[llvm] 8cc3bfd - [NFC] Fix indentation in ValueTracking.h.

Justin Lebar via llvm-commits llvm-commits at lists.llvm.org
Fri Sep 16 10:47:46 PDT 2022


Author: Justin Lebar
Date: 2022-09-16T10:46:23-07:00
New Revision: 8cc3bfd13f3135985e5b15ee65f2fc43239fb9fe

URL: https://github.com/llvm/llvm-project/commit/8cc3bfd13f3135985e5b15ee65f2fc43239fb9fe
DIFF: https://github.com/llvm/llvm-project/commit/8cc3bfd13f3135985e5b15ee65f2fc43239fb9fe.diff

LOG: [NFC] Fix indentation in ValueTracking.h.

In a separate patch I want to modify ValueTracking.h.  When I touch the
header, arc wants to clang-format the lines I touch (reasonable!).  But
then these whitespace changes get mixed into my patch.

Added: 
    

Modified: 
    llvm/include/llvm/Analysis/ValueTracking.h

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/Analysis/ValueTracking.h b/llvm/include/llvm/Analysis/ValueTracking.h
index 7cb1a91d8c936..249e3601ce17f 100644
--- a/llvm/include/llvm/Analysis/ValueTracking.h
+++ b/llvm/include/llvm/Analysis/ValueTracking.h
@@ -46,822 +46,807 @@ class Value;
 
 constexpr unsigned MaxAnalysisRecursionDepth = 6;
 
-  /// Determine which bits of V are known to be either zero or one and return
-  /// them in the KnownZero/KnownOne bit sets.
-  ///
-  /// This function is defined on values with integer type, values with pointer
-  /// type, and vectors of integers.  In the case
-  /// where V is a vector, the known zero and known one values are the
-  /// same width as the vector element, and the bit is set only if it is true
-  /// for all of the elements in the vector.
-  void computeKnownBits(const Value *V, KnownBits &Known,
-                        const DataLayout &DL, unsigned Depth = 0,
-                        AssumptionCache *AC = nullptr,
-                        const Instruction *CxtI = nullptr,
-                        const DominatorTree *DT = nullptr,
-                        OptimizationRemarkEmitter *ORE = nullptr,
-                        bool UseInstrInfo = true);
-
-  /// Determine which bits of V are known to be either zero or one and return
-  /// them in the KnownZero/KnownOne bit sets.
-  ///
-  /// This function is defined on values with integer type, values with pointer
-  /// type, and vectors of integers.  In the case
-  /// where V is a vector, the known zero and known one values are the
-  /// same width as the vector element, and the bit is set only if it is true
-  /// for all of the demanded elements in the vector.
-  void computeKnownBits(const Value *V, const APInt &DemandedElts,
-                        KnownBits &Known, const DataLayout &DL,
-                        unsigned Depth = 0, AssumptionCache *AC = nullptr,
-                        const Instruction *CxtI = nullptr,
-                        const DominatorTree *DT = nullptr,
-                        OptimizationRemarkEmitter *ORE = nullptr,
-                        bool UseInstrInfo = true);
-
-  /// Returns the known bits rather than passing by reference.
-  KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
-                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
-                             const Instruction *CxtI = nullptr,
-                             const DominatorTree *DT = nullptr,
-                             OptimizationRemarkEmitter *ORE = nullptr,
-                             bool UseInstrInfo = true);
-
-  /// Returns the known bits rather than passing by reference.
-  KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
-                             const DataLayout &DL, unsigned Depth = 0,
-                             AssumptionCache *AC = nullptr,
-                             const Instruction *CxtI = nullptr,
-                             const DominatorTree *DT = nullptr,
-                             OptimizationRemarkEmitter *ORE = nullptr,
-                             bool UseInstrInfo = true);
-
-  /// Compute known bits from the range metadata.
-  /// \p KnownZero the set of bits that are known to be zero
-  /// \p KnownOne the set of bits that are known to be one
-  void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
-                                         KnownBits &Known);
-
-  /// Return true if LHS and RHS have no common bits set.
-  bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
-                           const DataLayout &DL,
-                           AssumptionCache *AC = nullptr,
-                           const Instruction *CxtI = nullptr,
-                           const DominatorTree *DT = nullptr,
-                           bool UseInstrInfo = true);
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bit sets.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers.  In the case
+/// where V is a vector, the known zero and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
+                      unsigned Depth = 0, AssumptionCache *AC = nullptr,
+                      const Instruction *CxtI = nullptr,
+                      const DominatorTree *DT = nullptr,
+                      OptimizationRemarkEmitter *ORE = nullptr,
+                      bool UseInstrInfo = true);
 
-  /// Return true if the given value is known to have exactly one bit set when
-  /// defined. For vectors return true if every element is known to be a power
-  /// of two when defined. Supports values with integer or pointer type and
-  /// vectors of integers. If 'OrZero' is set, then return true if the given
-  /// value is either a power of two or zero.
-  bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
-                              bool OrZero = false, unsigned Depth = 0,
-                              AssumptionCache *AC = nullptr,
-                              const Instruction *CxtI = nullptr,
-                              const DominatorTree *DT = nullptr,
-                              bool UseInstrInfo = true);
-
-  bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
-
-  /// Return true if the given value is known to be non-zero when defined. For
-  /// vectors, return true if every element is known to be non-zero when
-  /// defined. For pointers, if the context instruction and dominator tree are
-  /// specified, perform context-sensitive analysis and return true if the
-  /// pointer couldn't possibly be null at the specified instruction.
-  /// Supports values with integer or pointer type and vectors of integers.
-  bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
-                      AssumptionCache *AC = nullptr,
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bit sets.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers.  In the case
+/// where V is a vector, the known zero and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the demanded elements in the vector.
+void computeKnownBits(const Value *V, const APInt &DemandedElts,
+                      KnownBits &Known, const DataLayout &DL,
+                      unsigned Depth = 0, AssumptionCache *AC = nullptr,
                       const Instruction *CxtI = nullptr,
                       const DominatorTree *DT = nullptr,
+                      OptimizationRemarkEmitter *ORE = nullptr,
                       bool UseInstrInfo = true);
 
-  /// Return true if the two given values are negation.
-  /// Currently can recoginze Value pair:
-  /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
-  /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
-  bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
-
-  /// Returns true if the give value is known to be non-negative.
-  bool isKnownNonNegative(const Value *V, const DataLayout &DL,
-                          unsigned Depth = 0,
-                          AssumptionCache *AC = nullptr,
-                          const Instruction *CxtI = nullptr,
-                          const DominatorTree *DT = nullptr,
-                          bool UseInstrInfo = true);
-
-  /// Returns true if the given value is known be positive (i.e. non-negative
-  /// and non-zero).
-  bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
-                       AssumptionCache *AC = nullptr,
-                       const Instruction *CxtI = nullptr,
-                       const DominatorTree *DT = nullptr,
-                       bool UseInstrInfo = true);
+/// Returns the known bits rather than passing by reference.
+KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
+                           unsigned Depth = 0, AssumptionCache *AC = nullptr,
+                           const Instruction *CxtI = nullptr,
+                           const DominatorTree *DT = nullptr,
+                           OptimizationRemarkEmitter *ORE = nullptr,
+                           bool UseInstrInfo = true);
 
-  /// Returns true if the given value is known be negative (i.e. non-positive
-  /// and non-zero).
-  bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
-                       AssumptionCache *AC = nullptr,
-                       const Instruction *CxtI = nullptr,
-                       const DominatorTree *DT = nullptr,
-                       bool UseInstrInfo = true);
+/// Returns the known bits rather than passing by reference.
+KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
+                           const DataLayout &DL, unsigned Depth = 0,
+                           AssumptionCache *AC = nullptr,
+                           const Instruction *CxtI = nullptr,
+                           const DominatorTree *DT = nullptr,
+                           OptimizationRemarkEmitter *ORE = nullptr,
+                           bool UseInstrInfo = true);
 
