      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
+                          /* Return */ true);
+
+    // Explicitly catch return instructions.
+    if (isa<ReturnInst>(UInst)) {
+      if (UInst->getFunction() == getAnchorScope())
+        return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
+                            /* Return */ true);
+      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
+                          /* Return */ true);
+    }
+
+    // For now we only use special logic for call sites. However, the tracker
+    // itself knows about a lot of other non-capturing cases already.
+    auto *CB = dyn_cast<CallBase>(UInst);
+    if (!CB || !CB->isArgOperand(&U))
+      return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
+                          /* Return */ true);
+
+    unsigned ArgNo = CB->getArgOperandNo(&U);
+    const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
+    // If we have a abstract no-capture attribute for the argument we can use
+    // it to justify a non-capture attribute here. This allows recursion!
+    bool IsKnownNoCapture;
+    const AANoCapture *ArgNoCaptureAA = nullptr;
+    bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
+        A, this, CSArgPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
+        &ArgNoCaptureAA);
+    if (IsAssumedNoCapture)
+      return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
+                          /* Return */ false);
+    if (ArgNoCaptureAA && ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned()) {
+      Follow = true;
+      return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
+                          /* Return */ false);
+    }
+
+    // Lastly, we could not find a reason no-capture can be assumed so we don't.
+    return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
+                        /* Return */ true);
+  }
+
+  /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
+  /// \p CapturedInRet, then return true if we should continue updating the
+  /// state.
+  static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
+                           bool CapturedInInt, bool CapturedInRet) {
+    LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
+                      << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
+    if (CapturedInMem)
+      State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
+    if (CapturedInInt)
+      State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
+    if (CapturedInRet)
+      State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
+    return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
+  }
+};
+
+ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
+  const IRPosition &IRP = getIRPosition();
+  Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
+                                  : &IRP.getAssociatedValue();
+  if (!V)
+    return indicatePessimisticFixpoint();
+
+  const Function *F =
+      isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
+  assert(F && "Expected a function!");
+  const IRPosition &FnPos = IRPosition::function(*F);
+
+  AANoCapture::StateType T;
+
+  // Readonly means we cannot capture through memory.
+  bool IsKnown;
+  if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
+    T.addKnownBits(NOT_CAPTURED_IN_MEM);
+    if (IsKnown)
+      addKnownBits(NOT_CAPTURED_IN_MEM);
+  }
+
+  // Make sure all returned values are different than the underlying value.
+  // TODO: we could do this in a more sophisticated way inside
+  //       AAReturnedValues, e.g., track all values that escape through returns
+  //       directly somehow.
+  auto CheckReturnedArgs = [&](bool &UsedAssumedInformation) {
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(IRPosition::returned(*F), this, Values,
+                                      AA::ValueScope::Intraprocedural,
+                                      UsedAssumedInformation))
+      return false;
+    bool SeenConstant = false;
+    for (const AA::ValueAndContext &VAC : Values) {
+      if (isa<Constant>(VAC.getValue())) {
+        if (SeenConstant)
+          return false;
+        SeenConstant = true;
+      } else if (!isa<Argument>(VAC.getValue()) ||
+                 VAC.getValue() == getAssociatedArgument())
+        return false;
+    }
+    return true;
+  };
+
+  bool IsKnownNoUnwind;
+  if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
+          A, this, FnPos, DepClassTy::OPTIONAL, IsKnownNoUnwind)) {
+    bool IsVoidTy = F->getReturnType()->isVoidTy();
+    bool UsedAssumedInformation = false;
+    if (IsVoidTy || CheckReturnedArgs(UsedAssumedInformation)) {
+      T.addKnownBits(NOT_CAPTURED_IN_RET);
+      if (T.isKnown(NOT_CAPTURED_IN_MEM))
+        return ChangeStatus::UNCHANGED;
+      if (IsKnownNoUnwind && (IsVoidTy || !UsedAssumedInformation)) {
+        addKnownBits(NOT_CAPTURED_IN_RET);
+        if (isKnown(NOT_CAPTURED_IN_MEM))
+          return indicateOptimisticFixpoint();
+      }
+    }
+  }
+
+  auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
+    const auto *DerefAA = A.getAAFor<AADereferenceable>(
+        *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
+    return DerefAA && DerefAA->getAssumedDereferenceableBytes();
+  };
+
+  auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
+    switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
+    case UseCaptureKind::NO_CAPTURE:
+      return true;
+    case UseCaptureKind::MAY_CAPTURE:
+      return checkUse(A, T, U, Follow);
+    case UseCaptureKind::PASSTHROUGH:
+      Follow = true;
+      return true;
+    }
+    llvm_unreachable("Unexpected use capture kind!");
+  };
+
+  if (!A.checkForAllUses(UseCheck, *this, *V))
+    return indicatePessimisticFixpoint();
+
+  AANoCapture::StateType &S = getState();
+  auto Assumed = S.getAssumed();
+  S.intersectAssumedBits(T.getAssumed());
+  if (!isAssumedNoCaptureMaybeReturned())
+    return indicatePessimisticFixpoint();
+  return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
+                                   : ChangeStatus::CHANGED;
+}
+
+/// NoCapture attribute for function arguments.
+struct AANoCaptureArgument final : AANoCaptureImpl {
+  AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
+      : AANoCaptureImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
+};
+
+/// NoCapture attribute for call site arguments.
+struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
+  AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AANoCaptureImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Argument *Arg = getAssociatedArgument();
+    if (!Arg)
+      return indicatePessimisticFixpoint();
+    const IRPosition &ArgPos = IRPosition::argument(*Arg);
+    bool IsKnownNoCapture;
+    const AANoCapture *ArgAA = nullptr;
+    if (AA::hasAssumedIRAttr<Attribute::NoCapture>(
+            A, this, ArgPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
+            &ArgAA))
+      return ChangeStatus::UNCHANGED;
+    if (!ArgAA || !ArgAA->isAssumedNoCaptureMaybeReturned())
+      return indicatePessimisticFixpoint();
+    return clampStateAndIndicateChange(getState(), ArgAA->getState());
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
+};
+
+/// NoCapture attribute for floating values.
+struct AANoCaptureFloating final : AANoCaptureImpl {
+  AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
+      : AANoCaptureImpl(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(nocapture)
+  }
+};
+
+/// NoCapture attribute for function return value.
+struct AANoCaptureReturned final : AANoCaptureImpl {
+  AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
+      : AANoCaptureImpl(IRP, A) {
+    llvm_unreachable("NoCapture is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    llvm_unreachable("NoCapture is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable("NoCapture is not applicable to function returns!");
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+};
+
+/// NoCapture attribute deduction for a call site return value.
+struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
+  AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AANoCaptureImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    const Function *F = getAnchorScope();
+    // Check what state the associated function can actually capture.
+    determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(nocapture)
+  }
+};
+} // namespace
+
+/// ------------------ Value Simplify Attribute ----------------------------
+
+bool ValueSimplifyStateType::unionAssumed(std::optional<Value *> Other) {
+  // FIXME: Add a typecast support.
+  SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
+      SimplifiedAssociatedValue, Other, Ty);
+  if (SimplifiedAssociatedValue == std::optional<Value *>(nullptr))
+    return false;
+
+  LLVM_DEBUG({
+    if (SimplifiedAssociatedValue)
+      dbgs() << "[ValueSimplify] is assumed to be "
+             << **SimplifiedAssociatedValue << "\n";
+    else
+      dbgs() << "[ValueSimplify] is assumed to be <none>\n";
+  });
+  return true;
+}
+
+namespace {
+struct AAValueSimplifyImpl : AAValueSimplify {
+  AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplify(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    if (getAssociatedValue().getType()->isVoidTy())
+      indicatePessimisticFixpoint();
+    if (A.hasSimplificationCallback(getIRPosition()))
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    LLVM_DEBUG({
+      dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
+      if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
+        dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
+    });
+    return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
+                          : "not-simple";
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+
+  /// See AAValueSimplify::getAssumedSimplifiedValue()
+  std::optional<Value *>
+  getAssumedSimplifiedValue(Attributor &A) const override {
+    return SimplifiedAssociatedValue;
+  }
+
+  /// Ensure the return value is \p V with type \p Ty, if not possible return
+  /// nullptr. If \p Check is true we will only verify such an operation would
+  /// suceed and return a non-nullptr value if that is the case. No IR is
+  /// generated or modified.
+  static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
+                           bool Check) {
+    if (auto *TypedV = AA::getWithType(V, Ty))
+      return TypedV;
+    if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
+      return Check ? &V
+                   : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
+                         &V, &Ty, "", CtxI->getIterator());
+    return nullptr;
+  }
+
+  /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
+  /// If \p Check is true we will only verify such an operation would suceed and
+  /// return a non-nullptr value if that is the case. No IR is generated or
+  /// modified.
+  static Value *reproduceInst(Attributor &A,
+                              const AbstractAttribute &QueryingAA,
+                              Instruction &I, Type &Ty, Instruction *CtxI,
+                              bool Check, ValueToValueMapTy &VMap) {
+    assert(CtxI && "Cannot reproduce an instruction without context!");
+    if (Check && (I.mayReadFromMemory() ||
+                  !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
+                                                /* TLI */ nullptr)))
+      return nullptr;
+    for (Value *Op : I.operands()) {
+      Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
+      if (!NewOp) {
+        assert(Check && "Manifest of new value unexpectedly failed!");
+        return nullptr;
+      }
+      if (!Check)
+        VMap[Op] = NewOp;
+    }
+    if (Check)
+      return &I;
+
+    Instruction *CloneI = I.clone();
+    // TODO: Try to salvage debug information here.
+    CloneI->setDebugLoc(DebugLoc());
+    VMap[&I] = CloneI;
+    CloneI->insertBefore(CtxI);
+    RemapInstruction(CloneI, VMap);
+    return CloneI;
+  }
+
+  /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
+  /// If \p Check is true we will only verify such an operation would suceed and
+  /// return a non-nullptr value if that is the case. No IR is generated or
+  /// modified.
+  static Value *reproduceValue(Attributor &A,
+                               const AbstractAttribute &QueryingAA, Value &V,
+                               Type &Ty, Instruction *CtxI, bool Check,
+                               ValueToValueMapTy &VMap) {
+    if (const auto &NewV = VMap.lookup(&V))
+      return NewV;
+    bool UsedAssumedInformation = false;
+    std::optional<Value *> SimpleV = A.getAssumedSimplified(
+        V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
+    if (!SimpleV.has_value())
+      return PoisonValue::get(&Ty);
+    Value *EffectiveV = &V;
+    if (*SimpleV)
+      EffectiveV = *SimpleV;
+    if (auto *C = dyn_cast<Constant>(EffectiveV))
+      return C;
+    if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
+                                      A.getInfoCache()))
+      return ensureType(A, *EffectiveV, Ty, CtxI, Check);
+    if (auto *I = dyn_cast<Instruction>(EffectiveV))
+      if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
+        return ensureType(A, *NewV, Ty, CtxI, Check);
+    return nullptr;
+  }
+
+  /// Return a value we can use as replacement for the associated one, or
+  /// nullptr if we don't have one that makes sense.
+  Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
+    Value *NewV = SimplifiedAssociatedValue
+                      ? *SimplifiedAssociatedValue
+                      : UndefValue::get(getAssociatedType());
+    if (NewV && NewV != &getAssociatedValue()) {
+      ValueToValueMapTy VMap;
+      // First verify we can reprduce the value with the required type at the
+      // context location before we actually start modifying the IR.
+      if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
+                         /* CheckOnly */ true, VMap))
+        return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
+                              /* CheckOnly */ false, VMap);
+    }
+    return nullptr;
+  }
+
+  /// Helper function for querying AAValueSimplify and updating candidate.
+  /// \param IRP The value position we are trying to unify with SimplifiedValue
+  bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
+                      const IRPosition &IRP, bool Simplify = true) {
+    bool UsedAssumedInformation = false;
+    std::optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
+    if (Simplify)
+      QueryingValueSimplified = A.getAssumedSimplified(
+          IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
+    return unionAssumed(QueryingValueSimplified);
+  }
+
+  /// Returns a candidate is found or not
+  template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
+    if (!getAssociatedValue().getType()->isIntegerTy())
+      return false;
+
+    // This will also pass the call base context.
+    const auto *AA =
+        A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
+    if (!AA)
+      return false;
+
+    std::optional<Constant *> COpt = AA->getAssumedConstant(A);
+
+    if (!COpt) {
+      SimplifiedAssociatedValue = std::nullopt;
+      A.recordDependence(*AA, *this, DepClassTy::OPTIONAL);
+      return true;
+    }
+    if (auto *C = *COpt) {
+      SimplifiedAssociatedValue = C;
+      A.recordDependence(*AA, *this, DepClassTy::OPTIONAL);
+      return true;
+    }
+    return false;
+  }
+
+  bool askSimplifiedValueForOtherAAs(Attributor &A) {
+    if (askSimplifiedValueFor<AAValueConstantRange>(A))
+      return true;
+    if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
+      return true;
+    return false;
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    for (auto &U : getAssociatedValue().uses()) {
+      // Check if we need to adjust the insertion point to make sure the IR is
+      // valid.
+      Instruction *IP = dyn_cast<Instruction>(U.getUser());
+      if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
+        IP = PHI->getIncomingBlock(U)->getTerminator();
+      if (auto *NewV = manifestReplacementValue(A, IP)) {
+        LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
+                          << " -> " << *NewV << " :: " << *this << "\n");
+        if (A.changeUseAfterManifest(U, *NewV))
+          Changed = ChangeStatus::CHANGED;
+      }
+    }
+
+    return Changed | AAValueSimplify::manifest(A);
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...).
+  ChangeStatus indicatePessimisticFixpoint() override {
+    SimplifiedAssociatedValue = &getAssociatedValue();
+    return AAValueSimplify::indicatePessimisticFixpoint();
+  }
+};
+
+struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
+  AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyImpl(IRP, A) {}
+
+  void initialize(Attributor &A) override {
+    AAValueSimplifyImpl::initialize(A);
+    if (A.hasAttr(getIRPosition(),
+                  {Attribute::InAlloca, Attribute::Preallocated,
+                   Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
+                  /* IgnoreSubsumingPositions */ true))
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // Byval is only replacable if it is readonly otherwise we would write into
+    // the replaced value and not the copy that byval creates implicitly.
+    Argument *Arg = getAssociatedArgument();
+    if (Arg->hasByValAttr()) {
+      // TODO: We probably need to verify synchronization is not an issue, e.g.,
+      //       there is no race by not copying a constant byval.
+      bool IsKnown;
+      if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
+        return indicatePessimisticFixpoint();
+    }
+
+    auto Before = SimplifiedAssociatedValue;
+
+    auto PredForCallSite = [&](AbstractCallSite ACS) {
+      const IRPosition &ACSArgPos =
+          IRPosition::callsite_argument(ACS, getCallSiteArgNo());
+      // Check if a coresponding argument was found or if it is on not
+      // associated (which can happen for callback calls).
+      if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
+        return false;
+
+      // Simplify the argument operand explicitly and check if the result is
+      // valid in the current scope. This avoids refering to simplified values
+      // in other functions, e.g., we don't want to say a an argument in a
+      // static function is actually an argument in a different function.
+      bool UsedAssumedInformation = false;
+      std::optional<Constant *> SimpleArgOp =
+          A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
+      if (!SimpleArgOp)
+        return true;
+      if (!*SimpleArgOp)
+        return false;
+      if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
+        return false;
+      return unionAssumed(*SimpleArgOp);
+    };
+
+    // Generate a answer specific to a call site context.
+    bool Success;
+    bool UsedAssumedInformation = false;
+    if (hasCallBaseContext() &&
+        getCallBaseContext()->getCalledOperand() == Arg->getParent())
+      Success = PredForCallSite(
+          AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
+    else
+      Success = A.checkForAllCallSites(PredForCallSite, *this, true,
+                                       UsedAssumedInformation);
+
+    if (!Success)
+      if (!askSimplifiedValueForOtherAAs(A))
+        return indicatePessimisticFixpoint();
+
+    // If a candidate was found in this update, return CHANGED.
+    return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
+                                               : ChangeStatus ::CHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(value_simplify)
+  }
+};
+
+struct AAValueSimplifyReturned : AAValueSimplifyImpl {
+  AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyImpl(IRP, A) {}
+
+  /// See AAValueSimplify::getAssumedSimplifiedValue()
+  std::optional<Value *>
+  getAssumedSimplifiedValue(Attributor &A) const override {
+    if (!isValidState())
+      return nullptr;
+    return SimplifiedAssociatedValue;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto Before = SimplifiedAssociatedValue;
+
+    auto ReturnInstCB = [&](Instruction &I) {
+      auto &RI = cast<ReturnInst>(I);
+      return checkAndUpdate(
+          A, *this,
+          IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
+    };
+
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
+                                   UsedAssumedInformation))
+      if (!askSimplifiedValueForOtherAAs(A))
+        return indicatePessimisticFixpoint();
+
+    // If a candidate was found in this update, return CHANGED.
+    return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
+                                               : ChangeStatus ::CHANGED;
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    // We queried AAValueSimplify for the returned values so they will be
+    // replaced if a simplified form was found. Nothing to do here.
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(value_simplify)
+  }
+};
+
+struct AAValueSimplifyFloating : AAValueSimplifyImpl {
+  AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAValueSimplifyImpl::initialize(A);
+    Value &V = getAnchorValue();
+
+    // TODO: add other stuffs
+    if (isa<Constant>(V))
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto Before = SimplifiedAssociatedValue;
+    if (!askSimplifiedValueForOtherAAs(A))
+      return indicatePessimisticFixpoint();
+
+    // If a candidate was found in this update, return CHANGED.
+    return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
+                                               : ChangeStatus ::CHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
+  }
+};
+
+struct AAValueSimplifyFunction : AAValueSimplifyImpl {
+  AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    SimplifiedAssociatedValue = nullptr;
+    indicateOptimisticFixpoint();
+  }
+  /// See AbstractAttribute::initialize(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable(
+        "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
+  }
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FN_ATTR(value_simplify)
+  }
+};
+
+struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
+  AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyFunction(IRP, A) {}
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CS_ATTR(value_simplify)
+  }
+};
+
+struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
+  AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyImpl(IRP, A) {}
+
+  void initialize(Attributor &A) override {
+    AAValueSimplifyImpl::initialize(A);
+    Function *Fn = getAssociatedFunction();
+    assert(Fn && "Did expect an associted function");
+    for (Argument &Arg : Fn->args()) {
+      if (Arg.hasReturnedAttr()) {
+        auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
+                                                 Arg.getArgNo());
+        if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
+            checkAndUpdate(A, *this, IRP))
+          indicateOptimisticFixpoint();
+        else
+          indicatePessimisticFixpoint();
+        return;
+      }
+    }
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    return indicatePessimisticFixpoint();
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(value_simplify)
+  }
+};
+
+struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
+  AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAValueSimplifyFloating(IRP, A) {}
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    // TODO: We should avoid simplification duplication to begin with.
+    auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
+        IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
+    if (FloatAA && FloatAA->getState().isValidState())
+      return Changed;
+
+    if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
+      Use &U = cast<CallBase>(&getAnchorValue())
+                   ->getArgOperandUse(getCallSiteArgNo());
+      if (A.changeUseAfterManifest(U, *NewV))
+        Changed = ChangeStatus::CHANGED;
+    }
+
+    return Changed | AAValueSimplify::manifest(A);
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(value_simplify)
+  }
+};
+} // namespace
+
+/// ----------------------- Heap-To-Stack Conversion ---------------------------
+namespace {
+struct AAHeapToStackFunction final : public AAHeapToStack {
+
+  struct AllocationInfo {
+    /// The call that allocates the memory.
+    CallBase *const CB;
+
+    /// The library function id for the allocation.
+    LibFunc LibraryFunctionId = NotLibFunc;
+
+    /// The status wrt. a rewrite.
+    enum {
+      STACK_DUE_TO_USE,
+      STACK_DUE_TO_FREE,
+      INVALID,
+    } Status = STACK_DUE_TO_USE;
+
+    /// Flag to indicate if we encountered a use that might free this allocation
+    /// but which is not in the deallocation infos.
+    bool HasPotentiallyFreeingUnknownUses = false;
+
+    /// Flag to indicate that we should place the new alloca in the function
+    /// entry block rather than where the call site (CB) is.
+    bool MoveAllocaIntoEntry = true;
+
+    /// The set of free calls that use this allocation.
+    SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
+  };
+
+  struct DeallocationInfo {
+    /// The call that deallocates the memory.
+    CallBase *const CB;
+    /// The value freed by the call.
+    Value *FreedOp;
+
+    /// Flag to indicate if we don't know all objects this deallocation might
+    /// free.
+    bool MightFreeUnknownObjects = false;
+
+    /// The set of allocation calls that are potentially freed.
+    SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
+  };
+
+  AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
+      : AAHeapToStack(IRP, A) {}
+
+  ~AAHeapToStackFunction() {
+    // Ensure we call the destructor so we release any memory allocated in the
+    // sets.
+    for (auto &It : AllocationInfos)
+      It.second->~AllocationInfo();
+    for (auto &It : DeallocationInfos)
+      It.second->~DeallocationInfo();
+  }
+
+  void initialize(Attributor &A) override {
+    AAHeapToStack::initialize(A);
+
+    const Function *F = getAnchorScope();
+    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+
+    auto AllocationIdentifierCB = [&](Instruction &I) {
+      CallBase *CB = dyn_cast<CallBase>(&I);
+      if (!CB)
+        return true;
+      if (Value *FreedOp = getFreedOperand(CB, TLI)) {
+        DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB, FreedOp};
+        return true;
+      }
+      // To do heap to stack, we need to know that the allocation itself is
+      // removable once uses are rewritten, and that we can initialize the
+      // alloca to the same pattern as the original allocation result.
+      if (isRemovableAlloc(CB, TLI)) {
+        auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
+        if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
+          AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
+          AllocationInfos[CB] = AI;
+          if (TLI)
+            TLI->getLibFunc(*CB, AI->LibraryFunctionId);
+        }
+      }
+      return true;
+    };
+
+    bool UsedAssumedInformation = false;
+    bool Success = A.checkForAllCallLikeInstructions(
+        AllocationIdentifierCB, *this, UsedAssumedInformation,
+        /* CheckBBLivenessOnly */ false,
+        /* CheckPotentiallyDead */ true);
+    (void)Success;
+    assert(Success && "Did not expect the call base visit callback to fail!");
+
+    Attributor::SimplifictionCallbackTy SCB =
+        [](const IRPosition &, const AbstractAttribute *,
+           bool &) -> std::optional<Value *> { return nullptr; };
+    for (const auto &It : AllocationInfos)
+      A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
+                                       SCB);
+    for (const auto &It : DeallocationInfos)
+      A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
+                                       SCB);
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
+    for (const auto &It : AllocationInfos) {
+      if (It.second->Status == AllocationInfo::INVALID)
+        ++NumInvalidMallocs;
+      else
+        ++NumH2SMallocs;
+    }
+    return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
+           std::to_string(NumInvalidMallocs);
+  }
+
+  /// See AbstractAttribute::trackStatistics().
+  void trackStatistics() const override {
+    STATS_DECL(
+        MallocCalls, Function,
+        "Number of malloc/calloc/aligned_alloc calls converted to allocas");
+    for (const auto &It : AllocationInfos)
+      if (It.second->Status != AllocationInfo::INVALID)
+        ++BUILD_STAT_NAME(MallocCalls, Function);
+  }
+
+  bool isAssumedHeapToStack(const CallBase &CB) const override {
+    if (isValidState())
+      if (AllocationInfo *AI =
+              AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
+        return AI->Status != AllocationInfo::INVALID;
+    return false;
+  }
+
+  bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
+    if (!isValidState())
+      return false;
+
+    for (const auto &It : AllocationInfos) {
+      AllocationInfo &AI = *It.second;
+      if (AI.Status == AllocationInfo::INVALID)
+        continue;
+
+      if (AI.PotentialFreeCalls.count(&CB))
+        return true;
+    }
+
+    return false;
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    assert(getState().isValidState() &&
+           "Attempted to manifest an invalid state!");
+
+    ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+    Function *F = getAnchorScope();
+    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+
+    for (auto &It : AllocationInfos) {
+      AllocationInfo &AI = *It.second;
+      if (AI.Status == AllocationInfo::INVALID)
+        continue;
+
+      for (CallBase *FreeCall : AI.PotentialFreeCalls) {
+        LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
+        A.deleteAfterManifest(*FreeCall);
+        HasChanged = ChangeStatus::CHANGED;
+      }
+
+      LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
+                        << "\n");
+
+      auto Remark = [&](OptimizationRemark OR) {
+        LibFunc IsAllocShared;
+        if (TLI->getLibFunc(*AI.CB, IsAllocShared))
+          if (IsAllocShared == LibFunc___kmpc_alloc_shared)
+            return OR << "Moving globalized variable to the stack.";
+        return OR << "Moving memory allocation from the heap to the stack.";
+      };
+      if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
+        A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
+      else
+        A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
+
+      const DataLayout &DL = A.getInfoCache().getDL();
+      Value *Size;
+      std::optional<APInt> SizeAPI = getSize(A, *this, AI);
+      if (SizeAPI) {
+        Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
+      } else {
+        LLVMContext &Ctx = AI.CB->getContext();
+        ObjectSizeOpts Opts;
+        ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
+        SizeOffsetValue SizeOffsetPair = Eval.compute(AI.CB);
+        assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
+               cast<ConstantInt>(SizeOffsetPair.Offset)->isZero());
+        Size = SizeOffsetPair.Size;
+      }
+
+      BasicBlock::iterator IP = AI.MoveAllocaIntoEntry
+                                    ? F->getEntryBlock().begin()
+                                    : AI.CB->getIterator();
+
+      Align Alignment(1);
+      if (MaybeAlign RetAlign = AI.CB->getRetAlign())
+        Alignment = std::max(Alignment, *RetAlign);
+      if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
+        std::optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
+        assert(AlignmentAPI && AlignmentAPI->getZExtValue() > 0 &&
+               "Expected an alignment during manifest!");
+        Alignment =
+            std::max(Alignment, assumeAligned(AlignmentAPI->getZExtValue()));
+      }
+
+      // TODO: Hoist the alloca towards the function entry.
+      unsigned AS = DL.getAllocaAddrSpace();
+      Instruction *Alloca =
+          new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
+                         AI.CB->getName() + ".h2s", IP);
+
+      if (Alloca->getType() != AI.CB->getType())
+        Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
+            Alloca, AI.CB->getType(), "malloc_cast", AI.CB->getIterator());
+
+      auto *I8Ty = Type::getInt8Ty(F->getContext());
+      auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
+      assert(InitVal &&
+             "Must be able to materialize initial memory state of allocation");
+
+      A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
+
+      if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
+        auto *NBB = II->getNormalDest();
+        BranchInst::Create(NBB, AI.CB->getParent());
+        A.deleteAfterManifest(*AI.CB);
+      } else {
+        A.deleteAfterManifest(*AI.CB);
+      }
+
+      // Initialize the alloca with the same value as used by the allocation
+      // function.  We can skip undef as the initial value of an alloc is
+      // undef, and the memset would simply end up being DSEd.
+      if (!isa<UndefValue>(InitVal)) {
+        IRBuilder<> Builder(Alloca->getNextNode());
+        // TODO: Use alignment above if align!=1
+        Builder.CreateMemSet(Alloca, InitVal, Size, std::nullopt);
+      }
+      HasChanged = ChangeStatus::CHANGED;
+    }
+
+    return HasChanged;
+  }
+
+  std::optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
+                                Value &V) {
+    bool UsedAssumedInformation = false;
+    std::optional<Constant *> SimpleV =
+        A.getAssumedConstant(V, AA, UsedAssumedInformation);
+    if (!SimpleV)
+      return APInt(64, 0);
+    if (auto *CI = dyn_cast_or_null<ConstantInt>(*SimpleV))
+      return CI->getValue();
+    return std::nullopt;
+  }
+
+  std::optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
+                               AllocationInfo &AI) {
+    auto Mapper = [&](const Value *V) -> const Value * {
+      bool UsedAssumedInformation = false;
+      if (std::optional<Constant *> SimpleV =
+              A.getAssumedConstant(*V, AA, UsedAssumedInformation))
+        if (*SimpleV)
+          return *SimpleV;
+      return V;
+    };
+
+    const Function *F = getAnchorScope();
+    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+    return getAllocSize(AI.CB, TLI, Mapper);
+  }
+
+  /// Collection of all malloc-like calls in a function with associated
+  /// information.
