[llvm] 9f48a16 - Revert "[DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass."

Tom Weaver via llvm-commits llvm-commits at lists.llvm.org
Mon Nov 11 06:13:49 PST 2019


Author: Tom Weaver
Date: 2019-11-11T14:13:33Z
New Revision: 9f48a160dd3fd56314cfbbe74c56e09aaab11566

URL: https://github.com/llvm/llvm-project/commit/9f48a160dd3fd56314cfbbe74c56e09aaab11566
DIFF: https://github.com/llvm/llvm-project/commit/9f48a160dd3fd56314cfbbe74c56e09aaab11566.diff

LOG: Revert "[DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass."

This reverts commit 1984a27db58e9053371ab6d6dc288c81c8a071ac.

Added: 
    

Modified: 
    

Removed: 
    llvm/lib/Transforms/Scalar/Reassociate.cpp.rej
    llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll
    llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll


################################################################################
diff  --git a/llvm/lib/Transforms/Scalar/Reassociate.cpp.rej b/llvm/lib/Transforms/Scalar/Reassociate.cpp.rej
deleted file mode 100644
index 83c547675403..000000000000
--- a/llvm/lib/Transforms/Scalar/Reassociate.cpp.rej
+++ /dev/null
@@ -1,2506 +0,0 @@
---- llvm/lib/Transforms/Scalar/Reassociate.cpp
-+++ llvm/lib/Transforms/Scalar/Reassociate.cpp
-@@ -1,2501 +1,2503 @@
- //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass reassociates commutative expressions in an order that is designed
- // to promote better constant propagation, GCSE, LICM, PRE, etc.
- //
- // For example: 4 + (x + 5) -> x + (4 + 5)
- //
- // In the implementation of this algorithm, constants are assigned rank = 0,
- // function arguments are rank = 1, and other values are assigned ranks
- // corresponding to the reverse post order traversal of current function
- // (starting at 2), which effectively gives values in deep loops higher rank
- // than values not in loops.
- //
- //===----------------------------------------------------------------------===//
- 
- #include "llvm/Transforms/Scalar/Reassociate.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include <algorithm>
- #include <cassert>
- #include <utility>
- 
- using namespace llvm;
- using namespace reassociate;
- using namespace PatternMatch;
- 
- #define DEBUG_TYPE "reassociate"
- 
- STATISTIC(NumChanged, "Number of insts reassociated");
- STATISTIC(NumAnnihil, "Number of expr tree annihilated");
- STATISTIC(NumFactor , "Number of multiplies factored");
- 
- #ifndef NDEBUG
- /// Print out the expression identified in the Ops list.
- static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
-   Module *M = I->getModule();
-   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
-        << *Ops[0].Op->getType() << '\t';
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-     dbgs() << "[ ";
-     Ops[i].Op->printAsOperand(dbgs(), false, M);
-     dbgs() << ", #" << Ops[i].Rank << "] ";
-   }
- }
- #endif
- 
- /// Utility class representing a non-constant Xor-operand. We classify
- /// non-constant Xor-Operands into two categories:
- ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
- ///  C2)
- ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
- ///          constant.
- ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
- ///          operand as "E | 0"
- class llvm::reassociate::XorOpnd {
- public:
-   XorOpnd(Value *V);
- 
-   bool isInvalid() const { return SymbolicPart == nullptr; }
-   bool isOrExpr() const { return isOr; }
-   Value *getValue() const { return OrigVal; }
-   Value *getSymbolicPart() const { return SymbolicPart; }
-   unsigned getSymbolicRank() const { return SymbolicRank; }
-   const APInt &getConstPart() const { return ConstPart; }
- 
-   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
-   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
- 
- private:
-   Value *OrigVal;
-   Value *SymbolicPart;
-   APInt ConstPart;
-   unsigned SymbolicRank;
-   bool isOr;
- };
- 
- XorOpnd::XorOpnd(Value *V) {
-   assert(!isa<ConstantInt>(V) && "No ConstantInt");
-   OrigVal = V;
-   Instruction *I = dyn_cast<Instruction>(V);
-   SymbolicRank = 0;
- 
-   if (I && (I->getOpcode() == Instruction::Or ||
-             I->getOpcode() == Instruction::And)) {
-     Value *V0 = I->getOperand(0);
-     Value *V1 = I->getOperand(1);
-     const APInt *C;
-     if (match(V0, m_APInt(C)))
-       std::swap(V0, V1);
- 
-     if (match(V1, m_APInt(C))) {
-       ConstPart = *C;
-       SymbolicPart = V0;
-       isOr = (I->getOpcode() == Instruction::Or);
-       return;
-     }
-   }
- 
-   // view the operand as "V | 0"
-   SymbolicPart = V;
-   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
-   isOr = true;
- }
- 
- /// Return true if V is an instruction of the specified opcode and if it
- /// only has one use.