-  /// Return true if the given values are known to be non-equal when defined.
-  /// Supports scalar integer types only.
-  bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
-                       AssumptionCache *AC = nullptr,
-                       const Instruction *CxtI = nullptr,
-                       const DominatorTree *DT = nullptr,
-                       bool UseInstrInfo = true);
+/// Compute known bits from the range metadata.
+/// \p KnownZero the set of bits that are known to be zero
+/// \p KnownOne the set of bits that are known to be one
+void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
 
-  /// Return true if 'V & Mask' is known to be zero. We use this predicate to
-  /// simplify operations downstream. Mask is known to be zero for bits that V
-  /// cannot have.
-  ///
-  /// This function is defined on values with integer type, values with pointer
-  /// type, and vectors of integers.  In the case
-  /// where V is a vector, the mask, known zero, and known one values are the
-  /// same width as the vector element, and the bit is set only if it is true
-  /// for all of the elements in the vector.
-  bool MaskedValueIsZero(const Value *V, const APInt &Mask,
-                         const DataLayout &DL,
-                         unsigned Depth = 0, AssumptionCache *AC = nullptr,
+/// Return true if LHS and RHS have no common bits set.
+bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
+                         const DataLayout &DL, AssumptionCache *AC = nullptr,
                          const Instruction *CxtI = nullptr,
                          const DominatorTree *DT = nullptr,
                          bool UseInstrInfo = true);
 
-  /// Return the number of times the sign bit of the register is replicated into
-  /// the other bits. We know that at least 1 bit is always equal to the sign
-  /// bit (itself), but other cases can give us information. For example,
-  /// immediately after an "ashr X, 2", we know that the top 3 bits are all
-  /// equal to each other, so we return 3. For vectors, return the number of
-  /// sign bits for the vector element with the mininum number of known sign
-  /// bits.
-  unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
-                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
-                              const Instruction *CxtI = nullptr,
-                              const DominatorTree *DT = nullptr,
-                              bool UseInstrInfo = true);
-
-  /// Get the upper bound on bit size for this Value \p Op as a signed integer.
-  /// i.e.  x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
-  /// Similar to the APInt::getSignificantBits function.
-  unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
-                                     unsigned Depth = 0,
-                                     AssumptionCache *AC = nullptr,
-                                     const Instruction *CxtI = nullptr,
-                                     const DominatorTree *DT = nullptr);
-
-  /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
-  /// intrinsics are treated as-if they were intrinsics.
-  Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
-                                        const TargetLibraryInfo *TLI);
-
-  /// Return true if we can prove that the specified FP value is never equal to
-  /// -0.0.
-  bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
-                            unsigned Depth = 0);
-
-  /// Return true if we can prove that the specified FP value is either NaN or
-  /// never less than -0.0.
-  ///
-  ///      NaN --> true
-  ///       +0 --> true
-  ///       -0 --> true
-  ///   x > +0 --> true
-  ///   x < -0 --> false
-  bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
-
-  /// Return true if the floating-point scalar value is not an infinity or if
-  /// the floating-point vector value has no infinities. Return false if a value
-  /// could ever be infinity.
-  bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
-                            unsigned Depth = 0);
-
-  /// Return true if the floating-point scalar value is not a NaN or if the
-  /// floating-point vector value has no NaN elements. Return false if a value
-  /// could ever be NaN.
-  bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
-                       unsigned Depth = 0);
-
-  /// Return true if we can prove that the specified FP value's sign bit is 0.
-  ///
-  ///      NaN --> true/false (depending on the NaN's sign bit)
-  ///       +0 --> true
-  ///       -0 --> false
-  ///   x > +0 --> true
-  ///   x < -0 --> false
-  bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
-
-  /// If the specified value can be set by repeating the same byte in memory,
-  /// return the i8 value that it is represented with. This is true for all i8
-  /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
-  /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
-  /// i16 0x1234), return null. If the value is entirely undef and padding,
-  /// return undef.
-  Value *isBytewiseValue(Value *V, const DataLayout &DL);
-
-  /// Given an aggregate and an sequence of indices, see if the scalar value
-  /// indexed is already around as a register, for example if it were inserted
-  /// directly into the aggregate.
-  ///
-  /// If InsertBefore is not null, this function will duplicate (modified)
-  /// insertvalues when a part of a nested struct is extracted.
-  Value *FindInsertedValue(Value *V,
-                           ArrayRef<unsigned> idx_range,
-                           Instruction *InsertBefore = nullptr);
-
-  /// Analyze the specified pointer to see if it can be expressed as a base
-  /// pointer plus a constant offset. Return the base and offset to the caller.
-  ///
-  /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
-  /// creates and later unpacks the required APInt.
-  inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
-                                                 const DataLayout &DL,
-                                                 bool AllowNonInbounds = true) {
-    APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
-    Value *Base =
-        Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
-
-    Offset = OffsetAPInt.getSExtValue();
-    return Base;
-  }
-  inline const Value *
-  GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
-                                   const DataLayout &DL,
-                                   bool AllowNonInbounds = true) {
-    return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
-                                            AllowNonInbounds);
-  }
+/// Return true if the given value is known to have exactly one bit set when
+/// defined. For vectors return true if every element is known to be a power
+/// of two when defined. Supports values with integer or pointer type and
+/// vectors of integers. If 'OrZero' is set, then return true if the given
+/// value is either a power of two or zero.
+bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
+                            bool OrZero = false, unsigned Depth = 0,
+                            AssumptionCache *AC = nullptr,
+                            const Instruction *CxtI = nullptr,
+                            const DominatorTree *DT = nullptr,
+                            bool UseInstrInfo = true);
+
+bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
+
+/// Return true if the given value is known to be non-zero when defined. For
+/// vectors, return true if every element is known to be non-zero when
+/// defined. For pointers, if the context instruction and dominator tree are
+/// specified, perform context-sensitive analysis and return true if the
+/// pointer couldn't possibly be null at the specified instruction.
+/// Supports values with integer or pointer type and vectors of integers.
+bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
+                    AssumptionCache *AC = nullptr,
+                    const Instruction *CxtI = nullptr,
+                    const DominatorTree *DT = nullptr,
+                    bool UseInstrInfo = true);
+
+/// Return true if the two given values are negation.
+/// Currently can recoginze Value pair:
+/// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
+/// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
+bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
+
+/// Returns true if the give value is known to be non-negative.
+bool isKnownNonNegative(const Value *V, const DataLayout &DL,
+                        unsigned Depth = 0, AssumptionCache *AC = nullptr,
+                        const Instruction *CxtI = nullptr,
+                        const DominatorTree *DT = nullptr,
+                        bool UseInstrInfo = true);
 