+  MapVector<CallBase *, AllocationInfo *> AllocationInfos;
+
+  /// Collection of all free-like calls in a function with associated
+  /// information.
+  MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
+
+  ChangeStatus updateImpl(Attributor &A) override;
+};
+
+ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
+  ChangeStatus Changed = ChangeStatus::UNCHANGED;
+  const Function *F = getAnchorScope();
+  const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+
+  const auto *LivenessAA =
+      A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
+
+  MustBeExecutedContextExplorer *Explorer =
+      A.getInfoCache().getMustBeExecutedContextExplorer();
+
+  bool StackIsAccessibleByOtherThreads =
+      A.getInfoCache().stackIsAccessibleByOtherThreads();
+
+  LoopInfo *LI =
+      A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
+  std::optional<bool> MayContainIrreducibleControl;
+  auto IsInLoop = [&](BasicBlock &BB) {
+    if (&F->getEntryBlock() == &BB)
+      return false;
+    if (!MayContainIrreducibleControl.has_value())
+      MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
+    if (*MayContainIrreducibleControl)
+      return true;
+    if (!LI)
+      return true;
+    return LI->getLoopFor(&BB) != nullptr;
+  };
+
+  // Flag to ensure we update our deallocation information at most once per
+  // updateImpl call and only if we use the free check reasoning.
+  bool HasUpdatedFrees = false;
+
+  auto UpdateFrees = [&]() {
+    HasUpdatedFrees = true;
+
+    for (auto &It : DeallocationInfos) {
+      DeallocationInfo &DI = *It.second;
+      // For now we cannot use deallocations that have unknown inputs, skip
+      // them.
+      if (DI.MightFreeUnknownObjects)
+        continue;
+
+      // No need to analyze dead calls, ignore them instead.
+      bool UsedAssumedInformation = false;
+      if (A.isAssumedDead(*DI.CB, this, LivenessAA, UsedAssumedInformation,
+                          /* CheckBBLivenessOnly */ true))
+        continue;
+
+      // Use the non-optimistic version to get the freed object.
+      Value *Obj = getUnderlyingObject(DI.FreedOp);
+      if (!Obj) {
+        LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
+        DI.MightFreeUnknownObjects = true;
+        continue;
+      }
+
+      // Free of null and undef can be ignored as no-ops (or UB in the latter
+      // case).
+      if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
+        continue;
+
+      CallBase *ObjCB = dyn_cast<CallBase>(Obj);
+      if (!ObjCB) {
+        LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
+                          << "\n");
+        DI.MightFreeUnknownObjects = true;
+        continue;
+      }
+
+      AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
+      if (!AI) {
+        LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
+                          << "\n");
+        DI.MightFreeUnknownObjects = true;
+        continue;
+      }
+
+      DI.PotentialAllocationCalls.insert(ObjCB);
+    }
+  };
+
+  auto FreeCheck = [&](AllocationInfo &AI) {
+    // If the stack is not accessible by other threads, the "must-free" logic
+    // doesn't apply as the pointer could be shared and needs to be places in
+    // "shareable" memory.
+    if (!StackIsAccessibleByOtherThreads) {
+      bool IsKnownNoSycn;
+      if (!AA::hasAssumedIRAttr<Attribute::NoSync>(
+              A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNoSycn)) {
+        LLVM_DEBUG(
+            dbgs() << "[H2S] found an escaping use, stack is not accessible by "
+                      "other threads and function is not nosync:\n");
+        return false;
+      }
+    }
+    if (!HasUpdatedFrees)
+      UpdateFrees();
+
+    // TODO: Allow multi exit functions that have different free calls.
+    if (AI.PotentialFreeCalls.size() != 1) {
+      LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
+                        << AI.PotentialFreeCalls.size() << "\n");
+      return false;
+    }
+    CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
+    DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
+    if (!DI) {
+      LLVM_DEBUG(
+          dbgs() << "[H2S] unique free call was not known as deallocation call "
+                 << *UniqueFree << "\n");
+      return false;
+    }
+    if (DI->MightFreeUnknownObjects) {
+      LLVM_DEBUG(
+          dbgs() << "[H2S] unique free call might free unknown allocations\n");
+      return false;
+    }
+    if (DI->PotentialAllocationCalls.empty())
+      return true;
+    if (DI->PotentialAllocationCalls.size() > 1) {
+      LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
+                        << DI->PotentialAllocationCalls.size()
+                        << " different allocations\n");
+      return false;
+    }
+    if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
+      LLVM_DEBUG(
+          dbgs()
+          << "[H2S] unique free call not known to free this allocation but "
+          << **DI->PotentialAllocationCalls.begin() << "\n");
+      return false;
+    }
+
+    // __kmpc_alloc_shared and __kmpc_alloc_free are by construction matched.
+    if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared) {
+      Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
+      if (!Explorer || !Explorer->findInContextOf(UniqueFree, CtxI)) {
+        LLVM_DEBUG(
+            dbgs()
+            << "[H2S] unique free call might not be executed with the allocation "
+            << *UniqueFree << "\n");
+        return false;
+      }
+    }
+    return true;
+  };
+
+  auto UsesCheck = [&](AllocationInfo &AI) {
+    bool ValidUsesOnly = true;
+
+    auto Pred = [&](const Use &U, bool &Follow) -> bool {
+      Instruction *UserI = cast<Instruction>(U.getUser());
+      if (isa<LoadInst>(UserI))
+        return true;
+      if (auto *SI = dyn_cast<StoreInst>(UserI)) {
+        if (SI->getValueOperand() == U.get()) {
+          LLVM_DEBUG(dbgs()
+                     << "[H2S] escaping store to memory: " << *UserI << "\n");
+          ValidUsesOnly = false;
+        } else {
+          // A store into the malloc'ed memory is fine.
+        }
+        return true;
+      }
+      if (auto *CB = dyn_cast<CallBase>(UserI)) {
+        if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
+          return true;
+        if (DeallocationInfos.count(CB)) {
+          AI.PotentialFreeCalls.insert(CB);
+          return true;
+        }
+
+        unsigned ArgNo = CB->getArgOperandNo(&U);
+        auto CBIRP = IRPosition::callsite_argument(*CB, ArgNo);
+
+        bool IsKnownNoCapture;
+        bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
+            A, this, CBIRP, DepClassTy::OPTIONAL, IsKnownNoCapture);
+
+        // If a call site argument use is nofree, we are fine.
+        bool IsKnownNoFree;
+        bool IsAssumedNoFree = AA::hasAssumedIRAttr<Attribute::NoFree>(
+            A, this, CBIRP, DepClassTy::OPTIONAL, IsKnownNoFree);
+
+        if (!IsAssumedNoCapture ||
+            (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
+             !IsAssumedNoFree)) {
+          AI.HasPotentiallyFreeingUnknownUses |= !IsAssumedNoFree;
+
+          // Emit a missed remark if this is missed OpenMP globalization.
+          auto Remark = [&](OptimizationRemarkMissed ORM) {
+            return ORM
+                   << "Could not move globalized variable to the stack. "
+                      "Variable is potentially captured in call. Mark "
+                      "parameter as `__attribute__((noescape))` to override.";
+          };
+
+          if (ValidUsesOnly &&
+              AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
+            A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
+
+          LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
+          ValidUsesOnly = false;
+        }
+        return true;
+      }
+
+      if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
+          isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
+        Follow = true;
+        return true;
+      }
+      // Unknown user for which we can not track uses further (in a way that
+      // makes sense).
+      LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
+      ValidUsesOnly = false;
+      return true;
+    };
+    if (!A.checkForAllUses(Pred, *this, *AI.CB, /* CheckBBLivenessOnly */ false,
+                           DepClassTy::OPTIONAL, /* IgnoreDroppableUses */ true,
+                           [&](const Use &OldU, const Use &NewU) {
+                             auto *SI = dyn_cast<StoreInst>(OldU.getUser());
+                             return !SI || StackIsAccessibleByOtherThreads ||
+                                    AA::isAssumedThreadLocalObject(
+                                        A, *SI->getPointerOperand(), *this);
+                           }))
+      return false;
+    return ValidUsesOnly;
+  };
+
+  // The actual update starts here. We look at all allocations and depending on
+  // their status perform the appropriate check(s).
+  for (auto &It : AllocationInfos) {
+    AllocationInfo &AI = *It.second;
+    if (AI.Status == AllocationInfo::INVALID)
+      continue;
+
+    if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
+      std::optional<APInt> APAlign = getAPInt(A, *this, *Align);
+      if (!APAlign) {
+        // Can't generate an alloca which respects the required alignment
+        // on the allocation.
+        LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
+                          << "\n");
+        AI.Status = AllocationInfo::INVALID;
+        Changed = ChangeStatus::CHANGED;
+        continue;
+      }
+      if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
+          !APAlign->isPowerOf2()) {
+        LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
+                          << "\n");
+        AI.Status = AllocationInfo::INVALID;
+        Changed = ChangeStatus::CHANGED;
+        continue;
+      }
+    }
+
+    std::optional<APInt> Size = getSize(A, *this, AI);
+    if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
+        MaxHeapToStackSize != -1) {
+      if (!Size || Size->ugt(MaxHeapToStackSize)) {
+        LLVM_DEBUG({
+          if (!Size)
+            dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
+          else
+            dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
+                   << MaxHeapToStackSize << "\n";
+        });
+
+        AI.Status = AllocationInfo::INVALID;
+        Changed = ChangeStatus::CHANGED;
+        continue;
+      }
+    }
+
+    switch (AI.Status) {
+    case AllocationInfo::STACK_DUE_TO_USE:
+      if (UsesCheck(AI))
+        break;
+      AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
+      [[fallthrough]];
+    case AllocationInfo::STACK_DUE_TO_FREE:
+      if (FreeCheck(AI))
+        break;
+      AI.Status = AllocationInfo::INVALID;
+      Changed = ChangeStatus::CHANGED;
+      break;
+    case AllocationInfo::INVALID:
+      llvm_unreachable("Invalid allocations should never reach this point!");
+    };
+
+    // Check if we still think we can move it into the entry block. If the
+    // alloca comes from a converted __kmpc_alloc_shared then we can usually
+    // ignore the potential compilations associated with loops.
+    bool IsGlobalizedLocal =
+        AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared;
+    if (AI.MoveAllocaIntoEntry &&
+        (!Size.has_value() ||
+         (!IsGlobalizedLocal && IsInLoop(*AI.CB->getParent()))))
+      AI.MoveAllocaIntoEntry = false;
+  }
+
+  return Changed;
+}
+} // namespace
+
+/// ----------------------- Privatizable Pointers ------------------------------
+namespace {
+struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
+  AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
+      : AAPrivatizablePtr(IRP, A), PrivatizableType(std::nullopt) {}
+
+  ChangeStatus indicatePessimisticFixpoint() override {
+    AAPrivatizablePtr::indicatePessimisticFixpoint();
+    PrivatizableType = nullptr;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// Identify the type we can chose for a private copy of the underlying
+  /// argument. std::nullopt means it is not clear yet, nullptr means there is
+  /// none.
+  virtual std::optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
+
+  /// Return a privatizable type that encloses both T0 and T1.
+  /// TODO: This is merely a stub for now as we should manage a mapping as well.
+  std::optional<Type *> combineTypes(std::optional<Type *> T0,
+                                     std::optional<Type *> T1) {
+    if (!T0)
+      return T1;
+    if (!T1)
+      return T0;
+    if (T0 == T1)
+      return T0;
+    return nullptr;
+  }
+
+  std::optional<Type *> getPrivatizableType() const override {
+    return PrivatizableType;
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
+  }
+
+protected:
+  std::optional<Type *> PrivatizableType;
+};
+
+// TODO: Do this for call site arguments (probably also other values) as well.
+
+struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
+  AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
+      : AAPrivatizablePtrImpl(IRP, A) {}
+
+  /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
+  std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
+    // If this is a byval argument and we know all the call sites (so we can
+    // rewrite them), there is no need to check them explicitly.
+    bool UsedAssumedInformation = false;
+    SmallVector<Attribute, 1> Attrs;
+    A.getAttrs(getIRPosition(), {Attribute::ByVal}, Attrs,
+               /* IgnoreSubsumingPositions */ true);
+    if (!Attrs.empty() &&
+        A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
+                               true, UsedAssumedInformation))
+      return Attrs[0].getValueAsType();
+
+    std::optional<Type *> Ty;
+    unsigned ArgNo = getIRPosition().getCallSiteArgNo();
+
+    // Make sure the associated call site argument has the same type at all call
+    // sites and it is an allocation we know is safe to privatize, for now that
+    // means we only allow alloca instructions.
+    // TODO: We can additionally analyze the accesses in the callee to  create
+    //       the type from that information instead. That is a little more
+    //       involved and will be done in a follow up patch.
+    auto CallSiteCheck = [&](AbstractCallSite ACS) {
+      IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
+      // Check if a coresponding argument was found or if it is one not
+      // associated (which can happen for callback calls).
+      if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
+        return false;
+
+      // Check that all call sites agree on a type.
+      auto *PrivCSArgAA =
+          A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
+      if (!PrivCSArgAA)
+        return false;
+      std::optional<Type *> CSTy = PrivCSArgAA->getPrivatizableType();
+
+      LLVM_DEBUG({
+        dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
+        if (CSTy && *CSTy)
+          (*CSTy)->print(dbgs());
+        else if (CSTy)
+          dbgs() << "<nullptr>";
+        else
+          dbgs() << "<none>";
+      });
+
+      Ty = combineTypes(Ty, CSTy);
+
+      LLVM_DEBUG({
+        dbgs() << " : New Type: ";
+        if (Ty && *Ty)
+          (*Ty)->print(dbgs());
+        else if (Ty)
+          dbgs() << "<nullptr>";
+        else
+          dbgs() << "<none>";
+        dbgs() << "\n";
+      });
+
+      return !Ty || *Ty;
+    };
+
+    if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
+                                UsedAssumedInformation))
+      return nullptr;
+    return Ty;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    PrivatizableType = identifyPrivatizableType(A);
+    if (!PrivatizableType)
+      return ChangeStatus::UNCHANGED;
+    if (!*PrivatizableType)
+      return indicatePessimisticFixpoint();
+
+    // The dependence is optional so we don't give up once we give up on the
+    // alignment.
+    A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
+                        DepClassTy::OPTIONAL);
+
+    // Avoid arguments with padding for now.
+    if (!A.hasAttr(getIRPosition(), Attribute::ByVal) &&
+        !isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    // Collect the types that will replace the privatizable type in the function
+    // signature.
+    SmallVector<Type *, 16> ReplacementTypes;
+    identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
+
+    // Verify callee and caller agree on how the promoted argument would be
+    // passed.
+    Function &Fn = *getIRPosition().getAnchorScope();
+    const auto *TTI =
+        A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
+    if (!TTI) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
+                        << Fn.getName() << "\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    auto CallSiteCheck = [&](AbstractCallSite ACS) {
+      CallBase *CB = ACS.getInstruction();
+      return TTI->areTypesABICompatible(
+          CB->getCaller(),
+          dyn_cast_if_present<Function>(CB->getCalledOperand()),
+          ReplacementTypes);
+    };
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
+                                UsedAssumedInformation)) {
+      LLVM_DEBUG(
+          dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
+                 << Fn.getName() << "\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    // Register a rewrite of the argument.
+    Argument *Arg = getAssociatedArgument();
+    if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    unsigned ArgNo = Arg->getArgNo();
+
+    // Helper to check if for the given call site the associated argument is
+    // passed to a callback where the privatization would be different.
+    auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
+      SmallVector<const Use *, 4> CallbackUses;
+      AbstractCallSite::getCallbackUses(CB, CallbackUses);
+      for (const Use *U : CallbackUses) {
+        AbstractCallSite CBACS(U);
+        assert(CBACS && CBACS.isCallbackCall());
+        for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
+          int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
+
+          LLVM_DEBUG({
+            dbgs()
+                << "[AAPrivatizablePtr] Argument " << *Arg
+                << "check if can be privatized in the context of its parent ("
+                << Arg->getParent()->getName()
+                << ")\n[AAPrivatizablePtr] because it is an argument in a "
+                   "callback ("
+                << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
+                << ")\n[AAPrivatizablePtr] " << CBArg << " : "
+                << CBACS.getCallArgOperand(CBArg) << " vs "
+                << CB.getArgOperand(ArgNo) << "\n"
+                << "[AAPrivatizablePtr] " << CBArg << " : "
+                << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
+          });
+
+          if (CBArgNo != int(ArgNo))
+            continue;
+          const auto *CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
+              *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
+          if (CBArgPrivAA && CBArgPrivAA->isValidState()) {
+            auto CBArgPrivTy = CBArgPrivAA->getPrivatizableType();
+            if (!CBArgPrivTy)
+              continue;
+            if (*CBArgPrivTy == PrivatizableType)
+              continue;
+          }
+
+          LLVM_DEBUG({
+            dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
+                   << " cannot be privatized in the context of its parent ("
+                   << Arg->getParent()->getName()
+                   << ")\n[AAPrivatizablePtr] because it is an argument in a "
+                      "callback ("
+                   << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
+                   << ").\n[AAPrivatizablePtr] for which the argument "
+                      "privatization is not compatible.\n";
+          });
+          return false;
+        }
+      }
+      return true;
+    };
+
+    // Helper to check if for the given call site the associated argument is
+    // passed to a direct call where the privatization would be different.
+    auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
+      CallBase *DC = cast<CallBase>(ACS.getInstruction());
+      int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
+      assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
+             "Expected a direct call operand for callback call operand");
+
+      Function *DCCallee =
+          dyn_cast_if_present<Function>(DC->getCalledOperand());
+      LLVM_DEBUG({
+        dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
+               << " check if be privatized in the context of its parent ("
+               << Arg->getParent()->getName()
+               << ")\n[AAPrivatizablePtr] because it is an argument in a "
+                  "direct call of ("
+               << DCArgNo << "@" << DCCallee->getName() << ").\n";
+      });
+
+      if (unsigned(DCArgNo) < DCCallee->arg_size()) {
+        const auto *DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
+            *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
+            DepClassTy::REQUIRED);
+        if (DCArgPrivAA && DCArgPrivAA->isValidState()) {
+          auto DCArgPrivTy = DCArgPrivAA->getPrivatizableType();
+          if (!DCArgPrivTy)
+            return true;
+          if (*DCArgPrivTy == PrivatizableType)
+            return true;
+        }
+      }
+
+      LLVM_DEBUG({
+        dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
+               << " cannot be privatized in the context of its parent ("
+               << Arg->getParent()->getName()
+               << ")\n[AAPrivatizablePtr] because it is an argument in a "
+                  "direct call of ("
+               << ACS.getInstruction()->getCalledOperand()->getName()
+               << ").\n[AAPrivatizablePtr] for which the argument "
+                  "privatization is not compatible.\n";
+      });
+      return false;
+    };
+
+    // Helper to check if the associated argument is used at the given abstract
+    // call site in a way that is incompatible with the privatization assumed
+    // here.
+    auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
+      if (ACS.isDirectCall())
+        return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
+      if (ACS.isCallbackCall())
+        return IsCompatiblePrivArgOfDirectCS(ACS);
+      return false;
+    };
+
+    if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
+                                UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// Given a type to private \p PrivType, collect the constituates (which are
+  /// used) in \p ReplacementTypes.
+  static void
+  identifyReplacementTypes(Type *PrivType,
+                           SmallVectorImpl<Type *> &ReplacementTypes) {
+    // TODO: For now we expand the privatization type to the fullest which can
+    //       lead to dead arguments that need to be removed later.
+    assert(PrivType && "Expected privatizable type!");
+
+    // Traverse the type, extract constituate types on the outermost level.
+    if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
+      for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
+        ReplacementTypes.push_back(PrivStructType->getElementType(u));
+    } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
+      ReplacementTypes.append(PrivArrayType->getNumElements(),
+                              PrivArrayType->getElementType());
+    } else {
+      ReplacementTypes.push_back(PrivType);
+    }
+  }
+
+  /// Initialize \p Base according to the type \p PrivType at position \p IP.
+  /// The values needed are taken from the arguments of \p F starting at
+  /// position \p ArgNo.
+  static void createInitialization(Type *PrivType, Value &Base, Function &F,
+                                   unsigned ArgNo, BasicBlock::iterator IP) {
+    assert(PrivType && "Expected privatizable type!");
+
+    IRBuilder<NoFolder> IRB(IP->getParent(), IP);
+    const DataLayout &DL = F.getParent()->getDataLayout();
+
+    // Traverse the type, build GEPs and stores.
+    if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
+      const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
+      for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
+        Value *Ptr =
+            constructPointer(&Base, PrivStructLayout->getElementOffset(u), IRB);
+        new StoreInst(F.getArg(ArgNo + u), Ptr, IP);
+      }
+    } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
+      Type *PointeeTy = PrivArrayType->getElementType();
+      uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
+      for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
+        Value *Ptr = constructPointer(&Base, u * PointeeTySize, IRB);
+        new StoreInst(F.getArg(ArgNo + u), Ptr, IP);
+      }
+    } else {
+      new StoreInst(F.getArg(ArgNo), &Base, IP);
+    }
+  }
+
+  /// Extract values from \p Base according to the type \p PrivType at the
+  /// call position \p ACS. The values are appended to \p ReplacementValues.
+  void createReplacementValues(Align Alignment, Type *PrivType,
+                               AbstractCallSite ACS, Value *Base,
+                               SmallVectorImpl<Value *> &ReplacementValues) {
+    assert(Base && "Expected base value!");
+    assert(PrivType && "Expected privatizable type!");
+    Instruction *IP = ACS.getInstruction();
+
+    IRBuilder<NoFolder> IRB(IP);
+    const DataLayout &DL = IP->getModule()->getDataLayout();
+
+    // Traverse the type, build GEPs and loads.
+    if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
+      const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
+      for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
+        Type *PointeeTy = PrivStructType->getElementType(u);
+        Value *Ptr =
+            constructPointer(Base, PrivStructLayout->getElementOffset(u), IRB);
+        LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP->getIterator());
+        L->setAlignment(Alignment);
+        ReplacementValues.push_back(L);
+      }
+    } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
+      Type *PointeeTy = PrivArrayType->getElementType();
+      uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
+      for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
+        Value *Ptr = constructPointer(Base, u * PointeeTySize, IRB);
+        LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP->getIterator());
+        L->setAlignment(Alignment);
+        ReplacementValues.push_back(L);
+      }
+    } else {
+      LoadInst *L = new LoadInst(PrivType, Base, "", IP->getIterator());
+      L->setAlignment(Alignment);
+      ReplacementValues.push_back(L);
+    }
+  }
+
+  /// See AbstractAttribute::manifest(...)
+  ChangeStatus manifest(Attributor &A) override {
+    if (!PrivatizableType)
+      return ChangeStatus::UNCHANGED;
+    assert(*PrivatizableType && "Expected privatizable type!");
+
+    // Collect all tail calls in the function as we cannot allow new allocas to
+    // escape into tail recursion.
+    // TODO: Be smarter about new allocas escaping into tail calls.
+    SmallVector<CallInst *, 16> TailCalls;
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllInstructions(
+            [&](Instruction &I) {
+              CallInst &CI = cast<CallInst>(I);
+              if (CI.isTailCall())
+                TailCalls.push_back(&CI);
+              return true;
+            },
+            *this, {Instruction::Call}, UsedAssumedInformation))
+      return ChangeStatus::UNCHANGED;
+
+    Argument *Arg = getAssociatedArgument();
+    // Query AAAlign attribute for alignment of associated argument to
+    // determine the best alignment of loads.
+    const auto *AlignAA =
+        A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
+
+    // Callback to repair the associated function. A new alloca is placed at the
+    // beginning and initialized with the values passed through arguments. The
+    // new alloca replaces the use of the old pointer argument.
+    Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
+        [=](const Attributor::ArgumentReplacementInfo &ARI,
+            Function &ReplacementFn, Function::arg_iterator ArgIt) {
+          BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
+          BasicBlock::iterator IP = EntryBB.getFirstInsertionPt();
+          const DataLayout &DL = IP->getModule()->getDataLayout();
+          unsigned AS = DL.getAllocaAddrSpace();
+          Instruction *AI = new AllocaInst(*PrivatizableType, AS,
+                                           Arg->getName() + ".priv", IP);
+          createInitialization(*PrivatizableType, *AI, ReplacementFn,
+                               ArgIt->getArgNo(), IP);
+
+          if (AI->getType() != Arg->getType())
+            AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
+                AI, Arg->getType(), "", IP);
+          Arg->replaceAllUsesWith(AI);
+
+          for (CallInst *CI : TailCalls)
+            CI->setTailCall(false);
+        };
+
+    // Callback to repair a call site of the associated function. The elements
+    // of the privatizable type are loaded prior to the call and passed to the
+    // new function version.
+    Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
+        [=](const Attributor::ArgumentReplacementInfo &ARI,
+            AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) {
+          // When no alignment is specified for the load instruction,
+          // natural alignment is assumed.
+          createReplacementValues(
+              AlignAA ? AlignAA->getAssumedAlign() : Align(0),
+              *PrivatizableType, ACS,
+              ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
+              NewArgOperands);
+        };
+
+    // Collect the types that will replace the privatizable type in the function
+    // signature.
+    SmallVector<Type *, 16> ReplacementTypes;
+    identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
+
+    // Register a rewrite of the argument.
+    if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
+                                           std::move(FnRepairCB),
+                                           std::move(ACSRepairCB)))
+      return ChangeStatus::CHANGED;
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
+  }
+};
+
+struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
+  AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
+      : AAPrivatizablePtrImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: We can privatize more than arguments.
+    indicatePessimisticFixpoint();
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
+                     "updateImpl will not be called");
+  }
+
+  /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
+  std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
+    Value *Obj = getUnderlyingObject(&getAssociatedValue());
+    if (!Obj) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
+      return nullptr;
+    }
+
+    if (auto *AI = dyn_cast<AllocaInst>(Obj))
+      if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
+        if (CI->isOne())
+          return AI->getAllocatedType();
+    if (auto *Arg = dyn_cast<Argument>(Obj)) {
+      auto *PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
+          *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
+      if (PrivArgAA && PrivArgAA->isAssumedPrivatizablePtr())
+        return PrivArgAA->getPrivatizableType();
+    }
+
+    LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
+                         "alloca nor privatizable argument: "
+                      << *Obj << "!\n");
+    return nullptr;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
+  }
+};
+
+struct AAPrivatizablePtrCallSiteArgument final
+    : public AAPrivatizablePtrFloating {
+  AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAPrivatizablePtrFloating(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    if (A.hasAttr(getIRPosition(), Attribute::ByVal))
+      indicateOptimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    PrivatizableType = identifyPrivatizableType(A);
+    if (!PrivatizableType)
+      return ChangeStatus::UNCHANGED;
+    if (!*PrivatizableType)
+      return indicatePessimisticFixpoint();
+
+    const IRPosition &IRP = getIRPosition();
+    bool IsKnownNoCapture;
+    bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
+        A, this, IRP, DepClassTy::REQUIRED, IsKnownNoCapture);
+    if (!IsAssumedNoCapture) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    bool IsKnownNoAlias;
+    if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
+            A, this, IRP, DepClassTy::REQUIRED, IsKnownNoAlias)) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    bool IsKnown;
+    if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
+      LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
+      return indicatePessimisticFixpoint();
+    }
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
+  }
+};
+
+struct AAPrivatizablePtrCallSiteReturned final
+    : public AAPrivatizablePtrFloating {
+  AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAPrivatizablePtrFloating(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: We can privatize more than arguments.
+    indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
+  }
+};
+
+struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
+  AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
+      : AAPrivatizablePtrFloating(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: We can privatize more than arguments.
+    indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
+  }
+};
+} // namespace
+
+/// -------------------- Memory Behavior Attributes ----------------------------
+/// Includes read-none, read-only, and write-only.
+/// ----------------------------------------------------------------------------
+namespace {
+struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
+  AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
+      : AAMemoryBehavior(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    intersectAssumedBits(BEST_STATE);
+    getKnownStateFromValue(A, getIRPosition(), getState());
+    AAMemoryBehavior::initialize(A);
+  }
+
+  /// Return the memory behavior information encoded in the IR for \p IRP.