- static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
-   auto *I = dyn_cast<Instruction>(V);
-   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
-     if (!isa<FPMathOperator>(I) || I->isFast())
-       return cast<BinaryOperator>(I);
-   return nullptr;
- }
- 
- static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
-                                         unsigned Opcode2) {
-   auto *I = dyn_cast<Instruction>(V);
-   if (I && I->hasOneUse() &&
-       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
-     if (!isa<FPMathOperator>(I) || I->isFast())
-       return cast<BinaryOperator>(I);
-   return nullptr;
- }
- 
- void ReassociatePass::BuildRankMap(Function &F,
-                                    ReversePostOrderTraversal<Function*> &RPOT) {
-   unsigned Rank = 2;
- 
-   // Assign distinct ranks to function arguments.
-   for (auto &Arg : F.args()) {
-     ValueRankMap[&Arg] = ++Rank;
-     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
-                       << "\n");
-   }
- 
-   // Traverse basic blocks in ReversePostOrder
-   for (BasicBlock *BB : RPOT) {
-     unsigned BBRank = RankMap[BB] = ++Rank << 16;
- 
-     // Walk the basic block, adding precomputed ranks for any instructions that
-     // we cannot move.  This ensures that the ranks for these instructions are
-     // all 
diff erent in the block.
-     for (Instruction &I : *BB)
-       if (mayBeMemoryDependent(I))
-         ValueRankMap[&I] = ++BBRank;
-   }
- }
- 
- unsigned ReassociatePass::getRank(Value *V) {
-   Instruction *I = dyn_cast<Instruction>(V);
-   if (!I) {
-     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
-     return 0;  // Otherwise it's a global or constant, rank 0.
-   }
- 
-   if (unsigned Rank = ValueRankMap[I])
-     return Rank;    // Rank already known?
- 
-   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
-   // we can reassociate expressions for code motion!  Since we do not recurse
-   // for PHI nodes, we cannot have infinite recursion here, because there
-   // cannot be loops in the value graph that do not go through PHI nodes.
-   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
-   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
-     Rank = std::max(Rank, getRank(I->getOperand(i)));
- 
-   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
-   // assures us that X and ~X will have the same rank.
-   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
-       !match(I, m_FNeg(m_Value())))
-     ++Rank;
- 
-   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
-                     << "\n");
- 
-   return ValueRankMap[I] = Rank;
- }
- 
- // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
- void ReassociatePass::canonicalizeOperands(Instruction *I) {
-   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
-   assert(I->isCommutative() && "Expected commutative operator.");
- 
-   Value *LHS = I->getOperand(0);
-   Value *RHS = I->getOperand(1);
-   if (LHS == RHS || isa<Constant>(RHS))
-     return;
-   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
-     cast<BinaryOperator>(I)->swapOperands();
- }
- 
- static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
-                                  Instruction *InsertBefore, Value *FlagsOp) {
-   if (S1->getType()->isIntOrIntVectorTy())
-     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
-   else {
-     BinaryOperator *Res =
-         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
-     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
-     return Res;
-   }
- }
- 
- static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
-                                  Instruction *InsertBefore, Value *FlagsOp) {
-   if (S1->getType()->isIntOrIntVectorTy())
-     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
-   else {
-     BinaryOperator *Res =
-       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
-     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
-     return Res;
-   }
- }
- 
- static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
-                                  Instruction *InsertBefore, Value *FlagsOp) {
-   if (S1->getType()->isIntOrIntVectorTy())
-     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
-   else {
-     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
-     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
-     return Res;
-   }
- }
- 
- /// Replace 0-X with X*-1.
- static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
-   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
-          "Expected a Negate!");
-   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
-   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
-   Type *Ty = Neg->getType();
-   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
-     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
- 
-   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
-   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
-   Res->takeName(Neg);
-   Neg->replaceAllUsesWith(Res);
-   Res->setDebugLoc(Neg->getDebugLoc());
-   return Res;
- }
- 
- /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
- /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
- /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
- /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
- /// even x in Bitwidth-bit arithmetic.
- static unsigned CarmichaelShift(unsigned Bitwidth) {
-   if (Bitwidth < 3)
-     return Bitwidth - 1;
-   return Bitwidth - 2;
- }
- 
- /// Add the extra weight 'RHS' to the existing weight 'LHS',
- /// reducing the combined weight using any special properties of the operation.
- /// The existing weight LHS represents the computation X op X op ... op X where
- /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
- /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
- /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
- /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
- static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
-   // If we were working with infinite precision arithmetic then the combined
-   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
-   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
-   // for nilpotent operations and addition, but not for idempotent operations
-   // and multiplication), so it is important to correctly reduce the combined
-   // weight back into range if wrapping would be wrong.
- 
-   // If RHS is zero then the weight didn't change.
-   if (RHS.isMinValue())
-     return;
-   // If LHS is zero then the combined weight is RHS.
-   if (LHS.isMinValue()) {
-     LHS = RHS;
-     return;
-   }
-   // From this point on we know that neither LHS nor RHS is zero.
- 
-   if (Instruction::isIdempotent(Opcode)) {
-     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
-     // weight of 1.  Keeping weights at zero or one also means that wrapping is
-     // not a problem.
