[PATCH] D140456: [SCEV] Help getLoopInvariantExitCondDuringFirstIterations deal with complex `umin` exit counts

Max Kazantsev via Phabricator via llvm-commits llvm-commits at lists.llvm.org
Tue Dec 20 22:09:18 PST 2022


mkazantsev created this revision.
mkazantsev added reviewers: nikic, lebedev.ri, reames, fhahn.
Herald added subscribers: Groverkss, ctetreau, rogfer01, pengfei, javed.absar, hiraditya, arichardson, GorNishanov.
Herald added a project: All.
mkazantsev requested review of this revision.
Herald added subscribers: llvm-commits, alextsao1999, vkmr.
Herald added a project: LLVM.

diff --git a/llvm/include/llvm/Analysis/ScalarEvolution.h b/llvm/include/llvm/Analysis/ScalarEvolution.h
index 917b6d178469..eb194880d8e2 100644

- a/llvm/include/llvm/Analysis/ScalarEvolution.h

+++ b/llvm/include/llvm/Analysis/ScalarEvolution.h
@@ -1,2385 +1,2390 @@
 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
 //
 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 // See https://llvm.org/LICENSE.txt for license information.
 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 //
 //===----------------------------------------------------------------------===//
 //
 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
 // categorize scalar expressions in loops.  It specializes in recognizing
 // general induction variables, representing them with the abstract and opaque
 // SCEV class.  Given this analysis, trip counts of loops and other important
 // properties can be obtained.
 //
 // This analysis is primarily useful for induction variable substitution and
 // strength reduction.
 //
 //===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
 #define LLVM_ANALYSIS_SCALAREVOLUTION_H

#include "llvm/ADT/APInt.h"
 #include "llvm/ADT/ArrayRef.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/DenseMapInfo.h"
 #include "llvm/ADT/FoldingSet.h"
 #include "llvm/ADT/PointerIntPair.h"
 #include "llvm/ADT/SetVector.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/IR/ConstantRange.h"
 #include "llvm/IR/InstrTypes.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/PassManager.h"
 #include "llvm/IR/ValueHandle.h"
 #include "llvm/IR/ValueMap.h"
 #include "llvm/Pass.h"
 #include <cassert>
 #include <cstdint>
 #include <memory>
 #include <optional>
 #include <utility>

namespace llvm {

class OverflowingBinaryOperator;
 class AssumptionCache;
 class BasicBlock;
 class Constant;
 class ConstantInt;
 class DataLayout;
 class DominatorTree;
 class Function;
 class GEPOperator;
 class Instruction;
 class LLVMContext;
 class Loop;
 class LoopInfo;
 class raw_ostream;
 class ScalarEvolution;
 class SCEVAddRecExpr;
 class SCEVUnknown;
 class StructType;
 class TargetLibraryInfo;
 class Type;
 class Value;
 enum SCEVTypes : unsigned short;

extern bool VerifySCEV;

/// This class represents an analyzed expression in the program.  These are
 /// opaque objects that the client is not allowed to do much with directly.
 ///
 class SCEV : public FoldingSetNode {

  friend struct FoldingSetTrait<SCEV>;
   
  /// A reference to an Interned FoldingSetNodeID for this node.  The
  /// ScalarEvolution's BumpPtrAllocator holds the data.
  FoldingSetNodeIDRef FastID;
   
  // The SCEV baseclass this node corresponds to
  const SCEVTypes SCEVType;
   

protected:

  // Estimated complexity of this node's expression tree size.
  const unsigned short ExpressionSize;
   
  /// This field is initialized to zero and may be used in subclasses to store
  /// miscellaneous information.
  unsigned short SubclassData = 0;
   

public:

  /// NoWrapFlags are bitfield indices into SubclassData.
  ///
  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
  /// no-signed-wrap <NSW> properties, which are derived from the IR
  /// operator. NSW is a misnomer that we use to mean no signed overflow or
  /// underflow.
  ///
  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
  /// the integer domain, abs(step) * max-iteration(loop) <=
  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
  /// its start value if the step is non-zero.  Computing the same value on
  /// each iteration is not considered wrapping, and recurrences with step = 0
  /// are trivially <NW>.  <NW> is independent of the sign of step and the
  /// value the add recurrence starts with.
  ///
  /// Note that NUW and NSW are also valid properties of a recurrence, and
  /// either implies NW. For convenience, NW will be set for a recurrence
  /// whenever either NUW or NSW are set.
  ///
  /// We require that the flag on a SCEV apply to the entire scope in which
  /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
  /// a defining location, which is in turn described by the following rules:
  /// * A SCEVUnknown is at the point of definition of the Value.
  /// * A SCEVConstant is defined at all points.
  /// * A SCEVAddRec is defined starting with the header of the associated
  ///   loop.
  /// * All other SCEVs are defined at the earlest point all operands are
  ///   defined.
  ///
  /// The above rules describe a maximally hoisted form (without regards to
  /// potential control dependence).  A SCEV is defined anywhere a
  /// corresponding instruction could be defined in said maximally hoisted
  /// form.  Note that SCEVUDivExpr (currently the only expression type which
  /// can trap) can be defined per these rules in regions where it would trap
  /// at runtime.  A SCEV being defined does not require the existence of any
  /// instruction within the defined scope.
  enum NoWrapFlags {
    FlagAnyWrap = 0,    // No guarantee.
    FlagNW = (1 << 0),  // No self-wrap.
    FlagNUW = (1 << 1), // No unsigned wrap.
    FlagNSW = (1 << 2), // No signed wrap.
    NoWrapMask = (1 << 3) - 1
  };
   
  explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
                unsigned short ExpressionSize)
      : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
  SCEV(const SCEV &) = delete;
  SCEV &operator=(const SCEV &) = delete;
   
  SCEVTypes getSCEVType() const { return SCEVType; }
   
  /// Return the LLVM type of this SCEV expression.
  Type *getType() const;
   
  /// Return operands of this SCEV expression.
  ArrayRef<const SCEV *> operands() const;
   
  /// Return true if the expression is a constant zero.
  bool isZero() const;
   
  /// Return true if the expression is a constant one.
  bool isOne() const;
   
  /// Return true if the expression is a constant all-ones value.
  bool isAllOnesValue() const;
   
  /// Return true if the specified scev is negated, but not a constant.
  bool isNonConstantNegative() const;
   
  // Returns estimated size of the mathematical expression represented by this
  // SCEV. The rules of its calculation are following:
  // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
  // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
  //    (1 + Size(Op1) + ... + Size(OpN)).
  // This value gives us an estimation of time we need to traverse through this
  // SCEV and all its operands recursively. We may use it to avoid performing
  // heavy transformations on SCEVs of excessive size for sake of saving the
  // compilation time.
  unsigned short getExpressionSize() const {
    return ExpressionSize;
  }
   
  /// Print out the internal representation of this scalar to the specified
  /// stream.  This should really only be used for debugging purposes.
  void print(raw_ostream &OS) const;
   
  /// This method is used for debugging.
  void dump() const;

};

// Specialize FoldingSetTrait for SCEV to avoid needing to compute
 // temporary FoldingSetNodeID values.
 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {

  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
   
  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
                     FoldingSetNodeID &TempID) {
    return ID == X.FastID;
  }
   
  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    return X.FastID.ComputeHash();
  }

};

inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {

  S.print(OS);
  return OS;

}

/// An object of this class is returned by queries that could not be answered.
 /// For example, if you ask for the number of iterations of a linked-list
 /// traversal loop, you will get one of these.  None of the standard SCEV
 /// operations are valid on this class, it is just a marker.
 struct SCEVCouldNotCompute : public SCEV {

  SCEVCouldNotCompute();
   
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEV *S);

};

/// This class represents an assumption made using SCEV expressions which can
 /// be checked at run-time.
 class SCEVPredicate : public FoldingSetNode {

  friend struct FoldingSetTrait<SCEVPredicate>;
   
  /// A reference to an Interned FoldingSetNodeID for this node.  The
  /// ScalarEvolution's BumpPtrAllocator holds the data.
  FoldingSetNodeIDRef FastID;
   

public:

  enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
   

protected:

  SCEVPredicateKind Kind;
  ~SCEVPredicate() = default;
  SCEVPredicate(const SCEVPredicate &) = default;
  SCEVPredicate &operator=(const SCEVPredicate &) = default;
   

public:

  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
   
  SCEVPredicateKind getKind() const { return Kind; }
   
  /// Returns the estimated complexity of this predicate.  This is roughly
  /// measured in the number of run-time checks required.
  virtual unsigned getComplexity() const { return 1; }
   
  /// Returns true if the predicate is always true. This means that no
  /// assumptions were made and nothing needs to be checked at run-time.
  virtual bool isAlwaysTrue() const = 0;
   
  /// Returns true if this predicate implies \p N.
  virtual bool implies(const SCEVPredicate *N) const = 0;
   
  /// Prints a textual representation of this predicate with an indentation of
  /// \p Depth.
  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;

};

inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {

  P.print(OS);
  return OS;

}

// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
 // temporary FoldingSetNodeID values.
 template <>
 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {

  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
    ID = X.FastID;
  }
   
  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
                     unsigned IDHash, FoldingSetNodeID &TempID) {
    return ID == X.FastID;
  }
   
  static unsigned ComputeHash(const SCEVPredicate &X,
                              FoldingSetNodeID &TempID) {
    return X.FastID.ComputeHash();
  }

};

/// This class represents an assumption that the expression LHS Pred RHS
 /// evaluates to true, and this can be checked at run-time.
 class SCEVComparePredicate final : public SCEVPredicate {

  /// We assume that LHS Pred RHS is true.
  const ICmpInst::Predicate Pred;
  const SCEV *LHS;
  const SCEV *RHS;
   

public:

  SCEVComparePredicate(const FoldingSetNodeIDRef ID,
                       const ICmpInst::Predicate Pred,
                       const SCEV *LHS, const SCEV *RHS);
   
  /// Implementation of the SCEVPredicate interface
  bool implies(const SCEVPredicate *N) const override;
  void print(raw_ostream &OS, unsigned Depth = 0) const override;
  bool isAlwaysTrue() const override;
   
  ICmpInst::Predicate getPredicate() const { return Pred; }
   
  /// Returns the left hand side of the predicate.
  const SCEV *getLHS() const { return LHS; }
   
  /// Returns the right hand side of the predicate.
  const SCEV *getRHS() const { return RHS; }
   
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEVPredicate *P) {
    return P->getKind() == P_Compare;
  }

};

/// This class represents an assumption made on an AddRec expression. Given an
 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
 /// flags (defined below) in the first X iterations of the loop, where X is a
 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
 ///
 /// Note that this does not imply that X is equal to the backedge taken
 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
 /// have more than X iterations.
 class SCEVWrapPredicate final : public SCEVPredicate {
public:

  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
  /// for FlagNUSW. The increment is considered to be signed, and a + b
  /// (where b is the increment) is considered to wrap if:
  ///    zext(a + b) != zext(a) + sext(b)
  ///
  /// If Signed is a function that takes an n-bit tuple and maps to the
  /// integer domain as the tuples value interpreted as twos complement,
  /// and Unsigned a function that takes an n-bit tuple and maps to the
  /// integer domain as as the base two value of input tuple, then a + b
  /// has IncrementNUSW iff:
  ///
  /// 0 <= Unsigned(a) + Signed(b) < 2^n
  ///
  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
  ///
  /// Note that the IncrementNUSW flag is not commutative: if base + inc
  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
  /// property. The reason for this is that this is used for sign/zero
  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
  /// assumed. A {base,+,inc} expression is already non-commutative with
  /// regards to base and inc, since it is interpreted as:
  ///     (((base + inc) + inc) + inc) ...
  enum IncrementWrapFlags {
    IncrementAnyWrap = 0,     // No guarantee.
    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
                              // (equivalent with SCEV::NSW)
    IncrementNoWrapMask = (1 << 2) - 1
  };
   
  /// Convenient IncrementWrapFlags manipulation methods.
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
           "Invalid flags value!");
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
  }
   
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
   
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
  }
   
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
           "Invalid flags value!");
   
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
  }
   
  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
  /// SCEVAddRecExpr.
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
   

private:

  const SCEVAddRecExpr *AR;
  IncrementWrapFlags Flags;
   

public:

  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
                             const SCEVAddRecExpr *AR,
                             IncrementWrapFlags Flags);
   
  /// Returns the set assumed no overflow flags.
  IncrementWrapFlags getFlags() const { return Flags; }
   
  /// Implementation of the SCEVPredicate interface
  const SCEVAddRecExpr *getExpr() const;
  bool implies(const SCEVPredicate *N) const override;
  void print(raw_ostream &OS, unsigned Depth = 0) const override;
  bool isAlwaysTrue() const override;
   
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEVPredicate *P) {
    return P->getKind() == P_Wrap;
  }

};

/// This class represents a composition of other SCEV predicates, and is the
 /// class that most clients will interact with.  This is equivalent to a
 /// logical "AND" of all the predicates in the union.
 ///
 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
 class SCEVUnionPredicate final : public SCEVPredicate {
private:

  using PredicateMap =
      DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
   
  /// Vector with references to all predicates in this union.
  SmallVector<const SCEVPredicate *, 16> Preds;
   
  /// Adds a predicate to this union.
  void add(const SCEVPredicate *N);
   

public:

  SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
   
  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
    return Preds;
  }
   
  /// Implementation of the SCEVPredicate interface
  bool isAlwaysTrue() const override;
  bool implies(const SCEVPredicate *N) const override;
  void print(raw_ostream &OS, unsigned Depth) const override;
   
  /// We estimate the complexity of a union predicate as the size number of
  /// predicates in the union.
  unsigned getComplexity() const override { return Preds.size(); }
   
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEVPredicate *P) {
    return P->getKind() == P_Union;
  }

};

/// The main scalar evolution driver. Because client code (intentionally)
 /// can't do much with the SCEV objects directly, they must ask this class
 /// for services.
 class ScalarEvolution {

  friend class ScalarEvolutionsTest;
   

public:

  /// An enum describing the relationship between a SCEV and a loop.
  enum LoopDisposition {
    LoopVariant,   ///< The SCEV is loop-variant (unknown).
    LoopInvariant, ///< The SCEV is loop-invariant.
    LoopComputable ///< The SCEV varies predictably with the loop.
  };
   
  /// An enum describing the relationship between a SCEV and a basic block.
  enum BlockDisposition {
    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    DominatesBlock,        ///< The SCEV dominates the block.
    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
  };
   
  /// Convenient NoWrapFlags manipulation that hides enum casts and is
  /// visible in the ScalarEvolution name space.
  [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
                                                   int Mask) {
    return (SCEV::NoWrapFlags)(Flags & Mask);
  }
  [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
                                                  SCEV::NoWrapFlags OnFlags) {
    return (SCEV::NoWrapFlags)(Flags | OnFlags);
  }
  [[nodiscard]] static SCEV::NoWrapFlags
  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
  }
  [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
                                     SCEV::NoWrapFlags TestFlags) {
    return TestFlags == maskFlags(Flags, TestFlags);
  };
   
  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
                  DominatorTree &DT, LoopInfo &LI);
  ScalarEvolution(ScalarEvolution &&Arg);
  ~ScalarEvolution();
   
  LLVMContext &getContext() const { return F.getContext(); }
   
  /// Test if values of the given type are analyzable within the SCEV
  /// framework. This primarily includes integer types, and it can optionally
  /// include pointer types if the ScalarEvolution class has access to
  /// target-specific information.
  bool isSCEVable(Type *Ty) const;
   
  /// Return the size in bits of the specified type, for which isSCEVable must
  /// return true.
  uint64_t getTypeSizeInBits(Type *Ty) const;
   
  /// Return a type with the same bitwidth as the given type and which
  /// represents how SCEV will treat the given type, for which isSCEVable must
  /// return true. For pointer types, this is the pointer-sized integer type.
  Type *getEffectiveSCEVType(Type *Ty) const;
   
  // Returns a wider type among {Ty1, Ty2}.
  Type *getWiderType(Type *Ty1, Type *Ty2) const;
   
  /// Return true if there exists a point in the program at which both
  /// A and B could be operands to the same instruction.
  /// SCEV expressions are generally assumed to correspond to instructions
  /// which could exists in IR.  In general, this requires that there exists
  /// a use point in the program where all operands dominate the use.
  ///
  /// Example:
  /// loop {
  ///   if
  ///     loop { v1 = load @global1; }
  ///   else
  ///     loop { v2 = load @global2; }
  /// }
  /// No SCEV with operand V1, and v2 can exist in this program.
  bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B);
   
  /// Return true if the SCEV is a scAddRecExpr or it contains
  /// scAddRecExpr. The result will be cached in HasRecMap.
  bool containsAddRecurrence(const SCEV *S);
   
  /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
  /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
  /// no-overflow fact should be true in the context of this instruction.
  bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
                       const SCEV *LHS, const SCEV *RHS,
                       const Instruction *CtxI = nullptr);
   
  /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
  /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
  /// Does not mutate the original instruction. Returns std::nullopt if it could
  /// not deduce more precise flags than the instruction already has, otherwise
  /// returns proven flags.
  std::optional<SCEV::NoWrapFlags>
  getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
   
  /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
  void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
   
  /// Return true if the SCEV expression contains an undef value.
  bool containsUndefs(const SCEV *S) const;
   
  /// Return true if the SCEV expression contains a Value that has been
  /// optimised out and is now a nullptr.
  bool containsErasedValue(const SCEV *S) const;
   
  /// Return a SCEV expression for the full generality of the specified
  /// expression.
  const SCEV *getSCEV(Value *V);
   
  const SCEV *getConstant(ConstantInt *V);
  const SCEV *getConstant(const APInt &Val);
  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
  const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
  const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
  const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
                                    unsigned Depth = 0);
  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
  const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
                                    unsigned Depth = 0);
  const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0);
  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
    return getAddExpr(Ops, Flags, Depth);
  }
  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
    return getAddExpr(Ops, Flags, Depth);
  }
  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0);
  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
    return getMulExpr(Ops, Flags, Depth);
  }
  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
    return getMulExpr(Ops, Flags, Depth);
  }
  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
                            SCEV::NoWrapFlags Flags);
  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
                            const Loop *L, SCEV::NoWrapFlags Flags);
  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
                            const Loop *L, SCEV::NoWrapFlags Flags) {
    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    return getAddRecExpr(NewOp, L, Flags);
  }
   
  /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
  /// Predicates. If successful return these <AddRecExpr, Predicates>;
  /// The function is intended to be called from PSCEV (the caller will decide
  /// whether to actually add the predicates and carry out the rewrites).
  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
  createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
   
  /// Returns an expression for a GEP
  ///
  /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
  /// instead we use IndexExprs.
  /// \p IndexExprs The expressions for the indices.
  const SCEV *getGEPExpr(GEPOperator *GEP,
                         const SmallVectorImpl<const SCEV *> &IndexExprs);
  const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
  const SCEV *getMinMaxExpr(SCEVTypes Kind,
                            SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
                                      SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
                          bool Sequential = false);
  const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
                          bool Sequential = false);
  const SCEV *getUnknown(Value *V);
  const SCEV *getCouldNotCompute();
   
  /// Return a SCEV for the constant 0 of a specific type.
  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
   
  /// Return a SCEV for the constant 1 of a specific type.
  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
   
  /// Return a SCEV for the constant -1 of a specific type.
  const SCEV *getMinusOne(Type *Ty) {
    return getConstant(Ty, -1, /*isSigned=*/true);
  }
   
  /// Return an expression for sizeof ScalableTy that is type IntTy, where
  /// ScalableTy is a scalable vector type.
  const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
                                          ScalableVectorType *ScalableTy);
   
  /// Return an expression for the alloc size of AllocTy that is type IntTy
  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
   
  /// Return an expression for the store size of StoreTy that is type IntTy
  const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
   
  /// Return an expression for offsetof on the given field with type IntTy
  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
   
  /// Return the SCEV object corresponding to -V.
  const SCEV *getNegativeSCEV(const SCEV *V,
                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   
  /// Return the SCEV object corresponding to ~V.
  const SCEV *getNotSCEV(const SCEV *V);
   
  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
  ///
  /// If the LHS and RHS are pointers which don't share a common base
  /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
  /// To compute the difference between two unrelated pointers, you can
  /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
  /// types that support it.
  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                           unsigned Depth = 0);
   
  /// Compute ceil(N / D). N and D are treated as unsigned values.
  ///
  /// Since SCEV doesn't have native ceiling division, this generates a
  /// SCEV expression of the following form:
  ///
  /// umin(N, 1) + floor((N - umin(N, 1)) / D)
  ///
  /// A denominator of zero or poison is handled the same way as getUDivExpr().
  const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
   
  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is zero extended.
  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
                                      unsigned Depth = 0);
   
  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is sign extended.
  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
                                      unsigned Depth = 0);
   
  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is zero extended.  The
  /// conversion must not be narrowing.
  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
   
  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is sign extended.  The
  /// conversion must not be narrowing.
  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
   
  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type. If the type must be extended, it is extended with
  /// unspecified bits. The conversion must not be narrowing.
  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
   
  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  The conversion must not be widening.
  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
   
  /// Promote the operands to the wider of the types using zero-extension, and
  /// then perform a umax operation with them.
  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
   
  /// Promote the operands to the wider of the types using zero-extension, and
  /// then perform a umin operation with them.
  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
                                         bool Sequential = false);
   
  /// Promote the operands to the wider of the types using zero-extension, and
  /// then perform a umin operation with them. N-ary function.
  const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
                                         bool Sequential = false);
   
  /// Transitively follow the chain of pointer-type operands until reaching a
  /// SCEV that does not have a single pointer operand. This returns a
  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
  /// cases do exist.
  const SCEV *getPointerBase(const SCEV *V);
   
  /// Compute an expression equivalent to S - getPointerBase(S).
  const SCEV *removePointerBase(const SCEV *S);
   
  /// Return a SCEV expression for the specified value at the specified scope
  /// in the program.  The L value specifies a loop nest to evaluate the
  /// expression at, where null is the top-level or a specified loop is
  /// immediately inside of the loop.
  ///
  /// This method can be used to compute the exit value for a variable defined
  /// in a loop by querying what the value will hold in the parent loop.
  ///
  /// In the case that a relevant loop exit value cannot be computed, the
  /// original value V is returned.
  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
   
  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
  const SCEV *getSCEVAtScope(Value *V, const Loop *L);
   
  /// Test whether entry to the loop is protected by a conditional between LHS
  /// and RHS.  This is used to help avoid max expressions in loop trip
  /// counts, and to eliminate casts.
  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                const SCEV *LHS, const SCEV *RHS);
   
  /// Test whether entry to the basic block is protected by a conditional
  /// between LHS and RHS.
  bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
                                      ICmpInst::Predicate Pred, const SCEV *LHS,
                                      const SCEV *RHS);
   
  /// Test whether the backedge of the loop is protected by a conditional
  /// between LHS and RHS.  This is used to eliminate casts.
  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                   const SCEV *LHS, const SCEV *RHS);
   
  /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
  /// count".  A "trip count" is the number of times the header of the loop
  /// will execute if an exit is taken after the specified number of backedges
  /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
  /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls
  /// how potential overflow is handled.  If true, a wider result type is
  /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned
  /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
  const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
                                        bool Extend = true);
   
  /// Returns the exact trip count of the loop if we can compute it, and
  /// the result is a small constant.  '0' is used to represent an unknown
  /// or non-constant trip count.  Note that a trip count is simply one more
  /// than the backedge taken count for the loop.
  unsigned getSmallConstantTripCount(const Loop *L);
   
  /// Return the exact trip count for this loop if we exit through ExitingBlock.
  /// '0' is used to represent an unknown or non-constant trip count.  Note
  /// that a trip count is simply one more than the backedge taken count for
  /// the same exit.
  /// This "trip count" assumes that control exits via ExitingBlock. More
  /// precisely, it is the number of times that control will reach ExitingBlock
  /// before taking the branch. For loops with multiple exits, it may not be
  /// the number times that the loop header executes if the loop exits
  /// prematurely via another branch.
  unsigned getSmallConstantTripCount(const Loop *L,
                                     const BasicBlock *ExitingBlock);
   
  /// Returns the upper bound of the loop trip count as a normal unsigned
  /// value.
  /// Returns 0 if the trip count is unknown or not constant.
  unsigned getSmallConstantMaxTripCount(const Loop *L);
   
  /// Returns the upper bound of the loop trip count infered from array size.
  /// Can not access bytes starting outside the statically allocated size
  /// without being immediate UB.
  /// Returns SCEVCouldNotCompute if the trip count could not inferred
  /// from array accesses.
  const SCEV *getConstantMaxTripCountFromArray(const Loop *L);
   
  /// Returns the largest constant divisor of the trip count as a normal
  /// unsigned value, if possible. This means that the actual trip count is
  /// always a multiple of the returned value. Returns 1 if the trip count is
  /// unknown or not guaranteed to be the multiple of a constant., Will also
  /// return 1 if the trip count is very large (>= 2^32).
  /// Note that the argument is an exit count for loop L, NOT a trip count.
  unsigned getSmallConstantTripMultiple(const Loop *L,
                                        const SCEV *ExitCount);
   
  /// Returns the largest constant divisor of the trip count of the
  /// loop.  Will return 1 if no trip count could be computed, or if a
  /// divisor could not be found.
  unsigned getSmallConstantTripMultiple(const Loop *L);
   
  /// Returns the largest constant divisor of the trip count of this loop as a
  /// normal unsigned value, if possible. This means that the actual trip
  /// count is always a multiple of the returned value (don't forget the trip
  /// count could very well be zero as well!). As explained in the comments
  /// for getSmallConstantTripCount, this assumes that control exits the loop
  /// via ExitingBlock.
  unsigned getSmallConstantTripMultiple(const Loop *L,
                                        const BasicBlock *ExitingBlock);
   
  /// The terms "backedge taken count" and "exit count" are used
  /// interchangeably to refer to the number of times the backedge of a loop 
  /// has executed before the loop is exited.
  enum ExitCountKind {
    /// An expression exactly describing the number of times the backedge has
    /// executed when a loop is exited.
    Exact,
    /// A constant which provides an upper bound on the exact trip count.
    ConstantMaximum,
    /// An expression which provides an upper bound on the exact trip count.
    SymbolicMaximum,
  };
   
  /// Return the number of times the backedge executes before the given exit
  /// would be taken; if not exactly computable, return SCEVCouldNotCompute. 
  /// For a single exit loop, this value is equivelent to the result of
  /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
  /// before the backedge is executed (ExitCount + 1) times.  Note that there
  /// is no guarantee about *which* exit is taken on the exiting iteration.
  const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
                           ExitCountKind Kind = Exact);
   
  /// If the specified loop has a predictable backedge-taken count, return it,
  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
  /// the number of times the loop header will be branched to from within the
  /// loop, assuming there are no abnormal exists like exception throws. This is
  /// one less than the trip count of the loop, since it doesn't count the first
  /// iteration, when the header is branched to from outside the loop.
  ///
  /// Note that it is not valid to call this method on a loop without a
  /// loop-invariant backedge-taken count (see
  /// hasLoopInvariantBackedgeTakenCount).
  const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
   
  /// Similar to getBackedgeTakenCount, except it will add a set of
  /// SCEV predicates to Predicates that are required to be true in order for
  /// the answer to be correct. Predicates can be checked with run-time
  /// checks and can be used to perform loop versioning.
  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
                                              SmallVector<const SCEVPredicate *, 4> &Predicates);
   
  /// When successful, this returns a SCEVConstant that is greater than or equal
  /// to (i.e. a "conservative over-approximation") of the value returend by
  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
  /// SCEVCouldNotCompute object.
  const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
    return getBackedgeTakenCount(L, ConstantMaximum);
  }
   
  /// When successful, this returns a SCEV that is greater than or equal
  /// to (i.e. a "conservative over-approximation") of the value returend by
  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
  /// SCEVCouldNotCompute object.
  const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
    return getBackedgeTakenCount(L, SymbolicMaximum);
  }
   
  /// Return true if the backedge taken count is either the value returned by
  /// getConstantMaxBackedgeTakenCount or zero.
  bool isBackedgeTakenCountMaxOrZero(const Loop *L);
   
  /// Return true if the specified loop has an analyzable loop-invariant
  /// backedge-taken count.
  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
   
  // This method should be called by the client when it made any change that
  // would invalidate SCEV's answers, and the client wants to remove all loop
  // information held internally by ScalarEvolution. This is intended to be used
  // when the alternative to forget a loop is too expensive (i.e. large loop
  // bodies).
  void forgetAllLoops();
   
  /// This method should be called by the client when it has changed a loop in
  /// a way that may effect ScalarEvolution's ability to compute a trip count,
  /// or if the loop is deleted.  This call is potentially expensive for large
  /// loop bodies.
  void forgetLoop(const Loop *L);
   
  // This method invokes forgetLoop for the outermost loop of the given loop
  // \p L, making ScalarEvolution forget about all this subtree. This needs to
  // be done whenever we make a transform that may affect the parameters of the
  // outer loop, such as exit counts for branches.
  void forgetTopmostLoop(const Loop *L);
   
  /// This method should be called by the client when it has changed a value
  /// in a way that may effect its value, or which may disconnect it from a
  /// def-use chain linking it to a loop.
  void forgetValue(Value *V);
   
  /// Called when the client has changed the disposition of values in
  /// this loop.
  ///
  /// We don't have a way to invalidate per-loop dispositions. Clear and
  /// recompute is simpler.
  void forgetLoopDispositions();
   
  /// Called when the client has changed the disposition of values in
  /// a loop or block.
  ///
  /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
  /// and recompute is simpler.
  void forgetBlockAndLoopDispositions(Value *V = nullptr);
   
  /// Determine the minimum number of zero bits that S is guaranteed to end in
  /// (at every loop iteration).  It is, at the same time, the minimum number
  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
  /// If S is guaranteed to be 0, it returns the bitwidth of S.
  uint32_t GetMinTrailingZeros(const SCEV *S);
   
  /// Determine the unsigned range for a particular SCEV.
  /// NOTE: This returns a copy of the reference returned by getRangeRef.
  ConstantRange getUnsignedRange(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_UNSIGNED);
  }
   
  /// Determine the min of the unsigned range for a particular SCEV.
  APInt getUnsignedRangeMin(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
  }
   
  /// Determine the max of the unsigned range for a particular SCEV.
  APInt getUnsignedRangeMax(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
  }
   
  /// Determine the signed range for a particular SCEV.
  /// NOTE: This returns a copy of the reference returned by getRangeRef.
  ConstantRange getSignedRange(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_SIGNED);
  }
   
  /// Determine the min of the signed range for a particular SCEV.
  APInt getSignedRangeMin(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
  }
   
  /// Determine the max of the signed range for a particular SCEV.
  APInt getSignedRangeMax(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
  }
   
  /// Test if the given expression is known to be negative.
  bool isKnownNegative(const SCEV *S);
   
  /// Test if the given expression is known to be positive.
  bool isKnownPositive(const SCEV *S);
   
  /// Test if the given expression is known to be non-negative.
  bool isKnownNonNegative(const SCEV *S);
   
  /// Test if the given expression is known to be non-positive.
  bool isKnownNonPositive(const SCEV *S);
   
  /// Test if the given expression is known to be non-zero.
  bool isKnownNonZero(const SCEV *S);
   
  /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
  /// \p S by substitution of all AddRec sub-expression related to loop \p L
  /// with initial value of that SCEV. The second is obtained from \p S by
  /// substitution of all AddRec sub-expressions related to loop \p L with post
  /// increment of this AddRec in the loop \p L. In both cases all other AddRec
  /// sub-expressions (not related to \p L) remain the same.
  /// If the \p S contains non-invariant unknown SCEV the function returns
  /// CouldNotCompute SCEV in both values of std::pair.
  /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
  /// the function returns pair:
  /// first = {0, +, 1}<L2>
  /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
  /// We can see that for the first AddRec sub-expression it was replaced with
  /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
  /// increment value) for the second one. In both cases AddRec expression
  /// related to L2 remains the same.
  std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
                                                                const SCEV *S);
   
  /// We'd like to check the predicate on every iteration of the most dominated
  /// loop between loops used in LHS and RHS.
  /// To do this we use the following list of steps:
  /// 1. Collect set S all loops on which either LHS or RHS depend.
  /// 2. If S is non-empty
  /// a. Let PD be the element of S which is dominated by all other elements.
  /// b. Let E(LHS) be value of LHS on entry of PD.
  ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
  ///    attached to PD on with their entry values.
  ///    Define E(RHS) in the same way.
  /// c. Let B(LHS) be value of L on backedge of PD.
  ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
  ///    attached to PD on with their backedge values.
  ///    Define B(RHS) in the same way.
  /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
  ///    so we can assert on that.
  /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
  ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
  bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
                           const SCEV *RHS);
   
  /// Test if the given expression is known to satisfy the condition described
  /// by Pred, LHS, and RHS.
  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                        const SCEV *RHS);
   
  /// Check whether the condition described by Pred, LHS, and RHS is true or
  /// false. If we know it, return the evaluation of this condition. If neither
  /// is proved, return std::nullopt.
  std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred,
                                        const SCEV *LHS, const SCEV *RHS);
   
  /// Test if the given expression is known to satisfy the condition described
  /// by Pred, LHS, and RHS in the given Context.
  bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
                          const SCEV *RHS, const Instruction *CtxI);
   
  /// Check whether the condition described by Pred, LHS, and RHS is true or
  /// false in the given \p Context. If we know it, return the evaluation of
  /// this condition. If neither is proved, return std::nullopt.
  std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred,
                                          const SCEV *LHS, const SCEV *RHS,
                                          const Instruction *CtxI);
   
  /// Test if the condition described by Pred, LHS, RHS is known to be true on
  /// every iteration of the loop of the recurrency LHS.
  bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
                               const SCEVAddRecExpr *LHS, const SCEV *RHS);
   
  /// A predicate is said to be monotonically increasing if may go from being
  /// false to being true as the loop iterates, but never the other way
  /// around.  A predicate is said to be monotonically decreasing if may go
  /// from being true to being false as the loop iterates, but never the other
  /// way around.
  enum MonotonicPredicateType {
    MonotonicallyIncreasing,
    MonotonicallyDecreasing
  };
   
  /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
  /// monotonically increasing or decreasing, returns
  /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
  /// respectively. If we could not prove either of these facts, returns
  /// std::nullopt.
  std::optional<MonotonicPredicateType>
  getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
                            ICmpInst::Predicate Pred);
   
  struct LoopInvariantPredicate {
    ICmpInst::Predicate Pred;
    const SCEV *LHS;
    const SCEV *RHS;
   
    LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                           const SCEV *RHS)
        : Pred(Pred), LHS(LHS), RHS(RHS) {}
  };
  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
  /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
  /// invariants, available at L's entry. Otherwise, return std::nullopt.
  std::optional<LoopInvariantPredicate>
  getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                            const SCEV *RHS, const Loop *L,
                            const Instruction *CtxI = nullptr);
   
  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
  /// respect to L at given Context during at least first MaxIter iterations,
  /// return a LoopInvariantPredicate with LHS and RHS being invariants,
  /// available at L's entry. Otherwise, return std::nullopt. The predicate
  /// should be the loop's exit condition.
  std::optional<LoopInvariantPredicate>
  getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
                                                const SCEV *LHS,
                                                const SCEV *RHS, const Loop *L,
                                                const Instruction *CtxI,
                                                const SCEV *MaxIter);
   

+  std::optional<LoopInvariantPredicate>
+  getLoopInvariantExitCondDuringFirstIterationsImpl(
+      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
+      const Instruction *CtxI, const SCEV *MaxIter);
+

  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
  /// iff any changes were made. If the operands are provably equal or
  /// unequal, LHS and RHS are set to the same value and Pred is set to either
  /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison
  /// controls the exit of a loop known to have a finite number of iterations.
  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
                            const SCEV *&RHS, unsigned Depth = 0,
                            bool ControllingFiniteLoop = false);
   
  /// Return the "disposition" of the given SCEV with respect to the given
  /// loop.
  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
   
  /// Return true if the value of the given SCEV is unchanging in the
  /// specified loop.
  bool isLoopInvariant(const SCEV *S, const Loop *L);
   
  /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
  /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
  /// the header of loop L.
  bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
   
  /// Return true if the given SCEV changes value in a known way in the
  /// specified loop.  This property being true implies that the value is
  /// variant in the loop AND that we can emit an expression to compute the
  /// value of the expression at any particular loop iteration.
  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
   
  /// Return the "disposition" of the given SCEV with respect to the given
  /// block.
  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
   
  /// Return true if elements that makes up the given SCEV dominate the
  /// specified basic block.
  bool dominates(const SCEV *S, const BasicBlock *BB);
   
  /// Return true if elements that makes up the given SCEV properly dominate
  /// the specified basic block.
  bool properlyDominates(const SCEV *S, const BasicBlock *BB);
   
  /// Test whether the given SCEV has Op as a direct or indirect operand.
  bool hasOperand(const SCEV *S, const SCEV *Op) const;
   
  /// Return the size of an element read or written by Inst.
  const SCEV *getElementSize(Instruction *Inst);
   
  void print(raw_ostream &OS) const;
  void verify() const;
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &Inv);
   
  /// Return the DataLayout associated with the module this SCEV instance is
  /// operating on.
  const DataLayout &getDataLayout() const {
    return F.getParent()->getDataLayout();
  }
   
  const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
  const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
                                           const SCEV *LHS, const SCEV *RHS);
   
  const SCEVPredicate *
  getWrapPredicate(const SCEVAddRecExpr *AR,
                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
   
  /// Re-writes the SCEV according to the Predicates in \p A.
  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
                                    const SCEVPredicate &A);
  /// Tries to convert the \p S expression to an AddRec expression,
  /// adding additional predicates to \p Preds as required.
  const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
      const SCEV *S, const Loop *L,
      SmallPtrSetImpl<const SCEVPredicate *> &Preds);
   
  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
  /// constant, and std::nullopt if it isn't.
  ///
  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
  /// frugal here since we just bail out of actually constructing and
  /// canonicalizing an expression in the cases where the result isn't going
  /// to be a constant.
  std::optional<APInt> computeConstantDifference(const SCEV *LHS,
                                                 const SCEV *RHS);
   
  /// Update no-wrap flags of an AddRec. This may drop the cached info about
  /// this AddRec (such as range info) in case if new flags may potentially
  /// sharpen it.
  void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
   
  /// Try to apply information from loop guards for \p L to \p Expr.
  const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
   
  /// Return true if the loop has no abnormal exits. That is, if the loop
  /// is not infinite, it must exit through an explicit edge in the CFG.
  /// (As opposed to either a) throwing out of the function or b) entering a
  /// well defined infinite loop in some callee.)
  bool loopHasNoAbnormalExits(const Loop *L) {
    return getLoopProperties(L).HasNoAbnormalExits;
  }
   
  /// Return true if this loop is finite by assumption.  That is,
  /// to be infinite, it must also be undefined.
  bool loopIsFiniteByAssumption(const Loop *L);
   
  class FoldID {
    SmallVector<unsigned, 4> Bits;
   
  public:
    void addInteger(unsigned long I) { Bits.push_back(I); }
    void addInteger(unsigned I) { Bits.push_back(I); }
    void addInteger(int I) { Bits.push_back(I); }
   
    void addInteger(unsigned long long I) {
      addInteger(unsigned(I));
      addInteger(unsigned(I >> 32));
    }
   
    void addPointer(const void *Ptr) {
      // Note: this adds pointers to the hash using sizes and endianness that
      // depend on the host. It doesn't matter, however, because hashing on
      // pointer values is inherently unstable. Nothing should depend on the
      // ordering of nodes in the folding set.
      static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
                    "unexpected pointer size");
      addInteger(reinterpret_cast<uintptr_t>(Ptr));
    }
   
    unsigned computeHash() const {
      unsigned Hash = Bits.size();
      for (unsigned I = 0; I != Bits.size(); ++I)
        Hash = detail::combineHashValue(Hash, Bits[I]);
      return Hash;
    }
    bool operator==(const FoldID &RHS) const {
      if (Bits.size() != RHS.Bits.size())
        return false;
      for (unsigned I = 0; I != Bits.size(); ++I)
        if (Bits[I] != RHS.Bits[I])
          return false;
      return true;
    }
  };
   

private:

  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
  /// Value is deleted.
  class SCEVCallbackVH final : public CallbackVH {
    ScalarEvolution *SE;
   
    void deleted() override;
    void allUsesReplacedWith(Value *New) override;
   
  public:
    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
  };
   
  friend class SCEVCallbackVH;
  friend class SCEVExpander;
  friend class SCEVUnknown;
   
  /// The function we are analyzing.
  Function &F;
   
  /// Does the module have any calls to the llvm.experimental.guard intrinsic
  /// at all?  If this is false, we avoid doing work that will only help if
  /// thare are guards present in the IR.
  bool HasGuards;
   
  /// The target library information for the target we are targeting.
  TargetLibraryInfo &TLI;
   
  /// The tracker for \@llvm.assume intrinsics in this function.
  AssumptionCache &AC;
   
  /// The dominator tree.
  DominatorTree &DT;
   
  /// The loop information for the function we are currently analyzing.
  LoopInfo &LI;
   
  /// This SCEV is used to represent unknown trip counts and things.
  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
   
  /// The type for HasRecMap.
  using HasRecMapType = DenseMap<const SCEV *, bool>;
   
  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
  HasRecMapType HasRecMap;
   
  /// The type for ExprValueMap.
  using ValueSetVector = SmallSetVector<Value *, 4>;
  using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
   
  /// ExprValueMap -- This map records the original values from which
  /// the SCEV expr is generated from.
  ExprValueMapType ExprValueMap;
   
  /// The type for ValueExprMap.
  using ValueExprMapType =
      DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
   
  /// This is a cache of the values we have analyzed so far.
  ValueExprMapType ValueExprMap;
   
  /// This is a cache for expressions that got folded to a different existing
  /// SCEV.
  DenseMap<FoldID, const SCEV *> FoldCache;
  DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
   
  /// Mark predicate values currently being processed by isImpliedCond.
  SmallPtrSet<const Value *, 6> PendingLoopPredicates;
   
  /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
  SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
   
  /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
  SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
   
  // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
  SmallPtrSet<const PHINode *, 6> PendingMerges;
   
  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
  /// conditions dominating the backedge of a loop.
  bool WalkingBEDominatingConds = false;
   
  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
  /// predicate by splitting it into a set of independent predicates.
  bool ProvingSplitPredicate = false;
   
  /// Memoized values for the GetMinTrailingZeros
  DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
   
  /// Return the Value set from which the SCEV expr is generated.
  ArrayRef<Value *> getSCEVValues(const SCEV *S);
   
  /// Private helper method for the GetMinTrailingZeros method
  uint32_t GetMinTrailingZerosImpl(const SCEV *S);
   
  /// Information about the number of loop iterations for which a loop exit's
  /// branch condition evaluates to the not-taken path.  This is a temporary
  /// pair of exact and max expressions that are eventually summarized in
  /// ExitNotTakenInfo and BackedgeTakenInfo.
  struct ExitLimit {
    const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
    const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
                                     // times
    const SCEV *SymbolicMaxNotTaken;
   
    // Not taken either exactly ConstantMaxNotTaken or zero times
    bool MaxOrZero = false;
   
    /// A set of predicate guards for this ExitLimit. The result is only valid
    /// if all of the predicates in \c Predicates evaluate to 'true' at
    /// run-time.
    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
   
    void addPredicate(const SCEVPredicate *P) {
      assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
      Predicates.insert(P);
    }
   
    /// Construct either an exact exit limit from a constant, or an unknown
    /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
    /// as arguments and asserts enforce that internally.
    /*implicit*/ ExitLimit(const SCEV *E);
   
    ExitLimit(
        const SCEV *E, const SCEV *ConstantMaxNotTaken,
        const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
        ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList =
            std::nullopt);
   
    ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
              const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
              const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
   
    /// Test whether this ExitLimit contains any computed information, or
    /// whether it's all SCEVCouldNotCompute values.
    bool hasAnyInfo() const {
      return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
             !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
    }
   
    /// Test whether this ExitLimit contains all information.
    bool hasFullInfo() const {
      return !isa<SCEVCouldNotCompute>(ExactNotTaken);
    }
  };
   
  /// Information about the number of times a particular loop exit may be
  /// reached before exiting the loop.
  struct ExitNotTakenInfo {
    PoisoningVH<BasicBlock> ExitingBlock;
    const SCEV *ExactNotTaken;
    const SCEV *ConstantMaxNotTaken;
    const SCEV *SymbolicMaxNotTaken;
    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
   
    explicit ExitNotTakenInfo(
        PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken,
        const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken,
        const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
        : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
          ConstantMaxNotTaken(ConstantMaxNotTaken),
          SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
   
    bool hasAlwaysTruePredicate() const {
      return Predicates.empty();
    }
  };
   
  /// Information about the backedge-taken count of a loop. This currently
  /// includes an exact count and a maximum count.
  ///
  class BackedgeTakenInfo {
    friend class ScalarEvolution;
   
    /// A list of computable exits and their not-taken counts.  Loops almost
    /// never have more than one computable exit.
    SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
   
    /// Expression indicating the least constant maximum backedge-taken count of
    /// the loop that is known, or a SCEVCouldNotCompute. This expression is
    /// only valid if the redicates associated with all loop exits are true.
    const SCEV *ConstantMax = nullptr;
   
    /// Indicating if \c ExitNotTaken has an element for every exiting block in
    /// the loop.
    bool IsComplete = false;
   
    /// Expression indicating the least maximum backedge-taken count of the loop
    /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
    const SCEV *SymbolicMax = nullptr;
   
    /// True iff the backedge is taken either exactly Max or zero times.
    bool MaxOrZero = false;
   
    bool isComplete() const { return IsComplete; }
    const SCEV *getConstantMax() const { return ConstantMax; }
   
  public:
    BackedgeTakenInfo() = default;
    BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
    BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
   
    using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
   
    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
                      const SCEV *ConstantMax, bool MaxOrZero);
   
    /// Test whether this BackedgeTakenInfo contains any computed information,
    /// or whether it's all SCEVCouldNotCompute values.
    bool hasAnyInfo() const {
      return !ExitNotTaken.empty() ||
             !isa<SCEVCouldNotCompute>(getConstantMax());
    }
   
    /// Test whether this BackedgeTakenInfo contains complete information.
    bool hasFullInfo() const { return isComplete(); }
   