-  /// Returns true if the GEP is based on a pointer to a string (array of
-  // \p CharSize integers) and is indexing into this string.
-  bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
-                                   unsigned CharSize = 8);
-
-  /// Represents offset+length into a ConstantDataArray.
-  struct ConstantDataArraySlice {
-    /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
-    /// initializer, it just doesn't fit the ConstantDataArray interface).
-    const ConstantDataArray *Array;
-
-    /// Slice starts at this Offset.
-    uint64_t Offset;
-
-    /// Length of the slice.
-    uint64_t Length;
-
-    /// Moves the Offset and adjusts Length accordingly.
-    void move(uint64_t Delta) {
-      assert(Delta < Length);
-      Offset += Delta;
-      Length -= Delta;
-    }
-
-    /// Convenience accessor for elements in the slice.
-    uint64_t operator[](unsigned I) const {
-      return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
-    }
-  };
-
-  /// Returns true if the value \p V is a pointer into a ConstantDataArray.
-  /// If successful \p Slice will point to a ConstantDataArray info object
-  /// with an appropriate offset.
-  bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
-                                unsigned ElementSize, uint64_t Offset = 0);
-
-  /// This function computes the length of a null-terminated C string pointed to
-  /// by V. If successful, it returns true and returns the string in Str. If
-  /// unsuccessful, it returns false. This does not include the trailing null
-  /// character by default. If TrimAtNul is set to false, then this returns any
-  /// trailing null characters as well as any other characters that come after
-  /// it.
-  bool getConstantStringInfo(const Value *V, StringRef &Str,
-                             uint64_t Offset = 0, bool TrimAtNul = true);
-
-  /// If we can compute the length of the string pointed to by the specified
-  /// pointer, return 'len+1'.  If we can't, return 0.
-  uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
-
-  /// This function returns call pointer argument that is considered the same by
-  /// aliasing rules. You CAN'T use it to replace one value with another. If
-  /// \p MustPreserveNullness is true, the call must preserve the nullness of
-  /// the pointer.
-  const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
-                                                    bool MustPreserveNullness);
-  inline Value *
-  getArgumentAliasingToReturnedPointer(CallBase *Call,
-                                       bool MustPreserveNullness) {
-    return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
-        const_cast<const CallBase *>(Call), MustPreserveNullness));
-  }
+/// Returns true if the given value is known be positive (i.e. non-negative
+/// and non-zero).
+bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
+                     AssumptionCache *AC = nullptr,
+                     const Instruction *CxtI = nullptr,
+                     const DominatorTree *DT = nullptr,
+                     bool UseInstrInfo = true);
+
+/// Returns true if the given value is known be negative (i.e. non-positive
+/// and non-zero).
+bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
+                     AssumptionCache *AC = nullptr,
+                     const Instruction *CxtI = nullptr,
+                     const DominatorTree *DT = nullptr,
+                     bool UseInstrInfo = true);
+
+/// Return true if the given values are known to be non-equal when defined.
+/// Supports scalar integer types only.
+bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
+                     AssumptionCache *AC = nullptr,
+                     const Instruction *CxtI = nullptr,
+                     const DominatorTree *DT = nullptr,
+                     bool UseInstrInfo = true);
+
+/// Return true if 'V & Mask' is known to be zero. We use this predicate to
+/// simplify operations downstream. Mask is known to be zero for bits that V
+/// cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers.  In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL,
+                       unsigned Depth = 0, AssumptionCache *AC = nullptr,
+                       const Instruction *CxtI = nullptr,
+                       const DominatorTree *DT = nullptr,
+                       bool UseInstrInfo = true);
 
-  /// {launder,strip}.invariant.group returns pointer that aliases its argument,
-  /// and it only captures pointer by returning it.
-  /// These intrinsics are not marked as nocapture, because returning is
-  /// considered as capture. The arguments are not marked as returned neither,
-  /// because it would make it useless. If \p MustPreserveNullness is true,
-  /// the intrinsic must preserve the nullness of the pointer.
-  bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
-      const CallBase *Call, bool MustPreserveNullness);
-
-  /// This method strips off any GEP address adjustments and pointer casts from
-  /// the specified value, returning the original object being addressed. Note
-  /// that the returned value has pointer type if the specified value does. If
-  /// the MaxLookup value is non-zero, it limits the number of instructions to
-  /// be stripped off.
-  const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
-  inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
-    // Force const to avoid infinite recursion.
-    const Value *VConst = V;
-    return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
+/// Return the number of times the sign bit of the register is replicated into
+/// the other bits. We know that at least 1 bit is always equal to the sign
+/// bit (itself), but other cases can give us information. For example,
+/// immediately after an "ashr X, 2", we know that the top 3 bits are all
+/// equal to each other, so we return 3. For vectors, return the number of
+/// sign bits for the vector element with the mininum number of known sign
+/// bits.
+unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
+                            unsigned Depth = 0, AssumptionCache *AC = nullptr,
+                            const Instruction *CxtI = nullptr,
+                            const DominatorTree *DT = nullptr,
+                            bool UseInstrInfo = true);
+
+/// Get the upper bound on bit size for this Value \p Op as a signed integer.
+/// i.e.  x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
+/// Similar to the APInt::getSignificantBits function.
+unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
+                                   unsigned Depth = 0,
+                                   AssumptionCache *AC = nullptr,
+                                   const Instruction *CxtI = nullptr,
+                                   const DominatorTree *DT = nullptr);
+
+/// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
+/// intrinsics are treated as-if they were intrinsics.
+Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
+                                      const TargetLibraryInfo *TLI);
+
+/// Return true if we can prove that the specified FP value is never equal to
+/// -0.0.
+bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
+                          unsigned Depth = 0);
+
+/// Return true if we can prove that the specified FP value is either NaN or
+/// never less than -0.0.
+///
+///      NaN --> true
+///       +0 --> true
+///       -0 --> true
+///   x > +0 --> true
+///   x < -0 --> false
+bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
+
+/// Return true if the floating-point scalar value is not an infinity or if
+/// the floating-point vector value has no infinities. Return false if a value
+/// could ever be infinity.
+bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
+                          unsigned Depth = 0);
+
+/// Return true if the floating-point scalar value is not a NaN or if the
+/// floating-point vector value has no NaN elements. Return false if a value
+/// could ever be NaN.
+bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
+                     unsigned Depth = 0);
+
+/// Return true if we can prove that the specified FP value's sign bit is 0.
+///
+///      NaN --> true/false (depending on the NaN's sign bit)
+///       +0 --> true
+///       -0 --> false
+///   x > +0 --> true
+///   x < -0 --> false
+bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
+
+/// If the specified value can be set by repeating the same byte in memory,
+/// return the i8 value that it is represented with. This is true for all i8
+/// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
+/// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
+/// i16 0x1234), return null. If the value is entirely undef and padding,
+/// return undef.
+Value *isBytewiseValue(Value *V, const DataLayout &DL);
+
+/// Given an aggregate and an sequence of indices, see if the scalar value
+/// indexed is already around as a register, for example if it were inserted
+/// directly into the aggregate.
+///
+/// If InsertBefore is not null, this function will duplicate (modified)
+/// insertvalues when a part of a nested struct is extracted.
+Value *FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
+                         Instruction *InsertBefore = nullptr);
+
+/// Analyze the specified pointer to see if it can be expressed as a base
+/// pointer plus a constant offset. Return the base and offset to the caller.
+///
+/// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
+/// creates and later unpacks the required APInt.
+inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
+                                               const DataLayout &DL,
+                                               bool AllowNonInbounds = true) {
+  APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
+  Value *Base =
+      Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
+
+  Offset = OffsetAPInt.getSExtValue();
+  return Base;
+}
+inline const Value *
+GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
+                                 const DataLayout &DL,
+                                 bool AllowNonInbounds = true) {
+  return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
+                                          AllowNonInbounds);
+}
+
+/// Returns true if the GEP is based on a pointer to a string (array of
+// \p CharSize integers) and is indexing into this string.
+bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
+
+/// Represents offset+length into a ConstantDataArray.
+struct ConstantDataArraySlice {
+  /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
+  /// initializer, it just doesn't fit the ConstantDataArray interface).
+  const ConstantDataArray *Array;
+
+  /// Slice starts at this Offset.
+  uint64_t Offset;
+
+  /// Length of the slice.
+  uint64_t Length;
+
+  /// Moves the Offset and adjusts Length accordingly.
+  void move(uint64_t Delta) {
+    assert(Delta < Length);
+    Offset += Delta;
+    Length -= Delta;
   }
 