-     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
-     return; // Return a weight of 1.
-   }
-   if (Instruction::isNilpotent(Opcode)) {
-     // Nilpotent means X op X === 0, so reduce weights modulo 2.
-     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
-     LHS = 0; // 1 + 1 === 0 modulo 2.
-     return;
-   }
-   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
-     // TODO: Reduce the weight by exploiting nsw/nuw?
-     LHS += RHS;
-     return;
-   }
- 
-   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
-          "Unknown associative operation!");
-   unsigned Bitwidth = LHS.getBitWidth();
-   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
-   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
-   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
-   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
-   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
-   // which by a happy accident means that they can always be represented using
-   // Bitwidth bits.
-   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
-   // the Carmichael number).
-   if (Bitwidth > 3) {
-     /// CM - The value of Carmichael's lambda function.
-     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
-     // Any weight W >= Threshold can be replaced with W - CM.
-     APInt Threshold = CM + Bitwidth;
-     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
-     // For Bitwidth 4 or more the following sum does not overflow.
-     LHS += RHS;
-     while (LHS.uge(Threshold))
-       LHS -= CM;
-   } else {
-     // To avoid problems with overflow do everything the same as above but using
-     // a larger type.
-     unsigned CM = 1U << CarmichaelShift(Bitwidth);
-     unsigned Threshold = CM + Bitwidth;
-     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
-            "Weights not reduced!");
-     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
-     while (Total >= Threshold)
-       Total -= CM;
-     LHS = Total;
-   }
- }
- 
- using RepeatedValue = std::pair<Value*, APInt>;
- 
- /// Given an associative binary expression, return the leaf
- /// nodes in Ops along with their weights (how many times the leaf occurs).  The
- /// original expression is the same as
- ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
- /// op
- ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
- /// op
- ///   ...
- /// op
- ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
- ///
- /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
- ///
- /// This routine may modify the function, in which case it returns 'true'.  The
- /// changes it makes may well be destructive, changing the value computed by 'I'
- /// to something completely 
diff erent.  Thus if the routine returns 'true' then
- /// you MUST either replace I with a new expression computed from the Ops array,
- /// or use RewriteExprTree to put the values back in.
- ///
- /// A leaf node is either not a binary operation of the same kind as the root
- /// node 'I' (i.e. is not a binary operator at all, or is, but with a 
diff erent
- /// opcode), or is the same kind of binary operator but has a use which either
- /// does not belong to the expression, or does belong to the expression but is
- /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
- /// of the expression, while for non-leaf nodes (except for the root 'I') every
- /// use is a non-leaf node of the expression.
- ///
- /// For example:
- ///           expression graph        node names
- ///
- ///                     +        |        I
- ///                    / \       |
- ///                   +   +      |      A,  B
- ///                  / \ / \     |
- ///                 *   +   *    |    C,  D,  E
- ///                / \ / \ / \   |
- ///                   +   *      |      F,  G
- ///
- /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
- /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
- ///
- /// The expression is maximal: if some instruction is a binary operator of the
- /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
- /// then the instruction also belongs to the expression, is not a leaf node of
- /// it, and its operands also belong to the expression (but may be leaf nodes).
- ///
- /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
- /// order to ensure that every non-root node in the expression has *exactly one*
- /// use by a non-leaf node of the expression.  This destruction means that the
- /// caller MUST either replace 'I' with a new expression or use something like
- /// RewriteExprTree to put the values back in if the routine indicates that it
- /// made a change by returning 'true'.
- ///
- /// In the above example either the right operand of A or the left operand of B
- /// will be replaced by undef.  If it is B's operand then this gives:
- ///
- ///                     +        |        I
- ///                    / \       |
- ///                   +   +      |      A,  B - operand of B replaced with undef
- ///                  / \   \     |
- ///                 *   +   *    |    C,  D,  E
- ///                / \ / \ / \   |
- ///                   +   *      |      F,  G
- ///
- /// Note that such undef operands can only be reached by passing through 'I'.
- /// For example, if you visit operands recursively starting from a leaf node
- /// then you will never see such an undef operand unless you get back to 'I',
- /// which requires passing through a phi node.
- ///
- /// Note that this routine may also mutate binary operators of the wrong type
- /// that have all uses inside the expression (i.e. only used by non-leaf nodes
- /// of the expression) if it can turn them into binary operators of the right
- /// type and thus make the expression bigger.
- static bool LinearizeExprTree(Instruction *I,
-                               SmallVectorImpl<RepeatedValue> &Ops) {
-   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
-          "Expected a UnaryOperator or BinaryOperator!");
-   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
-   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
-   unsigned Opcode = I->getOpcode();
-   assert(I->isAssociative() && I->isCommutative() &&
-          "Expected an associative and commutative operation!");
- 
-   // Visit all operands of the expression, keeping track of their weight (the
-   // number of paths from the expression root to the operand, or if you like
-   // the number of times that operand occurs in the linearized expression).
-   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
-   // while A has weight two.