    /// Return an expression indicating the exact *backedge-taken*
    /// count of the loop if it is known or SCEVCouldNotCompute
    /// otherwise.  If execution makes it to the backedge on every
    /// iteration (i.e. there are no abnormal exists like exception
    /// throws and thread exits) then this is the number of times the
    /// loop header will execute minus one.
    ///
    /// If the SCEV predicate associated with the answer can be different
    /// from AlwaysTrue, we must add a (non null) Predicates argument.
    /// The SCEV predicate associated with the answer will be added to
    /// Predicates. A run-time check needs to be emitted for the SCEV
    /// predicate in order for the answer to be valid.
    ///
    /// Note that we should always know if we need to pass a predicate
    /// argument or not from the way the ExitCounts vector was computed.
    /// If we allowed SCEV predicates to be generated when populating this
    /// vector, this information can contain them and therefore a
    /// SCEVPredicate argument should be added to getExact.
    const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
                         SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
   
    /// Return the number of times this loop exit may fall through to the back
    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
    /// this block before this number of iterations, but may exit via another
    /// block.
    const SCEV *getExact(const BasicBlock *ExitingBlock,
                         ScalarEvolution *SE) const;
   
    /// Get the constant max backedge taken count for the loop.
    const SCEV *getConstantMax(ScalarEvolution *SE) const;
   
    /// Get the constant max backedge taken count for the particular loop exit.
    const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
                               ScalarEvolution *SE) const;
   
    /// Get the symbolic max backedge taken count for the loop.
    const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
   
    /// Get the symbolic max backedge taken count for the particular loop exit.
    const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock,
                               ScalarEvolution *SE) const;
   
    /// Return true if the number of times this backedge is taken is either the
    /// value returned by getConstantMax or zero.
    bool isConstantMaxOrZero(ScalarEvolution *SE) const;
  };
   
  /// Cache the backedge-taken count of the loops for this function as they
  /// are computed.
  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
   
  /// Cache the predicated backedge-taken count of the loops for this
  /// function as they are computed.
  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
   
  /// Loops whose backedge taken counts directly use this non-constant SCEV.
  DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
      BECountUsers;
   
  /// This map contains entries for all of the PHI instructions that we
  /// attempt to compute constant evolutions for.  This allows us to avoid
  /// potentially expensive recomputation of these properties.  An instruction
  /// maps to null if we are unable to compute its exit value.
  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
   
  /// This map contains entries for all the expressions that we attempt to
  /// compute getSCEVAtScope information for, which can be expensive in
  /// extreme cases.
  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
      ValuesAtScopes;
   
  /// Reverse map for invalidation purposes: Stores of which SCEV and which
  /// loop this is the value-at-scope of.
  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
      ValuesAtScopesUsers;
   
  /// Memoized computeLoopDisposition results.
  DenseMap<const SCEV *,
           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
      LoopDispositions;
   
  struct LoopProperties {
    /// Set to true if the loop contains no instruction that can abnormally exit
    /// the loop (i.e. via throwing an exception, by terminating the thread
    /// cleanly or by infinite looping in a called function).  Strictly
    /// speaking, the last one is not leaving the loop, but is identical to
    /// leaving the loop for reasoning about undefined behavior.
    bool HasNoAbnormalExits;
   
    /// Set to true if the loop contains no instruction that can have side
    /// effects (i.e. via throwing an exception, volatile or atomic access).
    bool HasNoSideEffects;
  };
   
  /// Cache for \c getLoopProperties.
  DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
   
  /// Return a \c LoopProperties instance for \p L, creating one if necessary.
  LoopProperties getLoopProperties(const Loop *L);
   
  bool loopHasNoSideEffects(const Loop *L) {
    return getLoopProperties(L).HasNoSideEffects;
  }
   
  /// Compute a LoopDisposition value.
  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
   
  /// Memoized computeBlockDisposition results.
  DenseMap<
      const SCEV *,
      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
      BlockDispositions;
   
  /// Compute a BlockDisposition value.
  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
   
  /// Stores all SCEV that use a given SCEV as its direct operand.
  DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
   
  /// Memoized results from getRange
  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
   
  /// Memoized results from getRange
  DenseMap<const SCEV *, ConstantRange> SignedRanges;
   
  /// Used to parameterize getRange
  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
   
  /// Set the memoized range for the given SCEV.
  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
                                ConstantRange CR) {
    DenseMap<const SCEV *, ConstantRange> &Cache =
        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
   
    auto Pair = Cache.try_emplace(S, std::move(CR));
    if (!Pair.second)
      Pair.first->second = std::move(CR);
    return Pair.first->second;
  }
   
  /// Determine the range for a particular SCEV.
  /// NOTE: This returns a reference to an entry in a cache. It must be
  /// copied if its needed for longer.
  const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
                                   unsigned Depth = 0);
   
  /// Determine the range for a particular SCEV, but evaluates ranges for
  /// operands iteratively first.
  const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
   
  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
  /// Helper for \c getRange.
  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
                                    const SCEV *MaxBECount, unsigned BitWidth);
   
  /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
  /// Start,+,\p Step}<nw>.
  ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
                                                  const SCEV *MaxBECount,
                                                  unsigned BitWidth,
                                                  RangeSignHint SignHint);
   
  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
  /// Step} by "factoring out" a ternary expression from the add recurrence.
  /// Helper called by \c getRange.
  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
                                     const SCEV *MaxBECount, unsigned BitWidth);
   
  /// If the unknown expression U corresponds to a simple recurrence, return
  /// a constant range which represents the entire recurrence.  Note that
  /// *add* recurrences with loop invariant steps aren't represented by
  /// SCEVUnknowns and thus don't use this mechanism.
  ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
   
  /// We know that there is no SCEV for the specified value.  Analyze the
  /// expression recursively.
  const SCEV *createSCEV(Value *V);
   
  /// We know that there is no SCEV for the specified value. Create a new SCEV
  /// for \p V iteratively.
  const SCEV *createSCEVIter(Value *V);
  /// Collect operands of \p V for which SCEV expressions should be constructed
  /// first. Returns a SCEV directly if it can be constructed trivially for \p
  /// V.
  const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
   
  /// Provide the special handling we need to analyze PHI SCEVs.
  const SCEV *createNodeForPHI(PHINode *PN);
   
  /// Helper function called from createNodeForPHI.
  const SCEV *createAddRecFromPHI(PHINode *PN);
   
  /// A helper function for createAddRecFromPHI to handle simple cases.
  const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
                                            Value *StartValueV);
   
  /// Helper function called from createNodeForPHI.
  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
   
  /// Provide special handling for a select-like instruction (currently this
  /// is either a select instruction or a phi node).  \p I is the instruction
  /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
  /// FalseVal".
  const SCEV *createNodeForSelectOrPHIInstWithICmpInstCond(Instruction *I,
                                                           ICmpInst *Cond,
                                                           Value *TrueVal,
                                                           Value *FalseVal);
   
  /// See if we can model this select-like instruction via umin_seq expression.
  const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
                                                 Value *TrueVal,
                                                 Value *FalseVal);
   
  /// Given a value \p V, which is a select-like instruction (currently this is
  /// either a select instruction or a phi node), which is assumed equivalent to
  ///   Cond ? TrueVal : FalseVal
  /// see if we can model it as a SCEV expression.
  const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
                                       Value *FalseVal);
   
  /// Provide the special handling we need to analyze GEP SCEVs.
  const SCEV *createNodeForGEP(GEPOperator *GEP);
   
  /// Implementation code for getSCEVAtScope; called at most once for each
  /// SCEV+Loop pair.
  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
   
  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
  /// values if the loop hasn't been analyzed yet. The returned result is
  /// guaranteed not to be predicated.
  BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
   
  /// Similar to getBackedgeTakenInfo, but will add predicates as required
  /// with the purpose of returning complete information.
  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
   
  /// Compute the number of times the specified loop will iterate.
  /// If AllowPredicates is set, we will create new SCEV predicates as
  /// necessary in order to return an exact answer.
  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
                                              bool AllowPredicates = false);
   
  /// Compute the number of times the backedge of the specified loop will
  /// execute if it exits via the specified block. If AllowPredicates is set,
  /// this call will try to use a minimal set of SCEV predicates in order to
  /// return an exact answer.
  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
                             bool AllowPredicates = false);
   
  /// Compute the number of times the backedge of the specified loop will
  /// execute if its exit condition were a conditional branch of ExitCond.
  ///
  /// \p ControlsExit is true if ExitCond directly controls the exit
  /// branch. In this case, we can assume that the loop exits only if the
  /// condition is true and can infer that failing to meet the condition prior
  /// to integer wraparound results in undefined behavior.
  ///
  /// If \p AllowPredicates is set, this call will try to use a minimal set of
  /// SCEV predicates in order to return an exact answer.
  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
                                     bool ExitIfTrue, bool ControlsExit,
                                     bool AllowPredicates = false);
   
  /// Return a symbolic upper bound for the backedge taken count of the loop.
  /// This is more general than getConstantMaxBackedgeTakenCount as it returns
  /// an arbitrary expression as opposed to only constants.
  const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
   
  // Helper functions for computeExitLimitFromCond to avoid exponential time
  // complexity.
   
  class ExitLimitCache {
    // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
    // AllowPredicates) tuple, but recursive calls to
    // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
    // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
    // initial values of the other values to assert our assumption.
    SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
   
    const Loop *L;
    bool ExitIfTrue;
    bool AllowPredicates;
   
  public:
    ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
        : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
   
    std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
                                  bool ExitIfTrue, bool ControlsExit,
                                  bool AllowPredicates);
   
    void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
                bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
  };
   
  using ExitLimitCacheTy = ExitLimitCache;
   
  ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
                                           const Loop *L, Value *ExitCond,
                                           bool ExitIfTrue,
                                           bool ControlsExit,
                                           bool AllowPredicates);
  ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
                                         Value *ExitCond, bool ExitIfTrue,
                                         bool ControlsExit,
                                         bool AllowPredicates);
  std::optional<ScalarEvolution::ExitLimit>
  computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
                                    Value *ExitCond, bool ExitIfTrue,
                                    bool ControlsExit, bool AllowPredicates);
   
  /// Compute the number of times the backedge of the specified loop will
  /// execute if its exit condition were a conditional branch of the ICmpInst
  /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
  /// to use a minimal set of SCEV predicates in order to return an exact
  /// answer.
  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
                                     bool ExitIfTrue,
                                     bool IsSubExpr,
                                     bool AllowPredicates = false);
   
  /// Variant of previous which takes the components representing an ICmp
  /// as opposed to the ICmpInst itself.  Note that the prior version can
  /// return more precise results in some cases and is preferred when caller
  /// has a materialized ICmp.
  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
                                     const SCEV *LHS, const SCEV *RHS,
                                     bool IsSubExpr,
                                     bool AllowPredicates = false);
   
  /// Compute the number of times the backedge of the specified loop will
  /// execute if its exit condition were a switch with a single exiting case
  /// to ExitingBB.
  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
                                                 SwitchInst *Switch,
                                                 BasicBlock *ExitingBB,
                                                 bool IsSubExpr);
   
  /// Compute the exit limit of a loop that is controlled by a
  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
  /// count in these cases (since SCEV has no way of expressing them), but we
  /// can still sometimes compute an upper bound.
  ///
  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
  /// RHS`.
  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
                                         ICmpInst::Predicate Pred);
   
  /// If the loop is known to execute a constant number of times (the
  /// condition evolves only from constants), try to evaluate a few iterations
  /// of the loop until we get the exit condition gets a value of ExitWhen
  /// (true or false).  If we cannot evaluate the exit count of the loop,
  /// return CouldNotCompute.
  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
                                           bool ExitWhen);
   
  /// Return the number of times an exit condition comparing the specified
  /// value to zero will execute.  If not computable, return CouldNotCompute.
  /// If AllowPredicates is set, this call will try to use a minimal set of
  /// SCEV predicates in order to return an exact answer.
  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
                         bool AllowPredicates = false);
   
  /// Return the number of times an exit condition checking the specified
  /// value for nonzero will execute.  If not computable, return
  /// CouldNotCompute.
  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
   
  /// Return the number of times an exit condition containing the specified
  /// less-than comparison will execute.  If not computable, return
  /// CouldNotCompute.
  ///
  /// \p isSigned specifies whether the less-than is signed.
  ///
  /// \p ControlsExit is true when the LHS < RHS condition directly controls
  /// the branch (loops exits only if condition is true). In this case, we can
  /// use NoWrapFlags to skip overflow checks.
  ///
  /// If \p AllowPredicates is set, this call will try to use a minimal set of
  /// SCEV predicates in order to return an exact answer.
  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
                             bool isSigned, bool ControlsExit,
                             bool AllowPredicates = false);
   
  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
                                bool isSigned, bool IsSubExpr,
                                bool AllowPredicates = false);
   
  /// Return a predecessor of BB (which may not be an immediate predecessor)
  /// which has exactly one successor from which BB is reachable, or null if
  /// no such block is found.
  std::pair<const BasicBlock *, const BasicBlock *>
  getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the given FoundCondValue value evaluates to true in given
  /// Context. If Context is nullptr, then the found predicate is true
  /// everywhere. LHS and FoundLHS may have different type width.
  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
                     const Value *FoundCondValue, bool Inverse,
                     const Instruction *Context = nullptr);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the given FoundCondValue value evaluates to true in given
  /// Context. If Context is nullptr, then the found predicate is true
  /// everywhere. LHS and FoundLHS must have same type width.
  bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
                                  const SCEV *RHS,
                                  ICmpInst::Predicate FoundPred,
                                  const SCEV *FoundLHS, const SCEV *FoundRHS,
                                  const Instruction *CtxI);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
  /// true in given Context. If Context is nullptr, then the found predicate is
  /// true everywhere.
  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
                     const SCEV *FoundRHS,
                     const Instruction *Context = nullptr);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true in given Context. If Context is nullptr, then the found predicate is
  /// true everywhere.
  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
                             const SCEV *RHS, const SCEV *FoundLHS,
                             const SCEV *FoundRHS,
                             const Instruction *Context = nullptr);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true. Here LHS is an operation that includes FoundLHS as one of its
  /// arguments.
  bool isImpliedViaOperations(ICmpInst::Predicate Pred,
                              const SCEV *LHS, const SCEV *RHS,
                              const SCEV *FoundLHS, const SCEV *FoundRHS,
                              unsigned Depth = 0);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true.
  /// Use only simple non-recursive types of checks, such as range analysis etc.
  bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
                                       const SCEV *LHS, const SCEV *RHS);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
                                   const SCEV *RHS, const SCEV *FoundLHS,
                                   const SCEV *FoundRHS);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
                                      const SCEV *RHS, const SCEV *FoundLHS,
                                      const SCEV *FoundRHS);
   
  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
  /// by a call to @llvm.experimental.guard in \p BB.
  bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
                         const SCEV *LHS, const SCEV *RHS);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to rule out certain kinds of integer overflow, and
  /// then tries to reason about arithmetic properties of the predicates.
  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
                                          const SCEV *LHS, const SCEV *RHS,
                                          const SCEV *FoundLHS,
                                          const SCEV *FoundRHS);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to weaken the known condition basing on fact that
  /// FoundLHS is an AddRec.
  bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
                                           const SCEV *LHS, const SCEV *RHS,
                                           const SCEV *FoundLHS,
                                           const SCEV *FoundRHS,
                                           const Instruction *CtxI);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to figure out predicate for Phis which are SCEVUnknown
  /// if it is true for every possible incoming value from their respective
  /// basic blocks.
  bool isImpliedViaMerge(ICmpInst::Predicate Pred,
                         const SCEV *LHS, const SCEV *RHS,
                         const SCEV *FoundLHS, const SCEV *FoundRHS,
                         unsigned Depth);
   
  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to reason about shifts.
  bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
                                     const SCEV *RHS, const SCEV *FoundLHS,
                                     const SCEV *FoundRHS);
   
  /// If we know that the specified Phi is in the header of its containing
  /// loop, we know the loop executes a constant number of times, and the PHI
  /// node is just a recurrence involving constants, fold it.
  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
                                              const Loop *L);
   
  /// Test if the given expression is known to satisfy the condition described
  /// by Pred and the known constant ranges of LHS and RHS.
  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
                                         const SCEV *LHS, const SCEV *RHS);
   
  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
  /// integer overflow.
  ///
  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
  /// positive.
  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
                                     const SCEV *RHS);
   
  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
  /// prove them individually.
  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
                                    const SCEV *RHS);
   
  /// Try to match the Expr as "(L + R)<Flags>".
  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
                      SCEV::NoWrapFlags &Flags);
   
  /// Forget predicated/non-predicated backedge taken counts for the given loop.
  void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
   
  /// Drop memoized information for all \p SCEVs.
  void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
   
  /// Helper for forgetMemoizedResults.
  void forgetMemoizedResultsImpl(const SCEV *S);
   
  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
  const SCEV *getExistingSCEV(Value *V);
   
  /// Erase Value from ValueExprMap and ExprValueMap.
  void eraseValueFromMap(Value *V);
   
  /// Insert V to S mapping into ValueExprMap and ExprValueMap.
  void insertValueToMap(Value *V, const SCEV *S);
   
  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
  /// pointer.
  bool checkValidity(const SCEV *S) const;
   
  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
  /// equivalent to proving no signed (resp. unsigned) wrap in
  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
  /// (resp. `SCEVZeroExtendExpr`).
  template <typename ExtendOpTy>
  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
                                 const Loop *L);
   
  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
   
  /// Try to prove NSW on \p AR by proving facts about conditions known  on
  /// entry and backedge.
  SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
   
  /// Try to prove NUW on \p AR by proving facts about conditions known on
  /// entry and backedge.
  SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
   
  std::optional<MonotonicPredicateType>
  getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
                                ICmpInst::Predicate Pred);
   
  /// Return SCEV no-wrap flags that can be proven based on reasoning about
  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
  /// would trigger undefined behavior on overflow.
  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
   
  /// Return a scope which provides an upper bound on the defining scope of
  /// 'S'. Specifically, return the first instruction in said bounding scope.
  /// Return nullptr if the scope is trivial (function entry).
  /// (See scope definition rules associated with flag discussion above)
  const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
   
  /// Return a scope which provides an upper bound on the defining scope for
  /// a SCEV with the operands in Ops.  The outparam Precise is set if the
  /// bound found is a precise bound (i.e. must be the defining scope.)
  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
                                           bool &Precise);
   
  /// Wrapper around the above for cases which don't care if the bound
  /// is precise.
  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
   
  /// Given two instructions in the same function, return true if we can
  /// prove B must execute given A executes.
  bool isGuaranteedToTransferExecutionTo(const Instruction *A,
                                         const Instruction *B);
   
  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
  /// this is more complex than proving that just \p I is never poison, since
  /// SCEV commons expressions across control flow, and you can have cases
  /// like:
  ///
  ///   idx0 = a + b;
  ///   ptr[idx0] = 100;
  ///   if (<condition>) {
  ///     idx1 = a +nsw b;
  ///     ptr[idx1] = 200;
  ///   }
  ///
  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
  /// hence not sign-overflow) only if "<condition>" is true.  Since both
  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
  bool isSCEVExprNeverPoison(const Instruction *I);
   
  /// This is like \c isSCEVExprNeverPoison but it specifically works for
  /// instructions that will get mapped to SCEV add recurrences.  Return true
  /// if \p I will never generate poison under the assumption that \p I is an
  /// add recurrence on the loop \p L.
  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
   
  /// Similar to createAddRecFromPHI, but with the additional flexibility of
  /// suggesting runtime overflow checks in case casts are encountered.
  /// If successful, the analysis records that for this loop, \p SymbolicPHI,
  /// which is the UnknownSCEV currently representing the PHI, can be rewritten
  /// into an AddRec, assuming some predicates; The function then returns the
  /// AddRec and the predicates as a pair, and caches this pair in
  /// PredicatedSCEVRewrites.
  /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
  /// itself (with no predicates) is recorded, and a nullptr with an empty
  /// predicates vector is returned as a pair.
  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
  createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
   
  /// Compute the maximum backedge count based on the range of values
  /// permitted by Start, End, and Stride. This is for loops of the form
  /// {Start, +, Stride} LT End.
  ///
  /// Preconditions:
  /// * the induction variable is known to be positive.
  /// * the induction variable is assumed not to overflow (i.e. either it
  ///   actually doesn't, or we'd have to immediately execute UB)
  /// We *don't* assert these preconditions so please be careful.
  const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
                                     const SCEV *End, unsigned BitWidth,
                                     bool IsSigned);
   
  /// Verify if an linear IV with positive stride can overflow when in a
  /// less-than comparison, knowing the invariant term of the comparison,
  /// the stride.
  bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
   
  /// Verify if an linear IV with negative stride can overflow when in a
  /// greater-than comparison, knowing the invariant term of the comparison,
  /// the stride.
  bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
   
  /// Get add expr already created or create a new one.
  const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
                                 SCEV::NoWrapFlags Flags);
   
  /// Get mul expr already created or create a new one.
  const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
                                 SCEV::NoWrapFlags Flags);
   
  // Get addrec expr already created or create a new one.
  const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
                                    const Loop *L, SCEV::NoWrapFlags Flags);
   
  /// Return x if \p Val is f(x) where f is a 1-1 function.
  const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
   
  /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
  /// A loop is considered "used" by an expression if it contains
  /// an add rec on said loop.
  void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
   
  /// Try to match the pattern generated by getURemExpr(A, B). If successful,
  /// Assign A and B to LHS and RHS, respectively.
  bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
   
  /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
  /// `UniqueSCEVs`.  Return if found, else nullptr.
  SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
   
  /// Get reachable blocks in this function, making limited use of SCEV
  /// reasoning about conditions.
  void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
                          Function &F);
   
  FoldingSet<SCEV> UniqueSCEVs;
  FoldingSet<SCEVPredicate> UniquePreds;
  BumpPtrAllocator SCEVAllocator;
   
  /// This maps loops to a list of addrecs that directly use said loop.
  DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
   
  /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
  /// they can be rewritten into under certain predicates.
  DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
           std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
      PredicatedSCEVRewrites;
   
  /// Set of AddRecs for which proving NUW via an induction has already been
  /// tried.
  SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
   
  /// Set of AddRecs for which proving NSW via an induction has already been
  /// tried.
  SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
   
  /// The head of a linked list of all SCEVUnknown values that have been
  /// allocated. This is used by releaseMemory to locate them all and call
  /// their destructors.
  SCEVUnknown *FirstUnknown = nullptr;

};

/// Analysis pass that exposes the \c ScalarEvolution for a function.
 class ScalarEvolutionAnalysis

    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
   
  static AnalysisKey Key;
   

public:

  using Result = ScalarEvolution;
   
  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);

};

/// Verifier pass for the \c ScalarEvolutionAnalysis results.
 class ScalarEvolutionVerifierPass

  : public PassInfoMixin<ScalarEvolutionVerifierPass> {

public:

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);

};

/// Printer pass for the \c ScalarEvolutionAnalysis results.
 class ScalarEvolutionPrinterPass

    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
  raw_ostream &OS;
   

public:

  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
   
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);

};

class ScalarEvolutionWrapperPass : public FunctionPass {

  std::unique_ptr<ScalarEvolution> SE;
   

public:

  static char ID;
   
  ScalarEvolutionWrapperPass();
   
  ScalarEvolution &getSE() { return *SE; }
  const ScalarEvolution &getSE() const { return *SE; }
   
  bool runOnFunction(Function &F) override;
  void releaseMemory() override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  void print(raw_ostream &OS, const Module * = nullptr) const override;
  void verifyAnalysis() const override;

};

/// An interface layer with SCEV used to manage how we see SCEV expressions
 /// for values in the context of existing predicates. We can add new
 /// predicates, but we cannot remove them.
 ///
 /// This layer has multiple purposes:
 ///   - provides a simple interface for SCEV versioning.
 ///   - guarantees that the order of transformations applied on a SCEV
 ///     expression for a single Value is consistent across two different
 ///     getSCEV calls. This means that, for example, once we've obtained
 ///     an AddRec expression for a certain value through expression
 ///     rewriting, we will continue to get an AddRec expression for that
 ///     Value.
 ///   - lowers the number of expression rewrites.
 class PredicatedScalarEvolution {
public:

  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
   
  const SCEVPredicate &getPredicate() const;
   
  /// Returns the SCEV expression of V, in the context of the current SCEV
  /// predicate.  The order of transformations applied on the expression of V
  /// returned by ScalarEvolution is guaranteed to be preserved, even when
  /// adding new predicates.
  const SCEV *getSCEV(Value *V);
   
  /// Get the (predicated) backedge count for the analyzed loop.
  const SCEV *getBackedgeTakenCount();
   
  /// Adds a new predicate.
  void addPredicate(const SCEVPredicate &Pred);
   
  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
  /// predicates. If we can't transform the expression into an AddRecExpr we
  /// return nullptr and not add additional SCEV predicates to the current
  /// context.
  const SCEVAddRecExpr *getAsAddRec(Value *V);
   
  /// Proves that V doesn't overflow by adding SCEV predicate.
  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
   
  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
  /// predicate.
  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
   
  /// Returns the ScalarEvolution analysis used.
  ScalarEvolution *getSE() const { return &SE; }
   
  /// We need to explicitly define the copy constructor because of FlagsMap.
  PredicatedScalarEvolution(const PredicatedScalarEvolution &);
   
  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
  /// The printed text is indented by \p Depth.
  void print(raw_ostream &OS, unsigned Depth) const;
   
  /// Check if \p AR1 and \p AR2 are equal, while taking into account
  /// Equal predicates in Preds.
  bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
                                const SCEVAddRecExpr *AR2) const;
   

private:

  /// Increments the version number of the predicate.  This needs to be called
  /// every time the SCEV predicate changes.
  void updateGeneration();
   
  /// Holds a SCEV and the version number of the SCEV predicate used to
  /// perform the rewrite of the expression.
  using RewriteEntry = std::pair<unsigned, const SCEV *>;
   
  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
  /// number. If this number doesn't match the current Generation, we will
  /// need to do a rewrite. To preserve the transformation order of previous
  /// rewrites, we will rewrite the previous result instead of the original
  /// SCEV.
  DenseMap<const SCEV *, RewriteEntry> RewriteMap;
   
  /// Records what NoWrap flags we've added to a Value *.
  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
   
  /// The ScalarEvolution analysis.
  ScalarEvolution &SE;
   
  /// The analyzed Loop.
  const Loop &L;
   
  /// The SCEVPredicate that forms our context. We will rewrite all
  /// expressions assuming that this predicate true.
  std::unique_ptr<SCEVUnionPredicate> Preds;
   
  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
  /// expression we mark it with the version of the predicate. We use this to
  /// figure out if the predicate has changed from the last rewrite of the
  /// SCEV. If so, we need to perform a new rewrite.
  unsigned Generation = 0;
   
  /// The backedge taken count.
  const SCEV *BackedgeCount = nullptr;

};

template <> struct DenseMapInfo<ScalarEvolution::FoldID> {

  static inline ScalarEvolution::FoldID getEmptyKey() {
    ScalarEvolution::FoldID ID;
    ID.addInteger(~0ULL);
    return ID;
  }
  static inline ScalarEvolution::FoldID getTombstoneKey() {
    ScalarEvolution::FoldID ID;
    ID.addInteger(~0ULL - 1ULL);
    return ID;
  }
   
  static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
    return Val.computeHash();
  }
   
  static bool isEqual(const ScalarEvolution::FoldID &LHS,
                      const ScalarEvolution::FoldID &RHS) {
    return LHS == RHS;
  }

};

} // end namespace llvm

#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
index 3c445aace303..34a9cddcb08b 100644

- a/llvm/lib/Analysis/ScalarEvolution.cpp

+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -1,15142 +1,15162 @@
 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
 //
 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 // See https://llvm.org/LICENSE.txt for license information.
 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 //
 //===----------------------------------------------------------------------===//
 //
 // This file contains the implementation of the scalar evolution analysis
 // engine, which is used primarily to analyze expressions involving induction
 // variables in loops.
 //
 // There are several aspects to this library.  First is the representation of
 // scalar expressions, which are represented as subclasses of the SCEV class.
 // These classes are used to represent certain types of subexpressions that we
 // can handle. We only create one SCEV of a particular shape, so
 // pointer-comparisons for equality are legal.
 //
 // One important aspect of the SCEV objects is that they are never cyclic, even
 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
 // recurrence) then we represent it directly as a recurrence node, otherwise we
 // represent it as a SCEVUnknown node.
 //
 // In addition to being able to represent expressions of various types, we also
 // have folders that are used to build the *canonical* representation for a
 // particular expression.  These folders are capable of using a variety of
 // rewrite rules to simplify the expressions.
 //
 // Once the folders are defined, we can implement the more interesting
 // higher-level code, such as the code that recognizes PHI nodes of various
 // types, computes the execution count of a loop, etc.
 //
 // TODO: We should use these routines and value representations to implement
 // dependence analysis!
 //
 //===----------------------------------------------------------------------===//
 //
 // There are several good references for the techniques used in this analysis.
 //
 //  Chains of recurrences -- a method to expedite the evaluation
 //  of closed-form functions
 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 //
 //  On computational properties of chains of recurrences
 //  Eugene V. Zima
 //
 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 //  Robert A. van Engelen
 //
 //  Efficient Symbolic Analysis for Optimizing Compilers
 //  Robert A. van Engelen
 //
 //  Using the chains of recurrences algebra for data dependence testing and
 //  induction variable substitution
 //  MS Thesis, Johnie Birch
 //
 //===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolution.h"
 #include "llvm/ADT/APInt.h"
 #include "llvm/ADT/ArrayRef.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/EquivalenceClasses.h"
 #include "llvm/ADT/FoldingSet.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/ScopeExit.h"
 #include "llvm/ADT/Sequence.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/StringRef.h"
 #include "llvm/Analysis/AssumptionCache.h"
 #include "llvm/Analysis/ConstantFolding.h"
 #include "llvm/Analysis/InstructionSimplify.h"
 #include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Config/llvm-config.h"
 #include "llvm/IR/Argument.h"
 #include "llvm/IR/BasicBlock.h"
 #include "llvm/IR/CFG.h"
 #include "llvm/IR/Constant.h"
 #include "llvm/IR/ConstantRange.h"
 #include "llvm/IR/Constants.h"
 #include "llvm/IR/DataLayout.h"
 #include "llvm/IR/DerivedTypes.h"
 #include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
 #include "llvm/IR/GlobalAlias.h"
 #include "llvm/IR/GlobalValue.h"
 #include "llvm/IR/InstIterator.h"
 #include "llvm/IR/InstrTypes.h"
 #include "llvm/IR/Instruction.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/IntrinsicInst.h"
 #include "llvm/IR/Intrinsics.h"
 #include "llvm/IR/LLVMContext.h"
 #include "llvm/IR/Operator.h"
 #include "llvm/IR/PatternMatch.h"
 #include "llvm/IR/Type.h"
 #include "llvm/IR/Use.h"
 #include "llvm/IR/User.h"
 #include "llvm/IR/Value.h"
 #include "llvm/IR/Verifier.h"
 #include "llvm/InitializePasses.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/Casting.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/KnownBits.h"
 #include "llvm/Support/SaveAndRestore.h"
 #include "llvm/Support/raw_ostream.h"
 #include <algorithm>
 #include <cassert>
 #include <climits>
 #include <cstdint>
 #include <cstdlib>
 #include <map>
 #include <memory>
 #include <numeric>
 #include <optional>
 #include <tuple>
 #include <utility>
 #include <vector>

using namespace llvm;
 using namespace PatternMatch;

#define DEBUG_TYPE "scalar-evolution"

STATISTIC(NumTripCountsComputed,

  "Number of loops with predictable loop counts");

STATISTIC(NumTripCountsNotComputed,

  "Number of loops without predictable loop counts");

STATISTIC(NumBruteForceTripCountsComputed,

  "Number of loops with trip counts computed by force");
   

#ifdef EXPENSIVE_CHECKS
 bool llvm::VerifySCEV = true;
 #else
 bool llvm::VerifySCEV = false;
 #endif

static cl::opt<unsigned>

  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
                          cl::desc("Maximum number of iterations SCEV will "
                                   "symbolically execute a constant "
                                   "derived loop"),
                          cl::init(100));
   

static cl::opt<bool, true> VerifySCEVOpt(

  "verify-scev", cl::Hidden, cl::location(VerifySCEV),
  cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));

static cl::opt<bool> VerifySCEVStrict(

  "verify-scev-strict", cl::Hidden,
  cl::desc("Enable stricter verification with -verify-scev is passed"));

static cl::opt<bool>

  VerifySCEVMap("verify-scev-maps", cl::Hidden,
                cl::desc("Verify no dangling value in ScalarEvolution's "
                         "ExprValueMap (slow)"));
   

static cl::opt<bool> VerifyIR(

  "scev-verify-ir", cl::Hidden,
  cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
  cl::init(false));
   

static cl::opt<unsigned> MulOpsInlineThreshold(

  "scev-mulops-inline-threshold", cl::Hidden,
  cl::desc("Threshold for inlining multiplication operands into a SCEV"),
  cl::init(32));
   

static cl::opt<unsigned> AddOpsInlineThreshold(

  "scev-addops-inline-threshold", cl::Hidden,
  cl::desc("Threshold for inlining addition operands into a SCEV"),
  cl::init(500));
   

static cl::opt<unsigned> MaxSCEVCompareDepth(

  "scalar-evolution-max-scev-compare-depth", cl::Hidden,
  cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
  cl::init(32));
   

static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(

  "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
  cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
  cl::init(2));
   

static cl::opt<unsigned> MaxValueCompareDepth(

  "scalar-evolution-max-value-compare-depth", cl::Hidden,
  cl::desc("Maximum depth of recursive value complexity comparisons"),
  cl::init(2));
   

static cl::opt<unsigned>

  MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
                cl::desc("Maximum depth of recursive arithmetics"),
                cl::init(32));
   

static cl::opt<unsigned> MaxConstantEvolvingDepth(

  "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
  cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
   

static cl::opt<unsigned>

  MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
               cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
               cl::init(8));
   

static cl::opt<unsigned>

  MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
                cl::desc("Max coefficients in AddRec during evolving"),
                cl::init(8));
   

static cl::opt<unsigned>

  HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
                cl::desc("Size of the expression which is considered huge"),
                cl::init(4096));
   

static cl::opt<unsigned> RangeIterThreshold(

  "scev-range-iter-threshold", cl::Hidden,
  cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
  cl::init(32));
   

static cl::opt<bool>
 ClassifyExpressions("scalar-evolution-classify-expressions",

  cl::Hidden, cl::init(true),
  cl::desc("When printing analysis, include information on every instruction"));
   

static cl::opt<bool> UseExpensiveRangeSharpening(

  "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
  cl::init(false),
  cl::desc("Use more powerful methods of sharpening expression ranges. May "
           "be costly in terms of compile time"));
   

static cl::opt<unsigned> MaxPhiSCCAnalysisSize(

  "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
  cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
           "Phi strongly connected components"),
  cl::init(8));
   

static cl::opt<bool>

  EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
                          cl::desc("Handle <= and >= in finite loops"),
                          cl::init(true));
   

static cl::opt<bool> UseContextForNoWrapFlagInference(

  "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
  cl::desc("Infer nuw/nsw flags using context where suitable"),
  cl::init(true));
   

//===----------------------------------------------------------------------===//
 //                           SCEV class definitions
 //===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
 // Implementation of the SCEV class.
 //

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 LLVM_DUMP_METHOD void SCEV::dump() const {

  print(dbgs());
  dbgs() << '\n';

}
 #endif

void SCEV::print(raw_ostream &OS) const {

  switch (getSCEVType()) {
  case scConstant:
    cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
    return;
  case scPtrToInt: {
    const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
    const SCEV *Op = PtrToInt->getOperand();
    OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
       << *PtrToInt->getType() << ")";
    return;
  }
  case scTruncate: {
    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    const SCEV *Op = Trunc->getOperand();
    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
       << *Trunc->getType() << ")";
    return;
  }
  case scZeroExtend: {
    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    const SCEV *Op = ZExt->getOperand();
    OS << "(zext " << *Op->getType() << " " << *Op << " to "
       << *ZExt->getType() << ")";
    return;
  }
  case scSignExtend: {
    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    const SCEV *Op = SExt->getOperand();
    OS << "(sext " << *Op->getType() << " " << *Op << " to "
       << *SExt->getType() << ")";
    return;
  }
  case scAddRecExpr: {
    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    OS << "{" << *AR->getOperand(0);
    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
      OS << ",+," << *AR->getOperand(i);
    OS << "}<";
    if (AR->hasNoUnsignedWrap())
      OS << "nuw><";
    if (AR->hasNoSignedWrap())
      OS << "nsw><";
    if (AR->hasNoSelfWrap() &&
        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
      OS << "nw><";
    AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
    OS << ">";
    return;
  }
  case scAddExpr:
  case scMulExpr:
  case scUMaxExpr:
  case scSMaxExpr:
  case scUMinExpr:
  case scSMinExpr:
  case scSequentialUMinExpr: {
    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    const char *OpStr = nullptr;
    switch (NAry->getSCEVType()) {
    case scAddExpr: OpStr = " + "; break;
    case scMulExpr: OpStr = " * "; break;
    case scUMaxExpr: OpStr = " umax "; break;
    case scSMaxExpr: OpStr = " smax "; break;
    case scUMinExpr:
      OpStr = " umin ";
      break;
    case scSMinExpr:
      OpStr = " smin ";
      break;
    case scSequentialUMinExpr:
      OpStr = " umin_seq ";
      break;
    default:
      llvm_unreachable("There are no other nary expression types.");
    }
    OS << "(";
    ListSeparator LS(OpStr);
    for (const SCEV *Op : NAry->operands())
      OS << LS << *Op;
    OS << ")";
    switch (NAry->getSCEVType()) {
    case scAddExpr:
    case scMulExpr:
      if (NAry->hasNoUnsignedWrap())
        OS << "<nuw>";
      if (NAry->hasNoSignedWrap())
        OS << "<nsw>";
      break;
    default:
      // Nothing to print for other nary expressions.
      break;
    }
    return;
  }
  case scUDivExpr: {
    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    return;
  }
  case scUnknown: {
    const SCEVUnknown *U = cast<SCEVUnknown>(this);
    Type *AllocTy;
    if (U->isSizeOf(AllocTy)) {
      OS << "sizeof(" << *AllocTy << ")";
      return;
    }
    if (U->isAlignOf(AllocTy)) {
      OS << "alignof(" << *AllocTy << ")";
      return;
    }
   
    Type *CTy;
    Constant *FieldNo;
    if (U->isOffsetOf(CTy, FieldNo)) {
      OS << "offsetof(" << *CTy << ", ";
      FieldNo->printAsOperand(OS, false);
      OS << ")";
      return;
    }
   
    // Otherwise just print it normally.
    U->getValue()->printAsOperand(OS, false);
    return;
  }
  case scCouldNotCompute:
    OS << "***COULDNOTCOMPUTE***";
    return;
  }
  llvm_unreachable("Unknown SCEV kind!");

}

Type *SCEV::getType() const {

  switch (getSCEVType()) {
  case scConstant:
    return cast<SCEVConstant>(this)->getType();
  case scPtrToInt:
  case scTruncate:
  case scZeroExtend:
  case scSignExtend:
    return cast<SCEVCastExpr>(this)->getType();
  case scAddRecExpr:
    return cast<SCEVAddRecExpr>(this)->getType();
  case scMulExpr:
    return cast<SCEVMulExpr>(this)->getType();
  case scUMaxExpr:
  case scSMaxExpr:
  case scUMinExpr:
  case scSMinExpr:
    return cast<SCEVMinMaxExpr>(this)->getType();
  case scSequentialUMinExpr:
    return cast<SCEVSequentialMinMaxExpr>(this)->getType();
  case scAddExpr:
    return cast<SCEVAddExpr>(this)->getType();
  case scUDivExpr:
    return cast<SCEVUDivExpr>(this)->getType();
  case scUnknown:
    return cast<SCEVUnknown>(this)->getType();
  case scCouldNotCompute:
    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
  }
  llvm_unreachable("Unknown SCEV kind!");

}

ArrayRef<const SCEV *> SCEV::operands() const {

  switch (getSCEVType()) {
  case scConstant:
  case scUnknown:
    return {};
  case scPtrToInt:
  case scTruncate:
  case scZeroExtend:
  case scSignExtend:
    return cast<SCEVCastExpr>(this)->operands();
  case scAddRecExpr:
  case scAddExpr:
  case scMulExpr:
  case scUMaxExpr:
  case scSMaxExpr:
  case scUMinExpr:
  case scSMinExpr:
  case scSequentialUMinExpr:
    return cast<SCEVNAryExpr>(this)->operands();
  case scUDivExpr:
    return cast<SCEVUDivExpr>(this)->operands();
  case scCouldNotCompute:
    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
  }
  llvm_unreachable("Unknown SCEV kind!");

}

bool SCEV::isZero() const {

  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    return SC->getValue()->isZero();
  return false;

}

bool SCEV::isOne() const {

  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    return SC->getValue()->isOne();
  return false;

}

bool SCEV::isAllOnesValue() const {

  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    return SC->getValue()->isMinusOne();
  return false;

}

bool SCEV::isNonConstantNegative() const {

  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
  if (!Mul) return false;
   
  // If there is a constant factor, it will be first.
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
  if (!SC) return false;
   
  // Return true if the value is negative, this matches things like (-42 * V).
  return SC->getAPInt().isNegative();

}

SCEVCouldNotCompute::SCEVCouldNotCompute() :

  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
   

bool SCEVCouldNotCompute::classof(const SCEV *S) {

  return S->getSCEVType() == scCouldNotCompute;

}

const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {

  FoldingSetNodeID ID;
  ID.AddInteger(scConstant);
  ID.AddPointer(V);
  void *IP = nullptr;
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
  UniqueSCEVs.InsertNode(S, IP);
  return S;

}

const SCEV *ScalarEvolution::getConstant(const APInt &Val) {

  return getConstant(ConstantInt::get(getContext(), Val));

}

const SCEV *
 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {

  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
  return getConstant(ConstantInt::get(ITy, V, isSigned));

}

SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,

                         const SCEV *op, Type *ty)
  : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
   

SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,

                                   Type *ITy)
    : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
  assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
         "Must be a non-bit-width-changing pointer-to-integer cast!");

}

SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,

                                         SCEVTypes SCEVTy, const SCEV *op,
                                         Type *ty)
  : SCEVCastExpr(ID, SCEVTy, op, ty) {}
   

SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,

                                   Type *ty)
    : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
  assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot truncate non-integer value!");

}

SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,

                                       const SCEV *op, Type *ty)
    : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
  assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot zero extend non-integer value!");

}

SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,

                                       const SCEV *op, Type *ty)
    : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
  assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot sign extend non-integer value!");

}

void SCEVUnknown::deleted() {

  // Clear this SCEVUnknown from various maps.
  SE->forgetMemoizedResults(this);
   
  // Remove this SCEVUnknown from the uniquing map.
  SE->UniqueSCEVs.RemoveNode(this);
   
  // Release the value.
  setValPtr(nullptr);

}

void SCEVUnknown::allUsesReplacedWith(Value *New) {

  // Clear this SCEVUnknown from various maps.
  SE->forgetMemoizedResults(this);
   
  // Remove this SCEVUnknown from the uniquing map.
  SE->UniqueSCEVs.RemoveNode(this);
   
  // Replace the value pointer in case someone is still using this SCEVUnknown.
  setValPtr(New);

}

bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {

  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    if (VCE->getOpcode() == Instruction::PtrToInt)
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
        if (CE->getOpcode() == Instruction::GetElementPtr &&
            CE->getOperand(0)->isNullValue() &&
            CE->getNumOperands() == 2)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
            if (CI->isOne()) {
              AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
              return true;
            }
   
  return false;

}

bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {

  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    if (VCE->getOpcode() == Instruction::PtrToInt)
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
        if (CE->getOpcode() == Instruction::GetElementPtr &&
            CE->getOperand(0)->isNullValue()) {
          Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
          if (StructType *STy = dyn_cast<StructType>(Ty))
            if (!STy->isPacked() &&
                CE->getNumOperands() == 3 &&
                CE->getOperand(1)->isNullValue()) {
              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
                if (CI->isOne() &&
                    STy->getNumElements() == 2 &&
                    STy->getElementType(0)->isIntegerTy(1)) {
                  AllocTy = STy->getElementType(1);
                  return true;
                }
            }
        }
   
  return false;

}

bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {

  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    if (VCE->getOpcode() == Instruction::PtrToInt)
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
        if (CE->getOpcode() == Instruction::GetElementPtr &&
            CE->getNumOperands() == 3 &&
            CE->getOperand(0)->isNullValue() &&
            CE->getOperand(1)->isNullValue()) {
          Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
          // Ignore vector types here so that ScalarEvolutionExpander doesn't
          // emit getelementptrs that index into vectors.
          if (Ty->isStructTy() || Ty->isArrayTy()) {
            CTy = Ty;
            FieldNo = CE->getOperand(2);
            return true;
          }
        }
   
  return false;

}

//===----------------------------------------------------------------------===//
 //                               SCEV Utilities
 //===----------------------------------------------------------------------===//

/// Compare the two values \p LV and \p RV in terms of their "complexity" where
 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
 /// have been previously deemed to be "equally complex" by this routine.  It is
 /// intended to avoid exponential time complexity in cases like:
 ///
 ///   %a = f(%x, %y)
 ///   %b = f(%a, %a)
 ///   %c = f(%b, %b)
 ///
 ///   %d = f(%x, %y)
 ///   %e = f(%d, %d)
 ///   %f = f(%e, %e)
 ///
 ///   CompareValueComplexity(%f, %c)
 ///
 /// Since we do not continue running this routine on expression trees once we
 /// have seen unequal values, there is no need to track them in the cache.
 static int
 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,

                       const LoopInfo *const LI, Value *LV, Value *RV,
                       unsigned Depth) {
  if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
    return 0;
   
  // Order pointer values after integer values. This helps SCEVExpander form
  // GEPs.
  bool LIsPointer = LV->getType()->isPointerTy(),
       RIsPointer = RV->getType()->isPointerTy();
  if (LIsPointer != RIsPointer)
    return (int)LIsPointer - (int)RIsPointer;
   
  // Compare getValueID values.
  unsigned LID = LV->getValueID(), RID = RV->getValueID();
  if (LID != RID)
    return (int)LID - (int)RID;
   