-  /// This method is similar to getUnderlyingObject except that it can
-  /// look through phi and select instructions and return multiple objects.
-  ///
-  /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
-  /// accesses 
diff erent objects in each iteration, we don't look through the
-  /// phi node. E.g. consider this loop nest:
-  ///
-  ///   int **A;
-  ///   for (i)
-  ///     for (j) {
-  ///        A[i][j] = A[i-1][j] * B[j]
-  ///     }
-  ///
-  /// This is transformed by Load-PRE to stash away A[i] for the next iteration
-  /// of the outer loop:
-  ///
-  ///   Curr = A[0];          // Prev_0
-  ///   for (i: 1..N) {
-  ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
-  ///     Curr = A[i];
-  ///     for (j: 0..N) {
-  ///        Curr[j] = Prev[j] * B[j]
-  ///     }
-  ///   }
-  ///
-  /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
-  /// should not assume that Curr and Prev share the same underlying object thus
-  /// it shouldn't look through the phi above.
-  void getUnderlyingObjects(const Value *V,
-                            SmallVectorImpl<const Value *> &Objects,
-                            LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
-
-  /// This is a wrapper around getUnderlyingObjects and adds support for basic
-  /// ptrtoint+arithmetic+inttoptr sequences.
-  bool getUnderlyingObjectsForCodeGen(const Value *V,
-                                      SmallVectorImpl<Value *> &Objects);
-
-  /// Returns unique alloca where the value comes from, or nullptr.
-  /// If OffsetZero is true check that V points to the begining of the alloca.
-  AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
-  inline const AllocaInst *findAllocaForValue(const Value *V,
-                                              bool OffsetZero = false) {
-    return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
+  /// Convenience accessor for elements in the slice.
+  uint64_t operator[](unsigned I) const {
+    return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
   }
-
-  /// Return true if the only users of this pointer are lifetime markers.
-  bool onlyUsedByLifetimeMarkers(const Value *V);
-
-  /// Return true if the only users of this pointer are lifetime markers or
-  /// droppable instructions.
-  bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
-
-  /// Return true if speculation of the given load must be suppressed to avoid
-  /// ordering or interfering with an active sanitizer.  If not suppressed,
-  /// dereferenceability and alignment must be proven separately.  Note: This
-  /// is only needed for raw reasoning; if you use the interface below
-  /// (isSafeToSpeculativelyExecute), this is handled internally.
-  bool mustSuppressSpeculation(const LoadInst &LI);
-
-  /// Return true if the instruction does not have any effects besides
-  /// calculating the result and does not have undefined behavior.
-  ///
-  /// This method never returns true for an instruction that returns true for
-  /// mayHaveSideEffects; however, this method also does some other checks in
-  /// addition. It checks for undefined behavior, like dividing by zero or
-  /// loading from an invalid pointer (but not for undefined results, like a
-  /// shift with a shift amount larger than the width of the result). It checks
-  /// for malloc and alloca because speculatively executing them might cause a
-  /// memory leak. It also returns false for instructions related to control
-  /// flow, specifically terminators and PHI nodes.
-  ///
-  /// If the CtxI is specified this method performs context-sensitive analysis
-  /// and returns true if it is safe to execute the instruction immediately
-  /// before the CtxI.
-  ///
-  /// If the CtxI is NOT specified this method only looks at the instruction
-  /// itself and its operands, so if this method returns true, it is safe to
-  /// move the instruction as long as the correct dominance relationships for
-  /// the operands and users hold.
-  ///
-  /// This method can return true for instructions that read memory;
-  /// for such instructions, moving them may change the resulting value.
-  bool isSafeToSpeculativelyExecute(const Instruction *I,
-                                    const Instruction *CtxI = nullptr,
-                                    const DominatorTree *DT = nullptr,
-                                    const TargetLibraryInfo *TLI = nullptr);
-
-  /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
-  /// the actual opcode of Inst. If the provided and actual opcode 
diff er, the
-  /// function (virtually) overrides the opcode of Inst with the provided
-  /// Opcode. There are come constraints in this case:
-  /// * If Opcode has a fixed number of operands (eg, as binary operators do),
-  ///   then Inst has to have at least as many leading operands. The function
-  ///   will ignore all trailing operands beyond that number.
-  /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
-  ///   do), then all operands are considered.
-  /// * The virtual instruction has to satisfy all typing rules of the provided
-  ///   Opcode.
-  /// * This function is pessimistic in the following sense: If one actually
-  ///   materialized the virtual instruction, then isSafeToSpeculativelyExecute
-  ///   may say that the materialized instruction is speculatable whereas this
-  ///   function may have said that the instruction wouldn't be speculatable.
-  ///   This behavior is a shortcoming in the current implementation and not
-  ///   intentional.
-  bool isSafeToSpeculativelyExecuteWithOpcode(
-      unsigned Opcode, const Instruction *Inst,
-      const Instruction *CtxI = nullptr, const DominatorTree *DT = nullptr,
-      const TargetLibraryInfo *TLI = nullptr);
-
-  /// Returns true if the result or effects of the given instructions \p I
-  /// depend values not reachable through the def use graph.
-  /// * Memory dependence arises for example if the instruction reads from
-  ///   memory or may produce effects or undefined behaviour. Memory dependent
-  ///   instructions generally cannot be reorderd with respect to other memory
-  ///   dependent instructions.
-  /// * Control dependence arises for example if the instruction may fault
-  ///   if lifted above a throwing call or infinite loop.
-  bool mayHaveNonDefUseDependency(const Instruction &I);
-
-  /// Return true if it is an intrinsic that cannot be speculated but also
-  /// cannot trap.
-  bool isAssumeLikeIntrinsic(const Instruction *I);
-
-  /// Return true if it is valid to use the assumptions provided by an
-  /// assume intrinsic, I, at the point in the control-flow identified by the
-  /// context instruction, CxtI.
-  bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
-                               const DominatorTree *DT = nullptr);
-
-  enum class OverflowResult {
-    /// Always overflows in the direction of signed/unsigned min value.
-    AlwaysOverflowsLow,
-    /// Always overflows in the direction of signed/unsigned max value.
-    AlwaysOverflowsHigh,
-    /// May or may not overflow.
-    MayOverflow,
-    /// Never overflows.
-    NeverOverflows,
-  };
-
-  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
-                                               const Value *RHS,
-                                               const DataLayout &DL,
-                                               AssumptionCache *AC,
-                                               const Instruction *CxtI,
-                                               const DominatorTree *DT,
-                                               bool UseInstrInfo = true);
-  OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
+};
+
+/// Returns true if the value \p V is a pointer into a ConstantDataArray.
+/// If successful \p Slice will point to a ConstantDataArray info object
+/// with an appropriate offset.
+bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
+                              unsigned ElementSize, uint64_t Offset = 0);
+
+/// This function computes the length of a null-terminated C string pointed to
+/// by V. If successful, it returns true and returns the string in Str. If
+/// unsuccessful, it returns false. This does not include the trailing null
+/// character by default. If TrimAtNul is set to false, then this returns any
+/// trailing null characters as well as any other characters that come after
+/// it.
+bool getConstantStringInfo(const Value *V, StringRef &Str, uint64_t Offset = 0,
+                           bool TrimAtNul = true);
+
+/// If we can compute the length of the string pointed to by the specified
+/// pointer, return 'len+1'.  If we can't, return 0.
+uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
+
+/// This function returns call pointer argument that is considered the same by
+/// aliasing rules. You CAN'T use it to replace one value with another. If