- 
-   // Worklist of non-leaf nodes (their operands are in the expression too) along
-   // with their weights, representing a certain number of paths to the operator.
-   // If an operator occurs in the worklist multiple times then we found multiple
-   // ways to get to it.
-   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
-   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
-   bool Changed = false;
- 
-   // Leaves of the expression are values that either aren't the right kind of
-   // operation (eg: a constant, or a multiply in an add tree), or are, but have
-   // some uses that are not inside the expression.  For example, in I = X + X,
-   // X = A + B, the value X has two uses (by I) that are in the expression.  If
-   // X has any other uses, for example in a return instruction, then we consider
-   // X to be a leaf, and won't analyze it further.  When we first visit a value,
-   // if it has more than one use then at first we conservatively consider it to
-   // be a leaf.  Later, as the expression is explored, we may discover some more
-   // uses of the value from inside the expression.  If all uses turn out to be
-   // from within the expression (and the value is a binary operator of the right
-   // kind) then the value is no longer considered to be a leaf, and its operands
-   // are explored.
- 
-   // Leaves - Keeps track of the set of putative leaves as well as the number of
-   // paths to each leaf seen so far.
-   using LeafMap = DenseMap<Value *, APInt>;
-   LeafMap Leaves; // Leaf -> Total weight so far.
-   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
- 
- #ifndef NDEBUG
-   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
- #endif
-   while (!Worklist.empty()) {
-     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
-     I = P.first; // We examine the operands of this binary operator.
- 
-     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
-       Value *Op = I->getOperand(OpIdx);
-       APInt Weight = P.second; // Number of paths to this operand.
-       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
-       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
- 
-       // If this is a binary operation of the right kind with only one use then
-       // add its operands to the expression.
-       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
-         assert(Visited.insert(Op).second && "Not first visit!");
-         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
-         Worklist.push_back(std::make_pair(BO, Weight));
-         continue;
-       }
- 
-       // Appears to be a leaf.  Is the operand already in the set of leaves?
-       LeafMap::iterator It = Leaves.find(Op);
-       if (It == Leaves.end()) {
-         // Not in the leaf map.  Must be the first time we saw this operand.
-         assert(Visited.insert(Op).second && "Not first visit!");
-         if (!Op->hasOneUse()) {
-           // This value has uses not accounted for by the expression, so it is
-           // not safe to modify.  Mark it as being a leaf.
-           LLVM_DEBUG(dbgs()
-                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
-           LeafOrder.push_back(Op);
-           Leaves[Op] = Weight;
-           continue;
-         }
-         // No uses outside the expression, try morphing it.
-       } else {
-         // Already in the leaf map.
-         assert(It != Leaves.end() && Visited.count(Op) &&
-                "In leaf map but not visited!");
- 
-         // Update the number of paths to the leaf.
-         IncorporateWeight(It->second, Weight, Opcode);
- 
- #if 0   // TODO: Re-enable once PR13021 is fixed.
-         // The leaf already has one use from inside the expression.  As we want
-         // exactly one such use, drop this new use of the leaf.
-         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
-         I->setOperand(OpIdx, UndefValue::get(I->getType()));
-         Changed = true;
- 
-         // If the leaf is a binary operation of the right kind and we now see
-         // that its multiple original uses were in fact all by nodes belonging
-         // to the expression, then no longer consider it to be a leaf and add
-         // its operands to the expression.
-         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
-           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
-           Worklist.push_back(std::make_pair(BO, It->second));
-           Leaves.erase(It);
-           continue;
-         }
- #endif
- 
-         // If we still have uses that are not accounted for by the expression
-         // then it is not safe to modify the value.
-         if (!Op->hasOneUse())
-           continue;
- 
-         // No uses outside the expression, try morphing it.
-         Weight = It->second;
-         Leaves.erase(It); // Since the value may be morphed below.
-       }
- 
-       // At this point we have a value which, first of all, is not a binary
-       // expression of the right kind, and secondly, is only used inside the
-       // expression.  This means that it can safely be modified.  See if we
-       // can usefully morph it into an expression of the right kind.
-       assert((!isa<Instruction>(Op) ||
-               cast<Instruction>(Op)->getOpcode() != Opcode
-               || (isa<FPMathOperator>(Op) &&
-                   !cast<Instruction>(Op)->isFast())) &&
-              "Should have been handled above!");
-       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
- 
-       // If this is a multiply expression, turn any internal negations into
-       // multiplies by -1 so they can be reassociated.
-       if (Instruction *Tmp = dyn_cast<Instruction>(Op))
-         if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
-             (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
-           LLVM_DEBUG(dbgs()
-                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
-           Tmp = LowerNegateToMultiply(Tmp);
-           LLVM_DEBUG(dbgs() << *Tmp << '\n');
-           Worklist.push_back(std::make_pair(Tmp, Weight));
-           Changed = true;
-           continue;
-         }
- 
-       // Failed to morph into an expression of the right type.  This really is
-       // a leaf.