  // Sort arguments by their position.
  if (const auto *LA = dyn_cast<Argument>(LV)) {
    const auto *RA = cast<Argument>(RV);
    unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    return (int)LArgNo - (int)RArgNo;
  }
   
  if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
    const auto *RGV = cast<GlobalValue>(RV);
   
    const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
      auto LT = GV->getLinkage();
      return !(GlobalValue::isPrivateLinkage(LT) ||
               GlobalValue::isInternalLinkage(LT));
    };
   
    // Use the names to distinguish the two values, but only if the
    // names are semantically important.
    if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
      return LGV->getName().compare(RGV->getName());
  }
   
  // For instructions, compare their loop depth, and their operand count.  This
  // is pretty loose.
  if (const auto *LInst = dyn_cast<Instruction>(LV)) {
    const auto *RInst = cast<Instruction>(RV);
   
    // Compare loop depths.
    const BasicBlock *LParent = LInst->getParent(),
                     *RParent = RInst->getParent();
    if (LParent != RParent) {
      unsigned LDepth = LI->getLoopDepth(LParent),
               RDepth = LI->getLoopDepth(RParent);
      if (LDepth != RDepth)
        return (int)LDepth - (int)RDepth;
    }
   
    // Compare the number of operands.
    unsigned LNumOps = LInst->getNumOperands(),
             RNumOps = RInst->getNumOperands();
    if (LNumOps != RNumOps)
      return (int)LNumOps - (int)RNumOps;
   
    for (unsigned Idx : seq(0u, LNumOps)) {
      int Result =
          CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
                                 RInst->getOperand(Idx), Depth + 1);
      if (Result != 0)
        return Result;
    }
  }
   
  EqCacheValue.unionSets(LV, RV);
  return 0;

}

// Return negative, zero, or positive, if LHS is less than, equal to, or greater
 // than RHS, respectively. A three-way result allows recursive comparisons to be
 // more efficient.
 // If the max analysis depth was reached, return std::nullopt, assuming we do
 // not know if they are equivalent for sure.
 static std::optional<int>
 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,

                      EquivalenceClasses<const Value *> &EqCacheValue,
                      const LoopInfo *const LI, const SCEV *LHS,
                      const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
  // Fast-path: SCEVs are uniqued so we can do a quick equality check.
  if (LHS == RHS)
    return 0;
   
  // Primarily, sort the SCEVs by their getSCEVType().
  SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
  if (LType != RType)
    return (int)LType - (int)RType;
   
  if (EqCacheSCEV.isEquivalent(LHS, RHS))
    return 0;
   
  if (Depth > MaxSCEVCompareDepth)
    return std::nullopt;
   
  // Aside from the getSCEVType() ordering, the particular ordering
  // isn't very important except that it's beneficial to be consistent,
  // so that (a + b) and (b + a) don't end up as different expressions.
  switch (LType) {
  case scUnknown: {
    const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
   
    int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
                                   RU->getValue(), Depth + 1);
    if (X == 0)
      EqCacheSCEV.unionSets(LHS, RHS);
    return X;
  }
   
  case scConstant: {
    const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    const SCEVConstant *RC = cast<SCEVConstant>(RHS);
   
    // Compare constant values.
    const APInt &LA = LC->getAPInt();
    const APInt &RA = RC->getAPInt();
    unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    if (LBitWidth != RBitWidth)
      return (int)LBitWidth - (int)RBitWidth;
    return LA.ult(RA) ? -1 : 1;
  }
   
  case scAddRecExpr: {
    const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
   
    // There is always a dominance between two recs that are used by one SCEV,
    // so we can safely sort recs by loop header dominance. We require such
    // order in getAddExpr.
    const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    if (LLoop != RLoop) {
      const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
      assert(LHead != RHead && "Two loops share the same header?");
      if (DT.dominates(LHead, RHead))
        return 1;
      else
        assert(DT.dominates(RHead, LHead) &&
               "No dominance between recurrences used by one SCEV?");
      return -1;
    }
   
    // Addrec complexity grows with operand count.
    unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    if (LNumOps != RNumOps)
      return (int)LNumOps - (int)RNumOps;
   
    // Lexicographically compare.
    for (unsigned i = 0; i != LNumOps; ++i) {
      auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
                                     LA->getOperand(i), RA->getOperand(i), DT,
                                     Depth + 1);
      if (X != 0)
        return X;
    }
    EqCacheSCEV.unionSets(LHS, RHS);
    return 0;
  }
   
  case scAddExpr:
  case scMulExpr:
  case scSMaxExpr:
  case scUMaxExpr:
  case scSMinExpr:
  case scUMinExpr:
  case scSequentialUMinExpr: {
    const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
   
    // Lexicographically compare n-ary expressions.
    unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    if (LNumOps != RNumOps)
      return (int)LNumOps - (int)RNumOps;
   
    for (unsigned i = 0; i != LNumOps; ++i) {
      auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
                                     LC->getOperand(i), RC->getOperand(i), DT,
                                     Depth + 1);
      if (X != 0)
        return X;
    }
    EqCacheSCEV.unionSets(LHS, RHS);
    return 0;
  }
   
  case scUDivExpr: {
    const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
   
    // Lexicographically compare udiv expressions.
    auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
                                   RC->getLHS(), DT, Depth + 1);
    if (X != 0)
      return X;
    X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
                              RC->getRHS(), DT, Depth + 1);
    if (X == 0)
      EqCacheSCEV.unionSets(LHS, RHS);
    return X;
  }
   
  case scPtrToInt:
  case scTruncate:
  case scZeroExtend:
  case scSignExtend: {
    const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
   
    // Compare cast expressions by operand.
    auto X =
        CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
                              RC->getOperand(), DT, Depth + 1);
    if (X == 0)
      EqCacheSCEV.unionSets(LHS, RHS);
    return X;
  }
   
  case scCouldNotCompute:
    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
  }
  llvm_unreachable("Unknown SCEV kind!");

}

/// Given a list of SCEV objects, order them by their complexity, and group
 /// objects of the same complexity together by value.  When this routine is
 /// finished, we know that any duplicates in the vector are consecutive and that
 /// complexity is monotonically increasing.
 ///
 /// Note that we go take special precautions to ensure that we get deterministic
 /// results from this routine.  In other words, we don't want the results of
 /// this to depend on where the addresses of various SCEV objects happened to
 /// land in memory.
 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,

                              LoopInfo *LI, DominatorTree &DT) {
  if (Ops.size() < 2) return;  // Noop
   
  EquivalenceClasses<const SCEV *> EqCacheSCEV;
  EquivalenceClasses<const Value *> EqCacheValue;
   
  // Whether LHS has provably less complexity than RHS.
  auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
    auto Complexity =
        CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
    return Complexity && *Complexity < 0;
  };
  if (Ops.size() == 2) {
    // This is the common case, which also happens to be trivially simple.
    // Special case it.
    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    if (IsLessComplex(RHS, LHS))
      std::swap(LHS, RHS);
    return;
  }
   
  // Do the rough sort by complexity.
  llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
    return IsLessComplex(LHS, RHS);
  });
   
  // Now that we are sorted by complexity, group elements of the same
  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
  // be extremely short in practice.  Note that we take this approach because we
  // do not want to depend on the addresses of the objects we are grouping.
  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    const SCEV *S = Ops[i];
    unsigned Complexity = S->getSCEVType();
   
    // If there are any objects of the same complexity and same value as this
    // one, group them.
    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
      if (Ops[j] == S) { // Found a duplicate.
        // Move it to immediately after i'th element.
        std::swap(Ops[i+1], Ops[j]);
        ++i;   // no need to rescan it.
        if (i == e-2) return;  // Done!
      }
    }
  }

}

/// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
 /// least HugeExprThreshold nodes).
 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {

  return any_of(Ops, [](const SCEV *S) {
    return S->getExpressionSize() >= HugeExprThreshold;
  });

}

//===----------------------------------------------------------------------===//
 //                      Simple SCEV method implementations
 //===----------------------------------------------------------------------===//

/// Compute BC(It, K).  The result has width W.  Assume, K > 0.
 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,

                                       ScalarEvolution &SE,
                                       Type *ResultTy) {
  // Handle the simplest case efficiently.
  if (K == 1)
    return SE.getTruncateOrZeroExtend(It, ResultTy);
   
  // We are using the following formula for BC(It, K):
  //
  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
  //
  // Suppose, W is the bitwidth of the return value.  We must be prepared for
  // overflow.  Hence, we must assure that the result of our computation is
  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
  // safe in modular arithmetic.
  //
  // However, this code doesn't use exactly that formula; the formula it uses
  // is something like the following, where T is the number of factors of 2 in
  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
  // exponentiation:
  //
  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
  //
  // This formula is trivially equivalent to the previous formula.  However,
  // this formula can be implemented much more efficiently.  The trick is that
  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
  // arithmetic.  To do exact division in modular arithmetic, all we have
  // to do is multiply by the inverse.  Therefore, this step can be done at
  // width W.
  //
  // The next issue is how to safely do the division by 2^T.  The way this
  // is done is by doing the multiplication step at a width of at least W + T
  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
  // when we perform the division by 2^T (which is equivalent to a right shift
  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
  // truncated out after the division by 2^T.
  //
  // In comparison to just directly using the first formula, this technique
  // is much more efficient; using the first formula requires W * K bits,
  // but this formula less than W + K bits. Also, the first formula requires
  // a division step, whereas this formula only requires multiplies and shifts.
  //
  // It doesn't matter whether the subtraction step is done in the calculation
  // width or the input iteration count's width; if the subtraction overflows,
  // the result must be zero anyway.  We prefer here to do it in the width of
  // the induction variable because it helps a lot for certain cases; CodeGen
  // isn't smart enough to ignore the overflow, which leads to much less
  // efficient code if the width of the subtraction is wider than the native
  // register width.
  //
  // (It's possible to not widen at all by pulling out factors of 2 before
  // the multiplication; for example, K=2 can be calculated as
  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
  // extra arithmetic, so it's not an obvious win, and it gets
  // much more complicated for K > 3.)
   
  // Protection from insane SCEVs; this bound is conservative,
  // but it probably doesn't matter.
  if (K > 1000)
    return SE.getCouldNotCompute();
   
  unsigned W = SE.getTypeSizeInBits(ResultTy);
   
  // Calculate K! / 2^T and T; we divide out the factors of two before
  // multiplying for calculating K! / 2^T to avoid overflow.
  // Other overflow doesn't matter because we only care about the bottom
  // W bits of the result.
  APInt OddFactorial(W, 1);
  unsigned T = 1;
  for (unsigned i = 3; i <= K; ++i) {
    APInt Mult(W, i);
    unsigned TwoFactors = Mult.countTrailingZeros();
    T += TwoFactors;
    Mult.lshrInPlace(TwoFactors);
    OddFactorial *= Mult;
  }
   
  // We need at least W + T bits for the multiplication step
  unsigned CalculationBits = W + T;
   
  // Calculate 2^T, at width T+W.
  APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
   
  // Calculate the multiplicative inverse of K! / 2^T;
  // this multiplication factor will perform the exact division by
  // K! / 2^T.
  APInt Mod = APInt::getSignedMinValue(W+1);
  APInt MultiplyFactor = OddFactorial.zext(W+1);
  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
  MultiplyFactor = MultiplyFactor.trunc(W);
   
  // Calculate the product, at width T+W
  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
                                                      CalculationBits);
  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
  for (unsigned i = 1; i != K; ++i) {
    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
    Dividend = SE.getMulExpr(Dividend,
                             SE.getTruncateOrZeroExtend(S, CalculationTy));
  }
   
  // Divide by 2^T
  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
   
  // Truncate the result, and divide by K! / 2^T.
   
  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));

}

/// Return the value of this chain of recurrences at the specified iteration
 /// number.  We can evaluate this recurrence by multiplying each element in the
 /// chain by the binomial coefficient corresponding to it.  In other words, we
 /// can evaluate {A,+,B,+,C,+,D} as:
 ///
 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 ///
 /// where BC(It, k) stands for binomial coefficient.
 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,

                                                ScalarEvolution &SE) const {
  return evaluateAtIteration(operands(), It, SE);

}

const SCEV *
 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,

                                    const SCEV *It, ScalarEvolution &SE) {
  assert(Operands.size() > 0);
  const SCEV *Result = Operands[0];
  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
    // The computation is correct in the face of overflow provided that the
    // multiplication is performed _after_ the evaluation of the binomial
    // coefficient.
    const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
    if (isa<SCEVCouldNotCompute>(Coeff))
      return Coeff;
   
    Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
  }
  return Result;

}

//===----------------------------------------------------------------------===//
 //                    SCEV Expression folder implementations
 //===----------------------------------------------------------------------===//

const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,

                                                     unsigned Depth) {
  assert(Depth <= 1 &&
         "getLosslessPtrToIntExpr() should self-recurse at most once.");
   
  // We could be called with an integer-typed operands during SCEV rewrites.
  // Since the operand is an integer already, just perform zext/trunc/self cast.
  if (!Op->getType()->isPointerTy())
    return Op;
   
  // What would be an ID for such a SCEV cast expression?
  FoldingSetNodeID ID;
  ID.AddInteger(scPtrToInt);
  ID.AddPointer(Op);
   
  void *IP = nullptr;
   
  // Is there already an expression for such a cast?
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
    return S;
   
  // It isn't legal for optimizations to construct new ptrtoint expressions
  // for non-integral pointers.
  if (getDataLayout().isNonIntegralPointerType(Op->getType()))
    return getCouldNotCompute();
   
  Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
   
  // We can only trivially model ptrtoint if SCEV's effective (integer) type
  // is sufficiently wide to represent all possible pointer values.
  // We could theoretically teach SCEV to truncate wider pointers, but
  // that isn't implemented for now.
  if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
      getDataLayout().getTypeSizeInBits(IntPtrTy))
    return getCouldNotCompute();
   
  // If not, is this expression something we can't reduce any further?
  if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
    // Perform some basic constant folding. If the operand of the ptr2int cast
    // is a null pointer, don't create a ptr2int SCEV expression (that will be
    // left as-is), but produce a zero constant.
    // NOTE: We could handle a more general case, but lack motivational cases.
    if (isa<ConstantPointerNull>(U->getValue()))
      return getZero(IntPtrTy);
   
    // Create an explicit cast node.
    // We can reuse the existing insert position since if we get here,
    // we won't have made any changes which would invalidate it.
    SCEV *S = new (SCEVAllocator)
        SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
    UniqueSCEVs.InsertNode(S, IP);
    registerUser(S, Op);
    return S;
  }
   
  assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
                       "non-SCEVUnknown's.");
   
  // Otherwise, we've got some expression that is more complex than just a
  // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
  // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
  // only, and the expressions must otherwise be integer-typed.
  // So sink the cast down to the SCEVUnknown's.
   
  /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
  /// which computes a pointer-typed value, and rewrites the whole expression
  /// tree so that *all* the computations are done on integers, and the only
  /// pointer-typed operands in the expression are SCEVUnknown.
  class SCEVPtrToIntSinkingRewriter
      : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
    using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
   
  public:
    SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
   
    static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
      SCEVPtrToIntSinkingRewriter Rewriter(SE);
      return Rewriter.visit(Scev);
    }
   
    const SCEV *visit(const SCEV *S) {
      Type *STy = S->getType();
      // If the expression is not pointer-typed, just keep it as-is.
      if (!STy->isPointerTy())
        return S;
      // Else, recursively sink the cast down into it.
      return Base::visit(S);
    }
   
    const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (const auto *Op : Expr->operands()) {
        Operands.push_back(visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
    }
   
    const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (const auto *Op : Expr->operands()) {
        Operands.push_back(visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
    }
   
    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
      assert(Expr->getType()->isPointerTy() &&
             "Should only reach pointer-typed SCEVUnknown's.");
      return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
    }
  };
   
  // And actually perform the cast sinking.
  const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
  assert(IntOp->getType()->isIntegerTy() &&
         "We must have succeeded in sinking the cast, "
         "and ending up with an integer-typed expression!");
  return IntOp;

}

const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {

  assert(Ty->isIntegerTy() && "Target type must be an integer type!");
   
  const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
  if (isa<SCEVCouldNotCompute>(IntOp))
    return IntOp;
   
  return getTruncateOrZeroExtend(IntOp, Ty);

}

const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,

                                             unsigned Depth) {
  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
         "This is not a truncating conversion!");
  assert(isSCEVable(Ty) &&
         "This is not a conversion to a SCEVable type!");
  assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
  Ty = getEffectiveSCEVType(Ty);
   
  FoldingSetNodeID ID;
  ID.AddInteger(scTruncate);
  ID.AddPointer(Op);
  ID.AddPointer(Ty);
  void *IP = nullptr;
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   
  // Fold if the operand is constant.
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    return getConstant(
      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
   
  // trunc(trunc(x)) --> trunc(x)
  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
    return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
   
  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
    return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
   
  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
   
  if (Depth > MaxCastDepth) {
    SCEV *S =
        new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
    UniqueSCEVs.InsertNode(S, IP);
    registerUser(S, Op);
    return S;
  }
   
  // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
  // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
  // if after transforming we have at most one truncate, not counting truncates
  // that replace other casts.
  if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
    auto *CommOp = cast<SCEVCommutativeExpr>(Op);
    SmallVector<const SCEV *, 4> Operands;
    unsigned numTruncs = 0;
    for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
         ++i) {
      const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
      if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
          isa<SCEVTruncateExpr>(S))
        numTruncs++;
      Operands.push_back(S);
    }
    if (numTruncs < 2) {
      if (isa<SCEVAddExpr>(Op))
        return getAddExpr(Operands);
      else if (isa<SCEVMulExpr>(Op))
        return getMulExpr(Operands);
      else
        llvm_unreachable("Unexpected SCEV type for Op.");
    }
    // Although we checked in the beginning that ID is not in the cache, it is
    // possible that during recursion and different modification ID was inserted
    // into the cache. So if we find it, just return it.
    if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
      return S;
  }
   
  // If the input value is a chrec scev, truncate the chrec's operands.
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
    SmallVector<const SCEV *, 4> Operands;
    for (const SCEV *Op : AddRec->operands())
      Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
  }
   
  // Return zero if truncating to known zeros.
  uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
  if (MinTrailingZeros >= getTypeSizeInBits(Ty))
    return getZero(Ty);
   
  // The cast wasn't folded; create an explicit cast node. We can reuse
  // the existing insert position since if we get here, we won't have
  // made any changes which would invalidate it.
  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
                                                 Op, Ty);
  UniqueSCEVs.InsertNode(S, IP);
  registerUser(S, Op);
  return S;

}

// Get the limit of a recurrence such that incrementing by Step cannot cause
 // signed overflow as long as the value of the recurrence within the
 // loop does not exceed this limit before incrementing.
 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,

                                                 ICmpInst::Predicate *Pred,
                                                 ScalarEvolution *SE) {
  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
  if (SE->isKnownPositive(Step)) {
    *Pred = ICmpInst::ICMP_SLT;
    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
                           SE->getSignedRangeMax(Step));
  }
  if (SE->isKnownNegative(Step)) {
    *Pred = ICmpInst::ICMP_SGT;
    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
                           SE->getSignedRangeMin(Step));
  }
  return nullptr;

}

// Get the limit of a recurrence such that incrementing by Step cannot cause
 // unsigned overflow as long as the value of the recurrence within the loop does
 // not exceed this limit before incrementing.
 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,

                                                   ICmpInst::Predicate *Pred,
                                                   ScalarEvolution *SE) {
  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
  *Pred = ICmpInst::ICMP_ULT;
   
  return SE->getConstant(APInt::getMinValue(BitWidth) -
                         SE->getUnsignedRangeMax(Step));

}

namespace {

struct ExtendOpTraitsBase {

  typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
                                                          unsigned);

};

// Used to make code generic over signed and unsigned overflow.
 template <typename ExtendOp> struct ExtendOpTraits {

  // Members present:
  //
  // static const SCEV::NoWrapFlags WrapType;
  //
  // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
  //
  // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
  //                                           ICmpInst::Predicate *Pred,
  //                                           ScalarEvolution *SE);

};

template <>
 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {

  static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
   
  static const GetExtendExprTy GetExtendExpr;
   
  static const SCEV *getOverflowLimitForStep(const SCEV *Step,
                                             ICmpInst::Predicate *Pred,
                                             ScalarEvolution *SE) {
    return getSignedOverflowLimitForStep(Step, Pred, SE);
  }

};

const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<

  SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
   

template <>
 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {

  static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
   
  static const GetExtendExprTy GetExtendExpr;
   
  static const SCEV *getOverflowLimitForStep(const SCEV *Step,
                                             ICmpInst::Predicate *Pred,
                                             ScalarEvolution *SE) {
    return getUnsignedOverflowLimitForStep(Step, Pred, SE);
  }

};

const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<

  SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
   

} // end anonymous namespace

// The recurrence AR has been shown to have no signed/unsigned wrap or something
 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
 // expression "Step + sext/zext(PreIncAR)" is congruent with
 // "sext/zext(PostIncAR)"
 template <typename ExtendOpTy>
 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,

                                        ScalarEvolution *SE, unsigned Depth) {
  auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
  auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   
  const Loop *L = AR->getLoop();
  const SCEV *Start = AR->getStart();
  const SCEV *Step = AR->getStepRecurrence(*SE);
   
  // Check for a simple looking step prior to loop entry.
  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
  if (!SA)
    return nullptr;
   
  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
  // subtraction is expensive. For this purpose, perform a quick and dirty
  // difference, by checking for Step in the operand list.
  SmallVector<const SCEV *, 4> DiffOps;
  for (const SCEV *Op : SA->operands())
    if (Op != Step)
      DiffOps.push_back(Op);
   
  if (DiffOps.size() == SA->getNumOperands())
    return nullptr;
   
  // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
  // `Step`:
   
  // 1. NSW/NUW flags on the step increment.
  auto PreStartFlags =
    ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
  const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
      SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   
  // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
  // "S+X does not sign/unsign-overflow".
  //
   
  const SCEV *BECount = SE->getBackedgeTakenCount(L);
  if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
      !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
    return PreStart;
   
  // 2. Direct overflow check on the step operation's expression.
  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
  const SCEV *OperandExtendedStart =
      SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
                     (SE->*GetExtendExpr)(Step, WideTy, Depth));
  if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
    if (PreAR && AR->getNoWrapFlags(WrapType)) {
      // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
      // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
      // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
      SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
    }
    return PreStart;
  }
   
  // 3. Loop precondition.
  ICmpInst::Predicate Pred;
  const SCEV *OverflowLimit =
      ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
   
  if (OverflowLimit &&
      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
    return PreStart;
   
  return nullptr;

}

// Get the normalized zero or sign extended expression for this AddRec's Start.
 template <typename ExtendOpTy>
 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,

                                        ScalarEvolution *SE,
                                        unsigned Depth) {
  auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   
  const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
  if (!PreStart)
    return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
   
  return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
                                             Depth),
                        (SE->*GetExtendExpr)(PreStart, Ty, Depth));

}

// Try to prove away overflow by looking at "nearby" add recurrences.  A
 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
 //
 // Formally:
 //
 //     {S,+,X} == {S-T,+,X} + T
 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
 //
 // If ({S-T,+,X} + T) does not overflow  ... (1)
 //
 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
 //
 // If {S-T,+,X} does not overflow  ... (2)
 //
 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
 //
 // If (S-T)+T does not overflow  ... (3)
 //
 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
 //      == {Ext(S),+,Ext(X)} == LHS
 //
 // Thus, if (1), (2) and (3) are true for some T, then
 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
 //
 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
 // does not overflow" restricted to the 0th iteration.  Therefore we only need
 // to check for (1) and (2).
 //
 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
 // is `Delta` (defined below).
 template <typename ExtendOpTy>
 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,

                                                const SCEV *Step,
                                                const Loop *L) {
  auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   
  // We restrict `Start` to a constant to prevent SCEV from spending too much
  // time here.  It is correct (but more expensive) to continue with a
  // non-constant `Start` and do a general SCEV subtraction to compute
  // `PreStart` below.
  const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
  if (!StartC)
    return false;
   
  APInt StartAI = StartC->getAPInt();
   
  for (unsigned Delta : {-2, -1, 1, 2}) {
    const SCEV *PreStart = getConstant(StartAI - Delta);
   
    FoldingSetNodeID ID;
    ID.AddInteger(scAddRecExpr);
    ID.AddPointer(PreStart);
    ID.AddPointer(Step);
    ID.AddPointer(L);
    void *IP = nullptr;
    const auto *PreAR =
      static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   
    // Give up if we don't already have the add recurrence we need because
    // actually constructing an add recurrence is relatively expensive.
    if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
      const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
      ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
      const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
          DeltaS, &Pred, this);
      if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
        return true;
    }
  }
   
  return false;

}

// Finds an integer D for an expression (C + x + y + ...) such that the top
 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
 // the (C + x + y + ...) expression is \p WholeAddExpr.
 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,

                                            const SCEVConstant *ConstantTerm,
                                            const SCEVAddExpr *WholeAddExpr) {
  const APInt &C = ConstantTerm->getAPInt();
  const unsigned BitWidth = C.getBitWidth();
  // Find number of trailing zeros of (x + y + ...) w/o the C first:
  uint32_t TZ = BitWidth;
  for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
    TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
  if (TZ) {
    // Set D to be as many least significant bits of C as possible while still
    // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
    return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
  }
  return APInt(BitWidth, 0);

}

// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,

                                            const APInt &ConstantStart,
                                            const SCEV *Step) {
  const unsigned BitWidth = ConstantStart.getBitWidth();
  const uint32_t TZ = SE.GetMinTrailingZeros(Step);
  if (TZ)
    return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
                         : ConstantStart;
  return APInt(BitWidth, 0);

}

const SCEV *
 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {

  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
         "This is not an extending conversion!");
  assert(isSCEVable(Ty) &&
         "This is not a conversion to a SCEVable type!");
  assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
  Ty = getEffectiveSCEVType(Ty);
   
  FoldID ID;
  ID.addInteger(scZeroExtend);
  ID.addPointer(Op);
  ID.addPointer(Ty);
  auto Iter = FoldCache.find(ID);
  if (Iter != FoldCache.end())
    return Iter->second;
   
  const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
  if (!isa<SCEVZeroExtendExpr>(S)) {
    FoldCache.insert({ID, S});
    auto R = FoldCacheUser.insert({S, {}});
    R.first->second.push_back(ID);
  }
  return S;

}

const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,

                                                   unsigned Depth) {
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
         "This is not an extending conversion!");
  assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
  assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
   
  // Fold if the operand is constant.
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    return getConstant(
      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
   
  // zext(zext(x)) --> zext(x)
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
   
  // Before doing any expensive analysis, check to see if we've already
  // computed a SCEV for this Op and Ty.
  FoldingSetNodeID ID;
  ID.AddInteger(scZeroExtend);
  ID.AddPointer(Op);
  ID.AddPointer(Ty);
  void *IP = nullptr;
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
  if (Depth > MaxCastDepth) {
    SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
                                                     Op, Ty);
    UniqueSCEVs.InsertNode(S, IP);
    registerUser(S, Op);
    return S;
  }
   
  // zext(trunc(x)) --> zext(x) or x or trunc(x)
  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
    // It's possible the bits taken off by the truncate were all zero bits. If
    // so, we should be able to simplify this further.
    const SCEV *X = ST->getOperand();
    ConstantRange CR = getUnsignedRange(X);
    unsigned TruncBits = getTypeSizeInBits(ST->getType());
    unsigned NewBits = getTypeSizeInBits(Ty);
    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
            CR.zextOrTrunc(NewBits)))
      return getTruncateOrZeroExtend(X, Ty, Depth);
  }
   
  // If the input value is a chrec scev, and we can prove that the value
  // did not overflow the old, smaller, value, we can zero extend all of the
  // operands (often constants).  This allows analysis of something like
  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
    if (AR->isAffine()) {
      const SCEV *Start = AR->getStart();
      const SCEV *Step = AR->getStepRecurrence(*this);
      unsigned BitWidth = getTypeSizeInBits(AR->getType());
      const Loop *L = AR->getLoop();
   
      if (!AR->hasNoUnsignedWrap()) {
        auto NewFlags = proveNoWrapViaConstantRanges(AR);
        setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
      }
   
      // If we have special knowledge that this addrec won't overflow,
      // we don't need to do any further analysis.
      if (AR->hasNoUnsignedWrap()) {
        Start =
            getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
        Step = getZeroExtendExpr(Step, Ty, Depth + 1);
        return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
      }
   
      // Check whether the backedge-taken count is SCEVCouldNotCompute.
      // Note that this serves two purposes: It filters out loops that are
      // simply not analyzable, and it covers the case where this code is
      // being called from within backedge-taken count analysis, such that
      // attempting to ask for the backedge-taken count would likely result
      // in infinite recursion. In the later case, the analysis code will
      // cope with a conservative value, and it will take care to purge
      // that value once it has finished.
      const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
        // Manually compute the final value for AR, checking for overflow.
   
        // Check whether the backedge-taken count can be losslessly casted to
        // the addrec's type. The count is always unsigned.
        const SCEV *CastedMaxBECount =
            getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
        const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
            CastedMaxBECount, MaxBECount->getType(), Depth);
        if (MaxBECount == RecastedMaxBECount) {
          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
          // Check whether Start+Step*MaxBECount has no unsigned overflow.
          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
                                        SCEV::FlagAnyWrap, Depth + 1);
          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
                                                          SCEV::FlagAnyWrap,
                                                          Depth + 1),
                                               WideTy, Depth + 1);
          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
          const SCEV *WideMaxBECount =
            getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
          const SCEV *OperandExtendedAdd =
            getAddExpr(WideStart,
                       getMulExpr(WideMaxBECount,
                                  getZeroExtendExpr(Step, WideTy, Depth + 1),
                                  SCEV::FlagAnyWrap, Depth + 1),
                       SCEV::FlagAnyWrap, Depth + 1);
          if (ZAdd == OperandExtendedAdd) {
            // Cache knowledge of AR NUW, which is propagated to this AddRec.
            setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
            // Return the expression with the addrec on the outside.
            Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
                                                             Depth + 1);
            Step = getZeroExtendExpr(Step, Ty, Depth + 1);
            return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
          }
          // Similar to above, only this time treat the step value as signed.
          // This covers loops that count down.
          OperandExtendedAdd =
            getAddExpr(WideStart,
                       getMulExpr(WideMaxBECount,
                                  getSignExtendExpr(Step, WideTy, Depth + 1),
                                  SCEV::FlagAnyWrap, Depth + 1),
                       SCEV::FlagAnyWrap, Depth + 1);
          if (ZAdd == OperandExtendedAdd) {
            // Cache knowledge of AR NW, which is propagated to this AddRec.
            // Negative step causes unsigned wrap, but it still can't self-wrap.
            setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
            // Return the expression with the addrec on the outside.
            Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
                                                             Depth + 1);
            Step = getSignExtendExpr(Step, Ty, Depth + 1);
            return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
          }
        }
      }
   
      // Normally, in the cases we can prove no-overflow via a
      // backedge guarding condition, we can also compute a backedge
      // taken count for the loop.  The exceptions are assumptions and
      // guards present in the loop -- SCEV is not great at exploiting
      // these to compute max backedge taken counts, but can still use
      // these to prove lack of overflow.  Use this fact to avoid
      // doing extra work that may not pay off.
      if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
          !AC.assumptions().empty()) {
   
        auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
        setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
        if (AR->hasNoUnsignedWrap()) {
          // Same as nuw case above - duplicated here to avoid a compile time
          // issue.  It's not clear that the order of checks does matter, but
          // it's one of two issue possible causes for a change which was
          // reverted.  Be conservative for the moment.
          Start =
              getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
          Step = getZeroExtendExpr(Step, Ty, Depth + 1);
          return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
        }
        
        // For a negative step, we can extend the operands iff doing so only
        // traverses values in the range zext([0,UINT_MAX]). 
        if (isKnownNegative(Step)) {
          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
                                      getSignedRangeMin(Step));
          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
              isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
            // Cache knowledge of AR NW, which is propagated to this
            // AddRec.  Negative step causes unsigned wrap, but it
            // still can't self-wrap.
            setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
            // Return the expression with the addrec on the outside.
            Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
                                                             Depth + 1);
            Step = getSignExtendExpr(Step, Ty, Depth + 1);
            return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
          }
        }
      }
   
      // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
      // if D + (C - D + Step * n) could be proven to not unsigned wrap
      // where D maximizes the number of trailing zeros of (C - D + Step * n)
      if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
        const APInt &C = SC->getAPInt();
        const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
        if (D != 0) {
          const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
          const SCEV *SResidual =
              getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
          const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
          return getAddExpr(SZExtD, SZExtR,
                            (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
                            Depth + 1);
        }
      }
   
      if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
        setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
        Start =
            getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
        Step = getZeroExtendExpr(Step, Ty, Depth + 1);
        return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
      }
    }
   
  // zext(A % B) --> zext(A) % zext(B)
  {
    const SCEV *LHS;
    const SCEV *RHS;
    if (matchURem(Op, LHS, RHS))
      return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
                         getZeroExtendExpr(RHS, Ty, Depth + 1));
  }
   
  // zext(A / B) --> zext(A) / zext(B).
  if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
    return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
                       getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
   
  if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
    // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
    if (SA->hasNoUnsignedWrap()) {
      // If the addition does not unsign overflow then we can, by definition,
      // commute the zero extension with the addition operation.
      SmallVector<const SCEV *, 4> Ops;
      for (const auto *Op : SA->operands())
        Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
      return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
    }
   
    // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
    // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
    // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
    //
    // Often address arithmetics contain expressions like
    // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
    // This transformation is useful while proving that such expressions are
    // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
    if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
      const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
      if (D != 0) {
        const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
        const SCEV *SResidual =
            getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
        const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
        return getAddExpr(SZExtD, SZExtR,
                          (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
                          Depth + 1);
      }
    }
  }
   
  if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
    // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
    if (SM->hasNoUnsignedWrap()) {
      // If the multiply does not unsign overflow then we can, by definition,
      // commute the zero extension with the multiply operation.
      SmallVector<const SCEV *, 4> Ops;
      for (const auto *Op : SM->operands())
        Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
      return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
    }
   
    // zext(2^K * (trunc X to iN)) to iM ->
    // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
    //
    // Proof:
    //
    //     zext(2^K * (trunc X to iN)) to iM
    //   = zext((trunc X to iN) << K) to iM
    //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
    //     (because shl removes the top K bits)
    //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
    //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
    //
    if (SM->getNumOperands() == 2)
      if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
        if (MulLHS->getAPInt().isPowerOf2())
          if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
            int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
                               MulLHS->getAPInt().logBase2();
            Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
            return getMulExpr(
                getZeroExtendExpr(MulLHS, Ty),
                getZeroExtendExpr(
                    getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
                SCEV::FlagNUW, Depth + 1);
          }
  }
   
  // The cast wasn't folded; create an explicit cast node.
  // Recompute the insert position, as it may have been invalidated.
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
                                                   Op, Ty);
  UniqueSCEVs.InsertNode(S, IP);
  registerUser(S, Op);
  return S;

}

const SCEV *
 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {

  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
         "This is not an extending conversion!");
  assert(isSCEVable(Ty) &&
         "This is not a conversion to a SCEVable type!");
  assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
  Ty = getEffectiveSCEVType(Ty);
   
  FoldID ID;
  ID.addInteger(scSignExtend);
  ID.addPointer(Op);
  ID.addPointer(Ty);
  auto Iter = FoldCache.find(ID);
  if (Iter != FoldCache.end())
    return Iter->second;
   
  const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
  if (!isa<SCEVSignExtendExpr>(S)) {
    FoldCache.insert({ID, S});
    auto R = FoldCacheUser.insert({S, {}});
    R.first->second.push_back(ID);
  }
  return S;

}

const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,

                                                   unsigned Depth) {
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
         "This is not an extending conversion!");
  assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
  assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
  Ty = getEffectiveSCEVType(Ty);
   
  // Fold if the operand is constant.
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    return getConstant(
      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
   
  // sext(sext(x)) --> sext(x)
  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
    return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
   
  // sext(zext(x)) --> zext(x)
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
   
  // Before doing any expensive analysis, check to see if we've already
  // computed a SCEV for this Op and Ty.
  FoldingSetNodeID ID;
  ID.AddInteger(scSignExtend);
  ID.AddPointer(Op);
  ID.AddPointer(Ty);
  void *IP = nullptr;
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
  // Limit recursion depth.
  if (Depth > MaxCastDepth) {
    SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
                                                     Op, Ty);
    UniqueSCEVs.InsertNode(S, IP);
    registerUser(S, Op);
    return S;
  }
   
  // sext(trunc(x)) --> sext(x) or x or trunc(x)
  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
    // It's possible the bits taken off by the truncate were all sign bits. If
    // so, we should be able to simplify this further.
    const SCEV *X = ST->getOperand();
    ConstantRange CR = getSignedRange(X);
    unsigned TruncBits = getTypeSizeInBits(ST->getType());
    unsigned NewBits = getTypeSizeInBits(Ty);
    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
            CR.sextOrTrunc(NewBits)))
      return getTruncateOrSignExtend(X, Ty, Depth);
  }
   
  if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
    // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
    if (SA->hasNoSignedWrap()) {
      // If the addition does not sign overflow then we can, by definition,
      // commute the sign extension with the addition operation.
      SmallVector<const SCEV *, 4> Ops;
      for (const auto *Op : SA->operands())
        Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
      return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
    }
   
    // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
    // if D + (C - D + x + y + ...) could be proven to not signed wrap
    // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
    //
    // For instance, this will bring two seemingly different expressions:
    //     1 + sext(5 + 20 * %x + 24 * %y)  and
    //         sext(6 + 20 * %x + 24 * %y)
    // to the same form:
    //     2 + sext(4 + 20 * %x + 24 * %y)
    if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
      const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
      if (D != 0) {
        const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
        const SCEV *SResidual =
            getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
        const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
        return getAddExpr(SSExtD, SSExtR,
                          (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
                          Depth + 1);
      }
    }
  }
  // If the input value is a chrec scev, and we can prove that the value
  // did not overflow the old, smaller, value, we can sign extend all of the
  // operands (often constants).  This allows analysis of something like
  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
    if (AR->isAffine()) {
      const SCEV *Start = AR->getStart();
      const SCEV *Step = AR->getStepRecurrence(*this);
      unsigned BitWidth = getTypeSizeInBits(AR->getType());
      const Loop *L = AR->getLoop();
   
      if (!AR->hasNoSignedWrap()) {
        auto NewFlags = proveNoWrapViaConstantRanges(AR);
        setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
      }
   
      // If we have special knowledge that this addrec won't overflow,
      // we don't need to do any further analysis.
      if (AR->hasNoSignedWrap()) {
        Start =
            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
        Step = getSignExtendExpr(Step, Ty, Depth + 1);
        return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
      }
   
      // Check whether the backedge-taken count is SCEVCouldNotCompute.
      // Note that this serves two purposes: It filters out loops that are
      // simply not analyzable, and it covers the case where this code is
      // being called from within backedge-taken count analysis, such that
      // attempting to ask for the backedge-taken count would likely result
      // in infinite recursion. In the later case, the analysis code will
      // cope with a conservative value, and it will take care to purge
      // that value once it has finished.
      const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
        // Manually compute the final value for AR, checking for
        // overflow.
   
        // Check whether the backedge-taken count can be losslessly casted to
        // the addrec's type. The count is always unsigned.
        const SCEV *CastedMaxBECount =
            getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
        const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
            CastedMaxBECount, MaxBECount->getType(), Depth);
        if (MaxBECount == RecastedMaxBECount) {
          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
          // Check whether Start+Step*MaxBECount has no signed overflow.
          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
                                        SCEV::FlagAnyWrap, Depth + 1);
          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
                                                          SCEV::FlagAnyWrap,
                                                          Depth + 1),
                                               WideTy, Depth + 1);
          const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
          const SCEV *WideMaxBECount =
            getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
          const SCEV *OperandExtendedAdd =
            getAddExpr(WideStart,
                       getMulExpr(WideMaxBECount,
                                  getSignExtendExpr(Step, WideTy, Depth + 1),
                                  SCEV::FlagAnyWrap, Depth + 1),
                       SCEV::FlagAnyWrap, Depth + 1);
          if (SAdd == OperandExtendedAdd) {
            // Cache knowledge of AR NSW, which is propagated to this AddRec.
            setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
            // Return the expression with the addrec on the outside.
            Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
                                                             Depth + 1);
            Step = getSignExtendExpr(Step, Ty, Depth + 1);
            return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
          }
          // Similar to above, only this time treat the step value as unsigned.
          // This covers loops that count up with an unsigned step.
          OperandExtendedAdd =
            getAddExpr(WideStart,
                       getMulExpr(WideMaxBECount,
                                  getZeroExtendExpr(Step, WideTy, Depth + 1),
                                  SCEV::FlagAnyWrap, Depth + 1),
                       SCEV::FlagAnyWrap, Depth + 1);
          if (SAdd == OperandExtendedAdd) {
            // If AR wraps around then
            //
            //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
            // => SAdd != OperandExtendedAdd
            //
            // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
            // (SAdd == OperandExtendedAdd => AR is NW)
   
            setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
   
            // Return the expression with the addrec on the outside.
            Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
                                                             Depth + 1);
            Step = getZeroExtendExpr(Step, Ty, Depth + 1);
            return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
          }
        }
      }
   
      auto NewFlags = proveNoSignedWrapViaInduction(AR);
      setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
      if (AR->hasNoSignedWrap()) {
        // Same as nsw case above - duplicated here to avoid a compile time
        // issue.  It's not clear that the order of checks does matter, but
        // it's one of two issue possible causes for a change which was
        // reverted.  Be conservative for the moment.
        Start =
            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
        Step = getSignExtendExpr(Step, Ty, Depth + 1);
        return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
      }
   
      // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
      // if D + (C - D + Step * n) could be proven to not signed wrap
      // where D maximizes the number of trailing zeros of (C - D + Step * n)
      if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
        const APInt &C = SC->getAPInt();
        const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
        if (D != 0) {
          const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
          const SCEV *SResidual =
              getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
          const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
          return getAddExpr(SSExtD, SSExtR,
                            (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
                            Depth + 1);
        }
      }
   
      if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
        setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
        Start =
            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
        Step = getSignExtendExpr(Step, Ty, Depth + 1);
        return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
      }
    }
   
  // If the input value is provably positive and we could not simplify
  // away the sext build a zext instead.
  if (isKnownNonNegative(Op))
    return getZeroExtendExpr(Op, Ty, Depth + 1);
   
  // The cast wasn't folded; create an explicit cast node.
  // Recompute the insert position, as it may have been invalidated.
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
                                                   Op, Ty);
  UniqueSCEVs.InsertNode(S, IP);
  registerUser(S, { Op });
  return S;

}

const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,

                                         Type *Ty) {
  switch (Kind) {
  case scTruncate:
    return getTruncateExpr(Op, Ty);
  case scZeroExtend:
    return getZeroExtendExpr(Op, Ty);
  case scSignExtend:
    return getSignExtendExpr(Op, Ty);
  case scPtrToInt:
    return getPtrToIntExpr(Op, Ty);
  default:
    llvm_unreachable("Not a SCEV cast expression!");
  }

}

/// getAnyExtendExpr - Return a SCEV for the given operand extended with
 /// unspecified bits out to the given type.
 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,

                                              Type *Ty) {
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
         "This is not an extending conversion!");
  assert(isSCEVable(Ty) &&
         "This is not a conversion to a SCEVable type!");
  Ty = getEffectiveSCEVType(Ty);
   
  // Sign-extend negative constants.
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    if (SC->getAPInt().isNegative())
      return getSignExtendExpr(Op, Ty);
   
  // Peel off a truncate cast.
  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
    const SCEV *NewOp = T->getOperand();
    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
      return getAnyExtendExpr(NewOp, Ty);
    return getTruncateOrNoop(NewOp, Ty);
  }
   
  // Next try a zext cast. If the cast is folded, use it.
  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
  if (!isa<SCEVZeroExtendExpr>(ZExt))
    return ZExt;
   
  // Next try a sext cast. If the cast is folded, use it.
  const SCEV *SExt = getSignExtendExpr(Op, Ty);
  if (!isa<SCEVSignExtendExpr>(SExt))
    return SExt;
   
  // Force the cast to be folded into the operands of an addrec.
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
    SmallVector<const SCEV *, 4> Ops;
    for (const SCEV *Op : AR->operands())
      Ops.push_back(getAnyExtendExpr(Op, Ty));
    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
  }
   
  // If the expression is obviously signed, use the sext cast value.
  if (isa<SCEVSMaxExpr>(Op))
    return SExt;
   
  // Absent any other information, use the zext cast value.
  return ZExt;

}

/// Process the given Ops list, which is a list of operands to be added under
 /// the given scale, update the given map. This is a helper function for
 /// getAddRecExpr. As an example of what it does, given a sequence of operands
 /// that would form an add expression like this:
 ///
 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
 ///
 /// where A and B are constants, update the map with these values:
 ///
 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
 ///
 /// and add 13 + A*B*29 to AccumulatedConstant.
 /// This will allow getAddRecExpr to produce this:
 ///
 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
 ///
 /// This form often exposes folding opportunities that are hidden in
 /// the original operand list.
 ///
 /// Return true iff it appears that any interesting folding opportunities
 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
 /// the common case where no interesting opportunities are present, and
 /// is also used as a check to avoid infinite recursion.
 static bool
 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,

                             SmallVectorImpl<const SCEV *> &NewOps,
                             APInt &AccumulatedConstant,
                             ArrayRef<const SCEV *> Ops, const APInt &Scale,
                             ScalarEvolution &SE) {
  bool Interesting = false;
   
  // Iterate over the add operands. They are sorted, with constants first.
  unsigned i = 0;
  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
    ++i;
    // Pull a buried constant out to the outside.
    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
      Interesting = true;
    AccumulatedConstant += Scale * C->getAPInt();
  }
   