+  static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
+                                     BitIntegerState &State,
+                                     bool IgnoreSubsumingPositions = false) {
+    SmallVector<Attribute, 2> Attrs;
+    A.getAttrs(IRP, AttrKinds, Attrs, IgnoreSubsumingPositions);
+    for (const Attribute &Attr : Attrs) {
+      switch (Attr.getKindAsEnum()) {
+      case Attribute::ReadNone:
+        State.addKnownBits(NO_ACCESSES);
+        break;
+      case Attribute::ReadOnly:
+        State.addKnownBits(NO_WRITES);
+        break;
+      case Attribute::WriteOnly:
+        State.addKnownBits(NO_READS);
+        break;
+      default:
+        llvm_unreachable("Unexpected attribute!");
+      }
+    }
+
+    if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
+      if (!I->mayReadFromMemory())
+        State.addKnownBits(NO_READS);
+      if (!I->mayWriteToMemory())
+        State.addKnownBits(NO_WRITES);
+    }
+  }
+
+  /// See AbstractAttribute::getDeducedAttributes(...).
+  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                            SmallVectorImpl<Attribute> &Attrs) const override {
+    assert(Attrs.size() == 0);
+    if (isAssumedReadNone())
+      Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
+    else if (isAssumedReadOnly())
+      Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
+    else if (isAssumedWriteOnly())
+      Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
+    assert(Attrs.size() <= 1);
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    const IRPosition &IRP = getIRPosition();
+
+    if (A.hasAttr(IRP, Attribute::ReadNone,
+                  /* IgnoreSubsumingPositions */ true))
+      return ChangeStatus::UNCHANGED;
+
+    // Check if we would improve the existing attributes first.
+    SmallVector<Attribute, 4> DeducedAttrs;
+    getDeducedAttributes(A, IRP.getAnchorValue().getContext(), DeducedAttrs);
+    if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
+          return A.hasAttr(IRP, Attr.getKindAsEnum(),
+                           /* IgnoreSubsumingPositions */ true);
+        }))
+      return ChangeStatus::UNCHANGED;
+
+    // Clear existing attributes.
+    A.removeAttrs(IRP, AttrKinds);
+    // Clear conflicting writable attribute.
+    if (isAssumedReadOnly())
+      A.removeAttrs(IRP, Attribute::Writable);
+
+    // Use the generic manifest method.
+    return IRAttribute::manifest(A);
+  }
+
+  /// See AbstractState::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    if (isAssumedReadNone())
+      return "readnone";
+    if (isAssumedReadOnly())
+      return "readonly";
+    if (isAssumedWriteOnly())
+      return "writeonly";
+    return "may-read/write";
+  }
+
+  /// The set of IR attributes AAMemoryBehavior deals with.
+  static const Attribute::AttrKind AttrKinds[3];
+};
+
+const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
+    Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
+
+/// Memory behavior attribute for a floating value.
+struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
+  AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
+      : AAMemoryBehaviorImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override;
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_FLOATING_ATTR(readnone)
+    else if (isAssumedReadOnly())
+      STATS_DECLTRACK_FLOATING_ATTR(readonly)
+    else if (isAssumedWriteOnly())
+      STATS_DECLTRACK_FLOATING_ATTR(writeonly)
+  }
+
+private:
+  /// Return true if users of \p UserI might access the underlying
+  /// variable/location described by \p U and should therefore be analyzed.
+  bool followUsersOfUseIn(Attributor &A, const Use &U,
+                          const Instruction *UserI);
+
+  /// Update the state according to the effect of use \p U in \p UserI.
+  void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
+};
+
+/// Memory behavior attribute for function argument.
+struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
+  AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
+      : AAMemoryBehaviorFloating(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    intersectAssumedBits(BEST_STATE);
+    const IRPosition &IRP = getIRPosition();
+    // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
+    // can query it when we use has/getAttr. That would allow us to reuse the
+    // initialize of the base class here.
+    bool HasByVal = A.hasAttr(IRP, {Attribute::ByVal},
+                              /* IgnoreSubsumingPositions */ true);
+    getKnownStateFromValue(A, IRP, getState(),
+                           /* IgnoreSubsumingPositions */ HasByVal);
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    // TODO: Pointer arguments are not supported on vectors of pointers yet.
+    if (!getAssociatedValue().getType()->isPointerTy())
+      return ChangeStatus::UNCHANGED;
+
+    // TODO: From readattrs.ll: "inalloca parameters are always
+    //                           considered written"
+    if (A.hasAttr(getIRPosition(),
+                  {Attribute::InAlloca, Attribute::Preallocated})) {
+      removeKnownBits(NO_WRITES);
+      removeAssumedBits(NO_WRITES);
+    }
+    A.removeAttrs(getIRPosition(), AttrKinds);
+    return AAMemoryBehaviorFloating::manifest(A);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_ARG_ATTR(readnone)
+    else if (isAssumedReadOnly())
+      STATS_DECLTRACK_ARG_ATTR(readonly)
+    else if (isAssumedWriteOnly())
+      STATS_DECLTRACK_ARG_ATTR(writeonly)
+  }
+};
+
+struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
+  AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAMemoryBehaviorArgument(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // If we don't have an associated attribute this is either a variadic call
+    // or an indirect call, either way, nothing to do here.
+    Argument *Arg = getAssociatedArgument();
+    if (!Arg) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+    if (Arg->hasByValAttr()) {
+      addKnownBits(NO_WRITES);
+      removeKnownBits(NO_READS);
+      removeAssumedBits(NO_READS);
+    }
+    AAMemoryBehaviorArgument::initialize(A);
+    if (getAssociatedFunction()->isDeclaration())
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Argument *Arg = getAssociatedArgument();
+    const IRPosition &ArgPos = IRPosition::argument(*Arg);
+    auto *ArgAA =
+        A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
+    if (!ArgAA)
+      return indicatePessimisticFixpoint();
+    return clampStateAndIndicateChange(getState(), ArgAA->getState());
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_CSARG_ATTR(readnone)
+    else if (isAssumedReadOnly())
+      STATS_DECLTRACK_CSARG_ATTR(readonly)
+    else if (isAssumedWriteOnly())
+      STATS_DECLTRACK_CSARG_ATTR(writeonly)
+  }
+};
+
+/// Memory behavior attribute for a call site return position.
+struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
+  AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAMemoryBehaviorFloating(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAMemoryBehaviorImpl::initialize(A);
+  }
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // We do not annotate returned values.
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+};
+
+/// An AA to represent the memory behavior function attributes.
+struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
+  AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
+      : AAMemoryBehaviorImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(Attributor &A).
+  ChangeStatus updateImpl(Attributor &A) override;
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // TODO: It would be better to merge this with AAMemoryLocation, so that
+    // we could determine read/write per location. This would also have the
+    // benefit of only one place trying to manifest the memory attribute.
+    Function &F = cast<Function>(getAnchorValue());
+    MemoryEffects ME = MemoryEffects::unknown();
+    if (isAssumedReadNone())
+      ME = MemoryEffects::none();
+    else if (isAssumedReadOnly())
+      ME = MemoryEffects::readOnly();
+    else if (isAssumedWriteOnly())
+      ME = MemoryEffects::writeOnly();
+
+    A.removeAttrs(getIRPosition(), AttrKinds);
+    // Clear conflicting writable attribute.
+    if (ME.onlyReadsMemory())
+      for (Argument &Arg : F.args())
+        A.removeAttrs(IRPosition::argument(Arg), Attribute::Writable);
+    return A.manifestAttrs(getIRPosition(),
+                           Attribute::getWithMemoryEffects(F.getContext(), ME));
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_FN_ATTR(readnone)
+    else if (isAssumedReadOnly())
+      STATS_DECLTRACK_FN_ATTR(readonly)
+    else if (isAssumedWriteOnly())
+      STATS_DECLTRACK_FN_ATTR(writeonly)
+  }
+};
+
+/// AAMemoryBehavior attribute for call sites.
+struct AAMemoryBehaviorCallSite final
+    : AACalleeToCallSite<AAMemoryBehavior, AAMemoryBehaviorImpl> {
+  AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AAMemoryBehavior, AAMemoryBehaviorImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // TODO: Deduplicate this with AAMemoryBehaviorFunction.
+    CallBase &CB = cast<CallBase>(getAnchorValue());
+    MemoryEffects ME = MemoryEffects::unknown();
+    if (isAssumedReadNone())
+      ME = MemoryEffects::none();
+    else if (isAssumedReadOnly())
+      ME = MemoryEffects::readOnly();
+    else if (isAssumedWriteOnly())
+      ME = MemoryEffects::writeOnly();
+
+    A.removeAttrs(getIRPosition(), AttrKinds);
+    // Clear conflicting writable attribute.
+    if (ME.onlyReadsMemory())
+      for (Use &U : CB.args())
+        A.removeAttrs(IRPosition::callsite_argument(CB, U.getOperandNo()),
+                      Attribute::Writable);
+    return A.manifestAttrs(
+        getIRPosition(), Attribute::getWithMemoryEffects(CB.getContext(), ME));
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_CS_ATTR(readnone)
+    else if (isAssumedReadOnly())
+      STATS_DECLTRACK_CS_ATTR(readonly)
+    else if (isAssumedWriteOnly())
+      STATS_DECLTRACK_CS_ATTR(writeonly)
+  }
+};
+
+ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
+
+  // The current assumed state used to determine a change.
+  auto AssumedState = getAssumed();
+
+  auto CheckRWInst = [&](Instruction &I) {
+    // If the instruction has an own memory behavior state, use it to restrict
+    // the local state. No further analysis is required as the other memory
+    // state is as optimistic as it gets.
+    if (const auto *CB = dyn_cast<CallBase>(&I)) {
+      const auto *MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
+          *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
+      if (MemBehaviorAA) {
+        intersectAssumedBits(MemBehaviorAA->getAssumed());
+        return !isAtFixpoint();
+      }
+    }
+
+    // Remove access kind modifiers if necessary.
+    if (I.mayReadFromMemory())
+      removeAssumedBits(NO_READS);
+    if (I.mayWriteToMemory())
+      removeAssumedBits(NO_WRITES);
+    return !isAtFixpoint();
+  };
+
+  bool UsedAssumedInformation = false;
+  if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
+                                          UsedAssumedInformation))
+    return indicatePessimisticFixpoint();
+
+  return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
+                                        : ChangeStatus::UNCHANGED;
+}
+
+ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
+
+  const IRPosition &IRP = getIRPosition();
+  const IRPosition &FnPos = IRPosition::function_scope(IRP);
+  AAMemoryBehavior::StateType &S = getState();
+
+  // First, check the function scope. We take the known information and we avoid
+  // work if the assumed information implies the current assumed information for
+  // this attribute. This is a valid for all but byval arguments.
+  Argument *Arg = IRP.getAssociatedArgument();
+  AAMemoryBehavior::base_t FnMemAssumedState =
+      AAMemoryBehavior::StateType::getWorstState();
+  if (!Arg || !Arg->hasByValAttr()) {
+    const auto *FnMemAA =
+        A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
+    if (FnMemAA) {
+      FnMemAssumedState = FnMemAA->getAssumed();
+      S.addKnownBits(FnMemAA->getKnown());
+      if ((S.getAssumed() & FnMemAA->getAssumed()) == S.getAssumed())
+        return ChangeStatus::UNCHANGED;
+    }
+  }
+
+  // The current assumed state used to determine a change.
+  auto AssumedState = S.getAssumed();
+
+  // Make sure the value is not captured (except through "return"), if
+  // it is, any information derived would be irrelevant anyway as we cannot
+  // check the potential aliases introduced by the capture. However, no need
+  // to fall back to anythign less optimistic than the function state.
+  bool IsKnownNoCapture;
+  const AANoCapture *ArgNoCaptureAA = nullptr;
+  bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
+      A, this, IRP, DepClassTy::OPTIONAL, IsKnownNoCapture, false,
+      &ArgNoCaptureAA);
+
+  if (!IsAssumedNoCapture &&
+      (!ArgNoCaptureAA || !ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned())) {
+    S.intersectAssumedBits(FnMemAssumedState);
+    return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
+                                          : ChangeStatus::UNCHANGED;
+  }
+
+  // Visit and expand uses until all are analyzed or a fixpoint is reached.
+  auto UsePred = [&](const Use &U, bool &Follow) -> bool {
+    Instruction *UserI = cast<Instruction>(U.getUser());
+    LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
+                      << " \n");
+
+    // Droppable users, e.g., llvm::assume does not actually perform any action.
+    if (UserI->isDroppable())
+      return true;
+
+    // Check if the users of UserI should also be visited.
+    Follow = followUsersOfUseIn(A, U, UserI);
+
+    // If UserI might touch memory we analyze the use in detail.
+    if (UserI->mayReadOrWriteMemory())
+      analyzeUseIn(A, U, UserI);
+
+    return !isAtFixpoint();
+  };
+
+  if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
+    return indicatePessimisticFixpoint();
+
+  return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
+                                        : ChangeStatus::UNCHANGED;
+}
+
+bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
+                                                  const Instruction *UserI) {
+  // The loaded value is unrelated to the pointer argument, no need to
+  // follow the users of the load.
+  if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
+    return false;
+
+  // By default we follow all uses assuming UserI might leak information on U,
+  // we have special handling for call sites operands though.
+  const auto *CB = dyn_cast<CallBase>(UserI);
+  if (!CB || !CB->isArgOperand(&U))
+    return true;
+
+  // If the use is a call argument known not to be captured, the users of
+  // the call do not need to be visited because they have to be unrelated to
+  // the input. Note that this check is not trivial even though we disallow
+  // general capturing of the underlying argument. The reason is that the
+  // call might the argument "through return", which we allow and for which we
+  // need to check call users.
+  if (U.get()->getType()->isPointerTy()) {
+    unsigned ArgNo = CB->getArgOperandNo(&U);
+    bool IsKnownNoCapture;
+    return !AA::hasAssumedIRAttr<Attribute::NoCapture>(
+        A, this, IRPosition::callsite_argument(*CB, ArgNo),
+        DepClassTy::OPTIONAL, IsKnownNoCapture);
+  }
+
+  return true;
+}
+
+void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
+                                            const Instruction *UserI) {
+  assert(UserI->mayReadOrWriteMemory());
+
+  switch (UserI->getOpcode()) {
+  default:
+    // TODO: Handle all atomics and other side-effect operations we know of.
+    break;
+  case Instruction::Load:
+    // Loads cause the NO_READS property to disappear.
+    removeAssumedBits(NO_READS);
+    return;
+
+  case Instruction::Store:
+    // Stores cause the NO_WRITES property to disappear if the use is the
+    // pointer operand. Note that while capturing was taken care of somewhere
+    // else we need to deal with stores of the value that is not looked through.
+    if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
+      removeAssumedBits(NO_WRITES);
+    else
+      indicatePessimisticFixpoint();
+    return;
+
+  case Instruction::Call:
+  case Instruction::CallBr:
+  case Instruction::Invoke: {
+    // For call sites we look at the argument memory behavior attribute (this
+    // could be recursive!) in order to restrict our own state.
+    const auto *CB = cast<CallBase>(UserI);
+
+    // Give up on operand bundles.
+    if (CB->isBundleOperand(&U)) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+
+    // Calling a function does read the function pointer, maybe write it if the
+    // function is self-modifying.
+    if (CB->isCallee(&U)) {
+      removeAssumedBits(NO_READS);
+      break;
+    }
+
+    // Adjust the possible access behavior based on the information on the
+    // argument.
+    IRPosition Pos;
+    if (U.get()->getType()->isPointerTy())
+      Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
+    else
+      Pos = IRPosition::callsite_function(*CB);
+    const auto *MemBehaviorAA =
+        A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
+    if (!MemBehaviorAA)
+      break;
+    // "assumed" has at most the same bits as the MemBehaviorAA assumed
+    // and at least "known".
+    intersectAssumedBits(MemBehaviorAA->getAssumed());
+    return;
+  }
+  };
+
+  // Generally, look at the "may-properties" and adjust the assumed state if we
+  // did not trigger special handling before.
+  if (UserI->mayReadFromMemory())
+    removeAssumedBits(NO_READS);
+  if (UserI->mayWriteToMemory())
+    removeAssumedBits(NO_WRITES);
+}
+} // namespace
+
+/// -------------------- Memory Locations Attributes ---------------------------
+/// Includes read-none, argmemonly, inaccessiblememonly,
+/// inaccessiblememorargmemonly
+/// ----------------------------------------------------------------------------
+
+std::string AAMemoryLocation::getMemoryLocationsAsStr(
+    AAMemoryLocation::MemoryLocationsKind MLK) {
+  if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
+    return "all memory";
+  if (MLK == AAMemoryLocation::NO_LOCATIONS)
+    return "no memory";
+  std::string S = "memory:";
+  if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
+    S += "stack,";
+  if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
+    S += "constant,";
+  if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
+    S += "internal global,";
+  if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
+    S += "external global,";
+  if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
+    S += "argument,";
+  if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
+    S += "inaccessible,";
+  if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
+    S += "malloced,";
+  if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
+    S += "unknown,";
+  S.pop_back();
+  return S;
+}
+
+namespace {
+struct AAMemoryLocationImpl : public AAMemoryLocation {
+
+  AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
+      : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
+    AccessKind2Accesses.fill(nullptr);
+  }
+
+  ~AAMemoryLocationImpl() {
+    // The AccessSets are allocated via a BumpPtrAllocator, we call
+    // the destructor manually.
+    for (AccessSet *AS : AccessKind2Accesses)
+      if (AS)
+        AS->~AccessSet();
+  }
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    intersectAssumedBits(BEST_STATE);
+    getKnownStateFromValue(A, getIRPosition(), getState());
+    AAMemoryLocation::initialize(A);
+  }
+
+  /// Return the memory behavior information encoded in the IR for \p IRP.
+  static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
+                                     BitIntegerState &State,
+                                     bool IgnoreSubsumingPositions = false) {
+    // For internal functions we ignore `argmemonly` and
+    // `inaccessiblememorargmemonly` as we might break it via interprocedural
+    // constant propagation. It is unclear if this is the best way but it is
+    // unlikely this will cause real performance problems. If we are deriving
+    // attributes for the anchor function we even remove the attribute in
+    // addition to ignoring it.
+    // TODO: A better way to handle this would be to add ~NO_GLOBAL_MEM /
+    // MemoryEffects::Other as a possible location.
+    bool UseArgMemOnly = true;
+    Function *AnchorFn = IRP.getAnchorScope();
+    if (AnchorFn && A.isRunOn(*AnchorFn))
+      UseArgMemOnly = !AnchorFn->hasLocalLinkage();
+
+    SmallVector<Attribute, 2> Attrs;
+    A.getAttrs(IRP, {Attribute::Memory}, Attrs, IgnoreSubsumingPositions);
+    for (const Attribute &Attr : Attrs) {
+      // TODO: We can map MemoryEffects to Attributor locations more precisely.
+      MemoryEffects ME = Attr.getMemoryEffects();
+      if (ME.doesNotAccessMemory()) {
+        State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
+        continue;
+      }
+      if (ME.onlyAccessesInaccessibleMem()) {
+        State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
+        continue;
+      }
+      if (ME.onlyAccessesArgPointees()) {
+        if (UseArgMemOnly)
+          State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
+        else {
+          // Remove location information, only keep read/write info.
+          ME = MemoryEffects(ME.getModRef());
+          A.manifestAttrs(IRP,
+                          Attribute::getWithMemoryEffects(
+                              IRP.getAnchorValue().getContext(), ME),
+                          /*ForceReplace*/ true);
+        }
+        continue;
+      }
+      if (ME.onlyAccessesInaccessibleOrArgMem()) {
+        if (UseArgMemOnly)
+          State.addKnownBits(inverseLocation(
+              NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
+        else {
+          // Remove location information, only keep read/write info.
+          ME = MemoryEffects(ME.getModRef());
+          A.manifestAttrs(IRP,
+                          Attribute::getWithMemoryEffects(
+                              IRP.getAnchorValue().getContext(), ME),
+                          /*ForceReplace*/ true);
+        }
+        continue;
+      }
+    }
+  }
+
+  /// See AbstractAttribute::getDeducedAttributes(...).
+  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                            SmallVectorImpl<Attribute> &Attrs) const override {
+    // TODO: We can map Attributor locations to MemoryEffects more precisely.
+    assert(Attrs.size() == 0);
+    if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
+      if (isAssumedReadNone())
+        Attrs.push_back(
+            Attribute::getWithMemoryEffects(Ctx, MemoryEffects::none()));
+      else if (isAssumedInaccessibleMemOnly())
+        Attrs.push_back(Attribute::getWithMemoryEffects(
+            Ctx, MemoryEffects::inaccessibleMemOnly()));
+      else if (isAssumedArgMemOnly())
+        Attrs.push_back(
+            Attribute::getWithMemoryEffects(Ctx, MemoryEffects::argMemOnly()));
+      else if (isAssumedInaccessibleOrArgMemOnly())
+        Attrs.push_back(Attribute::getWithMemoryEffects(
+            Ctx, MemoryEffects::inaccessibleOrArgMemOnly()));
+    }
+    assert(Attrs.size() <= 1);
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // TODO: If AAMemoryLocation and AAMemoryBehavior are merged, we could
+    // provide per-location modref information here.
+    const IRPosition &IRP = getIRPosition();
+
+    SmallVector<Attribute, 1> DeducedAttrs;
+    getDeducedAttributes(A, IRP.getAnchorValue().getContext(), DeducedAttrs);
+    if (DeducedAttrs.size() != 1)
+      return ChangeStatus::UNCHANGED;
+    MemoryEffects ME = DeducedAttrs[0].getMemoryEffects();
+
+    return A.manifestAttrs(IRP, Attribute::getWithMemoryEffects(
+                                    IRP.getAnchorValue().getContext(), ME));
+  }
+
+  /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
+  bool checkForAllAccessesToMemoryKind(
+      function_ref<bool(const Instruction *, const Value *, AccessKind,
+                        MemoryLocationsKind)>
+          Pred,
+      MemoryLocationsKind RequestedMLK) const override {
+    if (!isValidState())
+      return false;
+
+    MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
+    if (AssumedMLK == NO_LOCATIONS)
+      return true;
+
+    unsigned Idx = 0;
+    for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
+         CurMLK *= 2, ++Idx) {
+      if (CurMLK & RequestedMLK)
+        continue;
+
+      if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
+        for (const AccessInfo &AI : *Accesses)
+          if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
+            return false;
+    }
+
+    return true;
+  }
+
+  ChangeStatus indicatePessimisticFixpoint() override {
+    // If we give up and indicate a pessimistic fixpoint this instruction will
+    // become an access for all potential access kinds:
+    // TODO: Add pointers for argmemonly and globals to improve the results of
+    //       checkForAllAccessesToMemoryKind.
+    bool Changed = false;
+    MemoryLocationsKind KnownMLK = getKnown();
+    Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+    for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
+      if (!(CurMLK & KnownMLK))
+        updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
+                                  getAccessKindFromInst(I));
+    return AAMemoryLocation::indicatePessimisticFixpoint();
+  }
+
+protected:
+  /// Helper struct to tie together an instruction that has a read or write
+  /// effect with the pointer it accesses (if any).
+  struct AccessInfo {
+
+    /// The instruction that caused the access.
+    const Instruction *I;
+
+    /// The base pointer that is accessed, or null if unknown.
+    const Value *Ptr;
+
+    /// The kind of access (read/write/read+write).
+    AccessKind Kind;
+
+    bool operator==(const AccessInfo &RHS) const {
+      return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
+    }
+    bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
+      if (LHS.I != RHS.I)
+        return LHS.I < RHS.I;
+      if (LHS.Ptr != RHS.Ptr)
+        return LHS.Ptr < RHS.Ptr;
+      if (LHS.Kind != RHS.Kind)
+        return LHS.Kind < RHS.Kind;
+      return false;
+    }
+  };
+
+  /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
+  /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
+  using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
+  std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses;
+
+  /// Categorize the pointer arguments of CB that might access memory in
+  /// AccessedLoc and update the state and access map accordingly.
+  void
+  categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
+                                     AAMemoryLocation::StateType &AccessedLocs,
+                                     bool &Changed);
+
+  /// Return the kind(s) of location that may be accessed by \p V.
+  AAMemoryLocation::MemoryLocationsKind
+  categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
+
+  /// Return the access kind as determined by \p I.
+  AccessKind getAccessKindFromInst(const Instruction *I) {
+    AccessKind AK = READ_WRITE;
+    if (I) {
+      AK = I->mayReadFromMemory() ? READ : NONE;
+      AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
+    }
+    return AK;
+  }
+
+  /// Update the state \p State and the AccessKind2Accesses given that \p I is
+  /// an access of kind \p AK to a \p MLK memory location with the access
+  /// pointer \p Ptr.
+  void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
+                                 MemoryLocationsKind MLK, const Instruction *I,
+                                 const Value *Ptr, bool &Changed,
+                                 AccessKind AK = READ_WRITE) {
+
+    assert(isPowerOf2_32(MLK) && "Expected a single location set!");
+    auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
+    if (!Accesses)
+      Accesses = new (Allocator) AccessSet();
+    Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
+    if (MLK == NO_UNKOWN_MEM)
+      MLK = NO_LOCATIONS;
+    State.removeAssumedBits(MLK);
+  }
+
+  /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
+  /// arguments, and update the state and access map accordingly.
+  void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
+                          AAMemoryLocation::StateType &State, bool &Changed,
+                          unsigned AccessAS = 0);
+
+  /// Used to allocate access sets.
+  BumpPtrAllocator &Allocator;
+};
+
+void AAMemoryLocationImpl::categorizePtrValue(
+    Attributor &A, const Instruction &I, const Value &Ptr,
+    AAMemoryLocation::StateType &State, bool &Changed, unsigned AccessAS) {
+  LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
+                    << Ptr << " ["
+                    << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
+
+  auto Pred = [&](Value &Obj) {
+    unsigned ObjectAS = Obj.getType()->getPointerAddressSpace();
+    // TODO: recognize the TBAA used for constant accesses.
+    MemoryLocationsKind MLK = NO_LOCATIONS;
+
+    // Filter accesses to constant (GPU) memory if we have an AS at the access
+    // site or the object is known to actually have the associated AS.
+    if ((AccessAS == (unsigned)AA::GPUAddressSpace::Constant ||
+         (ObjectAS == (unsigned)AA::GPUAddressSpace::Constant &&
+          isIdentifiedObject(&Obj))) &&
+        AA::isGPU(*I.getModule()))
+      return true;
+
+    if (isa<UndefValue>(&Obj))
+      return true;
+    if (isa<Argument>(&Obj)) {
+      // TODO: For now we do not treat byval arguments as local copies performed
+      // on the call edge, though, we should. To make that happen we need to
+      // teach various passes, e.g., DSE, about the copy effect of a byval. That
+      // would also allow us to mark functions only accessing byval arguments as
+      // readnone again, arguably their accesses have no effect outside of the
+      // function, like accesses to allocas.
+      MLK = NO_ARGUMENT_MEM;
+    } else if (auto *GV = dyn_cast<GlobalValue>(&Obj)) {
+      // Reading constant memory is not treated as a read "effect" by the
+      // function attr pass so we won't neither. Constants defined by TBAA are
+      // similar. (We know we do not write it because it is constant.)
+      if (auto *GVar = dyn_cast<GlobalVariable>(GV))
+        if (GVar->isConstant())
+          return true;
+
+      if (GV->hasLocalLinkage())
+        MLK = NO_GLOBAL_INTERNAL_MEM;
+      else
+        MLK = NO_GLOBAL_EXTERNAL_MEM;
+    } else if (isa<ConstantPointerNull>(&Obj) &&
+               (!NullPointerIsDefined(getAssociatedFunction(), AccessAS) ||
+                !NullPointerIsDefined(getAssociatedFunction(), ObjectAS))) {
+      return true;
+    } else if (isa<AllocaInst>(&Obj)) {
+      MLK = NO_LOCAL_MEM;
+    } else if (const auto *CB = dyn_cast<CallBase>(&Obj)) {
+      bool IsKnownNoAlias;
+      if (AA::hasAssumedIRAttr<Attribute::NoAlias>(
+              A, this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL,
+              IsKnownNoAlias))
+        MLK = NO_MALLOCED_MEM;
+      else
+        MLK = NO_UNKOWN_MEM;
+    } else {
+      MLK = NO_UNKOWN_MEM;
+    }
+
+    assert(MLK != NO_LOCATIONS && "No location specified!");
+    LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
+                      << Obj << " -> " << getMemoryLocationsAsStr(MLK) << "\n");
+    updateStateAndAccessesMap(State, MLK, &I, &Obj, Changed,
+                              getAccessKindFromInst(&I));
+
+    return true;
+  };
+
+  const auto *AA = A.getAAFor<AAUnderlyingObjects>(
+      *this, IRPosition::value(Ptr), DepClassTy::OPTIONAL);
+  if (!AA || !AA->forallUnderlyingObjects(Pred, AA::Intraprocedural)) {
+    LLVM_DEBUG(
+        dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
+    updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
+                              getAccessKindFromInst(&I));
+    return;
+  }
+
+  LLVM_DEBUG(
+      dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
+             << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
+}
+
+void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
+    Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
+    bool &Changed) {
+  for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
+
+    // Skip non-pointer arguments.