-       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
-       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
-       LeafOrder.push_back(Op);
-       Leaves[Op] = Weight;
-     }
-   }
- 
-   // The leaves, repeated according to their weights, represent the linearized
-   // form of the expression.
-   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
-     Value *V = LeafOrder[i];
-     LeafMap::iterator It = Leaves.find(V);
-     if (It == Leaves.end())
-       // Node initially thought to be a leaf wasn't.
-       continue;
-     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
-     APInt Weight = It->second;
-     if (Weight.isMinValue())
-       // Leaf already output or weight reduction eliminated it.
-       continue;
-     // Ensure the leaf is only output once.
-     It->second = 0;
-     Ops.push_back(std::make_pair(V, Weight));
-   }
- 
-   // For nilpotent operations or addition there may be no operands, for example
-   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
-   // in both cases the weight reduces to 0 causing the value to be skipped.
-   if (Ops.empty()) {
-     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
-     assert(Identity && "Associative operation without identity!");
-     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
-   }
- 
-   return Changed;
- }
- 
- /// Now that the operands for this expression tree are
- /// linearized and optimized, emit them in-order.
- void ReassociatePass::RewriteExprTree(BinaryOperator *I,
-                                       SmallVectorImpl<ValueEntry> &Ops) {
-   assert(Ops.size() > 1 && "Single values should be used directly!");
- 
-   // Since our optimizations should never increase the number of operations, the
-   // new expression can usually be written reusing the existing binary operators
-   // from the original expression tree, without creating any new instructions,
-   // though the rewritten expression may have a completely 
diff erent topology.
-   // We take care to not change anything if the new expression will be the same
-   // as the original.  If more than trivial changes (like commuting operands)
-   // were made then we are obliged to clear out any optional subclass data like
-   // nsw flags.
- 
-   /// NodesToRewrite - Nodes from the original expression available for writing
-   /// the new expression into.
-   SmallVector<BinaryOperator*, 8> NodesToRewrite;
-   unsigned Opcode = I->getOpcode();
-   BinaryOperator *Op = I;
- 
-   /// NotRewritable - The operands being written will be the leaves of the new
-   /// expression and must not be used as inner nodes (via NodesToRewrite) by
-   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
-   /// (if they were they would have been incorporated into the expression and so
-   /// would not be leaves), so most of the time there is no danger of this.  But
-   /// in rare cases a leaf may become reassociable if an optimization kills uses
-   /// of it, or it may momentarily become reassociable during rewriting (below)
-   /// due it being removed as an operand of one of its uses.  Ensure that misuse
-   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
-   /// leaves and refusing to reuse any of them as inner nodes.
-   SmallPtrSet<Value*, 8> NotRewritable;
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
-     NotRewritable.insert(Ops[i].Op);
- 
-   // ExpressionChanged - Non-null if the rewritten expression 
diff ers from the
-   // original in some non-trivial way, requiring the clearing of optional flags.
-   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
-   BinaryOperator *ExpressionChanged = nullptr;
-   for (unsigned i = 0; ; ++i) {
-     // The last operation (which comes earliest in the IR) is special as both
-     // operands will come from Ops, rather than just one with the other being
-     // a subexpression.
-     if (i+2 == Ops.size()) {
-       Value *NewLHS = Ops[i].Op;
-       Value *NewRHS = Ops[i+1].Op;
-       Value *OldLHS = Op->getOperand(0);
-       Value *OldRHS = Op->getOperand(1);
- 
-       if (NewLHS == OldLHS && NewRHS == OldRHS)
-         // Nothing changed, leave it alone.
-         break;
- 
-       if (NewLHS == OldRHS && NewRHS == OldLHS) {
-         // The order of the operands was reversed.  Swap them.
-         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
-         Op->swapOperands();
-         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
-         MadeChange = true;
-         ++NumChanged;
-         break;
-       }
- 
-       // The new operation 
diff ers non-trivially from the original. Overwrite
-       // the old operands with the new ones.
-       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
-       if (NewLHS != OldLHS) {
-         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
-         if (BO && !NotRewritable.count(BO))
-           NodesToRewrite.push_back(BO);
-         Op->setOperand(0, NewLHS);
-       }
-       if (NewRHS != OldRHS) {
-         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
-         if (BO && !NotRewritable.count(BO))
-           NodesToRewrite.push_back(BO);
-         Op->setOperand(1, NewRHS);
-       }
-       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
- 
-       ExpressionChanged = Op;
-       MadeChange = true;
-       ++NumChanged;
- 
-       break;
-     }
- 
-     // Not the last operation.  The left-hand side will be a sub-expression
-     // while the right-hand side will be the current element of Ops.
-     Value *NewRHS = Ops[i].Op;
-     if (NewRHS != Op->getOperand(1)) {
-       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
-       if (NewRHS == Op->getOperand(0)) {
-         // The new right-hand side was already present as the left operand.  If
-         // we are lucky then swapping the operands will sort out both of them.
-         Op->swapOperands();
-       } else {
-         // Overwrite with the new right-hand side.