  // Next comes everything else. We're especially interested in multiplies
  // here, but they're in the middle, so just visit the rest with one loop.
  for (; i != Ops.size(); ++i) {
    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
      APInt NewScale =
          Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
        // A multiplication of a constant with another add; recurse.
        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
        Interesting |=
          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
                                       Add->operands(), NewScale, SE);
      } else {
        // A multiplication of a constant with some other value. Update
        // the map.
        SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
        const SCEV *Key = SE.getMulExpr(MulOps);
        auto Pair = M.insert({Key, NewScale});
        if (Pair.second) {
          NewOps.push_back(Pair.first->first);
        } else {
          Pair.first->second += NewScale;
          // The map already had an entry for this value, which may indicate
          // a folding opportunity.
          Interesting = true;
        }
      }
    } else {
      // An ordinary operand. Update the map.
      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
          M.insert({Ops[i], Scale});
      if (Pair.second) {
        NewOps.push_back(Pair.first->first);
      } else {
        Pair.first->second += Scale;
        // The map already had an entry for this value, which may indicate
        // a folding opportunity.
        Interesting = true;
      }
    }
  }
   
  return Interesting;

}

bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,

                                      const SCEV *LHS, const SCEV *RHS,
                                      const Instruction *CtxI) {
  const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
                                            SCEV::NoWrapFlags, unsigned);
  switch (BinOp) {
  default:
    llvm_unreachable("Unsupported binary op");
  case Instruction::Add:
    Operation = &ScalarEvolution::getAddExpr;
    break;
  case Instruction::Sub:
    Operation = &ScalarEvolution::getMinusSCEV;
    break;
  case Instruction::Mul:
    Operation = &ScalarEvolution::getMulExpr;
    break;
  }
   
  const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
      Signed ? &ScalarEvolution::getSignExtendExpr
             : &ScalarEvolution::getZeroExtendExpr;
   
  // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
  auto *NarrowTy = cast<IntegerType>(LHS->getType());
  auto *WideTy =
      IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
   
  const SCEV *A = (this->*Extension)(
      (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
  const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
  const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
  const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
  if (A == B)
    return true;
  // Can we use context to prove the fact we need?
  if (!CtxI)
    return false;
  // We can prove that add(x, constant) doesn't wrap if isKnownPredicateAt can
  // guarantee that x <= max_int - constant at the given context.
  // TODO: Support other operations.
  if (BinOp != Instruction::Add)
    return false;
  auto *RHSC = dyn_cast<SCEVConstant>(RHS);
  // TODO: Lift this limitation.
  if (!RHSC)
    return false;
  APInt C = RHSC->getAPInt();
  // TODO: Also lift this limitation.
  if (Signed && C.isNegative())
    return false;
  unsigned NumBits = C.getBitWidth();
  APInt Max =
      Signed ? APInt::getSignedMaxValue(NumBits) : APInt::getMaxValue(NumBits);
  APInt Limit = Max - C;
  ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
  return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);

}

std::optional<SCEV::NoWrapFlags>
 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(

    const OverflowingBinaryOperator *OBO) {
  // It cannot be done any better.
  if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
    return std::nullopt;
   
  SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
   
  if (OBO->hasNoUnsignedWrap())
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
  if (OBO->hasNoSignedWrap())
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
   
  bool Deduced = false;
   
  if (OBO->getOpcode() != Instruction::Add &&
      OBO->getOpcode() != Instruction::Sub &&
      OBO->getOpcode() != Instruction::Mul)
    return std::nullopt;
   
  const SCEV *LHS = getSCEV(OBO->getOperand(0));
  const SCEV *RHS = getSCEV(OBO->getOperand(1));
   
  const Instruction *CtxI =
      UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
  if (!OBO->hasNoUnsignedWrap() &&
      willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
                      /* Signed */ false, LHS, RHS, CtxI)) {
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
    Deduced = true;
  }
   
  if (!OBO->hasNoSignedWrap() &&
      willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
                      /* Signed */ true, LHS, RHS, CtxI)) {
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
    Deduced = true;
  }
   
  if (Deduced)
    return Flags;
  return std::nullopt;

}

// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
 // can't-overflow flags for the operation if possible.
 static SCEV::NoWrapFlags
 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,

                      const ArrayRef<const SCEV *> Ops,
                      SCEV::NoWrapFlags Flags) {
  using namespace std::placeholders;
   
  using OBO = OverflowingBinaryOperator;
   
  bool CanAnalyze =
      Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
  (void)CanAnalyze;
  assert(CanAnalyze && "don't call from other places!");
   
  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
  SCEV::NoWrapFlags SignOrUnsignWrap =
      ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
   
  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
  auto IsKnownNonNegative = [&](const SCEV *S) {
    return SE->isKnownNonNegative(S);
  };
   
  if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
    Flags =
        ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   
  SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
   
  if (SignOrUnsignWrap != SignOrUnsignMask &&
      (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
      isa<SCEVConstant>(Ops[0])) {
   
    auto Opcode = [&] {
      switch (Type) {
      case scAddExpr:
        return Instruction::Add;
      case scMulExpr:
        return Instruction::Mul;
      default:
        llvm_unreachable("Unexpected SCEV op.");
      }
    }();
   
    const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
   
    // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
    if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
      auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
          Opcode, C, OBO::NoSignedWrap);
      if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
        Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
    }
   
    // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
    if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
      auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
          Opcode, C, OBO::NoUnsignedWrap);
      if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
        Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
    }
  }
   
  // <0,+,nonnegative><nw> is also nuw
  // TODO: Add corresponding nsw case
  if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
      !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
      Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
   
  // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
  if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
      Ops.size() == 2) {
    if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
      if (UDiv->getOperand(1) == Ops[1])
        Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
    if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
      if (UDiv->getOperand(1) == Ops[0])
        Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
  }
   
  return Flags;

}

bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {

  return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());

}

/// Get a canonical add expression, or something simpler if possible.
 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,

                                        SCEV::NoWrapFlags OrigFlags,
                                        unsigned Depth) {
  assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
         "only nuw or nsw allowed");
  assert(!Ops.empty() && "Cannot get empty add!");
  if (Ops.size() == 1) return Ops[0];

#ifndef NDEBUG

  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
           "SCEVAddExpr operand types don't match!");
  unsigned NumPtrs = count_if(
      Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
  assert(NumPtrs <= 1 && "add has at most one pointer operand");

#endif

  // Sort by complexity, this groups all similar expression types together.
  GroupByComplexity(Ops, &LI, DT);
   
  // If there are any constants, fold them together.
  unsigned Idx = 0;
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
    ++Idx;
    assert(Idx < Ops.size());
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
      // We found two constants, fold them together!
      Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
      if (Ops.size() == 2) return Ops[0];
      Ops.erase(Ops.begin()+1);  // Erase the folded element
      LHSC = cast<SCEVConstant>(Ops[0]);
    }
   
    // If we are left with a constant zero being added, strip it off.
    if (LHSC->getValue()->isZero()) {
      Ops.erase(Ops.begin());
      --Idx;
    }
   
    if (Ops.size() == 1) return Ops[0];
  }
   
  // Delay expensive flag strengthening until necessary.
  auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
    return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
  };
   
  // Limit recursion calls depth.
  if (Depth > MaxArithDepth || hasHugeExpression(Ops))
    return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
   
  if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
    // Don't strengthen flags if we have no new information.
    SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
    if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
      Add->setNoWrapFlags(ComputeFlags(Ops));
    return S;
  }
   
  // Okay, check to see if the same value occurs in the operand list more than
  // once.  If so, merge them together into an multiply expression.  Since we
  // sorted the list, these values are required to be adjacent.
  Type *Ty = Ops[0]->getType();
  bool FoundMatch = false;
  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
      // Scan ahead to count how many equal operands there are.
      unsigned Count = 2;
      while (i+Count != e && Ops[i+Count] == Ops[i])
        ++Count;
      // Merge the values into a multiply.
      const SCEV *Scale = getConstant(Ty, Count);
      const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
      if (Ops.size() == Count)
        return Mul;
      Ops[i] = Mul;
      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
      --i; e -= Count - 1;
      FoundMatch = true;
    }
  if (FoundMatch)
    return getAddExpr(Ops, OrigFlags, Depth + 1);
   
  // Check for truncates. If all the operands are truncated from the same
  // type, see if factoring out the truncate would permit the result to be
  // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
  // if the contents of the resulting outer trunc fold to something simple.
  auto FindTruncSrcType = [&]() -> Type * {
    // We're ultimately looking to fold an addrec of truncs and muls of only
    // constants and truncs, so if we find any other types of SCEV
    // as operands of the addrec then we bail and return nullptr here.
    // Otherwise, we return the type of the operand of a trunc that we find.
    if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
      return T->getOperand()->getType();
    if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
      const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
      if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
        return T->getOperand()->getType();
    }
    return nullptr;
  };
  if (auto *SrcType = FindTruncSrcType()) {
    SmallVector<const SCEV *, 8> LargeOps;
    bool Ok = true;
    // Check all the operands to see if they can be represented in the
    // source type of the truncate.
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
        if (T->getOperand()->getType() != SrcType) {
          Ok = false;
          break;
        }
        LargeOps.push_back(T->getOperand());
      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
        SmallVector<const SCEV *, 8> LargeMulOps;
        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
          if (const SCEVTruncateExpr *T =
                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
            if (T->getOperand()->getType() != SrcType) {
              Ok = false;
              break;
            }
            LargeMulOps.push_back(T->getOperand());
          } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
          } else {
            Ok = false;
            break;
          }
        }
        if (Ok)
          LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
      } else {
        Ok = false;
        break;
      }
    }
    if (Ok) {
      // Evaluate the expression in the larger type.
      const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
      // If it folds to something simple, use it. Otherwise, don't.
      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
        return getTruncateExpr(Fold, Ty);
    }
  }
   
  if (Ops.size() == 2) {
    // Check if we have an expression of the form ((X + C1) - C2), where C1 and
    // C2 can be folded in a way that allows retaining wrapping flags of (X +
    // C1).
    const SCEV *A = Ops[0];
    const SCEV *B = Ops[1];
    auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
    auto *C = dyn_cast<SCEVConstant>(A);
    if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
      auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
      auto C2 = C->getAPInt();
      SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
   
      APInt ConstAdd = C1 + C2;
      auto AddFlags = AddExpr->getNoWrapFlags();
      // Adding a smaller constant is NUW if the original AddExpr was NUW.
      if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
          ConstAdd.ule(C1)) {
        PreservedFlags =
            ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
      }
   
      // Adding a constant with the same sign and small magnitude is NSW, if the
      // original AddExpr was NSW.
      if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
          C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
          ConstAdd.abs().ule(C1.abs())) {
        PreservedFlags =
            ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
      }
   
      if (PreservedFlags != SCEV::FlagAnyWrap) {
        SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
        NewOps[0] = getConstant(ConstAdd);
        return getAddExpr(NewOps, PreservedFlags);
      }
    }
  }
   
  // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
  if (Ops.size() == 2) {
    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
    if (Mul && Mul->getNumOperands() == 2 &&
        Mul->getOperand(0)->isAllOnesValue()) {
      const SCEV *X;
      const SCEV *Y;
      if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
        return getMulExpr(Y, getUDivExpr(X, Y));
      }
    }
  }
   
  // Skip past any other cast SCEVs.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
    ++Idx;
   
  // If there are add operands they would be next.
  if (Idx < Ops.size()) {
    bool DeletedAdd = false;
    // If the original flags and all inlined SCEVAddExprs are NUW, use the
    // common NUW flag for expression after inlining. Other flags cannot be
    // preserved, because they may depend on the original order of operations.
    SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
      if (Ops.size() > AddOpsInlineThreshold ||
          Add->getNumOperands() > AddOpsInlineThreshold)
        break;
      // If we have an add, expand the add operands onto the end of the operands
      // list.
      Ops.erase(Ops.begin()+Idx);
      append_range(Ops, Add->operands());
      DeletedAdd = true;
      CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
    }
   
    // If we deleted at least one add, we added operands to the end of the list,
    // and they are not necessarily sorted.  Recurse to resort and resimplify
    // any operands we just acquired.
    if (DeletedAdd)
      return getAddExpr(Ops, CommonFlags, Depth + 1);
  }
   
  // Skip over the add expression until we get to a multiply.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
    ++Idx;
   
  // Check to see if there are any folding opportunities present with
  // operands multiplied by constant values.
  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
    uint64_t BitWidth = getTypeSizeInBits(Ty);
    DenseMap<const SCEV *, APInt> M;
    SmallVector<const SCEV *, 8> NewOps;
    APInt AccumulatedConstant(BitWidth, 0);
    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
                                     Ops, APInt(BitWidth, 1), *this)) {
      struct APIntCompare {
        bool operator()(const APInt &LHS, const APInt &RHS) const {
          return LHS.ult(RHS);
        }
      };
   
      // Some interesting folding opportunity is present, so its worthwhile to
      // re-generate the operands list. Group the operands by constant scale,
      // to avoid multiplying by the same constant scale multiple times.
      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
      for (const SCEV *NewOp : NewOps)
        MulOpLists[M.find(NewOp)->second].push_back(NewOp);
      // Re-generate the operands list.
      Ops.clear();
      if (AccumulatedConstant != 0)
        Ops.push_back(getConstant(AccumulatedConstant));
      for (auto &MulOp : MulOpLists) {
        if (MulOp.first == 1) {
          Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
        } else if (MulOp.first != 0) {
          Ops.push_back(getMulExpr(
              getConstant(MulOp.first),
              getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
              SCEV::FlagAnyWrap, Depth + 1));
        }
      }
      if (Ops.empty())
        return getZero(Ty);
      if (Ops.size() == 1)
        return Ops[0];
      return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
    }
  }
   
  // If we are adding something to a multiply expression, make sure the
  // something is not already an operand of the multiply.  If so, merge it into
  // the multiply.
  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
      if (isa<SCEVConstant>(MulOpSCEV))
        continue;
      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
        if (MulOpSCEV == Ops[AddOp]) {
          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
          if (Mul->getNumOperands() != 2) {
            // If the multiply has more than two operands, we must get the
            // Y*Z term.
            SmallVector<const SCEV *, 4> MulOps(
                Mul->operands().take_front(MulOp));
            append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
            InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
          }
          SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
          const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
                                            SCEV::FlagAnyWrap, Depth + 1);
          if (Ops.size() == 2) return OuterMul;
          if (AddOp < Idx) {
            Ops.erase(Ops.begin()+AddOp);
            Ops.erase(Ops.begin()+Idx-1);
          } else {
            Ops.erase(Ops.begin()+Idx);
            Ops.erase(Ops.begin()+AddOp-1);
          }
          Ops.push_back(OuterMul);
          return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
        }
   
      // Check this multiply against other multiplies being added together.
      for (unsigned OtherMulIdx = Idx+1;
           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
           ++OtherMulIdx) {
        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
        // If MulOp occurs in OtherMul, we can fold the two multiplies
        // together.
        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
             OMulOp != e; ++OMulOp)
          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
            if (Mul->getNumOperands() != 2) {
              SmallVector<const SCEV *, 4> MulOps(
                  Mul->operands().take_front(MulOp));
              append_range(MulOps, Mul->operands().drop_front(MulOp+1));
              InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
            }
            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
            if (OtherMul->getNumOperands() != 2) {
              SmallVector<const SCEV *, 4> MulOps(
                  OtherMul->operands().take_front(OMulOp));
              append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
              InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
            }
            SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
            const SCEV *InnerMulSum =
                getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
                                              SCEV::FlagAnyWrap, Depth + 1);
            if (Ops.size() == 2) return OuterMul;
            Ops.erase(Ops.begin()+Idx);
            Ops.erase(Ops.begin()+OtherMulIdx-1);
            Ops.push_back(OuterMul);
            return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
          }
      }
    }
  }
   
  // If there are any add recurrences in the operands list, see if any other
  // added values are loop invariant.  If so, we can fold them into the
  // recurrence.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
    ++Idx;
   
  // Scan over all recurrences, trying to fold loop invariants into them.
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
    // Scan all of the other operands to this add and add them to the vector if
    // they are loop invariant w.r.t. the recurrence.
    SmallVector<const SCEV *, 8> LIOps;
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
    const Loop *AddRecLoop = AddRec->getLoop();
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
      if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
        LIOps.push_back(Ops[i]);
        Ops.erase(Ops.begin()+i);
        --i; --e;
      }
   
    // If we found some loop invariants, fold them into the recurrence.
    if (!LIOps.empty()) {
      // Compute nowrap flags for the addition of the loop-invariant ops and
      // the addrec. Temporarily push it as an operand for that purpose. These
      // flags are valid in the scope of the addrec only.
      LIOps.push_back(AddRec);
      SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
      LIOps.pop_back();
   
      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
      LIOps.push_back(AddRec->getStart());
   
      SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
   
      // It is not in general safe to propagate flags valid on an add within
      // the addrec scope to one outside it.  We must prove that the inner
      // scope is guaranteed to execute if the outer one does to be able to
      // safely propagate.  We know the program is undefined if poison is
      // produced on the inner scoped addrec.  We also know that *for this use*
      // the outer scoped add can't overflow (because of the flags we just
      // computed for the inner scoped add) without the program being undefined.
      // Proving that entry to the outer scope neccesitates entry to the inner
      // scope, thus proves the program undefined if the flags would be violated
      // in the outer scope.
      SCEV::NoWrapFlags AddFlags = Flags;
      if (AddFlags != SCEV::FlagAnyWrap) {
        auto *DefI = getDefiningScopeBound(LIOps);
        auto *ReachI = &*AddRecLoop->getHeader()->begin();
        if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
          AddFlags = SCEV::FlagAnyWrap;
      }
      AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
   
      // Build the new addrec. Propagate the NUW and NSW flags if both the
      // outer add and the inner addrec are guaranteed to have no overflow.
      // Always propagate NW.
      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   
      // If all of the other operands were loop invariant, we are done.
      if (Ops.size() == 1) return NewRec;
   
      // Otherwise, add the folded AddRec by the non-invariant parts.
      for (unsigned i = 0;; ++i)
        if (Ops[i] == AddRec) {
          Ops[i] = NewRec;
          break;
        }
      return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
    }
   
    // Okay, if there weren't any loop invariants to be folded, check to see if
    // there are multiple AddRec's with the same loop induction variable being
    // added together.  If so, we can fold them.
    for (unsigned OtherIdx = Idx+1;
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
         ++OtherIdx) {
      // We expect the AddRecExpr's to be sorted in reverse dominance order,
      // so that the 1st found AddRecExpr is dominated by all others.
      assert(DT.dominates(
           cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
           AddRec->getLoop()->getHeader()) &&
        "AddRecExprs are not sorted in reverse dominance order?");
      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
        SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
             ++OtherIdx) {
          const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
          if (OtherAddRec->getLoop() == AddRecLoop) {
            for (unsigned i = 0, e = OtherAddRec->getNumOperands();
                 i != e; ++i) {
              if (i >= AddRecOps.size()) {
                append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
                break;
              }
              SmallVector<const SCEV *, 2> TwoOps = {
                  AddRecOps[i], OtherAddRec->getOperand(i)};
              AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
            }
            Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
          }
        }
        // Step size has changed, so we cannot guarantee no self-wraparound.
        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
        return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
      }
    }
   
    // Otherwise couldn't fold anything into this recurrence.  Move onto the
    // next one.
  }
   
  // Okay, it looks like we really DO need an add expr.  Check to see if we
  // already have one, otherwise create a new one.
  return getOrCreateAddExpr(Ops, ComputeFlags(Ops));

}

const SCEV *
 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,

                                    SCEV::NoWrapFlags Flags) {
  FoldingSetNodeID ID;
  ID.AddInteger(scAddExpr);
  for (const SCEV *Op : Ops)
    ID.AddPointer(Op);
  void *IP = nullptr;
  SCEVAddExpr *S =
      static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
  if (!S) {
    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
    S = new (SCEVAllocator)
        SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
    UniqueSCEVs.InsertNode(S, IP);
    registerUser(S, Ops);
  }
  S->setNoWrapFlags(Flags);
  return S;

}

const SCEV *
 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,

                                       const Loop *L, SCEV::NoWrapFlags Flags) {
  FoldingSetNodeID ID;
  ID.AddInteger(scAddRecExpr);
  for (const SCEV *Op : Ops)
    ID.AddPointer(Op);
  ID.AddPointer(L);
  void *IP = nullptr;
  SCEVAddRecExpr *S =
      static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
  if (!S) {
    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
    S = new (SCEVAllocator)
        SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
    UniqueSCEVs.InsertNode(S, IP);
    LoopUsers[L].push_back(S);
    registerUser(S, Ops);
  }
  setNoWrapFlags(S, Flags);
  return S;

}

const SCEV *
 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,

                                    SCEV::NoWrapFlags Flags) {
  FoldingSetNodeID ID;
  ID.AddInteger(scMulExpr);
  for (const SCEV *Op : Ops)
    ID.AddPointer(Op);
  void *IP = nullptr;
  SCEVMulExpr *S =
    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
  if (!S) {
    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
                                        O, Ops.size());
    UniqueSCEVs.InsertNode(S, IP);
    registerUser(S, Ops);
  }
  S->setNoWrapFlags(Flags);
  return S;

}

static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {

  uint64_t k = i*j;
  if (j > 1 && k / j != i) Overflow = true;
  return k;

}

/// Compute the result of "n choose k", the binomial coefficient.  If an
 /// intermediate computation overflows, Overflow will be set and the return will
 /// be garbage. Overflow is not cleared on absence of overflow.
 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {

  // We use the multiplicative formula:
  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
  // At each iteration, we take the n-th term of the numeral and divide by the
  // (k-n)th term of the denominator.  This division will always produce an
  // integral result, and helps reduce the chance of overflow in the
  // intermediate computations. However, we can still overflow even when the
  // final result would fit.
   
  if (n == 0 || n == k) return 1;
  if (k > n) return 0;
   
  if (k > n/2)
    k = n-k;
   
  uint64_t r = 1;
  for (uint64_t i = 1; i <= k; ++i) {
    r = umul_ov(r, n-(i-1), Overflow);
    r /= i;
  }
  return r;

}

/// Determine if any of the operands in this SCEV are a constant or if
 /// any of the add or multiply expressions in this SCEV contain a constant.
 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {

  struct FindConstantInAddMulChain {
    bool FoundConstant = false;
   
    bool follow(const SCEV *S) {
      FoundConstant |= isa<SCEVConstant>(S);
      return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
    }
   
    bool isDone() const {
      return FoundConstant;
    }
  };
   
  FindConstantInAddMulChain F;
  SCEVTraversal<FindConstantInAddMulChain> ST(F);
  ST.visitAll(StartExpr);
  return F.FoundConstant;

}

/// Get a canonical multiply expression, or something simpler if possible.
 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,

                                        SCEV::NoWrapFlags OrigFlags,
                                        unsigned Depth) {
  assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
         "only nuw or nsw allowed");
  assert(!Ops.empty() && "Cannot get empty mul!");
  if (Ops.size() == 1) return Ops[0];

#ifndef NDEBUG

  Type *ETy = Ops[0]->getType();
  assert(!ETy->isPointerTy());
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    assert(Ops[i]->getType() == ETy &&
           "SCEVMulExpr operand types don't match!");

#endif

  // Sort by complexity, this groups all similar expression types together.
  GroupByComplexity(Ops, &LI, DT);
   
  // If there are any constants, fold them together.
  unsigned Idx = 0;
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
    ++Idx;
    assert(Idx < Ops.size());
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
      // We found two constants, fold them together!
      Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
      if (Ops.size() == 2) return Ops[0];
      Ops.erase(Ops.begin()+1);  // Erase the folded element
      LHSC = cast<SCEVConstant>(Ops[0]);
    }
   
    // If we have a multiply of zero, it will always be zero.
    if (LHSC->getValue()->isZero())
      return LHSC;
   
    // If we are left with a constant one being multiplied, strip it off.
    if (LHSC->getValue()->isOne()) {
      Ops.erase(Ops.begin());
      --Idx;
    }
   
    if (Ops.size() == 1)
      return Ops[0];
  }
   
  // Delay expensive flag strengthening until necessary.
  auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
    return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
  };
   
  // Limit recursion calls depth.
  if (Depth > MaxArithDepth || hasHugeExpression(Ops))
    return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
   
  if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
    // Don't strengthen flags if we have no new information.
    SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
    if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
      Mul->setNoWrapFlags(ComputeFlags(Ops));
    return S;
  }
   
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
    if (Ops.size() == 2) {
      // C1*(C2+V) -> C1*C2 + C1*V
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
        // If any of Add's ops are Adds or Muls with a constant, apply this
        // transformation as well.
        //
        // TODO: There are some cases where this transformation is not
        // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
        // this transformation should be narrowed down.
        if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
          const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
                                       SCEV::FlagAnyWrap, Depth + 1);
          const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
                                       SCEV::FlagAnyWrap, Depth + 1);
          return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
        }
   
      if (Ops[0]->isAllOnesValue()) {
        // If we have a mul by -1 of an add, try distributing the -1 among the
        // add operands.
        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
          SmallVector<const SCEV *, 4> NewOps;
          bool AnyFolded = false;
          for (const SCEV *AddOp : Add->operands()) {
            const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
                                         Depth + 1);
            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
            NewOps.push_back(Mul);
          }
          if (AnyFolded)
            return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
        } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
          // Negation preserves a recurrence's no self-wrap property.
          SmallVector<const SCEV *, 4> Operands;
          for (const SCEV *AddRecOp : AddRec->operands())
            Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
                                          Depth + 1));
   
          return getAddRecExpr(Operands, AddRec->getLoop(),
                               AddRec->getNoWrapFlags(SCEV::FlagNW));
        }
      }
    }
  }
   
  // Skip over the add expression until we get to a multiply.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
    ++Idx;
   
  // If there are mul operands inline them all into this expression.
  if (Idx < Ops.size()) {
    bool DeletedMul = false;
    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
      if (Ops.size() > MulOpsInlineThreshold)
        break;
      // If we have an mul, expand the mul operands onto the end of the
      // operands list.
      Ops.erase(Ops.begin()+Idx);
      append_range(Ops, Mul->operands());
      DeletedMul = true;
    }
   
    // If we deleted at least one mul, we added operands to the end of the
    // list, and they are not necessarily sorted.  Recurse to resort and
    // resimplify any operands we just acquired.
    if (DeletedMul)
      return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
  }
   
  // If there are any add recurrences in the operands list, see if any other
  // added values are loop invariant.  If so, we can fold them into the
  // recurrence.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
    ++Idx;
   
  // Scan over all recurrences, trying to fold loop invariants into them.
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
    // Scan all of the other operands to this mul and add them to the vector
    // if they are loop invariant w.r.t. the recurrence.
    SmallVector<const SCEV *, 8> LIOps;
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
    const Loop *AddRecLoop = AddRec->getLoop();
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
      if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
        LIOps.push_back(Ops[i]);
        Ops.erase(Ops.begin()+i);
        --i; --e;
      }
   
    // If we found some loop invariants, fold them into the recurrence.
    if (!LIOps.empty()) {
      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
      SmallVector<const SCEV *, 4> NewOps;
      NewOps.reserve(AddRec->getNumOperands());
      const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
                                    SCEV::FlagAnyWrap, Depth + 1));
   
      // Build the new addrec. Propagate the NUW and NSW flags if both the
      // outer mul and the inner addrec are guaranteed to have no overflow.
      //
      // No self-wrap cannot be guaranteed after changing the step size, but
      // will be inferred if either NUW or NSW is true.
      SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
      const SCEV *NewRec = getAddRecExpr(
          NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
   
      // If all of the other operands were loop invariant, we are done.
      if (Ops.size() == 1) return NewRec;
   
      // Otherwise, multiply the folded AddRec by the non-invariant parts.
      for (unsigned i = 0;; ++i)
        if (Ops[i] == AddRec) {
          Ops[i] = NewRec;
          break;
        }
      return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
    }
   
    // Okay, if there weren't any loop invariants to be folded, check to see
    // if there are multiple AddRec's with the same loop induction variable
    // being multiplied together.  If so, we can fold them.
   
    // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
    // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
    //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
    //   ]]],+,...up to x=2n}.
    // Note that the arguments to choose() are always integers with values
    // known at compile time, never SCEV objects.
    //
    // The implementation avoids pointless extra computations when the two
    // addrec's are of different length (mathematically, it's equivalent to
    // an infinite stream of zeros on the right).
    bool OpsModified = false;
    for (unsigned OtherIdx = Idx+1;
         OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
         ++OtherIdx) {
      const SCEVAddRecExpr *OtherAddRec =
        dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
      if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
        continue;
   
      // Limit max number of arguments to avoid creation of unreasonably big
      // SCEVAddRecs with very complex operands.
      if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
          MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
        continue;
   
      bool Overflow = false;
      Type *Ty = AddRec->getType();
      bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
      SmallVector<const SCEV*, 7> AddRecOps;
      for (int x = 0, xe = AddRec->getNumOperands() +
             OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
        SmallVector <const SCEV *, 7> SumOps;
        for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
          uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
          for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
                 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
               z < ze && !Overflow; ++z) {
            uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
            uint64_t Coeff;
            if (LargerThan64Bits)
              Coeff = umul_ov(Coeff1, Coeff2, Overflow);
            else
              Coeff = Coeff1*Coeff2;
            const SCEV *CoeffTerm = getConstant(Ty, Coeff);
            const SCEV *Term1 = AddRec->getOperand(y-z);
            const SCEV *Term2 = OtherAddRec->getOperand(z);
            SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
                                        SCEV::FlagAnyWrap, Depth + 1));
          }
        }
        if (SumOps.empty())
          SumOps.push_back(getZero(Ty));
        AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
      }
      if (!Overflow) {
        const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
                                              SCEV::FlagAnyWrap);
        if (Ops.size() == 2) return NewAddRec;
        Ops[Idx] = NewAddRec;
        Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
        OpsModified = true;
        AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
        if (!AddRec)
          break;
      }
    }
    if (OpsModified)
      return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
   
    // Otherwise couldn't fold anything into this recurrence.  Move onto the
    // next one.
  }
   
  // Okay, it looks like we really DO need an mul expr.  Check to see if we
  // already have one, otherwise create a new one.
  return getOrCreateMulExpr(Ops, ComputeFlags(Ops));

}

/// Represents an unsigned remainder expression based on unsigned division.
 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,

                                         const SCEV *RHS) {
  assert(getEffectiveSCEVType(LHS->getType()) ==
         getEffectiveSCEVType(RHS->getType()) &&
         "SCEVURemExpr operand types don't match!");
   
  // Short-circuit easy cases
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
    // If constant is one, the result is trivial
    if (RHSC->getValue()->isOne())
      return getZero(LHS->getType()); // X urem 1 --> 0
   
    // If constant is a power of two, fold into a zext(trunc(LHS)).
    if (RHSC->getAPInt().isPowerOf2()) {
      Type *FullTy = LHS->getType();
      Type *TruncTy =
          IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
      return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
    }
  }
   
  // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
  const SCEV *UDiv = getUDivExpr(LHS, RHS);
  const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
  return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);

}

/// Get a canonical unsigned division expression, or something simpler if
 /// possible.
 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,

                                         const SCEV *RHS) {
  assert(!LHS->getType()->isPointerTy() &&
         "SCEVUDivExpr operand can't be pointer!");
  assert(LHS->getType() == RHS->getType() &&
         "SCEVUDivExpr operand types don't match!");
   
  FoldingSetNodeID ID;
  ID.AddInteger(scUDivExpr);
  ID.AddPointer(LHS);
  ID.AddPointer(RHS);
  void *IP = nullptr;
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
    return S;
   
  // 0 udiv Y == 0
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
    if (LHSC->getValue()->isZero())
      return LHS;
   
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
    if (RHSC->getValue()->isOne())
      return LHS;                               // X udiv 1 --> x
    // If the denominator is zero, the result of the udiv is undefined. Don't
    // try to analyze it, because the resolution chosen here may differ from
    // the resolution chosen in other parts of the compiler.
    if (!RHSC->getValue()->isZero()) {
      // Determine if the division can be folded into the operands of
      // its operands.
      // TODO: Generalize this to non-constants by using known-bits information.
      Type *Ty = LHS->getType();
      unsigned LZ = RHSC->getAPInt().countLeadingZeros();
      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
      // For non-power-of-two values, effectively round the value up to the
      // nearest power of two.
      if (!RHSC->getAPInt().isPowerOf2())
        ++MaxShiftAmt;
      IntegerType *ExtTy =
        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
        if (const SCEVConstant *Step =
            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
          const APInt &StepInt = Step->getAPInt();
          const APInt &DivInt = RHSC->getAPInt();
          if (!StepInt.urem(DivInt) &&
              getZeroExtendExpr(AR, ExtTy) ==
              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
                            getZeroExtendExpr(Step, ExtTy),
                            AR->getLoop(), SCEV::FlagAnyWrap)) {
            SmallVector<const SCEV *, 4> Operands;
            for (const SCEV *Op : AR->operands())
              Operands.push_back(getUDivExpr(Op, RHS));
            return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
          }
          /// Get a canonical UDivExpr for a recurrence.
          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
          // We can currently only fold X%N if X is constant.
          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
          if (StartC && !DivInt.urem(StepInt) &&
              getZeroExtendExpr(AR, ExtTy) ==
              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
                            getZeroExtendExpr(Step, ExtTy),
                            AR->getLoop(), SCEV::FlagAnyWrap)) {
            const APInt &StartInt = StartC->getAPInt();
            const APInt &StartRem = StartInt.urem(StepInt);
            if (StartRem != 0) {
              const SCEV *NewLHS =
                  getAddRecExpr(getConstant(StartInt - StartRem), Step,
                                AR->getLoop(), SCEV::FlagNW);
              if (LHS != NewLHS) {
                LHS = NewLHS;
   
                // Reset the ID to include the new LHS, and check if it is
                // already cached.
                ID.clear();
                ID.AddInteger(scUDivExpr);
                ID.AddPointer(LHS);
                ID.AddPointer(RHS);
                IP = nullptr;
                if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
                  return S;
              }
            }
          }
        }
      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
        SmallVector<const SCEV *, 4> Operands;
        for (const SCEV *Op : M->operands())
          Operands.push_back(getZeroExtendExpr(Op, ExtTy));
        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
          // Find an operand that's safely divisible.
          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
            const SCEV *Op = M->getOperand(i);
            const SCEV *Div = getUDivExpr(Op, RHSC);
            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
              Operands = SmallVector<const SCEV *, 4>(M->operands());
              Operands[i] = Div;
              return getMulExpr(Operands);
            }
          }
      }
   
      // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
      if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
        if (auto *DivisorConstant =
                dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
          bool Overflow = false;
          APInt NewRHS =
              DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
          if (Overflow) {
            return getConstant(RHSC->getType(), 0, false);
          }
          return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
        }
      }
   
      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
        SmallVector<const SCEV *, 4> Operands;
        for (const SCEV *Op : A->operands())
          Operands.push_back(getZeroExtendExpr(Op, ExtTy));
        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
          Operands.clear();
          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
            if (isa<SCEVUDivExpr>(Op) ||
                getMulExpr(Op, RHS) != A->getOperand(i))
              break;
            Operands.push_back(Op);
          }
          if (Operands.size() == A->getNumOperands())
            return getAddExpr(Operands);
        }
      }
   
      // Fold if both operands are constant.
      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
        return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
    }
  }
   
  // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
  // changes). Make sure we get a new one.
  IP = nullptr;
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
                                             LHS, RHS);
  UniqueSCEVs.InsertNode(S, IP);
  registerUser(S, {LHS, RHS});
  return S;

}

APInt gcd(const SCEVConstant *C1 <https://reviews.llvm.org/C1>, const SCEVConstant *C2) {

  APInt A = C1->getAPInt().abs();
  APInt B = C2->getAPInt().abs();
  uint32_t ABW = A.getBitWidth();
  uint32_t BBW = B.getBitWidth();
   
  if (ABW > BBW)
    B = B.zext(ABW);
  else if (ABW < BBW)
    A = A.zext(BBW);
   
  return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));

}

/// Get a canonical unsigned division expression, or something simpler if
 /// possible. There is no representation for an exact udiv in SCEV IR, but we
 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
 /// it's not exact because the udiv may be clearing bits.
 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,

                                              const SCEV *RHS) {
  // TODO: we could try to find factors in all sorts of things, but for now we
  // just deal with u/exact (multiply, constant). See SCEVDivision towards the
  // end of this file for inspiration.
   
  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
  if (!Mul || !Mul->hasNoUnsignedWrap())
    return getUDivExpr(LHS, RHS);
   
  if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
    // If the mulexpr multiplies by a constant, then that constant must be the
    // first element of the mulexpr.
    if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
      if (LHSCst == RHSCst) {
        SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
        return getMulExpr(Operands);
      }
   
      // We can't just assume that LHSCst divides RHSCst cleanly, it could be
      // that there's a factor provided by one of the other terms. We need to
      // check.
      APInt Factor = gcd(LHSCst, RHSCst);
      if (!Factor.isIntN(1)) {
        LHSCst =
            cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
        RHSCst =
            cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
        SmallVector<const SCEV *, 2> Operands;
        Operands.push_back(LHSCst);
        append_range(Operands, Mul->operands().drop_front());
        LHS = getMulExpr(Operands);
        RHS = RHSCst;
        Mul = dyn_cast<SCEVMulExpr>(LHS);
        if (!Mul)
          return getUDivExactExpr(LHS, RHS);
      }
    }
  }
   
  for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
    if (Mul->getOperand(i) == RHS) {
      SmallVector<const SCEV *, 2> Operands;
      append_range(Operands, Mul->operands().take_front(i));
      append_range(Operands, Mul->operands().drop_front(i + 1));
      return getMulExpr(Operands);
    }
  }
   
  return getUDivExpr(LHS, RHS);

}

/// Get an add recurrence expression for the specified loop.  Simplify the
 /// expression as much as possible.
 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,

                                           const Loop *L,
                                           SCEV::NoWrapFlags Flags) {
  SmallVector<const SCEV *, 4> Operands;
  Operands.push_back(Start);
  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
    if (StepChrec->getLoop() == L) {
      append_range(Operands, StepChrec->operands());
      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
    }
   
  Operands.push_back(Step);
  return getAddRecExpr(Operands, L, Flags);

}

/// Get an add recurrence expression for the specified loop.  Simplify the
 /// expression as much as possible.
 const SCEV *
 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,

                               const Loop *L, SCEV::NoWrapFlags Flags) {
  if (Operands.size() == 1) return Operands[0];

#ifndef NDEBUG

  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
           "SCEVAddRecExpr operand types don't match!");
    assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
  }
  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    assert(isLoopInvariant(Operands[i], L) &&
           "SCEVAddRecExpr operand is not loop-invariant!");

#endif

  if (Operands.back()->isZero()) {
    Operands.pop_back();
    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
  }
   
  // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
  // use that information to infer NUW and NSW flags. However, computing a
  // BE count requires calling getAddRecExpr, so we may not yet have a
  // meaningful BE count at this point (and if we don't, we'd be stuck
  // with a SCEVCouldNotCompute as the cached BE count).
   
  Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
   
  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
    const Loop *NestedLoop = NestedAR->getLoop();
    if (L->contains(NestedLoop)
            ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
            : (!NestedLoop->contains(L) &&
               DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
      Operands[0] = NestedAR->getStart();
      // AddRecs require their operands be loop-invariant with respect to their
      // loops. Don't perform this transformation if it would break this
      // requirement.
      bool AllInvariant = all_of(
          Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
   
      if (AllInvariant) {
        // Create a recurrence for the outer loop with the same step size.
        //
        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
        // inner recurrence has the same property.
        SCEV::NoWrapFlags OuterFlags =
          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   
        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
        AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
          return isLoopInvariant(Op, NestedLoop);
        });
   
        if (AllInvariant) {
          // Ok, both add recurrences are valid after the transformation.
          //
          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
          // the outer recurrence has the same property.
          SCEV::NoWrapFlags InnerFlags =
            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
        }
      }
      // Reset Operands to its original state.
      Operands[0] = NestedAR;
    }
  }
   
  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
  // already have one, otherwise create a new one.
  return getOrCreateAddRecExpr(Operands, L, Flags);

}

const SCEV *
 ScalarEvolution::getGEPExpr(GEPOperator *GEP,

                            const SmallVectorImpl<const SCEV *> &IndexExprs) {
  const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
  // getSCEV(Base)->getType() has the same address space as Base->getType()
  // because SCEV::getType() preserves the address space.
  Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
  const bool AssumeInBoundsFlags = [&]() {
    if (!GEP->isInBounds())
      return false;
   
    // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
    // but to do that, we have to ensure that said flag is valid in the entire
    // defined scope of the SCEV.
    auto *GEPI = dyn_cast<Instruction>(GEP);
    // TODO: non-instructions have global scope.  We might be able to prove
    // some global scope cases
    return GEPI && isSCEVExprNeverPoison(GEPI);
  }();
   
  SCEV::NoWrapFlags OffsetWrap =
    AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   
  Type *CurTy = GEP->getType();
  bool FirstIter = true;
  SmallVector<const SCEV *, 4> Offsets;
  for (const SCEV *IndexExpr : IndexExprs) {
    // Compute the (potentially symbolic) offset in bytes for this index.
    if (StructType *STy = dyn_cast<StructType>(CurTy)) {
      // For a struct, add the member offset.
      ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
      unsigned FieldNo = Index->getZExtValue();
      const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
      Offsets.push_back(FieldOffset);
   
      // Update CurTy to the type of the field at Index.
      CurTy = STy->getTypeAtIndex(Index);
    } else {
      // Update CurTy to its element type.
      if (FirstIter) {
        assert(isa<PointerType>(CurTy) &&
               "The first index of a GEP indexes a pointer");
        CurTy = GEP->getSourceElementType();
        FirstIter = false;
      } else {
        CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
      }
      // For an array, add the element offset, explicitly scaled.
      const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
      // Getelementptr indices are signed.
      IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
   
      // Multiply the index by the element size to compute the element offset.
      const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
      Offsets.push_back(LocalOffset);
    }
  }
   
  // Handle degenerate case of GEP without offsets.
  if (Offsets.empty())
    return BaseExpr;
   
  // Add the offsets together, assuming nsw if inbounds.
  const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
  // Add the base address and the offset. We cannot use the nsw flag, as the
  // base address is unsigned. However, if we know that the offset is
  // non-negative, we can use nuw.
  SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
                                   ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
  auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
  assert(BaseExpr->getType() == GEPExpr->getType() &&
         "GEP should not change type mid-flight.");
  return GEPExpr;

}

SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,

                                               ArrayRef<const SCEV *> Ops) {
  FoldingSetNodeID ID;
  ID.AddInteger(SCEVType);
  for (const SCEV *Op : Ops)
    ID.AddPointer(Op);
  void *IP = nullptr;
  return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);

}

const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {

  SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
  return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));

}

const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,

                                           SmallVectorImpl<const SCEV *> &Ops) {
  assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
  assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
  if (Ops.size() == 1) return Ops[0];

#ifndef NDEBUG

  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
           "Operand types don't match!");
    assert(Ops[0]->getType()->isPointerTy() ==
               Ops[i]->getType()->isPointerTy() &&
           "min/max should be consistently pointerish");
  }

#endif

  bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
  bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
   
  // Sort by complexity, this groups all similar expression types together.
  GroupByComplexity(Ops, &LI, DT);
   
  // Check if we have created the same expression before.
  if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
    return S;
  }
   
  // If there are any constants, fold them together.
  unsigned Idx = 0;
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
    ++Idx;
    assert(Idx < Ops.size());
    auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
      if (Kind == scSMaxExpr)
        return APIntOps::smax(LHS, RHS);
      else if (Kind == scSMinExpr)
        return APIntOps::smin(LHS, RHS);
      else if (Kind == scUMaxExpr)
        return APIntOps::umax(LHS, RHS);
      else if (Kind == scUMinExpr)
        return APIntOps::umin(LHS, RHS);
      llvm_unreachable("Unknown SCEV min/max opcode");
    };
   
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
      // We found two constants, fold them together!
      ConstantInt *Fold = ConstantInt::get(
          getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
      Ops[0] = getConstant(Fold);
      Ops.erase(Ops.begin()+1);  // Erase the folded element
      if (Ops.size() == 1) return Ops[0];
      LHSC = cast<SCEVConstant>(Ops[0]);
    }
   
    bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
    bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
   
    if (IsMax ? IsMinV : IsMaxV) {
      // If we are left with a constant minimum(/maximum)-int, strip it off.
      Ops.erase(Ops.begin());
      --Idx;
    } else if (IsMax ? IsMaxV : IsMinV) {
      // If we have a max(/min) with a constant maximum(/minimum)-int,
      // it will always be the extremum.
      return LHSC;
    }
   
    if (Ops.size() == 1) return Ops[0];
  }
   
  // Find the first operation of the same kind
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
    ++Idx;
   
  // Check to see if one of the operands is of the same kind. If so, expand its
  // operands onto our operand list, and recurse to simplify.
  if (Idx < Ops.size()) {
    bool DeletedAny = false;
    while (Ops[Idx]->getSCEVType() == Kind) {
      const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
      Ops.erase(Ops.begin()+Idx);
      append_range(Ops, SMME->operands());
      DeletedAny = true;
    }
   
    if (DeletedAny)
      return getMinMaxExpr(Kind, Ops);
  }
   
  // Okay, check to see if the same value occurs in the operand list twice.  If
  // so, delete one.  Since we sorted the list, these values are required to
  // be adjacent.
  llvm::CmpInst::Predicate GEPred =
      IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
  llvm::CmpInst::Predicate LEPred =
      IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
  llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
  llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
  for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
    if (Ops[i] == Ops[i + 1] ||
        isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
      //  X op Y op Y  -->  X op Y
      //  X op Y       -->  X, if we know X, Y are ordered appropriately
      Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
      --i;
      --e;
    } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
                                               Ops[i + 1])) {
      //  X op Y       -->  Y, if we know X, Y are ordered appropriately
      Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
      --i;
      --e;
    }
  }
   
  if (Ops.size() == 1) return Ops[0];
   
  assert(!Ops.empty() && "Reduced smax down to nothing!");
   
  // Okay, it looks like we really DO need an expr.  Check to see if we
  // already have one, otherwise create a new one.
  FoldingSetNodeID ID;
  ID.AddInteger(Kind);
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    ID.AddPointer(Ops[i]);
  void *IP = nullptr;
  const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
  if (ExistingSCEV)
    return ExistingSCEV;
  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
  SCEV *S = new (SCEVAllocator)
      SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
   
  UniqueSCEVs.InsertNode(S, IP);
  registerUser(S, Ops);
  return S;

}

namespace {

class SCEVSequentialMinMaxDeduplicatingVisitor final

    : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
                         std::optional<const SCEV *>> {
  using RetVal = std::optional<const SCEV *>;
  using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
   
  ScalarEvolution &SE;
  const SCEVTypes RootKind; // Must be a sequential min/max expression.
  const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
  SmallPtrSet<const SCEV *, 16> SeenOps;
   
  bool canRecurseInto(SCEVTypes Kind) const {
    // We can only recurse into the SCEV expression of the same effective type
    // as the type of our root SCEV expression.
    return RootKind == Kind || NonSequentialRootKind == Kind;
  };
   
  RetVal visitAnyMinMaxExpr(const SCEV *S) {
    assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
           "Only for min/max expressions.");
    SCEVTypes Kind = S->getSCEVType();
   
    if (!canRecurseInto(Kind))
      return S;
   
    auto *NAry = cast<SCEVNAryExpr>(S);
    SmallVector<const SCEV *> NewOps;
    bool Changed = visit(Kind, NAry->operands(), NewOps);
   
    if (!Changed)
      return S;
    if (NewOps.empty())
      return std::nullopt;
   
    return isa<SCEVSequentialMinMaxExpr>(S)
               ? SE.getSequentialMinMaxExpr(Kind, NewOps)
               : SE.getMinMaxExpr(Kind, NewOps);
  }
   
  RetVal visit(const SCEV *S) {
    // Has the whole operand been seen already?
    if (!SeenOps.insert(S).second)
      return std::nullopt;
    return Base::visit(S);
  }
   

public:

  SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
                                           SCEVTypes RootKind)
      : SE(SE), RootKind(RootKind),
        NonSequentialRootKind(
            SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
                RootKind)) {}
   
  bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
                         SmallVectorImpl<const SCEV *> &NewOps) {
    bool Changed = false;
    SmallVector<const SCEV *> Ops;
    Ops.reserve(OrigOps.size());
   
    for (const SCEV *Op : OrigOps) {
      RetVal NewOp = visit(Op);
      if (NewOp != Op)
        Changed = true;
      if (NewOp)
        Ops.emplace_back(*NewOp);
    }
   
    if (Changed)
      NewOps = std::move(Ops);
    return Changed;
  }
   
  RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
   
  RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
   
  RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
   
  RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
   
  RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
   
  RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
   
  RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
   
  RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
   
  RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
   
  RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    return visitAnyMinMaxExpr(Expr);
  }
   
  RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
    return visitAnyMinMaxExpr(Expr);
  }
   
  RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
    return visitAnyMinMaxExpr(Expr);
  }
   
  RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
    return visitAnyMinMaxExpr(Expr);
  }
   
  RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
    return visitAnyMinMaxExpr(Expr);
  }
   
  RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
   
  RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }

};

} // namespace

/// Return true if V is poison given that AssumedPoison is already poison.
 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {

  // The only way poison may be introduced in a SCEV expression is from a
  // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
  // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
  // introduce poison -- they encode guaranteed, non-speculated knowledge.
  //
  // Additionally, all SCEV nodes propagate poison from inputs to outputs,
  // with the notable exception of umin_seq, where only poison from the first
  // operand is (unconditionally) propagated.
  struct SCEVPoisonCollector {
    bool LookThroughSeq;
    SmallPtrSet<const SCEV *, 4> MaybePoison;
    SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {}
   
    bool follow(const SCEV *S) {
      // TODO: We can always follow the first operand, but the SCEVTraversal
      // API doesn't support this.
      if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S))
        return false;
   
      if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
        if (!isGuaranteedNotToBePoison(SU->getValue()))
          MaybePoison.insert(S);
      }
      return true;
    }
    bool isDone() const { return false; }
  };
   
  // First collect all SCEVs that might result in AssumedPoison to be poison.
  // We need to look through umin_seq here, because we want to find all SCEVs
  // that *might* result in poison, not only those that are *required* to.
  SCEVPoisonCollector PC1(/* LookThroughSeq */ true);
  visitAll(AssumedPoison, PC1);
   
  // AssumedPoison is never poison. As the assumption is false, the implication
  // is true. Don't bother walking the other SCEV in this case.
  if (PC1.MaybePoison.empty())
    return true;
   
  // Collect all SCEVs in S that, if poison, *will* result in S being poison
  // as well. We cannot look through umin_seq here, as its argument only *may*
  // make the result poison.
  SCEVPoisonCollector PC2(/* LookThroughSeq */ false);
  visitAll(S, PC2);
   
  // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
  // it will also make S poison by being part of PC2.MaybePoison.
  return all_of(PC1.MaybePoison,
                [&](const SCEV *S) { return PC2.MaybePoison.contains(S); });

}

const SCEV *
 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,

                                         SmallVectorImpl<const SCEV *> &Ops) {
  assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
         "Not a SCEVSequentialMinMaxExpr!");
  assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
  if (Ops.size() == 1)
    return Ops[0];

#ifndef NDEBUG

  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
           "Operand types don't match!");
    assert(Ops[0]->getType()->isPointerTy() ==
               Ops[i]->getType()->isPointerTy() &&
           "min/max should be consistently pointerish");
  }

#endif

  // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
  // so we can *NOT* do any kind of sorting of the expressions!
   