+/// \p MustPreserveNullness is true, the call must preserve the nullness of
+/// the pointer.
+const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
+                                                  bool MustPreserveNullness);
+inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
+                                                   bool MustPreserveNullness) {
+  return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
+      const_cast<const CallBase *>(Call), MustPreserveNullness));
+}
+
+/// {launder,strip}.invariant.group returns pointer that aliases its argument,
+/// and it only captures pointer by returning it.
+/// These intrinsics are not marked as nocapture, because returning is
+/// considered as capture. The arguments are not marked as returned neither,
+/// because it would make it useless. If \p MustPreserveNullness is true,
+/// the intrinsic must preserve the nullness of the pointer.
+bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
+    const CallBase *Call, bool MustPreserveNullness);
+
+/// This method strips off any GEP address adjustments and pointer casts from
+/// the specified value, returning the original object being addressed. Note
+/// that the returned value has pointer type if the specified value does. If
+/// the MaxLookup value is non-zero, it limits the number of instructions to
+/// be stripped off.
+const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
+inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
+  // Force const to avoid infinite recursion.
+  const Value *VConst = V;
+  return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
+}
+
+/// This method is similar to getUnderlyingObject except that it can
+/// look through phi and select instructions and return multiple objects.
+///
+/// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
+/// accesses 
diff erent objects in each iteration, we don't look through the
+/// phi node. E.g. consider this loop nest:
+///
+///   int **A;
+///   for (i)
+///     for (j) {
+///        A[i][j] = A[i-1][j] * B[j]
+///     }
+///
+/// This is transformed by Load-PRE to stash away A[i] for the next iteration
+/// of the outer loop:
+///
+///   Curr = A[0];          // Prev_0
+///   for (i: 1..N) {
+///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
+///     Curr = A[i];
+///     for (j: 0..N) {
+///        Curr[j] = Prev[j] * B[j]
+///     }
+///   }
+///
+/// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
+/// should not assume that Curr and Prev share the same underlying object thus
+/// it shouldn't look through the phi above.
+void getUnderlyingObjects(const Value *V,
+                          SmallVectorImpl<const Value *> &Objects,
+                          LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
+
+/// This is a wrapper around getUnderlyingObjects and adds support for basic
+/// ptrtoint+arithmetic+inttoptr sequences.
+bool getUnderlyingObjectsForCodeGen(const Value *V,
+                                    SmallVectorImpl<Value *> &Objects);
+
+/// Returns unique alloca where the value comes from, or nullptr.
+/// If OffsetZero is true check that V points to the begining of the alloca.
+AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
+inline const AllocaInst *findAllocaForValue(const Value *V,
+                                            bool OffsetZero = false) {
+  return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
+}
+
+/// Return true if the only users of this pointer are lifetime markers.
+bool onlyUsedByLifetimeMarkers(const Value *V);
+
+/// Return true if the only users of this pointer are lifetime markers or
+/// droppable instructions.
+bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
+
+/// Return true if speculation of the given load must be suppressed to avoid
+/// ordering or interfering with an active sanitizer.  If not suppressed,
+/// dereferenceability and alignment must be proven separately.  Note: This
+/// is only needed for raw reasoning; if you use the interface below
+/// (isSafeToSpeculativelyExecute), this is handled internally.
+bool mustSuppressSpeculation(const LoadInst &LI);
+
+/// Return true if the instruction does not have any effects besides
+/// calculating the result and does not have undefined behavior.
+///
+/// This method never returns true for an instruction that returns true for
+/// mayHaveSideEffects; however, this method also does some other checks in
+/// addition. It checks for undefined behavior, like dividing by zero or
+/// loading from an invalid pointer (but not for undefined results, like a
+/// shift with a shift amount larger than the width of the result). It checks
+/// for malloc and alloca because speculatively executing them might cause a
+/// memory leak. It also returns false for instructions related to control
+/// flow, specifically terminators and PHI nodes.
+///
+/// If the CtxI is specified this method performs context-sensitive analysis
+/// and returns true if it is safe to execute the instruction immediately
+/// before the CtxI.
+///
+/// If the CtxI is NOT specified this method only looks at the instruction
+/// itself and its operands, so if this method returns true, it is safe to
+/// move the instruction as long as the correct dominance relationships for
+/// the operands and users hold.
+///
+/// This method can return true for instructions that read memory;
+/// for such instructions, moving them may change the resulting value.
+bool isSafeToSpeculativelyExecute(const Instruction *I,
+                                  const Instruction *CtxI = nullptr,
+                                  const DominatorTree *DT = nullptr,
+                                  const TargetLibraryInfo *TLI = nullptr);
+
+/// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
+/// the actual opcode of Inst. If the provided and actual opcode 
diff er, the
+/// function (virtually) overrides the opcode of Inst with the provided
+/// Opcode. There are come constraints in this case:
+/// * If Opcode has a fixed number of operands (eg, as binary operators do),
+///   then Inst has to have at least as many leading operands. The function
+///   will ignore all trailing operands beyond that number.
+/// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
+///   do), then all operands are considered.
+/// * The virtual instruction has to satisfy all typing rules of the provided
+///   Opcode.
+/// * This function is pessimistic in the following sense: If one actually
+///   materialized the virtual instruction, then isSafeToSpeculativelyExecute
+///   may say that the materialized instruction is speculatable whereas this
+///   function may have said that the instruction wouldn't be speculatable.
+///   This behavior is a shortcoming in the current implementation and not
+///   intentional.
+bool isSafeToSpeculativelyExecuteWithOpcode(
+    unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
+    const DominatorTree *DT = nullptr, const TargetLibraryInfo *TLI = nullptr);
+
+/// Returns true if the result or effects of the given instructions \p I
+/// depend values not reachable through the def use graph.
+/// * Memory dependence arises for example if the instruction reads from
+///   memory or may produce effects or undefined behaviour. Memory dependent
+///   instructions generally cannot be reorderd with respect to other memory
+///   dependent instructions.
+/// * Control dependence arises for example if the instruction may fault
+///   if lifted above a throwing call or infinite loop.
+bool mayHaveNonDefUseDependency(const Instruction &I);
+
+/// Return true if it is an intrinsic that cannot be speculated but also
+/// cannot trap.
+bool isAssumeLikeIntrinsic(const Instruction *I);
+
+/// Return true if it is valid to use the assumptions provided by an
+/// assume intrinsic, I, at the point in the control-flow identified by the
+/// context instruction, CxtI.
+bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
+                             const DominatorTree *DT = nullptr);
+
+enum class OverflowResult {
+  /// Always overflows in the direction of signed/unsigned min value.
+  AlwaysOverflowsLow,
+  /// Always overflows in the direction of signed/unsigned max value.
+  AlwaysOverflowsHigh,
+  /// May or may not overflow.
+  MayOverflow,
+  /// Never overflows.
+  NeverOverflows,
+};
+
+OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
                                              const DataLayout &DL,
                                              AssumptionCache *AC,
                                              const Instruction *CxtI,
                                              const DominatorTree *DT,
                                              bool UseInstrInfo = true);
-  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
-                                               const Value *RHS,
-                                               const DataLayout &DL,
