[llvm] 7eb7015 - [IndVarSimplify][SimplifyIndVar] Move WidenIV to Utils/SimplifyIndVar. NFCI.

Sjoerd Meijer via llvm-commits llvm-commits at lists.llvm.org
Thu Nov 5 08:55:20 PST 2020


Author: Sjoerd Meijer
Date: 2020-11-05T16:52:47Z
New Revision: 7eb70158e4d03d2c1fe430ce62aa76982a483d1b

URL: https://github.com/llvm/llvm-project/commit/7eb70158e4d03d2c1fe430ce62aa76982a483d1b
DIFF: https://github.com/llvm/llvm-project/commit/7eb70158e4d03d2c1fe430ce62aa76982a483d1b.diff

LOG: [IndVarSimplify][SimplifyIndVar] Move WidenIV to Utils/SimplifyIndVar. NFCI.

This moves WidenIV from IndVarSimplify to Utils/SimplifyIndVar so that we have
createWideIV available as a generic helper utility. I.e., this is not only
useful in IndVarSimplify, but could be useful for loop transformations. For
example, motivation for this refactoring is the loop flatten transformation: if
induction variables in a loop nest can be widened, we can avoid having to
perform certain overflow checks, enabling this transformation.

Differential Revision: https://reviews.llvm.org/D90421

Added: 
    

Modified: 
    llvm/include/llvm/Transforms/Utils/SimplifyIndVar.h
    llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
    llvm/lib/Transforms/Utils/SimplifyIndVar.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/Transforms/Utils/SimplifyIndVar.h b/llvm/include/llvm/Transforms/Utils/SimplifyIndVar.h
index 53b15e4aa66c..4599627b65f5 100644
--- a/llvm/include/llvm/Transforms/Utils/SimplifyIndVar.h
+++ b/llvm/include/llvm/Transforms/Utils/SimplifyIndVar.h
@@ -15,6 +15,8 @@
 #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYINDVAR_H
 #define LLVM_TRANSFORMS_UTILS_SIMPLIFYINDVAR_H
 
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/ConstantRange.h"
 #include "llvm/IR/ValueHandle.h"
 
 namespace llvm {
@@ -57,6 +59,27 @@ bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
                      LoopInfo *LI, const TargetTransformInfo *TTI,
                      SmallVectorImpl<WeakTrackingVH> &Dead);
 
+/// Collect information about induction variables that are used by sign/zero
+/// extend operations. This information is recorded by CollectExtend and provides
+/// the input to WidenIV.
+struct WideIVInfo {
+  PHINode *NarrowIV = nullptr;
+
+  // Widest integer type created [sz]ext
+  Type *WidestNativeType = nullptr;
+
+  // Was a sext user seen before a zext?
+  bool IsSigned = false;
+};
+
+/// Widen Induction Variables - Extend the width of an IV to cover its
+/// widest uses.
+PHINode *createWideIV(WideIVInfo &WI,
+    LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
+    DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
+    unsigned &NumElimExt, unsigned &NumWidened,
+    bool HasGuards, bool UsePostIncrementRanges);
+
 } // end namespace llvm
 
 #endif // LLVM_TRANSFORMS_UTILS_SIMPLIFYINDVAR_H

diff  --git a/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
index 1be6bd0b4970..83e783cfa763 100644
--- a/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -182,57 +182,6 @@ class IndVarSimplify {
 
 } // end anonymous namespace
 
-/// Determine the insertion point for this user. By default, insert immediately
-/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
-/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
-/// common dominator for the incoming blocks. A nullptr can be returned if no
-/// viable location is found: it may happen if User is a PHI and Def only comes
-/// to this PHI from unreachable blocks.
-static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
-                                          DominatorTree *DT, LoopInfo *LI) {
-  PHINode *PHI = dyn_cast<PHINode>(User);
-  if (!PHI)
-    return User;
-
-  Instruction *InsertPt = nullptr;
-  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
-    if (PHI->getIncomingValue(i) != Def)
-      continue;
-
-    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
-
-    if (!DT->isReachableFromEntry(InsertBB))
-      continue;
-
-    if (!InsertPt) {
-      InsertPt = InsertBB->getTerminator();
-      continue;
-    }
-    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
-    InsertPt = InsertBB->getTerminator();
-  }
-
-  // If we have skipped all inputs, it means that Def only comes to Phi from
-  // unreachable blocks.
-  if (!InsertPt)
-    return nullptr;
-
-  auto *DefI = dyn_cast<Instruction>(Def);
-  if (!DefI)
-    return InsertPt;
-
-  assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
-
-  auto *L = LI->getLoopFor(DefI->getParent());
-  assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
-
-  for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
-    if (LI->getLoopFor(DTN->getBlock()) == L)
-      return DTN->getBlock()->getTerminator();
-
-  llvm_unreachable("DefI dominates InsertPt!");
-}
-
 //===----------------------------------------------------------------------===//
 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
 //===----------------------------------------------------------------------===//
@@ -554,27 +503,11 @@ bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
 //  IV Widening - Extend the width of an IV to cover its widest uses.
 //===----------------------------------------------------------------------===//
 
-namespace {
-
-// Collect information about induction variables that are used by sign/zero
-// extend operations. This information is recorded by CollectExtend and provides
-// the input to WidenIV.
-struct WideIVInfo {
-  PHINode *NarrowIV = nullptr;
-
-  // Widest integer type created [sz]ext
-  Type *WidestNativeType = nullptr;
-
-  // Was a sext user seen before a zext?
-  bool IsSigned = false;
-};
-
-} // end anonymous namespace
-
 /// Update information about the induction variable that is extended by this
 /// sign or zero extend operation. This is used to determine the final width of
 /// the IV before actually widening it.
-static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
+static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
+                        ScalarEvolution *SE,
                         const TargetTransformInfo *TTI) {
   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
@@ -620,962 +553,6 @@ static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
 }
 