+    const Value *ArgOp = CB.getArgOperand(ArgNo);
+    if (!ArgOp->getType()->isPtrOrPtrVectorTy())
+      continue;
+
+    // Skip readnone arguments.
+    const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
+    const auto *ArgOpMemLocationAA =
+        A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
+
+    if (ArgOpMemLocationAA && ArgOpMemLocationAA->isAssumedReadNone())
+      continue;
+
+    // Categorize potentially accessed pointer arguments as if there was an
+    // access instruction with them as pointer.
+    categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
+  }
+}
+
+AAMemoryLocation::MemoryLocationsKind
+AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
+                                                  bool &Changed) {
+  LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
+                    << I << "\n");
+
+  AAMemoryLocation::StateType AccessedLocs;
+  AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
+
+  if (auto *CB = dyn_cast<CallBase>(&I)) {
+
+    // First check if we assume any memory is access is visible.
+    const auto *CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
+        *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
+    LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
+                      << " [" << CBMemLocationAA << "]\n");
+    if (!CBMemLocationAA) {
+      updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr,
+                                Changed, getAccessKindFromInst(&I));
+      return NO_UNKOWN_MEM;
+    }
+
+    if (CBMemLocationAA->isAssumedReadNone())
+      return NO_LOCATIONS;
+
+    if (CBMemLocationAA->isAssumedInaccessibleMemOnly()) {
+      updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
+                                Changed, getAccessKindFromInst(&I));
+      return AccessedLocs.getAssumed();
+    }
+
+    uint32_t CBAssumedNotAccessedLocs =
+        CBMemLocationAA->getAssumedNotAccessedLocation();
+
+    // Set the argmemonly and global bit as we handle them separately below.
+    uint32_t CBAssumedNotAccessedLocsNoArgMem =
+        CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
+
+    for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
+      if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
+        continue;
+      updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
+                                getAccessKindFromInst(&I));
+    }
+
+    // Now handle global memory if it might be accessed. This is slightly tricky
+    // as NO_GLOBAL_MEM has multiple bits set.
+    bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
+    if (HasGlobalAccesses) {
+      auto AccessPred = [&](const Instruction *, const Value *Ptr,
+                            AccessKind Kind, MemoryLocationsKind MLK) {
+        updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
+                                  getAccessKindFromInst(&I));
+        return true;
+      };
+      if (!CBMemLocationAA->checkForAllAccessesToMemoryKind(
+              AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
+        return AccessedLocs.getWorstState();
+    }
+
+    LLVM_DEBUG(
+        dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
+               << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
+
+    // Now handle argument memory if it might be accessed.
+    bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
+    if (HasArgAccesses)
+      categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
+
+    LLVM_DEBUG(
+        dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
+               << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
+
+    return AccessedLocs.getAssumed();
+  }
+
+  if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
+    LLVM_DEBUG(
+        dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
+               << I << " [" << *Ptr << "]\n");
+    categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed,
+                       Ptr->getType()->getPointerAddressSpace());
+    return AccessedLocs.getAssumed();
+  }
+
+  LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
+                    << I << "\n");
+  updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
+                            getAccessKindFromInst(&I));
+  return AccessedLocs.getAssumed();
+}
+
+/// An AA to represent the memory behavior function attributes.
+struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
+  AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
+      : AAMemoryLocationImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(Attributor &A).
+  ChangeStatus updateImpl(Attributor &A) override {
+
+    const auto *MemBehaviorAA =
+        A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
+    if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) {
+      if (MemBehaviorAA->isKnownReadNone())
+        return indicateOptimisticFixpoint();
+      assert(isAssumedReadNone() &&
+             "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
+      A.recordDependence(*MemBehaviorAA, *this, DepClassTy::OPTIONAL);
+      return ChangeStatus::UNCHANGED;
+    }
+
+    // The current assumed state used to determine a change.
+    auto AssumedState = getAssumed();
+    bool Changed = false;
+
+    auto CheckRWInst = [&](Instruction &I) {
+      MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
+      LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
+                        << ": " << getMemoryLocationsAsStr(MLK) << "\n");
+      removeAssumedBits(inverseLocation(MLK, false, false));
+      // Stop once only the valid bit set in the *not assumed location*, thus
+      // once we don't actually exclude any memory locations in the state.
+      return getAssumedNotAccessedLocation() != VALID_STATE;
+    };
+
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
+                                            UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    Changed |= AssumedState != getAssumed();
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_FN_ATTR(readnone)
+    else if (isAssumedArgMemOnly())
+      STATS_DECLTRACK_FN_ATTR(argmemonly)
+    else if (isAssumedInaccessibleMemOnly())
+      STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
+    else if (isAssumedInaccessibleOrArgMemOnly())
+      STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
+  }
+};
+
+/// AAMemoryLocation attribute for call sites.
+struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
+  AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
+      : AAMemoryLocationImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    // TODO: Once we have call site specific value information we can provide
+    //       call site specific liveness liveness information and then it makes
+    //       sense to specialize attributes for call sites arguments instead of
+    //       redirecting requests to the callee argument.
+    Function *F = getAssociatedFunction();
+    const IRPosition &FnPos = IRPosition::function(*F);
+    auto *FnAA =
+        A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
+    if (!FnAA)
+      return indicatePessimisticFixpoint();
+    bool Changed = false;
+    auto AccessPred = [&](const Instruction *I, const Value *Ptr,
+                          AccessKind Kind, MemoryLocationsKind MLK) {
+      updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
+                                getAccessKindFromInst(I));
+      return true;
+    };
+    if (!FnAA->checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
+      return indicatePessimisticFixpoint();
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    if (isAssumedReadNone())
+      STATS_DECLTRACK_CS_ATTR(readnone)
+  }
+};
+} // namespace
+
+/// ------------------ denormal-fp-math Attribute -------------------------
+
+namespace {
+struct AADenormalFPMathImpl : public AADenormalFPMath {
+  AADenormalFPMathImpl(const IRPosition &IRP, Attributor &A)
+      : AADenormalFPMath(IRP, A) {}
+
+  const std::string getAsStr(Attributor *A) const override {
+    std::string Str("AADenormalFPMath[");
+    raw_string_ostream OS(Str);
+
+    DenormalState Known = getKnown();
+    if (Known.Mode.isValid())
+      OS << "denormal-fp-math=" << Known.Mode;
+    else
+      OS << "invalid";
+
+    if (Known.ModeF32.isValid())
+      OS << " denormal-fp-math-f32=" << Known.ModeF32;
+    OS << ']';
+    return OS.str();
+  }
+};
+
+struct AADenormalFPMathFunction final : AADenormalFPMathImpl {
+  AADenormalFPMathFunction(const IRPosition &IRP, Attributor &A)
+      : AADenormalFPMathImpl(IRP, A) {}
+
+  void initialize(Attributor &A) override {
+    const Function *F = getAnchorScope();
+    DenormalMode Mode = F->getDenormalModeRaw();
+    DenormalMode ModeF32 = F->getDenormalModeF32Raw();
+
+    // TODO: Handling this here prevents handling the case where a callee has a
+    // fixed denormal-fp-math with dynamic denormal-fp-math-f32, but called from
+    // a function with a fully fixed mode.
+    if (ModeF32 == DenormalMode::getInvalid())
+      ModeF32 = Mode;
+    Known = DenormalState{Mode, ModeF32};
+    if (isModeFixed())
+      indicateFixpoint();
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Change = ChangeStatus::UNCHANGED;
+
+    auto CheckCallSite = [=, &Change, &A](AbstractCallSite CS) {
+      Function *Caller = CS.getInstruction()->getFunction();
+      LLVM_DEBUG(dbgs() << "[AADenormalFPMath] Call " << Caller->getName()
+                        << "->" << getAssociatedFunction()->getName() << '\n');
+
+      const auto *CallerInfo = A.getAAFor<AADenormalFPMath>(
+          *this, IRPosition::function(*Caller), DepClassTy::REQUIRED);
+      if (!CallerInfo)
+        return false;
+
+      Change = Change | clampStateAndIndicateChange(this->getState(),
+                                                    CallerInfo->getState());
+      return true;
+    };
+
+    bool AllCallSitesKnown = true;
+    if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown))
+      return indicatePessimisticFixpoint();
+
+    if (Change == ChangeStatus::CHANGED && isModeFixed())
+      indicateFixpoint();
+    return Change;
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    LLVMContext &Ctx = getAssociatedFunction()->getContext();
+
+    SmallVector<Attribute, 2> AttrToAdd;
+    SmallVector<StringRef, 2> AttrToRemove;
+    if (Known.Mode == DenormalMode::getDefault()) {
+      AttrToRemove.push_back("denormal-fp-math");
+    } else {
+      AttrToAdd.push_back(
+          Attribute::get(Ctx, "denormal-fp-math", Known.Mode.str()));
+    }
+
+    if (Known.ModeF32 != Known.Mode) {
+      AttrToAdd.push_back(
+          Attribute::get(Ctx, "denormal-fp-math-f32", Known.ModeF32.str()));
+    } else {
+      AttrToRemove.push_back("denormal-fp-math-f32");
+    }
+
+    auto &IRP = getIRPosition();
+
+    // TODO: There should be a combined add and remove API.
+    return A.removeAttrs(IRP, AttrToRemove) |
+           A.manifestAttrs(IRP, AttrToAdd, /*ForceReplace=*/true);
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FN_ATTR(denormal_fp_math)
+  }
+};
+} // namespace
+
+/// ------------------ Value Constant Range Attribute -------------------------
+
+namespace {
+struct AAValueConstantRangeImpl : AAValueConstantRange {
+  using StateType = IntegerRangeState;
+  AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
+      : AAValueConstantRange(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    if (A.hasSimplificationCallback(getIRPosition())) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+
+    // Intersect a range given by SCEV.
+    intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
+
+    // Intersect a range given by LVI.
+    intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    std::string Str;
+    llvm::raw_string_ostream OS(Str);
+    OS << "range(" << getBitWidth() << ")<";
+    getKnown().print(OS);
+    OS << " / ";
+    getAssumed().print(OS);
+    OS << ">";
+    return OS.str();
+  }
+
+  /// Helper function to get a SCEV expr for the associated value at program
+  /// point \p I.
+  const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
+    if (!getAnchorScope())
+      return nullptr;
+
+    ScalarEvolution *SE =
+        A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
+            *getAnchorScope());
+
+    LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
+        *getAnchorScope());
+
+    if (!SE || !LI)
+      return nullptr;
+
+    const SCEV *S = SE->getSCEV(&getAssociatedValue());
+    if (!I)
+      return S;
+
+    return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
+  }
+
+  /// Helper function to get a range from SCEV for the associated value at
+  /// program point \p I.
+  ConstantRange getConstantRangeFromSCEV(Attributor &A,
+                                         const Instruction *I = nullptr) const {
+    if (!getAnchorScope())
+      return getWorstState(getBitWidth());
+
+    ScalarEvolution *SE =
+        A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
+            *getAnchorScope());
+
+    const SCEV *S = getSCEV(A, I);
+    if (!SE || !S)
+      return getWorstState(getBitWidth());
+
+    return SE->getUnsignedRange(S);
+  }
+
+  /// Helper function to get a range from LVI for the associated value at
+  /// program point \p I.
+  ConstantRange
+  getConstantRangeFromLVI(Attributor &A,
+                          const Instruction *CtxI = nullptr) const {
+    if (!getAnchorScope())
+      return getWorstState(getBitWidth());
+
+    LazyValueInfo *LVI =
+        A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
+            *getAnchorScope());
+
+    if (!LVI || !CtxI)
+      return getWorstState(getBitWidth());
+    return LVI->getConstantRange(&getAssociatedValue(),
+                                 const_cast<Instruction *>(CtxI),
+                                 /*UndefAllowed*/ false);
+  }
+
+  /// Return true if \p CtxI is valid for querying outside analyses.
+  /// This basically makes sure we do not ask intra-procedural analysis
+  /// about a context in the wrong function or a context that violates
+  /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
+  /// if the original context of this AA is OK or should be considered invalid.
+  bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
+                                               const Instruction *CtxI,
+                                               bool AllowAACtxI) const {
+    if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
+      return false;
+
+    // Our context might be in a different function, neither intra-procedural
+    // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
+    if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
+      return false;
+
+    // If the context is not dominated by the value there are paths to the
+    // context that do not define the value. This cannot be handled by
+    // LazyValueInfo so we need to bail.
+    if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
+      InformationCache &InfoCache = A.getInfoCache();
+      const DominatorTree *DT =
+          InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
+              *I->getFunction());
+      return DT && DT->dominates(I, CtxI);
+    }
+
+    return true;
+  }
+
+  /// See AAValueConstantRange::getKnownConstantRange(..).
+  ConstantRange
+  getKnownConstantRange(Attributor &A,
+                        const Instruction *CtxI = nullptr) const override {
+    if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
+                                                 /* AllowAACtxI */ false))
+      return getKnown();
+
+    ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
+    ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
+    return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
+  }
+
+  /// See AAValueConstantRange::getAssumedConstantRange(..).
+  ConstantRange
+  getAssumedConstantRange(Attributor &A,
+                          const Instruction *CtxI = nullptr) const override {
+    // TODO: Make SCEV use Attributor assumption.
+    //       We may be able to bound a variable range via assumptions in
+    //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
+    //       evolve to x^2 + x, then we can say that y is in [2, 12].
+    if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
+                                                 /* AllowAACtxI */ false))
+      return getAssumed();
+
+    ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
+    ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
+    return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
+  }
+
+  /// Helper function to create MDNode for range metadata.
+  static MDNode *
+  getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
+                            const ConstantRange &AssumedConstantRange) {
+    Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
+                                  Ty, AssumedConstantRange.getLower())),
+                              ConstantAsMetadata::get(ConstantInt::get(
+                                  Ty, AssumedConstantRange.getUpper()))};
+    return MDNode::get(Ctx, LowAndHigh);
+  }
+
+  /// Return true if \p Assumed is included in \p KnownRanges.
+  static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
+
+    if (Assumed.isFullSet())
+      return false;
+
+    if (!KnownRanges)
+      return true;
+
+    // If multiple ranges are annotated in IR, we give up to annotate assumed
+    // range for now.
+
+    // TODO:  If there exists a known range which containts assumed range, we
+    // can say assumed range is better.
+    if (KnownRanges->getNumOperands() > 2)
+      return false;
+
+    ConstantInt *Lower =
+        mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
+    ConstantInt *Upper =
+        mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
+
+    ConstantRange Known(Lower->getValue(), Upper->getValue());
+    return Known.contains(Assumed) && Known != Assumed;
+  }
+
+  /// Helper function to set range metadata.
+  static bool
+  setRangeMetadataIfisBetterRange(Instruction *I,
+                                  const ConstantRange &AssumedConstantRange) {
+    auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
+    if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
+      if (!AssumedConstantRange.isEmptySet()) {
+        I->setMetadata(LLVMContext::MD_range,
+                       getMDNodeForConstantRange(I->getType(), I->getContext(),
+                                                 AssumedConstantRange));
+        return true;
+      }
+    }
+    return false;
+  }
+
+  /// See AbstractAttribute::manifest()
+  ChangeStatus manifest(Attributor &A) override {
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
+    assert(!AssumedConstantRange.isFullSet() && "Invalid state");
+
+    auto &V = getAssociatedValue();
+    if (!AssumedConstantRange.isEmptySet() &&
+        !AssumedConstantRange.isSingleElement()) {
+      if (Instruction *I = dyn_cast<Instruction>(&V)) {
+        assert(I == getCtxI() && "Should not annotate an instruction which is "
+                                 "not the context instruction");
+        if (isa<CallInst>(I) || isa<LoadInst>(I))
+          if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
+            Changed = ChangeStatus::CHANGED;
+      }
+    }
+
+    return Changed;
+  }
+};
+
+struct AAValueConstantRangeArgument final
+    : AAArgumentFromCallSiteArguments<
+          AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
+          true /* BridgeCallBaseContext */> {
+  using Base = AAArgumentFromCallSiteArguments<
+      AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
+      true /* BridgeCallBaseContext */>;
+  AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(value_range)
+  }
+};
+
+struct AAValueConstantRangeReturned
+    : AAReturnedFromReturnedValues<AAValueConstantRange,
+                                   AAValueConstantRangeImpl,
+                                   AAValueConstantRangeImpl::StateType,
+                                   /* PropogateCallBaseContext */ true> {
+  using Base =
+      AAReturnedFromReturnedValues<AAValueConstantRange,
+                                   AAValueConstantRangeImpl,
+                                   AAValueConstantRangeImpl::StateType,
+                                   /* PropogateCallBaseContext */ true>;
+  AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    if (!A.isFunctionIPOAmendable(*getAssociatedFunction()))
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(value_range)
+  }
+};
+
+struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
+  AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
+      : AAValueConstantRangeImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AAValueConstantRangeImpl::initialize(A);
+    if (isAtFixpoint())
+      return;
+
+    Value &V = getAssociatedValue();
+
+    if (auto *C = dyn_cast<ConstantInt>(&V)) {
+      unionAssumed(ConstantRange(C->getValue()));
+      indicateOptimisticFixpoint();
+      return;
+    }
+
+    if (isa<UndefValue>(&V)) {
+      // Collapse the undef state to 0.
+      unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
+      indicateOptimisticFixpoint();
+      return;
+    }
+
+    if (isa<CallBase>(&V))
+      return;
+
+    if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
+      return;
+
+    // If it is a load instruction with range metadata, use it.
+    if (LoadInst *LI = dyn_cast<LoadInst>(&V))
+      if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
+        intersectKnown(getConstantRangeFromMetadata(*RangeMD));
+        return;
+      }
+
+    // We can work with PHI and select instruction as we traverse their operands
+    // during update.
+    if (isa<SelectInst>(V) || isa<PHINode>(V))
+      return;
+
+    // Otherwise we give up.
+    indicatePessimisticFixpoint();
+
+    LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
+                      << getAssociatedValue() << "\n");
+  }
+
+  bool calculateBinaryOperator(
+      Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
+      const Instruction *CtxI,
+      SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
+    Value *LHS = BinOp->getOperand(0);
+    Value *RHS = BinOp->getOperand(1);
+
+    // Simplify the operands first.
+    bool UsedAssumedInformation = false;
+    const auto &SimplifiedLHS = A.getAssumedSimplified(
+        IRPosition::value(*LHS, getCallBaseContext()), *this,
+        UsedAssumedInformation, AA::Interprocedural);
+    if (!SimplifiedLHS.has_value())
+      return true;
+    if (!*SimplifiedLHS)
+      return false;
+    LHS = *SimplifiedLHS;
+
+    const auto &SimplifiedRHS = A.getAssumedSimplified(
+        IRPosition::value(*RHS, getCallBaseContext()), *this,
+        UsedAssumedInformation, AA::Interprocedural);
+    if (!SimplifiedRHS.has_value())
+      return true;
+    if (!*SimplifiedRHS)
+      return false;
+    RHS = *SimplifiedRHS;
+
+    // TODO: Allow non integers as well.
+    if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
+      return false;
+
+    auto *LHSAA = A.getAAFor<AAValueConstantRange>(
+        *this, IRPosition::value(*LHS, getCallBaseContext()),
+        DepClassTy::REQUIRED);
+    if (!LHSAA)
+      return false;
+    QuerriedAAs.push_back(LHSAA);
+    auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI);
+
+    auto *RHSAA = A.getAAFor<AAValueConstantRange>(
+        *this, IRPosition::value(*RHS, getCallBaseContext()),
+        DepClassTy::REQUIRED);
+    if (!RHSAA)
+      return false;
+    QuerriedAAs.push_back(RHSAA);
+    auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI);
+
+    auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
+
+    T.unionAssumed(AssumedRange);
+
+    // TODO: Track a known state too.
+
+    return T.isValidState();
+  }
+
+  bool calculateCastInst(
+      Attributor &A, CastInst *CastI, IntegerRangeState &T,
+      const Instruction *CtxI,
+      SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
+    assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
+    // TODO: Allow non integers as well.
+    Value *OpV = CastI->getOperand(0);
+
+    // Simplify the operand first.
+    bool UsedAssumedInformation = false;
+    const auto &SimplifiedOpV = A.getAssumedSimplified(
+        IRPosition::value(*OpV, getCallBaseContext()), *this,
+        UsedAssumedInformation, AA::Interprocedural);
+    if (!SimplifiedOpV.has_value())
+      return true;
+    if (!*SimplifiedOpV)
+      return false;
+    OpV = *SimplifiedOpV;
+
+    if (!OpV->getType()->isIntegerTy())
+      return false;
+
+    auto *OpAA = A.getAAFor<AAValueConstantRange>(
+        *this, IRPosition::value(*OpV, getCallBaseContext()),
+        DepClassTy::REQUIRED);
+    if (!OpAA)
+      return false;
+    QuerriedAAs.push_back(OpAA);
+    T.unionAssumed(OpAA->getAssumed().castOp(CastI->getOpcode(),
+                                             getState().getBitWidth()));
+    return T.isValidState();
+  }
+
+  bool
+  calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
+                   const Instruction *CtxI,
+                   SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
+    Value *LHS = CmpI->getOperand(0);
+    Value *RHS = CmpI->getOperand(1);
+
+    // Simplify the operands first.
+    bool UsedAssumedInformation = false;
+    const auto &SimplifiedLHS = A.getAssumedSimplified(
+        IRPosition::value(*LHS, getCallBaseContext()), *this,
+        UsedAssumedInformation, AA::Interprocedural);
+    if (!SimplifiedLHS.has_value())
+      return true;
+    if (!*SimplifiedLHS)
+      return false;
+    LHS = *SimplifiedLHS;
+
+    const auto &SimplifiedRHS = A.getAssumedSimplified(
+        IRPosition::value(*RHS, getCallBaseContext()), *this,
+        UsedAssumedInformation, AA::Interprocedural);
+    if (!SimplifiedRHS.has_value())
+      return true;
+    if (!*SimplifiedRHS)
+      return false;
+    RHS = *SimplifiedRHS;
+
+    // TODO: Allow non integers as well.
+    if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
+      return false;
+
+    auto *LHSAA = A.getAAFor<AAValueConstantRange>(
+        *this, IRPosition::value(*LHS, getCallBaseContext()),
+        DepClassTy::REQUIRED);
+    if (!LHSAA)
+      return false;
+    QuerriedAAs.push_back(LHSAA);
+    auto *RHSAA = A.getAAFor<AAValueConstantRange>(
+        *this, IRPosition::value(*RHS, getCallBaseContext()),
+        DepClassTy::REQUIRED);
+    if (!RHSAA)
+      return false;
+    QuerriedAAs.push_back(RHSAA);
+    auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI);
+    auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI);
+
+    // If one of them is empty set, we can't decide.
+    if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
+      return true;
+
+    bool MustTrue = false, MustFalse = false;
+
+    auto AllowedRegion =
+        ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
+
+    if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
+      MustFalse = true;
+
+    if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
+      MustTrue = true;
+
+    assert((!MustTrue || !MustFalse) &&
+           "Either MustTrue or MustFalse should be false!");
+
+    if (MustTrue)
+      T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
+    else if (MustFalse)
+      T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
+    else
+      T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
+
+    LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " after "
+                      << (MustTrue ? "true" : (MustFalse ? "false" : "unknown"))
+                      << ": " << T << "\n\t" << *LHSAA << "\t<op>\n\t"
+                      << *RHSAA);
+
+    // TODO: Track a known state too.
+    return T.isValidState();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+
+    IntegerRangeState T(getBitWidth());
+    auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
+      Instruction *I = dyn_cast<Instruction>(&V);
+      if (!I || isa<CallBase>(I)) {
+
+        // Simplify the operand first.
+        bool UsedAssumedInformation = false;
+        const auto &SimplifiedOpV = A.getAssumedSimplified(
+            IRPosition::value(V, getCallBaseContext()), *this,
+            UsedAssumedInformation, AA::Interprocedural);
+        if (!SimplifiedOpV.has_value())
+          return true;
+        if (!*SimplifiedOpV)
+          return false;
+        Value *VPtr = *SimplifiedOpV;
+
+        // If the value is not instruction, we query AA to Attributor.
+        const auto *AA = A.getAAFor<AAValueConstantRange>(
+            *this, IRPosition::value(*VPtr, getCallBaseContext()),
+            DepClassTy::REQUIRED);
+
+        // Clamp operator is not used to utilize a program point CtxI.
+        if (AA)
+          T.unionAssumed(AA->getAssumedConstantRange(A, CtxI));
+        else
+          return false;
+
+        return T.isValidState();
+      }
+
+      SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
+      if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
+        if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
+          return false;
+      } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
+        if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
+          return false;
+      } else if (auto *CastI = dyn_cast<CastInst>(I)) {
+        if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
+          return false;
+      } else {
+        // Give up with other instructions.
+        // TODO: Add other instructions
+
+        T.indicatePessimisticFixpoint();
+        return false;
+      }
+
+      // Catch circular reasoning in a pessimistic way for now.
+      // TODO: Check how the range evolves and if we stripped anything, see also
+      //       AADereferenceable or AAAlign for similar situations.
+      for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
+        if (QueriedAA != this)
+          continue;
+        // If we are in a stady state we do not need to worry.
+        if (T.getAssumed() == getState().getAssumed())
+          continue;
+        T.indicatePessimisticFixpoint();
+      }
+
+      return T.isValidState();
+    };
+
+    if (!VisitValueCB(getAssociatedValue(), getCtxI()))
+      return indicatePessimisticFixpoint();
+
+    // Ensure that long def-use chains can't cause circular reasoning either by
+    // introducing a cutoff below.
+    if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
+      return ChangeStatus::UNCHANGED;
+    if (++NumChanges > MaxNumChanges) {
+      LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
+                        << " but only " << MaxNumChanges
+                        << " are allowed to avoid cyclic reasoning.");
+      return indicatePessimisticFixpoint();
+    }
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(value_range)
+  }
+
+  /// Tracker to bail after too many widening steps of the constant range.
+  int NumChanges = 0;
+
+  /// Upper bound for the number of allowed changes (=widening steps) for the
+  /// constant range before we give up.
+  static constexpr int MaxNumChanges = 5;
+};
+
+struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
+  AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
+      : AAValueConstantRangeImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
+                     "not be called");
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
+};
+
+struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
+  AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
+      : AAValueConstantRangeFunction(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
+};
+
+struct AAValueConstantRangeCallSiteReturned
+    : AACalleeToCallSite<AAValueConstantRange, AAValueConstantRangeImpl,
+                         AAValueConstantRangeImpl::StateType,
+                         /* IntroduceCallBaseContext */ true> {
+  AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AAValueConstantRange, AAValueConstantRangeImpl,
+                           AAValueConstantRangeImpl::StateType,
+                           /* IntroduceCallBaseContext */ true>(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // If it is a load instruction with range metadata, use the metadata.
+    if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
+      if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
+        intersectKnown(getConstantRangeFromMetadata(*RangeMD));
+
+    AAValueConstantRangeImpl::initialize(A);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(value_range)
+  }
+};
+struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
+  AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAValueConstantRangeFloating(IRP, A) {}
+
+  /// See AbstractAttribute::manifest()
+  ChangeStatus manifest(Attributor &A) override {
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(value_range)
+  }
+};
+} // namespace
+
+/// ------------------ Potential Values Attribute -------------------------
+
+namespace {
+struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
+  using StateType = PotentialConstantIntValuesState;
+
+  AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
+      : AAPotentialConstantValues(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    if (A.hasSimplificationCallback(getIRPosition()))
+      indicatePessimisticFixpoint();
+    else
+      AAPotentialConstantValues::initialize(A);
+  }
+
+  bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
+                                 bool &ContainsUndef, bool ForSelf) {
+    SmallVector<AA::ValueAndContext> Values;
+    bool UsedAssumedInformation = false;
+    if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
+                                      UsedAssumedInformation)) {
+      // Avoid recursion when the caller is computing constant values for this
+      // IRP itself.