  // Check if we have created the same expression before.
  if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
    return S;
   
  // FIXME: there are *some* simplifications that we can do here.
   
  // Keep only the first instance of an operand.
  {
    SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
    bool Changed = Deduplicator.visit(Kind, Ops, Ops);
    if (Changed)
      return getSequentialMinMaxExpr(Kind, Ops);
  }
   
  // Check to see if one of the operands is of the same kind. If so, expand its
  // operands onto our operand list, and recurse to simplify.
  {
    unsigned Idx = 0;
    bool DeletedAny = false;
    while (Idx < Ops.size()) {
      if (Ops[Idx]->getSCEVType() != Kind) {
        ++Idx;
        continue;
      }
      const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
      Ops.erase(Ops.begin() + Idx);
      Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
                 SMME->operands().end());
      DeletedAny = true;
    }
   
    if (DeletedAny)
      return getSequentialMinMaxExpr(Kind, Ops);
  }
   
  const SCEV *SaturationPoint;
  ICmpInst::Predicate Pred;
  switch (Kind) {
  case scSequentialUMinExpr:
    SaturationPoint = getZero(Ops[0]->getType());
    Pred = ICmpInst::ICMP_ULE;
    break;
  default:
    llvm_unreachable("Not a sequential min/max type.");
  }
   
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    // We can replace %x umin_seq %y with %x umin %y if either:
    //  * %y being poison implies %x is also poison.
    //  * %x cannot be the saturating value (e.g. zero for umin).
    if (::impliesPoison(Ops[i], Ops[i - 1]) ||
        isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
                                        SaturationPoint)) {
      SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
      Ops[i - 1] = getMinMaxExpr(
          SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
          SeqOps);
      Ops.erase(Ops.begin() + i);
      return getSequentialMinMaxExpr(Kind, Ops);
    }
    // Fold %x umin_seq %y to %x if %x ule %y.
    // TODO: We might be able to prove the predicate for a later operand.
    if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
      Ops.erase(Ops.begin() + i);
      return getSequentialMinMaxExpr(Kind, Ops);
    }
  }
   
  // Okay, it looks like we really DO need an expr.  Check to see if we
  // already have one, otherwise create a new one.
  FoldingSetNodeID ID;
  ID.AddInteger(Kind);
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    ID.AddPointer(Ops[i]);
  void *IP = nullptr;
  const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
  if (ExistingSCEV)
    return ExistingSCEV;
   
  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
  SCEV *S = new (SCEVAllocator)
      SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
   
  UniqueSCEVs.InsertNode(S, IP);
  registerUser(S, Ops);
  return S;

}

const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {

  SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
  return getSMaxExpr(Ops);

}

const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {

  return getMinMaxExpr(scSMaxExpr, Ops);

}

const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {

  SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
  return getUMaxExpr(Ops);

}

const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {

  return getMinMaxExpr(scUMaxExpr, Ops);

}

const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,

                                         const SCEV *RHS) {
  SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
  return getSMinExpr(Ops);

}

const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {

  return getMinMaxExpr(scSMinExpr, Ops);

}

const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,

                                         bool Sequential) {
  SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
  return getUMinExpr(Ops, Sequential);

}

const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,

                                         bool Sequential) {
  return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
                    : getMinMaxExpr(scUMinExpr, Ops);

}

const SCEV *
 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,

                                             ScalableVectorType *ScalableTy) {
  Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
  Constant *One = ConstantInt::get(IntTy, 1);
  Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
  // Note that the expression we created is the final expression, we don't
  // want to simplify it any further Also, if we call a normal getSCEV(),
  // we'll end up in an endless recursion. So just create an SCEVUnknown.
  return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));

}

const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {

  if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
    return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
  // We can bypass creating a target-independent constant expression and then
  // folding it back into a ConstantInt. This is just a compile-time
  // optimization.
  return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));

}

const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {

  if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
    return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
  // We can bypass creating a target-independent constant expression and then
  // folding it back into a ConstantInt. This is just a compile-time
  // optimization.
  return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));

}

const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,

                                             StructType *STy,
                                             unsigned FieldNo) {
  // We can bypass creating a target-independent constant expression and then
  // folding it back into a ConstantInt. This is just a compile-time
  // optimization.
  return getConstant(
      IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));

}

const SCEV *ScalarEvolution::getUnknown(Value *V) {

  // Don't attempt to do anything other than create a SCEVUnknown object
  // here.  createSCEV only calls getUnknown after checking for all other
  // interesting possibilities, and any other code that calls getUnknown
  // is doing so in order to hide a value from SCEV canonicalization.
   
  FoldingSetNodeID ID;
  ID.AddInteger(scUnknown);
  ID.AddPointer(V);
  void *IP = nullptr;
  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
    assert(cast<SCEVUnknown>(S)->getValue() == V &&
           "Stale SCEVUnknown in uniquing map!");
    return S;
  }
  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
                                            FirstUnknown);
  FirstUnknown = cast<SCEVUnknown>(S);
  UniqueSCEVs.InsertNode(S, IP);
  return S;

}

//===----------------------------------------------------------------------===//
 //            Basic SCEV Analysis and PHI Idiom Recognition Code
 //

/// Test if values of the given type are analyzable within the SCEV
 /// framework. This primarily includes integer types, and it can optionally
 /// include pointer types if the ScalarEvolution class has access to
 /// target-specific information.
 bool ScalarEvolution::isSCEVable(Type *Ty) const {

  // Integers and pointers are always SCEVable.
  return Ty->isIntOrPtrTy();

}

/// Return the size in bits of the specified type, for which isSCEVable must
 /// return true.
 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {

  assert(isSCEVable(Ty) && "Type is not SCEVable!");
  if (Ty->isPointerTy())
    return getDataLayout().getIndexTypeSizeInBits(Ty);
  return getDataLayout().getTypeSizeInBits(Ty);

}

/// Return a type with the same bitwidth as the given type and which represents
 /// how SCEV will treat the given type, for which isSCEVable must return
 /// true. For pointer types, this is the pointer index sized integer type.
 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {

  assert(isSCEVable(Ty) && "Type is not SCEVable!");
   
  if (Ty->isIntegerTy())
    return Ty;
   
  // The only other support type is pointer.
  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
  return getDataLayout().getIndexType(Ty);

}

Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {

  return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;

}

bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,

                                                         const SCEV *B) {
  /// For a valid use point to exist, the defining scope of one operand
  /// must dominate the other.
  bool PreciseA, PreciseB;
  auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
  auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
  if (!PreciseA || !PreciseB)
    // Can't tell.
    return false;
  return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
    DT.dominates(ScopeB, ScopeA);

}

const SCEV *ScalarEvolution::getCouldNotCompute() {

  return CouldNotCompute.get();

}

bool ScalarEvolution::checkValidity(const SCEV *S) const {

  bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
    auto *SU = dyn_cast<SCEVUnknown>(S);
    return SU && SU->getValue() == nullptr;
  });
   
  return !ContainsNulls;

}

bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {

  HasRecMapType::iterator I = HasRecMap.find(S);
  if (I != HasRecMap.end())
    return I->second;
   
  bool FoundAddRec =
      SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
  HasRecMap.insert({S, FoundAddRec});
  return FoundAddRec;

}

/// Return the ValueOffsetPair set for \p S. \p S can be represented
 /// by the value and offset from any ValueOffsetPair in the set.
 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {

  ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
  if (SI == ExprValueMap.end())
    return std::nullopt;

#ifndef NDEBUG

  if (VerifySCEVMap) {
    // Check there is no dangling Value in the set returned.
    for (Value *V : SI->second)
      assert(ValueExprMap.count(V));
  }

#endif

  return SI->second.getArrayRef();

}

/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
 /// cannot be used separately. eraseValueFromMap should be used to remove
 /// V from ValueExprMap and ExprValueMap at the same time.
 void ScalarEvolution::eraseValueFromMap(Value *V) {

  ValueExprMapType::iterator I = ValueExprMap.find_as(V);
  if (I != ValueExprMap.end()) {
    auto EVIt = ExprValueMap.find(I->second);
    bool Removed = EVIt->second.remove(V);
    (void) Removed;
    assert(Removed && "Value not in ExprValueMap?");
    ValueExprMap.erase(I);
  }

}

void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {

  // A recursive query may have already computed the SCEV. It should be
  // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
  // inferred nowrap flags.
  auto It = ValueExprMap.find_as(V);
  if (It == ValueExprMap.end()) {
    ValueExprMap.insert({SCEVCallbackVH(V, this), S});
    ExprValueMap[S].insert(V);
  }

}

/// Return an existing SCEV if it exists, otherwise analyze the expression and
 /// create a new one.
 const SCEV *ScalarEvolution::getSCEV(Value *V) {

  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   
  if (const SCEV *S = getExistingSCEV(V))
    return S;
  return createSCEVIter(V);

}

const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {

  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   
  ValueExprMapType::iterator I = ValueExprMap.find_as(V);
  if (I != ValueExprMap.end()) {
    const SCEV *S = I->second;
    assert(checkValidity(S) &&
           "existing SCEV has not been properly invalidated");
    return S;
  }
  return nullptr;

}

/// Return a SCEV corresponding to -V = -1*V
 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,

                                             SCEV::NoWrapFlags Flags) {
  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
    return getConstant(
               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   
  Type *Ty = V->getType();
  Ty = getEffectiveSCEVType(Ty);
  return getMulExpr(V, getMinusOne(Ty), Flags);

}

/// If Expr computes ~A, return A else return nullptr
 static const SCEV *MatchNotExpr(const SCEV *Expr) {

  const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
  if (!Add || Add->getNumOperands() != 2 ||
      !Add->getOperand(0)->isAllOnesValue())
    return nullptr;
   
  const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
  if (!AddRHS || AddRHS->getNumOperands() != 2 ||
      !AddRHS->getOperand(0)->isAllOnesValue())
    return nullptr;
   
  return AddRHS->getOperand(1);

}

/// Return a SCEV corresponding to ~V = -1-V
 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {

  assert(!V->getType()->isPointerTy() && "Can't negate pointer");
   
  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
    return getConstant(
                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   
  // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
  if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
    auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
      SmallVector<const SCEV *, 2> MatchedOperands;
      for (const SCEV *Operand : MME->operands()) {
        const SCEV *Matched = MatchNotExpr(Operand);
        if (!Matched)
          return (const SCEV *)nullptr;
        MatchedOperands.push_back(Matched);
      }
      return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
                           MatchedOperands);
    };
    if (const SCEV *Replaced = MatchMinMaxNegation(MME))
      return Replaced;
  }
   
  Type *Ty = V->getType();
  Ty = getEffectiveSCEVType(Ty);
  return getMinusSCEV(getMinusOne(Ty), V);

}

const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {

  assert(P->getType()->isPointerTy());
   
  if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
    // The base of an AddRec is the first operand.
    SmallVector<const SCEV *> Ops{AddRec->operands()};
    Ops[0] = removePointerBase(Ops[0]);
    // Don't try to transfer nowrap flags for now. We could in some cases
    // (for example, if pointer operand of the AddRec is a SCEVUnknown).
    return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
  }
  if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
    // The base of an Add is the pointer operand.
    SmallVector<const SCEV *> Ops{Add->operands()};
    const SCEV **PtrOp = nullptr;
    for (const SCEV *&AddOp : Ops) {
      if (AddOp->getType()->isPointerTy()) {
        assert(!PtrOp && "Cannot have multiple pointer ops");
        PtrOp = &AddOp;
      }
    }
    *PtrOp = removePointerBase(*PtrOp);
    // Don't try to transfer nowrap flags for now. We could in some cases
    // (for example, if the pointer operand of the Add is a SCEVUnknown).
    return getAddExpr(Ops);
  }
  // Any other expression must be a pointer base.
  return getZero(P->getType());

}

const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,

                                          SCEV::NoWrapFlags Flags,
                                          unsigned Depth) {
  // Fast path: X - X --> 0.
  if (LHS == RHS)
    return getZero(LHS->getType());
   
  // If we subtract two pointers with different pointer bases, bail.
  // Eventually, we're going to add an assertion to getMulExpr that we
  // can't multiply by a pointer.
  if (RHS->getType()->isPointerTy()) {
    if (!LHS->getType()->isPointerTy() ||
        getPointerBase(LHS) != getPointerBase(RHS))
      return getCouldNotCompute();
    LHS = removePointerBase(LHS);
    RHS = removePointerBase(RHS);
  }
   
  // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
  // makes it so that we cannot make much use of NUW.
  auto AddFlags = SCEV::FlagAnyWrap;
  const bool RHSIsNotMinSigned =
      !getSignedRangeMin(RHS).isMinSignedValue();
  if (hasFlags(Flags, SCEV::FlagNSW)) {
    // Let M be the minimum representable signed value. Then (-1)*RHS
    // signed-wraps if and only if RHS is M. That can happen even for
    // a NSW subtraction because e.g. (-1)*M signed-wraps even though
    // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
    // (-1)*RHS, we need to prove that RHS != M.
    //
    // If LHS is non-negative and we know that LHS - RHS does not
    // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
    // either by proving that RHS > M or that LHS >= 0.
    if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
      AddFlags = SCEV::FlagNSW;
    }
  }
   
  // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
  // RHS is NSW and LHS >= 0.
  //
  // The difficulty here is that the NSW flag may have been proven
  // relative to a loop that is to be found in a recurrence in LHS and
  // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
  // larger scope than intended.
  auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   
  return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);

}

const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,

                                                     unsigned Depth) {
  Type *SrcTy = V->getType();
  assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot truncate or zero extend with non-integer arguments!");
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
    return V;  // No conversion
  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
    return getTruncateExpr(V, Ty, Depth);
  return getZeroExtendExpr(V, Ty, Depth);

}

const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,

                                                     unsigned Depth) {
  Type *SrcTy = V->getType();
  assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot truncate or zero extend with non-integer arguments!");
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
    return V;  // No conversion
  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
    return getTruncateExpr(V, Ty, Depth);
  return getSignExtendExpr(V, Ty, Depth);

}

const SCEV *
 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {

  Type *SrcTy = V->getType();
  assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot noop or zero extend with non-integer arguments!");
  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
         "getNoopOrZeroExtend cannot truncate!");
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
    return V;  // No conversion
  return getZeroExtendExpr(V, Ty);

}

const SCEV *
 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {

  Type *SrcTy = V->getType();
  assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot noop or sign extend with non-integer arguments!");
  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
         "getNoopOrSignExtend cannot truncate!");
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
    return V;  // No conversion
  return getSignExtendExpr(V, Ty);

}

const SCEV *
 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {

  Type *SrcTy = V->getType();
  assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot noop or any extend with non-integer arguments!");
  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
         "getNoopOrAnyExtend cannot truncate!");
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
    return V;  // No conversion
  return getAnyExtendExpr(V, Ty);

}

const SCEV *
 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {

  Type *SrcTy = V->getType();
  assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
         "Cannot truncate or noop with non-integer arguments!");
  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
         "getTruncateOrNoop cannot extend!");
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
    return V;  // No conversion
  return getTruncateExpr(V, Ty);

}

const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,

                                                        const SCEV *RHS) {
  const SCEV *PromotedLHS = LHS;
  const SCEV *PromotedRHS = RHS;
   
  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
  else
    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   
  return getUMaxExpr(PromotedLHS, PromotedRHS);

}

const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,

                                                        const SCEV *RHS,
                                                        bool Sequential) {
  SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
  return getUMinFromMismatchedTypes(Ops, Sequential);

}

const SCEV *
 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,

                                            bool Sequential) {
  assert(!Ops.empty() && "At least one operand must be!");
  // Trivial case.
  if (Ops.size() == 1)
    return Ops[0];
   
  // Find the max type first.
  Type *MaxType = nullptr;
  for (const auto *S : Ops)
    if (MaxType)
      MaxType = getWiderType(MaxType, S->getType());
    else
      MaxType = S->getType();
  assert(MaxType && "Failed to find maximum type!");
   
  // Extend all ops to max type.
  SmallVector<const SCEV *, 2> PromotedOps;
  for (const auto *S : Ops)
    PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
   
  // Generate umin.
  return getUMinExpr(PromotedOps, Sequential);

}

const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {

  // A pointer operand may evaluate to a nonpointer expression, such as null.
  if (!V->getType()->isPointerTy())
    return V;
   
  while (true) {
    if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
      V = AddRec->getStart();
    } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
      const SCEV *PtrOp = nullptr;
      for (const SCEV *AddOp : Add->operands()) {
        if (AddOp->getType()->isPointerTy()) {
          assert(!PtrOp && "Cannot have multiple pointer ops");
          PtrOp = AddOp;
        }
      }
      assert(PtrOp && "Must have pointer op");
      V = PtrOp;
    } else // Not something we can look further into.
      return V;
  }

}

/// Push users of the given Instruction onto the given Worklist.
 static void PushDefUseChildren(Instruction *I,

                               SmallVectorImpl<Instruction *> &Worklist,
                               SmallPtrSetImpl<Instruction *> &Visited) {
  // Push the def-use children onto the Worklist stack.
  for (User *U : I->users()) {
    auto *UserInsn = cast<Instruction>(U);
    if (Visited.insert(UserInsn).second)
      Worklist.push_back(UserInsn);
  }

}

namespace {

/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
 /// expression in case its Loop is L. If it is not L then
 /// if IgnoreOtherLoops is true then use AddRec itself
 /// otherwise rewrite cannot be done.
 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
public:

  static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool IgnoreOtherLoops = true) {
    SCEVInitRewriter Rewriter(L, SE);
    const SCEV *Result = Rewriter.visit(S);
    if (Rewriter.hasSeenLoopVariantSCEVUnknown())
      return SE.getCouldNotCompute();
    return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
               ? SE.getCouldNotCompute()
               : Result;
  }
   
  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    if (!SE.isLoopInvariant(Expr, L))
      SeenLoopVariantSCEVUnknown = true;
    return Expr;
  }
   
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    // Only re-write AddRecExprs for this loop.
    if (Expr->getLoop() == L)
      return Expr->getStart();
    SeenOtherLoops = true;
    return Expr;
  }
   
  bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
   
  bool hasSeenOtherLoops() { return SeenOtherLoops; }
   

private:

  explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
      : SCEVRewriteVisitor(SE), L(L) {}
   
  const Loop *L;
  bool SeenLoopVariantSCEVUnknown = false;
  bool SeenOtherLoops = false;

};

/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
 /// increment expression in case its Loop is L. If it is not L then
 /// use AddRec itself.
 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
public:

  static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
    SCEVPostIncRewriter Rewriter(L, SE);
    const SCEV *Result = Rewriter.visit(S);
    return Rewriter.hasSeenLoopVariantSCEVUnknown()
        ? SE.getCouldNotCompute()
        : Result;
  }
   
  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    if (!SE.isLoopInvariant(Expr, L))
      SeenLoopVariantSCEVUnknown = true;
    return Expr;
  }
   
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    // Only re-write AddRecExprs for this loop.
    if (Expr->getLoop() == L)
      return Expr->getPostIncExpr(SE);
    SeenOtherLoops = true;
    return Expr;
  }
   
  bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
   
  bool hasSeenOtherLoops() { return SeenOtherLoops; }
   

private:

  explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
      : SCEVRewriteVisitor(SE), L(L) {}
   
  const Loop *L;
  bool SeenLoopVariantSCEVUnknown = false;
  bool SeenOtherLoops = false;

};

/// This class evaluates the compare condition by matching it against the
 /// condition of loop latch. If there is a match we assume a true value
 /// for the condition while building SCEV nodes.
 class SCEVBackedgeConditionFolder

  : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {

public:

  static const SCEV *rewrite(const SCEV *S, const Loop *L,
                             ScalarEvolution &SE) {
    bool IsPosBECond = false;
    Value *BECond = nullptr;
    if (BasicBlock *Latch = L->getLoopLatch()) {
      BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
      if (BI && BI->isConditional()) {
        assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
               "Both outgoing branches should not target same header!");
        BECond = BI->getCondition();
        IsPosBECond = BI->getSuccessor(0) == L->getHeader();
      } else {
        return S;
      }
    }
    SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
    return Rewriter.visit(S);
  }
   
  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    const SCEV *Result = Expr;
    bool InvariantF = SE.isLoopInvariant(Expr, L);
   
    if (!InvariantF) {
      Instruction *I = cast<Instruction>(Expr->getValue());
      switch (I->getOpcode()) {
      case Instruction::Select: {
        SelectInst *SI = cast<SelectInst>(I);
        std::optional<const SCEV *> Res =
            compareWithBackedgeCondition(SI->getCondition());
        if (Res) {
          bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
          Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
        }
        break;
      }
      default: {
        std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
        if (Res)
          Result = *Res;
        break;
      }
      }
    }
    return Result;
  }
   

private:

  explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
                                       bool IsPosBECond, ScalarEvolution &SE)
      : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
        IsPositiveBECond(IsPosBECond) {}
   
  std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
   
  const Loop *L;
  /// Loop back condition.
  Value *BackedgeCond = nullptr;
  /// Set to true if loop back is on positive branch condition.
  bool IsPositiveBECond;

};

std::optional<const SCEV *>
 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {

  // If value matches the backedge condition for loop latch,
  // then return a constant evolution node based on loopback
  // branch taken.
  if (BackedgeCond == IC)
    return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
                            : SE.getZero(Type::getInt1Ty(SE.getContext()));
  return std::nullopt;

}

class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
public:

  static const SCEV *rewrite(const SCEV *S, const Loop *L,
                             ScalarEvolution &SE) {
    SCEVShiftRewriter Rewriter(L, SE);
    const SCEV *Result = Rewriter.visit(S);
    return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
  }
   
  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    // Only allow AddRecExprs for this loop.
    if (!SE.isLoopInvariant(Expr, L))
      Valid = false;
    return Expr;
  }
   
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    if (Expr->getLoop() == L && Expr->isAffine())
      return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
    Valid = false;
    return Expr;
  }
   
  bool isValid() { return Valid; }
   

private:

  explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
      : SCEVRewriteVisitor(SE), L(L) {}
   
  const Loop *L;
  bool Valid = true;

};

} // end anonymous namespace

SCEV::NoWrapFlags
 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {

  if (!AR->isAffine())
    return SCEV::FlagAnyWrap;
   
  using OBO = OverflowingBinaryOperator;
   
  SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
   
  if (!AR->hasNoSignedWrap()) {
    ConstantRange AddRecRange = getSignedRange(AR);
    ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
   
    auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
        Instruction::Add, IncRange, OBO::NoSignedWrap);
    if (NSWRegion.contains(AddRecRange))
      Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
  }
   
  if (!AR->hasNoUnsignedWrap()) {
    ConstantRange AddRecRange = getUnsignedRange(AR);
    ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
   
    auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
        Instruction::Add, IncRange, OBO::NoUnsignedWrap);
    if (NUWRegion.contains(AddRecRange))
      Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
  }
   
  return Result;

}

SCEV::NoWrapFlags
 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {

  SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
   
  if (AR->hasNoSignedWrap())
    return Result;
   
  if (!AR->isAffine())
    return Result;
   
  // This function can be expensive, only try to prove NSW once per AddRec.
  if (!SignedWrapViaInductionTried.insert(AR).second)
    return Result;
   
  const SCEV *Step = AR->getStepRecurrence(*this);
  const Loop *L = AR->getLoop();
   
  // Check whether the backedge-taken count is SCEVCouldNotCompute.
  // Note that this serves two purposes: It filters out loops that are
  // simply not analyzable, and it covers the case where this code is
  // being called from within backedge-taken count analysis, such that
  // attempting to ask for the backedge-taken count would likely result
  // in infinite recursion. In the later case, the analysis code will
  // cope with a conservative value, and it will take care to purge
  // that value once it has finished.
  const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
   
  // Normally, in the cases we can prove no-overflow via a
  // backedge guarding condition, we can also compute a backedge
  // taken count for the loop.  The exceptions are assumptions and
  // guards present in the loop -- SCEV is not great at exploiting
  // these to compute max backedge taken counts, but can still use
  // these to prove lack of overflow.  Use this fact to avoid
  // doing extra work that may not pay off.
   
  if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
      AC.assumptions().empty())
    return Result;
   
  // If the backedge is guarded by a comparison with the pre-inc  value the
  // addrec is safe. Also, if the entry is guarded by a comparison with the
  // start value and the backedge is guarded by a comparison with the post-inc
  // value, the addrec is safe.
  ICmpInst::Predicate Pred;
  const SCEV *OverflowLimit =
    getSignedOverflowLimitForStep(Step, &Pred, this);
  if (OverflowLimit &&
      (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
       isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
    Result = setFlags(Result, SCEV::FlagNSW);
  }
  return Result;

}
SCEV::NoWrapFlags
 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {

  SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
   
  if (AR->hasNoUnsignedWrap())
    return Result;
   
  if (!AR->isAffine())
    return Result;
   
  // This function can be expensive, only try to prove NUW once per AddRec.
  if (!UnsignedWrapViaInductionTried.insert(AR).second)
    return Result;
   
  const SCEV *Step = AR->getStepRecurrence(*this);
  unsigned BitWidth = getTypeSizeInBits(AR->getType());
  const Loop *L = AR->getLoop();
   
  // Check whether the backedge-taken count is SCEVCouldNotCompute.
  // Note that this serves two purposes: It filters out loops that are
  // simply not analyzable, and it covers the case where this code is
  // being called from within backedge-taken count analysis, such that
  // attempting to ask for the backedge-taken count would likely result
  // in infinite recursion. In the later case, the analysis code will
  // cope with a conservative value, and it will take care to purge
  // that value once it has finished.
  const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
   
  // Normally, in the cases we can prove no-overflow via a
  // backedge guarding condition, we can also compute a backedge
  // taken count for the loop.  The exceptions are assumptions and
  // guards present in the loop -- SCEV is not great at exploiting
  // these to compute max backedge taken counts, but can still use
  // these to prove lack of overflow.  Use this fact to avoid
  // doing extra work that may not pay off.
   
  if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
      AC.assumptions().empty())
    return Result;
   
  // If the backedge is guarded by a comparison with the pre-inc  value the
  // addrec is safe. Also, if the entry is guarded by a comparison with the
  // start value and the backedge is guarded by a comparison with the post-inc
  // value, the addrec is safe.
  if (isKnownPositive(Step)) {
    const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
                                getUnsignedRangeMax(Step));
    if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
        isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
      Result = setFlags(Result, SCEV::FlagNUW);
    }
  }
   
  return Result;

}

namespace {

/// Represents an abstract binary operation.  This may exist as a
 /// normal instruction or constant expression, or may have been
 /// derived from an expression tree.
 struct BinaryOp {

  unsigned Opcode;
  Value *LHS;
  Value *RHS;
  bool IsNSW = false;
  bool IsNUW = false;
   
  /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
  /// constant expression.
  Operator *Op = nullptr;
   
  explicit BinaryOp(Operator *Op)
      : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
        Op(Op) {
    if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
      IsNSW = OBO->hasNoSignedWrap();
      IsNUW = OBO->hasNoUnsignedWrap();
    }
  }
   
  explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
                    bool IsNUW = false)
      : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}

};

} // end anonymous namespace

/// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,

                                             AssumptionCache &AC,
                                             const DominatorTree &DT,
                                             const Instruction *CxtI) {
  auto *Op = dyn_cast<Operator>(V);
  if (!Op)
    return std::nullopt;
   
  // Implementation detail: all the cleverness here should happen without
  // creating new SCEV expressions -- our caller knowns tricks to avoid creating
  // SCEV expressions when possible, and we should not break that.
   
  switch (Op->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::URem:
  case Instruction::And:
  case Instruction::AShr:
  case Instruction::Shl:
    return BinaryOp(Op);
   
  case Instruction::Or: {
    // LLVM loves to convert `add` of operands with no common bits
    // into an `or`. But SCEV really doesn't deal with `or` that well,
    // so try extra hard to recognize this `or` as an `add`.
    if (haveNoCommonBitsSet(Op->getOperand(0), Op->getOperand(1), DL, &AC, CxtI,
                            &DT, /*UseInstrInfo=*/true))
      return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
                      /*IsNSW=*/true, /*IsNUW=*/true);
    return BinaryOp(Op);
  }
   
  case Instruction::Xor:
    if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
      // If the RHS of the xor is a signmask, then this is just an add.
      // Instcombine turns add of signmask into xor as a strength reduction step.
      if (RHSC->getValue().isSignMask())
        return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
    // Binary `xor` is a bit-wise `add`.
    if (V->getType()->isIntegerTy(1))
      return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
    return BinaryOp(Op);
   
  case Instruction::LShr:
    // Turn logical shift right of a constant into a unsigned divide.
    if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
      uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
   
      // If the shift count is not less than the bitwidth, the result of
      // the shift is undefined. Don't try to analyze it, because the
      // resolution chosen here may differ from the resolution chosen in
      // other parts of the compiler.
      if (SA->getValue().ult(BitWidth)) {
        Constant *X =
            ConstantInt::get(SA->getContext(),
                             APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
        return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
      }
    }
    return BinaryOp(Op);
   
  case Instruction::ExtractValue: {
    auto *EVI = cast<ExtractValueInst>(Op);
    if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
      break;
   
    auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
    if (!WO)
      break;
   
    Instruction::BinaryOps BinOp = WO->getBinaryOp();
    bool Signed = WO->isSigned();
    // TODO: Should add nuw/nsw flags for mul as well.
    if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
      return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
   
    // Now that we know that all uses of the arithmetic-result component of
    // CI are guarded by the overflow check, we can go ahead and pretend
    // that the arithmetic is non-overflowing.
    return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
                    /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
  }
   
  default:
    break;
  }
   
  // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
  // semantics as a Sub, return a binary sub expression.
  if (auto *II = dyn_cast<IntrinsicInst>(V))
    if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
      return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
   
  return std::nullopt;

}

/// Helper function to createAddRecFromPHIWithCasts. We have a phi
 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
 /// follows one of the following patterns:
 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
 /// If the SCEV expression of \p Op conforms with one of the expected patterns
 /// we return the type of the truncation operation, and indicate whether the
 /// truncated type should be treated as signed/unsigned by setting
 /// \p Signed to true/false, respectively.
 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,

                               bool &Signed, ScalarEvolution &SE) {
  // The case where Op == SymbolicPHI (that is, with no type conversions on
  // the way) is handled by the regular add recurrence creating logic and
  // would have already been triggered in createAddRecForPHI. Reaching it here
  // means that createAddRecFromPHI had failed for this PHI before (e.g.,
  // because one of the other operands of the SCEVAddExpr updating this PHI is
  // not invariant).
  //
  // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
  // this case predicates that allow us to prove that Op == SymbolicPHI will
  // be added.
  if (Op == SymbolicPHI)
    return nullptr;
   
  unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
  unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
  if (SourceBits != NewBits)
    return nullptr;
   
  const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
  const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
  if (!SExt && !ZExt)
    return nullptr;
  const SCEVTruncateExpr *Trunc =
      SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
           : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
  if (!Trunc)
    return nullptr;
  const SCEV *X = Trunc->getOperand();
  if (X != SymbolicPHI)
    return nullptr;
  Signed = SExt != nullptr;
  return Trunc->getType();

}

static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {

  if (!PN->getType()->isIntegerTy())
    return nullptr;
  const Loop *L = LI.getLoopFor(PN->getParent());
  if (!L || L->getHeader() != PN->getParent())
    return nullptr;
  return L;

}

// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
 // computation that updates the phi follows the following pattern:
 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
 // If so, try to see if it can be rewritten as an AddRecExpr under some
 // Predicates. If successful, return them as a pair. Also cache the results
 // of the analysis.
 //
 // Example usage scenario:
 //    Say the Rewriter is called for the following SCEV:
 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
 //    where:
 //         %X = phi i64 (%Start, %BEValue)
 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
 //    and call this function with %SymbolicPHI = %X.
 //
 //    The analysis will find that the value coming around the backedge has
 //    the following SCEV:
 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
 //    Upon concluding that this matches the desired pattern, the function
 //    will return the pair {NewAddRec, SmallPredsVec} where:
 //         NewAddRec = {%Start,+,%Step}
 //         SmallPredsVec = P1 Multiple mails <https://reviews.llvm.org/P1> as follows:
 //           P1 <https://reviews.llvm.org/P1>(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
 //           P2 <https://reviews.llvm.org/P2>(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
 //           P3 <https://reviews.llvm.org/P3>(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
 //    under the predicates P1 Multiple mails <https://reviews.llvm.org/P1>.
 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, P1 Multiple mails <https://reviews.llvm.org/P1>
 //
 // TODO's:
 //
 // 1) Extend the Induction descriptor to also support inductions that involve
 //    casts: When needed (namely, when we are called in the context of the
 //    vectorizer induction analysis), a Set of cast instructions will be
 //    populated by this method, and provided back to isInductionPHI. This is
 //    needed to allow the vectorizer to properly record them to be ignored by
 //    the cost model and to avoid vectorizing them (otherwise these casts,
 //    which are redundant under the runtime overflow checks, will be
 //    vectorized, which can be costly).
 //
 // 2) Support additional induction/PHISCEV patterns: We also want to support
 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
 //    after the induction update operation (the induction increment):
 //
 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
 //
 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
 //
 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {

  SmallVector<const SCEVPredicate *, 3> Predicates;
   
  // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
  // return an AddRec expression under some predicate.
   
  auto *PN = cast<PHINode>(SymbolicPHI->getValue());
  const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
  assert(L && "Expecting an integer loop header phi");
   
  // The loop may have multiple entrances or multiple exits; we can analyze
  // this phi as an addrec if it has a unique entry value and a unique
  // backedge value.
  Value *BEValueV = nullptr, *StartValueV = nullptr;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *V = PN->getIncomingValue(i);
    if (L->contains(PN->getIncomingBlock(i))) {
      if (!BEValueV) {
        BEValueV = V;
      } else if (BEValueV != V) {
        BEValueV = nullptr;
        break;
      }
    } else if (!StartValueV) {
      StartValueV = V;
    } else if (StartValueV != V) {
      StartValueV = nullptr;
      break;
    }
  }
  if (!BEValueV || !StartValueV)
    return std::nullopt;
   
  const SCEV *BEValue = getSCEV(BEValueV);
   
  // If the value coming around the backedge is an add with the symbolic
  // value we just inserted, possibly with casts that we can ignore under
  // an appropriate runtime guard, then we found a simple induction variable!
  const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
  if (!Add)
    return std::nullopt;
   
  // If there is a single occurrence of the symbolic value, possibly
  // casted, replace it with a recurrence.
  unsigned FoundIndex = Add->getNumOperands();
  Type *TruncTy = nullptr;
  bool Signed;
  for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
    if ((TruncTy =
             isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
      if (FoundIndex == e) {
        FoundIndex = i;
        break;
      }
   
  if (FoundIndex == Add->getNumOperands())
    return std::nullopt;
   
  // Create an add with everything but the specified operand.
  SmallVector<const SCEV *, 8> Ops;
  for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
    if (i != FoundIndex)
      Ops.push_back(Add->getOperand(i));
  const SCEV *Accum = getAddExpr(Ops);
   
  // The runtime checks will not be valid if the step amount is
  // varying inside the loop.
  if (!isLoopInvariant(Accum, L))
    return std::nullopt;
   
  // *** Part2: Create the predicates
   
  // Analysis was successful: we have a phi-with-cast pattern for which we
  // can return an AddRec expression under the following predicates:
  //
  // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
  //     fits within the truncated type (does not overflow) for i = 0 to n-1.
  // P2: An Equal predicate that guarantees that
  //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
  // P3: An Equal predicate that guarantees that
  //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
  //
  // As we next prove, the above predicates guarantee that:
  //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
  //
  //
  // More formally, we want to prove that:
  //     Expr(i+1) = Start + (i+1) * Accum
  //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
  //
  // Given that:
  // 1) Expr(0) = Start
  // 2) Expr(1) = Start + Accum
  //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
  // 3) Induction hypothesis (step i):
  //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
  //
  // Proof:
  //  Expr(i+1) =
  //   = Start + (i+1)*Accum
  //   = (Start + i*Accum) + Accum
  //   = Expr(i) + Accum
  //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
  //                                                             :: from step i
  //
  //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
  //
  //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
  //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
  //     + Accum                                                     :: from P3
  //
  //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
  //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
  //
  //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
  //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
  //
  // By induction, the same applies to all iterations 1<=i<n:
  //
   
  // Create a truncated addrec for which we will add a no overflow check (P1).
  const SCEV *StartVal = getSCEV(StartValueV);
  const SCEV *PHISCEV =
      getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
                    getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
   
  // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
  // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
  // will be constant.
  //
  //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
  // add P1.
  if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
    SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
        Signed ? SCEVWrapPredicate::IncrementNSSW
               : SCEVWrapPredicate::IncrementNUSW;
    const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
    Predicates.push_back(AddRecPred);
  }
   
  // Create the Equal Predicates P2,P3:
   
  // It is possible that the predicates P2 and/or P3 are computable at
  // compile time due to StartVal and/or Accum being constants.
  // If either one is, then we can check that now and escape if either P2
  // or P3 is false.
   
  // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
  // for each of StartVal and Accum
  auto getExtendedExpr = [&](const SCEV *Expr,
                             bool CreateSignExtend) -> const SCEV * {
    assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
    const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
    const SCEV *ExtendedExpr =
        CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
                         : getZeroExtendExpr(TruncatedExpr, Expr->getType());
    return ExtendedExpr;
  };
   
  // Given:
  //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
  //               = getExtendedExpr(Expr)
  // Determine whether the predicate P: Expr == ExtendedExpr
  // is known to be false at compile time
  auto PredIsKnownFalse = [&](const SCEV *Expr,
                              const SCEV *ExtendedExpr) -> bool {
    return Expr != ExtendedExpr &&
           isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
  };
   
  const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
  if (PredIsKnownFalse(StartVal, StartExtended)) {
    LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
    return std::nullopt;
  }
   
  // The Step is always Signed (because the overflow checks are either
  // NSSW or NUSW)
  const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
  if (PredIsKnownFalse(Accum, AccumExtended)) {
    LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
    return std::nullopt;
  }
   
  auto AppendPredicate = [&](const SCEV *Expr,
                             const SCEV *ExtendedExpr) -> void {
    if (Expr != ExtendedExpr &&
        !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
      const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
      LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
      Predicates.push_back(Pred);
    }
  };
   
  AppendPredicate(StartVal, StartExtended);
  AppendPredicate(Accum, AccumExtended);
   
  // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
  // which the casts had been folded away. The caller can rewrite SymbolicPHI
  // into NewAR if it will also add the runtime overflow checks specified in
  // Predicates.
  auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
   
  std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
      std::make_pair(NewAR, Predicates);
  // Remember the result of the analysis for this SCEV at this locayyytion.
  PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
  return PredRewrite;

}

std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {

  auto *PN = cast<PHINode>(SymbolicPHI->getValue());
  const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
  if (!L)
    return std::nullopt;
   
  // Check to see if we already analyzed this PHI.
  auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
  if (I != PredicatedSCEVRewrites.end()) {
    std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
        I->second;
    // Analysis was done before and failed to create an AddRec:
    if (Rewrite.first == SymbolicPHI)
      return std::nullopt;
    // Analysis was done before and succeeded to create an AddRec under
    // a predicate:
    assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
    assert(!(Rewrite.second).empty() && "Expected to find Predicates");
    return Rewrite;
  }
   
  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
    Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
   
  // Record in the cache that the analysis failed
  if (!Rewrite) {
    SmallVector<const SCEVPredicate *, 3> Predicates;
    PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
    return std::nullopt;
  }
   
  return Rewrite;

}

// FIXME: This utility is currently required because the Rewriter currently
 // does not rewrite this expression:
 // {0, +, (sext ix (trunc iy to ix) to iy)}
 // into {0, +, %step},
 // even when the following Equal predicate exists:
 // "%step == (sext ix (trunc iy to ix) to iy)".
 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(

    const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
  if (AR1 == AR2)
    return true;
   
  auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
    if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
        !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
      return false;
    return true;
  };
   
  if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
      !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
    return false;
  return true;

}

/// A helper function for createAddRecFromPHI to handle simple cases.
 ///
 /// This function tries to find an AddRec expression for the simplest (yet most
 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
 /// If it fails, createAddRecFromPHI will use a more general, but slow,
 /// technique for finding the AddRec expression.
 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,

                                                      Value *BEValueV,
                                                      Value *StartValueV) {
  const Loop *L = LI.getLoopFor(PN->getParent());
  assert(L && L->getHeader() == PN->getParent());
  assert(BEValueV && StartValueV);
   
  auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
  if (!BO)
    return nullptr;
   
  if (BO->Opcode != Instruction::Add)
    return nullptr;
   
  const SCEV *Accum = nullptr;
  if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
    Accum = getSCEV(BO->RHS);
  else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
    Accum = getSCEV(BO->LHS);
   
  if (!Accum)
    return nullptr;
   
  SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
  if (BO->IsNUW)
    Flags = setFlags(Flags, SCEV::FlagNUW);
  if (BO->IsNSW)
    Flags = setFlags(Flags, SCEV::FlagNSW);
   
  const SCEV *StartVal = getSCEV(StartValueV);
  const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
  insertValueToMap(PN, PHISCEV);
   
  // We can add Flags to the post-inc expression only if we
  // know that it is *undefined behavior* for BEValueV to
  // overflow.
  if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
    assert(isLoopInvariant(Accum, L) &&
           "Accum is defined outside L, but is not invariant?");
    if (isAddRecNeverPoison(BEInst, L))
      (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
  }
   
  return PHISCEV;

}

const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {

  const Loop *L = LI.getLoopFor(PN->getParent());
  if (!L || L->getHeader() != PN->getParent())
    return nullptr;
   
  // The loop may have multiple entrances or multiple exits; we can analyze
  // this phi as an addrec if it has a unique entry value and a unique
  // backedge value.
  Value *BEValueV = nullptr, *StartValueV = nullptr;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *V = PN->getIncomingValue(i);
    if (L->contains(PN->getIncomingBlock(i))) {
      if (!BEValueV) {
        BEValueV = V;
      } else if (BEValueV != V) {
        BEValueV = nullptr;
        break;
      }
    } else if (!StartValueV) {
      StartValueV = V;
    } else if (StartValueV != V) {
      StartValueV = nullptr;
      break;
    }
  }
  if (!BEValueV || !StartValueV)
    return nullptr;
   
  assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
         "PHI node already processed?");
   
  // First, try to find AddRec expression without creating a fictituos symbolic
  // value for PN.
  if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
    return S;
   
  // Handle PHI node value symbolically.
  const SCEV *SymbolicName = getUnknown(PN);
  insertValueToMap(PN, SymbolicName);
   
  // Using this symbolic name for the PHI, analyze the value coming around
  // the back-edge.
  const SCEV *BEValue = getSCEV(BEValueV);
   
  // NOTE: If BEValue is loop invariant, we know that the PHI node just
  // has a special value for the first iteration of the loop.
   