-namespace {
-
-/// Record a link in the Narrow IV def-use chain along with the WideIV that
-/// computes the same value as the Narrow IV def.  This avoids caching Use*
-/// pointers.
-struct NarrowIVDefUse {
-  Instruction *NarrowDef = nullptr;
-  Instruction *NarrowUse = nullptr;
-  Instruction *WideDef = nullptr;
-
-  // True if the narrow def is never negative.  Tracking this information lets
-  // us use a sign extension instead of a zero extension or vice versa, when
-  // profitable and legal.
-  bool NeverNegative = false;
-
-  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
-                 bool NeverNegative)
-      : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
-        NeverNegative(NeverNegative) {}
-};
-
-/// The goal of this transform is to remove sign and zero extends without
-/// creating any new induction variables. To do this, it creates a new phi of
-/// the wider type and redirects all users, either removing extends or inserting
-/// truncs whenever we stop propagating the type.
-class WidenIV {
-  // Parameters
-  PHINode *OrigPhi;
-  Type *WideType;
-
-  // Context
-  LoopInfo        *LI;
-  Loop            *L;
-  ScalarEvolution *SE;
-  DominatorTree   *DT;
-
-  // Does the module have any calls to the llvm.experimental.guard intrinsic
-  // at all? If not we can avoid scanning instructions looking for guards.
-  bool HasGuards;
-
-  // Result
-  PHINode *WidePhi = nullptr;
-  Instruction *WideInc = nullptr;
-  const SCEV *WideIncExpr = nullptr;
-  SmallVectorImpl<WeakTrackingVH> &DeadInsts;
-
-  SmallPtrSet<Instruction *,16> Widened;
-  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
-
-  enum ExtendKind { ZeroExtended, SignExtended, Unknown };
-
-  // A map tracking the kind of extension used to widen each narrow IV
-  // and narrow IV user.
-  // Key: pointer to a narrow IV or IV user.
-  // Value: the kind of extension used to widen this Instruction.
-  DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
-
-  using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
-
-  // A map with control-dependent ranges for post increment IV uses. The key is
-  // a pair of IV def and a use of this def denoting the context. The value is
-  // a ConstantRange representing possible values of the def at the given
-  // context.
-  DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
-
-  Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
-                                              Instruction *UseI) {
-    DefUserPair Key(Def, UseI);
-    auto It = PostIncRangeInfos.find(Key);
-    return It == PostIncRangeInfos.end()
-               ? Optional<ConstantRange>(None)
-               : Optional<ConstantRange>(It->second);
-  }
-
-  void calculatePostIncRanges(PHINode *OrigPhi);
-  void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
-
-  void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
-    DefUserPair Key(Def, UseI);
-    auto It = PostIncRangeInfos.find(Key);
-    if (It == PostIncRangeInfos.end())
-      PostIncRangeInfos.insert({Key, R});
-    else
-      It->second = R.intersectWith(It->second);
-  }
-
-public:
-  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
-          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
-          bool HasGuards)
-      : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
-        L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
-        HasGuards(HasGuards), DeadInsts(DI) {
-    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
-    ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
-  }
-
-  PHINode *createWideIV(SCEVExpander &Rewriter);
-
-protected:
-  Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
-                          Instruction *Use);
-
-  Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
-  Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
-                                     const SCEVAddRecExpr *WideAR);
-  Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
-
-  ExtendKind getExtendKind(Instruction *I);
-
-  using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
-
-  WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
-
-  WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
-
-  const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
-                              unsigned OpCode) const;
-
-  Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
-
-  bool widenLoopCompare(NarrowIVDefUse DU);
-  bool widenWithVariantUse(NarrowIVDefUse DU);
-
-  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
-};
-
-} // end anonymous namespace
-
-Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
-                                 bool IsSigned, Instruction *Use) {
-  // Set the debug location and conservative insertion point.
-  IRBuilder<> Builder(Use);
-  // Hoist the insertion point into loop preheaders as far as possible.
-  for (const Loop *L = LI->getLoopFor(Use->getParent());
-       L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
-       L = L->getParentLoop())
-    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
-
-  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
-                    Builder.CreateZExt(NarrowOper, WideType);
-}
-
-/// Instantiate a wide operation to replace a narrow operation. This only needs
-/// to handle operations that can evaluation to SCEVAddRec. It can safely return
-/// 0 for any operation we decide not to clone.
-Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
-                                  const SCEVAddRecExpr *WideAR) {
-  unsigned Opcode = DU.NarrowUse->getOpcode();
-  switch (Opcode) {
-  default:
-    return nullptr;
-  case Instruction::Add:
-  case Instruction::Mul:
-  case Instruction::UDiv:
-  case Instruction::Sub:
-    return cloneArithmeticIVUser(DU, WideAR);
-
-  case Instruction::And:
-  case Instruction::Or:
-  case Instruction::Xor:
-  case Instruction::Shl:
-  case Instruction::LShr:
-  case Instruction::AShr:
-    return cloneBitwiseIVUser(DU);
-  }
-}
-
-Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
-  Instruction *NarrowUse = DU.NarrowUse;
-  Instruction *NarrowDef = DU.NarrowDef;
-  Instruction *WideDef = DU.WideDef;
-
-  LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
-
-  // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
-  // about the narrow operand yet so must insert a [sz]ext. It is probably loop
-  // invariant and will be folded or hoisted. If it actually comes from a
-  // widened IV, it should be removed during a future call to widenIVUse.
-  bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
-  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
-                   ? WideDef
-                   : createExtendInst(NarrowUse->getOperand(0), WideType,
-                                      IsSigned, NarrowUse);
-  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
-                   ? WideDef
-                   : createExtendInst(NarrowUse->getOperand(1), WideType,
-                                      IsSigned, NarrowUse);
-
-  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
-  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
-                                        NarrowBO->getName());
-  IRBuilder<> Builder(NarrowUse);
-  Builder.Insert(WideBO);
-  WideBO->copyIRFlags(NarrowBO);
-  return WideBO;
-}
-
-Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
-                                            const SCEVAddRecExpr *WideAR) {
-  Instruction *NarrowUse = DU.NarrowUse;
-  Instruction *NarrowDef = DU.NarrowDef;
-  Instruction *WideDef = DU.WideDef;
-
-  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
-
-  unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
-
-  // We're trying to find X such that
-  //
-  //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
-  //
-  // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
-  // and check using SCEV if any of them are correct.
-
-  // Returns true if extending NonIVNarrowDef according to `SignExt` is a
-  // correct solution to X.
-  auto GuessNonIVOperand = [&](bool SignExt) {
-    const SCEV *WideLHS;
-    const SCEV *WideRHS;
-
-    auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
-      if (SignExt)
-        return SE->getSignExtendExpr(S, Ty);
-      return SE->getZeroExtendExpr(S, Ty);
-    };
-
-    if (IVOpIdx == 0) {
-      WideLHS = SE->getSCEV(WideDef);
-      const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
-      WideRHS = GetExtend(NarrowRHS, WideType);
-    } else {
-      const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
-      WideLHS = GetExtend(NarrowLHS, WideType);
-      WideRHS = SE->getSCEV(WideDef);
-    }
-
-    // WideUse is "WideDef `op.wide` X" as described in the comment.
-    const SCEV *WideUse = nullptr;
-
-    switch (NarrowUse->getOpcode()) {
-    default:
-      llvm_unreachable("No other possibility!");
-
-    case Instruction::Add:
-      WideUse = SE->getAddExpr(WideLHS, WideRHS);
-      break;
-
-    case Instruction::Mul:
-      WideUse = SE->getMulExpr(WideLHS, WideRHS);
-      break;
-
-    case Instruction::UDiv:
-      WideUse = SE->getUDivExpr(WideLHS, WideRHS);
-      break;
-
-    case Instruction::Sub:
-      WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
-      break;
-    }
-
-    return WideUse == WideAR;
-  };
-
-  bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
-  if (!GuessNonIVOperand(SignExtend)) {
-    SignExtend = !SignExtend;
-    if (!GuessNonIVOperand(SignExtend))
-      return nullptr;
-  }
-
-  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
-                   ? WideDef
-                   : createExtendInst(NarrowUse->getOperand(0), WideType,
-                                      SignExtend, NarrowUse);
-  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
-                   ? WideDef
-                   : createExtendInst(NarrowUse->getOperand(1), WideType,
-                                      SignExtend, NarrowUse);
-
-  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
-  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
-                                        NarrowBO->getName());
-
-  IRBuilder<> Builder(NarrowUse);
-  Builder.Insert(WideBO);
-  WideBO->copyIRFlags(NarrowBO);
-  return WideBO;
-}
-
-WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
-  auto It = ExtendKindMap.find(I);
-  assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
-  return It->second;
-}
-
-const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
-                                     unsigned OpCode) const {
-  if (OpCode == Instruction::Add)
-    return SE->getAddExpr(LHS, RHS);
-  if (OpCode == Instruction::Sub)
-    return SE->getMinusSCEV(LHS, RHS);
-  if (OpCode == Instruction::Mul)
-    return SE->getMulExpr(LHS, RHS);
-
-  llvm_unreachable("Unsupported opcode.");
-}
-
-/// No-wrap operations can transfer sign extension of their result to their
-/// operands. Generate the SCEV value for the widened operation without
-/// actually modifying the IR yet. If the expression after extending the
-/// operands is an AddRec for this loop, return the AddRec and the kind of
-/// extension used.
-WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
-  // Handle the common case of add<nsw/nuw>
-  const unsigned OpCode = DU.NarrowUse->getOpcode();
-  // Only Add/Sub/Mul instructions supported yet.
-  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
-      OpCode != Instruction::Mul)
-    return {nullptr, Unknown};
-
-  // One operand (NarrowDef) has already been extended to WideDef. Now determine
-  // if extending the other will lead to a recurrence.
-  const unsigned ExtendOperIdx =
-      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
-  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
-
-  const SCEV *ExtendOperExpr = nullptr;
-  const OverflowingBinaryOperator *OBO =
-    cast<OverflowingBinaryOperator>(DU.NarrowUse);
-  ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
-  if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
-    ExtendOperExpr = SE->getSignExtendExpr(
-      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
-  else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
-    ExtendOperExpr = SE->getZeroExtendExpr(
-      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
-  else
-    return {nullptr, Unknown};
-
-  // When creating this SCEV expr, don't apply the current operations NSW or NUW
