[llvm] Fold X * (2^N + 1) >> N -> X when N is half the bitwidth of X (PR #92909)

via llvm-commits llvm-commits at lists.llvm.org
Tue May 21 05:46:25 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-llvm-transforms

Author: AtariDreams (AtariDreams)

<details>
<summary>Changes</summary>

This depends on #<!-- -->92907 being merged first. Once that is done, I will update the title and description of this.

---
Full diff: https://github.com/llvm/llvm-project/pull/92909.diff


4 Files Affected:

- (modified) llvm/lib/Analysis/InstructionSimplify.cpp (+39) 
- (modified) llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (+47-20) 
- (modified) llvm/test/Transforms/InstCombine/ashr-lshr.ll (+281) 
- (modified) llvm/test/Transforms/InstCombine/lshr.ll (+28-8) 


``````````diff
diff --git a/llvm/lib/Analysis/InstructionSimplify.cpp b/llvm/lib/Analysis/InstructionSimplify.cpp
index 53a974c5294c6..15f71dcb87620 100644
--- a/llvm/lib/Analysis/InstructionSimplify.cpp
+++ b/llvm/lib/Analysis/InstructionSimplify.cpp
@@ -1479,6 +1479,29 @@ static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
   if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
     return X;
 
+  // Look for a "splat" mul pattern - it replicates bits across each half
+  // of a value, so a right shift is just a mask of the low bits:
+  const APInt *MulC;
+  const APInt *ShAmt;
+  if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
+      match(Op1, m_APInt(ShAmt))) {
+    unsigned ShAmtC = ShAmt->getZExtValue();
+    unsigned BitWidth = ShAmt->getBitWidth();
+    if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+        MulC->logBase2() == ShAmtC) {
+      // FIXME: This condition should be covered by the computeKnownBits, but
+      // for some reason it is not, so keep this in for now. This has no
+      // negative effects, but KnownBits should be able to infer a number of
+      // leading bits based on 2^N + 1 not wrapping, as that means 2^N must not
+      // wrap either, which means the top N bits of X must be 0.
+      if (ShAmtC * 2 == BitWidth)
+        return X;
+      const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q);
+      if (XKnown.countMaxActiveBits() <= ShAmtC)
+        return X;
+    }
+  }
+
   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
   // We can return X as we do in the above case since OR alters no bits in X.
   // SimplifyDemandedBits in InstCombine can do more general optimization for
@@ -1523,6 +1546,22 @@ static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
     return X;
 
+  const APInt *MulC;
+  const APInt *ShAmt;
+  if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
+      match(Op1, m_APInt(ShAmt)) &&
+      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) {
+    unsigned ShAmtC = ShAmt->getZExtValue();
+    unsigned BitWidth = ShAmt->getBitWidth();
+    if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+        MulC->logBase2() == ShAmtC &&
+        ShAmtC < BitWidth - 1) /* Minus 1 for the sign bit */ {
+      KnownBits KnownX = computeKnownBits(X, /* Depth */ 0, Q);
+      if (KnownX.countMaxActiveBits() <= ShAmtC)
+        return X;
+    }
+  }
+
   // Arithmetic shifting an all-sign-bit value is a no-op.
   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index ba297111d945f..8dd0f2f61756c 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -1456,30 +1456,42 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
     }
 
     const APInt *MulC;
-    if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
-      // Look for a "splat" mul pattern - it replicates bits across each half of
-      // a value, so a right shift is just a mask of the low bits:
-      // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
-      // TODO: Generalize to allow more than just half-width shifts?
-      if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
-          MulC->logBase2() == ShAmtC)
-        return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