-                                               AssumptionCache *AC,
-                                               const Instruction *CxtI,
-                                               const DominatorTree *DT,
-                                               bool UseInstrInfo = true);
-  OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
+OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
+                                           const DataLayout &DL,
+                                           AssumptionCache *AC,
+                                           const Instruction *CxtI,
+                                           const DominatorTree *DT,
+                                           bool UseInstrInfo = true);
+OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS,
                                              const DataLayout &DL,
-                                             AssumptionCache *AC = nullptr,
-                                             const Instruction *CxtI = nullptr,
-                                             const DominatorTree *DT = nullptr);
-  /// This version also leverages the sign bit of Add if known.
-  OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
-                                             const DataLayout &DL,
-                                             AssumptionCache *AC = nullptr,
-                                             const Instruction *CxtI = nullptr,
-                                             const DominatorTree *DT = nullptr);
-  OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
-                                               const DataLayout &DL,
-                                               AssumptionCache *AC,
-                                               const Instruction *CxtI,
-                                               const DominatorTree *DT);
-  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
+                                             AssumptionCache *AC,
+                                             const Instruction *CxtI,
+                                             const DominatorTree *DT,
+                                             bool UseInstrInfo = true);
+OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
+                                           const DataLayout &DL,
+                                           AssumptionCache *AC = nullptr,
+                                           const Instruction *CxtI = nullptr,
+                                           const DominatorTree *DT = nullptr);
+/// This version also leverages the sign bit of Add if known.
+OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
+                                           const DataLayout &DL,
+                                           AssumptionCache *AC = nullptr,
+                                           const Instruction *CxtI = nullptr,
+                                           const DominatorTree *DT = nullptr);
+OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
                                              const DataLayout &DL,
                                              AssumptionCache *AC,
                                              const Instruction *CxtI,
                                              const DominatorTree *DT);
-
-  /// Returns true if the arithmetic part of the \p WO 's result is
-  /// used only along the paths control dependent on the computation
-  /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
-  bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
-                                 const DominatorTree &DT);
-
-
-  /// Determine the possible constant range of an integer or vector of integer
-  /// value. This is intended as a cheap, non-recursive check.
-  ConstantRange computeConstantRange(const Value *V, bool ForSigned,
-                                     bool UseInstrInfo = true,
-                                     AssumptionCache *AC = nullptr,
-                                     const Instruction *CtxI = nullptr,
-                                     const DominatorTree *DT = nullptr,
-                                     unsigned Depth = 0);
-
-  /// Return true if this function can prove that the instruction I will
-  /// always transfer execution to one of its successors (including the next
-  /// instruction that follows within a basic block). E.g. this is not
-  /// guaranteed for function calls that could loop infinitely.
-  ///
-  /// In other words, this function returns false for instructions that may
-  /// transfer execution or fail to transfer execution in a way that is not
-  /// captured in the CFG nor in the sequence of instructions within a basic
-  /// block.
-  ///
-  /// Undefined behavior is assumed not to happen, so e.g. division is
-  /// guaranteed to transfer execution to the following instruction even
-  /// though division by zero might cause undefined behavior.
-  bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
-
-  /// Returns true if this block does not contain a potential implicit exit.
-  /// This is equivelent to saying that all instructions within the basic block
-  /// are guaranteed to transfer execution to their successor within the basic
-  /// block. This has the same assumptions w.r.t. undefined behavior as the
-  /// instruction variant of this function.
-  bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
-
-  /// Return true if every instruction in the range (Begin, End) is
-  /// guaranteed to transfer execution to its static successor. \p ScanLimit
-  /// bounds the search to avoid scanning huge blocks.
-  bool isGuaranteedToTransferExecutionToSuccessor(
-     BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
-     unsigned ScanLimit = 32);
-
-  /// Same as previous, but with range expressed via iterator_range.
-  bool isGuaranteedToTransferExecutionToSuccessor(
-     iterator_range<BasicBlock::const_iterator> Range,
-     unsigned ScanLimit = 32);
-
-  /// Return true if this function can prove that the instruction I
-  /// is executed for every iteration of the loop L.
-  ///
-  /// Note that this currently only considers the loop header.
-  bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
-                                              const Loop *L);
-
-  /// Return true if I yields poison or raises UB if any of its operands is
-  /// poison.
-  /// Formally, given I = `r = op v1 v2 .. vN`, propagatesPoison returns true
-  /// if, for all i, r is evaluated to poison or op raises UB if vi = poison.
-  /// If vi is a vector or an aggregate and r is a single value, any poison
-  /// element in vi should make r poison or raise UB.
-  /// To filter out operands that raise UB on poison, you can use
-  /// getGuaranteedNonPoisonOp.
-  bool propagatesPoison(const Operator *I);
-
-  /// Insert operands of I into Ops such that I will trigger undefined behavior
-  /// if I is executed and that operand has a poison value.
-  void getGuaranteedNonPoisonOps(const Instruction *I,
+OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
+                                           const DataLayout &DL,
+                                           AssumptionCache *AC,
+                                           const Instruction *CxtI,
+                                           const DominatorTree *DT);
+
+/// Returns true if the arithmetic part of the \p WO 's result is
+/// used only along the paths control dependent on the computation
+/// not overflowing, \p WO being an <op>.with.overflow intrinsic.
+bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
+                               const DominatorTree &DT);
+
+/// Determine the possible constant range of an integer or vector of integer
+/// value. This is intended as a cheap, non-recursive check.
+ConstantRange computeConstantRange(const Value *V, bool ForSigned,
+                                   bool UseInstrInfo = true,
+                                   AssumptionCache *AC = nullptr,
+                                   const Instruction *CtxI = nullptr,
+                                   const DominatorTree *DT = nullptr,
+                                   unsigned Depth = 0);
+
+/// Return true if this function can prove that the instruction I will
+/// always transfer execution to one of its successors (including the next
+/// instruction that follows within a basic block). E.g. this is not
+/// guaranteed for function calls that could loop infinitely.
+///
+/// In other words, this function returns false for instructions that may
+/// transfer execution or fail to transfer execution in a way that is not
+/// captured in the CFG nor in the sequence of instructions within a basic
+/// block.
+///
+/// Undefined behavior is assumed not to happen, so e.g. division is
+/// guaranteed to transfer execution to the following instruction even