-  // flags. This instruction may be guarded by control flow that the no-wrap
-  // behavior depends on. Non-control-equivalent instructions can be mapped to
-  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
-  // semantics to those operations.
-  const SCEV *lhs = SE->getSCEV(DU.WideDef);
-  const SCEV *rhs = ExtendOperExpr;
-
-  // Let's swap operands to the initial order for the case of non-commutative
-  // operations, like SUB. See PR21014.
-  if (ExtendOperIdx == 0)
-    std::swap(lhs, rhs);
-  const SCEVAddRecExpr *AddRec =
-      dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
-
-  if (!AddRec || AddRec->getLoop() != L)
-    return {nullptr, Unknown};
-
-  return {AddRec, ExtKind};
-}
-
-/// Is this instruction potentially interesting for further simplification after
-/// widening it's type? In other words, can the extend be safely hoisted out of
-/// the loop with SCEV reducing the value to a recurrence on the same loop. If
-/// so, return the extended recurrence and the kind of extension used. Otherwise
-/// return {nullptr, Unknown}.
-WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
-  if (!SE->isSCEVable(DU.NarrowUse->getType()))
-    return {nullptr, Unknown};
-
-  const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
-  if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
-      SE->getTypeSizeInBits(WideType)) {
-    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
-    // index. So don't follow this use.
-    return {nullptr, Unknown};
-  }
-
-  const SCEV *WideExpr;
-  ExtendKind ExtKind;
-  if (DU.NeverNegative) {
-    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
-    if (isa<SCEVAddRecExpr>(WideExpr))
-      ExtKind = SignExtended;
-    else {
-      WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
-      ExtKind = ZeroExtended;
-    }
-  } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
-    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
-    ExtKind = SignExtended;
-  } else {
-    WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
-    ExtKind = ZeroExtended;
-  }
-  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
-  if (!AddRec || AddRec->getLoop() != L)
-    return {nullptr, Unknown};
-  return {AddRec, ExtKind};
-}
-
-/// This IV user cannot be widened. Replace this use of the original narrow IV
-/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
-static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
-  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
-  if (!InsertPt)
-    return;
-  LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
-                    << *DU.NarrowUse << "\n");
-  IRBuilder<> Builder(InsertPt);
-  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
-  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
-}
-
-/// If the narrow use is a compare instruction, then widen the compare
-//  (and possibly the other operand).  The extend operation is hoisted into the
-// loop preheader as far as possible.
-bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
-  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
-  if (!Cmp)
-    return false;
-
-  // We can legally widen the comparison in the following two cases:
-  //
-  //  - The signedness of the IV extension and comparison match
-  //
-  //  - The narrow IV is always positive (and thus its sign extension is equal
-  //    to its zero extension).  For instance, let's say we're zero extending
-  //    %narrow for the following use
-  //
-  //      icmp slt i32 %narrow, %val   ... (A)
-  //
-  //    and %narrow is always positive.  Then
-  //
-  //      (A) == icmp slt i32 sext(%narrow), sext(%val)
-  //          == icmp slt i32 zext(%narrow), sext(%val)
-  bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
-  if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
-    return false;
-
-  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
-  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
-  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
-  assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
-
-  // Widen the compare instruction.
-  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
-  if (!InsertPt)
-    return false;
-  IRBuilder<> Builder(InsertPt);
-  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
-
-  // Widen the other operand of the compare, if necessary.
-  if (CastWidth < IVWidth) {
-    Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
-    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
-  }
-  return true;
-}
-
-// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
-// will not work when:
-//    1) SCEV traces back to an instruction inside the loop that SCEV can not
-// expand, eg. add %indvar, (load %addr)
-//    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
-// While SCEV fails to avoid trunc, we can still try to use instruction
-// combining approach to prove trunc is not required. This can be further
-// extended with other instruction combining checks, but for now we handle the
-// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
-//
-// Src:
-//   %c = sub nsw %b, %indvar
-//   %d = sext %c to i64
-// Dst:
-//   %indvar.ext1 = sext %indvar to i64
-//   %m = sext %b to i64
-//   %d = sub nsw i64 %m, %indvar.ext1
-// Therefore, as long as the result of add/sub/mul is extended to wide type, no
-// trunc is required regardless of how %b is generated. This pattern is common
-// when calculating address in 64 bit architecture
-bool WidenIV::widenWithVariantUse(NarrowIVDefUse DU) {
-  Instruction *NarrowUse = DU.NarrowUse;
-  Instruction *NarrowDef = DU.NarrowDef;
-  Instruction *WideDef = DU.WideDef;
-
-  // Handle the common case of add<nsw/nuw>
-  const unsigned OpCode = NarrowUse->getOpcode();
-  // Only Add/Sub/Mul instructions are supported.
-  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
-      OpCode != Instruction::Mul)
-    return false;
-
-  // The operand that is not defined by NarrowDef of DU. Let's call it the
-  // other operand.
-  assert((NarrowUse->getOperand(0) == NarrowDef ||
-          NarrowUse->getOperand(1) == NarrowDef) &&
-         "bad DU");
-
-  const OverflowingBinaryOperator *OBO =
-    cast<OverflowingBinaryOperator>(NarrowUse);
-  ExtendKind ExtKind = getExtendKind(NarrowDef);
-  bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
-  bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
-  if (!CanSignExtend && !CanZeroExtend)
-    return false;
-
-  // Verifying that Defining operand is an AddRec
-  const SCEV *Op1 = SE->getSCEV(WideDef);
-  const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
-  if (!AddRecOp1 || AddRecOp1->getLoop() != L)
-    return false;
-
-  for (Use &U : NarrowUse->uses()) {
-    Instruction *User = nullptr;
-    if (ExtKind == SignExtended)
-      User = dyn_cast<SExtInst>(U.getUser());
-    else
-      User = dyn_cast<ZExtInst>(U.getUser());
-    if (!User || User->getType() != WideType)
-      return false;
-  }
-
-  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
-
-  // Generating a widening use instruction.
-  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
-                   ? WideDef
-                   : createExtendInst(NarrowUse->getOperand(0), WideType,
-                                      ExtKind, NarrowUse);
-  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
-                   ? WideDef
-                   : createExtendInst(NarrowUse->getOperand(1), WideType,
-                                      ExtKind, NarrowUse);
-
-  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
-  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
-                                        NarrowBO->getName());
-  IRBuilder<> Builder(NarrowUse);
-  Builder.Insert(WideBO);
-  WideBO->copyIRFlags(NarrowBO);
-  ExtendKindMap[NarrowUse] = ExtKind;
-
-  for (Use &U : NarrowUse->uses()) {
-    Instruction *User = nullptr;
-    if (ExtKind == SignExtended)
-      User = cast<SExtInst>(U.getUser());
-    else
-      User = cast<ZExtInst>(U.getUser());
-    assert(User->getType() == WideType && "Checked before!");
-    LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
-                      << *WideBO << "\n");
-    ++NumElimExt;
-    User->replaceAllUsesWith(WideBO);
-    DeadInsts.emplace_back(User);
-  }
-  return true;
-}
-
-/// Determine whether an individual user of the narrow IV can be widened. If so,
-/// return the wide clone of the user.
-Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
-  assert(ExtendKindMap.count(DU.NarrowDef) &&
-         "Should already know the kind of extension used to widen NarrowDef");
-
-  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
-  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
-    if (LI->getLoopFor(UsePhi->getParent()) != L) {
-      // For LCSSA phis, sink the truncate outside the loop.
-      // After SimplifyCFG most loop exit targets have a single predecessor.
-      // Otherwise fall back to a truncate within the loop.
-      if (UsePhi->getNumOperands() != 1)
-        truncateIVUse(DU, DT, LI);
-      else {
-        // Widening the PHI requires us to insert a trunc.  The logical place
-        // for this trunc is in the same BB as the PHI.  This is not possible if
-        // the BB is terminated by a catchswitch.
-        if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
-          return nullptr;
-
-        PHINode *WidePhi =
-          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
-                          UsePhi);
-        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
-        IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
-        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
-        UsePhi->replaceAllUsesWith(Trunc);
-        DeadInsts.emplace_back(UsePhi);
-        LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
-                          << *WidePhi << "\n");
-      }
-      return nullptr;
-    }
-  }
-
-  // This narrow use can be widened by a sext if it's non-negative or its narrow
-  // def was widended by a sext. Same for zext.
-  auto canWidenBySExt = [&]() {
-    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
-  };
-  auto canWidenByZExt = [&]() {
-    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
-  };
-
-  // Our raison d'etre! Eliminate sign and zero extension.
-  if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
-      (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
-    Value *NewDef = DU.WideDef;
-    if (DU.NarrowUse->getType() != WideType) {
-      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
-      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
-      if (CastWidth < IVWidth) {
-        // The cast isn't as wide as the IV, so insert a Trunc.
-        IRBuilder<> Builder(DU.NarrowUse);
-        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
-      }
-      else {
-        // A wider extend was hidden behind a narrower one. This may induce
-        // another round of IV widening in which the intermediate IV becomes
-        // dead. It should be very rare.
-        LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
-                          << " not wide enough to subsume " << *DU.NarrowUse
-                          << "\n");
-        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
-        NewDef = DU.NarrowUse;
-      }
-    }
-    if (NewDef != DU.NarrowUse) {
-      LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
-                        << " replaced by " << *DU.WideDef << "\n");
-      ++NumElimExt;
-      DU.NarrowUse->replaceAllUsesWith(NewDef);
-      DeadInsts.emplace_back(DU.NarrowUse);
-    }
-    // Now that the extend is gone, we want to expose it's uses for potential
-    // further simplification. We don't need to directly inform SimplifyIVUsers
-    // of the new users, because their parent IV will be processed later as a
-    // new loop phi. If we preserved IVUsers analysis, we would also want to
-    // push the uses of WideDef here.
-
-    // No further widening is needed. The deceased [sz]ext had done it for us.
-    return nullptr;
-  }
-
-  // Does this user itself evaluate to a recurrence after widening?
-  WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
-  if (!WideAddRec.first)
-    WideAddRec = getWideRecurrence(DU);
-
-  assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
-  if (!WideAddRec.first) {
-    // If use is a loop condition, try to promote the condition instead of