-         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
-         if (BO && !NotRewritable.count(BO))
-           NodesToRewrite.push_back(BO);
-         Op->setOperand(1, NewRHS);
-         ExpressionChanged = Op;
-       }
-       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
-       MadeChange = true;
-       ++NumChanged;
-     }
- 
-     // Now deal with the left-hand side.  If this is already an operation node
-     // from the original expression then just rewrite the rest of the expression
-     // into it.
-     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
-     if (BO && !NotRewritable.count(BO)) {
-       Op = BO;
-       continue;
-     }
- 
-     // Otherwise, grab a spare node from the original expression and use that as
-     // the left-hand side.  If there are no nodes left then the optimizers made
-     // an expression with more nodes than the original!  This usually means that
-     // they did something stupid but it might mean that the problem was just too
-     // hard (finding the mimimal number of multiplications needed to realize a
-     // multiplication expression is NP-complete).  Whatever the reason, smart or
-     // stupid, create a new node if there are none left.
-     BinaryOperator *NewOp;
-     if (NodesToRewrite.empty()) {
-       Constant *Undef = UndefValue::get(I->getType());
-       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
-                                      Undef, Undef, "", I);
-       if (NewOp->getType()->isFPOrFPVectorTy())
-         NewOp->setFastMathFlags(I->getFastMathFlags());
-     } else {
-       NewOp = NodesToRewrite.pop_back_val();
-     }
- 
-     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
-     Op->setOperand(0, NewOp);
-     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
-     ExpressionChanged = Op;
-     MadeChange = true;
-     ++NumChanged;
-     Op = NewOp;
-   }
- 
-   // If the expression changed non-trivially then clear out all subclass data
-   // starting from the operator specified in ExpressionChanged, and compactify
-   // the operators to just before the expression root to guarantee that the
-   // expression tree is dominated by all of Ops.
-   if (ExpressionChanged)
-     do {
-       // Preserve FastMathFlags.
-       if (isa<FPMathOperator>(I)) {
-         FastMathFlags Flags = I->getFastMathFlags();
-         ExpressionChanged->clearSubclassOptionalData();
-         ExpressionChanged->setFastMathFlags(Flags);
-       } else
-         ExpressionChanged->clearSubclassOptionalData();
- 
-       if (ExpressionChanged == I)
-         break;
- 
-       // Discard any debug info related to the expressions that has changed (we
-       // can leave debug infor related to the root, since the result of the
-       // expression tree should be the same even after reassociation).
-       replaceDbgUsesWithUndef(ExpressionChanged);
- 
-       ExpressionChanged->moveBefore(I);
-       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
-     } while (true);
- 
-   // Throw away any left over nodes from the original expression.
-   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
-     RedoInsts.insert(NodesToRewrite[i]);
- }
- 
- /// Insert instructions before the instruction pointed to by BI,
- /// that computes the negative version of the value specified.  The negative
- /// version of the value is returned, and BI is left pointing at the instruction
- /// that should be processed next by the reassociation pass.
- /// Also add intermediate instructions to the redo list that are modified while
- /// pushing the negates through adds.  These will be revisited to see if
- /// additional opportunities have been exposed.
- static Value *NegateValue(Value *V, Instruction *BI,
-                           ReassociatePass::OrderedSet &ToRedo) {
-   if (auto *C = dyn_cast<Constant>(V))
-     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
-                                               ConstantExpr::getNeg(C);
- 
-   // We are trying to expose opportunity for reassociation.  One of the things
-   // that we want to do to achieve this is to push a negation as deep into an
-   // expression chain as possible, to expose the add instructions.  In practice,
-   // this means that we turn this:
-   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
-   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
-   // the constants.  We assume that instcombine will clean up the mess later if
-   // we introduce tons of unnecessary negation instructions.
-   //
-   if (BinaryOperator *I =
-           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
-     // Push the negates through the add.
-     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
-     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
-     if (I->getOpcode() == Instruction::Add) {
-       I->setHasNoUnsignedWrap(false);
-       I->setHasNoSignedWrap(false);
-     }
- 
-     // We must move the add instruction here, because the neg instructions do
-     // not dominate the old add instruction in general.  By moving it, we are
-     // assured that the neg instructions we just inserted dominate the
-     // instruction we are about to insert after them.
-     //
-     I->moveBefore(BI);
-     I->setName(I->getName()+".neg");
- 
-     // Add the intermediate negates to the redo list as processing them later
-     // could expose more reassociating opportunities.
-     ToRedo.insert(I);
-     return I;
-   }
- 
-   // Okay, we need to materialize a negated version of V with an instruction.
-   // Scan the use lists of V to see if we have one already.
-   for (User *U : V->users()) {
-     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
-       continue;
- 
-     // We found one!  Now we have to make sure that the definition dominates
-     // this use.  We do this by moving it to the entry block (if it is a
-     // non-instruction value) or right after the definition.  These negates will
-     // be zapped by reassociate later, so we don't need much finesse here.
-     Instruction *TheNeg = cast<Instruction>(U);
- 
-     // Verify that the negate is in this function, V might be a constant expr.