+/// though division by zero might cause undefined behavior.
+bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
+
+/// Returns true if this block does not contain a potential implicit exit.
+/// This is equivelent to saying that all instructions within the basic block
+/// are guaranteed to transfer execution to their successor within the basic
+/// block. This has the same assumptions w.r.t. undefined behavior as the
+/// instruction variant of this function.
+bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
+
+/// Return true if every instruction in the range (Begin, End) is
+/// guaranteed to transfer execution to its static successor. \p ScanLimit
+/// bounds the search to avoid scanning huge blocks.
+bool isGuaranteedToTransferExecutionToSuccessor(
+    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
+    unsigned ScanLimit = 32);
+
+/// Same as previous, but with range expressed via iterator_range.
+bool isGuaranteedToTransferExecutionToSuccessor(
+    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
+
+/// Return true if this function can prove that the instruction I
+/// is executed for every iteration of the loop L.
+///
+/// Note that this currently only considers the loop header.
+bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
+                                            const Loop *L);
+
+/// Return true if I yields poison or raises UB if any of its operands is
+/// poison.
+/// Formally, given I = `r = op v1 v2 .. vN`, propagatesPoison returns true
+/// if, for all i, r is evaluated to poison or op raises UB if vi = poison.
+/// If vi is a vector or an aggregate and r is a single value, any poison
+/// element in vi should make r poison or raise UB.
+/// To filter out operands that raise UB on poison, you can use
+/// getGuaranteedNonPoisonOp.
+bool propagatesPoison(const Operator *I);
+
+/// Insert operands of I into Ops such that I will trigger undefined behavior
+/// if I is executed and that operand has a poison value.
+void getGuaranteedNonPoisonOps(const Instruction *I,
+                               SmallPtrSetImpl<const Value *> &Ops);
+/// Insert operands of I into Ops such that I will trigger undefined behavior
+/// if I is executed and that operand is not a well-defined value
+/// (i.e. has undef bits or poison).
+void getGuaranteedWellDefinedOps(const Instruction *I,
                                  SmallPtrSetImpl<const Value *> &Ops);
-  /// Insert operands of I into Ops such that I will trigger undefined behavior
-  /// if I is executed and that operand is not a well-defined value
-  /// (i.e. has undef bits or poison).
-  void getGuaranteedWellDefinedOps(const Instruction *I,
-                                   SmallPtrSetImpl<const Value *> &Ops);
-
-  /// Return true if the given instruction must trigger undefined behavior
-  /// when I is executed with any operands which appear in KnownPoison holding
-  /// a poison value at the point of execution.
-  bool mustTriggerUB(const Instruction *I,
-                     const SmallSet<const Value *, 16>& KnownPoison);
-
-  /// Return true if this function can prove that if Inst is executed
-  /// and yields a poison value or undef bits, then that will trigger
-  /// undefined behavior.
-  ///
-  /// Note that this currently only considers the basic block that is
-  /// the parent of Inst.
-  bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
-  bool programUndefinedIfPoison(const Instruction *Inst);
-
-  /// canCreateUndefOrPoison returns true if Op can create undef or poison from
-  /// non-undef & non-poison operands.
-  /// For vectors, canCreateUndefOrPoison returns true if there is potential
-  /// poison or undef in any element of the result when vectors without
-  /// undef/poison poison are given as operands.
-  /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
-  /// true. If Op raises immediate UB but never creates poison or undef
-  /// (e.g. sdiv I, 0), canCreatePoison returns false.
-  ///
-  /// \p ConsiderFlags controls whether poison producing flags on the
-  /// instruction are considered.  This can be used to see if the instruction
-  /// could still introduce undef or poison even without poison generating flags
-  /// which might be on the instruction.  (i.e. could the result of
-  /// Op->dropPoisonGeneratingFlags() still create poison or undef)
-  ///
-  /// canCreatePoison returns true if Op can create poison from non-poison
-  /// operands.
-  bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags = true);
-  bool canCreatePoison(const Operator *Op, bool ConsiderFlags = true);
-
-  /// Return true if V is poison given that ValAssumedPoison is already poison.
-  /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
-  /// impliesPoison returns true.
-  bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
-
-  /// Return true if this function can prove that V does not have undef bits
-  /// and is never poison. If V is an aggregate value or vector, check whether
-  /// all elements (except padding) are not undef or poison.
-  /// Note that this is 
diff erent from canCreateUndefOrPoison because the
-  /// function assumes Op's operands are not poison/undef.
-  ///
-  /// If CtxI and DT are specified this method performs flow-sensitive analysis
-  /// and returns true if it is guaranteed to be never undef or poison
-  /// immediately before the CtxI.
-  bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
-                                        AssumptionCache *AC = nullptr,
-                                        const Instruction *CtxI = nullptr,
-                                        const DominatorTree *DT = nullptr,
-                                        unsigned Depth = 0);
-  bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
-                                 const Instruction *CtxI = nullptr,
-                                 const DominatorTree *DT = nullptr,
-                                 unsigned Depth = 0);
-
-  /// Specific patterns of select instructions we can match.
-  enum SelectPatternFlavor {
-    SPF_UNKNOWN = 0,
-    SPF_SMIN,                   /// Signed minimum
-    SPF_UMIN,                   /// Unsigned minimum
-    SPF_SMAX,                   /// Signed maximum
-    SPF_UMAX,                   /// Unsigned maximum
-    SPF_FMINNUM,                /// Floating point minnum
-    SPF_FMAXNUM,                /// Floating point maxnum
-    SPF_ABS,                    /// Absolute value
-    SPF_NABS                    /// Negated absolute value
-  };
-
-  /// Behavior when a floating point min/max is given one NaN and one
-  /// non-NaN as input.
-  enum SelectPatternNaNBehavior {
-    SPNB_NA = 0,                /// NaN behavior not applicable.
-    SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
-    SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
-    SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
-                                /// it has been determined that no operands can
-                                /// be NaN).
-  };
-
-  struct SelectPatternResult {
-    SelectPatternFlavor Flavor;
-    SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
-                                          /// SPF_FMINNUM or SPF_FMAXNUM.
-    bool Ordered;               /// When implementing this min/max pattern as
-                                /// fcmp; select, does the fcmp have to be
-                                /// ordered?
-
-    /// Return true if \p SPF is a min or a max pattern.
-    static bool isMinOrMax(SelectPatternFlavor SPF) {
-      return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
-    }
-  };
-
-  /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
-  /// and providing the out parameter results if we successfully match.
-  ///
-  /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
-  /// the negation instruction from the idiom.
-  ///
-  /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
-  /// not match that of the original select. If this is the case, the cast
-  /// operation (one of Trunc,SExt,Zext) that must be done to transform the
-  /// type of LHS and RHS into the type of V is returned in CastOp.
-  ///
-  /// For example:
-  ///   %1 = icmp slt i32 %a, i32 4
-  ///   %2 = sext i32 %a to i64
-  ///   %3 = select i1 %1, i64 %2, i64 4
-  ///
-  /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
-  ///
-  SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
-                                         Instruction::CastOps *CastOp = nullptr,
-                                         unsigned Depth = 0);
-
-  inline SelectPatternResult
-  matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS) {
-    Value *L = const_cast<Value *>(LHS);
-    Value *R = const_cast<Value *>(RHS);
-    auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
-    LHS = L;
-    RHS = R;
-    return Result;
-  }
 