  // If the value coming around the backedge is an add with the symbolic
  // value we just inserted, then we found a simple induction variable!
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
    // If there is a single occurrence of the symbolic value, replace it
    // with a recurrence.
    unsigned FoundIndex = Add->getNumOperands();
    for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
      if (Add->getOperand(i) == SymbolicName)
        if (FoundIndex == e) {
          FoundIndex = i;
          break;
        }
   
    if (FoundIndex != Add->getNumOperands()) {
      // Create an add with everything but the specified operand.
      SmallVector<const SCEV *, 8> Ops;
      for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
        if (i != FoundIndex)
          Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
                                                             L, *this));
      const SCEV *Accum = getAddExpr(Ops);
   
      // This is not a valid addrec if the step amount is varying each
      // loop iteration, but is not itself an addrec in this loop.
      if (isLoopInvariant(Accum, L) ||
          (isa<SCEVAddRecExpr>(Accum) &&
           cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
        SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   
        if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
          if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
            if (BO->IsNUW)
              Flags = setFlags(Flags, SCEV::FlagNUW);
            if (BO->IsNSW)
              Flags = setFlags(Flags, SCEV::FlagNSW);
          }
        } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
          // If the increment is an inbounds GEP, then we know the address
          // space cannot be wrapped around. We cannot make any guarantee
          // about signed or unsigned overflow because pointers are
          // unsigned but we may have a negative index from the base
          // pointer. We can guarantee that no unsigned wrap occurs if the
          // indices form a positive value.
          if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
            Flags = setFlags(Flags, SCEV::FlagNW);
   
            const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
            if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
              Flags = setFlags(Flags, SCEV::FlagNUW);
          }
   
          // We cannot transfer nuw and nsw flags from subtraction
          // operations -- sub nuw X, Y is not the same as add nuw X, -Y
          // for instance.
        }
   
        const SCEV *StartVal = getSCEV(StartValueV);
        const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   
        // Okay, for the entire analysis of this edge we assumed the PHI
        // to be symbolic.  We now need to go back and purge all of the
        // entries for the scalars that use the symbolic expression.
        forgetMemoizedResults(SymbolicName);
        insertValueToMap(PN, PHISCEV);
   
        // We can add Flags to the post-inc expression only if we
        // know that it is *undefined behavior* for BEValueV to
        // overflow.
        if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
          if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
            (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
   
        return PHISCEV;
      }
    }
  } else {
    // Otherwise, this could be a loop like this:
    //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
    // In this case, j = {1,+,1}  and BEValue is j.
    // Because the other in-value of i (0) fits the evolution of BEValue
    // i really is an addrec evolution.
    //
    // We can generalize this saying that i is the shifted value of BEValue
    // by one iteration:
    //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
    const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
    const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
    if (Shifted != getCouldNotCompute() &&
        Start != getCouldNotCompute()) {
      const SCEV *StartVal = getSCEV(StartValueV);
      if (Start == StartVal) {
        // Okay, for the entire analysis of this edge we assumed the PHI
        // to be symbolic.  We now need to go back and purge all of the
        // entries for the scalars that use the symbolic expression.
        forgetMemoizedResults(SymbolicName);
        insertValueToMap(PN, Shifted);
        return Shifted;
      }
    }
  }
   
  // Remove the temporary PHI node SCEV that has been inserted while intending
  // to create an AddRecExpr for this PHI node. We can not keep this temporary
  // as it will prevent later (possibly simpler) SCEV expressions to be added
  // to the ValueExprMap.
  eraseValueFromMap(PN);
   
  return nullptr;

}

// Checks if the SCEV S is available at BB.  S is considered available at BB
 // if S can be materialized at BB without introducing a fault.
 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,

                               BasicBlock *BB) {
  struct CheckAvailable {
    bool TraversalDone = false;
    bool Available = true;
   
    const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
    BasicBlock *BB = nullptr;
    DominatorTree &DT;
   
    CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
      : L(L), BB(BB), DT(DT) {}
   
    bool setUnavailable() {
      TraversalDone = true;
      Available = false;
      return false;
    }
   
    bool follow(const SCEV *S) {
      switch (S->getSCEVType()) {
      case scConstant:
      case scPtrToInt:
      case scTruncate:
      case scZeroExtend:
      case scSignExtend:
      case scAddExpr:
      case scMulExpr:
      case scUMaxExpr:
      case scSMaxExpr:
      case scUMinExpr:
      case scSMinExpr:
      case scSequentialUMinExpr:
        // These expressions are available if their operand(s) is/are.
        return true;
   
      case scAddRecExpr: {
        // We allow add recurrences that are on the loop BB is in, or some
        // outer loop.  This guarantees availability because the value of the
        // add recurrence at BB is simply the "current" value of the induction
        // variable.  We can relax this in the future; for instance an add
        // recurrence on a sibling dominating loop is also available at BB.
        const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
        if (L && (ARLoop == L || ARLoop->contains(L)))
          return true;
   
        return setUnavailable();
      }
   
      case scUnknown: {
        // For SCEVUnknown, we check for simple dominance.
        const auto *SU = cast<SCEVUnknown>(S);
        Value *V = SU->getValue();
   
        if (isa<Argument>(V))
          return false;
   
        if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
          return false;
   
        return setUnavailable();
      }
   
      case scUDivExpr:
      case scCouldNotCompute:
        // We do not try to smart about these at all.
        return setUnavailable();
      }
      llvm_unreachable("Unknown SCEV kind!");
    }
   
    bool isDone() { return TraversalDone; }
  };
   
  CheckAvailable CA(L, BB, DT);
  SCEVTraversal<CheckAvailable> ST(CA);
   
  ST.visitAll(S);
  return CA.Available;

}

// Try to match a control flow sequence that branches out at BI and merges back
 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
 // match.
 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,

                          Value *&C, Value *&LHS, Value *&RHS) {
  C = BI->getCondition();
   
  BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
  BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
   
  if (!LeftEdge.isSingleEdge())
    return false;
   
  assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
   
  Use &LeftUse = Merge->getOperandUse(0);
  Use &RightUse = Merge->getOperandUse(1);
   
  if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
    LHS = LeftUse;
    RHS = RightUse;
    return true;
  }
   
  if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
    LHS = RightUse;
    RHS = LeftUse;
    return true;
  }
   
  return false;

}

const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {

  auto IsReachable =
      [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
  if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
    const Loop *L = LI.getLoopFor(PN->getParent());
   
    // We don't want to break LCSSA, even in a SCEV expression tree.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
        return nullptr;
   
    // Try to match
    //
    //  br %cond, label %left, label %right
    // left:
    //  br label %merge
    // right:
    //  br label %merge
    // merge:
    //  V = phi [ %x, %left ], [ %y, %right ]
    //
    // as "select %cond, %x, %y"
   
    BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
    assert(IDom && "At least the entry block should dominate PN");
   
    auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
    Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
   
    if (BI && BI->isConditional() &&
        BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
        IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
        IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
      return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
  }
   
  return nullptr;

}

const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {

  if (const SCEV *S = createAddRecFromPHI(PN))
    return S;
   
  if (const SCEV *S = createNodeFromSelectLikePHI(PN))
    return S;
   
  if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
    return getSCEV(V);
   
  // If it's not a loop phi, we can't handle it yet.
  return getUnknown(PN);

}

bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,

                            SCEVTypes RootKind) {
  struct FindClosure {
    const SCEV *OperandToFind;
    const SCEVTypes RootKind; // Must be a sequential min/max expression.
    const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
   
    bool Found = false;
   
    bool canRecurseInto(SCEVTypes Kind) const {
      // We can only recurse into the SCEV expression of the same effective type
      // as the type of our root SCEV expression, and into zero-extensions.
      return RootKind == Kind || NonSequentialRootKind == Kind ||
             scZeroExtend == Kind;
    };
   
    FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
        : OperandToFind(OperandToFind), RootKind(RootKind),
          NonSequentialRootKind(
              SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
                  RootKind)) {}
   
    bool follow(const SCEV *S) {
      Found = S == OperandToFind;
   
      return !isDone() && canRecurseInto(S->getSCEVType());
    }
   
    bool isDone() const { return Found; }
  };
   
  FindClosure FC(OperandToFind, RootKind);
  visitAll(Root, FC);
  return FC.Found;

}

const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(

    Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) {
  // Try to match some simple smax or umax patterns.
  auto *ICI = Cond;
   
  Value *LHS = ICI->getOperand(0);
  Value *RHS = ICI->getOperand(1);
   
  switch (ICI->getPredicate()) {
  case ICmpInst::ICMP_SLT:
  case ICmpInst::ICMP_SLE:
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_ULE:
    std::swap(LHS, RHS);
    [[fallthrough]];
  case ICmpInst::ICMP_SGT:
  case ICmpInst::ICMP_SGE:
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_UGE:
    // a > b ? a+x : b+x  ->  max(a, b)+x
    // a > b ? b+x : a+x  ->  min(a, b)+x
    if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
      bool Signed = ICI->isSigned();
      const SCEV *LA = getSCEV(TrueVal);
      const SCEV *RA = getSCEV(FalseVal);
      const SCEV *LS = getSCEV(LHS);
      const SCEV *RS = getSCEV(RHS);
      if (LA->getType()->isPointerTy()) {
        // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
        // Need to make sure we can't produce weird expressions involving
        // negated pointers.
        if (LA == LS && RA == RS)
          return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
        if (LA == RS && RA == LS)
          return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
      }
      auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
        if (Op->getType()->isPointerTy()) {
          Op = getLosslessPtrToIntExpr(Op);
          if (isa<SCEVCouldNotCompute>(Op))
            return Op;
        }
        if (Signed)
          Op = getNoopOrSignExtend(Op, I->getType());
        else
          Op = getNoopOrZeroExtend(Op, I->getType());
        return Op;
      };
      LS = CoerceOperand(LS);
      RS = CoerceOperand(RS);
      if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
        break;
      const SCEV *LDiff = getMinusSCEV(LA, LS);
      const SCEV *RDiff = getMinusSCEV(RA, RS);
      if (LDiff == RDiff)
        return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
                          LDiff);
      LDiff = getMinusSCEV(LA, RS);
      RDiff = getMinusSCEV(RA, LS);
      if (LDiff == RDiff)
        return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
                          LDiff);
    }
    break;
  case ICmpInst::ICMP_NE:
    // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
    std::swap(TrueVal, FalseVal);
    [[fallthrough]];
  case ICmpInst::ICMP_EQ:
    // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
    if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
        isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
      const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
      const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
      const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
      const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
      const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
      if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
        return getAddExpr(getUMaxExpr(X, C), Y);
    }
    // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
    // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
    // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
    //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
    if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
        isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
      const SCEV *X = getSCEV(LHS);
      while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
        X = ZExt->getOperand();
      if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) {
        const SCEV *FalseValExpr = getSCEV(FalseVal);
        if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
          return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr,
                             /*Sequential=*/true);
      }
    }
    break;
  default:
    break;
  }
   
  return getUnknown(I);

}

static std::optional<const SCEV *>
 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,

                              const SCEV *TrueExpr, const SCEV *FalseExpr) {
  assert(CondExpr->getType()->isIntegerTy(1) &&
         TrueExpr->getType() == FalseExpr->getType() &&
         TrueExpr->getType()->isIntegerTy(1) &&
         "Unexpected operands of a select.");
   
  // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
  //                        -->  C + (umin_seq  cond, x - C)
  //
  // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
  //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
  //                        -->  C + (umin_seq ~cond, x - C)
   
  // FIXME: while we can't legally model the case where both of the hands
  // are fully variable, we only require that the *difference* is constant.
  if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
    return std::nullopt;
   
  const SCEV *X, *C;
  if (isa<SCEVConstant>(TrueExpr)) {
    CondExpr = SE->getNotSCEV(CondExpr);
    X = FalseExpr;
    C = TrueExpr;
  } else {
    X = TrueExpr;
    C = FalseExpr;
  }
  return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
                                           /*Sequential=*/true));

}

static std::optional<const SCEV *>
 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,

                              Value *FalseVal) {
  if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
    return std::nullopt;
   
  const auto *SECond = SE->getSCEV(Cond);
  const auto *SETrue = SE->getSCEV(TrueVal);
  const auto *SEFalse = SE->getSCEV(FalseVal);
  return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);

}

const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(

    Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
  assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
  assert(TrueVal->getType() == FalseVal->getType() &&
         V->getType() == TrueVal->getType() &&
         "Types of select hands and of the result must match.");
   
  // For now, only deal with i1-typed `select`s.
  if (!V->getType()->isIntegerTy(1))
    return getUnknown(V);
   
  if (std::optional<const SCEV *> S =
          createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
    return *S;
   
  return getUnknown(V);

}

const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,

                                                      Value *TrueVal,
                                                      Value *FalseVal) {
  // Handle "constant" branch or select. This can occur for instance when a
  // loop pass transforms an inner loop and moves on to process the outer loop.
  if (auto *CI = dyn_cast<ConstantInt>(Cond))
    return getSCEV(CI->isOne() ? TrueVal : FalseVal);
   
  if (auto *I = dyn_cast<Instruction>(V)) {
    if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
      const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond(
          I, ICI, TrueVal, FalseVal);
      if (!isa<SCEVUnknown>(S))
        return S;
    }
  }
   
  return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);

}

/// Expand GEP instructions into add and multiply operations. This allows them
 /// to be analyzed by regular SCEV code.
 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {

  assert(GEP->getSourceElementType()->isSized() &&
         "GEP source element type must be sized");
   
  SmallVector<const SCEV *, 4> IndexExprs;
  for (Value *Index : GEP->indices())
    IndexExprs.push_back(getSCEV(Index));
  return getGEPExpr(GEP, IndexExprs);

}

uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {

  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
    return C->getAPInt().countTrailingZeros();
   
  if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
    return GetMinTrailingZeros(I->getOperand());
   
  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
    return std::min(GetMinTrailingZeros(T->getOperand()),
                    (uint32_t)getTypeSizeInBits(T->getType()));
   
  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
    return OpRes == getTypeSizeInBits(E->getOperand()->getType())
               ? getTypeSizeInBits(E->getType())
               : OpRes;
  }
   
  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
    return OpRes == getTypeSizeInBits(E->getOperand()->getType())
               ? getTypeSizeInBits(E->getType())
               : OpRes;
  }
   
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
    // The result is the min of all operands results.
    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
    return MinOpRes;
  }
   
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    // The result is the sum of all operands results.
    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
    uint32_t BitWidth = getTypeSizeInBits(M->getType());
    for (unsigned i = 1, e = M->getNumOperands();
         SumOpRes != BitWidth && i != e; ++i)
      SumOpRes =
          std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
    return SumOpRes;
  }
   
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    // The result is the min of all operands results.
    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
    return MinOpRes;
  }
   
  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
    // The result is the min of all operands results.
    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
    return MinOpRes;
  }
   
  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
    // The result is the min of all operands results.
    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
    return MinOpRes;
  }
   
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    // For a SCEVUnknown, ask ValueTracking.
    KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
    return Known.countMinTrailingZeros();
  }
   
  // SCEVUDivExpr
  return 0;

}

uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {

  auto I = MinTrailingZerosCache.find(S);
  if (I != MinTrailingZerosCache.end())
    return I->second;
   
  uint32_t Result = GetMinTrailingZerosImpl(S);
  auto InsertPair = MinTrailingZerosCache.insert({S, Result});
  assert(InsertPair.second && "Should insert a new key");
  return InsertPair.first->second;

}

/// Helper method to assign a range to V from metadata present in the IR.
 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {

  if (Instruction *I = dyn_cast<Instruction>(V))
    if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
      return getConstantRangeFromMetadata(*MD);
   
  return std::nullopt;

}

void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,

                                     SCEV::NoWrapFlags Flags) {
  if (AddRec->getNoWrapFlags(Flags) != Flags) {
    AddRec->setNoWrapFlags(Flags);
    UnsignedRanges.erase(AddRec);
    SignedRanges.erase(AddRec);
  }

}

ConstantRange ScalarEvolution::
 getRangeForUnknownRecurrence(const SCEVUnknown *U) {

  const DataLayout &DL = getDataLayout();
   
  unsigned BitWidth = getTypeSizeInBits(U->getType());
  const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
   
  // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
  // use information about the trip count to improve our available range.  Note
  // that the trip count independent cases are already handled by known bits.
  // WARNING: The definition of recurrence used here is subtly different than
  // the one used by AddRec (and thus most of this file).  Step is allowed to
  // be arbitrarily loop varying here, where AddRec allows only loop invariant
  // and other addrecs in the same loop (for non-affine addrecs).  The code
  // below intentionally handles the case where step is not loop invariant.
  auto *P = dyn_cast<PHINode>(U->getValue());
  if (!P)
    return FullSet;
   
  // Make sure that no Phi input comes from an unreachable block. Otherwise,
  // even the values that are not available in these blocks may come from them,
  // and this leads to false-positive recurrence test.
  for (auto *Pred : predecessors(P->getParent()))
    if (!DT.isReachableFromEntry(Pred))
      return FullSet;
   
  BinaryOperator *BO;
  Value *Start, *Step;
  if (!matchSimpleRecurrence(P, BO, Start, Step))
    return FullSet;
   
  // If we found a recurrence in reachable code, we must be in a loop. Note
  // that BO might be in some subloop of L, and that's completely okay.
  auto *L = LI.getLoopFor(P->getParent());
  assert(L && L->getHeader() == P->getParent());
  if (!L->contains(BO->getParent()))
    // NOTE: This bailout should be an assert instead.  However, asserting
    // the condition here exposes a case where LoopFusion is querying SCEV
    // with malformed loop information during the midst of the transform.
    // There doesn't appear to be an obvious fix, so for the moment bailout
    // until the caller issue can be fixed.  PR49566 tracks the bug.
    return FullSet;
   
  // TODO: Extend to other opcodes such as mul, and div
  switch (BO->getOpcode()) {
  default:
    return FullSet;
  case Instruction::AShr:
  case Instruction::LShr:
  case Instruction::Shl:
    break;
  };
   
  if (BO->getOperand(0) != P)
    // TODO: Handle the power function forms some day.
    return FullSet;
   
  unsigned TC = getSmallConstantMaxTripCount(L);
  if (!TC || TC >= BitWidth)
    return FullSet;
   
  auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
  auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
  assert(KnownStart.getBitWidth() == BitWidth &&
         KnownStep.getBitWidth() == BitWidth);
   
  // Compute total shift amount, being careful of overflow and bitwidths.
  auto MaxShiftAmt = KnownStep.getMaxValue();
  APInt TCAP(BitWidth, TC-1);
  bool Overflow = false;
  auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
  if (Overflow)
    return FullSet;
   
  switch (BO->getOpcode()) {
  default:
    llvm_unreachable("filtered out above");
  case Instruction::AShr: {
    // For each ashr, three cases:
    //   shift = 0 => unchanged value
    //   saturation => 0 or -1
    //   other => a value closer to zero (of the same sign)
    // Thus, the end value is closer to zero than the start.
    auto KnownEnd = KnownBits::ashr(KnownStart,
                                    KnownBits::makeConstant(TotalShift));
    if (KnownStart.isNonNegative())
      // Analogous to lshr (simply not yet canonicalized)
      return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
                                        KnownStart.getMaxValue() + 1);
    if (KnownStart.isNegative())
      // End >=u Start && End <=s Start
      return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
                                        KnownEnd.getMaxValue() + 1);
    break;
  }
  case Instruction::LShr: {
    // For each lshr, three cases:
    //   shift = 0 => unchanged value
    //   saturation => 0
    //   other => a smaller positive number
    // Thus, the low end of the unsigned range is the last value produced.
    auto KnownEnd = KnownBits::lshr(KnownStart,
                                    KnownBits::makeConstant(TotalShift));
    return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
                                      KnownStart.getMaxValue() + 1);
  }
  case Instruction::Shl: {
    // Iff no bits are shifted out, value increases on every shift.
    auto KnownEnd = KnownBits::shl(KnownStart,
                                   KnownBits::makeConstant(TotalShift));
    if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
      return ConstantRange(KnownStart.getMinValue(),
                           KnownEnd.getMaxValue() + 1);
    break;
  }
  };
  return FullSet;

}

const ConstantRange &
 ScalarEvolution::getRangeRefIter(const SCEV *S,

                                 ScalarEvolution::RangeSignHint SignHint) {
  DenseMap<const SCEV *, ConstantRange> &Cache =
      SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
                                                       : SignedRanges;
  SmallVector<const SCEV *> WorkList;
  SmallPtrSet<const SCEV *, 8> Seen;
   
  // Add Expr to the worklist, if Expr is either an N-ary expression or a
  // SCEVUnknown PHI node.
  auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
    if (!Seen.insert(Expr).second)
      return;
    if (Cache.find(Expr) != Cache.end())
      return;
    if (isa<SCEVNAryExpr>(Expr) || isa<SCEVUDivExpr>(Expr))
      WorkList.push_back(Expr);
    else if (auto *UnknownS = dyn_cast<SCEVUnknown>(Expr))
      if (isa<PHINode>(UnknownS->getValue()))
        WorkList.push_back(Expr);
  };
  AddToWorklist(S);
   
  // Build worklist by queuing operands of N-ary expressions and phi nodes.
  for (unsigned I = 0; I != WorkList.size(); ++I) {
    const SCEV *P = WorkList[I];
    if (auto *NaryS = dyn_cast<SCEVNAryExpr>(P)) {
      for (const SCEV *Op : NaryS->operands())
        AddToWorklist(Op);
    } else if (auto *UDiv = dyn_cast<SCEVUDivExpr>(P)) {
      AddToWorklist(UDiv->getLHS());
      AddToWorklist(UDiv->getRHS());
    } else {
      auto *UnknownS = cast<SCEVUnknown>(P);
      if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
        if (!PendingPhiRangesIter.insert(P).second)
          continue;
        for (auto &Op : reverse(P->operands()))
          AddToWorklist(getSCEV(Op));
      }
    }
  }
   
  if (!WorkList.empty()) {
    // Use getRangeRef to compute ranges for items in the worklist in reverse
    // order. This will force ranges for earlier operands to be computed before
    // their users in most cases.
    for (const SCEV *P :
         reverse(make_range(WorkList.begin() + 1, WorkList.end()))) {
      getRangeRef(P, SignHint);
   
      if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
        if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
          PendingPhiRangesIter.erase(P);
    }
  }
   
  return getRangeRef(S, SignHint, 0);

}

/// Determine the range for a particular SCEV.  If SignHint is
 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
 /// with a "cleaner" unsigned (resp. signed) representation.
 const ConstantRange &ScalarEvolution::getRangeRef(

    const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
  DenseMap<const SCEV *, ConstantRange> &Cache =
      SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
                                                       : SignedRanges;
  ConstantRange::PreferredRangeType RangeType =
      SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
                                                       : ConstantRange::Signed;
   
  // See if we've computed this range already.
  DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
  if (I != Cache.end())
    return I->second;
   
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
    return setRange(C, SignHint, ConstantRange(C->getAPInt()));
   
  // Switch to iteratively computing the range for S, if it is part of a deeply
  // nested expression.
  if (Depth > RangeIterThreshold)
    return getRangeRefIter(S, SignHint);
   
  unsigned BitWidth = getTypeSizeInBits(S->getType());
  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
  using OBO = OverflowingBinaryOperator;
   
  // If the value has known zeros, the maximum value will have those known zeros
  // as well.
  uint32_t TZ = GetMinTrailingZeros(S);
  if (TZ != 0) {
    if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
      ConservativeResult =
          ConstantRange(APInt::getMinValue(BitWidth),
                        APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
    else
      ConservativeResult = ConstantRange(
          APInt::getSignedMinValue(BitWidth),
          APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
  }
   
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
    unsigned WrapType = OBO::AnyWrap;
    if (Add->hasNoSignedWrap())
      WrapType |= OBO::NoSignedWrap;
    if (Add->hasNoUnsignedWrap())
      WrapType |= OBO::NoUnsignedWrap;
    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
      X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
                          WrapType, RangeType);
    return setRange(Add, SignHint,
                    ConservativeResult.intersectWith(X, RangeType));
  }
   
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
      X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
    return setRange(Mul, SignHint,
                    ConservativeResult.intersectWith(X, RangeType));
  }
   
  if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) {
    Intrinsic::ID ID;
    switch (S->getSCEVType()) {
    case scUMaxExpr:
      ID = Intrinsic::umax;
      break;
    case scSMaxExpr:
      ID = Intrinsic::smax;
      break;
    case scUMinExpr:
    case scSequentialUMinExpr:
      ID = Intrinsic::umin;
      break;
    case scSMinExpr:
      ID = Intrinsic::smin;
      break;
    default:
      llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
    }
   
    const auto *NAry = cast<SCEVNAryExpr>(S);
    ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
    for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
      X = X.intrinsic(
          ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
    return setRange(S, SignHint,
                    ConservativeResult.intersectWith(X, RangeType));
  }
   
  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
    ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
    ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
    return setRange(UDiv, SignHint,
                    ConservativeResult.intersectWith(X.udiv(Y), RangeType));
  }
   
  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
    ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
    return setRange(ZExt, SignHint,
                    ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
                                                     RangeType));
  }
   
  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
    ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
    return setRange(SExt, SignHint,
                    ConservativeResult.intersectWith(X.signExtend(BitWidth),
                                                     RangeType));
  }
   
  if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
    ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
    return setRange(PtrToInt, SignHint, X);
  }
   
  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
    ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
    return setRange(Trunc, SignHint,
                    ConservativeResult.intersectWith(X.truncate(BitWidth),
                                                     RangeType));
  }
   
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
    // If there's no unsigned wrap, the value will never be less than its
    // initial value.
    if (AddRec->hasNoUnsignedWrap()) {
      APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
      if (!UnsignedMinValue.isZero())
        ConservativeResult = ConservativeResult.intersectWith(
            ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
    }
   
    // If there's no signed wrap, and all the operands except initial value have
    // the same sign or zero, the value won't ever be:
    // 1: smaller than initial value if operands are non negative,
    // 2: bigger than initial value if operands are non positive.
    // For both cases, value can not cross signed min/max boundary.
    if (AddRec->hasNoSignedWrap()) {
      bool AllNonNeg = true;
      bool AllNonPos = true;
      for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
        if (!isKnownNonNegative(AddRec->getOperand(i)))
          AllNonNeg = false;
        if (!isKnownNonPositive(AddRec->getOperand(i)))
          AllNonPos = false;
      }
      if (AllNonNeg)
        ConservativeResult = ConservativeResult.intersectWith(
            ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
                                       APInt::getSignedMinValue(BitWidth)),
            RangeType);
      else if (AllNonPos)
        ConservativeResult = ConservativeResult.intersectWith(
            ConstantRange::getNonEmpty(
                APInt::getSignedMinValue(BitWidth),
                getSignedRangeMax(AddRec->getStart()) + 1),
            RangeType);
    }
   
    // TODO: non-affine addrec
    if (AddRec->isAffine()) {
      const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
        auto RangeFromAffine = getRangeForAffineAR(
            AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
            BitWidth);
        ConservativeResult =
            ConservativeResult.intersectWith(RangeFromAffine, RangeType);
   
        auto RangeFromFactoring = getRangeViaFactoring(
            AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
            BitWidth);
        ConservativeResult =
            ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
      }
   
      // Now try symbolic BE count and more powerful methods.
      if (UseExpensiveRangeSharpening) {
        const SCEV *SymbolicMaxBECount =
            getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
        if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
            getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
            AddRec->hasNoSelfWrap()) {
          auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
              AddRec, SymbolicMaxBECount, BitWidth, SignHint);
          ConservativeResult =
              ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
        }
      }
    }
   
    return setRange(AddRec, SignHint, std::move(ConservativeResult));
  }
   
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   
    // Check if the IR explicitly contains !range metadata.
    std::optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
    if (MDRange)
      ConservativeResult =
          ConservativeResult.intersectWith(*MDRange, RangeType);
   
    // Use facts about recurrences in the underlying IR.  Note that add
    // recurrences are AddRecExprs and thus don't hit this path.  This
    // primarily handles shift recurrences.
    auto CR = getRangeForUnknownRecurrence(U);
    ConservativeResult = ConservativeResult.intersectWith(CR);
   
    // See if ValueTracking can give us a useful range.
    const DataLayout &DL = getDataLayout();
    KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
    if (Known.getBitWidth() != BitWidth)
      Known = Known.zextOrTrunc(BitWidth);
   
    // ValueTracking may be able to compute a tighter result for the number of
    // sign bits than for the value of those sign bits.
    unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
    if (U->getType()->isPointerTy()) {
      // If the pointer size is larger than the index size type, this can cause
      // NS to be larger than BitWidth. So compensate for this.
      unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
      int ptrIdxDiff = ptrSize - BitWidth;
      if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
        NS -= ptrIdxDiff;
    }
   
    if (NS > 1) {
      // If we know any of the sign bits, we know all of the sign bits.
      if (!Known.Zero.getHiBits(NS).isZero())
        Known.Zero.setHighBits(NS);
      if (!Known.One.getHiBits(NS).isZero())
        Known.One.setHighBits(NS);
    }
   
    if (Known.getMinValue() != Known.getMaxValue() + 1)
      ConservativeResult = ConservativeResult.intersectWith(
          ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
          RangeType);
    if (NS > 1)
      ConservativeResult = ConservativeResult.intersectWith(
          ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
                        APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
          RangeType);
   
    // A range of Phi is a subset of union of all ranges of its input.
    if (PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
      // Make sure that we do not run over cycled Phis.
      if (PendingPhiRanges.insert(Phi).second) {
        ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
   
        for (const auto &Op : Phi->operands()) {
          auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
          RangeFromOps = RangeFromOps.unionWith(OpRange);
          // No point to continue if we already have a full set.
          if (RangeFromOps.isFullSet())
            break;
        }
        ConservativeResult =
            ConservativeResult.intersectWith(RangeFromOps, RangeType);
        bool Erased = PendingPhiRanges.erase(Phi);
        assert(Erased && "Failed to erase Phi properly?");
        (void) Erased;
      }
    }
   
    // vscale can't be equal to zero
    if (const auto *II = dyn_cast<IntrinsicInst>(U->getValue()))
      if (II->getIntrinsicID() == Intrinsic::vscale) {
        ConstantRange Disallowed = APInt::getZero(BitWidth);
        ConservativeResult = ConservativeResult.difference(Disallowed);
      }
   
    return setRange(U, SignHint, std::move(ConservativeResult));
  }
   
  return setRange(S, SignHint, std::move(ConservativeResult));

}

// Given a StartRange, Step and MaxBECount for an expression compute a range of
 // values that the expression can take. Initially, the expression has a value
 // from StartRange and then is changed by Step up to MaxBECount times. Signed
 // argument defines if we treat Step as signed or unsigned.
 static ConstantRange getRangeForAffineARHelper(APInt Step,

                                               const ConstantRange &StartRange,
                                               const APInt &MaxBECount,
                                               unsigned BitWidth, bool Signed) {
  // If either Step or MaxBECount is 0, then the expression won't change, and we
  // just need to return the initial range.
  if (Step == 0 || MaxBECount == 0)
    return StartRange;
   
  // If we don't know anything about the initial value (i.e. StartRange is
  // FullRange), then we don't know anything about the final range either.
  // Return FullRange.
  if (StartRange.isFullSet())
    return ConstantRange::getFull(BitWidth);
   
  // If Step is signed and negative, then we use its absolute value, but we also
  // note that we're moving in the opposite direction.
  bool Descending = Signed && Step.isNegative();
   
  if (Signed)
    // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
    // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
    // This equations hold true due to the well-defined wrap-around behavior of
    // APInt.
    Step = Step.abs();
   
  // Check if Offset is more than full span of BitWidth. If it is, the
  // expression is guaranteed to overflow.
  if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
    return ConstantRange::getFull(BitWidth);
   
  // Offset is by how much the expression can change. Checks above guarantee no
  // overflow here.
  APInt Offset = Step * MaxBECount;
   
  // Minimum value of the final range will match the minimal value of StartRange
  // if the expression is increasing and will be decreased by Offset otherwise.
  // Maximum value of the final range will match the maximal value of StartRange
  // if the expression is decreasing and will be increased by Offset otherwise.
  APInt StartLower = StartRange.getLower();
  APInt StartUpper = StartRange.getUpper() - 1;
  APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
                                   : (StartUpper + std::move(Offset));
   
  // It's possible that the new minimum/maximum value will fall into the initial
  // range (due to wrap around). This means that the expression can take any
  // value in this bitwidth, and we have to return full range.
  if (StartRange.contains(MovedBoundary))
    return ConstantRange::getFull(BitWidth);
   
  APInt NewLower =
      Descending ? std::move(MovedBoundary) : std::move(StartLower);
  APInt NewUpper =
      Descending ? std::move(StartUpper) : std::move(MovedBoundary);
  NewUpper += 1;
   
  // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
  return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));

}

ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,

                                                   const SCEV *Step,
                                                   const SCEV *MaxBECount,
                                                   unsigned BitWidth) {
  assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
         getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
         "Precondition!");
   
  MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
  APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
   
  // First, consider step signed.
  ConstantRange StartSRange = getSignedRange(Start);
  ConstantRange StepSRange = getSignedRange(Step);
   
  // If Step can be both positive and negative, we need to find ranges for the
  // maximum absolute step values in both directions and union them.
  ConstantRange SR =
      getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
                                MaxBECountValue, BitWidth, /* Signed = */ true);
  SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
                                              StartSRange, MaxBECountValue,
                                              BitWidth, /* Signed = */ true));
   
  // Next, consider step unsigned.
  ConstantRange UR = getRangeForAffineARHelper(
      getUnsignedRangeMax(Step), getUnsignedRange(Start),
      MaxBECountValue, BitWidth, /* Signed = */ false);
   
  // Finally, intersect signed and unsigned ranges.
  return SR.intersectWith(UR, ConstantRange::Smallest);

}

ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(

    const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
    ScalarEvolution::RangeSignHint SignHint) {
  assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
  assert(AddRec->hasNoSelfWrap() &&
         "This only works for non-self-wrapping AddRecs!");
  const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
  const SCEV *Step = AddRec->getStepRecurrence(*this);
  // Only deal with constant step to save compile time.
  if (!isa<SCEVConstant>(Step))
    return ConstantRange::getFull(BitWidth);
  // Let's make sure that we can prove that we do not self-wrap during
  // MaxBECount iterations. We need this because MaxBECount is a maximum
  // iteration count estimate, and we might infer nw from some exit for which we
  // do not know max exit count (or any other side reasoning).
  // TODO: Turn into assert at some point.
  if (getTypeSizeInBits(MaxBECount->getType()) >
      getTypeSizeInBits(AddRec->getType()))
    return ConstantRange::getFull(BitWidth);
  MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
  const SCEV *RangeWidth = getMinusOne(AddRec->getType());
  const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
  const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
  if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
                                         MaxItersWithoutWrap))
    return ConstantRange::getFull(BitWidth);
   
  ICmpInst::Predicate LEPred =
      IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
  ICmpInst::Predicate GEPred =
      IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
  const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
   
  // We know that there is no self-wrap. Let's take Start and End values and
  // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
  // the iteration. They either lie inside the range [Min(Start, End),
  // Max(Start, End)] or outside it:
  //
  // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
  // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
  //
  // No self wrap flag guarantees that the intermediate values cannot be BOTH
  // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
  // knowledge, let's try to prove that we are dealing with Case 1. It is so if
  // Start <= End and step is positive, or Start >= End and step is negative.
  const SCEV *Start = AddRec->getStart();
  ConstantRange StartRange = getRangeRef(Start, SignHint);
  ConstantRange EndRange = getRangeRef(End, SignHint);
  ConstantRange RangeBetween = StartRange.unionWith(EndRange);
  // If they already cover full iteration space, we will know nothing useful
  // even if we prove what we want to prove.
  if (RangeBetween.isFullSet())
    return RangeBetween;
  // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
  bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
                               : RangeBetween.isWrappedSet();
  if (IsWrappedSet)
    return ConstantRange::getFull(BitWidth);
   
  if (isKnownPositive(Step) &&
      isKnownPredicateViaConstantRanges(LEPred, Start, End))
    return RangeBetween;
  else if (isKnownNegative(Step) &&
           isKnownPredicateViaConstantRanges(GEPred, Start, End))
    return RangeBetween;
  return ConstantRange::getFull(BitWidth);

}

ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,

                                                    const SCEV *Step,
                                                    const SCEV *MaxBECount,
                                                    unsigned BitWidth) {
  //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
  // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
   
  struct SelectPattern {
    Value *Condition = nullptr;
    APInt TrueValue;
    APInt FalseValue;
   
    explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
                           const SCEV *S) {
      std::optional<unsigned> CastOp;
      APInt Offset(BitWidth, 0);
   
      assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
             "Should be!");
   
      // Peel off a constant offset:
      if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
        // In the future we could consider being smarter here and handle
        // {Start+Step,+,Step} too.
        if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
          return;
   
        Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
        S = SA->getOperand(1);
      }
   
      // Peel off a cast operation
      if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
        CastOp = SCast->getSCEVType();
        S = SCast->getOperand();
      }
   
      using namespace llvm::PatternMatch;
   
      auto *SU = dyn_cast<SCEVUnknown>(S);
      const APInt *TrueVal, *FalseVal;
      if (!SU ||
          !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
                                          m_APInt(FalseVal)))) {
        Condition = nullptr;
        return;
      }
   
      TrueValue = *TrueVal;
      FalseValue = *FalseVal;
   
      // Re-apply the cast we peeled off earlier
      if (CastOp)
        switch (*CastOp) {
        default:
          llvm_unreachable("Unknown SCEV cast type!");
   
        case scTruncate:
          TrueValue = TrueValue.trunc(BitWidth);
          FalseValue = FalseValue.trunc(BitWidth);
          break;
        case scZeroExtend:
          TrueValue = TrueValue.zext(BitWidth);
          FalseValue = FalseValue.zext(BitWidth);
          break;
        case scSignExtend:
          TrueValue = TrueValue.sext(BitWidth);
          FalseValue = FalseValue.sext(BitWidth);
          break;
        }
   
      // Re-apply the constant offset we peeled off earlier
      TrueValue += Offset;
      FalseValue += Offset;
    }
   
    bool isRecognized() { return Condition != nullptr; }
  };
   
  SelectPattern StartPattern(*this, BitWidth, Start);
  if (!StartPattern.isRecognized())
    return ConstantRange::getFull(BitWidth);
   
  SelectPattern StepPattern(*this, BitWidth, Step);
  if (!StepPattern.isRecognized())
    return ConstantRange::getFull(BitWidth);
   
  if (StartPattern.Condition != StepPattern.Condition) {
    // We don't handle this case today; but we could, by considering four
    // possibilities below instead of two. I'm not sure if there are cases where
    // that will help over what getRange already does, though.
    return ConstantRange::getFull(BitWidth);
  }
   
  // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
  // construct arbitrary general SCEV expressions here.  This function is called
  // from deep in the call stack, and calling getSCEV (on a sext instruction,
  // say) can end up caching a suboptimal value.
   