+      if (ForSelf)
+        return false;
+      if (!IRP.getAssociatedType()->isIntegerTy())
+        return false;
+      auto *PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
+          *this, IRP, DepClassTy::REQUIRED);
+      if (!PotentialValuesAA || !PotentialValuesAA->getState().isValidState())
+        return false;
+      ContainsUndef = PotentialValuesAA->getState().undefIsContained();
+      S = PotentialValuesAA->getState().getAssumedSet();
+      return true;
+    }
+
+    // Copy all the constant values, except UndefValue. ContainsUndef is true
+    // iff Values contains only UndefValue instances. If there are other known
+    // constants, then UndefValue is dropped.
+    ContainsUndef = false;
+    for (auto &It : Values) {
+      if (isa<UndefValue>(It.getValue())) {
+        ContainsUndef = true;
+        continue;
+      }
+      auto *CI = dyn_cast<ConstantInt>(It.getValue());
+      if (!CI)
+        return false;
+      S.insert(CI->getValue());
+    }
+    ContainsUndef &= S.empty();
+
+    return true;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    std::string Str;
+    llvm::raw_string_ostream OS(Str);
+    OS << getState();
+    return OS.str();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    return indicatePessimisticFixpoint();
+  }
+};
+
+struct AAPotentialConstantValuesArgument final
+    : AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
+                                      AAPotentialConstantValuesImpl,
+                                      PotentialConstantIntValuesState> {
+  using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
+                                               AAPotentialConstantValuesImpl,
+                                               PotentialConstantIntValuesState>;
+  AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialConstantValuesReturned
+    : AAReturnedFromReturnedValues<AAPotentialConstantValues,
+                                   AAPotentialConstantValuesImpl> {
+  using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
+                                            AAPotentialConstantValuesImpl>;
+  AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  void initialize(Attributor &A) override {
+    if (!A.isFunctionIPOAmendable(*getAssociatedFunction()))
+      indicatePessimisticFixpoint();
+    Base::initialize(A);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
+  AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
+      : AAPotentialConstantValuesImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    AAPotentialConstantValuesImpl::initialize(A);
+    if (isAtFixpoint())
+      return;
+
+    Value &V = getAssociatedValue();
+
+    if (auto *C = dyn_cast<ConstantInt>(&V)) {
+      unionAssumed(C->getValue());
+      indicateOptimisticFixpoint();
+      return;
+    }
+
+    if (isa<UndefValue>(&V)) {
+      unionAssumedWithUndef();
+      indicateOptimisticFixpoint();
+      return;
+    }
+
+    if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
+      return;
+
+    if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
+      return;
+
+    indicatePessimisticFixpoint();
+
+    LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
+                      << getAssociatedValue() << "\n");
+  }
+
+  static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
+                                const APInt &RHS) {
+    return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
+  }
+
+  static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
+                                 uint32_t ResultBitWidth) {
+    Instruction::CastOps CastOp = CI->getOpcode();
+    switch (CastOp) {
+    default:
+      llvm_unreachable("unsupported or not integer cast");
+    case Instruction::Trunc:
+      return Src.trunc(ResultBitWidth);
+    case Instruction::SExt:
+      return Src.sext(ResultBitWidth);
+    case Instruction::ZExt:
+      return Src.zext(ResultBitWidth);
+    case Instruction::BitCast:
+      return Src;
+    }
+  }
+
+  static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
+                                       const APInt &LHS, const APInt &RHS,
+                                       bool &SkipOperation, bool &Unsupported) {
+    Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
+    // Unsupported is set to true when the binary operator is not supported.
+    // SkipOperation is set to true when UB occur with the given operand pair
+    // (LHS, RHS).
+    // TODO: we should look at nsw and nuw keywords to handle operations
+    //       that create poison or undef value.
+    switch (BinOpcode) {
+    default:
+      Unsupported = true;
+      return LHS;
+    case Instruction::Add:
+      return LHS + RHS;
+    case Instruction::Sub:
+      return LHS - RHS;
+    case Instruction::Mul:
+      return LHS * RHS;
+    case Instruction::UDiv:
+      if (RHS.isZero()) {
+        SkipOperation = true;
+        return LHS;
+      }
+      return LHS.udiv(RHS);
+    case Instruction::SDiv:
+      if (RHS.isZero()) {
+        SkipOperation = true;
+        return LHS;
+      }
+      return LHS.sdiv(RHS);
+    case Instruction::URem:
+      if (RHS.isZero()) {
+        SkipOperation = true;
+        return LHS;
+      }
+      return LHS.urem(RHS);
+    case Instruction::SRem:
+      if (RHS.isZero()) {
+        SkipOperation = true;
+        return LHS;
+      }
+      return LHS.srem(RHS);
+    case Instruction::Shl:
+      return LHS.shl(RHS);
+    case Instruction::LShr:
+      return LHS.lshr(RHS);
+    case Instruction::AShr:
+      return LHS.ashr(RHS);
+    case Instruction::And:
+      return LHS & RHS;
+    case Instruction::Or:
+      return LHS | RHS;
+    case Instruction::Xor:
+      return LHS ^ RHS;
+    }
+  }
+
+  bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
+                                           const APInt &LHS, const APInt &RHS) {
+    bool SkipOperation = false;
+    bool Unsupported = false;
+    APInt Result =
+        calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
+    if (Unsupported)
+      return false;
+    // If SkipOperation is true, we can ignore this operand pair (L, R).
+    if (!SkipOperation)
+      unionAssumed(Result);
+    return isValidState();
+  }
+
+  ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
+    auto AssumedBefore = getAssumed();
+    Value *LHS = ICI->getOperand(0);
+    Value *RHS = ICI->getOperand(1);
+
+    bool LHSContainsUndef = false, RHSContainsUndef = false;
+    SetTy LHSAAPVS, RHSAAPVS;
+    if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
+                                   LHSContainsUndef, /* ForSelf */ false) ||
+        !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
+                                   RHSContainsUndef, /* ForSelf */ false))
+      return indicatePessimisticFixpoint();
+
+    // TODO: make use of undef flag to limit potential values aggressively.
+    bool MaybeTrue = false, MaybeFalse = false;
+    const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
+    if (LHSContainsUndef && RHSContainsUndef) {
+      // The result of any comparison between undefs can be soundly replaced
+      // with undef.
+      unionAssumedWithUndef();
+    } else if (LHSContainsUndef) {
+      for (const APInt &R : RHSAAPVS) {
+        bool CmpResult = calculateICmpInst(ICI, Zero, R);
+        MaybeTrue |= CmpResult;
+        MaybeFalse |= !CmpResult;
+        if (MaybeTrue & MaybeFalse)
+          return indicatePessimisticFixpoint();
+      }
+    } else if (RHSContainsUndef) {
+      for (const APInt &L : LHSAAPVS) {
+        bool CmpResult = calculateICmpInst(ICI, L, Zero);
+        MaybeTrue |= CmpResult;
+        MaybeFalse |= !CmpResult;
+        if (MaybeTrue & MaybeFalse)
+          return indicatePessimisticFixpoint();
+      }
+    } else {
+      for (const APInt &L : LHSAAPVS) {
+        for (const APInt &R : RHSAAPVS) {
+          bool CmpResult = calculateICmpInst(ICI, L, R);
+          MaybeTrue |= CmpResult;
+          MaybeFalse |= !CmpResult;
+          if (MaybeTrue & MaybeFalse)
+            return indicatePessimisticFixpoint();
+        }
+      }
+    }
+    if (MaybeTrue)
+      unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
+    if (MaybeFalse)
+      unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
+    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
+                                         : ChangeStatus::CHANGED;
+  }
+
+  ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
+    auto AssumedBefore = getAssumed();
+    Value *LHS = SI->getTrueValue();
+    Value *RHS = SI->getFalseValue();
+
+    bool UsedAssumedInformation = false;
+    std::optional<Constant *> C = A.getAssumedConstant(
+        *SI->getCondition(), *this, UsedAssumedInformation);
+
+    // Check if we only need one operand.
+    bool OnlyLeft = false, OnlyRight = false;
+    if (C && *C && (*C)->isOneValue())
+      OnlyLeft = true;
+    else if (C && *C && (*C)->isZeroValue())
+      OnlyRight = true;
+
+    bool LHSContainsUndef = false, RHSContainsUndef = false;
+    SetTy LHSAAPVS, RHSAAPVS;
+    if (!OnlyRight &&
+        !fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
+                                   LHSContainsUndef, /* ForSelf */ false))
+      return indicatePessimisticFixpoint();
+
+    if (!OnlyLeft &&
+        !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
+                                   RHSContainsUndef, /* ForSelf */ false))
+      return indicatePessimisticFixpoint();
+
+    if (OnlyLeft || OnlyRight) {
+      // select (true/false), lhs, rhs
+      auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
+      auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
+
+      if (Undef)
+        unionAssumedWithUndef();
+      else {
+        for (const auto &It : *OpAA)
+          unionAssumed(It);
+      }
+
+    } else if (LHSContainsUndef && RHSContainsUndef) {
+      // select i1 *, undef , undef => undef
+      unionAssumedWithUndef();
+    } else {
+      for (const auto &It : LHSAAPVS)
+        unionAssumed(It);
+      for (const auto &It : RHSAAPVS)
+        unionAssumed(It);
+    }
+    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
+                                         : ChangeStatus::CHANGED;
+  }
+
+  ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
+    auto AssumedBefore = getAssumed();
+    if (!CI->isIntegerCast())
+      return indicatePessimisticFixpoint();
+    assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
+    uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
+    Value *Src = CI->getOperand(0);
+
+    bool SrcContainsUndef = false;
+    SetTy SrcPVS;
+    if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
+                                   SrcContainsUndef, /* ForSelf */ false))
+      return indicatePessimisticFixpoint();
+
+    if (SrcContainsUndef)
+      unionAssumedWithUndef();
+    else {
+      for (const APInt &S : SrcPVS) {
+        APInt T = calculateCastInst(CI, S, ResultBitWidth);
+        unionAssumed(T);
+      }
+    }
+    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
+                                         : ChangeStatus::CHANGED;
+  }
+
+  ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
+    auto AssumedBefore = getAssumed();
+    Value *LHS = BinOp->getOperand(0);
+    Value *RHS = BinOp->getOperand(1);
+
+    bool LHSContainsUndef = false, RHSContainsUndef = false;
+    SetTy LHSAAPVS, RHSAAPVS;
+    if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
+                                   LHSContainsUndef, /* ForSelf */ false) ||
+        !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
+                                   RHSContainsUndef, /* ForSelf */ false))
+      return indicatePessimisticFixpoint();
+
+    const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
+
+    // TODO: make use of undef flag to limit potential values aggressively.
+    if (LHSContainsUndef && RHSContainsUndef) {
+      if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
+        return indicatePessimisticFixpoint();
+    } else if (LHSContainsUndef) {
+      for (const APInt &R : RHSAAPVS) {
+        if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
+          return indicatePessimisticFixpoint();
+      }
+    } else if (RHSContainsUndef) {
+      for (const APInt &L : LHSAAPVS) {
+        if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
+          return indicatePessimisticFixpoint();
+      }
+    } else {
+      for (const APInt &L : LHSAAPVS) {
+        for (const APInt &R : RHSAAPVS) {
+          if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
+            return indicatePessimisticFixpoint();
+        }
+      }
+    }
+    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
+                                         : ChangeStatus::CHANGED;
+  }
+
+  ChangeStatus updateWithInstruction(Attributor &A, Instruction *Inst) {
+    auto AssumedBefore = getAssumed();
+    SetTy Incoming;
+    bool ContainsUndef;
+    if (!fillSetWithConstantValues(A, IRPosition::value(*Inst), Incoming,
+                                   ContainsUndef, /* ForSelf */ true))
+      return indicatePessimisticFixpoint();
+    if (ContainsUndef) {
+      unionAssumedWithUndef();
+    } else {
+      for (const auto &It : Incoming)
+        unionAssumed(It);
+    }
+    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
+                                         : ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    Value &V = getAssociatedValue();
+    Instruction *I = dyn_cast<Instruction>(&V);
+
+    if (auto *ICI = dyn_cast<ICmpInst>(I))
+      return updateWithICmpInst(A, ICI);
+
+    if (auto *SI = dyn_cast<SelectInst>(I))
+      return updateWithSelectInst(A, SI);
+
+    if (auto *CI = dyn_cast<CastInst>(I))
+      return updateWithCastInst(A, CI);
+
+    if (auto *BinOp = dyn_cast<BinaryOperator>(I))
+      return updateWithBinaryOperator(A, BinOp);
+
+    if (isa<PHINode>(I) || isa<LoadInst>(I))
+      return updateWithInstruction(A, I);
+
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
+  AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
+      : AAPotentialConstantValuesImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable(
+        "AAPotentialConstantValues(Function|CallSite)::updateImpl will "
+        "not be called");
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FN_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
+  AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
+      : AAPotentialConstantValuesFunction(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CS_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialConstantValuesCallSiteReturned
+    : AACalleeToCallSite<AAPotentialConstantValues,
+                         AAPotentialConstantValuesImpl> {
+  AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
+                                            Attributor &A)
+      : AACalleeToCallSite<AAPotentialConstantValues,
+                           AAPotentialConstantValuesImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialConstantValuesCallSiteArgument
+    : AAPotentialConstantValuesFloating {
+  AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
+                                            Attributor &A)
+      : AAPotentialConstantValuesFloating(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    AAPotentialConstantValuesImpl::initialize(A);
+    if (isAtFixpoint())
+      return;
+
+    Value &V = getAssociatedValue();
+
+    if (auto *C = dyn_cast<ConstantInt>(&V)) {
+      unionAssumed(C->getValue());
+      indicateOptimisticFixpoint();
+      return;
+    }
+
+    if (isa<UndefValue>(&V)) {
+      unionAssumedWithUndef();
+      indicateOptimisticFixpoint();
+      return;
+    }
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    Value &V = getAssociatedValue();
+    auto AssumedBefore = getAssumed();
+    auto *AA = A.getAAFor<AAPotentialConstantValues>(
+        *this, IRPosition::value(V), DepClassTy::REQUIRED);
+    if (!AA)
+      return indicatePessimisticFixpoint();
+    const auto &S = AA->getAssumed();
+    unionAssumed(S);
+    return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
+                                         : ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(potential_values)
+  }
+};
+} // namespace
+
+/// ------------------------ NoUndef Attribute ---------------------------------
+bool AANoUndef::isImpliedByIR(Attributor &A, const IRPosition &IRP,
+                              Attribute::AttrKind ImpliedAttributeKind,
+                              bool IgnoreSubsumingPositions) {
+  assert(ImpliedAttributeKind == Attribute::NoUndef &&
+         "Unexpected attribute kind");
+  if (A.hasAttr(IRP, {Attribute::NoUndef}, IgnoreSubsumingPositions,
+                Attribute::NoUndef))
+    return true;
+
+  Value &Val = IRP.getAssociatedValue();
+  if (IRP.getPositionKind() != IRPosition::IRP_RETURNED &&
+      isGuaranteedNotToBeUndefOrPoison(&Val)) {
+    LLVMContext &Ctx = Val.getContext();
+    A.manifestAttrs(IRP, Attribute::get(Ctx, Attribute::NoUndef));
+    return true;
+  }
+
+  return false;
+}
+
+namespace {
+struct AANoUndefImpl : AANoUndef {
+  AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    Value &V = getAssociatedValue();
+    if (isa<UndefValue>(V))
+      indicatePessimisticFixpoint();
+    assert(!isImpliedByIR(A, getIRPosition(), Attribute::NoUndef));
+  }
+
+  /// See followUsesInMBEC
+  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
+                       AANoUndef::StateType &State) {
+    const Value *UseV = U->get();
+    const DominatorTree *DT = nullptr;
+    AssumptionCache *AC = nullptr;
+    InformationCache &InfoCache = A.getInfoCache();
+    if (Function *F = getAnchorScope()) {
+      DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
+      AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
+    }
+    State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
+    bool TrackUse = false;
+    // Track use for instructions which must produce undef or poison bits when
+    // at least one operand contains such bits.
+    if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
+      TrackUse = true;
+    return TrackUse;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return getAssumed() ? "noundef" : "may-undef-or-poison";
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    // We don't manifest noundef attribute for dead positions because the
+    // associated values with dead positions would be replaced with undef
+    // values.
+    bool UsedAssumedInformation = false;
+    if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
+                        UsedAssumedInformation))
+      return ChangeStatus::UNCHANGED;
+    // A position whose simplified value does not have any value is
+    // considered to be dead. We don't manifest noundef in such positions for
+    // the same reason above.
+    if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
+                                AA::Interprocedural)
+             .has_value())
+      return ChangeStatus::UNCHANGED;
+    return AANoUndef::manifest(A);
+  }
+};
+
+struct AANoUndefFloating : public AANoUndefImpl {
+  AANoUndefFloating(const IRPosition &IRP, Attributor &A)
+      : AANoUndefImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    AANoUndefImpl::initialize(A);
+    if (!getState().isAtFixpoint() && getAnchorScope() &&
+        !getAnchorScope()->isDeclaration())
+      if (Instruction *CtxI = getCtxI())
+        followUsesInMBEC(*this, A, getState(), *CtxI);
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto VisitValueCB = [&](const IRPosition &IRP) -> bool {
+      bool IsKnownNoUndef;
+      return AA::hasAssumedIRAttr<Attribute::NoUndef>(
+          A, this, IRP, DepClassTy::REQUIRED, IsKnownNoUndef);
+    };
+
+    bool Stripped;
+    bool UsedAssumedInformation = false;
+    Value *AssociatedValue = &getAssociatedValue();
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
+                                      AA::AnyScope, UsedAssumedInformation))
+      Stripped = false;
+    else
+      Stripped =
+          Values.size() != 1 || Values.front().getValue() != AssociatedValue;
+
+    if (!Stripped) {
+      // If we haven't stripped anything we might still be able to use a
+      // different AA, but only if the IRP changes. Effectively when we
+      // interpret this not as a call site value but as a floating/argument
+      // value.
+      const IRPosition AVIRP = IRPosition::value(*AssociatedValue);
+      if (AVIRP == getIRPosition() || !VisitValueCB(AVIRP))
+        return indicatePessimisticFixpoint();
+      return ChangeStatus::UNCHANGED;
+    }
+
+    for (const auto &VAC : Values)
+      if (!VisitValueCB(IRPosition::value(*VAC.getValue())))
+        return indicatePessimisticFixpoint();
+
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
+};
+
+struct AANoUndefReturned final
+    : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
+  AANoUndefReturned(const IRPosition &IRP, Attributor &A)
+      : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
+};
+
+struct AANoUndefArgument final
+    : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
+  AANoUndefArgument(const IRPosition &IRP, Attributor &A)
+      : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
+};
+
+struct AANoUndefCallSiteArgument final : AANoUndefFloating {
+  AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AANoUndefFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
+};
+
+struct AANoUndefCallSiteReturned final
+    : AACalleeToCallSite<AANoUndef, AANoUndefImpl> {
+  AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoUndef, AANoUndefImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
+};
+
+/// ------------------------ NoFPClass Attribute -------------------------------
+
+struct AANoFPClassImpl : AANoFPClass {
+  AANoFPClassImpl(const IRPosition &IRP, Attributor &A) : AANoFPClass(IRP, A) {}
+
+  void initialize(Attributor &A) override {
+    const IRPosition &IRP = getIRPosition();
+
+    Value &V = IRP.getAssociatedValue();
+    if (isa<UndefValue>(V)) {
+      indicateOptimisticFixpoint();
+      return;
+    }
+
+    SmallVector<Attribute> Attrs;
+    A.getAttrs(getIRPosition(), {Attribute::NoFPClass}, Attrs, false);
+    for (const auto &Attr : Attrs) {
+      addKnownBits(Attr.getNoFPClass());
+    }
+
+    const DataLayout &DL = A.getDataLayout();
+    if (getPositionKind() != IRPosition::IRP_RETURNED) {
+      KnownFPClass KnownFPClass = computeKnownFPClass(&V, DL);
+      addKnownBits(~KnownFPClass.KnownFPClasses);
+    }
+
+    if (Instruction *CtxI = getCtxI())
+      followUsesInMBEC(*this, A, getState(), *CtxI);
+  }
+
+  /// See followUsesInMBEC
+  bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
+                       AANoFPClass::StateType &State) {
+    const Value *UseV = U->get();
+    const DominatorTree *DT = nullptr;
+    AssumptionCache *AC = nullptr;
+    const TargetLibraryInfo *TLI = nullptr;
+    InformationCache &InfoCache = A.getInfoCache();
+
+    if (Function *F = getAnchorScope()) {
+      DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
+      AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
+      TLI = InfoCache.getTargetLibraryInfoForFunction(*F);
+    }
+
+    const DataLayout &DL = A.getDataLayout();
+
+    KnownFPClass KnownFPClass =
+        computeKnownFPClass(UseV, DL,
+                            /*InterestedClasses=*/fcAllFlags,
+                            /*Depth=*/0, TLI, AC, I, DT);
+    State.addKnownBits(~KnownFPClass.KnownFPClasses);
+
+    if (auto *CI = dyn_cast<CallInst>(UseV)) {
+      // Special case FP intrinsic with struct return type.
+      switch (CI->getIntrinsicID()) {
+      case Intrinsic::frexp:
+        return true;
+      case Intrinsic::not_intrinsic:
+        // TODO: Could recognize math libcalls
+        return false;
+      default:
+        break;
+      }
+    }
+
+    if (!UseV->getType()->isFPOrFPVectorTy())
+      return false;
+    return !isa<LoadInst, AtomicRMWInst>(UseV);
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    std::string Result = "nofpclass";
+    raw_string_ostream OS(Result);
+    OS << getAssumedNoFPClass();
+    return Result;
+  }
+
+  void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
+                            SmallVectorImpl<Attribute> &Attrs) const override {
+    Attrs.emplace_back(Attribute::getWithNoFPClass(Ctx, getAssumedNoFPClass()));
+  }
+};
+
+struct AANoFPClassFloating : public AANoFPClassImpl {
+  AANoFPClassFloating(const IRPosition &IRP, Attributor &A)
+      : AANoFPClassImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    SmallVector<AA::ValueAndContext> Values;
+    bool UsedAssumedInformation = false;
+    if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
+                                      AA::AnyScope, UsedAssumedInformation)) {
+      Values.push_back({getAssociatedValue(), getCtxI()});
+    }
+
+    StateType T;
+    auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
+      const auto *AA = A.getAAFor<AANoFPClass>(*this, IRPosition::value(V),
+                                               DepClassTy::REQUIRED);
+      if (!AA || this == AA) {
+        T.indicatePessimisticFixpoint();
+      } else {
+        const AANoFPClass::StateType &S =
+            static_cast<const AANoFPClass::StateType &>(AA->getState());
+        T ^= S;
+      }
+      return T.isValidState();
+    };
+
+    for (const auto &VAC : Values)
+      if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
+        return indicatePessimisticFixpoint();
+
+    return clampStateAndIndicateChange(getState(), T);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(nofpclass)
+  }
+};
+
+struct AANoFPClassReturned final
+    : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl,
+                                   AANoFPClassImpl::StateType, false, Attribute::None, false> {
+  AANoFPClassReturned(const IRPosition &IRP, Attributor &A)
+      : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl,
+                                     AANoFPClassImpl::StateType, false, Attribute::None, false>(
+            IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(nofpclass)
+  }
+};
+
+struct AANoFPClassArgument final
+    : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl> {
+  AANoFPClassArgument(const IRPosition &IRP, Attributor &A)
+      : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofpclass) }
+};
+
+struct AANoFPClassCallSiteArgument final : AANoFPClassFloating {
+  AANoFPClassCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AANoFPClassFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(nofpclass)
+  }
+};
+
+struct AANoFPClassCallSiteReturned final
+    : AACalleeToCallSite<AANoFPClass, AANoFPClassImpl> {
+  AANoFPClassCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AACalleeToCallSite<AANoFPClass, AANoFPClassImpl>(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(nofpclass)
+  }
+};
+
+struct AACallEdgesImpl : public AACallEdges {
+  AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
+
+  const SetVector<Function *> &getOptimisticEdges() const override {
+    return CalledFunctions;
+  }
+
+  bool hasUnknownCallee() const override { return HasUnknownCallee; }
+
+  bool hasNonAsmUnknownCallee() const override {
+    return HasUnknownCalleeNonAsm;
+  }
+
+  const std::string getAsStr(Attributor *A) const override {
+    return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
+           std::to_string(CalledFunctions.size()) + "]";
+  }
+
+  void trackStatistics() const override {}
+
+protected:
+  void addCalledFunction(Function *Fn, ChangeStatus &Change) {
+    if (CalledFunctions.insert(Fn)) {
+      Change = ChangeStatus::CHANGED;
+      LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
+                        << "\n");
+    }
+  }
+
+  void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
+    if (!HasUnknownCallee)
+      Change = ChangeStatus::CHANGED;
+    if (NonAsm && !HasUnknownCalleeNonAsm)
+      Change = ChangeStatus::CHANGED;
+    HasUnknownCalleeNonAsm |= NonAsm;
+    HasUnknownCallee = true;
+  }
+
+private:
+  /// Optimistic set of functions that might be called by this position.
+  SetVector<Function *> CalledFunctions;
+
+  /// Is there any call with a unknown callee.
+  bool HasUnknownCallee = false;
+
+  /// Is there any call with a unknown callee, excluding any inline asm.
+  bool HasUnknownCalleeNonAsm = false;
+};
+
+struct AACallEdgesCallSite : public AACallEdgesImpl {
+  AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
+      : AACallEdgesImpl(IRP, A) {}
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Change = ChangeStatus::UNCHANGED;
+
+    auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
+      if (Function *Fn = dyn_cast<Function>(&V)) {
+        addCalledFunction(Fn, Change);
+      } else {
+        LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
+        setHasUnknownCallee(true, Change);
+      }
+
+      // Explore all values.
+      return true;
+    };
+
+    SmallVector<AA::ValueAndContext> Values;
+    // Process any value that we might call.
+    auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
+      if (isa<Constant>(V)) {
+        VisitValue(*V, CtxI);
+        return;
+      }
+
+      bool UsedAssumedInformation = false;
+      Values.clear();
+      if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
+                                        AA::AnyScope, UsedAssumedInformation)) {
+        Values.push_back({*V, CtxI});
+      }
+      for (auto &VAC : Values)
+        VisitValue(*VAC.getValue(), VAC.getCtxI());
+    };
+
+    CallBase *CB = cast<CallBase>(getCtxI());
+
+    if (auto *IA = dyn_cast<InlineAsm>(CB->getCalledOperand())) {
+      if (IA->hasSideEffects() &&
+          !hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
+          !hasAssumption(*CB, "ompx_no_call_asm")) {
+        setHasUnknownCallee(false, Change);
+      }
+      return Change;
+    }
+
+    if (CB->isIndirectCall())
+      if (auto *IndirectCallAA = A.getAAFor<AAIndirectCallInfo>(
+              *this, getIRPosition(), DepClassTy::OPTIONAL))
+        if (IndirectCallAA->foreachCallee(
+                [&](Function *Fn) { return VisitValue(*Fn, CB); }))
+          return Change;
+
+    // The most simple case.
+    ProcessCalledOperand(CB->getCalledOperand(), CB);
+
+    // Process callback functions.
+    SmallVector<const Use *, 4u> CallbackUses;
+    AbstractCallSite::getCallbackUses(*CB, CallbackUses);
+    for (const Use *U : CallbackUses)
+      ProcessCalledOperand(U->get(), CB);
+
+    return Change;
+  }
+};
+
+struct AACallEdgesFunction : public AACallEdgesImpl {
+  AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
+      : AACallEdgesImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    ChangeStatus Change = ChangeStatus::UNCHANGED;
+
+    auto ProcessCallInst = [&](Instruction &Inst) {
+      CallBase &CB = cast<CallBase>(Inst);
+
+      auto *CBEdges = A.getAAFor<AACallEdges>(
+          *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
+      if (!CBEdges)
+        return false;
+      if (CBEdges->hasNonAsmUnknownCallee())
+        setHasUnknownCallee(true, Change);
+      if (CBEdges->hasUnknownCallee())
+        setHasUnknownCallee(false, Change);
+
+      for (Function *F : CBEdges->getOptimisticEdges())
+        addCalledFunction(F, Change);
+
+      return true;
+    };
+
+    // Visit all callable instructions.