-     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
-       continue;
- 
-     bool FoundCatchSwitch = false;
- 
-     BasicBlock::iterator InsertPt;
-     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
-       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
-         InsertPt = II->getNormalDest()->begin();
-       } else {
-         InsertPt = ++InstInput->getIterator();
-       }
- 
-       const BasicBlock *BB = InsertPt->getParent();
- 
-       // Make sure we don't move anything before PHIs or exception
-       // handling pads.
-       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
-                                        InsertPt->isEHPad())) {
-         if (isa<CatchSwitchInst>(InsertPt))
-           // A catchswitch cannot have anything in the block except
-           // itself and PHIs.  We'll bail out below.
-           FoundCatchSwitch = true;
-         ++InsertPt;
-       }
-     } else {
-       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
-     }
- 
-     // We found a catchswitch in the block where we want to move the
-     // neg.  We cannot move anything into that block.  Bail and just
-     // create the neg before BI, as if we hadn't found an existing
-     // neg.
-     if (FoundCatchSwitch)
-       break;
- 
-     TheNeg->moveBefore(&*InsertPt);
-     if (TheNeg->getOpcode() == Instruction::Sub) {
-       TheNeg->setHasNoUnsignedWrap(false);
-       TheNeg->setHasNoSignedWrap(false);
-     } else {
-       TheNeg->andIRFlags(BI);
-     }
-     ToRedo.insert(TheNeg);
-     return TheNeg;
-   }
- 
-   // Insert a 'neg' instruction that subtracts the value from zero to get the
-   // negation.
-   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
-   ToRedo.insert(NewNeg);
-   return NewNeg;
- }
- 
- /// Return true if we should break up this subtract of X-Y into (X + -Y).
- static bool ShouldBreakUpSubtract(Instruction *Sub) {
-   // If this is a negation, we can't split it up!
-   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 
-     return false;
- 
-   // Don't breakup X - undef.
-   if (isa<UndefValue>(Sub->getOperand(1)))
-     return false;
- 
-   // Don't bother to break this up unless either the LHS is an associable add or
-   // subtract or if this is only used by one.
-   Value *V0 = Sub->getOperand(0);
-   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
-       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
-     return true;
-   Value *V1 = Sub->getOperand(1);
-   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
-       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
-     return true;
-   Value *VB = Sub->user_back();
-   if (Sub->hasOneUse() &&
-       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
-        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
-     return true;
- 
-   return false;
- }
- 
- /// If we have (X-Y), and if either X is an add, or if this is only used by an
- /// add, transform this into (X+(0-Y)) to promote better reassociation.
- static BinaryOperator *BreakUpSubtract(Instruction *Sub,
-                                        ReassociatePass::OrderedSet &ToRedo) {
-   // Convert a subtract into an add and a neg instruction. This allows sub
-   // instructions to be commuted with other add instructions.
-   //
-   // Calculate the negative value of Operand 1 of the sub instruction,
-   // and set it as the RHS of the add instruction we just made.
-   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
-   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
-   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
-   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
-   New->takeName(Sub);
- 
-   // Everyone now refers to the add instruction.
-   Sub->replaceAllUsesWith(New);
-   New->setDebugLoc(Sub->getDebugLoc());
- 
-   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
-   return New;
- }
- 
- /// If this is a shift of a reassociable multiply or is used by one, change
- /// this into a multiply by a constant to assist with further reassociation.
- static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
-   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
-   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
- 
-   BinaryOperator *Mul =
-     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
-   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
-   Mul->takeName(Shl);
- 
-   // Everyone now refers to the mul instruction.
-   Shl->replaceAllUsesWith(Mul);
-   Mul->setDebugLoc(Shl->getDebugLoc());
- 
-   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
-   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
-   // handling.
-   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
-   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
-   if (NSW && NUW)
-     Mul->setHasNoSignedWrap(true);
-   Mul->setHasNoUnsignedWrap(NUW);
-   return Mul;
- }
- 
- /// Scan backwards and forwards among values with the same rank as element i
- /// to see if X exists.  If X does not exist, return i.  This is useful when
- /// scanning for 'x' when we see '-x' because they both get the same rank.
- static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
-                                   unsigned i, Value *X) {
-   unsigned XRank = Ops[i].Rank;
-   unsigned e = Ops.size();
-   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
-     if (Ops[j].Op == X)
-       return j;
-     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
-       if (Instruction *I2 = dyn_cast<Instruction>(X))
-         if (I1->isIdenticalTo(I2))
-           return j;
-   }
-   // Scan backwards.
-   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
-     if (Ops[j].Op == X)
-       return j;
-     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
-       if (Instruction *I2 = dyn_cast<Instruction>(X))
-         if (I1->isIdenticalTo(I2))
-           return j;
-   }
-   return i;
- }
- 
- /// Emit a tree of add instructions, summing Ops together
- /// and returning the result.  Insert the tree before I.