-    // truncating the IV first.
-    if (widenLoopCompare(DU))
-      return nullptr;
-
-    // We are here about to generate a truncate instruction that may hurt
-    // performance because the scalar evolution expression computed earlier
-    // in WideAddRec.first does not indicate a polynomial induction expression.
-    // In that case, look at the operands of the use instruction to determine
-    // if we can still widen the use instead of truncating its operand.
-    if (widenWithVariantUse(DU))
-      return nullptr;
-
-    // This user does not evaluate to a recurrence after widening, so don't
-    // follow it. Instead insert a Trunc to kill off the original use,
-    // eventually isolating the original narrow IV so it can be removed.
-    truncateIVUse(DU, DT, LI);
-    return nullptr;
-  }
-  // Assume block terminators cannot evaluate to a recurrence. We can't to
-  // insert a Trunc after a terminator if there happens to be a critical edge.
-  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
-         "SCEV is not expected to evaluate a block terminator");
-
-  // Reuse the IV increment that SCEVExpander created as long as it dominates
-  // NarrowUse.
-  Instruction *WideUse = nullptr;
-  if (WideAddRec.first == WideIncExpr &&
-      Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
-    WideUse = WideInc;
-  else {
-    WideUse = cloneIVUser(DU, WideAddRec.first);
-    if (!WideUse)
-      return nullptr;
-  }
-  // Evaluation of WideAddRec ensured that the narrow expression could be
-  // extended outside the loop without overflow. This suggests that the wide use
-  // evaluates to the same expression as the extended narrow use, but doesn't
-  // absolutely guarantee it. Hence the following failsafe check. In rare cases
-  // where it fails, we simply throw away the newly created wide use.
-  if (WideAddRec.first != SE->getSCEV(WideUse)) {
-    LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
-                      << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
-                      << "\n");
-    DeadInsts.emplace_back(WideUse);
-    return nullptr;
-  }
-
-  // if we reached this point then we are going to replace
-  // DU.NarrowUse with WideUse. Reattach DbgValue then.
-  replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
-
-  ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
-  // Returning WideUse pushes it on the worklist.
-  return WideUse;
-}
-
-/// Add eligible users of NarrowDef to NarrowIVUsers.
-void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
-  const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
-  bool NonNegativeDef =
-      SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
-                           SE->getZero(NarrowSCEV->getType()));
-  for (User *U : NarrowDef->users()) {
-    Instruction *NarrowUser = cast<Instruction>(U);
-
-    // Handle data flow merges and bizarre phi cycles.
-    if (!Widened.insert(NarrowUser).second)
-      continue;
-
-    bool NonNegativeUse = false;
-    if (!NonNegativeDef) {
-      // We might have a control-dependent range information for this context.
-      if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
-        NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
-    }
-
-    NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
-                               NonNegativeDef || NonNegativeUse);
-  }
-}
-
-/// Process a single induction variable. First use the SCEVExpander to create a
-/// wide induction variable that evaluates to the same recurrence as the
-/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
-/// def-use chain. After widenIVUse has processed all interesting IV users, the
-/// narrow IV will be isolated for removal by DeleteDeadPHIs.
-///
-/// It would be simpler to delete uses as they are processed, but we must avoid
-/// invalidating SCEV expressions.
-PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
-  // Bail if we disallowed widening.
-  if(!AllowIVWidening)
-    return nullptr;
-
-  // Is this phi an induction variable?
-  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
-  if (!AddRec)
-    return nullptr;
-
-  // Widen the induction variable expression.
-  const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
-                               ? SE->getSignExtendExpr(AddRec, WideType)
-                               : SE->getZeroExtendExpr(AddRec, WideType);
-
-  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
-         "Expect the new IV expression to preserve its type");
-
-  // Can the IV be extended outside the loop without overflow?
-  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
-  if (!AddRec || AddRec->getLoop() != L)
-    return nullptr;
-
-  // An AddRec must have loop-invariant operands. Since this AddRec is
-  // materialized by a loop header phi, the expression cannot have any post-loop
-  // operands, so they must dominate the loop header.
-  assert(
-      SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
-      SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
-      "Loop header phi recurrence inputs do not dominate the loop");
-
-  // Iterate over IV uses (including transitive ones) looking for IV increments
-  // of the form 'add nsw %iv, <const>'. For each increment and each use of
-  // the increment calculate control-dependent range information basing on
-  // dominating conditions inside of the loop (e.g. a range check inside of the
-  // loop). Calculated ranges are stored in PostIncRangeInfos map.
-  //
-  // Control-dependent range information is later used to prove that a narrow
-  // definition is not negative (see pushNarrowIVUsers). It's 
diff icult to do
-  // this on demand because when pushNarrowIVUsers needs this information some
-  // of the dominating conditions might be already widened.
-  if (UsePostIncrementRanges)
-    calculatePostIncRanges(OrigPhi);
-
-  // The rewriter provides a value for the desired IV expression. This may
-  // either find an existing phi or materialize a new one. Either way, we
-  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
-  // of the phi-SCC dominates the loop entry.
-  Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
-  Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
-  // If the wide phi is not a phi node, for example a cast node, like bitcast,
-  // inttoptr, ptrtoint, just skip for now.
-  if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
-    // if the cast node is an inserted instruction without any user, we should
-    // remove it to make sure the pass don't touch the function as we can not
-    // wide the phi.
-    if (ExpandInst->hasNUses(0) &&
-        Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
-      DeadInsts.emplace_back(ExpandInst);
-    return nullptr;
-  }
-
-  // Remembering the WideIV increment generated by SCEVExpander allows
-  // widenIVUse to reuse it when widening the narrow IV's increment. We don't
-  // employ a general reuse mechanism because the call above is the only call to
-  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
-  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
-    WideInc =
-      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
-    WideIncExpr = SE->getSCEV(WideInc);
-    // Propagate the debug location associated with the original loop increment
-    // to the new (widened) increment.
-    auto *OrigInc =
-      cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
-    WideInc->setDebugLoc(OrigInc->getDebugLoc());
-  }
-
-  LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
-  ++NumWidened;
-
-  // Traverse the def-use chain using a worklist starting at the original IV.
-  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
-
-  Widened.insert(OrigPhi);
-  pushNarrowIVUsers(OrigPhi, WidePhi);
-
-  while (!NarrowIVUsers.empty()) {
-    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
-
-    // Process a def-use edge. This may replace the use, so don't hold a
-    // use_iterator across it.
-    Instruction *WideUse = widenIVUse(DU, Rewriter);
-
-    // Follow all def-use edges from the previous narrow use.
-    if (WideUse)
-      pushNarrowIVUsers(DU.NarrowUse, WideUse);
-
-    // widenIVUse may have removed the def-use edge.
-    if (DU.NarrowDef->use_empty())
-      DeadInsts.emplace_back(DU.NarrowDef);
-  }
-
-  // Attach any debug information to the new PHI.
-  replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
-
-  return WidePhi;
-}
-
-/// Calculates control-dependent range for the given def at the given context
-/// by looking at dominating conditions inside of the loop
-void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
-                                    Instruction *NarrowUser) {
-  using namespace llvm::PatternMatch;
-
-  Value *NarrowDefLHS;
-  const APInt *NarrowDefRHS;
-  if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
-                                 m_APInt(NarrowDefRHS))) ||
-      !NarrowDefRHS->isNonNegative())
-    return;
-
-  auto UpdateRangeFromCondition = [&] (Value *Condition,
-                                       bool TrueDest) {
-    CmpInst::Predicate Pred;
-    Value *CmpRHS;
-    if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
-                                 m_Value(CmpRHS))))
-      return;
-
-    CmpInst::Predicate P =
-            TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
-
-    auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
-    auto CmpConstrainedLHSRange =
-            ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
-    auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
-        *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
-
-    updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
-  };
-
-  auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
-    if (!HasGuards)
-      return;
-
-    for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
-                                     Ctx->getParent()->rend())) {
-      Value *C = nullptr;
-      if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
-        UpdateRangeFromCondition(C, /*TrueDest=*/true);
-    }
-  };
-
-  UpdateRangeFromGuards(NarrowUser);
-
-  BasicBlock *NarrowUserBB = NarrowUser->getParent();
-  // If NarrowUserBB is statically unreachable asking dominator queries may
-  // yield surprising results. (e.g. the block may not have a dom tree node)
-  if (!DT->isReachableFromEntry(NarrowUserBB))
-    return;
-
-  for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
-       L->contains(DTB->getBlock());
-       DTB = DTB->getIDom()) {
-    auto *BB = DTB->getBlock();
-    auto *TI = BB->getTerminator();
-    UpdateRangeFromGuards(TI);
-
-    auto *BI = dyn_cast<BranchInst>(TI);
-    if (!BI || !BI->isConditional())
-      continue;
-
-    auto *TrueSuccessor = BI->getSuccessor(0);
-    auto *FalseSuccessor = BI->getSuccessor(1);
-
-    auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
-      return BBE.isSingleEdge() &&
-             DT->dominates(BBE, NarrowUser->getParent());
-    };
-
-    if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
-      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
-
-    if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
-      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
-  }
-}
-
-/// Calculates PostIncRangeInfos map for the given IV
-void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
-  SmallPtrSet<Instruction *, 16> Visited;
-  SmallVector<Instruction *, 6> Worklist;
-  Worklist.push_back(OrigPhi);
-  Visited.insert(OrigPhi);
-
-  while (!Worklist.empty()) {
-    Instruction *NarrowDef = Worklist.pop_back_val();
-
-    for (Use &U : NarrowDef->uses()) {
-      auto *NarrowUser = cast<Instruction>(U.getUser());
-
-      // Don't go looking outside the current loop.
-      auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
-      if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
-        continue;
-
-      if (!Visited.insert(NarrowUser).second)
-        continue;
-
-      Worklist.push_back(NarrowUser);
-
-      calculatePostIncRange(NarrowDef, NarrowUser);
-    }
-  }
-}
-
 //===----------------------------------------------------------------------===//
 //  Live IV Reduction - Minimize IVs live across the loop.
 //===----------------------------------------------------------------------===//
@@ -1652,9 +629,18 @@ bool IndVarSimplify::simplifyAndExtend(Loop *L,
       }
     } while(!LoopPhis.empty());
 