  // FIXME: without the explicit `this` receiver below, MSVC errors out with
  // C2352 and C2512 (otherwise it isn't needed).
   
  const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
  const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
  const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
  const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
   
  ConstantRange TrueRange =
      this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
  ConstantRange FalseRange =
      this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
   
  return TrueRange.unionWith(FalseRange);

}

SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {

  if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
  const BinaryOperator *BinOp = cast<BinaryOperator>(V);
   
  // Return early if there are no flags to propagate to the SCEV.
  SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
  if (BinOp->hasNoUnsignedWrap())
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
  if (BinOp->hasNoSignedWrap())
    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
  if (Flags == SCEV::FlagAnyWrap)
    return SCEV::FlagAnyWrap;
   
  return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;

}

const Instruction *
 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {

  if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
    return &*AddRec->getLoop()->getHeader()->begin();
  if (auto *U = dyn_cast<SCEVUnknown>(S))
    if (auto *I = dyn_cast<Instruction>(U->getValue()))
      return I;
  return nullptr;

}

const Instruction *
 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,

                                       bool &Precise) {
  Precise = true;
  // Do a bounded search of the def relation of the requested SCEVs.
  SmallSet<const SCEV *, 16> Visited;
  SmallVector<const SCEV *> Worklist;
  auto pushOp = [&](const SCEV *S) {
    if (!Visited.insert(S).second)
      return;
    // Threshold of 30 here is arbitrary.
    if (Visited.size() > 30) {
      Precise = false;
      return;
    }
    Worklist.push_back(S);
  };
   
  for (const auto *S : Ops)
    pushOp(S);
   
  const Instruction *Bound = nullptr;
  while (!Worklist.empty()) {
    auto *S = Worklist.pop_back_val();
    if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
      if (!Bound || DT.dominates(Bound, DefI))
        Bound = DefI;
    } else {
      for (const auto *Op : S->operands())
        pushOp(Op);
    }
  }
  return Bound ? Bound : &*F.getEntryBlock().begin();

}

const Instruction *
 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {

  bool Discard;
  return getDefiningScopeBound(Ops, Discard);

}

bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,

                                                        const Instruction *B) {
  if (A->getParent() == B->getParent() &&
      isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
                                                 B->getIterator()))
    return true;
   
  auto *BLoop = LI.getLoopFor(B->getParent());
  if (BLoop && BLoop->getHeader() == B->getParent() &&
      BLoop->getLoopPreheader() == A->getParent() &&
      isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
                                                 A->getParent()->end()) &&
      isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
                                                 B->getIterator()))
    return true;
  return false;

}

bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {

  // Only proceed if we can prove that I does not yield poison.
  if (!programUndefinedIfPoison(I))
    return false;
   
  // At this point we know that if I is executed, then it does not wrap
  // according to at least one of NSW or NUW. If I is not executed, then we do
  // not know if the calculation that I represents would wrap. Multiple
  // instructions can map to the same SCEV. If we apply NSW or NUW from I to
  // the SCEV, we must guarantee no wrapping for that SCEV also when it is
  // derived from other instructions that map to the same SCEV. We cannot make
  // that guarantee for cases where I is not executed. So we need to find a
  // upper bound on the defining scope for the SCEV, and prove that I is
  // executed every time we enter that scope.  When the bounding scope is a
  // loop (the common case), this is equivalent to proving I executes on every
  // iteration of that loop.
  SmallVector<const SCEV *> SCEVOps;
  for (const Use &Op : I->operands()) {
    // I could be an extractvalue from a call to an overflow intrinsic.
    // TODO: We can do better here in some cases.
    if (isSCEVable(Op->getType()))
      SCEVOps.push_back(getSCEV(Op));
  }
  auto *DefI = getDefiningScopeBound(SCEVOps);
  return isGuaranteedToTransferExecutionTo(DefI, I);

}

bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {

  // If we know that \c I can never be poison period, then that's enough.
  if (isSCEVExprNeverPoison(I))
    return true;
   
  // For an add recurrence specifically, we assume that infinite loops without
  // side effects are undefined behavior, and then reason as follows:
  //
  // If the add recurrence is poison in any iteration, it is poison on all
  // future iterations (since incrementing poison yields poison). If the result
  // of the add recurrence is fed into the loop latch condition and the loop
  // does not contain any throws or exiting blocks other than the latch, we now
  // have the ability to "choose" whether the backedge is taken or not (by
  // choosing a sufficiently evil value for the poison feeding into the branch)
  // for every iteration including and after the one in which \p I first became
  // poison.  There are two possibilities (let's call the iteration in which \p
  // I first became poison as K):
  //
  //  1. In the set of iterations including and after K, the loop body executes
  //     no side effects.  In this case executing the backege an infinte number
  //     of times will yield undefined behavior.
  //
  //  2. In the set of iterations including and after K, the loop body executes
  //     at least one side effect.  In this case, that specific instance of side
  //     effect is control dependent on poison, which also yields undefined
  //     behavior.
   
  auto *ExitingBB = L->getExitingBlock();
  auto *LatchBB = L->getLoopLatch();
  if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
    return false;
   
  SmallPtrSet<const Instruction *, 16> Pushed;
  SmallVector<const Instruction *, 8> PoisonStack;
   
  // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
  // things that are known to be poison under that assumption go on the
  // PoisonStack.
  Pushed.insert(I);
  PoisonStack.push_back(I);
   
  bool LatchControlDependentOnPoison = false;
  while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
    const Instruction *Poison = PoisonStack.pop_back_val();
   
    for (const Use &U : Poison->uses()) {
      const User *PoisonUser = U.getUser();
      if (propagatesPoison(U)) {
        if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
          PoisonStack.push_back(cast<Instruction>(PoisonUser));
      } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
        assert(BI->isConditional() && "Only possibility!");
        if (BI->getParent() == LatchBB) {
          LatchControlDependentOnPoison = true;
          break;
        }
      }
    }
  }
   
  return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);

}

ScalarEvolution::LoopProperties
 ScalarEvolution::getLoopProperties(const Loop *L) {

  using LoopProperties = ScalarEvolution::LoopProperties;
   
  auto Itr = LoopPropertiesCache.find(L);
  if (Itr == LoopPropertiesCache.end()) {
    auto HasSideEffects = [](Instruction *I) {
      if (auto *SI = dyn_cast<StoreInst>(I))
        return !SI->isSimple();
   
      return I->mayThrow() || I->mayWriteToMemory();
    };
   
    LoopProperties LP = {/* HasNoAbnormalExits */ true,
                         /*HasNoSideEffects*/ true};
   
    for (auto *BB : L->getBlocks())
      for (auto &I : *BB) {
        if (!isGuaranteedToTransferExecutionToSuccessor(&I))
          LP.HasNoAbnormalExits = false;
        if (HasSideEffects(&I))
          LP.HasNoSideEffects = false;
        if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
          break; // We're already as pessimistic as we can get.
      }
   
    auto InsertPair = LoopPropertiesCache.insert({L, LP});
    assert(InsertPair.second && "We just checked!");
    Itr = InsertPair.first;
  }
   
  return Itr->second;

}

bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {

  // A mustprogress loop without side effects must be finite.
  // TODO: The check used here is very conservative.  It's only *specific*
  // side effects which are well defined in infinite loops.
  return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));

}

const SCEV *ScalarEvolution::createSCEVIter(Value *V) {

  // Worklist item with a Value and a bool indicating whether all operands have
  // been visited already.
  using PointerTy = PointerIntPair<Value *, 1, bool>;
  SmallVector<PointerTy> Stack;
   
  Stack.emplace_back(V, true);
  Stack.emplace_back(V, false);
  while (!Stack.empty()) {
    auto E = Stack.pop_back_val();
    Value *CurV = E.getPointer();
   
    if (getExistingSCEV(CurV))
      continue;
   
    SmallVector<Value *> Ops;
    const SCEV *CreatedSCEV = nullptr;
    // If all operands have been visited already, create the SCEV.
    if (E.getInt()) {
      CreatedSCEV = createSCEV(CurV);
    } else {
      // Otherwise get the operands we need to create SCEV's for before creating
      // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
      // just use it.
      CreatedSCEV = getOperandsToCreate(CurV, Ops);
    }
   
    if (CreatedSCEV) {
      insertValueToMap(CurV, CreatedSCEV);
    } else {
      // Queue CurV for SCEV creation, followed by its's operands which need to
      // be constructed first.
      Stack.emplace_back(CurV, true);
      for (Value *Op : Ops)
        Stack.emplace_back(Op, false);
    }
  }
   
  return getExistingSCEV(V);

}

const SCEV *
 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {

  if (!isSCEVable(V->getType()))
    return getUnknown(V);
   
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    // Don't attempt to analyze instructions in blocks that aren't
    // reachable. Such instructions don't matter, and they aren't required
    // to obey basic rules for definitions dominating uses which this
    // analysis depends on.
    if (!DT.isReachableFromEntry(I->getParent()))
      return getUnknown(PoisonValue::get(V->getType()));
  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    return getConstant(CI);
  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    if (!GA->isInterposable()) {
      Ops.push_back(GA->getAliasee());
      return nullptr;
    }
    return getUnknown(V);
  } else if (!isa<ConstantExpr>(V))
    return getUnknown(V);
   
  Operator *U = cast<Operator>(V);
  if (auto BO =
          MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
    bool IsConstArg = isa<ConstantInt>(BO->RHS);
    switch (BO->Opcode) {
    case Instruction::Add:
    case Instruction::Mul: {
      // For additions and multiplications, traverse add/mul chains for which we
      // can potentially create a single SCEV, to reduce the number of
      // get{Add,Mul}Expr calls.
      do {
        if (BO->Op) {
          if (BO->Op != V && getExistingSCEV(BO->Op)) {
            Ops.push_back(BO->Op);
            break;
          }
        }
        Ops.push_back(BO->RHS);
        auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
                                   dyn_cast<Instruction>(V));
        if (!NewBO ||
            (U->getOpcode() == Instruction::Add &&
             (NewBO->Opcode != Instruction::Add &&
              NewBO->Opcode != Instruction::Sub)) ||
            (U->getOpcode() == Instruction::Mul &&
             NewBO->Opcode != Instruction::Mul)) {
          Ops.push_back(BO->LHS);
          break;
        }
        // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
        // requires a SCEV for the LHS.
        if (NewBO->Op && (NewBO->IsNSW || NewBO->IsNUW)) {
          auto *I = dyn_cast<Instruction>(NewBO->Op);
          if (I && programUndefinedIfPoison(I)) {
            Ops.push_back(BO->LHS);
            break;
          }
        }
        BO = NewBO;
      } while (true);
      return nullptr;
    }
    case Instruction::Sub:
    case Instruction::UDiv:
    case Instruction::URem:
      break;
    case Instruction::AShr:
    case Instruction::Shl:
    case Instruction::Xor:
      if (!IsConstArg)
        return nullptr;
      break;
    case Instruction::And:
    case Instruction::Or:
      if (!IsConstArg && BO->LHS->getType()->isIntegerTy(1))
        return nullptr;
      break;
    case Instruction::LShr:
      return getUnknown(V);
    default:
      llvm_unreachable("Unhandled binop");
      break;
    }
   
    Ops.push_back(BO->LHS);
    Ops.push_back(BO->RHS);
    return nullptr;
  }
   
  switch (U->getOpcode()) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::PtrToInt:
    Ops.push_back(U->getOperand(0));
    return nullptr;
   
  case Instruction::BitCast:
    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
      Ops.push_back(U->getOperand(0));
      return nullptr;
    }
    return getUnknown(V);
   
  case Instruction::SDiv:
  case Instruction::SRem:
    Ops.push_back(U->getOperand(0));
    Ops.push_back(U->getOperand(1));
    return nullptr;
   
  case Instruction::GetElementPtr:
    assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
           "GEP source element type must be sized");
    for (Value *Index : U->operands())
      Ops.push_back(Index);
    return nullptr;
   
  case Instruction::IntToPtr:
    return getUnknown(V);
   
  case Instruction::PHI:
    // Keep constructing SCEVs' for phis recursively for now.
    return nullptr;
   
  case Instruction::Select: {
    // Check if U is a select that can be simplified to a SCEVUnknown.
    auto CanSimplifyToUnknown = [this, U]() {
      if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
        return false;
   
      auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
      if (!ICI)
        return false;
      Value *LHS = ICI->getOperand(0);
      Value *RHS = ICI->getOperand(1);
      if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
          ICI->getPredicate() == CmpInst::ICMP_NE) {
        if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
          return true;
      } else if (getTypeSizeInBits(LHS->getType()) >
                 getTypeSizeInBits(U->getType()))
        return true;
      return false;
    };
    if (CanSimplifyToUnknown())
      return getUnknown(U);
   
    for (Value *Inc : U->operands())
      Ops.push_back(Inc);
    return nullptr;
    break;
  }
  case Instruction::Call:
  case Instruction::Invoke:
    if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
      Ops.push_back(RV);
      return nullptr;
    }
   
    if (auto *II = dyn_cast<IntrinsicInst>(U)) {
      switch (II->getIntrinsicID()) {
      case Intrinsic::abs:
        Ops.push_back(II->getArgOperand(0));
        return nullptr;
      case Intrinsic::umax:
      case Intrinsic::umin:
      case Intrinsic::smax:
      case Intrinsic::smin:
      case Intrinsic::usub_sat:
      case Intrinsic::uadd_sat:
        Ops.push_back(II->getArgOperand(0));
        Ops.push_back(II->getArgOperand(1));
        return nullptr;
      case Intrinsic::start_loop_iterations:
      case Intrinsic::annotation:
      case Intrinsic::ptr_annotation:
        Ops.push_back(II->getArgOperand(0));
        return nullptr;
      default:
        break;
      }
    }
    break;
  }
   
  return nullptr;

}

const SCEV *ScalarEvolution::createSCEV(Value *V) {

  if (!isSCEVable(V->getType()))
    return getUnknown(V);
   
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    // Don't attempt to analyze instructions in blocks that aren't
    // reachable. Such instructions don't matter, and they aren't required
    // to obey basic rules for definitions dominating uses which this
    // analysis depends on.
    if (!DT.isReachableFromEntry(I->getParent()))
      return getUnknown(PoisonValue::get(V->getType()));
  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    return getConstant(CI);
  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
  else if (!isa<ConstantExpr>(V))
    return getUnknown(V);
   
  const SCEV *LHS;
  const SCEV *RHS;
   
  Operator *U = cast<Operator>(V);
  if (auto BO =
          MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
    switch (BO->Opcode) {
    case Instruction::Add: {
      // The simple thing to do would be to just call getSCEV on both operands
      // and call getAddExpr with the result. However if we're looking at a
      // bunch of things all added together, this can be quite inefficient,
      // because it leads to N-1 getAddExpr calls for N ultimate operands.
      // Instead, gather up all the operands and make a single getAddExpr call.
      // LLVM IR canonical form means we need only traverse the left operands.
      SmallVector<const SCEV *, 4> AddOps;
      do {
        if (BO->Op) {
          if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
            AddOps.push_back(OpSCEV);
            break;
          }
   
          // If a NUW or NSW flag can be applied to the SCEV for this
          // addition, then compute the SCEV for this addition by itself
          // with a separate call to getAddExpr. We need to do that
          // instead of pushing the operands of the addition onto AddOps,
          // since the flags are only known to apply to this particular
          // addition - they may not apply to other additions that can be
          // formed with operands from AddOps.
          const SCEV *RHS = getSCEV(BO->RHS);
          SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
          if (Flags != SCEV::FlagAnyWrap) {
            const SCEV *LHS = getSCEV(BO->LHS);
            if (BO->Opcode == Instruction::Sub)
              AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
            else
              AddOps.push_back(getAddExpr(LHS, RHS, Flags));
            break;
          }
        }
   
        if (BO->Opcode == Instruction::Sub)
          AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
        else
          AddOps.push_back(getSCEV(BO->RHS));
   
        auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
                                   dyn_cast<Instruction>(V));
        if (!NewBO || (NewBO->Opcode != Instruction::Add &&
                       NewBO->Opcode != Instruction::Sub)) {
          AddOps.push_back(getSCEV(BO->LHS));
          break;
        }
        BO = NewBO;
      } while (true);
   
      return getAddExpr(AddOps);
    }
   
    case Instruction::Mul: {
      SmallVector<const SCEV *, 4> MulOps;
      do {
        if (BO->Op) {
          if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
            MulOps.push_back(OpSCEV);
            break;
          }
   
          SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
          if (Flags != SCEV::FlagAnyWrap) {
            LHS = getSCEV(BO->LHS);
            RHS = getSCEV(BO->RHS);
            MulOps.push_back(getMulExpr(LHS, RHS, Flags));
            break;
          }
        }
   
        MulOps.push_back(getSCEV(BO->RHS));
        auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
                                   dyn_cast<Instruction>(V));
        if (!NewBO || NewBO->Opcode != Instruction::Mul) {
          MulOps.push_back(getSCEV(BO->LHS));
          break;
        }
        BO = NewBO;
      } while (true);
   
      return getMulExpr(MulOps);
    }
    case Instruction::UDiv:
      LHS = getSCEV(BO->LHS);
      RHS = getSCEV(BO->RHS);
      return getUDivExpr(LHS, RHS);
    case Instruction::URem:
      LHS = getSCEV(BO->LHS);
      RHS = getSCEV(BO->RHS);
      return getURemExpr(LHS, RHS);
    case Instruction::Sub: {
      SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
      if (BO->Op)
        Flags = getNoWrapFlagsFromUB(BO->Op);
      LHS = getSCEV(BO->LHS);
      RHS = getSCEV(BO->RHS);
      return getMinusSCEV(LHS, RHS, Flags);
    }
    case Instruction::And:
      // For an expression like x&255 that merely masks off the high bits,
      // use zext(trunc(x)) as the SCEV expression.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
        if (CI->isZero())
          return getSCEV(BO->RHS);
        if (CI->isMinusOne())
          return getSCEV(BO->LHS);
        const APInt &A = CI->getValue();
   
        // Instcombine's ShrinkDemandedConstant may strip bits out of
        // constants, obscuring what would otherwise be a low-bits mask.
        // Use computeKnownBits to compute what ShrinkDemandedConstant
        // knew about to reconstruct a low-bits mask value.
        unsigned LZ = A.countLeadingZeros();
        unsigned TZ = A.countTrailingZeros();
        unsigned BitWidth = A.getBitWidth();
        KnownBits Known(BitWidth);
        computeKnownBits(BO->LHS, Known, getDataLayout(),
                         0, &AC, nullptr, &DT);
   
        APInt EffectiveMask =
            APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
        if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
          const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
          const SCEV *LHS = getSCEV(BO->LHS);
          const SCEV *ShiftedLHS = nullptr;
          if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
            if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
              // For an expression like (x * 8) & 8, simplify the multiply.
              unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
              unsigned GCD = std::min(MulZeros, TZ);
              APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
              SmallVector<const SCEV*, 4> MulOps;
              MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
              append_range(MulOps, LHSMul->operands().drop_front());
              auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
              ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
            }
          }
          if (!ShiftedLHS)
            ShiftedLHS = getUDivExpr(LHS, MulCount);
          return getMulExpr(
              getZeroExtendExpr(
                  getTruncateExpr(ShiftedLHS,
                      IntegerType::get(getContext(), BitWidth - LZ - TZ)),
                  BO->LHS->getType()),
              MulCount);
        }
      }
      // Binary `and` is a bit-wise `umin`.
      if (BO->LHS->getType()->isIntegerTy(1)) {
        LHS = getSCEV(BO->LHS);
        RHS = getSCEV(BO->RHS);
        return getUMinExpr(LHS, RHS);
      }
      break;
   
    case Instruction::Or:
      // Binary `or` is a bit-wise `umax`.
      if (BO->LHS->getType()->isIntegerTy(1)) {
        LHS = getSCEV(BO->LHS);
        RHS = getSCEV(BO->RHS);
        return getUMaxExpr(LHS, RHS);
      }
      break;
   
    case Instruction::Xor:
      if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
        // If the RHS of xor is -1, then this is a not operation.
        if (CI->isMinusOne())
          return getNotSCEV(getSCEV(BO->LHS));
   
        // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
        // This is a variant of the check for xor with -1, and it handles
        // the case where instcombine has trimmed non-demanded bits out
        // of an xor with -1.
        if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
          if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
            if (LBO->getOpcode() == Instruction::And &&
                LCI->getValue() == CI->getValue())
              if (const SCEVZeroExtendExpr *Z =
                      dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
                Type *UTy = BO->LHS->getType();
                const SCEV *Z0 = Z->getOperand();
                Type *Z0Ty = Z0->getType();
                unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   
                // If C is a low-bits mask, the zero extend is serving to
                // mask off the high bits. Complement the operand and
                // re-apply the zext.
                if (CI->getValue().isMask(Z0TySize))
                  return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   
                // If C is a single bit, it may be in the sign-bit position
                // before the zero-extend. In this case, represent the xor
                // using an add, which is equivalent, and re-apply the zext.
                APInt Trunc = CI->getValue().trunc(Z0TySize);
                if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
                    Trunc.isSignMask())
                  return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
                                           UTy);
              }
      }
      break;
   
    case Instruction::Shl:
      // Turn shift left of a constant amount into a multiply.
      if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
        uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
   
        // If the shift count is not less than the bitwidth, the result of
        // the shift is undefined. Don't try to analyze it, because the
        // resolution chosen here may differ from the resolution chosen in
        // other parts of the compiler.
        if (SA->getValue().uge(BitWidth))
          break;
   
        // We can safely preserve the nuw flag in all cases. It's also safe to
        // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
        // requires special handling. It can be preserved as long as we're not
        // left shifting by bitwidth - 1.
        auto Flags = SCEV::FlagAnyWrap;
        if (BO->Op) {
          auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
          if ((MulFlags & SCEV::FlagNSW) &&
              ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
            Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
          if (MulFlags & SCEV::FlagNUW)
            Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
        }
   
        ConstantInt *X = ConstantInt::get(
            getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
        return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
      }
      break;
   
    case Instruction::AShr: {
      // AShr X, C, where C is a constant.
      ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
      if (!CI)
        break;
   
      Type *OuterTy = BO->LHS->getType();
      uint64_t BitWidth = getTypeSizeInBits(OuterTy);
      // If the shift count is not less than the bitwidth, the result of
      // the shift is undefined. Don't try to analyze it, because the
      // resolution chosen here may differ from the resolution chosen in
      // other parts of the compiler.
      if (CI->getValue().uge(BitWidth))
        break;
   
      if (CI->isZero())
        return getSCEV(BO->LHS); // shift by zero --> noop
   
      uint64_t AShrAmt = CI->getZExtValue();
      Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
   
      Operator *L = dyn_cast<Operator>(BO->LHS);
      if (L && L->getOpcode() == Instruction::Shl) {
        // X = Shl A, n
        // Y = AShr X, m
        // Both n and m are constant.
   
        const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
        if (L->getOperand(1) == BO->RHS)
          // For a two-shift sext-inreg, i.e. n = m,
          // use sext(trunc(x)) as the SCEV expression.
          return getSignExtendExpr(
              getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
   
        ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
        if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
          uint64_t ShlAmt = ShlAmtCI->getZExtValue();
          if (ShlAmt > AShrAmt) {
            // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
            // expression. We already checked that ShlAmt < BitWidth, so
            // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
            // ShlAmt - AShrAmt < Amt.
            APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
                                            ShlAmt - AShrAmt);
            return getSignExtendExpr(
                getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
                getConstant(Mul)), OuterTy);
          }
        }
      }
      break;
    }
    }
  }
   
  switch (U->getOpcode()) {
  case Instruction::Trunc:
    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   
  case Instruction::ZExt:
    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   
  case Instruction::SExt:
    if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
                                dyn_cast<Instruction>(V))) {
      // The NSW flag of a subtract does not always survive the conversion to
      // A + (-1)*B.  By pushing sign extension onto its operands we are much
      // more likely to preserve NSW and allow later AddRec optimisations.
      //
      // NOTE: This is effectively duplicating this logic from getSignExtend:
      //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
      // but by that point the NSW information has potentially been lost.
      if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
        Type *Ty = U->getType();
        auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
        auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
        return getMinusSCEV(V1, V2, SCEV::FlagNSW);
      }
    }
    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   
  case Instruction::BitCast:
    // BitCasts are no-op casts so we just eliminate the cast.
    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
      return getSCEV(U->getOperand(0));
    break;
   
  case Instruction::PtrToInt: {
    // Pointer to integer cast is straight-forward, so do model it.
    const SCEV *Op = getSCEV(U->getOperand(0));
    Type *DstIntTy = U->getType();
    // But only if effective SCEV (integer) type is wide enough to represent
    // all possible pointer values.
    const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
    if (isa<SCEVCouldNotCompute>(IntOp))
      return getUnknown(V);
    return IntOp;
  }
  case Instruction::IntToPtr:
    // Just don't deal with inttoptr casts.
    return getUnknown(V);
   
  case Instruction::SDiv:
    // If both operands are non-negative, this is just an udiv.
    if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
        isKnownNonNegative(getSCEV(U->getOperand(1))))
      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
    break;
   
  case Instruction::SRem:
    // If both operands are non-negative, this is just an urem.
    if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
        isKnownNonNegative(getSCEV(U->getOperand(1))))
      return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
    break;
   
  case Instruction::GetElementPtr:
    return createNodeForGEP(cast<GEPOperator>(U));
   
  case Instruction::PHI:
    return createNodeForPHI(cast<PHINode>(U));
   
  case Instruction::Select:
    return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
                                    U->getOperand(2));
   
  case Instruction::Call:
  case Instruction::Invoke:
    if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
      return getSCEV(RV);
   
    if (auto *II = dyn_cast<IntrinsicInst>(U)) {
      switch (II->getIntrinsicID()) {
      case Intrinsic::abs:
        return getAbsExpr(
            getSCEV(II->getArgOperand(0)),
            /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
      case Intrinsic::umax:
        LHS = getSCEV(II->getArgOperand(0));
        RHS = getSCEV(II->getArgOperand(1));
        return getUMaxExpr(LHS, RHS);
      case Intrinsic::umin:
        LHS = getSCEV(II->getArgOperand(0));
        RHS = getSCEV(II->getArgOperand(1));
        return getUMinExpr(LHS, RHS);
      case Intrinsic::smax:
        LHS = getSCEV(II->getArgOperand(0));
        RHS = getSCEV(II->getArgOperand(1));
        return getSMaxExpr(LHS, RHS);
      case Intrinsic::smin:
        LHS = getSCEV(II->getArgOperand(0));
        RHS = getSCEV(II->getArgOperand(1));
        return getSMinExpr(LHS, RHS);
      case Intrinsic::usub_sat: {
        const SCEV *X = getSCEV(II->getArgOperand(0));
        const SCEV *Y = getSCEV(II->getArgOperand(1));
        const SCEV *ClampedY = getUMinExpr(X, Y);
        return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
      }
      case Intrinsic::uadd_sat: {
        const SCEV *X = getSCEV(II->getArgOperand(0));
        const SCEV *Y = getSCEV(II->getArgOperand(1));
        const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
        return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
      }
      case Intrinsic::start_loop_iterations:
      case Intrinsic::annotation:
      case Intrinsic::ptr_annotation:
        // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
        // just eqivalent to the first operand for SCEV purposes.
        return getSCEV(II->getArgOperand(0));
      default:
        break;
      }
    }
    break;
  }
   
  return getUnknown(V);

}

//===----------------------------------------------------------------------===//
 //                   Iteration Count Computation Code
 //

const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,

                                                       bool Extend) {
  if (isa<SCEVCouldNotCompute>(ExitCount))
    return getCouldNotCompute();
   
  auto *ExitCountType = ExitCount->getType();
  assert(ExitCountType->isIntegerTy());
   
  if (!Extend)
    return getAddExpr(ExitCount, getOne(ExitCountType));
   
  auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
                                    1 + ExitCountType->getScalarSizeInBits());
  return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
                    getOne(WiderType));

}

static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {

  if (!ExitCount)
    return 0;
   
  ConstantInt *ExitConst = ExitCount->getValue();
   
  // Guard against huge trip counts.
  if (ExitConst->getValue().getActiveBits() > 32)
    return 0;
   
  // In case of integer overflow, this returns 0, which is correct.
  return ((unsigned)ExitConst->getZExtValue()) + 1;

}

unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {

  auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
  return getConstantTripCount(ExitCount);

}

unsigned
 ScalarEvolution::getSmallConstantTripCount(const Loop *L,

                                           const BasicBlock *ExitingBlock) {
  assert(ExitingBlock && "Must pass a non-null exiting block!");
  assert(L->isLoopExiting(ExitingBlock) &&
         "Exiting block must actually branch out of the loop!");
  const SCEVConstant *ExitCount =
      dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
  return getConstantTripCount(ExitCount);

}

unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {

  const auto *MaxExitCount =
      dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
  return getConstantTripCount(MaxExitCount);

}

const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {

  // We can't infer from Array in Irregular Loop.
  // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
  if (!L->isLoopSimplifyForm() || !L->isInnermost())
    return getCouldNotCompute();
   
  // FIXME: To make the scene more typical, we only analysis loops that have
  // one exiting block and that block must be the latch. To make it easier to
  // capture loops that have memory access and memory access will be executed
  // in each iteration.
  const BasicBlock *LoopLatch = L->getLoopLatch();
  assert(LoopLatch && "See defination of simplify form loop.");
  if (L->getExitingBlock() != LoopLatch)
    return getCouldNotCompute();
   
  const DataLayout &DL = getDataLayout();
  SmallVector<const SCEV *> InferCountColl;
  for (auto *BB : L->getBlocks()) {
    // Go here, we can know that Loop is a single exiting and simplified form
    // loop. Make sure that infer from Memory Operation in those BBs must be
    // executed in loop. First step, we can make sure that max execution time
    // of MemAccessBB in loop represents latch max excution time.
    // If MemAccessBB does not dom Latch, skip.
    //            Entry
    //              в”‚
    //        в”Њв”Ђв”Ђв”Ђв”Ђв”Ђв–јв”Ђв”Ђв”Ђв”Ђв”Ђв”ђ
    //        в”‚Loop Headerв—„в”Ђв”Ђв”Ђв”Ђв”Ђв”ђ
    //        └──┬──────┬─┘     │
    //           в”‚      в”‚       в”‚
    //  в”Њв”Ђв”Ђв”Ђв”Ђв”Ђв”Ђв”Ђв”Ђв–јв”Ђв”Ђв”ђ в”Њв”Ђв–јв”Ђв”Ђв”Ђв”Ђв”Ђв”ђ в”‚
    //  в”‚MemAccessBBв”‚ в”‚OtherBBв”‚ в”‚
    //  └────────┬──┘ └─┬─────┘ │
    //           в”‚      в”‚       в”‚
    //         в”Њв”Ђв–јв”Ђв”Ђв”Ђв”Ђв”Ђв”Ђв–јв”Ђв”ђ     в”‚
    //         │Loop Latch├─────┘
    //         └────┬─────┘
    //              в–ј
    //             Exit
    if (!DT.dominates(BB, LoopLatch))
      continue;
   
    for (Instruction &Inst : *BB) {
      // Find Memory Operation Instruction.
      auto *GEP = getLoadStorePointerOperand(&Inst);
      if (!GEP)
        continue;
   
      auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
      // Do not infer from scalar type, eg."ElemSize = sizeof()".
      if (!ElemSize)
        continue;
   
      // Use a existing polynomial recurrence on the trip count.
      auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
      if (!AddRec)
        continue;
      auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
      auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
      if (!ArrBase || !Step)
        continue;
      assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
   
      // Only handle { %array + step },
      // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
      if (AddRec->getStart() != ArrBase)
        continue;
   
      // Memory operation pattern which have gaps.
      // Or repeat memory opreation.
      // And index of GEP wraps arround.
      if (Step->getAPInt().getActiveBits() > 32 ||
          Step->getAPInt().getZExtValue() !=
              ElemSize->getAPInt().getZExtValue() ||
          Step->isZero() || Step->getAPInt().isNegative())
        continue;
   
      // Only infer from stack array which has certain size.
      // Make sure alloca instruction is not excuted in loop.
      AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
      if (!AllocateInst || L->contains(AllocateInst->getParent()))
        continue;
   
      // Make sure only handle normal array.
      auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
      auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
      if (!Ty || !ArrSize || !ArrSize->isOne())
        continue;
   
      // FIXME: Since gep indices are silently zext to the indexing type,
      // we will have a narrow gep index which wraps around rather than
      // increasing strictly, we shoule ensure that step is increasing
      // strictly by the loop iteration.
      // Now we can infer a max execution time by MemLength/StepLength.
      const SCEV *MemSize =
          getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
      auto *MaxExeCount =
          dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
      if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
        continue;
   
      // If the loop reaches the maximum number of executions, we can not
      // access bytes starting outside the statically allocated size without
      // being immediate UB. But it is allowed to enter loop header one more
      // time.
      auto *InferCount = dyn_cast<SCEVConstant>(
          getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
      // Discard the maximum number of execution times under 32bits.
      if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
        continue;
   
      InferCountColl.push_back(InferCount);
    }
  }
   
  if (InferCountColl.size() == 0)
    return getCouldNotCompute();
   
  return getUMinFromMismatchedTypes(InferCountColl);

}

unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {

  SmallVector<BasicBlock *, 8> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
   
  std::optional<unsigned> Res;
  for (auto *ExitingBB : ExitingBlocks) {
    unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
    if (!Res)
      Res = Multiple;
    Res = (unsigned)std::gcd(*Res, Multiple);
  }
  return Res.value_or(1);

}

unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,

                                                       const SCEV *ExitCount) {
  if (ExitCount == getCouldNotCompute())
    return 1;
   
  // Get the trip count
  const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
   
  const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
  if (!TC)
    // Attempt to factor more general cases. Returns the greatest power of
    // two divisor. If overflow happens, the trip count expression is still
    // divisible by the greatest power of 2 divisor returned.
    return 1U << std::min((uint32_t)31,
                          GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
   
  ConstantInt *Result = TC->getValue();
   
  // Guard against huge trip counts (this requires checking
  // for zero to handle the case where the trip count == -1 and the
  // addition wraps).
  if (!Result || Result->getValue().getActiveBits() > 32 ||
      Result->getValue().getActiveBits() == 0)
    return 1;
   
  return (unsigned)Result->getZExtValue();

}

/// Returns the largest constant divisor of the trip count of this loop as a
 /// normal unsigned value, if possible. This means that the actual trip count is
 /// always a multiple of the returned value (don't forget the trip count could
 /// very well be zero as well!).
 ///
 /// Returns 1 if the trip count is unknown or not guaranteed to be the
 /// multiple of a constant (which is also the case if the trip count is simply
 /// constant, use getSmallConstantTripCount for that case), Will also return 1
 /// if the trip count is very large (>= 2^32).
 ///
 /// As explained in the comments for getSmallConstantTripCount, this assumes
 /// that control exits the loop via ExitingBlock.
unsigned
 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,

                                              const BasicBlock *ExitingBlock) {
  assert(ExitingBlock && "Must pass a non-null exiting block!");
  assert(L->isLoopExiting(ExitingBlock) &&
         "Exiting block must actually branch out of the loop!");
  const SCEV *ExitCount = getExitCount(L, ExitingBlock);
  return getSmallConstantTripMultiple(L, ExitCount);

}

const SCEV *ScalarEvolution::getExitCount(const Loop *L,

                                          const BasicBlock *ExitingBlock,
                                          ExitCountKind Kind) {
  switch (Kind) {
  case Exact:
    return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
  case SymbolicMaximum:
    return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
  case ConstantMaximum:
    return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
  };
  llvm_unreachable("Invalid ExitCountKind!");

}

const SCEV *
 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,

                                                 SmallVector<const SCEVPredicate *, 4> &Preds) {
  return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);

}

const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,

                                                   ExitCountKind Kind) {
  switch (Kind) {
  case Exact:
    return getBackedgeTakenInfo(L).getExact(L, this);
  case ConstantMaximum:
    return getBackedgeTakenInfo(L).getConstantMax(this);
  case SymbolicMaximum:
    return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
  };
  llvm_unreachable("Invalid ExitCountKind!");

}

bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {

  return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);

}

/// Push PHI nodes in the header of the given loop onto the given Worklist.
 static void PushLoopPHIs(const Loop *L,

                         SmallVectorImpl<Instruction *> &Worklist,
                         SmallPtrSetImpl<Instruction *> &Visited) {
  BasicBlock *Header = L->getHeader();
   
  // Push all Loop-header PHIs onto the Worklist stack.
  for (PHINode &PN : Header->phis())
    if (Visited.insert(&PN).second)
      Worklist.push_back(&PN);

}

const ScalarEvolution::BackedgeTakenInfo &
 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {

  auto &BTI = getBackedgeTakenInfo(L);
  if (BTI.hasFullInfo())
    return BTI;
   
  auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
   
  if (!Pair.second)
    return Pair.first->second;
   
  BackedgeTakenInfo Result =
      computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
   
  return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);

}

ScalarEvolution::BackedgeTakenInfo &
 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {

  // Initially insert an invalid entry for this loop. If the insertion
  // succeeds, proceed to actually compute a backedge-taken count and
  // update the value. The temporary CouldNotCompute value tells SCEV
  // code elsewhere that it shouldn't attempt to request a new
  // backedge-taken count, which could result in infinite recursion.
  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
      BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
  if (!Pair.second)
    return Pair.first->second;
   
  // computeBackedgeTakenCount may allocate memory for its result. Inserting it
  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
  // must be cleared in this scope.
  BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
   
  // In product build, there are no usage of statistic.
  (void)NumTripCountsComputed;
  (void)NumTripCountsNotComputed;

#if LLVM_ENABLE_STATS || !defined(NDEBUG)

  const SCEV *BEExact = Result.getExact(L, this);
  if (BEExact != getCouldNotCompute()) {
    assert(isLoopInvariant(BEExact, L) &&
           isLoopInvariant(Result.getConstantMax(this), L) &&
           "Computed backedge-taken count isn't loop invariant for loop!");
    ++NumTripCountsComputed;
  } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
             isa<PHINode>(L->getHeader()->begin())) {
    // Only count loops that have phi nodes as not being computable.
    ++NumTripCountsNotComputed;
  }

#endif // LLVM_ENABLE_STATS || !defined(NDEBUG)

  // Now that we know more about the trip count for this loop, forget any
  // existing SCEV values for PHI nodes in this loop since they are only
  // conservative estimates made without the benefit of trip count
  // information. This invalidation is not necessary for correctness, and is
  // only done to produce more precise results.
  if (Result.hasAnyInfo()) {
    // Invalidate any expression using an addrec in this loop.
    SmallVector<const SCEV *, 8> ToForget;
    auto LoopUsersIt = LoopUsers.find(L);
    if (LoopUsersIt != LoopUsers.end())
      append_range(ToForget, LoopUsersIt->second);
    forgetMemoizedResults(ToForget);
   
    // Invalidate constant-evolved loop header phis.
    for (PHINode &PN : L->getHeader()->phis())
      ConstantEvolutionLoopExitValue.erase(&PN);
  }
   
  // Re-lookup the insert position, since the call to
  // computeBackedgeTakenCount above could result in a
  // recusive call to getBackedgeTakenInfo (on a different
  // loop), which would invalidate the iterator computed
  // earlier.
  return BackedgeTakenCounts.find(L)->second = std::move(Result);

}

void ScalarEvolution::forgetAllLoops() {

  // This method is intended to forget all info about loops. It should
  // invalidate caches as if the following happened:
  // - The trip counts of all loops have changed arbitrarily
  // - Every llvm::Value has been updated in place to produce a different
  // result.
  BackedgeTakenCounts.clear();
  PredicatedBackedgeTakenCounts.clear();
  BECountUsers.clear();
  LoopPropertiesCache.clear();
  ConstantEvolutionLoopExitValue.clear();
  ValueExprMap.clear();
  ValuesAtScopes.clear();
  ValuesAtScopesUsers.clear();
  LoopDispositions.clear();
  BlockDispositions.clear();
  UnsignedRanges.clear();
  SignedRanges.clear();
  ExprValueMap.clear();
  HasRecMap.clear();
  MinTrailingZerosCache.clear();
  PredicatedSCEVRewrites.clear();
  FoldCache.clear();
  FoldCacheUser.clear();

}

void ScalarEvolution::forgetLoop(const Loop *L) {

  SmallVector<const Loop *, 16> LoopWorklist(1, L);
  SmallVector<Instruction *, 32> Worklist;
  SmallPtrSet<Instruction *, 16> Visited;
  SmallVector<const SCEV *, 16> ToForget;
   
  // Iterate over all the loops and sub-loops to drop SCEV information.
  while (!LoopWorklist.empty()) {
    auto *CurrL = LoopWorklist.pop_back_val();
   
    // Drop any stored trip count value.
    forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
    forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
   
    // Drop information about predicated SCEV rewrites for this loop.
    for (auto I = PredicatedSCEVRewrites.begin();
         I != PredicatedSCEVRewrites.end();) {
      std::pair<const SCEV *, const Loop *> Entry = I->first;
      if (Entry.second == CurrL)
        PredicatedSCEVRewrites.erase(I++);
      else
        ++I;
    }
   
    auto LoopUsersItr = LoopUsers.find(CurrL);
    if (LoopUsersItr != LoopUsers.end()) {
      ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
                LoopUsersItr->second.end());
    }
   
    // Drop information about expressions based on loop-header PHIs.
    PushLoopPHIs(CurrL, Worklist, Visited);
   
    while (!Worklist.empty()) {
      Instruction *I = Worklist.pop_back_val();
   
      ValueExprMapType::iterator It =
          ValueExprMap.find_as(static_cast<Value *>(I));
      if (It != ValueExprMap.end()) {
        eraseValueFromMap(It->first);
        ToForget.push_back(It->second);
        if (PHINode *PN = dyn_cast<PHINode>(I))
          ConstantEvolutionLoopExitValue.erase(PN);
      }
   
      PushDefUseChildren(I, Worklist, Visited);
    }
   
    LoopPropertiesCache.erase(CurrL);
    // Forget all contained loops too, to avoid dangling entries in the
    // ValuesAtScopes map.
    LoopWorklist.append(CurrL->begin(), CurrL->end());
  }
  forgetMemoizedResults(ToForget);

}

void ScalarEvolution::forgetTopmostLoop(const Loop *L) {

  forgetLoop(L->getOutermostLoop());

}

void ScalarEvolution::forgetValue(Value *V) {

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return;
   
  // Drop information about expressions based on loop-header PHIs.
  SmallVector<Instruction *, 16> Worklist;
  SmallPtrSet<Instruction *, 8> Visited;
  SmallVector<const SCEV *, 8> ToForget;
  Worklist.push_back(I);
  Visited.insert(I);
   
  while (!Worklist.empty()) {
    I = Worklist.pop_back_val();
    ValueExprMapType::iterator It =
      ValueExprMap.find_as(static_cast<Value *>(I));
    if (It != ValueExprMap.end()) {
      eraseValueFromMap(It->first);
      ToForget.push_back(It->second);
      if (PHINode *PN = dyn_cast<PHINode>(I))
        ConstantEvolutionLoopExitValue.erase(PN);
    }
   
    PushDefUseChildren(I, Worklist, Visited);
  }
  forgetMemoizedResults(ToForget);

}

void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }

void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {

  // Unless a specific value is passed to invalidation, completely clear both
  // caches.
  if (!V) {
    BlockDispositions.clear();
    LoopDispositions.clear();
    return;
  }
   
  if (!isSCEVable(V->getType()))
    return;
   
  const SCEV *S = getExistingSCEV(V);
  if (!S)
    return;
   
  // Invalidate the block and loop dispositions cached for S. Dispositions of
  // S's users may change if S's disposition changes (i.e. a user may change to
  // loop-invariant, if S changes to loop invariant), so also invalidate
  // dispositions of S's users recursively.
  SmallVector<const SCEV *, 8> Worklist = {S};
  SmallPtrSet<const SCEV *, 8> Seen = {S};
  while (!Worklist.empty()) {
    const SCEV *Curr = Worklist.pop_back_val();
    bool LoopDispoRemoved = LoopDispositions.erase(Curr);
    bool BlockDispoRemoved = BlockDispositions.erase(Curr);
    if (!LoopDispoRemoved && !BlockDispoRemoved)
      continue;
    auto Users = SCEVUsers.find(Curr);
    if (Users != SCEVUsers.end())
      for (const auto *User : Users->second)
        if (Seen.insert(User).second)
          Worklist.push_back(User);
  }

}

/// Get the exact loop backedge taken count considering all loop exits. A
 /// computable result can only be returned for loops with all exiting blocks
 /// dominating the latch. howFarToZero assumes that the limit of each loop test
 /// is never skipped. This is a valid assumption as long as the loop exits via
 /// that test. For precise results, it is the caller's responsibility to specify
 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
 const SCEV *
 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,

                                             SmallVector<const SCEVPredicate *, 4> *Preds) const {
  // If any exits were not computable, the loop is not computable.
  if (!isComplete() || ExitNotTaken.empty())
    return SE->getCouldNotCompute();
   
  const BasicBlock *Latch = L->getLoopLatch();
  // All exiting blocks we have collected must dominate the only backedge.
  if (!Latch)
    return SE->getCouldNotCompute();
   
  // All exiting blocks we have gathered dominate loop's latch, so exact trip
  // count is simply a minimum out of all these calculated exit counts.
  SmallVector<const SCEV *, 2> Ops;
  for (const auto &ENT : ExitNotTaken) {
    const SCEV *BECount = ENT.ExactNotTaken;
    assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
    assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
           "We should only have known counts for exiting blocks that dominate "
           "latch!");
   
    Ops.push_back(BECount);
   
    if (Preds)
      for (const auto *P : ENT.Predicates)
        Preds->push_back(P);
   
    assert((Preds || ENT.hasAlwaysTruePredicate()) &&
           "Predicate should be always true!");
  }
   
  // If an earlier exit exits on the first iteration (exit count zero), then
  // a later poison exit count should not propagate into the result. This are
  // exactly the semantics provided by umin_seq.
  return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);

}

/// Get the exact not taken count for this loop exit.
 const SCEV *
 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,

                                             ScalarEvolution *SE) const {
  for (const auto &ENT : ExitNotTaken)
    if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
      return ENT.ExactNotTaken;
   
  return SE->getCouldNotCompute();

}

const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(

    const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
  for (const auto &ENT : ExitNotTaken)
    if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
      return ENT.ConstantMaxNotTaken;
   
  return SE->getCouldNotCompute();

}

const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(

    const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
  for (const auto &ENT : ExitNotTaken)
    if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
      return ENT.SymbolicMaxNotTaken;
   
  return SE->getCouldNotCompute();

}

/// getConstantMax - Get the constant max backedge taken count for the loop.
 const SCEV *
 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {

  auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
    return !ENT.hasAlwaysTruePredicate();
  };
   
  if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
    return SE->getCouldNotCompute();
   
  assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
          isa<SCEVConstant>(getConstantMax())) &&
         "No point in having a non-constant max backedge taken count!");
  return getConstantMax();

}

const SCEV *
 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,

                                                   ScalarEvolution *SE) {
  if (!SymbolicMax)
    SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
  return SymbolicMax;

}

bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(

    ScalarEvolution *SE) const {
  auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
    return !ENT.hasAlwaysTruePredicate();
  };
  return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);

}

ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)

  : ExitLimit(E, E, E, false, std::nullopt) {}
   

ScalarEvolution::ExitLimit::ExitLimit(

    const SCEV *E, const SCEV *ConstantMaxNotTaken,
    const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
    ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
    : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
      SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
  // If we prove the max count is zero, so is the symbolic bound.  This happens
  // in practice due to differences in a) how context sensitive we've chosen
  // to be and b) how we reason about bounds implied by UB.
  if (ConstantMaxNotTaken->isZero()) {
    this->ExactNotTaken = E = ConstantMaxNotTaken;
    this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
  }
   
  assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
          !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
         "Exact is not allowed to be less precise than Constant Max");
  assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
          !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
         "Exact is not allowed to be less precise than Symbolic Max");
  assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
          !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
         "Symbolic Max is not allowed to be less precise than Constant Max");
  assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
          isa<SCEVConstant>(ConstantMaxNotTaken)) &&
         "No point in having a non-constant max backedge taken count!");
  for (const auto *PredSet : PredSetList)
    for (const auto *P : *PredSet)
      addPredicate(P);
  assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
         "Backedge count should be int");
  assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
          !ConstantMaxNotTaken->getType()->isPointerTy()) &&
         "Max backedge count should be int");

}

ScalarEvolution::ExitLimit::ExitLimit(

  const SCEV *E, const SCEV *ConstantMaxNotTaken,
  const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
  const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
  : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
              { &PredSet }) {}
   

/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
 /// computable exit into a persistent ExitNotTakenInfo array.
 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(

    ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
    bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
    : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
  using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
   
  ExitNotTaken.reserve(ExitCounts.size());
  std::transform(ExitCounts.begin(), ExitCounts.end(),
                 std::back_inserter(ExitNotTaken),
                 [&](const EdgeExitInfo &EEI) {
        BasicBlock *ExitBB = EEI.first;
        const ExitLimit &EL = EEI.second;
        return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
                                EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
                                EL.Predicates);
  });
  assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
          isa<SCEVConstant>(ConstantMax)) &&
         "No point in having a non-constant max backedge taken count!");

}

/// Compute the number of times the backedge of the specified loop will execute.
ScalarEvolution::BackedgeTakenInfo
 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,

                                           bool AllowPredicates) {
  SmallVector<BasicBlock *, 8> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
   
  using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
   
  SmallVector<EdgeExitInfo, 4> ExitCounts;
  bool CouldComputeBECount = true;
  BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
  const SCEV *MustExitMaxBECount = nullptr;
  const SCEV *MayExitMaxBECount = nullptr;
  bool MustExitMaxOrZero = false;
   
  // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
  // and compute maxBECount.
  // Do a union of all the predicates here.
  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBB = ExitingBlocks[i];
   
    // We canonicalize untaken exits to br (constant), ignore them so that
    // proving an exit untaken doesn't negatively impact our ability to reason
    // about the loop as whole.
    if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
      if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
        bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
        if (ExitIfTrue == CI->isZero())
          continue;
      }
   
    ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
   
    assert((AllowPredicates || EL.Predicates.empty()) &&
           "Predicated exit limit when predicates are not allowed!");
   
    // 1. For each exit that can be computed, add an entry to ExitCounts.
    // CouldComputeBECount is true only if all exits can be computed.
    if (EL.ExactNotTaken == getCouldNotCompute())
      // We couldn't compute an exact value for this exit, so
      // we won't be able to compute an exact value for the loop.
      CouldComputeBECount = false;
    // Remember exit count if either exact or symbolic is known. Because
    // Exact always implies symbolic, only check symbolic.
    if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
      ExitCounts.emplace_back(ExitBB, EL);
    else
      assert(EL.ExactNotTaken == getCouldNotCompute() &&
             "Exact is known but symbolic isn't?");
   
    // 2. Derive the loop's MaxBECount from each exit's max number of
    // non-exiting iterations. Partition the loop exits into two kinds:
    // LoopMustExits and LoopMayExits.
    //
    // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
    // is a LoopMayExit.  If any computable LoopMustExit is found, then
    // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
    // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
    // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
    // any
    // computable EL.ConstantMaxNotTaken.
    if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
        DT.dominates(ExitBB, Latch)) {
      if (!MustExitMaxBECount) {
        MustExitMaxBECount = EL.ConstantMaxNotTaken;
        MustExitMaxOrZero = EL.MaxOrZero;
      } else {
        MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
                                                        EL.ConstantMaxNotTaken);
      }
    } else if (MayExitMaxBECount != getCouldNotCompute()) {
      if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
        MayExitMaxBECount = EL.ConstantMaxNotTaken;
      else {
        MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
                                                       EL.ConstantMaxNotTaken);
      }
    }
  }
  const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
    (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
  // The loop backedge will be taken the maximum or zero times if there's
  // a single exit that must be taken the maximum or zero times.
  bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
   
  // Remember which SCEVs are used in exit limits for invalidation purposes.
  // We only care about non-constant SCEVs here, so we can ignore
  // EL.ConstantMaxNotTaken
  // and MaxBECount, which must be SCEVConstant.
  for (const auto &Pair : ExitCounts) {
    if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
      BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
    if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
      BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
          {L, AllowPredicates});
  }
  return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
                           MaxBECount, MaxOrZero);

}

ScalarEvolution::ExitLimit
 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,