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
+                                           UsedAssumedInformation,
+                                           /* CheckBBLivenessOnly */ true)) {
+      // If we haven't looked at all call like instructions, assume that there
+      // are unknown callees.
+      setHasUnknownCallee(true, Change);
+    }
+
+    return Change;
+  }
+};
+
+/// -------------------AAInterFnReachability Attribute--------------------------
+
+struct AAInterFnReachabilityFunction
+    : public CachedReachabilityAA<AAInterFnReachability, Function> {
+  using Base = CachedReachabilityAA<AAInterFnReachability, Function>;
+  AAInterFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  bool instructionCanReach(
+      Attributor &A, const Instruction &From, const Function &To,
+      const AA::InstExclusionSetTy *ExclusionSet) const override {
+    assert(From.getFunction() == getAnchorScope() && "Queried the wrong AA!");
+    auto *NonConstThis = const_cast<AAInterFnReachabilityFunction *>(this);
+
+    RQITy StackRQI(A, From, To, ExclusionSet, false);
+    typename RQITy::Reachable Result;
+    if (!NonConstThis->checkQueryCache(A, StackRQI, Result))
+      return NonConstThis->isReachableImpl(A, StackRQI,
+                                           /*IsTemporaryRQI=*/true);
+    return Result == RQITy::Reachable::Yes;
+  }
+
+  bool isReachableImpl(Attributor &A, RQITy &RQI,
+                       bool IsTemporaryRQI) override {
+    const Instruction *EntryI =
+        &RQI.From->getFunction()->getEntryBlock().front();
+    if (EntryI != RQI.From &&
+        !instructionCanReach(A, *EntryI, *RQI.To, nullptr))
+      return rememberResult(A, RQITy::Reachable::No, RQI, false,
+                            IsTemporaryRQI);
+
+    auto CheckReachableCallBase = [&](CallBase *CB) {
+      auto *CBEdges = A.getAAFor<AACallEdges>(
+          *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
+      if (!CBEdges || !CBEdges->getState().isValidState())
+        return false;
+      // TODO Check To backwards in this case.
+      if (CBEdges->hasUnknownCallee())
+        return false;
+
+      for (Function *Fn : CBEdges->getOptimisticEdges()) {
+        if (Fn == RQI.To)
+          return false;
+
+        if (Fn->isDeclaration()) {
+          if (Fn->hasFnAttribute(Attribute::NoCallback))
+            continue;
+          // TODO Check To backwards in this case.
+          return false;
+        }
+
+        if (Fn == getAnchorScope()) {
+          if (EntryI == RQI.From)
+            continue;
+          return false;
+        }
+
+        const AAInterFnReachability *InterFnReachability =
+            A.getAAFor<AAInterFnReachability>(*this, IRPosition::function(*Fn),
+                                              DepClassTy::OPTIONAL);
+
+        const Instruction &FnFirstInst = Fn->getEntryBlock().front();
+        if (!InterFnReachability ||
+            InterFnReachability->instructionCanReach(A, FnFirstInst, *RQI.To,
+                                                     RQI.ExclusionSet))
+          return false;
+      }
+      return true;
+    };
+
+    const auto *IntraFnReachability = A.getAAFor<AAIntraFnReachability>(
+        *this, IRPosition::function(*RQI.From->getFunction()),
+        DepClassTy::OPTIONAL);
+
+    // Determine call like instructions that we can reach from the inst.
+    auto CheckCallBase = [&](Instruction &CBInst) {
+      // There are usually less nodes in the call graph, check inter function
+      // reachability first.
+      if (CheckReachableCallBase(cast<CallBase>(&CBInst)))
+        return true;
+      return IntraFnReachability && !IntraFnReachability->isAssumedReachable(
+                                        A, *RQI.From, CBInst, RQI.ExclusionSet);
+    };
+
+    bool UsedExclusionSet = /* conservative */ true;
+    bool UsedAssumedInformation = false;
+    if (!A.checkForAllCallLikeInstructions(CheckCallBase, *this,
+                                           UsedAssumedInformation,
+                                           /* CheckBBLivenessOnly */ true))
+      return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet,
+                            IsTemporaryRQI);
+
+    return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet,
+                          IsTemporaryRQI);
+  }
+
+  void trackStatistics() const override {}
+};
+} // namespace
+
+template <typename AAType>
+static std::optional<Constant *>
+askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
+                      const IRPosition &IRP, Type &Ty) {
+  if (!Ty.isIntegerTy())
+    return nullptr;
+
+  // This will also pass the call base context.
+  const auto *AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
+  if (!AA)
+    return nullptr;
+
+  std::optional<Constant *> COpt = AA->getAssumedConstant(A);
+
+  if (!COpt.has_value()) {
+    A.recordDependence(*AA, QueryingAA, DepClassTy::OPTIONAL);
+    return std::nullopt;
+  }
+  if (auto *C = *COpt) {
+    A.recordDependence(*AA, QueryingAA, DepClassTy::OPTIONAL);
+    return C;
+  }
+  return nullptr;
+}
+
+Value *AAPotentialValues::getSingleValue(
+    Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
+    SmallVectorImpl<AA::ValueAndContext> &Values) {
+  Type &Ty = *IRP.getAssociatedType();
+  std::optional<Value *> V;
+  for (auto &It : Values) {
+    V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
+    if (V.has_value() && !*V)
+      break;
+  }
+  if (!V.has_value())
+    return UndefValue::get(&Ty);
+  return *V;
+}
+
+namespace {
+struct AAPotentialValuesImpl : AAPotentialValues {
+  using StateType = PotentialLLVMValuesState;
+
+  AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
+      : AAPotentialValues(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    if (A.hasSimplificationCallback(getIRPosition())) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+    Value *Stripped = getAssociatedValue().stripPointerCasts();
+    auto *CE = dyn_cast<ConstantExpr>(Stripped);
+    if (isa<Constant>(Stripped) &&
+        (!CE || CE->getOpcode() != Instruction::ICmp)) {
+      addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
+               getAnchorScope());
+      indicateOptimisticFixpoint();
+      return;
+    }
+    AAPotentialValues::initialize(A);
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    std::string Str;
+    llvm::raw_string_ostream OS(Str);
+    OS << getState();
+    return OS.str();
+  }
+
+  template <typename AAType>
+  static std::optional<Value *> askOtherAA(Attributor &A,
+                                           const AbstractAttribute &AA,
+                                           const IRPosition &IRP, Type &Ty) {
+    if (isa<Constant>(IRP.getAssociatedValue()))
+      return &IRP.getAssociatedValue();
+    std::optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
+    if (!C)
+      return std::nullopt;
+    if (*C)
+      if (auto *CC = AA::getWithType(**C, Ty))
+        return CC;
+    return nullptr;
+  }
+
+  virtual void addValue(Attributor &A, StateType &State, Value &V,
+                        const Instruction *CtxI, AA::ValueScope S,
+                        Function *AnchorScope) const {
+
+    IRPosition ValIRP = IRPosition::value(V);
+    if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
+      for (const auto &U : CB->args()) {
+        if (U.get() != &V)
+          continue;
+        ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
+        break;
+      }
+    }
+
+    Value *VPtr = &V;
+    if (ValIRP.getAssociatedType()->isIntegerTy()) {
+      Type &Ty = *getAssociatedType();
+      std::optional<Value *> SimpleV =
+          askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
+      if (SimpleV.has_value() && !*SimpleV) {
+        auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
+            *this, ValIRP, DepClassTy::OPTIONAL);
+        if (PotentialConstantsAA && PotentialConstantsAA->isValidState()) {
+          for (const auto &It : PotentialConstantsAA->getAssumedSet())
+            State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
+          if (PotentialConstantsAA->undefIsContained())
+            State.unionAssumed({{*UndefValue::get(&Ty), nullptr}, S});
+          return;
+        }
+      }
+      if (!SimpleV.has_value())
+        return;
+
+      if (*SimpleV)
+        VPtr = *SimpleV;
+    }
+
+    if (isa<ConstantInt>(VPtr))
+      CtxI = nullptr;
+    if (!AA::isValidInScope(*VPtr, AnchorScope))
+      S = AA::ValueScope(S | AA::Interprocedural);
+
+    State.unionAssumed({{*VPtr, CtxI}, S});
+  }
+
+  /// Helper struct to tie a value+context pair together with the scope for
+  /// which this is the simplified version.
+  struct ItemInfo {
+    AA::ValueAndContext I;
+    AA::ValueScope S;
+
+    bool operator==(const ItemInfo &II) const {
+      return II.I == I && II.S == S;
+    };
+    bool operator<(const ItemInfo &II) const {
+      if (I == II.I)
+        return S < II.S;
+      return I < II.I;
+    };
+  };
+
+  bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
+    SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
+    for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
+      if (!(CS & S))
+        continue;
+
+      bool UsedAssumedInformation = false;
+      SmallVector<AA::ValueAndContext> Values;
+      if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
+                                        UsedAssumedInformation))
+        return false;
+
+      for (auto &It : Values)
+        ValueScopeMap[It] += CS;
+    }
+    for (auto &It : ValueScopeMap)
+      addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
+               AA::ValueScope(It.second), getAnchorScope());
+
+    return true;
+  }
+
+  void giveUpOnIntraprocedural(Attributor &A) {
+    auto NewS = StateType::getBestState(getState());
+    for (const auto &It : getAssumedSet()) {
+      if (It.second == AA::Intraprocedural)
+        continue;
+      addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
+               AA::Interprocedural, getAnchorScope());
+    }
+    assert(!undefIsContained() && "Undef should be an explicit value!");
+    addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
+             getAnchorScope());
+    getState() = NewS;
+  }
+
+  /// See AbstractState::indicatePessimisticFixpoint(...).
+  ChangeStatus indicatePessimisticFixpoint() override {
+    getState() = StateType::getBestState(getState());
+    getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
+    AAPotentialValues::indicateOptimisticFixpoint();
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    return indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    SmallVector<AA::ValueAndContext> Values;
+    for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
+      Values.clear();
+      if (!getAssumedSimplifiedValues(A, Values, S))
+        continue;
+      Value &OldV = getAssociatedValue();
+      if (isa<UndefValue>(OldV))
+        continue;
+      Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
+      if (!NewV || NewV == &OldV)
+        continue;
+      if (getCtxI() &&
+          !AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
+        continue;
+      if (A.changeAfterManifest(getIRPosition(), *NewV))
+        return ChangeStatus::CHANGED;
+    }
+    return ChangeStatus::UNCHANGED;
+  }
+
+  bool getAssumedSimplifiedValues(
+      Attributor &A, SmallVectorImpl<AA::ValueAndContext> &Values,
+      AA::ValueScope S, bool RecurseForSelectAndPHI = false) const override {
+    if (!isValidState())
+      return false;
+    bool UsedAssumedInformation = false;
+    for (const auto &It : getAssumedSet())
+      if (It.second & S) {
+        if (RecurseForSelectAndPHI && (isa<PHINode>(It.first.getValue()) ||
+                                       isa<SelectInst>(It.first.getValue()))) {
+          if (A.getAssumedSimplifiedValues(
+                  IRPosition::inst(*cast<Instruction>(It.first.getValue())),
+                  this, Values, S, UsedAssumedInformation))
+            continue;
+        }
+        Values.push_back(It.first);
+      }
+    assert(!undefIsContained() && "Undef should be an explicit value!");
+    return true;
+  }
+};
+
+struct AAPotentialValuesFloating : AAPotentialValuesImpl {
+  AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
+      : AAPotentialValuesImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto AssumedBefore = getAssumed();
+
+    genericValueTraversal(A, &getAssociatedValue());
+
+    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
+                                           : ChangeStatus::CHANGED;
+  }
+
+  /// Helper struct to remember which AAIsDead instances we actually used.
+  struct LivenessInfo {
+    const AAIsDead *LivenessAA = nullptr;
+    bool AnyDead = false;
+  };
+
+  /// Check if \p Cmp is a comparison we can simplify.
+  ///
+  /// We handle multiple cases, one in which at least one operand is an
+  /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
+  /// operand. Return true if successful, in that case Worklist will be updated.
+  bool handleCmp(Attributor &A, Value &Cmp, Value *LHS, Value *RHS,
+                 CmpInst::Predicate Pred, ItemInfo II,
+                 SmallVectorImpl<ItemInfo> &Worklist) {
+
+    // Simplify the operands first.
+    bool UsedAssumedInformation = false;
+    SmallVector<AA::ValueAndContext> LHSValues, RHSValues;
+    auto GetSimplifiedValues = [&](Value &V,
+                                   SmallVector<AA::ValueAndContext> &Values) {
+      if (!A.getAssumedSimplifiedValues(
+              IRPosition::value(V, getCallBaseContext()), this, Values,
+              AA::Intraprocedural, UsedAssumedInformation)) {
+        Values.clear();
+        Values.push_back(AA::ValueAndContext{V, II.I.getCtxI()});
+      }
+      return Values.empty();
+    };
+    if (GetSimplifiedValues(*LHS, LHSValues))
+      return true;
+    if (GetSimplifiedValues(*RHS, RHSValues))
+      return true;
+
+    LLVMContext &Ctx = LHS->getContext();
+
+    InformationCache &InfoCache = A.getInfoCache();
+    Instruction *CmpI = dyn_cast<Instruction>(&Cmp);
+    Function *F = CmpI ? CmpI->getFunction() : nullptr;
+    const auto *DT =
+        F ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F)
+          : nullptr;
+    const auto *TLI =
+        F ? A.getInfoCache().getTargetLibraryInfoForFunction(*F) : nullptr;
+    auto *AC =
+        F ? InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F)
+          : nullptr;
+
+    const DataLayout &DL = A.getDataLayout();
+    SimplifyQuery Q(DL, TLI, DT, AC, CmpI);
+
+    auto CheckPair = [&](Value &LHSV, Value &RHSV) {
+      if (isa<UndefValue>(LHSV) || isa<UndefValue>(RHSV)) {
+        addValue(A, getState(), *UndefValue::get(Cmp.getType()),
+                 /* CtxI */ nullptr, II.S, getAnchorScope());
+        return true;
+      }
+
+      // Handle the trivial case first in which we don't even need to think
+      // about null or non-null.
+      if (&LHSV == &RHSV &&
+          (CmpInst::isTrueWhenEqual(Pred) || CmpInst::isFalseWhenEqual(Pred))) {
+        Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
+                                          CmpInst::isTrueWhenEqual(Pred));
+        addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
+                 getAnchorScope());
+        return true;
+      }
+
+      auto *TypedLHS = AA::getWithType(LHSV, *LHS->getType());
+      auto *TypedRHS = AA::getWithType(RHSV, *RHS->getType());
+      if (TypedLHS && TypedRHS) {
+        Value *NewV = simplifyCmpInst(Pred, TypedLHS, TypedRHS, Q);
+        if (NewV && NewV != &Cmp) {
+          addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
+                   getAnchorScope());
+          return true;
+        }
+      }
+
+      // From now on we only handle equalities (==, !=).
+      if (!CmpInst::isEquality(Pred))
+        return false;
+
+      bool LHSIsNull = isa<ConstantPointerNull>(LHSV);
+      bool RHSIsNull = isa<ConstantPointerNull>(RHSV);
+      if (!LHSIsNull && !RHSIsNull)
+        return false;
+
+      // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
+      // non-nullptr operand and if we assume it's non-null we can conclude the
+      // result of the comparison.
+      assert((LHSIsNull || RHSIsNull) &&
+             "Expected nullptr versus non-nullptr comparison at this point");
+
+      // The index is the operand that we assume is not null.
+      unsigned PtrIdx = LHSIsNull;
+      bool IsKnownNonNull;
+      bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
+          A, this, IRPosition::value(*(PtrIdx ? &RHSV : &LHSV)),
+          DepClassTy::REQUIRED, IsKnownNonNull);
+      if (!IsAssumedNonNull)
+        return false;
+
+      // The new value depends on the predicate, true for != and false for ==.
+      Constant *NewV =
+          ConstantInt::get(Type::getInt1Ty(Ctx), Pred == CmpInst::ICMP_NE);
+      addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
+               getAnchorScope());
+      return true;
+    };
+
+    for (auto &LHSValue : LHSValues)
+      for (auto &RHSValue : RHSValues)
+        if (!CheckPair(*LHSValue.getValue(), *RHSValue.getValue()))
+          return false;
+    return true;
+  }
+
+  bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
+                        SmallVectorImpl<ItemInfo> &Worklist) {
+    const Instruction *CtxI = II.I.getCtxI();
+    bool UsedAssumedInformation = false;
+
+    std::optional<Constant *> C =
+        A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
+    bool NoValueYet = !C.has_value();
+    if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
+      return true;
+    if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
+      if (CI->isZero())
+        Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
+      else
+        Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
+    } else if (&SI == &getAssociatedValue()) {
+      // We could not simplify the condition, assume both values.
+      Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
+      Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
+    } else {
+      std::optional<Value *> SimpleV = A.getAssumedSimplified(
+          IRPosition::inst(SI), *this, UsedAssumedInformation, II.S);
+      if (!SimpleV.has_value())
+        return true;
+      if (*SimpleV) {
+        addValue(A, getState(), **SimpleV, CtxI, II.S, getAnchorScope());
+        return true;
+      }
+      return false;
+    }
+    return true;
+  }
+
+  bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
+                      SmallVectorImpl<ItemInfo> &Worklist) {
+    SmallSetVector<Value *, 4> PotentialCopies;
+    SmallSetVector<Instruction *, 4> PotentialValueOrigins;
+    bool UsedAssumedInformation = false;
+    if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
+                                        PotentialValueOrigins, *this,
+                                        UsedAssumedInformation,
+                                        /* OnlyExact */ true)) {
+      LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
+                           "loaded values for load instruction "
+                        << LI << "\n");
+      return false;
+    }
+
+    // Do not simplify loads that are only used in llvm.assume if we cannot also
+    // remove all stores that may feed into the load. The reason is that the
+    // assume is probably worth something as long as the stores are around.
+    InformationCache &InfoCache = A.getInfoCache();
+    if (InfoCache.isOnlyUsedByAssume(LI)) {
+      if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
+            if (!I || isa<AssumeInst>(I))
+              return true;
+            if (auto *SI = dyn_cast<StoreInst>(I))
+              return A.isAssumedDead(SI->getOperandUse(0), this,
+                                     /* LivenessAA */ nullptr,
+                                     UsedAssumedInformation,
+                                     /* CheckBBLivenessOnly */ false);
+            return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
+                                   UsedAssumedInformation,
+                                   /* CheckBBLivenessOnly */ false);
+          })) {
+        LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
+                             "and we cannot delete all the stores: "
+                          << LI << "\n");
+        return false;
+      }
+    }
+
+    // Values have to be dynamically unique or we loose the fact that a
+    // single llvm::Value might represent two runtime values (e.g.,
+    // stack locations in different recursive calls).
+    const Instruction *CtxI = II.I.getCtxI();
+    bool ScopeIsLocal = (II.S & AA::Intraprocedural);
+    bool AllLocal = ScopeIsLocal;
+    bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
+      AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
+      return AA::isDynamicallyUnique(A, *this, *PC);
+    });
+    if (!DynamicallyUnique) {
+      LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
+                           "values are dynamically unique: "
+                        << LI << "\n");
+      return false;
+    }
+
+    for (auto *PotentialCopy : PotentialCopies) {
+      if (AllLocal) {
+        Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
+      } else {
+        Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
+      }
+    }
+    if (!AllLocal && ScopeIsLocal)
+      addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
+    return true;
+  }
+
+  bool handlePHINode(
+      Attributor &A, PHINode &PHI, ItemInfo II,
+      SmallVectorImpl<ItemInfo> &Worklist,
+      SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
+    auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
+      LivenessInfo &LI = LivenessAAs[&F];
+      if (!LI.LivenessAA)
+        LI.LivenessAA = A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
+                                             DepClassTy::NONE);
+      return LI;
+    };
+
+    if (&PHI == &getAssociatedValue()) {
+      LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
+      const auto *CI =
+          A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(
+              *PHI.getFunction());
+
+      Cycle *C = nullptr;
+      bool CyclePHI = mayBeInCycle(CI, &PHI, /* HeaderOnly */ true, &C);
+      for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
+        BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
+        if (LI.LivenessAA &&
+            LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
+          LI.AnyDead = true;
+          continue;
+        }
+        Value *V = PHI.getIncomingValue(u);
+        if (V == &PHI)
+          continue;
+
+        // If the incoming value is not the PHI but an instruction in the same
+        // cycle we might have multiple versions of it flying around.
+        if (CyclePHI && isa<Instruction>(V) &&
+            (!C || C->contains(cast<Instruction>(V)->getParent())))
+          return false;
+
+        Worklist.push_back({{*V, IncomingBB->getTerminator()}, II.S});
+      }
+      return true;
+    }
+
+    bool UsedAssumedInformation = false;
+    std::optional<Value *> SimpleV = A.getAssumedSimplified(
+        IRPosition::inst(PHI), *this, UsedAssumedInformation, II.S);
+    if (!SimpleV.has_value())
+      return true;
+    if (!(*SimpleV))
+      return false;
+    addValue(A, getState(), **SimpleV, &PHI, II.S, getAnchorScope());
+    return true;
+  }
+
+  /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
+  /// simplify any operand of the instruction \p I. Return true if successful,
+  /// in that case Worklist will be updated.
+  bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
+                         SmallVectorImpl<ItemInfo> &Worklist) {
+    bool SomeSimplified = false;
+    bool UsedAssumedInformation = false;
+
+    SmallVector<Value *, 8> NewOps(I.getNumOperands());
+    int Idx = 0;
+    for (Value *Op : I.operands()) {
+      const auto &SimplifiedOp = A.getAssumedSimplified(
+          IRPosition::value(*Op, getCallBaseContext()), *this,
+          UsedAssumedInformation, AA::Intraprocedural);
+      // If we are not sure about any operand we are not sure about the entire
+      // instruction, we'll wait.
+      if (!SimplifiedOp.has_value())
+        return true;
+
+      if (*SimplifiedOp)
+        NewOps[Idx] = *SimplifiedOp;
+      else
+        NewOps[Idx] = Op;
+
+      SomeSimplified |= (NewOps[Idx] != Op);
+      ++Idx;
+    }
+
+    // We won't bother with the InstSimplify interface if we didn't simplify any
+    // operand ourselves.
+    if (!SomeSimplified)
+      return false;
+
+    InformationCache &InfoCache = A.getInfoCache();
+    Function *F = I.getFunction();
+    const auto *DT =
+        InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
+    const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+    auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
+
+    const DataLayout &DL = I.getModule()->getDataLayout();
+    SimplifyQuery Q(DL, TLI, DT, AC, &I);
+    Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q);
+    if (!NewV || NewV == &I)
+      return false;
+
+    LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
+                      << *NewV << "\n");
+    Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
+    return true;
+  }
+
+  bool simplifyInstruction(
+      Attributor &A, Instruction &I, ItemInfo II,
+      SmallVectorImpl<ItemInfo> &Worklist,
+      SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
+    if (auto *CI = dyn_cast<CmpInst>(&I))
+      return handleCmp(A, *CI, CI->getOperand(0), CI->getOperand(1),
+                       CI->getPredicate(), II, Worklist);
+
+    switch (I.getOpcode()) {
+    case Instruction::Select:
+      return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
+    case Instruction::PHI:
+      return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
+    case Instruction::Load:
+      return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
+    default:
+      return handleGenericInst(A, I, II, Worklist);
+    };
+    return false;
+  }
+
+  void genericValueTraversal(Attributor &A, Value *InitialV) {
+    SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
+
+    SmallSet<ItemInfo, 16> Visited;
+    SmallVector<ItemInfo, 16> Worklist;
+    Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
+
+    int Iteration = 0;
+    do {
+      ItemInfo II = Worklist.pop_back_val();
+      Value *V = II.I.getValue();
+      assert(V);
+      const Instruction *CtxI = II.I.getCtxI();
+      AA::ValueScope S = II.S;
+
+      // Check if we should process the current value. To prevent endless
+      // recursion keep a record of the values we followed!
+      if (!Visited.insert(II).second)
+        continue;
+
+      // Make sure we limit the compile time for complex expressions.
+      if (Iteration++ >= MaxPotentialValuesIterations) {
+        LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
+                          << Iteration << "!\n");
+        addValue(A, getState(), *V, CtxI, S, getAnchorScope());
+        continue;
+      }
+
+      // Explicitly look through calls with a "returned" attribute if we do
+      // not have a pointer as stripPointerCasts only works on them.
+      Value *NewV = nullptr;
+      if (V->getType()->isPointerTy()) {
+        NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
+      } else {
+        if (auto *CB = dyn_cast<CallBase>(V))
+          if (auto *Callee =
+                  dyn_cast_if_present<Function>(CB->getCalledOperand())) {
+            for (Argument &Arg : Callee->args())
+              if (Arg.hasReturnedAttr()) {
+                NewV = CB->getArgOperand(Arg.getArgNo());
+                break;
+              }
+          }
+      }
+      if (NewV && NewV != V) {
+        Worklist.push_back({{*NewV, CtxI}, S});
+        continue;
+      }
+
+      if (auto *CE = dyn_cast<ConstantExpr>(V)) {
+        if (CE->getOpcode() == Instruction::ICmp)
+          if (handleCmp(A, *CE, CE->getOperand(0), CE->getOperand(1),
+                        CmpInst::Predicate(CE->getPredicate()), II, Worklist))
+            continue;
+      }
+
+      if (auto *I = dyn_cast<Instruction>(V)) {
+        if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
+          continue;
+      }
+
+      if (V != InitialV || isa<Argument>(V))
+        if (recurseForValue(A, IRPosition::value(*V), II.S))
+          continue;
+
+      // If we haven't stripped anything we give up.
+      if (V == InitialV && CtxI == getCtxI()) {
+        indicatePessimisticFixpoint();
+        return;
+      }
+
+      addValue(A, getState(), *V, CtxI, S, getAnchorScope());
+    } while (!Worklist.empty());
+
+    // If we actually used liveness information so we have to record a
+    // dependence.
+    for (auto &It : LivenessAAs)
+      if (It.second.AnyDead)
+        A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
+  using Base = AAPotentialValuesImpl;
+  AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    auto &Arg = cast<Argument>(getAssociatedValue());
+    if (Arg.hasPointeeInMemoryValueAttr())
+      indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto AssumedBefore = getAssumed();
+
+    unsigned ArgNo = getCalleeArgNo();
+
+    bool UsedAssumedInformation = false;
+    SmallVector<AA::ValueAndContext> Values;
+    auto CallSitePred = [&](AbstractCallSite ACS) {
+      const auto CSArgIRP = IRPosition::callsite_argument(ACS, ArgNo);
+      if (CSArgIRP.getPositionKind() == IRP_INVALID)
+        return false;
+
+      if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
+                                        AA::Interprocedural,
+                                        UsedAssumedInformation))
+        return false;
+
+      return isValidState();
+    };
+
+    if (!A.checkForAllCallSites(CallSitePred, *this,
+                                /* RequireAllCallSites */ true,
+                                UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    Function *Fn = getAssociatedFunction();
+    bool AnyNonLocal = false;
+    for (auto &It : Values) {
+      if (isa<Constant>(It.getValue())) {
+        addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
+                 getAnchorScope());
+        continue;
+      }
+      if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
+        return indicatePessimisticFixpoint();
+
+      if (auto *Arg = dyn_cast<Argument>(It.getValue()))
+        if (Arg->getParent() == Fn) {
+          addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
+                   getAnchorScope());
+          continue;
+        }
+      addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
+               getAnchorScope());
+      AnyNonLocal = true;
+    }
+    assert(!undefIsContained() && "Undef should be an explicit value!");
+    if (AnyNonLocal)
+      giveUpOnIntraprocedural(A);
+
+    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
+                                           : ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialValuesReturned : public AAPotentialValuesFloating {
+  using Base = AAPotentialValuesFloating;
+  AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
+      : Base(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(..).