+    if (match(Op0, m_OneUse(m_NUWMul(m_Value(X), m_APInt(MulC))))) {
+      if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+          MulC->logBase2() == ShAmtC) {
+
+        // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
+        auto *NewAdd = BinaryOperator::CreateNUWAdd(
+            X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+                                  I.isExact()));
+        NewAdd->setHasNoSignedWrap(
+            cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
+        return NewAdd;
+      }
 
       // The one-use check is not strictly necessary, but codegen may not be
       // able to invert the transform and perf may suffer with an extra mul
       // instruction.
-      if (Op0->hasOneUse()) {
-        APInt NewMulC = MulC->lshr(ShAmtC);
-        // if c is divisible by (1 << ShAmtC):
-        // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
-        if (MulC->eq(NewMulC.shl(ShAmtC))) {
-          auto *NewMul =
-              BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
-          assert(ShAmtC != 0 &&
-                 "lshr X, 0 should be handled by simplifyLShrInst.");
-          NewMul->setHasNoSignedWrap(true);
-          return NewMul;
-        }
+      APInt NewMulC = MulC->lshr(ShAmtC);
+      // if c is divisible by (1 << ShAmtC):
+      // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
+      if (MulC->eq(NewMulC.shl(ShAmtC))) {
+        auto *NewMul =
+            BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
+        assert(ShAmtC != 0 &&
+               "lshr X, 0 should be handled by simplifyLShrInst.");
+        NewMul->setHasNoSignedWrap(true);
+        return NewMul;
+      }
+    }
+
+    // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
+    if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
+      if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+          MulC->logBase2() == ShAmtC) {
+        return BinaryOperator::CreateNSWAdd(
+            X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+                                  I.isExact()));
       }
     }
 
@@ -1686,6 +1698,21 @@ Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
         return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
     }
+
+    const APInt *MulC;
+    if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC)))) &&
+        (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+         MulC->logBase2() == ShAmt &&
+         (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ {
+
+      // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N))
+      auto *NewAdd = BinaryOperator::CreateNSWAdd(
+          X,
+          Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "", I.isExact()));
+      NewAdd->setHasNoUnsignedWrap(
+          cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap());
+      return NewAdd;
+    }
   }
 
   const SimplifyQuery Q = SQ.getWithInstruction(&I);
diff --git a/llvm/test/Transforms/InstCombine/ashr-lshr.ll b/llvm/test/Transforms/InstCombine/ashr-lshr.ll
index ac206dc7999dd..f426755dfc9dd 100644
--- a/llvm/test/Transforms/InstCombine/ashr-lshr.ll
+++ b/llvm/test/Transforms/InstCombine/ashr-lshr.ll
@@ -604,3 +604,284 @@ define <2 x i8> @ashr_known_pos_exact_vec(<2 x i8> %x, <2 x i8> %y) {
   %r = ashr exact <2 x i8> %p, %y
   ret <2 x i8> %r
 }
+
+define i32 @lshr_mul_times_3_div_2(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2(
+; CHECK-NEXT:    [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 1
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw nuw i32 %0, 3
+  %lshr = lshr i32 %mul, 1
+  ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_3_div_2_exact(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw i32 %x, 3
+  %lshr = lshr exact i32 %mul, 1
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @lshr_mul_times_3_div_2_no_flags(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
+; CHECK-NEXT:    [[LSHR:%.*]] = lshr i32 [[MUL]], 1