-  /// Determine the pattern that a select with the given compare as its
-  /// predicate and given values as its true/false operands would match.
-  SelectPatternResult matchDecomposedSelectPattern(
-      CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
-      Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
-
-  /// Return the canonical comparison predicate for the specified
-  /// minimum/maximum flavor.
-  CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
-                                   bool Ordered = false);
-
-  /// Return the inverse minimum/maximum flavor of the specified flavor.
-  /// For example, signed minimum is the inverse of signed maximum.
-  SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
-
-  Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
-
-  /// Return the canonical inverse comparison predicate for the specified
-  /// minimum/maximum flavor.
-  CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
-
-  /// Return the minimum or maximum constant value for the specified integer
-  /// min/max flavor and type.
-  APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
-
-  /// Check if the values in \p VL are select instructions that can be converted
-  /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
-  /// conversion is possible, together with a bool indicating whether all select
-  /// conditions are only used by the selects. Otherwise return
-  /// Intrinsic::not_intrinsic.
-  std::pair<Intrinsic::ID, bool>
-  canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
-
-  /// Attempt to match a simple first order recurrence cycle of the form:
-  ///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
-  ///   %inc = binop %iv, %step
-  /// OR
-  ///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
-  ///   %inc = binop %step, %iv
-  ///
-  /// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
-  ///
-  /// A couple of notes on subtleties in that definition:
-  /// * The Step does not have to be loop invariant.  In math terms, it can
-  ///   be a free variable.  We allow recurrences with both constant and
-  ///   variable coefficients. Callers may wish to filter cases where Step
-  ///   does not dominate P.
-  /// * For non-commutative operators, we will match both forms.  This
-  ///   results in some odd recurrence structures.  Callers may wish to filter
-  ///   out recurrences where the phi is not the LHS of the returned operator.
-  /// * Because of the structure matched, the caller can assume as a post
-  ///   condition of the match the presence of a Loop with P's parent as it's
-  ///   header *except* in unreachable code.  (Dominance decays in unreachable
-  ///   code.)
-  ///
-  /// NOTE: This is intentional simple.  If you want the ability to analyze
-  /// non-trivial loop conditons, see ScalarEvolution instead.
-  bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
-                             Value *&Start, Value *&Step);
-
-  /// Analogous to the above, but starting from the binary operator
-  bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
-                                    Value *&Start, Value *&Step);
-
-  /// Return true if RHS is known to be implied true by LHS.  Return false if
-  /// RHS is known to be implied false by LHS.  Otherwise, return None if no
-  /// implication can be made.
-  /// A & B must be i1 (boolean) values or a vector of such values. Note that
-  /// the truth table for implication is the same as <=u on i1 values (but not
-  /// <=s!).  The truth table for both is:
-  ///    | T | F (B)
-  ///  T | T | F
-  ///  F | T | T
-  /// (A)
-  Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
-                                    const DataLayout &DL, bool LHSIsTrue = true,
-                                    unsigned Depth = 0);
-  Optional<bool> isImpliedCondition(const Value *LHS,
-                                    CmpInst::Predicate RHSPred,
-                                    const Value *RHSOp0, const Value *RHSOp1,
-                                    const DataLayout &DL, bool LHSIsTrue = true,
-                                    unsigned Depth = 0);
-
-  /// Return the boolean condition value in the context of the given instruction
-  /// if it is known based on dominating conditions.
-  Optional<bool> isImpliedByDomCondition(const Value *Cond,
-                                         const Instruction *ContextI,
-                                         const DataLayout &DL);
-  Optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
-                                         const Value *LHS, const Value *RHS,
-                                         const Instruction *ContextI,
-                                         const DataLayout &DL);
-
-  /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
-  /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
-  /// this case offset would be -8.
-  Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
-                                    const DataLayout &DL);
+/// Return true if the given instruction must trigger undefined behavior
+/// when I is executed with any operands which appear in KnownPoison holding
+/// a poison value at the point of execution.
+bool mustTriggerUB(const Instruction *I,
+                   const SmallSet<const Value *, 16> &KnownPoison);
+
+/// Return true if this function can prove that if Inst is executed
+/// and yields a poison value or undef bits, then that will trigger
+/// undefined behavior.
+///
+/// Note that this currently only considers the basic block that is
+/// the parent of Inst.
+bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
+bool programUndefinedIfPoison(const Instruction *Inst);
+
+/// canCreateUndefOrPoison returns true if Op can create undef or poison from
+/// non-undef & non-poison operands.
+/// For vectors, canCreateUndefOrPoison returns true if there is potential
+/// poison or undef in any element of the result when vectors without
+/// undef/poison poison are given as operands.
+/// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
+/// true. If Op raises immediate UB but never creates poison or undef
+/// (e.g. sdiv I, 0), canCreatePoison returns false.
+///
+/// \p ConsiderFlags controls whether poison producing flags on the
+/// instruction are considered.  This can be used to see if the instruction
+/// could still introduce undef or poison even without poison generating flags
+/// which might be on the instruction.  (i.e. could the result of
+/// Op->dropPoisonGeneratingFlags() still create poison or undef)
+///
+/// canCreatePoison returns true if Op can create poison from non-poison
+/// operands.
+bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags = true);
+bool canCreatePoison(const Operator *Op, bool ConsiderFlags = true);
+
+/// Return true if V is poison given that ValAssumedPoison is already poison.
+/// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
+/// impliesPoison returns true.
+bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
+
+/// Return true if this function can prove that V does not have undef bits
+/// and is never poison. If V is an aggregate value or vector, check whether
+/// all elements (except padding) are not undef or poison.
+/// Note that this is 
diff erent from canCreateUndefOrPoison because the
+/// function assumes Op's operands are not poison/undef.
+///
+/// If CtxI and DT are specified this method performs flow-sensitive analysis
+/// and returns true if it is guaranteed to be never undef or poison
+/// immediately before the CtxI.
+bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
+                                      AssumptionCache *AC = nullptr,
+                                      const Instruction *CtxI = nullptr,
+                                      const DominatorTree *DT = nullptr,
+                                      unsigned Depth = 0);
+bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
+                               const Instruction *CtxI = nullptr,
+                               const DominatorTree *DT = nullptr,
+                               unsigned Depth = 0);
+
+/// Specific patterns of select instructions we can match.
+enum SelectPatternFlavor {
+  SPF_UNKNOWN = 0,
+  SPF_SMIN,    /// Signed minimum
+  SPF_UMIN,    /// Unsigned minimum
+  SPF_SMAX,    /// Signed maximum
+  SPF_UMAX,    /// Unsigned maximum
+  SPF_FMINNUM, /// Floating point minnum
+  SPF_FMAXNUM, /// Floating point maxnum
+  SPF_ABS,     /// Absolute value
+  SPF_NABS     /// Negated absolute value
+};
+
+/// Behavior when a floating point min/max is given one NaN and one
+/// non-NaN as input.
+enum SelectPatternNaNBehavior {
+  SPNB_NA = 0,        /// NaN behavior not applicable.
+  SPNB_RETURNS_NAN,   /// Given one NaN input, returns the NaN.
+  SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
+  SPNB_RETURNS_ANY    /// Given one NaN input, can return either (or
+                      /// it has been determined that no operands can
+                      /// be NaN).
+};
+
+struct SelectPatternResult {
+  SelectPatternFlavor Flavor;
+  SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
+                                        /// SPF_FMINNUM or SPF_FMAXNUM.
+  bool Ordered; /// When implementing this min/max pattern as
+                /// fcmp; select, does the fcmp have to be
+                /// ordered?
+
+  /// Return true if \p SPF is a min or a max pattern.
+  static bool isMinOrMax(SelectPatternFlavor SPF) {
+    return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
+  }
+};
+
+/// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
+/// and providing the out parameter results if we successfully match.
+///
+/// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
+/// the negation instruction from the idiom.
+///
+/// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
+/// not match that of the original select. If this is the case, the cast
+/// operation (one of Trunc,SExt,Zext) that must be done to transform the
+/// type of LHS and RHS into the type of V is returned in CastOp.
+///
+/// For example:
+///   %1 = icmp slt i32 %a, i32 4
+///   %2 = sext i32 %a to i64
+///   %3 = select i1 %1, i64 %2, i64 4
+///
+/// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
+///
+SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
+                                       Instruction::CastOps *CastOp = nullptr,
+                                       unsigned Depth = 0);
+
+inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
+                                              const Value *&RHS) {
+  Value *L = const_cast<Value *>(LHS);
+  Value *R = const_cast<Value *>(RHS);
+  auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
+  LHS = L;
+  RHS = R;
+  return Result;
+}
+
+/// Determine the pattern that a select with the given compare as its
+/// predicate and given values as its true/false operands would match.
+SelectPatternResult matchDecomposedSelectPattern(
+    CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
+    Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
+
+/// Return the canonical comparison predicate for the specified
+/// minimum/maximum flavor.
+CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
+
+/// Return the inverse minimum/maximum flavor of the specified flavor.
+/// For example, signed minimum is the inverse of signed maximum.
+SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
+
+Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
+
+/// Return the canonical inverse comparison predicate for the specified
+/// minimum/maximum flavor.
+CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
+
+/// Return the minimum or maximum constant value for the specified integer
+/// min/max flavor and type.
+APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
+
+/// Check if the values in \p VL are select instructions that can be converted
+/// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
+/// conversion is possible, together with a bool indicating whether all select
+/// conditions are only used by the selects. Otherwise return
+/// Intrinsic::not_intrinsic.
+std::pair<Intrinsic::ID, bool>
+canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
+
+/// Attempt to match a simple first order recurrence cycle of the form:
+///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
+///   %inc = binop %iv, %step
+/// OR
+///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
+///   %inc = binop %step, %iv
+///
+/// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
+///
+/// A couple of notes on subtleties in that definition:
+/// * The Step does not have to be loop invariant.  In math terms, it can
+///   be a free variable.  We allow recurrences with both constant and
+///   variable coefficients. Callers may wish to filter cases where Step
+///   does not dominate P.
+/// * For non-commutative operators, we will match both forms.  This
+///   results in some odd recurrence structures.  Callers may wish to filter
+///   out recurrences where the phi is not the LHS of the returned operator.
+/// * Because of the structure matched, the caller can assume as a post
+///   condition of the match the presence of a Loop with P's parent as it's
+///   header *except* in unreachable code.  (Dominance decays in unreachable
+///   code.)
+///
+/// NOTE: This is intentional simple.  If you want the ability to analyze
+/// non-trivial loop conditons, see ScalarEvolution instead.
+bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
+                           Value *&Step);
+
+/// Analogous to the above, but starting from the binary operator
+bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
+                           Value *&Step);
+
+/// Return true if RHS is known to be implied true by LHS.  Return false if
+/// RHS is known to be implied false by LHS.  Otherwise, return None if no
+/// implication can be made.
+/// A & B must be i1 (boolean) values or a vector of such values. Note that
+/// the truth table for implication is the same as <=u on i1 values (but not
+/// <=s!).  The truth table for both is:
+///    | T | F (B)
+///  T | T | F
+///  F | T | T
+/// (A)
+Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
+                                  const DataLayout &DL, bool LHSIsTrue = true,
+                                  unsigned Depth = 0);
+Optional<bool> isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
+                                  const Value *RHSOp0, const Value *RHSOp1,
+                                  const DataLayout &DL, bool LHSIsTrue = true,
+                                  unsigned Depth = 0);
+
+/// Return the boolean condition value in the context of the given instruction
+/// if it is known based on dominating conditions.
+Optional<bool> isImpliedByDomCondition(const Value *Cond,
+                                       const Instruction *ContextI,
+                                       const DataLayout &DL);
+Optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
+                                       const Value *LHS, const Value *RHS,
+                                       const Instruction *ContextI,
+                                       const DataLayout &DL);
+
+/// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
+/// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
+/// this case offset would be -8.
+Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
+                                  const DataLayout &DL);
 } // end namespace llvm
 
 #endif // LLVM_ANALYSIS_VALUETRACKING_H


        


More information about the llvm-commits mailing list