+    // Continue if we disallowed widening.
+    if (!AllowIVWidening)
+      continue;
+
     for (; !WideIVs.empty(); WideIVs.pop_back()) {
-      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
-      if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
+      unsigned ElimExt;
+      unsigned Widened;
+      if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
+                                          DT, DeadInsts, ElimExt, Widened,
+                                          HasGuards, UsePostIncrementRanges)) {
+        NumElimExt += ElimExt;
+        NumWidened += Widened;
         Changed = true;
         LoopPhis.push_back(WidePhi);
       }

diff  --git a/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
index 2d71b0fff889..079ec7f0acd9 100644
--- a/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -968,3 +968,1034 @@ bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
 }
 
 } // namespace llvm
+
+//===----------------------------------------------------------------------===//
+// Widen Induction Variables - Extend the width of an IV to cover its
+// widest uses.
+//===----------------------------------------------------------------------===//
+
+class WidenIV {
+  // Parameters
+  PHINode *OrigPhi;
+  Type *WideType;
+
+  // Context
+  LoopInfo        *LI;
+  Loop            *L;
+  ScalarEvolution *SE;
+  DominatorTree   *DT;
+
+  // Does the module have any calls to the llvm.experimental.guard intrinsic
+  // at all? If not we can avoid scanning instructions looking for guards.
+  bool HasGuards;
+
+  bool UsePostIncrementRanges;
+
+  // Statistics
+  unsigned NumElimExt = 0;
+  unsigned NumWidened = 0;
+
+  // Result
+  PHINode *WidePhi = nullptr;
+  Instruction *WideInc = nullptr;
+  const SCEV *WideIncExpr = nullptr;
+  SmallVectorImpl<WeakTrackingVH> &DeadInsts;
+
+  SmallPtrSet<Instruction *,16> Widened;
+
+  enum ExtendKind { ZeroExtended, SignExtended, Unknown };
+
+  // A map tracking the kind of extension used to widen each narrow IV
+  // and narrow IV user.
+  // Key: pointer to a narrow IV or IV user.
+  // Value: the kind of extension used to widen this Instruction.
+  DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
+
+  using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
+
+  // A map with control-dependent ranges for post increment IV uses. The key is
+  // a pair of IV def and a use of this def denoting the context. The value is
+  // a ConstantRange representing possible values of the def at the given
+  // context.
+  DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
+
+  Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
+                                              Instruction *UseI) {
+    DefUserPair Key(Def, UseI);
+    auto It = PostIncRangeInfos.find(Key);
+    return It == PostIncRangeInfos.end()
+               ? Optional<ConstantRange>(None)
+               : Optional<ConstantRange>(It->second);
+  }
+
+  void calculatePostIncRanges(PHINode *OrigPhi);
+  void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
+
+  void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
+    DefUserPair Key(Def, UseI);
+    auto It = PostIncRangeInfos.find(Key);
+    if (It == PostIncRangeInfos.end())
+      PostIncRangeInfos.insert({Key, R});
+    else
+      It->second = R.intersectWith(It->second);
+  }
+
+public:
+  /// Record a link in the Narrow IV def-use chain along with the WideIV that
+  /// computes the same value as the Narrow IV def.  This avoids caching Use*
+  /// pointers.
+  struct NarrowIVDefUse {
+    Instruction *NarrowDef = nullptr;
+    Instruction *NarrowUse = nullptr;
+    Instruction *WideDef = nullptr;
+
+    // True if the narrow def is never negative.  Tracking this information lets
+    // us use a sign extension instead of a zero extension or vice versa, when
+    // profitable and legal.
+    bool NeverNegative = false;
+
+    NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
+                   bool NeverNegative)
+        : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
+          NeverNegative(NeverNegative) {}
+  };
+
+  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
+          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
+          bool HasGuards, bool UsePostIncrementRanges = true);
+
+  PHINode *createWideIV(SCEVExpander &Rewriter);
+
+  unsigned getNumElimExt() { return NumElimExt; };
+  unsigned getNumWidened() { return NumWidened; };
+
+protected:
+  Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
+                          Instruction *Use);
+
+  Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
+  Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
+                                     const SCEVAddRecExpr *WideAR);
+  Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
+
+  ExtendKind getExtendKind(Instruction *I);
+
+  using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
+
+  WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
+
+  WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
+
+  const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+                              unsigned OpCode) const;
+
+  Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
+
+  bool widenLoopCompare(NarrowIVDefUse DU);
+  bool widenWithVariantUse(NarrowIVDefUse DU);
+
+  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
+
+private:
+  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
+};
+
+
+/// Determine the insertion point for this user. By default, insert immediately
+/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
+/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
+/// common dominator for the incoming blocks. A nullptr can be returned if no
+/// viable location is found: it may happen if User is a PHI and Def only comes
+/// to this PHI from unreachable blocks.
+static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
+                                          DominatorTree *DT, LoopInfo *LI) {
+  PHINode *PHI = dyn_cast<PHINode>(User);
+  if (!PHI)
+    return User;
+
+  Instruction *InsertPt = nullptr;
+  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
+    if (PHI->getIncomingValue(i) != Def)
+      continue;
+
+    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
+
+    if (!DT->isReachableFromEntry(InsertBB))
+      continue;
+
+    if (!InsertPt) {
+      InsertPt = InsertBB->getTerminator();
+      continue;
+    }
+    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
+    InsertPt = InsertBB->getTerminator();
+  }
+
+  // If we have skipped all inputs, it means that Def only comes to Phi from
+  // unreachable blocks.
+  if (!InsertPt)
+    return nullptr;
+
+  auto *DefI = dyn_cast<Instruction>(Def);
+  if (!DefI)
+    return InsertPt;
+
+  assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
+
+  auto *L = LI->getLoopFor(DefI->getParent());
+  assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
+
+  for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
+    if (LI->getLoopFor(DTN->getBlock()) == L)
+      return DTN->getBlock()->getTerminator();
+
+  llvm_unreachable("DefI dominates InsertPt!");
+}
+
+WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
+          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
+          bool HasGuards, bool UsePostIncrementRanges)
+      : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
+        L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
+        HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
+        DeadInsts(DI) {
+    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
+    ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
+}
+
+Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
+                                 bool IsSigned, Instruction *Use) {
+  // Set the debug location and conservative insertion point.
+  IRBuilder<> Builder(Use);
+  // Hoist the insertion point into loop preheaders as far as possible.
+  for (const Loop *L = LI->getLoopFor(Use->getParent());
+       L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
+       L = L->getParentLoop())
+    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
+
+  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
+                    Builder.CreateZExt(NarrowOper, WideType);
+}
+
+/// Instantiate a wide operation to replace a narrow operation. This only needs
+/// to handle operations that can evaluation to SCEVAddRec. It can safely return
+/// 0 for any operation we decide not to clone.
+Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
+                                  const SCEVAddRecExpr *WideAR) {
+  unsigned Opcode = DU.NarrowUse->getOpcode();
+  switch (Opcode) {
+  default:
+    return nullptr;
+  case Instruction::Add:
+  case Instruction::Mul:
+  case Instruction::UDiv:
+  case Instruction::Sub:
+    return cloneArithmeticIVUser(DU, WideAR);
+
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::Shl:
+  case Instruction::LShr:
+  case Instruction::AShr:
+    return cloneBitwiseIVUser(DU);
+  }
+}
+
+Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
+  Instruction *NarrowUse = DU.NarrowUse;
+  Instruction *NarrowDef = DU.NarrowDef;
+  Instruction *WideDef = DU.WideDef;
+
+  LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
+
+  // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
+  // about the narrow operand yet so must insert a [sz]ext. It is probably loop
+  // invariant and will be folded or hoisted. If it actually comes from a
+  // widened IV, it should be removed during a future call to widenIVUse.
+  bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
+  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+                   ? WideDef
+                   : createExtendInst(NarrowUse->getOperand(0), WideType,
+                                      IsSigned, NarrowUse);
+  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+                   ? WideDef
+                   : createExtendInst(NarrowUse->getOperand(1), WideType,
+                                      IsSigned, NarrowUse);
+