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul i32 %0, 3
+  %lshr = lshr i32 %mul, 1
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @mul_times_3_div_2_multiuse_lshr(i32 %x) {
+; CHECK-LABEL: @mul_times_3_div_2_multiuse_lshr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 3
+; CHECK-NEXT:    [[RES:%.*]] = lshr i32 [[MUL]], 1
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nuw i32 %x, 3
+  %res = lshr i32 %mul, 1
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @lshr_mul_times_3_div_2_exact_2(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nuw i32 %x, 3
+  %lshr = lshr exact i32 %mul, 1
+  ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_5_div_4(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4(
+; CHECK-NEXT:    [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 2
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw nuw i32 %0, 5
+  %lshr = lshr i32 %mul, 2
+  ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_5_div_4_exact(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw i32 %x, 5
+  %lshr = lshr exact i32 %mul, 2
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @lshr_mul_times_5_div_4_no_flags(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
+; CHECK-NEXT:    [[LSHR:%.*]] = lshr i32 [[MUL]], 2
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul i32 %0, 5
+  %lshr = lshr i32 %mul, 2
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @mul_times_5_div_4_multiuse_lshr(i32 %x) {
+; CHECK-LABEL: @mul_times_5_div_4_multiuse_lshr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 5
+; CHECK-NEXT:    [[RES:%.*]] = lshr i32 [[MUL]], 2
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nuw i32 %x, 5
+  %res = lshr i32 %mul, 2
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @lshr_mul_times_5_div_4_exact_2(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nuw i32 %x, 5
+  %lshr = lshr exact i32 %mul, 2
+  ret i32 %lshr
+}
+
+define i32 @ashr_mul_times_3_div_2(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2(
+; CHECK-NEXT:    [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 1
+; CHECK-NEXT:    [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nuw nsw i32 %0, 3
+  %ashr = ashr i32 %mul, 1
+  ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_3_div_2_exact(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 3
+  %ashr = ashr exact i32 %mul, 1
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_3_div_2_no_flags(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
+; CHECK-NEXT:    [[ASHR:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul i32 %0, 3
+  %ashr = ashr i32 %mul, 1
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_3_div_2_no_nsw(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_no_nsw(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nuw i32 [[TMP0:%.*]], 3
+; CHECK-NEXT:    [[ASHR:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nuw i32 %0, 3
+  %ashr = ashr i32 %mul, 1
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @mul_times_3_div_2_multiuse_ashr(i32 %x) {
+; CHECK-LABEL: @mul_times_3_div_2_multiuse_ashr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 3
+; CHECK-NEXT:    [[RES:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nsw i32 %x, 3
+  %res = ashr i32 %mul, 1
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @ashr_mul_times_3_div_2_exact_2(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 3
+  %ashr = ashr exact i32 %mul, 1
+  ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_5_div_4(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4(
+; CHECK-NEXT:    [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 2
+; CHECK-NEXT:    [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nuw nsw i32 %0, 5
+  %ashr = ashr i32 %mul, 2
+  ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_5_div_4_exact(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 5
+  %ashr = ashr exact i32 %mul, 2
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_5_div_4_no_flags(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