+  void initialize(Attributor &A) override {
+    Function *F = getAssociatedFunction();
+    if (!F || F->isDeclaration() || F->getReturnType()->isVoidTy()) {
+      indicatePessimisticFixpoint();
+      return;
+    }
+
+    for (Argument &Arg : F->args())
+      if (Arg.hasReturnedAttr()) {
+        addValue(A, getState(), Arg, nullptr, AA::AnyScope, F);
+        ReturnedArg = &Arg;
+        break;
+      }
+    if (!A.isFunctionIPOAmendable(*F) ||
+        A.hasSimplificationCallback(getIRPosition())) {
+      if (!ReturnedArg)
+        indicatePessimisticFixpoint();
+      else
+        indicateOptimisticFixpoint();
+    }
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto AssumedBefore = getAssumed();
+    bool UsedAssumedInformation = false;
+
+    SmallVector<AA::ValueAndContext> Values;
+    Function *AnchorScope = getAnchorScope();
+    auto HandleReturnedValue = [&](Value &V, Instruction *CtxI,
+                                   bool AddValues) {
+      for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
+        Values.clear();
+        if (!A.getAssumedSimplifiedValues(IRPosition::value(V), this, Values, S,
+                                          UsedAssumedInformation,
+                                          /* RecurseForSelectAndPHI */ true))
+          return false;
+        if (!AddValues)
+          continue;
+        for (const AA::ValueAndContext &VAC : Values)
+          addValue(A, getState(), *VAC.getValue(),
+                   VAC.getCtxI() ? VAC.getCtxI() : CtxI, S, AnchorScope);
+      }
+      return true;
+    };
+
+    if (ReturnedArg) {
+      HandleReturnedValue(*ReturnedArg, nullptr, true);
+    } else {
+      auto RetInstPred = [&](Instruction &RetI) {
+        bool AddValues = true;
+        if (isa<PHINode>(RetI.getOperand(0)) ||
+            isa<SelectInst>(RetI.getOperand(0))) {
+          addValue(A, getState(), *RetI.getOperand(0), &RetI, AA::AnyScope,
+                   AnchorScope);
+          AddValues = false;
+        }
+        return HandleReturnedValue(*RetI.getOperand(0), &RetI, AddValues);
+      };
+
+      if (!A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
+                                     UsedAssumedInformation,
+                                     /* CheckBBLivenessOnly */ true))
+        return indicatePessimisticFixpoint();
+    }
+
+    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
+                                           : ChangeStatus::CHANGED;
+  }
+
+  void addValue(Attributor &A, StateType &State, Value &V,
+                const Instruction *CtxI, AA::ValueScope S,
+                Function *AnchorScope) const override {
+    Function *F = getAssociatedFunction();
+    if (auto *CB = dyn_cast<CallBase>(&V))
+      if (CB->getCalledOperand() == F)
+        return;
+    Base::addValue(A, State, V, CtxI, S, AnchorScope);
+  }
+
+  ChangeStatus manifest(Attributor &A) override {
+    if (ReturnedArg)
+      return ChangeStatus::UNCHANGED;
+    SmallVector<AA::ValueAndContext> Values;
+    if (!getAssumedSimplifiedValues(A, Values, AA::ValueScope::Intraprocedural,
+                                    /* RecurseForSelectAndPHI */ true))
+      return ChangeStatus::UNCHANGED;
+    Value *NewVal = getSingleValue(A, *this, getIRPosition(), Values);
+    if (!NewVal)
+      return ChangeStatus::UNCHANGED;
+
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    if (auto *Arg = dyn_cast<Argument>(NewVal)) {
+      STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
+                      "Number of function with unique return");
+      Changed |= A.manifestAttrs(
+          IRPosition::argument(*Arg),
+          {Attribute::get(Arg->getContext(), Attribute::Returned)});
+      STATS_DECLTRACK_ARG_ATTR(returned);
+    }
+
+    auto RetInstPred = [&](Instruction &RetI) {
+      Value *RetOp = RetI.getOperand(0);
+      if (isa<UndefValue>(RetOp) || RetOp == NewVal)
+        return true;
+      if (AA::isValidAtPosition({*NewVal, RetI}, A.getInfoCache()))
+        if (A.changeUseAfterManifest(RetI.getOperandUse(0), *NewVal))
+          Changed = ChangeStatus::CHANGED;
+      return true;
+    };
+    bool UsedAssumedInformation = false;
+    (void)A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
+                                    UsedAssumedInformation,
+                                    /* CheckBBLivenessOnly */ true);
+    return Changed;
+  }
+
+  ChangeStatus indicatePessimisticFixpoint() override {
+    return AAPotentialValues::indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override{
+      STATS_DECLTRACK_FNRET_ATTR(potential_values)}
+
+  /// The argumented with an existing `returned` attribute.
+  Argument *ReturnedArg = nullptr;
+};
+
+struct AAPotentialValuesFunction : AAPotentialValuesImpl {
+  AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
+      : AAPotentialValuesImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
+                     "not be called");
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FN_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
+  AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
+      : AAPotentialValuesFunction(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CS_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
+  AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAPotentialValuesImpl(IRP, A) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto AssumedBefore = getAssumed();
+
+    Function *Callee = getAssociatedFunction();
+    if (!Callee)
+      return indicatePessimisticFixpoint();
+
+    bool UsedAssumedInformation = false;
+    auto *CB = cast<CallBase>(getCtxI());
+    if (CB->isMustTailCall() &&
+        !A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
+                         UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
+                                      Values, AA::Intraprocedural,
+                                      UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    Function *Caller = CB->getCaller();
+
+    bool AnyNonLocal = false;
+    for (auto &It : Values) {
+      Value *V = It.getValue();
+      std::optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
+          V, *CB, *this, UsedAssumedInformation);
+      if (!CallerV.has_value()) {
+        // Nothing to do as long as no value was determined.
+        continue;
+      }
+      V = *CallerV ? *CallerV : V;
+      if (AA::isDynamicallyUnique(A, *this, *V) &&
+          AA::isValidInScope(*V, Caller)) {
+        if (*CallerV) {
+          SmallVector<AA::ValueAndContext> ArgValues;
+          IRPosition IRP = IRPosition::value(*V);
+          if (auto *Arg = dyn_cast<Argument>(V))
+            if (Arg->getParent() == CB->getCalledOperand())
+              IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
+          if (recurseForValue(A, IRP, AA::AnyScope))
+            continue;
+        }
+        addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
+      } else {
+        AnyNonLocal = true;
+        break;
+      }
+    }
+    if (AnyNonLocal) {
+      Values.clear();
+      if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
+                                        Values, AA::Interprocedural,
+                                        UsedAssumedInformation))
+        return indicatePessimisticFixpoint();
+      AnyNonLocal = false;
+      getState() = PotentialLLVMValuesState::getBestState();
+      for (auto &It : Values) {
+        Value *V = It.getValue();
+        if (!AA::isDynamicallyUnique(A, *this, *V))
+          return indicatePessimisticFixpoint();
+        if (AA::isValidInScope(*V, Caller)) {
+          addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
+        } else {
+          AnyNonLocal = true;
+          addValue(A, getState(), *V, CB, AA::Interprocedural,
+                   getAnchorScope());
+        }
+      }
+      if (AnyNonLocal)
+        giveUpOnIntraprocedural(A);
+    }
+    return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
+                                           : ChangeStatus::CHANGED;
+  }
+
+  ChangeStatus indicatePessimisticFixpoint() override {
+    return AAPotentialValues::indicatePessimisticFixpoint();
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(potential_values)
+  }
+};
+
+struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
+  AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAPotentialValuesFloating(IRP, A) {}
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(potential_values)
+  }
+};
+} // namespace
+
+/// ---------------------- Assumption Propagation ------------------------------
+namespace {
+struct AAAssumptionInfoImpl : public AAAssumptionInfo {
+  AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
+                       const DenseSet<StringRef> &Known)
+      : AAAssumptionInfo(IRP, A, Known) {}
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // Don't manifest a universal set if it somehow made it here.
+    if (getKnown().isUniversal())
+      return ChangeStatus::UNCHANGED;
+
+    const IRPosition &IRP = getIRPosition();
+    return A.manifestAttrs(
+        IRP,
+        Attribute::get(IRP.getAnchorValue().getContext(), AssumptionAttrKey,
+                       llvm::join(getAssumed().getSet(), ",")),
+        /* ForceReplace */ true);
+  }
+
+  bool hasAssumption(const StringRef Assumption) const override {
+    return isValidState() && setContains(Assumption);
+  }
+
+  /// See AbstractAttribute::getAsStr()
+  const std::string getAsStr(Attributor *A) const override {
+    const SetContents &Known = getKnown();
+    const SetContents &Assumed = getAssumed();
+
+    const std::string KnownStr =
+        llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
+    const std::string AssumedStr =
+        (Assumed.isUniversal())
+            ? "Universal"
+            : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
+
+    return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
+  }
+};
+
+/// Propagates assumption information from parent functions to all of their
+/// successors. An assumption can be propagated if the containing function
+/// dominates the called function.
+///
+/// We start with a "known" set of assumptions already valid for the associated
+/// function and an "assumed" set that initially contains all possible
+/// assumptions. The assumed set is inter-procedurally updated by narrowing its
+/// contents as concrete values are known. The concrete values are seeded by the
+/// first nodes that are either entries into the call graph, or contains no
+/// assumptions. Each node is updated as the intersection of the assumed state
+/// with all of its predecessors.
+struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
+  AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
+      : AAAssumptionInfoImpl(IRP, A,
+                             getAssumptions(*IRP.getAssociatedFunction())) {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    bool Changed = false;
+
+    auto CallSitePred = [&](AbstractCallSite ACS) {
+      const auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>(
+          *this, IRPosition::callsite_function(*ACS.getInstruction()),
+          DepClassTy::REQUIRED);
+      if (!AssumptionAA)
+        return false;
+      // Get the set of assumptions shared by all of this function's callers.
+      Changed |= getIntersection(AssumptionAA->getAssumed());
+      return !getAssumed().empty() || !getKnown().empty();
+    };
+
+    bool UsedAssumedInformation = false;
+    // Get the intersection of all assumptions held by this node's predecessors.
+    // If we don't know all the call sites then this is either an entry into the
+    // call graph or an empty node. This node is known to only contain its own
+    // assumptions and can be propagated to its successors.
+    if (!A.checkForAllCallSites(CallSitePred, *this, true,
+                                UsedAssumedInformation))
+      return indicatePessimisticFixpoint();
+
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  void trackStatistics() const override {}
+};
+
+/// Assumption Info defined for call sites.
+struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
+
+  AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
+      : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
+    A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
+  }
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
+    auto *AssumptionAA =
+        A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
+    if (!AssumptionAA)
+      return indicatePessimisticFixpoint();
+    bool Changed = getIntersection(AssumptionAA->getAssumed());
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+
+private:
+  /// Helper to initialized the known set as all the assumptions this call and
+  /// the callee contain.
+  DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
+    const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
+    auto Assumptions = getAssumptions(CB);
+    if (const Function *F = CB.getCaller())
+      set_union(Assumptions, getAssumptions(*F));
+    if (Function *F = IRP.getAssociatedFunction())
+      set_union(Assumptions, getAssumptions(*F));
+    return Assumptions;
+  }
+};
+} // namespace
+
+AACallGraphNode *AACallEdgeIterator::operator*() const {
+  return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
+      A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
+}
+
+void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
+
+/// ------------------------ UnderlyingObjects ---------------------------------
+
+namespace {
+struct AAUnderlyingObjectsImpl
+    : StateWrapper<BooleanState, AAUnderlyingObjects> {
+  using BaseTy = StateWrapper<BooleanState, AAUnderlyingObjects>;
+  AAUnderlyingObjectsImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return std::string("UnderlyingObjects ") +
+           (isValidState()
+                ? (std::string("inter #") +
+                   std::to_string(InterAssumedUnderlyingObjects.size()) +
+                   " objs" + std::string(", intra #") +
+                   std::to_string(IntraAssumedUnderlyingObjects.size()) +
+                   " objs")
+                : "<invalid>");
+  }
+
+  /// See AbstractAttribute::trackStatistics()
+  void trackStatistics() const override {}
+
+  /// See AbstractAttribute::updateImpl(...).
+  ChangeStatus updateImpl(Attributor &A) override {
+    auto &Ptr = getAssociatedValue();
+
+    auto DoUpdate = [&](SmallSetVector<Value *, 8> &UnderlyingObjects,
+                        AA::ValueScope Scope) {
+      bool UsedAssumedInformation = false;
+      SmallPtrSet<Value *, 8> SeenObjects;
+      SmallVector<AA::ValueAndContext> Values;
+
+      if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), *this, Values,
+                                        Scope, UsedAssumedInformation))
+        return UnderlyingObjects.insert(&Ptr);
+
+      bool Changed = false;
+
+      for (unsigned I = 0; I < Values.size(); ++I) {
+        auto &VAC = Values[I];
+        auto *Obj = VAC.getValue();
+        Value *UO = getUnderlyingObject(Obj);
+        if (UO && UO != VAC.getValue() && SeenObjects.insert(UO).second) {
+          const auto *OtherAA = A.getAAFor<AAUnderlyingObjects>(
+              *this, IRPosition::value(*UO), DepClassTy::OPTIONAL);
+          auto Pred = [&Values](Value &V) {
+            Values.emplace_back(V, nullptr);
+            return true;
+          };
+
+          if (!OtherAA || !OtherAA->forallUnderlyingObjects(Pred, Scope))
+            llvm_unreachable(
+                "The forall call should not return false at this position");
+
+          continue;
+        }
+
+        if (isa<SelectInst>(Obj)) {
+          Changed |= handleIndirect(A, *Obj, UnderlyingObjects, Scope);
+          continue;
+        }
+        if (auto *PHI = dyn_cast<PHINode>(Obj)) {
+          // Explicitly look through PHIs as we do not care about dynamically
+          // uniqueness.
+          for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
+            Changed |= handleIndirect(A, *PHI->getIncomingValue(u),
+                                      UnderlyingObjects, Scope);
+          }
+          continue;
+        }
+
+        Changed |= UnderlyingObjects.insert(Obj);
+      }
+
+      return Changed;
+    };
+
+    bool Changed = false;
+    Changed |= DoUpdate(IntraAssumedUnderlyingObjects, AA::Intraprocedural);
+    Changed |= DoUpdate(InterAssumedUnderlyingObjects, AA::Interprocedural);
+
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  bool forallUnderlyingObjects(
+      function_ref<bool(Value &)> Pred,
+      AA::ValueScope Scope = AA::Interprocedural) const override {
+    if (!isValidState())
+      return Pred(getAssociatedValue());
+
+    auto &AssumedUnderlyingObjects = Scope == AA::Intraprocedural
+                                         ? IntraAssumedUnderlyingObjects
+                                         : InterAssumedUnderlyingObjects;
+    for (Value *Obj : AssumedUnderlyingObjects)
+      if (!Pred(*Obj))
+        return false;
+
+    return true;
+  }
+
+private:
+  /// Handle the case where the value is not the actual underlying value, such
+  /// as a phi node or a select instruction.
+  bool handleIndirect(Attributor &A, Value &V,
+                      SmallSetVector<Value *, 8> &UnderlyingObjects,
+                      AA::ValueScope Scope) {
+    bool Changed = false;
+    const auto *AA = A.getAAFor<AAUnderlyingObjects>(
+        *this, IRPosition::value(V), DepClassTy::OPTIONAL);
+    auto Pred = [&](Value &V) {
+      Changed |= UnderlyingObjects.insert(&V);
+      return true;
+    };
+    if (!AA || !AA->forallUnderlyingObjects(Pred, Scope))
+      llvm_unreachable(
+          "The forall call should not return false at this position");
+    return Changed;
+  }
+
+  /// All the underlying objects collected so far via intra procedural scope.
+  SmallSetVector<Value *, 8> IntraAssumedUnderlyingObjects;
+  /// All the underlying objects collected so far via inter procedural scope.
+  SmallSetVector<Value *, 8> InterAssumedUnderlyingObjects;
+};
+
+struct AAUnderlyingObjectsFloating final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsFloating(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+
+struct AAUnderlyingObjectsArgument final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsArgument(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+
+struct AAUnderlyingObjectsCallSite final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsCallSite(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+
+struct AAUnderlyingObjectsCallSiteArgument final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+
+struct AAUnderlyingObjectsReturned final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsReturned(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+
+struct AAUnderlyingObjectsCallSiteReturned final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+
+struct AAUnderlyingObjectsFunction final : AAUnderlyingObjectsImpl {
+  AAUnderlyingObjectsFunction(const IRPosition &IRP, Attributor &A)
+      : AAUnderlyingObjectsImpl(IRP, A) {}
+};
+} // namespace
+
+/// ------------------------ Global Value Info  -------------------------------
+namespace {
+struct AAGlobalValueInfoFloating : public AAGlobalValueInfo {
+  AAGlobalValueInfoFloating(const IRPosition &IRP, Attributor &A)
+      : AAGlobalValueInfo(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {}
+
+  bool checkUse(Attributor &A, const Use &U, bool &Follow,
+                SmallVectorImpl<const Value *> &Worklist) {
+    Instruction *UInst = dyn_cast<Instruction>(U.getUser());
+    if (!UInst) {
+      Follow = true;
+      return true;
+    }
+
+    LLVM_DEBUG(dbgs() << "[AAGlobalValueInfo] Check use: " << *U.get() << " in "
+                      << *UInst << "\n");
+
+    if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
+      int Idx = &Cmp->getOperandUse(0) == &U;
+      if (isa<Constant>(Cmp->getOperand(Idx)))
+        return true;
+      return U == &getAnchorValue();
+    }
+
+    // Explicitly catch return instructions.
+    if (isa<ReturnInst>(UInst)) {
+      auto CallSitePred = [&](AbstractCallSite ACS) {
+        Worklist.push_back(ACS.getInstruction());
+        return true;
+      };
+      bool UsedAssumedInformation = false;
+      // TODO: We should traverse the uses or add a "non-call-site" CB.
+      if (!A.checkForAllCallSites(CallSitePred, *UInst->getFunction(),
+                                  /*RequireAllCallSites=*/true, this,
+                                  UsedAssumedInformation))
+        return false;
+      return true;
+    }
+
+    // For now we only use special logic for call sites. However, the tracker
+    // itself knows about a lot of other non-capturing cases already.
+    auto *CB = dyn_cast<CallBase>(UInst);
+    if (!CB)
+      return false;
+    // Direct calls are OK uses.
+    if (CB->isCallee(&U))
+      return true;
+    // Non-argument uses are scary.
+    if (!CB->isArgOperand(&U))
+      return false;
+    // TODO: Iterate callees.
+    auto *Fn = dyn_cast<Function>(CB->getCalledOperand());
+    if (!Fn || !A.isFunctionIPOAmendable(*Fn))
+      return false;
+
+    unsigned ArgNo = CB->getArgOperandNo(&U);
+    Worklist.push_back(Fn->getArg(ArgNo));
+    return true;
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+    unsigned NumUsesBefore = Uses.size();
+
+    SmallPtrSet<const Value *, 8> Visited;
+    SmallVector<const Value *> Worklist;
+    Worklist.push_back(&getAnchorValue());
+
+    auto UsePred = [&](const Use &U, bool &Follow) -> bool {
+      Uses.insert(&U);
+      switch (DetermineUseCaptureKind(U, nullptr)) {
+      case UseCaptureKind::NO_CAPTURE:
+        return checkUse(A, U, Follow, Worklist);
+      case UseCaptureKind::MAY_CAPTURE:
+        return checkUse(A, U, Follow, Worklist);
+      case UseCaptureKind::PASSTHROUGH:
+        Follow = true;
+        return true;
+      }
+      return true;
+    };
+    auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
+      Uses.insert(&OldU);
+      return true;
+    };
+
+    while (!Worklist.empty()) {
+      const Value *V = Worklist.pop_back_val();
+      if (!Visited.insert(V).second)
+        continue;
+      if (!A.checkForAllUses(UsePred, *this, *V,
+                             /* CheckBBLivenessOnly */ true,
+                             DepClassTy::OPTIONAL,
+                             /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
+        return indicatePessimisticFixpoint();
+      }
+    }
+
+    return Uses.size() == NumUsesBefore ? ChangeStatus::UNCHANGED
+                                        : ChangeStatus::CHANGED;
+  }
+
+  bool isPotentialUse(const Use &U) const override {
+    return !isValidState() || Uses.contains(&U);
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    return ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return "[" + std::to_string(Uses.size()) + " uses]";
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(GlobalValuesTracked);
+  }
+
+private:
+  /// Set of (transitive) uses of this GlobalValue.
+  SmallPtrSet<const Use *, 8> Uses;
+};
+} // namespace
+
+/// ------------------------ Indirect Call Info  -------------------------------
+namespace {
+struct AAIndirectCallInfoCallSite : public AAIndirectCallInfo {
+  AAIndirectCallInfoCallSite(const IRPosition &IRP, Attributor &A)
+      : AAIndirectCallInfo(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees);
+    if (!MD && !A.isClosedWorldModule())
+      return;
+
+    if (MD) {
+      for (const auto &Op : MD->operands())
+        if (Function *Callee = mdconst::dyn_extract_or_null<Function>(Op))
+          PotentialCallees.insert(Callee);
+    } else if (A.isClosedWorldModule()) {
+      ArrayRef<Function *> IndirectlyCallableFunctions =
+          A.getInfoCache().getIndirectlyCallableFunctions(A);
+      PotentialCallees.insert(IndirectlyCallableFunctions.begin(),
+                              IndirectlyCallableFunctions.end());
+    }
+
+    if (PotentialCallees.empty())
+      indicateOptimisticFixpoint();
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+    CallBase *CB = cast<CallBase>(getCtxI());
+    const Use &CalleeUse = CB->getCalledOperandUse();
+    Value *FP = CB->getCalledOperand();
+
+    SmallSetVector<Function *, 4> AssumedCalleesNow;
+    bool AllCalleesKnownNow = AllCalleesKnown;
+
+    auto CheckPotentialCalleeUse = [&](Function &PotentialCallee,
+                                       bool &UsedAssumedInformation) {
+      const auto *GIAA = A.getAAFor<AAGlobalValueInfo>(
+          *this, IRPosition::value(PotentialCallee), DepClassTy::OPTIONAL);
+      if (!GIAA || GIAA->isPotentialUse(CalleeUse))
+        return true;
+      UsedAssumedInformation = !GIAA->isAtFixpoint();
+      return false;
+    };
+
+    auto AddPotentialCallees = [&]() {
+      for (auto *PotentialCallee : PotentialCallees) {
+        bool UsedAssumedInformation = false;
+        if (CheckPotentialCalleeUse(*PotentialCallee, UsedAssumedInformation))
+          AssumedCalleesNow.insert(PotentialCallee);
+      }
+    };
+
+    // Use simplification to find potential callees, if !callees was present,
+    // fallback to that set if necessary.
+    bool UsedAssumedInformation = false;
+    SmallVector<AA::ValueAndContext> Values;
+    if (!A.getAssumedSimplifiedValues(IRPosition::value(*FP), this, Values,
+                                      AA::ValueScope::AnyScope,
+                                      UsedAssumedInformation)) {
+      if (PotentialCallees.empty())
+        return indicatePessimisticFixpoint();
+      AddPotentialCallees();
+    }
+
+    // Try to find a reason for \p Fn not to be a potential callee. If none was
+    // found, add it to the assumed callees set.
+    auto CheckPotentialCallee = [&](Function &Fn) {
+      if (!PotentialCallees.empty() && !PotentialCallees.count(&Fn))
+        return false;
+
+      auto &CachedResult = FilterResults[&Fn];
+      if (CachedResult.has_value())
+        return CachedResult.value();
+
+      bool UsedAssumedInformation = false;
+      if (!CheckPotentialCalleeUse(Fn, UsedAssumedInformation)) {
+        if (!UsedAssumedInformation)
+          CachedResult = false;
+        return false;
+      }
+
+      int NumFnArgs = Fn.arg_size();
+      int NumCBArgs = CB->arg_size();
+
+      // Check if any excess argument (which we fill up with poison) is known to
+      // be UB on undef.
+      for (int I = NumCBArgs; I < NumFnArgs; ++I) {
+        bool IsKnown = false;
+        if (AA::hasAssumedIRAttr<Attribute::NoUndef>(
+                A, this, IRPosition::argument(*Fn.getArg(I)),
+                DepClassTy::OPTIONAL, IsKnown)) {
+          if (IsKnown)
+            CachedResult = false;
+          return false;
+        }
+      }
+
+      CachedResult = true;
+      return true;
+    };
+
+    // Check simplification result, prune known UB callees, also restrict it to
+    // the !callees set, if present.
+    for (auto &VAC : Values) {
+      if (isa<UndefValue>(VAC.getValue()))
+        continue;
+      if (isa<ConstantPointerNull>(VAC.getValue()) &&
+          VAC.getValue()->getType()->getPointerAddressSpace() == 0)
+        continue;
+      // TODO: Check for known UB, e.g., poison + noundef.
+      if (auto *VACFn = dyn_cast<Function>(VAC.getValue())) {
+        if (CheckPotentialCallee(*VACFn))
+          AssumedCalleesNow.insert(VACFn);
+        continue;
+      }
+      if (!PotentialCallees.empty()) {
+        AddPotentialCallees();
+        break;
+      }
+      AllCalleesKnownNow = false;
+    }
+
+    if (AssumedCalleesNow == AssumedCallees &&
+        AllCalleesKnown == AllCalleesKnownNow)
+      return ChangeStatus::UNCHANGED;
+
+    std::swap(AssumedCallees, AssumedCalleesNow);
+    AllCalleesKnown = AllCalleesKnownNow;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    // If we can't specialize at all, give up now.
+    if (!AllCalleesKnown && AssumedCallees.empty())
+      return ChangeStatus::UNCHANGED;
+
+    CallBase *CB = cast<CallBase>(getCtxI());
+    bool UsedAssumedInformation = false;
+    if (A.isAssumedDead(*CB, this, /*LivenessAA=*/nullptr,
+                        UsedAssumedInformation))
+      return ChangeStatus::UNCHANGED;
+
+    ChangeStatus Changed = ChangeStatus::UNCHANGED;
+    Value *FP = CB->getCalledOperand();
+    if (FP->getType()->getPointerAddressSpace())
+      FP = new AddrSpaceCastInst(FP, PointerType::get(FP->getType(), 0),
+                                 FP->getName() + ".as0", CB->getIterator());
+
+    bool CBIsVoid = CB->getType()->isVoidTy();
+    BasicBlock::iterator IP = CB->getIterator();
+    FunctionType *CSFT = CB->getFunctionType();
+    SmallVector<Value *> CSArgs(CB->arg_begin(), CB->arg_end());
+
+    // If we know all callees and there are none, the call site is (effectively)
+    // dead (or UB).
+    if (AssumedCallees.empty()) {
+      assert(AllCalleesKnown &&
+             "Expected all callees to be known if there are none.");
+      A.changeToUnreachableAfterManifest(CB);
+      return ChangeStatus::CHANGED;
+    }
+
+    // Special handling for the single callee case.
+    if (AllCalleesKnown && AssumedCallees.size() == 1) {
+      auto *NewCallee = AssumedCallees.front();
+      if (isLegalToPromote(*CB, NewCallee)) {
+        promoteCall(*CB, NewCallee, nullptr);
+        return ChangeStatus::CHANGED;
+      }
+      Instruction *NewCall =
+          CallInst::Create(FunctionCallee(CSFT, NewCallee), CSArgs,
+                           CB->getName(), CB->getIterator());
+      if (!CBIsVoid)
+        A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewCall);
+      A.deleteAfterManifest(*CB);
+      return ChangeStatus::CHANGED;
+    }
+
+    // For each potential value we create a conditional
+    //
+    // ```
+    // if (ptr == value) value(args);
+    // else ...