+  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+                                        NarrowBO->getName());
+  IRBuilder<> Builder(NarrowUse);
+  Builder.Insert(WideBO);
+  WideBO->copyIRFlags(NarrowBO);
+  return WideBO;
+}
+
+Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
+                                            const SCEVAddRecExpr *WideAR) {
+  Instruction *NarrowUse = DU.NarrowUse;
+  Instruction *NarrowDef = DU.NarrowDef;
+  Instruction *WideDef = DU.WideDef;
+
+  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
+
+  unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
+
+  // We're trying to find X such that
+  //
+  //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
+  //
+  // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
+  // and check using SCEV if any of them are correct.
+
+  // Returns true if extending NonIVNarrowDef according to `SignExt` is a
+  // correct solution to X.
+  auto GuessNonIVOperand = [&](bool SignExt) {
+    const SCEV *WideLHS;
+    const SCEV *WideRHS;
+
+    auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
+      if (SignExt)
+        return SE->getSignExtendExpr(S, Ty);
+      return SE->getZeroExtendExpr(S, Ty);
+    };
+
+    if (IVOpIdx == 0) {
+      WideLHS = SE->getSCEV(WideDef);
+      const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
+      WideRHS = GetExtend(NarrowRHS, WideType);
+    } else {
+      const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
+      WideLHS = GetExtend(NarrowLHS, WideType);
+      WideRHS = SE->getSCEV(WideDef);
+    }
+
+    // WideUse is "WideDef `op.wide` X" as described in the comment.
+    const SCEV *WideUse = nullptr;
+
+    switch (NarrowUse->getOpcode()) {
+    default:
+      llvm_unreachable("No other possibility!");
+
+    case Instruction::Add:
+      WideUse = SE->getAddExpr(WideLHS, WideRHS);
+      break;
+
+    case Instruction::Mul:
+      WideUse = SE->getMulExpr(WideLHS, WideRHS);
+      break;
+
+    case Instruction::UDiv:
+      WideUse = SE->getUDivExpr(WideLHS, WideRHS);
+      break;
+
+    case Instruction::Sub:
+      WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
+      break;
+    }
+
+    return WideUse == WideAR;
+  };
+
+  bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
+  if (!GuessNonIVOperand(SignExtend)) {
+    SignExtend = !SignExtend;
+    if (!GuessNonIVOperand(SignExtend))
+      return nullptr;
+  }
+
+  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+                   ? WideDef
+                   : createExtendInst(NarrowUse->getOperand(0), WideType,
+                                      SignExtend, NarrowUse);
+  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+                   ? WideDef
+                   : createExtendInst(NarrowUse->getOperand(1), WideType,
+                                      SignExtend, NarrowUse);
+
+  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+                                        NarrowBO->getName());
+
+  IRBuilder<> Builder(NarrowUse);
+  Builder.Insert(WideBO);
+  WideBO->copyIRFlags(NarrowBO);
+  return WideBO;
+}
+
+WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
+  auto It = ExtendKindMap.find(I);
+  assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
+  return It->second;
+}
+
+const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+                                     unsigned OpCode) const {
+  if (OpCode == Instruction::Add)
+    return SE->getAddExpr(LHS, RHS);
+  if (OpCode == Instruction::Sub)
+    return SE->getMinusSCEV(LHS, RHS);
+  if (OpCode == Instruction::Mul)
+    return SE->getMulExpr(LHS, RHS);
+
+  llvm_unreachable("Unsupported opcode.");
+}
+
+/// No-wrap operations can transfer sign extension of their result to their
+/// operands. Generate the SCEV value for the widened operation without
+/// actually modifying the IR yet. If the expression after extending the
+/// operands is an AddRec for this loop, return the AddRec and the kind of
+/// extension used.
+WidenIV::WidenedRecTy
+WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
+  // Handle the common case of add<nsw/nuw>
+  const unsigned OpCode = DU.NarrowUse->getOpcode();
+  // Only Add/Sub/Mul instructions supported yet.
+  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
+      OpCode != Instruction::Mul)
+    return {nullptr, Unknown};
+
+  // One operand (NarrowDef) has already been extended to WideDef. Now determine
+  // if extending the other will lead to a recurrence.
+  const unsigned ExtendOperIdx =
+      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
+  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
+
+  const SCEV *ExtendOperExpr = nullptr;
+  const OverflowingBinaryOperator *OBO =
+    cast<OverflowingBinaryOperator>(DU.NarrowUse);
+  ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
+  if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
+    ExtendOperExpr = SE->getSignExtendExpr(
+      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
+  else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
+    ExtendOperExpr = SE->getZeroExtendExpr(
+      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
+  else
+    return {nullptr, Unknown};
+
+  // When creating this SCEV expr, don't apply the current operations NSW or NUW
+  // flags. This instruction may be guarded by control flow that the no-wrap
+  // behavior depends on. Non-control-equivalent instructions can be mapped to
+  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
+  // semantics to those operations.
+  const SCEV *lhs = SE->getSCEV(DU.WideDef);
+  const SCEV *rhs = ExtendOperExpr;
+
+  // Let's swap operands to the initial order for the case of non-commutative
+  // operations, like SUB. See PR21014.
+  if (ExtendOperIdx == 0)
+    std::swap(lhs, rhs);
+  const SCEVAddRecExpr *AddRec =
+      dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
+
+  if (!AddRec || AddRec->getLoop() != L)
+    return {nullptr, Unknown};
+
+  return {AddRec, ExtKind};
+}
+
+/// Is this instruction potentially interesting for further simplification after
+/// widening it's type? In other words, can the extend be safely hoisted out of
+/// the loop with SCEV reducing the value to a recurrence on the same loop. If
+/// so, return the extended recurrence and the kind of extension used. Otherwise
+/// return {nullptr, Unknown}.
+WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
+  if (!SE->isSCEVable(DU.NarrowUse->getType()))
+    return {nullptr, Unknown};
+
+  const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
+  if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
+      SE->getTypeSizeInBits(WideType)) {
+    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
+    // index. So don't follow this use.
+    return {nullptr, Unknown};
+  }
+
+  const SCEV *WideExpr;
+  ExtendKind ExtKind;
+  if (DU.NeverNegative) {
+    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
+    if (isa<SCEVAddRecExpr>(WideExpr))
+      ExtKind = SignExtended;
+    else {
+      WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
+      ExtKind = ZeroExtended;
+    }
+  } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
+    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
+    ExtKind = SignExtended;
+  } else {
+    WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
+    ExtKind = ZeroExtended;
+  }
+  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
+  if (!AddRec || AddRec->getLoop() != L)
+    return {nullptr, Unknown};
+  return {AddRec, ExtKind};
+}
+
+/// This IV user cannot be widened. Replace this use of the original narrow IV
+/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
+static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
+                          LoopInfo *LI) {
+  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
+  if (!InsertPt)
+    return;
+  LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
+                    << *DU.NarrowUse << "\n");
+  IRBuilder<> Builder(InsertPt);
+  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
+  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
+}
+
+/// If the narrow use is a compare instruction, then widen the compare
+//  (and possibly the other operand).  The extend operation is hoisted into the
+// loop preheader as far as possible.
+bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
+  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
+  if (!Cmp)
+    return false;
+
+  // We can legally widen the comparison in the following two cases:
+  //
+  //  - The signedness of the IV extension and comparison match
+  //
+  //  - The narrow IV is always positive (and thus its sign extension is equal
+  //    to its zero extension).  For instance, let's say we're zero extending
+  //    %narrow for the following use
+  //
+  //      icmp slt i32 %narrow, %val   ... (A)
+  //
+  //    and %narrow is always positive.  Then
+  //
+  //      (A) == icmp slt i32 sext(%narrow), sext(%val)
+  //          == icmp slt i32 zext(%narrow), sext(%val)
+  bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
+  if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
+    return false;
+
+  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
+  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
+  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
+  assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
+
+  // Widen the compare instruction.
+  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
+  if (!InsertPt)
+    return false;
+  IRBuilder<> Builder(InsertPt);
+  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
+
+  // Widen the other operand of the compare, if necessary.
+  if (CastWidth < IVWidth) {
+    Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
+    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
+  }
+  return true;
+}
+
+// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
+// will not work when:
+//    1) SCEV traces back to an instruction inside the loop that SCEV can not
+// expand, eg. add %indvar, (load %addr)
+//    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