                                      bool AllowPredicates) {
  assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
  // If our exiting block does not dominate the latch, then its connection with
  // loop's exit limit may be far from trivial.
  const BasicBlock *Latch = L->getLoopLatch();
  if (!Latch || !DT.dominates(ExitingBlock, Latch))
    return getCouldNotCompute();
   
  bool IsOnlyExit = (L->getExitingBlock() != nullptr);
  Instruction *Term = ExitingBlock->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
    assert(BI->isConditional() && "If unconditional, it can't be in loop!");
    bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
    assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
           "It should have one successor in loop and one exit block!");
    // Proceed to the next level to examine the exit condition expression.
    return computeExitLimitFromCond(
        L, BI->getCondition(), ExitIfTrue,
        /*ControlsExit=*/IsOnlyExit, AllowPredicates);
  }
   
  if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
    // For switch, make sure that there is a single exit from the loop.
    BasicBlock *Exit = nullptr;
    for (auto *SBB : successors(ExitingBlock))
      if (!L->contains(SBB)) {
        if (Exit) // Multiple exit successors.
          return getCouldNotCompute();
        Exit = SBB;
      }
    assert(Exit && "Exiting block must have at least one exit");
    return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
                                                /*ControlsExit=*/IsOnlyExit);
  }
   
  return getCouldNotCompute();

}

ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(

    const Loop *L, Value *ExitCond, bool ExitIfTrue,
    bool ControlsExit, bool AllowPredicates) {
  ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
  return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
                                        ControlsExit, AllowPredicates);

}

std::optional<ScalarEvolution::ExitLimit>
 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,

                                      bool ExitIfTrue, bool ControlsExit,
                                      bool AllowPredicates) {
  (void)this->L;
  (void)this->ExitIfTrue;
  (void)this->AllowPredicates;
   
  assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
         this->AllowPredicates == AllowPredicates &&
         "Variance in assumed invariant key components!");
  auto Itr = TripCountMap.find({ExitCond, ControlsExit});
  if (Itr == TripCountMap.end())
    return std::nullopt;
  return Itr->second;

}

void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,

                                             bool ExitIfTrue,
                                             bool ControlsExit,
                                             bool AllowPredicates,
                                             const ExitLimit &EL) {
  assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
         this->AllowPredicates == AllowPredicates &&
         "Variance in assumed invariant key components!");
   
  auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
  assert(InsertResult.second && "Expected successful insertion!");
  (void)InsertResult;
  (void)ExitIfTrue;

}

ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(

    ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
    bool ControlsExit, bool AllowPredicates) {
   
  if (auto MaybeEL =
          Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
    return *MaybeEL;
   
  ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
                                              ControlsExit, AllowPredicates);
  Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
  return EL;

}

ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(

    ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
    bool ControlsExit, bool AllowPredicates) {
  // Handle BinOp conditions (And, Or).
  if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
          Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
    return *LimitFromBinOp;
   
  // With an icmp, it may be feasible to compute an exact backedge-taken count.
  // Proceed to the next level to examine the icmp.
  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
    ExitLimit EL =
        computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
    if (EL.hasFullInfo() || !AllowPredicates)
      return EL;
   
    // Try again, but use SCEV predicates this time.
    return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
                                    /*AllowPredicates=*/true);
  }
   
  // Check for a constant condition. These are normally stripped out by
  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
  // preserve the CFG and is temporarily leaving constant conditions
  // in place.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
    if (ExitIfTrue == !CI->getZExtValue())
      // The backedge is always taken.
      return getCouldNotCompute();
    else
      // The backedge is never taken.
      return getZero(CI->getType());
  }
   
  // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
  // with a constant step, we can form an equivalent icmp predicate and figure
  // out how many iterations will be taken before we exit.
  const WithOverflowInst *WO;
  const APInt *C;
  if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
      match(WO->getRHS(), m_APInt(C))) {
    ConstantRange NWR =
      ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
                                           WO->getNoWrapKind());
    CmpInst::Predicate Pred;
    APInt NewRHSC, Offset;
    NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
    if (!ExitIfTrue)
      Pred = ICmpInst::getInversePredicate(Pred);
    auto *LHS = getSCEV(WO->getLHS());
    if (Offset != 0)
      LHS = getAddExpr(LHS, getConstant(Offset));
    auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
                                       ControlsExit, AllowPredicates);
    if (EL.hasAnyInfo()) return EL;
  }
   
  // If it's not an integer or pointer comparison then compute it the hard way.
  return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);

}

std::optional<ScalarEvolution::ExitLimit>
 ScalarEvolution::computeExitLimitFromCondFromBinOp(

    ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
    bool ControlsExit, bool AllowPredicates) {
  // Check if the controlling expression for this loop is an And or Or.
  Value *Op0, *Op1;
  bool IsAnd = false;
  if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
    IsAnd = true;
  else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
    IsAnd = false;
  else
    return std::nullopt;
   
  // EitherMayExit is true in these two cases:
  //   br (and Op0 Op1), loop, exit
  //   br (or  Op0 Op1), exit, loop
  bool EitherMayExit = IsAnd ^ ExitIfTrue;
  ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
                                                 ControlsExit && !EitherMayExit,
                                                 AllowPredicates);
  ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
                                                 ControlsExit && !EitherMayExit,
                                                 AllowPredicates);
   
  // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
  const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
  if (isa<ConstantInt>(Op1))
    return Op1 == NeutralElement ? EL0 : EL1;
  if (isa<ConstantInt>(Op0))
    return Op0 == NeutralElement ? EL1 : EL0;
   
  const SCEV *BECount = getCouldNotCompute();
  const SCEV *ConstantMaxBECount = getCouldNotCompute();
  const SCEV *SymbolicMaxBECount = getCouldNotCompute();
  if (EitherMayExit) {
    bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
    // Both conditions must be same for the loop to continue executing.
    // Choose the less conservative count.
    if (EL0.ExactNotTaken != getCouldNotCompute() &&
        EL1.ExactNotTaken != getCouldNotCompute()) {
      BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
                                           UseSequentialUMin);
    }
    if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
      ConstantMaxBECount = EL1.ConstantMaxNotTaken;
    else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
      ConstantMaxBECount = EL0.ConstantMaxNotTaken;
    else
      ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
                                                      EL1.ConstantMaxNotTaken);
    if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
      SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
    else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
      SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
    else
      SymbolicMaxBECount = getUMinFromMismatchedTypes(
          EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
  } else {
    // Both conditions must be same at the same time for the loop to exit.
    // For now, be conservative.
    if (EL0.ExactNotTaken == EL1.ExactNotTaken)
      BECount = EL0.ExactNotTaken;
  }
   
  // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
  // to be more aggressive when computing BECount than when computing
  // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
  // and
  // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
  // EL1.ConstantMaxNotTaken to not.
  if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
      !isa<SCEVCouldNotCompute>(BECount))
    ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
  if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
    SymbolicMaxBECount =
        isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
  return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
                   { &EL0.Predicates, &EL1.Predicates });

}

ScalarEvolution::ExitLimit
 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,

                                          ICmpInst *ExitCond,
                                          bool ExitIfTrue,
                                          bool ControlsExit,
                                          bool AllowPredicates) {
  // If the condition was exit on true, convert the condition to exit on false
  ICmpInst::Predicate Pred;
  if (!ExitIfTrue)
    Pred = ExitCond->getPredicate();
  else
    Pred = ExitCond->getInversePredicate();
  const ICmpInst::Predicate OriginalPred = Pred;
   
  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   
  ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
                                          AllowPredicates);
  if (EL.hasAnyInfo()) return EL;
   
  auto *ExhaustiveCount =
      computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
   
  if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
    return ExhaustiveCount;
   
  return computeShiftCompareExitLimit(ExitCond->getOperand(0),
                                      ExitCond->getOperand(1), L, OriginalPred);

}
ScalarEvolution::ExitLimit
 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,

                                          ICmpInst::Predicate Pred,
                                          const SCEV *LHS, const SCEV *RHS,
                                          bool ControlsExit,
                                          bool AllowPredicates) {
   
  // Try to evaluate any dependencies out of the loop.
  LHS = getSCEVAtScope(LHS, L);
  RHS = getSCEVAtScope(RHS, L);
   
  // At this point, we would like to compute how many iterations of the
  // loop the predicate will return true for these inputs.
  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
    // If there is a loop-invariant, force it into the RHS.
    std::swap(LHS, RHS);
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }
   
  bool ControllingFiniteLoop =
      ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L);
  // Simplify the operands before analyzing them.
  (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0,
                             (EnableFiniteLoopControl ? ControllingFiniteLoop
                                                     : false));
   
  // If we have a comparison of a chrec against a constant, try to use value
  // ranges to answer this query.
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
      if (AddRec->getLoop() == L) {
        // Form the constant range.
        ConstantRange CompRange =
            ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
   
        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
      }
   
  // If this loop must exit based on this condition (or execute undefined
  // behaviour), and we can prove the test sequence produced must repeat
  // the same values on self-wrap of the IV, then we can infer that IV
  // doesn't self wrap because if it did, we'd have an infinite (undefined)
  // loop.
  if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
    // TODO: We can peel off any functions which are invertible *in L*.  Loop
    // invariant terms are effectively constants for our purposes here.
    auto *InnerLHS = LHS;
    if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
      InnerLHS = ZExt->getOperand();
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
      auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
      if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 
          StrideC && StrideC->getAPInt().isPowerOf2()) {
        auto Flags = AR->getNoWrapFlags();
        Flags = setFlags(Flags, SCEV::FlagNW);
        SmallVector<const SCEV*> Operands{AR->operands()};
        Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
        setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
      }
    }
  }
   
  switch (Pred) {
  case ICmpInst::ICMP_NE: {                     // while (X != Y)
    // Convert to: while (X-Y != 0)
    if (LHS->getType()->isPointerTy()) {
      LHS = getLosslessPtrToIntExpr(LHS);
      if (isa<SCEVCouldNotCompute>(LHS))
        return LHS;
    }
    if (RHS->getType()->isPointerTy()) {
      RHS = getLosslessPtrToIntExpr(RHS);
      if (isa<SCEVCouldNotCompute>(RHS))
        return RHS;
    }
    ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
                                AllowPredicates);
    if (EL.hasAnyInfo()) return EL;
    break;
  }
  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
    // Convert to: while (X-Y == 0)
    if (LHS->getType()->isPointerTy()) {
      LHS = getLosslessPtrToIntExpr(LHS);
      if (isa<SCEVCouldNotCompute>(LHS))
        return LHS;
    }
    if (RHS->getType()->isPointerTy()) {
      RHS = getLosslessPtrToIntExpr(RHS);
      if (isa<SCEVCouldNotCompute>(RHS))
        return RHS;
    }
    ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
    if (EL.hasAnyInfo()) return EL;
    break;
  }
  case ICmpInst::ICMP_SLT:
  case ICmpInst::ICMP_ULT: {                    // while (X < Y)
    bool IsSigned = Pred == ICmpInst::ICMP_SLT;
    ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
                                    AllowPredicates);
    if (EL.hasAnyInfo()) return EL;
    break;
  }
  case ICmpInst::ICMP_SGT:
  case ICmpInst::ICMP_UGT: {                    // while (X > Y)
    bool IsSigned = Pred == ICmpInst::ICMP_SGT;
    ExitLimit EL =
        howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
                            AllowPredicates);
    if (EL.hasAnyInfo()) return EL;
    break;
  }
  default:
    break;
  }
   
  return getCouldNotCompute();

}

ScalarEvolution::ExitLimit
 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,

                                                      SwitchInst *Switch,
                                                      BasicBlock *ExitingBlock,
                                                      bool ControlsExit) {
  assert(!L->contains(ExitingBlock) && "Not an exiting block!");
   
  // Give up if the exit is the default dest of a switch.
  if (Switch->getDefaultDest() == ExitingBlock)
    return getCouldNotCompute();
   
  assert(L->contains(Switch->getDefaultDest()) &&
         "Default case must not exit the loop!");
  const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
  const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
   
  // while (X != Y) --> while (X-Y != 0)
  ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
  if (EL.hasAnyInfo())
    return EL;
   
  return getCouldNotCompute();

}

static ConstantInt *
 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,

                                ScalarEvolution &SE) {
  const SCEV *InVal = SE.getConstant(C);
  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
  assert(isa<SCEVConstant>(Val) &&
         "Evaluation of SCEV at constant didn't fold correctly?");
  return cast<SCEVConstant>(Val)->getValue();

}

ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(

    Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
  ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
  if (!RHS)
    return getCouldNotCompute();
   
  const BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return getCouldNotCompute();
   
  const BasicBlock *Predecessor = L->getLoopPredecessor();
  if (!Predecessor)
    return getCouldNotCompute();
   
  // Return true if V is of the form "LHS `shift_op` <positive constant>".
  // Return LHS in OutLHS and shift_opt in OutOpCode.
  auto MatchPositiveShift =
      [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
   
    using namespace PatternMatch;
   
    ConstantInt *ShiftAmt;
    if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
      OutOpCode = Instruction::LShr;
    else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
      OutOpCode = Instruction::AShr;
    else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
      OutOpCode = Instruction::Shl;
    else
      return false;
   
    return ShiftAmt->getValue().isStrictlyPositive();
  };
   
  // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
  //
  // loop:
  //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
  //   %iv.shifted = lshr i32 %iv, <positive constant>
  //
  // Return true on a successful match.  Return the corresponding PHI node (%iv
  // above) in PNOut and the opcode of the shift operation in OpCodeOut.
  auto MatchShiftRecurrence =
      [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
    std::optional<Instruction::BinaryOps> PostShiftOpCode;
   
    {
      Instruction::BinaryOps OpC;
      Value *V;
   
      // If we encounter a shift instruction, "peel off" the shift operation,
      // and remember that we did so.  Later when we inspect %iv's backedge
      // value, we will make sure that the backedge value uses the same
      // operation.
      //
      // Note: the peeled shift operation does not have to be the same
      // instruction as the one feeding into the PHI's backedge value.  We only
      // really care about it being the same *kind* of shift instruction --
      // that's all that is required for our later inferences to hold.
      if (MatchPositiveShift(LHS, V, OpC)) {
        PostShiftOpCode = OpC;
        LHS = V;
      }
    }
   
    PNOut = dyn_cast<PHINode>(LHS);
    if (!PNOut || PNOut->getParent() != L->getHeader())
      return false;
   
    Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
    Value *OpLHS;
   
    return
        // The backedge value for the PHI node must be a shift by a positive
        // amount
        MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
   
        // of the PHI node itself
        OpLHS == PNOut &&
   
        // and the kind of shift should be match the kind of shift we peeled
        // off, if any.
        (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
  };
   
  PHINode *PN;
  Instruction::BinaryOps OpCode;
  if (!MatchShiftRecurrence(LHS, PN, OpCode))
    return getCouldNotCompute();
   
  const DataLayout &DL = getDataLayout();
   
  // The key rationale for this optimization is that for some kinds of shift
  // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
  // within a finite number of iterations.  If the condition guarding the
  // backedge (in the sense that the backedge is taken if the condition is true)
  // is false for the value the shift recurrence stabilizes to, then we know
  // that the backedge is taken only a finite number of times.
   
  ConstantInt *StableValue = nullptr;
  switch (OpCode) {
  default:
    llvm_unreachable("Impossible case!");
   
  case Instruction::AShr: {
    // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
    // bitwidth(K) iterations.
    Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
    KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
                                       Predecessor->getTerminator(), &DT);
    auto *Ty = cast<IntegerType>(RHS->getType());
    if (Known.isNonNegative())
      StableValue = ConstantInt::get(Ty, 0);
    else if (Known.isNegative())
      StableValue = ConstantInt::get(Ty, -1, true);
    else
      return getCouldNotCompute();
   
    break;
  }
  case Instruction::LShr:
  case Instruction::Shl:
    // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
    // stabilize to 0 in at most bitwidth(K) iterations.
    StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
    break;
  }
   
  auto *Result =
      ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
  assert(Result->getType()->isIntegerTy(1) &&
         "Otherwise cannot be an operand to a branch instruction");
   
  if (Result->isZeroValue()) {
    unsigned BitWidth = getTypeSizeInBits(RHS->getType());
    const SCEV *UpperBound =
        getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
    return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
  }
   
  return getCouldNotCompute();

}

/// Return true if we can constant fold an instruction of the specified type,
 /// assuming that all operands were constants.
 static bool CanConstantFold(const Instruction *I) {

  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
      isa<LoadInst>(I) || isa<ExtractValueInst>(I))
    return true;
   
  if (const CallInst *CI = dyn_cast<CallInst>(I))
    if (const Function *F = CI->getCalledFunction())
      return canConstantFoldCallTo(CI, F);
  return false;

}

/// Determine whether this instruction can constant evolve within this loop
 /// assuming its operands can all constant evolve.
 static bool canConstantEvolve(Instruction *I, const Loop *L) {

  // An instruction outside of the loop can't be derived from a loop PHI.
  if (!L->contains(I)) return false;
   
  if (isa<PHINode>(I)) {
    // We don't currently keep track of the control flow needed to evaluate
    // PHIs, so we cannot handle PHIs inside of loops.
    return L->getHeader() == I->getParent();
  }
   
  // If we won't be able to constant fold this expression even if the operands
  // are constants, bail early.
  return CanConstantFold(I);

}

/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
 /// recursing through each instruction operand until reaching a loop header phi.
 static PHINode *
 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,

                               DenseMap<Instruction *, PHINode *> &PHIMap,
                               unsigned Depth) {
  if (Depth > MaxConstantEvolvingDepth)
    return nullptr;
   
  // Otherwise, we can evaluate this instruction if all of its operands are
  // constant or derived from a PHI node themselves.
  PHINode *PHI = nullptr;
  for (Value *Op : UseInst->operands()) {
    if (isa<Constant>(Op)) continue;
   
    Instruction *OpInst = dyn_cast<Instruction>(Op);
    if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
   
    PHINode *P = dyn_cast<PHINode>(OpInst);
    if (!P)
      // If this operand is already visited, reuse the prior result.
      // We may have P != PHI if this is the deepest point at which the
      // inconsistent paths meet.
      P = PHIMap.lookup(OpInst);
    if (!P) {
      // Recurse and memoize the results, whether a phi is found or not.
      // This recursive call invalidates pointers into PHIMap.
      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
      PHIMap[OpInst] = P;
    }
    if (!P)
      return nullptr;  // Not evolving from PHI
    if (PHI && PHI != P)
      return nullptr;  // Evolving from multiple different PHIs.
    PHI = P;
  }
  // This is a expression evolving from a constant PHI!
  return PHI;

}

/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 /// in the loop that V is derived from.  We allow arbitrary operations along the
 /// way, but the operands of an operation must either be constants or a value
 /// derived from a constant PHI.  If this expression does not fit with these
 /// constraints, return null.
 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || !canConstantEvolve(I, L)) return nullptr;
   
  if (PHINode *PN = dyn_cast<PHINode>(I))
    return PN;
   
  // Record non-constant instructions contained by the loop.
  DenseMap<Instruction *, PHINode *> PHIMap;
  return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);

}

/// EvaluateExpression - Given an expression that passes the
 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 /// in the loop has the value PHIVal.  If we can't fold this expression for some
 /// reason, return null.
 static Constant *EvaluateExpression(Value *V, const Loop *L,

                                    DenseMap<Instruction *, Constant *> &Vals,
                                    const DataLayout &DL,
                                    const TargetLibraryInfo *TLI) {
  // Convenient constant check, but redundant for recursive calls.
  if (Constant *C = dyn_cast<Constant>(V)) return C;
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return nullptr;
   
  if (Constant *C = Vals.lookup(I)) return C;
   
  // An instruction inside the loop depends on a value outside the loop that we
  // weren't given a mapping for, or a value such as a call inside the loop.
  if (!canConstantEvolve(I, L)) return nullptr;
   
  // An unmapped PHI can be due to a branch or another loop inside this loop,
  // or due to this not being the initial iteration through a loop where we
  // couldn't compute the evolution of this particular PHI last time.
  if (isa<PHINode>(I)) return nullptr;
   
  std::vector<Constant*> Operands(I->getNumOperands());
   
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
    if (!Operand) {
      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
      if (!Operands[i]) return nullptr;
      continue;
    }
    Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
    Vals[Operand] = C;
    if (!C) return nullptr;
    Operands[i] = C;
  }
   
  return ConstantFoldInstOperands(I, Operands, DL, TLI);

}

// If every incoming value to PN except the one for BB is a specific Constant,
 // return that, else return nullptr.
 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {

  Constant *IncomingVal = nullptr;
   
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    if (PN->getIncomingBlock(i) == BB)
      continue;
   
    auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
    if (!CurrentVal)
      return nullptr;
   
    if (IncomingVal != CurrentVal) {
      if (IncomingVal)
        return nullptr;
      IncomingVal = CurrentVal;
    }
  }
   
  return IncomingVal;

}

/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 /// in the header of its containing loop, we know the loop executes a
 /// constant number of times, and the PHI node is just a recurrence
 /// involving constants, fold it.
 Constant *
 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,

                                                   const APInt &BEs,
                                                   const Loop *L) {
  auto I = ConstantEvolutionLoopExitValue.find(PN);
  if (I != ConstantEvolutionLoopExitValue.end())
    return I->second;
   
  if (BEs.ugt(MaxBruteForceIterations))
    return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
   
  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   
  DenseMap<Instruction *, Constant *> CurrentIterVals;
  BasicBlock *Header = L->getHeader();
  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return nullptr;
   
  for (PHINode &PHI : Header->phis()) {
    if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
      CurrentIterVals[&PHI] = StartCST;
  }
  if (!CurrentIterVals.count(PN))
    return RetVal = nullptr;
   
  Value *BEValue = PN->getIncomingValueForBlock(Latch);
   
  // Execute the loop symbolically to determine the exit value.
  assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
         "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
   
  unsigned NumIterations = BEs.getZExtValue(); // must be in range
  unsigned IterationNum = 0;
  const DataLayout &DL = getDataLayout();
  for (; ; ++IterationNum) {
    if (IterationNum == NumIterations)
      return RetVal = CurrentIterVals[PN];  // Got exit value!
   
    // Compute the value of the PHIs for the next iteration.
    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
    DenseMap<Instruction *, Constant *> NextIterVals;
    Constant *NextPHI =
        EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
    if (!NextPHI)
      return nullptr;        // Couldn't evaluate!
    NextIterVals[PN] = NextPHI;
   
    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   
    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
    // cease to be able to evaluate one of them or if they stop evolving,
    // because that doesn't necessarily prevent us from computing PN.
    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
    for (const auto &I : CurrentIterVals) {
      PHINode *PHI = dyn_cast<PHINode>(I.first);
      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
      PHIsToCompute.emplace_back(PHI, I.second);
    }
    // We use two distinct loops because EvaluateExpression may invalidate any
    // iterators into CurrentIterVals.
    for (const auto &I : PHIsToCompute) {
      PHINode *PHI = I.first;
      Constant *&NextPHI = NextIterVals[PHI];
      if (!NextPHI) {   // Not already computed.
        Value *BEValue = PHI->getIncomingValueForBlock(Latch);
        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
      }
      if (NextPHI != I.second)
        StoppedEvolving = false;
    }
   
    // If all entries in CurrentIterVals == NextIterVals then we can stop
    // iterating, the loop can't continue to change.
    if (StoppedEvolving)
      return RetVal = CurrentIterVals[PN];
   
    CurrentIterVals.swap(NextIterVals);
  }

}

const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,

                                                          Value *Cond,
                                                          bool ExitWhen) {
  PHINode *PN = getConstantEvolvingPHI(Cond, L);
  if (!PN) return getCouldNotCompute();
   
  // If the loop is canonicalized, the PHI will have exactly two entries.
  // That's the only form we support here.
  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   
  DenseMap<Instruction *, Constant *> CurrentIterVals;
  BasicBlock *Header = L->getHeader();
  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   
  BasicBlock *Latch = L->getLoopLatch();
  assert(Latch && "Should follow from NumIncomingValues == 2!");
   
  for (PHINode &PHI : Header->phis()) {
    if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
      CurrentIterVals[&PHI] = StartCST;
  }
  if (!CurrentIterVals.count(PN))
    return getCouldNotCompute();
   
  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
  // the loop symbolically to determine when the condition gets a value of
  // "ExitWhen".
  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
  const DataLayout &DL = getDataLayout();
  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
    auto *CondVal = dyn_cast_or_null<ConstantInt>(
        EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
   
    // Couldn't symbolically evaluate.
    if (!CondVal) return getCouldNotCompute();
   
    if (CondVal->getValue() == uint64_t(ExitWhen)) {
      ++NumBruteForceTripCountsComputed;
      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
    }
   
    // Update all the PHI nodes for the next iteration.
    DenseMap<Instruction *, Constant *> NextIterVals;
   
    // Create a list of which PHIs we need to compute. We want to do this before
    // calling EvaluateExpression on them because that may invalidate iterators
    // into CurrentIterVals.
    SmallVector<PHINode *, 8> PHIsToCompute;
    for (const auto &I : CurrentIterVals) {
      PHINode *PHI = dyn_cast<PHINode>(I.first);
      if (!PHI || PHI->getParent() != Header) continue;
      PHIsToCompute.push_back(PHI);
    }
    for (PHINode *PHI : PHIsToCompute) {
      Constant *&NextPHI = NextIterVals[PHI];
      if (NextPHI) continue;    // Already computed!
   
      Value *BEValue = PHI->getIncomingValueForBlock(Latch);
      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
    }
    CurrentIterVals.swap(NextIterVals);
  }
   
  // Too many iterations were needed to evaluate.
  return getCouldNotCompute();

}

const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {

  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
      ValuesAtScopes[V];
  // Check to see if we've folded this expression at this loop before.
  for (auto &LS : Values)
    if (LS.first == L)
      return LS.second ? LS.second : V;
   
  Values.emplace_back(L, nullptr);
   
  // Otherwise compute it.
  const SCEV *C = computeSCEVAtScope(V, L);
  for (auto &LS : reverse(ValuesAtScopes[V]))
    if (LS.first == L) {
      LS.second = C;
      if (!isa<SCEVConstant>(C))
        ValuesAtScopesUsers[C].push_back({L, V});
      break;
    }
  return C;

}

/// This builds up a Constant using the ConstantExpr interface.  That way, we
 /// will return Constants for objects which aren't represented by a
 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
 /// Returns NULL if the SCEV isn't representable as a Constant.
 static Constant *BuildConstantFromSCEV(const SCEV *V) {

  switch (V->getSCEVType()) {
  case scCouldNotCompute:
  case scAddRecExpr:
    return nullptr;
  case scConstant:
    return cast<SCEVConstant>(V)->getValue();
  case scUnknown:
    return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
  case scSignExtend: {
    const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
    if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
      return ConstantExpr::getSExt(CastOp, SS->getType());
    return nullptr;
  }
  case scZeroExtend: {
    const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
    if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
      return ConstantExpr::getZExt(CastOp, SZ->getType());
    return nullptr;
  }
  case scPtrToInt: {
    const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
    if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
      return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
   
    return nullptr;
  }
  case scTruncate: {
    const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
    if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
      return ConstantExpr::getTrunc(CastOp, ST->getType());
    return nullptr;
  }
  case scAddExpr: {
    const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
    Constant *C = nullptr;
    for (const SCEV *Op : SA->operands()) {
      Constant *OpC = BuildConstantFromSCEV(Op);
      if (!OpC)
        return nullptr;
      if (!C) {
        C = OpC;
        continue;
      }
      assert(!C->getType()->isPointerTy() &&
             "Can only have one pointer, and it must be last");
      if (auto *PT = dyn_cast<PointerType>(OpC->getType())) {
        // The offsets have been converted to bytes.  We can add bytes to an
        // i8* by GEP with the byte count in the first index.
        Type *DestPtrTy =
            Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace());
        OpC = ConstantExpr::getBitCast(OpC, DestPtrTy);
        C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
                                           OpC, C);
      } else {
        C = ConstantExpr::getAdd(C, OpC);
      }
    }
    return C;
  }
  case scMulExpr: {
    const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
    Constant *C = nullptr;
    for (const SCEV *Op : SM->operands()) {
      assert(!Op->getType()->isPointerTy() && "Can't multiply pointers");
      Constant *OpC = BuildConstantFromSCEV(Op);
      if (!OpC)
        return nullptr;
      C = C ? ConstantExpr::getMul(C, OpC) : OpC;
    }
    return C;
  }
  case scUDivExpr:
  case scSMaxExpr:
  case scUMaxExpr:
  case scSMinExpr:
  case scUMinExpr:
  case scSequentialUMinExpr:
    return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
  }
  llvm_unreachable("Unknown SCEV kind!");

}

const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {

  if (isa<SCEVConstant>(V)) return V;
   
  // If this instruction is evolved from a constant-evolving PHI, compute the
  // exit value from the loop without using SCEVs.
  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
      if (PHINode *PN = dyn_cast<PHINode>(I)) {
        const Loop *CurrLoop = this->LI[I->getParent()];
        // Looking for loop exit value.
        if (CurrLoop && CurrLoop->getParentLoop() == L &&
            PN->getParent() == CurrLoop->getHeader()) {
          // Okay, there is no closed form solution for the PHI node.  Check
          // to see if the loop that contains it has a known backedge-taken
          // count.  If so, we may be able to force computation of the exit
          // value.
          const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
          // This trivial case can show up in some degenerate cases where
          // the incoming IR has not yet been fully simplified.
          if (BackedgeTakenCount->isZero()) {
            Value *InitValue = nullptr;
            bool MultipleInitValues = false;
            for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
              if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
                if (!InitValue)
                  InitValue = PN->getIncomingValue(i);
                else if (InitValue != PN->getIncomingValue(i)) {
                  MultipleInitValues = true;
                  break;
                }
              }
            }
            if (!MultipleInitValues && InitValue)
              return getSCEV(InitValue);
          }
          // Do we have a loop invariant value flowing around the backedge
          // for a loop which must execute the backedge?
          if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
              isKnownPositive(BackedgeTakenCount) &&
              PN->getNumIncomingValues() == 2) {
   
            unsigned InLoopPred =
                CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
            Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
            if (CurrLoop->isLoopInvariant(BackedgeVal))
              return getSCEV(BackedgeVal);
          }
          if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
            // Okay, we know how many times the containing loop executes.  If
            // this is a constant evolving PHI node, get the final value at
            // the specified iteration number.
            Constant *RV = getConstantEvolutionLoopExitValue(
                PN, BTCC->getAPInt(), CurrLoop);
            if (RV) return getSCEV(RV);
          }
        }
   
        // If there is a single-input Phi, evaluate it at our scope. If we can
        // prove that this replacement does not break LCSSA form, use new value.
        if (PN->getNumOperands() == 1) {
          const SCEV *Input = getSCEV(PN->getOperand(0));
          const SCEV *InputAtScope = getSCEVAtScope(Input, L);
          // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
          // for the simplest case just support constants.
          if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
        }
      }
   
      // Okay, this is an expression that we cannot symbolically evaluate
      // into a SCEV.  Check to see if it's possible to symbolically evaluate
      // the arguments into constants, and if so, try to constant propagate the
      // result.  This is particularly useful for computing loop exit values.
      if (CanConstantFold(I)) {
        SmallVector<Constant *, 4> Operands;
        bool MadeImprovement = false;
        for (Value *Op : I->operands()) {
          if (Constant *C = dyn_cast<Constant>(Op)) {
            Operands.push_back(C);
            continue;
          }
   
          // If any of the operands is non-constant and if they are
          // non-integer and non-pointer, don't even try to analyze them
          // with scev techniques.
          if (!isSCEVable(Op->getType()))
            return V;
   
          const SCEV *OrigV = getSCEV(Op);
          const SCEV *OpV = getSCEVAtScope(OrigV, L);
          MadeImprovement |= OrigV != OpV;
   
          Constant *C = BuildConstantFromSCEV(OpV);
          if (!C) return V;
          if (C->getType() != Op->getType())
            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
                                                              Op->getType(),
                                                              false),
                                      C, Op->getType());
          Operands.push_back(C);
        }
   
        // Check to see if getSCEVAtScope actually made an improvement.
        if (MadeImprovement) {
          Constant *C = nullptr;
          const DataLayout &DL = getDataLayout();
          C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
          if (!C) return V;
          return getSCEV(C);
        }
      }
    }
   
    // This is some other type of SCEVUnknown, just return it.
    return V;
  }
   
  if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) {
    const auto *Comm = cast<SCEVNAryExpr>(V);
    // Avoid performing the look-up in the common case where the specified
    // expression has no loop-variant portions.
    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
      if (OpAtScope != Comm->getOperand(i)) {
        // Okay, at least one of these operands is loop variant but might be
        // foldable.  Build a new instance of the folded commutative expression.
        SmallVector<const SCEV *, 8> NewOps(Comm->operands().take_front(i));
        NewOps.push_back(OpAtScope);
   
        for (++i; i != e; ++i) {
          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
          NewOps.push_back(OpAtScope);
        }
        if (isa<SCEVAddExpr>(Comm))
          return getAddExpr(NewOps, Comm->getNoWrapFlags());
        if (isa<SCEVMulExpr>(Comm))
          return getMulExpr(NewOps, Comm->getNoWrapFlags());
        if (isa<SCEVMinMaxExpr>(Comm))
          return getMinMaxExpr(Comm->getSCEVType(), NewOps);
        if (isa<SCEVSequentialMinMaxExpr>(Comm))
          return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps);
        llvm_unreachable("Unknown commutative / sequential min/max SCEV type!");
      }
    }
    // If we got here, all operands are loop invariant.
    return Comm;
  }
   
  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
    if (LHS == Div->getLHS() && RHS == Div->getRHS())
      return Div;   // must be loop invariant
    return getUDivExpr(LHS, RHS);
  }
   
  // If this is a loop recurrence for a loop that does not contain L, then we
  // are dealing with the final value computed by the loop.
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
    // First, attempt to evaluate each operand.
    // Avoid performing the look-up in the common case where the specified
    // expression has no loop-variant portions.
    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
      if (OpAtScope == AddRec->getOperand(i))
        continue;
   
      // Okay, at least one of these operands is loop variant but might be
      // foldable.  Build a new instance of the folded commutative expression.
      SmallVector<const SCEV *, 8> NewOps(AddRec->operands().take_front(i));
      NewOps.push_back(OpAtScope);
      for (++i; i != e; ++i)
        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   
      const SCEV *FoldedRec =
        getAddRecExpr(NewOps, AddRec->getLoop(),
                      AddRec->getNoWrapFlags(SCEV::FlagNW));
      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
      // The addrec may be folded to a nonrecurrence, for example, if the
      // induction variable is multiplied by zero after constant folding. Go
      // ahead and return the folded value.
      if (!AddRec)
        return FoldedRec;
      break;
    }
   
    // If the scope is outside the addrec's loop, evaluate it by using the
    // loop exit value of the addrec.
    if (!AddRec->getLoop()->contains(L)) {
      // To evaluate this recurrence, we need to know how many times the AddRec
      // loop iterates.  Compute this now.
      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   
      // Then, evaluate the AddRec.
      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
    }
   
    return AddRec;
  }
   
  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
    if (Op == Cast->getOperand())
      return Cast;  // must be loop invariant
    return getCastExpr(Cast->getSCEVType(), Op, Cast->getType());
  }
   
  llvm_unreachable("Unknown SCEV type!");

}

const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {

  return getSCEVAtScope(getSCEV(V), L);

}

const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {

  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
    return stripInjectiveFunctions(ZExt->getOperand());
  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
    return stripInjectiveFunctions(SExt->getOperand());
  return S;

}

/// Finds the minimum unsigned root of the following equation:
 ///
 ///     A * X = B (mod N)
 ///
 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
 /// A and B isn't important.
 ///
 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,

                                               ScalarEvolution &SE) {
  uint32_t BW = A.getBitWidth();
  assert(BW == SE.getTypeSizeInBits(B->getType()));
  assert(A != 0 && "A must be non-zero.");
   
  // 1. D = gcd(A, N)
  //
  // The gcd of A and N may have only one prime factor: 2. The number of
  // trailing zeros in A is its multiplicity
  uint32_t Mult2 = A.countTrailingZeros();
  // D = 2^Mult2
   
  // 2. Check if B is divisible by D.
  //
  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
  // is not less than multiplicity of this prime factor for D.
  if (SE.GetMinTrailingZeros(B) < Mult2)
    return SE.getCouldNotCompute();
   
  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
  // modulo (N / D).
  //
  // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
  // (N / D) in general. The inverse itself always fits into BW bits, though,
  // so we immediately truncate it.
  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
  APInt Mod(BW + 1, 0);
  Mod.setBit(BW - Mult2);  // Mod = N / D
  APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
   
  // 4. Compute the minimum unsigned root of the equation:
  // I * (B / D) mod (N / D)
  // To simplify the computation, we factor out the divide by D:
  // (I * B mod N) / D
  const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
  return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);

}

/// For a given quadratic addrec, generate coefficients of the corresponding
 /// quadratic equation, multiplied by a common value to ensure that they are
 /// integers.
 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
 /// were multiplied by, and BitWidth is the bit width of the original addrec
 /// coefficients.
 /// This function returns std::nullopt if the addrec coefficients are not
 /// compile- time constants.
 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {

  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
  LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
                    << *AddRec << '\n');
   
  // We currently can only solve this if the coefficients are constants.
  if (!LC || !MC || !NC) {
    LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
    return std::nullopt;
  }
   
  APInt L = LC->getAPInt();
  APInt M = MC->getAPInt();
  APInt N = NC->getAPInt();
  assert(!N.isZero() && "This is not a quadratic addrec");
   
  unsigned BitWidth = LC->getAPInt().getBitWidth();
  unsigned NewWidth = BitWidth + 1;
  LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
                    << BitWidth << '\n');
  // The sign-extension (as opposed to a zero-extension) here matches the
  // extension used in SolveQuadraticEquationWrap (with the same motivation).
  N = N.sext(NewWidth);
  M = M.sext(NewWidth);
  L = L.sext(NewWidth);
   
  // The increments are M, M+N, M+2N, ..., so the accumulated values are
  //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
  //   L+M, L+2M+N, L+3M+3N, ...
  // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
  //
  // The equation Acc = 0 is then
  //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
  // In a quadratic form it becomes:
  //   N n^2 + (2M-N) n + 2L = 0.
   
  APInt A = N;
  APInt B = 2 * M - A;
  APInt C = 2 * L;
  APInt T = APInt(NewWidth, 2);
  LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
                    << "x + " << C << ", coeff bw: " << NewWidth
                    << ", multiplied by " << T << '\n');
  return std::make_tuple(A, B, C, T, BitWidth);

}

/// Helper function to compare optional APInts:
 /// (a) if X and Y both exist, return min(X, Y),
 /// (b) if neither X nor Y exist, return std::nullopt,
 /// (c) if exactly one of X and Y exists, return that value.
 static std::optional<APInt> MinOptional(std::optional<APInt> X,

                                        std::optional<APInt> Y) {
  if (X && Y) {
    unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
    APInt XW = X->sext(W);
    APInt YW = Y->sext(W);
    return XW.slt(YW) ? *X : *Y;
  }
  if (!X && !Y)
    return std::nullopt;
  return X ? *X : *Y;

}

/// Helper function to truncate an optional APInt to a given BitWidth.
 /// When solving addrec-related equations, it is preferable to return a value
 /// that has the same bit width as the original addrec's coefficients. If the
 /// solution fits in the original bit width, truncate it (except for i1).
 /// Returning a value of a different bit width may inhibit some optimizations.
 ///
 /// In general, a solution to a quadratic equation generated from an addrec
 /// may require BW+1 bits, where BW is the bit width of the addrec's
 /// coefficients. The reason is that the coefficients of the quadratic
 /// equation are BW+1 bits wide (to avoid truncation when converting from
 /// the addrec to the equation).
 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,

                                            unsigned BitWidth) {
  if (!X)
    return std::nullopt;
  unsigned W = X->getBitWidth();
  if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
    return X->trunc(BitWidth);
  return X;

}

/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
 /// iterations. The values L, M, N are assumed to be signed, and they
 /// should all have the same bit widths.
 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
 /// where BW is the bit width of the addrec's coefficients.
 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
 /// returned as such, otherwise the bit width of the returned value may
 /// be greater than BW.
 ///
 /// This function returns std::nullopt if
 /// (a) the addrec coefficients are not constant, or
 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
 static std::optional<APInt>
 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {

  APInt A, B, C, M;
  unsigned BitWidth;
  auto T = GetQuadraticEquation(AddRec);
  if (!T)
    return std::nullopt;
   
  std::tie(A, B, C, M, BitWidth) = *T;
  LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
  std::optional<APInt> X =
      APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
  if (!X)
    return std::nullopt;
   
  ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
  ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
  if (!V->isZero())
    return std::nullopt;
   
  return TruncIfPossible(X, BitWidth);

}

/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
 /// iterations. The values M, N are assumed to be signed, and they
 /// should all have the same bit widths.
 /// Find the least n such that c(n) does not belong to the given range,
 /// while c(n-1) does.
 ///
 /// This function returns std::nullopt if
 /// (a) the addrec coefficients are not constant, or
 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
 ///     bounds of the range.
 static std::optional<APInt>
 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,

                          const ConstantRange &Range, ScalarEvolution &SE) {
  assert(AddRec->getOperand(0)->isZero() &&
         "Starting value of addrec should be 0");
  LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
                    << Range << ", addrec " << *AddRec << '\n');
  // This case is handled in getNumIterationsInRange. Here we can assume that
  // we start in the range.
  assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
         "Addrec's initial value should be in range");
   
  APInt A, B, C, M;
  unsigned BitWidth;
  auto T = GetQuadraticEquation(AddRec);
  if (!T)
    return std::nullopt;
   
  // Be careful about the return value: there can be two reasons for not
  // returning an actual number. First, if no solutions to the equations
  // were found, and second, if the solutions don't leave the given range.
  // The first case means that the actual solution is "unknown", the second
  // means that it's known, but not valid. If the solution is unknown, we
  // cannot make any conclusions.
  // Return a pair: the optional solution and a flag indicating if the
  // solution was found.
  auto SolveForBoundary =
      [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
    // Solve for signed overflow and unsigned overflow, pick the lower
    // solution.
    LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
                      << Bound << " (before multiplying by " << M << ")\n");
    Bound *= M; // The quadratic equation multiplier.
   
    std::optional<APInt> SO;
    if (BitWidth > 1) {
      LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
                           "signed overflow\n");
      SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
    }
    LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
                         "unsigned overflow\n");
    std::optional<APInt> UO =
        APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
   
    auto LeavesRange = [&] (const APInt &X) {
      ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
      ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
      if (Range.contains(V0->getValue()))
        return false;
      // X should be at least 1, so X-1 is non-negative.
      ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
      ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
      if (Range.contains(V1->getValue()))
        return true;
      return false;
    };
   
    // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
    // can be a solution, but the function failed to find it. We cannot treat it
    // as "no solution".
    if (!SO || !UO)
      return {std::nullopt, false};
   
    // Check the smaller value first to see if it leaves the range.
    // At this point, both SO and UO must have values.
    std::optional<APInt> Min = MinOptional(SO, UO);
    if (LeavesRange(*Min))
      return { Min, true };
    std::optional<APInt> Max = Min == SO ? UO : SO;
    if (LeavesRange(*Max))
      return { Max, true };
   
    // Solutions were found, but were eliminated, hence the "true".
    return {std::nullopt, true};
  };
   
  std::tie(A, B, C, M, BitWidth) = *T;
  // Lower bound is inclusive, subtract 1 to represent the exiting value.
  APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
  APInt Upper = Range.getUpper().sext(A.getBitWidth());
  auto SL = SolveForBoundary(Lower);
  auto SU = SolveForBoundary(Upper);
  // If any of the solutions was unknown, no meaninigful conclusions can
  // be made.
  if (!SL.second || !SU.second)
    return std::nullopt;
   
  // Claim: The correct solution is not some value between Min and Max.
  //
  // Justification: Assuming that Min and Max are different values, one of
  // them is when the first signed overflow happens, the other is when the
  // first unsigned overflow happens. Crossing the range boundary is only
  // possible via an overflow (treating 0 as a special case of it, modeling
  // an overflow as crossing k*2^W for some k).
  //
  // The interesting case here is when Min was eliminated as an invalid
  // solution, but Max was not. The argument is that if there was another
  // overflow between Min and Max, it would also have been eliminated if
  // it was considered.
  //
  // For a given boundary, it is possible to have two overflows of the same
  // type (signed/unsigned) without having the other type in between: this
  // can happen when the vertex of the parabola is between the iterations
  // corresponding to the overflows. This is only possible when the two
  // overflows cross k*2^W for the same k. In such case, if the second one
  // left the range (and was the first one to do so), the first overflow
  // would have to enter the range, which would mean that either we had left
  // the range before or that we started outside of it. Both of these cases
  // are contradictions.
  //
  // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
  // solution is not some value between the Max for this boundary and the
  // Min of the other boundary.
  //
  // Justification: Assume that we had such Max_A and Min_B corresponding
  // to range boundaries A and B and such that Max_A < Min_B. If there was
  // a solution between Max_A and Min_B, it would have to be caused by an
  // overflow corresponding to either A or B. It cannot correspond to B,
  // since Min_B is the first occurrence of such an overflow. If it
  // corresponded to A, it would have to be either a signed or an unsigned
  // overflow that is larger than both eliminated overflows for A. But
  // between the eliminated overflows and this overflow, the values would
  // cover the entire value space, thus crossing the other boundary, which
  // is a contradiction.
   
  return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);

}

ScalarEvolution::ExitLimit
 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,

                              bool AllowPredicates) {
   
  // This is only used for loops with a "x != y" exit test. The exit condition
  // is now expressed as a single expression, V = x-y. So the exit test is
  // effectively V != 0.  We know and take advantage of the fact that this
  // expression only being used in a comparison by zero context.
   
  SmallPtrSet<const SCEVPredicate *, 4> Predicates;
  // If the value is a constant
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
    // If the value is already zero, the branch will execute zero times.
    if (C->getValue()->isZero()) return C;
    return getCouldNotCompute();  // Otherwise it will loop infinitely.
  }
   
  const…
(This email was truncated at 524288 bytes.)
-------------- next part --------------
A non-text attachment was scrubbed...
Name: D140456.484463.patch
Type: text/x-patch
Size: 4836 bytes
Desc: not available
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20221221/26c1eb65/attachment-0001.bin>


More information about the llvm-commits mailing list