+    // ```
+    //
+    bool SpecializedForAnyCallees = false;
+    bool SpecializedForAllCallees = AllCalleesKnown;
+    ICmpInst *LastCmp = nullptr;
+    SmallVector<Function *, 8> SkippedAssumedCallees;
+    SmallVector<std::pair<CallInst *, Instruction *>> NewCalls;
+    for (Function *NewCallee : AssumedCallees) {
+      if (!A.shouldSpecializeCallSiteForCallee(*this, *CB, *NewCallee)) {
+        SkippedAssumedCallees.push_back(NewCallee);
+        SpecializedForAllCallees = false;
+        continue;
+      }
+      SpecializedForAnyCallees = true;
+
+      LastCmp = new ICmpInst(IP, llvm::CmpInst::ICMP_EQ, FP, NewCallee);
+      Instruction *ThenTI =
+          SplitBlockAndInsertIfThen(LastCmp, IP, /* Unreachable */ false);
+      BasicBlock *CBBB = CB->getParent();
+      A.registerManifestAddedBasicBlock(*ThenTI->getParent());
+      A.registerManifestAddedBasicBlock(*IP->getParent());
+      auto *SplitTI = cast<BranchInst>(LastCmp->getNextNode());
+      BasicBlock *ElseBB;
+      if (&*IP == CB) {
+        ElseBB = BasicBlock::Create(ThenTI->getContext(), "",
+                                    ThenTI->getFunction(), CBBB);
+        A.registerManifestAddedBasicBlock(*ElseBB);
+        IP = BranchInst::Create(CBBB, ElseBB)->getIterator();
+        SplitTI->replaceUsesOfWith(CBBB, ElseBB);
+      } else {
+        ElseBB = IP->getParent();
+        ThenTI->replaceUsesOfWith(ElseBB, CBBB);
+      }
+      CastInst *RetBC = nullptr;
+      CallInst *NewCall = nullptr;
+      if (isLegalToPromote(*CB, NewCallee)) {
+        auto *CBClone = cast<CallBase>(CB->clone());
+        CBClone->insertBefore(ThenTI);
+        NewCall = &cast<CallInst>(promoteCall(*CBClone, NewCallee, &RetBC));
+      } else {
+        NewCall = CallInst::Create(FunctionCallee(CSFT, NewCallee), CSArgs,
+                                   CB->getName(), ThenTI->getIterator());
+      }
+      NewCalls.push_back({NewCall, RetBC});
+    }
+
+    auto AttachCalleeMetadata = [&](CallBase &IndirectCB) {
+      if (!AllCalleesKnown)
+        return ChangeStatus::UNCHANGED;
+      MDBuilder MDB(IndirectCB.getContext());
+      MDNode *Callees = MDB.createCallees(SkippedAssumedCallees);
+      IndirectCB.setMetadata(LLVMContext::MD_callees, Callees);
+      return ChangeStatus::CHANGED;
+    };
+
+    if (!SpecializedForAnyCallees)
+      return AttachCalleeMetadata(*CB);
+
+    // Check if we need the fallback indirect call still.
+    if (SpecializedForAllCallees) {
+      LastCmp->replaceAllUsesWith(ConstantInt::getTrue(LastCmp->getContext()));
+      LastCmp->eraseFromParent();
+      new UnreachableInst(IP->getContext(), IP);
+      IP->eraseFromParent();
+    } else {
+      auto *CBClone = cast<CallInst>(CB->clone());
+      CBClone->setName(CB->getName());
+      CBClone->insertBefore(*IP->getParent(), IP);
+      NewCalls.push_back({CBClone, nullptr});
+      AttachCalleeMetadata(*CBClone);
+    }
+
+    // Check if we need a PHI to merge the results.
+    if (!CBIsVoid) {
+      auto *PHI = PHINode::Create(CB->getType(), NewCalls.size(),
+                                  CB->getName() + ".phi",
+                                  CB->getParent()->getFirstInsertionPt());
+      for (auto &It : NewCalls) {
+        CallBase *NewCall = It.first;
+        Instruction *CallRet = It.second ? It.second : It.first;
+        if (CallRet->getType() == CB->getType())
+          PHI->addIncoming(CallRet, CallRet->getParent());
+        else if (NewCall->getType()->isVoidTy())
+          PHI->addIncoming(PoisonValue::get(CB->getType()),
+                           NewCall->getParent());
+        else
+          llvm_unreachable("Call return should match or be void!");
+      }
+      A.changeAfterManifest(IRPosition::callsite_returned(*CB), *PHI);
+    }
+
+    A.deleteAfterManifest(*CB);
+    Changed = ChangeStatus::CHANGED;
+
+    return Changed;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    return std::string(AllCalleesKnown ? "eliminate" : "specialize") +
+           " indirect call site with " + std::to_string(AssumedCallees.size()) +
+           " functions";
+  }
+
+  void trackStatistics() const override {
+    if (AllCalleesKnown) {
+      STATS_DECLTRACK(
+          Eliminated, CallSites,
+          "Number of indirect call sites eliminated via specialization")
+    } else {
+      STATS_DECLTRACK(Specialized, CallSites,
+                      "Number of indirect call sites specialized")
+    }
+  }
+
+  bool foreachCallee(function_ref<bool(Function *)> CB) const override {
+    return isValidState() && AllCalleesKnown && all_of(AssumedCallees, CB);
+  }
+
+private:
+  /// Map to remember filter results.
+  DenseMap<Function *, std::optional<bool>> FilterResults;
+
+  /// If the !callee metadata was present, this set will contain all potential
+  /// callees (superset).
+  SmallSetVector<Function *, 4> PotentialCallees;
+
+  /// This set contains all currently assumed calllees, which might grow over
+  /// time.
+  SmallSetVector<Function *, 4> AssumedCallees;
+
+  /// Flag to indicate if all possible callees are in the AssumedCallees set or
+  /// if there could be others.
+  bool AllCalleesKnown = true;
+};
+} // namespace
+
+/// ------------------------ Address Space  ------------------------------------
+namespace {
+struct AAAddressSpaceImpl : public AAAddressSpace {
+  AAAddressSpaceImpl(const IRPosition &IRP, Attributor &A)
+      : AAAddressSpace(IRP, A) {}
+
+  int32_t getAddressSpace() const override {
+    assert(isValidState() && "the AA is invalid");
+    return AssumedAddressSpace;
+  }
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    assert(getAssociatedType()->isPtrOrPtrVectorTy() &&
+           "Associated value is not a pointer");
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+    int32_t OldAddressSpace = AssumedAddressSpace;
+    auto *AUO = A.getOrCreateAAFor<AAUnderlyingObjects>(getIRPosition(), this,
+                                                        DepClassTy::REQUIRED);
+    auto Pred = [&](Value &Obj) {
+      if (isa<UndefValue>(&Obj))
+        return true;
+      return takeAddressSpace(Obj.getType()->getPointerAddressSpace());
+    };
+
+    if (!AUO->forallUnderlyingObjects(Pred))
+      return indicatePessimisticFixpoint();
+
+    return OldAddressSpace == AssumedAddressSpace ? ChangeStatus::UNCHANGED
+                                                  : ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+    Value *AssociatedValue = &getAssociatedValue();
+    Value *OriginalValue = peelAddrspacecast(AssociatedValue);
+    if (getAddressSpace() == NoAddressSpace ||
+        static_cast<uint32_t>(getAddressSpace()) ==
+            getAssociatedType()->getPointerAddressSpace())
+      return ChangeStatus::UNCHANGED;
+
+    Type *NewPtrTy = PointerType::get(getAssociatedType()->getContext(),
+                                      static_cast<uint32_t>(getAddressSpace()));
+    bool UseOriginalValue =
+        OriginalValue->getType()->getPointerAddressSpace() ==
+        static_cast<uint32_t>(getAddressSpace());
+
+    bool Changed = false;
+
+    auto MakeChange = [&](Instruction *I, Use &U) {
+      Changed = true;
+      if (UseOriginalValue) {
+        A.changeUseAfterManifest(U, *OriginalValue);
+        return;
+      }
+      Instruction *CastInst = new AddrSpaceCastInst(OriginalValue, NewPtrTy);
+      CastInst->insertBefore(cast<Instruction>(I));
+      A.changeUseAfterManifest(U, *CastInst);
+    };
+
+    auto Pred = [&](const Use &U, bool &) {
+      if (U.get() != AssociatedValue)
+        return true;
+      auto *Inst = dyn_cast<Instruction>(U.getUser());
+      if (!Inst)
+        return true;
+      // This is a WA to make sure we only change uses from the corresponding
+      // CGSCC if the AA is run on CGSCC instead of the entire module.
+      if (!A.isRunOn(Inst->getFunction()))
+        return true;
+      if (isa<LoadInst>(Inst))
+        MakeChange(Inst, const_cast<Use &>(U));
+      if (isa<StoreInst>(Inst)) {
+        // We only make changes if the use is the pointer operand.
+        if (U.getOperandNo() == 1)
+          MakeChange(Inst, const_cast<Use &>(U));
+      }
+      return true;
+    };
+
+    // It doesn't matter if we can't check all uses as we can simply
+    // conservatively ignore those that can not be visited.
+    (void)A.checkForAllUses(Pred, *this, getAssociatedValue(),
+                            /* CheckBBLivenessOnly */ true);
+
+    return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    if (!isValidState())
+      return "addrspace(<invalid>)";
+    return "addrspace(" +
+           (AssumedAddressSpace == NoAddressSpace
+                ? "none"
+                : std::to_string(AssumedAddressSpace)) +
+           ")";
+  }
+
+private:
+  int32_t AssumedAddressSpace = NoAddressSpace;
+
+  bool takeAddressSpace(int32_t AS) {
+    if (AssumedAddressSpace == NoAddressSpace) {
+      AssumedAddressSpace = AS;
+      return true;
+    }
+    return AssumedAddressSpace == AS;
+  }
+
+  static Value *peelAddrspacecast(Value *V) {
+    if (auto *I = dyn_cast<AddrSpaceCastInst>(V))
+      return peelAddrspacecast(I->getPointerOperand());
+    if (auto *C = dyn_cast<ConstantExpr>(V))
+      if (C->getOpcode() == Instruction::AddrSpaceCast)
+        return peelAddrspacecast(C->getOperand(0));
+    return V;
+  }
+};
+
+struct AAAddressSpaceFloating final : AAAddressSpaceImpl {
+  AAAddressSpaceFloating(const IRPosition &IRP, Attributor &A)
+      : AAAddressSpaceImpl(IRP, A) {}
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(addrspace);
+  }
+};
+
+struct AAAddressSpaceReturned final : AAAddressSpaceImpl {
+  AAAddressSpaceReturned(const IRPosition &IRP, Attributor &A)
+      : AAAddressSpaceImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: we don't rewrite function argument for now because it will need to
+    // rewrite the function signature and all call sites.
+    (void)indicatePessimisticFixpoint();
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(addrspace);
+  }
+};
+
+struct AAAddressSpaceCallSiteReturned final : AAAddressSpaceImpl {
+  AAAddressSpaceCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAAddressSpaceImpl(IRP, A) {}
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(addrspace);
+  }
+};
+
+struct AAAddressSpaceArgument final : AAAddressSpaceImpl {
+  AAAddressSpaceArgument(const IRPosition &IRP, Attributor &A)
+      : AAAddressSpaceImpl(IRP, A) {}
+
+  void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(addrspace); }
+};
+
+struct AAAddressSpaceCallSiteArgument final : AAAddressSpaceImpl {
+  AAAddressSpaceCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAAddressSpaceImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: we don't rewrite call site argument for now because it will need to
+    // rewrite the function signature of the callee.
+    (void)indicatePessimisticFixpoint();
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(addrspace);
+  }
+};
+} // namespace
+
+/// ----------- Allocation Info ----------
+namespace {
+struct AAAllocationInfoImpl : public AAAllocationInfo {
+  AAAllocationInfoImpl(const IRPosition &IRP, Attributor &A)
+      : AAAllocationInfo(IRP, A) {}
+
+  std::optional<TypeSize> getAllocatedSize() const override {
+    assert(isValidState() && "the AA is invalid");
+    return AssumedAllocatedSize;
+  }
+
+  const NewOffsetsTy &getNewOffsets() const override {
+    assert(isValidState() && "the AA is invalid");
+    return NewComputedOffsets;
+  }
+
+  std::optional<TypeSize> findInitialAllocationSize(Instruction *I,
+                                                    const DataLayout &DL) {
+
+    // TODO: implement case for malloc like instructions
+    switch (I->getOpcode()) {
+    case Instruction::Alloca: {
+      AllocaInst *AI = cast<AllocaInst>(I);
+      return AI->getAllocationSize(DL);
+    }
+    default:
+      return std::nullopt;
+    }
+  }
+
+  ChangeStatus updateImpl(Attributor &A) override {
+
+    const IRPosition &IRP = getIRPosition();
+    Instruction *I = IRP.getCtxI();
+
+    // TODO: update check for malloc like calls
+    if (!isa<AllocaInst>(I))
+      return indicatePessimisticFixpoint();
+
+    bool IsKnownNoCapture;
+    if (!AA::hasAssumedIRAttr<Attribute::NoCapture>(
+            A, this, IRP, DepClassTy::OPTIONAL, IsKnownNoCapture))
+      return indicatePessimisticFixpoint();
+
+    const AAPointerInfo *PI =
+        A.getOrCreateAAFor<AAPointerInfo>(IRP, *this, DepClassTy::REQUIRED);
+
+    if (!PI)
+      return indicatePessimisticFixpoint();
+
+    if (!PI->getState().isValidState())
+      return indicatePessimisticFixpoint();
+
+    const DataLayout &DL = A.getDataLayout();
+    const auto AllocationSize = findInitialAllocationSize(I, DL);
+
+    // If allocation size is nullopt, we give up.
+    if (!AllocationSize)
+      return indicatePessimisticFixpoint();
+
+    // For zero sized allocations, we give up.
+    // Since we can't reduce further
+    if (*AllocationSize == 0)
+      return indicatePessimisticFixpoint();
+
+    int64_t NumBins = PI->numOffsetBins();
+
+    if (NumBins == 0) {
+      auto NewAllocationSize = std::optional<TypeSize>(TypeSize(0, false));
+      if (!changeAllocationSize(NewAllocationSize))
+        return ChangeStatus::UNCHANGED;
+      return ChangeStatus::CHANGED;
+    }
+
+    // For each access bin
+    // Compute its new start Offset and store the results in a new map
+    // (NewOffsetBins).
+    int64_t PrevBinEndOffset = 0;
+    bool ChangedOffsets = false;
+    for (AAPointerInfo::OffsetBinsTy::const_iterator It = PI->begin();
+         It != PI->end(); It++) {
+      const AA::RangeTy &OldRange = It->getFirst();
+      int64_t NewStartOffset = PrevBinEndOffset;
+      int64_t NewEndOffset = NewStartOffset + OldRange.Size;
+      PrevBinEndOffset = NewEndOffset;
+
+      ChangedOffsets |= setNewOffsets(OldRange, OldRange.Offset, NewStartOffset,
+                                      OldRange.Size);
+    }
+
+    // Set the new size of the allocation, the new size of the Allocation should
+    // be the size of NewEndOffset * 8, in bits.
+    auto NewAllocationSize =
+        std::optional<TypeSize>(TypeSize(PrevBinEndOffset * 8, false));
+
+    if (!changeAllocationSize(NewAllocationSize))
+      return ChangeStatus::UNCHANGED;
+
+    if (!ChangedOffsets)
+      return ChangeStatus::UNCHANGED;
+
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::manifest(...).
+  ChangeStatus manifest(Attributor &A) override {
+
+    assert(isValidState() &&
+           "Manifest should only be called if the state is valid.");
+
+    bool Changed = false;
+    const IRPosition &IRP = getIRPosition();
+    Instruction *I = IRP.getCtxI();
+
+    auto FixedAllocatedSizeInBits = getAllocatedSize()->getFixedValue();
+
+    unsigned long NumBytesToAllocate = (FixedAllocatedSizeInBits + 7) / 8;
+    switch (I->getOpcode()) {
+    // TODO: add case for malloc like calls
+    case Instruction::Alloca: {
+
+      AllocaInst *AI = cast<AllocaInst>(I);
+
+      Type *CharType = Type::getInt8Ty(I->getContext());
+
+      Type *CharArrayType = ArrayType::get(CharType, NumBytesToAllocate);
+
+      BasicBlock::iterator insertPt = AI->getIterator();
+      insertPt = std::next(insertPt);
+      AllocaInst *NewAllocaInst = new AllocaInst(
+          CharArrayType, AI->getAddressSpace(), AI->getName(), insertPt);
+
+      Changed |= A.changeAfterManifest(IRPosition::inst(*AI), *NewAllocaInst);
+      break;
+    }
+    default:
+      break;
+    }
+
+    const AAPointerInfo *PI =
+        A.getOrCreateAAFor<AAPointerInfo>(IRP, *this, DepClassTy::REQUIRED);
+
+    if (!PI)
+      return ChangeStatus::UNCHANGED;
+
+    if (!PI->getState().isValidState())
+      return ChangeStatus::UNCHANGED;
+
+    const auto &NewOffsetsMap = getNewOffsets();
+    for (AAPointerInfo::OffsetBinsTy::const_iterator It = PI->begin();
+         It != PI->end(); It++) {
+
+      const auto &OldOffsetRange = It->getFirst();
+
+      // If the OldOffsetRange is not in the map, offsets for that bin did not
+      // change We should just continue and skip changing the offsets in that
+      // case
+      if (!NewOffsetsMap.contains(OldOffsetRange))
+        continue;
+
+      const auto &NewOffsetRange = NewOffsetsMap.lookup(OldOffsetRange);
+      int64_t ShiftValue = OldOffsetRange.Offset - NewOffsetRange.Offset;
+      for (const auto AccIndex : It->getSecond()) {
+
+        const auto &AccessInstruction = PI->getBinAccess(AccIndex);
+        auto *LocalInst = AccessInstruction.getLocalInst();
+
+        switch (LocalInst->getOpcode()) {
+        case Instruction::Load: {
+          LoadInst *OldLoadInst = cast<LoadInst>(LocalInst);
+          Value *PointerOperand = OldLoadInst->getPointerOperand();
+
+          // We need to shift the old start offset by the difference between the
+          // Old offset and the New offset.
+          Value *ShiftValueForPointerOperand = ConstantInt::get(
+              OldLoadInst->getContext(),
+              APInt(32, ShiftValue));
+          // Cast ptr to 32 bit integer
+          CastInst *PtrOperandToInt = PtrToIntInst::CreatePointerCast(
+              PointerOperand, Type::getInt32Ty(OldLoadInst->getContext()), "",
+              OldLoadInst);
+          // Subtract shift amount from old offset
+          BinaryOperator *NewPointerOperandInt = BinaryOperator::Create(
+              Instruction::Sub, PtrOperandToInt, ShiftValueForPointerOperand,
+              "", OldLoadInst);
+          // Convert Int to ptr.
+          CastInst *IntToPtr = new IntToPtrInst(
+              NewPointerOperandInt, OldLoadInst->getPointerOperandType(), "",
+              OldLoadInst);
+          LoadInst *NewLoadInst =
+              new LoadInst(OldLoadInst->getType(), IntToPtr,
+                           OldLoadInst->getName(), OldLoadInst);
+          Changed |= A.changeAfterManifest(IRPosition::inst(*OldLoadInst),
+                                           *NewLoadInst);
+          break;
+        }
+        case Instruction::Store: {
+          StoreInst *OldStoreInst = cast<StoreInst>(LocalInst);
+          Value *PointerOperand = OldStoreInst->getPointerOperand();
+
+          Value *ShiftValueForPointerOperand = ConstantInt::get(
+              OldStoreInst->getContext(),
+              APInt(32, ShiftValue));
+
+          // Cast ptr to 32 bit integer
+          CastInst *PtrOperandToInt = PtrToIntInst::CreatePointerCast(
+              PointerOperand, Type::getInt32Ty(OldStoreInst->getContext()), "",
+              OldStoreInst);
+          // Subtract shift amount from old offset
+          BinaryOperator *NewPointerOperandInt = BinaryOperator::Create(
+              Instruction::Sub, PtrOperandToInt, ShiftValueForPointerOperand,
+              "", OldStoreInst);
+          // Convert Int to ptr.
+          CastInst *IntToPtr = new IntToPtrInst(
+              NewPointerOperandInt, OldStoreInst->getPointerOperandType(), "",
+              OldStoreInst);
+          StoreInst *NewStoreInst = new StoreInst(
+              OldStoreInst->getValueOperand(), IntToPtr, OldStoreInst);
+          Changed |= A.changeAfterManifest(IRPosition::inst(*OldStoreInst),
+                                           *NewStoreInst);
+          break;
+        }
+        }
+      }
+    }
+
+    if (!Changed)
+      return ChangeStatus::UNCHANGED;
+    return ChangeStatus::CHANGED;
+  }
+
+  /// See AbstractAttribute::getAsStr().
+  const std::string getAsStr(Attributor *A) const override {
+    if (!isValidState())
+      return "allocationinfo(<invalid>)";
+    return "allocationinfo(" +
+           (AssumedAllocatedSize == HasNoAllocationSize
+                ? "none"
+                : std::to_string(AssumedAllocatedSize->getFixedValue())) +
+           ")";
+  }
+
+  void dumpNewOffsetBins(raw_ostream &O) {
+
+    O << "Printing Map from [OldOffsetsRange] : [NewOffsetsRange] if the "
+         "offsets changed."
+      << "\n";
+    const auto &NewOffsetsMap = getNewOffsets();
+    for (auto It = NewOffsetsMap.begin(); It != NewOffsetsMap.end(); It++) {
+
+      const auto &OldRange = It->getFirst();
+      const auto &NewRange = It->getSecond();
+
+      O << "[" << OldRange.Offset << "," << OldRange.Offset + OldRange.Size
+        << "] : ";
+      O << "[" << NewRange.Offset << "," << NewRange.Offset + NewRange.Size
+        << "]";
+      O << "\n";
+    }
+  }
+
+private:
+  std::optional<TypeSize> AssumedAllocatedSize = HasNoAllocationSize;
+  NewOffsetsTy NewComputedOffsets;
+
+  // Maintain the computed allocation size of the object.
+  // Returns (bool) weather the size of the allocation was modified or not.
+  bool changeAllocationSize(std::optional<TypeSize> Size) {
+    if (AssumedAllocatedSize == HasNoAllocationSize ||
+        AssumedAllocatedSize != Size) {
+      AssumedAllocatedSize = Size;
+      return true;
+    }
+    return false;
+  }
+
+  // Maps an old byte range to its new Offset range in the new allocation.
+  // Returns (bool) weather the old byte range's offsets changed or not.
+  bool setNewOffsets(const AA::RangeTy &OldRange, int64_t OldOffset,
+                     int64_t NewComputedOffset, int64_t Size) {
+
+    if (OldOffset == NewComputedOffset)
+      return false;
+
+    AA::RangeTy &NewRange = NewComputedOffsets.getOrInsertDefault(OldRange);
+    NewRange.Offset = NewComputedOffset;
+    NewRange.Size = Size;
+
+    return true;
+  }
+};
+
+struct AAAllocationInfoFloating : AAAllocationInfoImpl {
+  AAAllocationInfoFloating(const IRPosition &IRP, Attributor &A)
+      : AAAllocationInfoImpl(IRP, A) {}
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FLOATING_ATTR(allocationinfo);
+  }
+};
+
+struct AAAllocationInfoReturned : AAAllocationInfoImpl {
+  AAAllocationInfoReturned(const IRPosition &IRP, Attributor &A)
+      : AAAllocationInfoImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+    // TODO: we don't rewrite function argument for now because it will need to
+    // rewrite the function signature and all call sites
+    (void)indicatePessimisticFixpoint();
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_FNRET_ATTR(allocationinfo);
+  }
+};
+
+struct AAAllocationInfoCallSiteReturned : AAAllocationInfoImpl {
+  AAAllocationInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
+      : AAAllocationInfoImpl(IRP, A) {}
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSRET_ATTR(allocationinfo);
+  }
+};
+
+struct AAAllocationInfoArgument : AAAllocationInfoImpl {
+  AAAllocationInfoArgument(const IRPosition &IRP, Attributor &A)
+      : AAAllocationInfoImpl(IRP, A) {}
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_ARG_ATTR(allocationinfo);
+  }
+};
+
+struct AAAllocationInfoCallSiteArgument : AAAllocationInfoImpl {
+  AAAllocationInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
+      : AAAllocationInfoImpl(IRP, A) {}
+
+  /// See AbstractAttribute::initialize(...).
+  void initialize(Attributor &A) override {
+
+    (void)indicatePessimisticFixpoint();
+  }
+
+  void trackStatistics() const override {
+    STATS_DECLTRACK_CSARG_ATTR(allocationinfo);
+  }
+};
+} // namespace
+
+const char AANoUnwind::ID = 0;
+const char AANoSync::ID = 0;
+const char AANoFree::ID = 0;
+const char AANonNull::ID = 0;
+const char AAMustProgress::ID = 0;
+const char AANoRecurse::ID = 0;
+const char AANonConvergent::ID = 0;
+const char AAWillReturn::ID = 0;
+const char AAUndefinedBehavior::ID = 0;
+const char AANoAlias::ID = 0;
+const char AAIntraFnReachability::ID = 0;
+const char AANoReturn::ID = 0;
+const char AAIsDead::ID = 0;
+const char AADereferenceable::ID = 0;
+const char AAAlign::ID = 0;
+const char AAInstanceInfo::ID = 0;
+const char AANoCapture::ID = 0;
+const char AAValueSimplify::ID = 0;
+const char AAHeapToStack::ID = 0;
+const char AAPrivatizablePtr::ID = 0;
+const char AAMemoryBehavior::ID = 0;
+const char AAMemoryLocation::ID = 0;
+const char AAValueConstantRange::ID = 0;
+const char AAPotentialConstantValues::ID = 0;
+const char AAPotentialValues::ID = 0;
+const char AANoUndef::ID = 0;
+const char AANoFPClass::ID = 0;
+const char AACallEdges::ID = 0;
+const char AAInterFnReachability::ID = 0;
+const char AAPointerInfo::ID = 0;
+const char AAAssumptionInfo::ID = 0;
+const char AAUnderlyingObjects::ID = 0;
+const char AAAddressSpace::ID = 0;
+const char AAAllocationInfo::ID = 0;
+const char AAIndirectCallInfo::ID = 0;
+const char AAGlobalValueInfo::ID = 0;
+const char AADenormalFPMath::ID = 0;
+
+// Macro magic to create the static generator function for attributes that
+// follow the naming scheme.
+
+#define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
+  case IRPosition::PK:                                                         \
+    llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
+
+#define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
+  case IRPosition::PK:                                                         \
+    AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
+    ++NumAAs;                                                                  \
+    break;
+
+#define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
+  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
+    CLASS *AA = nullptr;                                                       \
+    switch (IRP.getPositionKind()) {                                           \
+      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
+      SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
+      SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
+      SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
+      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
+      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
+    }                                                                          \
+    return *AA;                                                                \
+  }
+
+#define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
+  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
+    CLASS *AA = nullptr;                                                       \
+    switch (IRP.getPositionKind()) {                                           \
+      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
+      SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
+      SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
+    }                                                                          \
+    return *AA;                                                                \
+  }
+
+#define CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(POS, SUFFIX, CLASS)         \
+  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
+    CLASS *AA = nullptr;                                                       \
+    switch (IRP.getPositionKind()) {                                           \
+      SWITCH_PK_CREATE(CLASS, IRP, POS, SUFFIX)                                \
+    default:                                                                   \
+      llvm_unreachable("Cannot create " #CLASS " for position otherthan " #POS \
+                       " position!");                                          \
+    }                                                                          \
+    return *AA;                                                                \
+  }
+
+#define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
+  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
+    CLASS *AA = nullptr;                                                       \
+    switch (IRP.getPositionKind()) {                                           \
+      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
+    }                                                                          \
+    return *AA;                                                                \
+  }
+
+#define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
+  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
+    CLASS *AA = nullptr;                                                       \
+    switch (IRP.getPositionKind()) {                                           \
+      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
+      SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
+      SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
+      SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
+      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
+      SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
+      SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
+    }                                                                          \
+    return *AA;                                                                \
+  }
+
+#define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
+  CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
+    CLASS *AA = nullptr;                                                       \
+    switch (IRP.getPositionKind()) {                                           \
+      SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
+      SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
+      SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
+    }                                                                          \
+    return *AA;                                                                \
+  }
+
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMustProgress)
+
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFPClass)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAddressSpace)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAllocationInfo)
+
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUnderlyingObjects)
+
+CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(IRP_CALL_SITE, CallSite,
+                                           AAIndirectCallInfo)
+CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(IRP_FLOAT, Floating,
+                                           AAGlobalValueInfo)
+
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonConvergent)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIntraFnReachability)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInterFnReachability)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADenormalFPMath)
+
+CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
+
+#undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION
+#undef SWITCH_PK_CREATE
+#undef SWITCH_PK_INV



More information about the llvm-commits mailing list