+// While SCEV fails to avoid trunc, we can still try to use instruction
+// combining approach to prove trunc is not required. This can be further
+// extended with other instruction combining checks, but for now we handle the
+// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
+//
+// Src:
+//   %c = sub nsw %b, %indvar
+//   %d = sext %c to i64
+// Dst:
+//   %indvar.ext1 = sext %indvar to i64
+//   %m = sext %b to i64
+//   %d = sub nsw i64 %m, %indvar.ext1
+// Therefore, as long as the result of add/sub/mul is extended to wide type, no
+// trunc is required regardless of how %b is generated. This pattern is common
+// when calculating address in 64 bit architecture
+bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
+  Instruction *NarrowUse = DU.NarrowUse;
+  Instruction *NarrowDef = DU.NarrowDef;
+  Instruction *WideDef = DU.WideDef;
+
+  // Handle the common case of add<nsw/nuw>
+  const unsigned OpCode = NarrowUse->getOpcode();
+  // Only Add/Sub/Mul instructions are supported.
+  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
+      OpCode != Instruction::Mul)
+    return false;
+
+  // The operand that is not defined by NarrowDef of DU. Let's call it the
+  // other operand.
+  assert((NarrowUse->getOperand(0) == NarrowDef ||
+          NarrowUse->getOperand(1) == NarrowDef) &&
+         "bad DU");
+
+  const OverflowingBinaryOperator *OBO =
+    cast<OverflowingBinaryOperator>(NarrowUse);
+  ExtendKind ExtKind = getExtendKind(NarrowDef);
+  bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
+  bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
+  if (!CanSignExtend && !CanZeroExtend)
+    return false;
+
+  // Verifying that Defining operand is an AddRec
+  const SCEV *Op1 = SE->getSCEV(WideDef);
+  const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
+  if (!AddRecOp1 || AddRecOp1->getLoop() != L)
+    return false;
+
+  for (Use &U : NarrowUse->uses()) {
+    Instruction *User = nullptr;
+    if (ExtKind == SignExtended)
+      User = dyn_cast<SExtInst>(U.getUser());
+    else
+      User = dyn_cast<ZExtInst>(U.getUser());
+    if (!User || User->getType() != WideType)
+      return false;
+  }
+
+  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
+
+  // Generating a widening use instruction.
+  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+                   ? WideDef
+                   : createExtendInst(NarrowUse->getOperand(0), WideType,
+                                      ExtKind, NarrowUse);
+  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+                   ? WideDef
+                   : createExtendInst(NarrowUse->getOperand(1), WideType,
+                                      ExtKind, NarrowUse);
+
+  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+                                        NarrowBO->getName());
+  IRBuilder<> Builder(NarrowUse);
+  Builder.Insert(WideBO);
+  WideBO->copyIRFlags(NarrowBO);
+  ExtendKindMap[NarrowUse] = ExtKind;
+
+  for (Use &U : NarrowUse->uses()) {
+    Instruction *User = nullptr;
+    if (ExtKind == SignExtended)
+      User = cast<SExtInst>(U.getUser());
+    else
+      User = cast<ZExtInst>(U.getUser());
+    assert(User->getType() == WideType && "Checked before!");
+    LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
+                      << *WideBO << "\n");
+    ++NumElimExt;
+    User->replaceAllUsesWith(WideBO);
+    DeadInsts.emplace_back(User);
+  }
+  return true;
+}
+
+/// Determine whether an individual user of the narrow IV can be widened. If so,
+/// return the wide clone of the user.
+Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
+  assert(ExtendKindMap.count(DU.NarrowDef) &&
+         "Should already know the kind of extension used to widen NarrowDef");
+
+  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
+  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
+    if (LI->getLoopFor(UsePhi->getParent()) != L) {
+      // For LCSSA phis, sink the truncate outside the loop.
+      // After SimplifyCFG most loop exit targets have a single predecessor.
+      // Otherwise fall back to a truncate within the loop.
+      if (UsePhi->getNumOperands() != 1)
+        truncateIVUse(DU, DT, LI);
+      else {
+        // Widening the PHI requires us to insert a trunc.  The logical place
+        // for this trunc is in the same BB as the PHI.  This is not possible if
+        // the BB is terminated by a catchswitch.
+        if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
+          return nullptr;
+
+        PHINode *WidePhi =
+          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
+                          UsePhi);
+        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
+        IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
+        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
+        UsePhi->replaceAllUsesWith(Trunc);
+        DeadInsts.emplace_back(UsePhi);
+        LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
+                          << *WidePhi << "\n");
+      }
+      return nullptr;
+    }
+  }
+
+  // This narrow use can be widened by a sext if it's non-negative or its narrow
+  // def was widended by a sext. Same for zext.
+  auto canWidenBySExt = [&]() {
+    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
+  };
+  auto canWidenByZExt = [&]() {
+    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
+  };
+
+  // Our raison d'etre! Eliminate sign and zero extension.
+  if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
+      (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
+    Value *NewDef = DU.WideDef;
+    if (DU.NarrowUse->getType() != WideType) {
+      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
+      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
+      if (CastWidth < IVWidth) {
+        // The cast isn't as wide as the IV, so insert a Trunc.
+        IRBuilder<> Builder(DU.NarrowUse);
+        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
+      }
+      else {
+        // A wider extend was hidden behind a narrower one. This may induce
+        // another round of IV widening in which the intermediate IV becomes
+        // dead. It should be very rare.
+        LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
+                          << " not wide enough to subsume " << *DU.NarrowUse
+                          << "\n");
+        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
+        NewDef = DU.NarrowUse;
+      }
+    }
+    if (NewDef != DU.NarrowUse) {
+      LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
+                        << " replaced by " << *DU.WideDef << "\n");
+      ++NumElimExt;
+      DU.NarrowUse->replaceAllUsesWith(NewDef);
+      DeadInsts.emplace_back(DU.NarrowUse);
+    }
+    // Now that the extend is gone, we want to expose it's uses for potential
+    // further simplification. We don't need to directly inform SimplifyIVUsers
+    // of the new users, because their parent IV will be processed later as a
+    // new loop phi. If we preserved IVUsers analysis, we would also want to
+    // push the uses of WideDef here.
+
+    // No further widening is needed. The deceased [sz]ext had done it for us.
+    return nullptr;
+  }
+
+  // Does this user itself evaluate to a recurrence after widening?
+  WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
+  if (!WideAddRec.first)
+    WideAddRec = getWideRecurrence(DU);
+
+  assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
+  if (!WideAddRec.first) {
+    // If use is a loop condition, try to promote the condition instead of
+    // truncating the IV first.
+    if (widenLoopCompare(DU))
+      return nullptr;
+
+    // We are here about to generate a truncate instruction that may hurt
+    // performance because the scalar evolution expression computed earlier
+    // in WideAddRec.first does not indicate a polynomial induction expression.
+    // In that case, look at the operands of the use instruction to determine
+    // if we can still widen the use instead of truncating its operand.
+    if (widenWithVariantUse(DU))
+      return nullptr;
+
+    // This user does not evaluate to a recurrence after widening, so don't
+    // follow it. Instead insert a Trunc to kill off the original use,
+    // eventually isolating the original narrow IV so it can be removed.
+    truncateIVUse(DU, DT, LI);
+    return nullptr;
+  }
+  // Assume block terminators cannot evaluate to a recurrence. We can't to
+  // insert a Trunc after a terminator if there happens to be a critical edge.
+  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
+         "SCEV is not expected to evaluate a block terminator");
+
+  // Reuse the IV increment that SCEVExpander created as long as it dominates
+  // NarrowUse.
+  Instruction *WideUse = nullptr;
+  if (WideAddRec.first == WideIncExpr &&
+      Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
+    WideUse = WideInc;
+  else {
+    WideUse = cloneIVUser(DU, WideAddRec.first);
+    if (!WideUse)
+      return nullptr;
+  }
+  // Evaluation of WideAddRec ensured that the narrow expression could be
+  // extended outside the loop without overflow. This suggests that the wide use
+  // evaluates to the same expression as the extended narrow use, but doesn't
+  // absolutely guarantee it. Hence the following failsafe check. In rare cases
+  // where it fails, we simply throw away the newly created wide use.
+  if (WideAddRec.first != SE->getSCEV(WideUse)) {
+    LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
+                      << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
+                      << "\n");
+    DeadInsts.emplace_back(WideUse);
+    return nullptr;
+  }
+
+  // if we reached this point then we are going to replace
+  // DU.NarrowUse with WideUse. Reattach DbgValue then.
+  replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
+
+  ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
+  // Returning WideUse pushes it on the worklist.
+  return WideUse;
+}
+
+/// Add eligible users of NarrowDef to NarrowIVUsers.