+; CHECK-NEXT:    [[ASHR:%.*]] = ashr i32 [[MUL]], 2
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul i32 %0, 5
+  %ashr = ashr i32 %mul, 2
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @mul_times_5_div_4_multiuse_ashr(i32 %x) {
+; CHECK-LABEL: @mul_times_5_div_4_multiuse_ashr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 5
+; CHECK-NEXT:    [[RES:%.*]] = ashr i32 [[MUL]], 2
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nsw i32 %x, 5
+  %res = ashr i32 %mul, 2
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @ashr_mul_times_5_div_4_exact_2(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 5
+  %ashr = ashr exact i32 %mul, 2
+  ret i32 %ashr
+}
+
+define i32 @mul_splat_fold_known_active_bits(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_known_active_bits(
+; CHECK-NEXT:    [[XX:%.*]] = and i32 [[X:%.*]], 360
+; CHECK-NEXT:    ret i32 [[XX]]
+;
+  %xx = and i32 %x, 360
+  %m = mul nuw i32 %xx, 65537
+  %t = ashr i32 %m, 16
+  ret i32 %t
+}
+
+define i32 @mul_splat_fold_no_known_active_bits(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_no_known_active_bits(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr i32 [[X:%.*]], 16
+; CHECK-NEXT:    [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[T]]
+;
+  %m = mul nsw i32 %x, 65537
+  %t = ashr i32 %m, 16
+  ret i32 %t
+}
+
+declare void @use(i32)
diff --git a/llvm/test/Transforms/InstCombine/lshr.ll b/llvm/test/Transforms/InstCombine/lshr.ll
index fa92c1c4b3be4..17b08985ee90e 100644
--- a/llvm/test/Transforms/InstCombine/lshr.ll
+++ b/llvm/test/Transforms/InstCombine/lshr.ll
@@ -348,22 +348,31 @@ define <2 x i32> @narrow_lshr_constant(<2 x i8> %x, <2 x i8> %y) {
 
 define i32 @mul_splat_fold(i32 %x) {
 ; CHECK-LABEL: @mul_splat_fold(
-; CHECK-NEXT:    [[T:%.*]] = and i32 [[X:%.*]], 65535
-; CHECK-NEXT:    ret i32 [[T]]
+; CHECK-NEXT:    ret i32 [[X:%.*]]
 ;
   %m = mul nuw i32 %x, 65537
   %t = lshr i32 %m, 16
   ret i32 %t
 }
 
+define i32 @mul_splat_fold_known_zeros(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_known_zeros(
+; CHECK-NEXT:    [[XX:%.*]] = and i32 [[X:%.*]], 360
+; CHECK-NEXT:    ret i32 [[XX]]
+;
+  %xx = and i32 %x, 360
+  %m = mul nuw i32 %xx, 65537
+  %t = lshr i32 %m, 16
+  ret i32 %t
+}
+
 ; Vector type, extra use, weird types are all ok.
 
 define <3 x i14> @mul_splat_fold_vec(<3 x i14> %x) {
 ; CHECK-LABEL: @mul_splat_fold_vec(
 ; CHECK-NEXT:    [[M:%.*]] = mul nuw <3 x i14> [[X:%.*]], <i14 129, i14 129, i14 129>
 ; CHECK-NEXT:    call void @usevec(<3 x i14> [[M]])
-; CHECK-NEXT:    [[T:%.*]] = and <3 x i14> [[X]], <i14 127, i14 127, i14 127>
-; CHECK-NEXT:    ret <3 x i14> [[T]]
+; CHECK-NEXT:    ret <3 x i14> [[X]]
 ;
   %m = mul nuw <3 x i14> %x, <i14 129, i14 129, i14 129>
   call void @usevec(<3 x i14> %m)
@@ -628,12 +637,10 @@ define i32 @mul_splat_fold_wrong_lshr_const(i32 %x) {
   ret i32 %t
 }
 
-; Negative test
-
 define i32 @mul_splat_fold_no_nuw(i32 %x) {
 ; CHECK-LABEL: @mul_splat_fold_no_nuw(
-; CHECK-NEXT:    [[M:%.*]] = mul nsw i32 [[X:%.*]], 65537
-; CHECK-NEXT:    [[T:%.*]] = lshr i32 [[M]], 16
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr i32 [[X:%.*]], 16
+; CHECK-NEXT:    [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
 ; CHECK-NEXT:    ret i32 [[T]]
 ;
   %m = mul nsw i32 %x, 65537
@@ -641,6 +648,19 @@ define i32 @mul_splat_fold_no_nuw(i32 %x) {
   ret i32 %t
 }
 
+; Negative test
+
+define i32 @mul_splat_fold_no_flags(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_no_flags(
+; CHECK-NEXT:    [[M:%.*]] = mul i32 [[X:%.*]], 65537
+; CHECK-NEXT:    [[T:%.*]] = lshr i32 [[M]], 16
+; CHECK-NEXT:    ret i32 [[T]]
+;
+  %m = mul i32 %x, 65537
+  %t = lshr i32 %m, 16
+  ret i32 %t
+}
+
 ; Negative test (but simplifies before we reach the mul_splat transform)- need more than 2 bits
 
 define i2 @mul_splat_fold_too_narrow(i2 %x) {

``````````

</details>


https://github.com/llvm/llvm-project/pull/92909


More information about the llvm-commits mailing list