+void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
+  const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
+  bool NonNegativeDef =
+      SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
+                           SE->getZero(NarrowSCEV->getType()));
+  for (User *U : NarrowDef->users()) {
+    Instruction *NarrowUser = cast<Instruction>(U);
+
+    // Handle data flow merges and bizarre phi cycles.
+    if (!Widened.insert(NarrowUser).second)
+      continue;
+
+    bool NonNegativeUse = false;
+    if (!NonNegativeDef) {
+      // We might have a control-dependent range information for this context.
+      if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
+        NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
+    }
+
+    NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
+                               NonNegativeDef || NonNegativeUse);
+  }
+}
+
+/// Process a single induction variable. First use the SCEVExpander to create a
+/// wide induction variable that evaluates to the same recurrence as the
+/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
+/// def-use chain. After widenIVUse has processed all interesting IV users, the
+/// narrow IV will be isolated for removal by DeleteDeadPHIs.
+///
+/// It would be simpler to delete uses as they are processed, but we must avoid
+/// invalidating SCEV expressions.
+PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
+  // Is this phi an induction variable?
+  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
+  if (!AddRec)
+    return nullptr;
+
+  // Widen the induction variable expression.
+  const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
+                               ? SE->getSignExtendExpr(AddRec, WideType)
+                               : SE->getZeroExtendExpr(AddRec, WideType);
+
+  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
+         "Expect the new IV expression to preserve its type");
+
+  // Can the IV be extended outside the loop without overflow?
+  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
+  if (!AddRec || AddRec->getLoop() != L)
+    return nullptr;
+
+  // An AddRec must have loop-invariant operands. Since this AddRec is
+  // materialized by a loop header phi, the expression cannot have any post-loop
+  // operands, so they must dominate the loop header.
+  assert(
+      SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
+      SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
+      "Loop header phi recurrence inputs do not dominate the loop");
+
+  // Iterate over IV uses (including transitive ones) looking for IV increments
+  // of the form 'add nsw %iv, <const>'. For each increment and each use of
+  // the increment calculate control-dependent range information basing on
+  // dominating conditions inside of the loop (e.g. a range check inside of the
+  // loop). Calculated ranges are stored in PostIncRangeInfos map.
+  //
+  // Control-dependent range information is later used to prove that a narrow
+  // definition is not negative (see pushNarrowIVUsers). It's 
diff icult to do
+  // this on demand because when pushNarrowIVUsers needs this information some
+  // of the dominating conditions might be already widened.
+  if (UsePostIncrementRanges)
+    calculatePostIncRanges(OrigPhi);
+
+  // The rewriter provides a value for the desired IV expression. This may
+  // either find an existing phi or materialize a new one. Either way, we
+  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
+  // of the phi-SCC dominates the loop entry.
+  Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
+  Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
+  // If the wide phi is not a phi node, for example a cast node, like bitcast,
+  // inttoptr, ptrtoint, just skip for now.
+  if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
+    // if the cast node is an inserted instruction without any user, we should
+    // remove it to make sure the pass don't touch the function as we can not
+    // wide the phi.
+    if (ExpandInst->hasNUses(0) &&
+        Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
+      DeadInsts.emplace_back(ExpandInst);
+    return nullptr;
+  }
+
+  // Remembering the WideIV increment generated by SCEVExpander allows
+  // widenIVUse to reuse it when widening the narrow IV's increment. We don't
+  // employ a general reuse mechanism because the call above is the only call to
+  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
+  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
+    WideInc =
+      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
+    WideIncExpr = SE->getSCEV(WideInc);
+    // Propagate the debug location associated with the original loop increment
+    // to the new (widened) increment.
+    auto *OrigInc =
+      cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
+    WideInc->setDebugLoc(OrigInc->getDebugLoc());
+  }
+
+  LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
+  ++NumWidened;
+
+  // Traverse the def-use chain using a worklist starting at the original IV.
+  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
+
+  Widened.insert(OrigPhi);
+  pushNarrowIVUsers(OrigPhi, WidePhi);
+
+  while (!NarrowIVUsers.empty()) {
+    WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
+
+    // Process a def-use edge. This may replace the use, so don't hold a
+    // use_iterator across it.
+    Instruction *WideUse = widenIVUse(DU, Rewriter);
+
+    // Follow all def-use edges from the previous narrow use.
+    if (WideUse)
+      pushNarrowIVUsers(DU.NarrowUse, WideUse);
+
+    // widenIVUse may have removed the def-use edge.
+    if (DU.NarrowDef->use_empty())
+      DeadInsts.emplace_back(DU.NarrowDef);
+  }
+
+  // Attach any debug information to the new PHI.
+  replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
+
+  return WidePhi;
+}
+
+/// Calculates control-dependent range for the given def at the given context
+/// by looking at dominating conditions inside of the loop
+void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
+                                    Instruction *NarrowUser) {
+  using namespace llvm::PatternMatch;
+
+  Value *NarrowDefLHS;
+  const APInt *NarrowDefRHS;
+  if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
+                                 m_APInt(NarrowDefRHS))) ||
+      !NarrowDefRHS->isNonNegative())
+    return;
+
+  auto UpdateRangeFromCondition = [&] (Value *Condition,
+                                       bool TrueDest) {
+    CmpInst::Predicate Pred;
+    Value *CmpRHS;
+    if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
+                                 m_Value(CmpRHS))))
+      return;
+
+    CmpInst::Predicate P =
+            TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
+
+    auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
+    auto CmpConstrainedLHSRange =
+            ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
+    auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
+        *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
+
+    updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
+  };
+
+  auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
+    if (!HasGuards)
+      return;
+
+    for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
+                                     Ctx->getParent()->rend())) {
+      Value *C = nullptr;
+      if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
+        UpdateRangeFromCondition(C, /*TrueDest=*/true);
+    }
+  };
+
+  UpdateRangeFromGuards(NarrowUser);
+
+  BasicBlock *NarrowUserBB = NarrowUser->getParent();
+  // If NarrowUserBB is statically unreachable asking dominator queries may
+  // yield surprising results. (e.g. the block may not have a dom tree node)
+  if (!DT->isReachableFromEntry(NarrowUserBB))
+    return;
+
+  for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
+       L->contains(DTB->getBlock());
+       DTB = DTB->getIDom()) {
+    auto *BB = DTB->getBlock();
+    auto *TI = BB->getTerminator();
+    UpdateRangeFromGuards(TI);
+
+    auto *BI = dyn_cast<BranchInst>(TI);
+    if (!BI || !BI->isConditional())
+      continue;
+
+    auto *TrueSuccessor = BI->getSuccessor(0);
+    auto *FalseSuccessor = BI->getSuccessor(1);
+
+    auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
+      return BBE.isSingleEdge() &&
+             DT->dominates(BBE, NarrowUser->getParent());
+    };
+
+    if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
+      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
+
+    if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
+      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
+  }
+}
+
+/// Calculates PostIncRangeInfos map for the given IV
+void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
+  SmallPtrSet<Instruction *, 16> Visited;
+  SmallVector<Instruction *, 6> Worklist;
+  Worklist.push_back(OrigPhi);
+  Visited.insert(OrigPhi);
+
+  while (!Worklist.empty()) {
+    Instruction *NarrowDef = Worklist.pop_back_val();
+
+    for (Use &U : NarrowDef->uses()) {
+      auto *NarrowUser = cast<Instruction>(U.getUser());
+
+      // Don't go looking outside the current loop.
+      auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
+      if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
+        continue;
+
+      if (!Visited.insert(NarrowUser).second)
+        continue;
+
+      Worklist.push_back(NarrowUser);
+
+      calculatePostIncRange(NarrowDef, NarrowUser);
+    }
+  }
+}
+
+PHINode *llvm::createWideIV(WideIVInfo &WI,
+    LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
+    DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
+    unsigned &NumElimExt, unsigned &NumWidened,
+    bool HasGuards, bool UsePostIncrementRanges) {
+  WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
+  PHINode *WidePHI = Widener.createWideIV(Rewriter);
+  NumElimExt = Widener.getNumElimExt();
+  NumWidened = Widener.getNumWidened();
+  return WidePHI;
+}


        


More information about the llvm-commits mailing list