- static Value *EmitAddTreeOfValues(Instruction *I,
-                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
-   if (Ops.size() == 1) return Ops.back();
- 
-   Value *V1 = Ops.back();
-   Ops.pop_back();
-   Value *V2 = EmitAddTreeOfValues(I, Ops);
-   return CreateAdd(V2, V1, "reass.add", I, I);
- }
- 
- /// If V is an expression tree that is a multiplication sequence,
- /// and if this sequence contains a multiply by Factor,
- /// remove Factor from the tree and return the new tree.
- Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
-   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
-   if (!BO)
-     return nullptr;
- 
-   SmallVector<RepeatedValue, 8> Tree;
-   MadeChange |= LinearizeExprTree(BO, Tree);
-   SmallVector<ValueEntry, 8> Factors;
-   Factors.reserve(Tree.size());
-   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
-     RepeatedValue E = Tree[i];
-     Factors.append(E.second.getZExtValue(),
-                    ValueEntry(getRank(E.first), E.first));
-   }
- 
-   bool FoundFactor = false;
-   bool NeedsNegate = false;
-   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
-     if (Factors[i].Op == Factor) {
-       FoundFactor = true;
-       Factors.erase(Factors.begin()+i);
-       break;
-     }
- 
-     // If this is a negative version of this factor, remove it.
-     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
-       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
-         if (FC1->getValue() == -FC2->getValue()) {
-           FoundFactor = NeedsNegate = true;
-           Factors.erase(Factors.begin()+i);
-           break;
-         }
-     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
-       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
-         const APFloat &F1 = FC1->getValueAPF();
-         APFloat F2(FC2->getValueAPF());
-         F2.changeSign();
-         if (F1.compare(F2) == APFloat::cmpEqual) {
-           FoundFactor = NeedsNegate = true;
-           Factors.erase(Factors.begin() + i);
-           break;
-         }
-       }
-     }
-   }
- 
-   if (!FoundFactor) {
-     // Make sure to restore the operands to the expression tree.
-     RewriteExprTree(BO, Factors);
-     return nullptr;
-   }
- 
-   BasicBlock::iterator InsertPt = ++BO->getIterator();
- 
-   // If this was just a single multiply, remove the multiply and return the only
-   // remaining operand.
-   if (Factors.size() == 1) {
-     RedoInsts.insert(BO);
-     V = Factors[0].Op;
-   } else {
-     RewriteExprTree(BO, Factors);
-     V = BO;
-   }
- 
-   if (NeedsNegate)
-     V = CreateNeg(V, "neg", &*InsertPt, BO);
- 
-   return V;
- }
- 
- /// If V is a single-use multiply, recursively add its operands as factors,
- /// otherwise add V to the list of factors.
- ///
- /// Ops is the top-level list of add operands we're trying to factor.
- static void FindSingleUseMultiplyFactors(Value *V,
-                                          SmallVectorImpl<Value*> &Factors) {
-   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
-   if (!BO) {
-     Factors.push_back(V);
-     return;
-   }
- 
-   // Otherwise, add the LHS and RHS to the list of factors.
-   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
-   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
- }
- 
- /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
- /// This optimizes based on identities.  If it can be reduced to a single Value,
- /// it is returned, otherwise the Ops list is mutated as necessary.
- static Value *OptimizeAndOrXor(unsigned Opcode,
-                                SmallVectorImpl<ValueEntry> &Ops) {
-   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
-   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-     // First, check for X and ~X in the operand list.
-     assert(i < Ops.size());
-     Value *X;
-     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
-       unsigned FoundX = FindInOperandList(Ops, i, X);
-       if (FoundX != i) {
-         if (Opcode == Instruction::And)   // ...&X&~X = 0
-           return Constant::getNullValue(X->getType());
- 
-         if (Opcode == Instruction::Or)    // ...|X|~X = -1
-           return Constant::getAllOnesValue(X->getType());
-       }
-     }
- 
-     // Next, check for duplicate pairs of values, which we assume are next to
-     // each other, due to our sorting criteria.
-     assert(i < Ops.size());
-     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
-       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
-         // Drop duplicate values for And and Or.
-         Ops.erase(Ops.begin()+i);
-         --i; --e;
-         ++NumAnnihil;
-         continue;
-       }
- 
-       // Drop pairs of values for Xor.
-       assert(Opcode == Instruction::Xor);
-       if (e == 2)
-         return Constant::getNullValue(Ops[0].Op->getType());
- 
-       // Y ^ X^X -> Y
-       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
-       i -= 1; e -= 2;
-       ++NumAnnihil;
-     }
-   }
-   return nullptr;
- }
- 
- /// Helper function of CombineXorOpnd(). It creates a bitwise-and
- /// instruction with the given two operands, and return the resulting
- /// instruction. There are two special cases: 1) if the constant operand is 0,
- /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
- /// be returned.
- static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
-                              const APInt &ConstOpnd) {
-   if (ConstOpnd.isNullValue())
-     return nullptr;
- 
-   if (ConstOpnd.isAllOnesValue())
-     return Opnd;
- 
-   Instruction *I = BinaryOperator::CreateAnd(
-       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
-       InsertBefore);
-   I->setDebugLoc(InsertBefore->getDebugLoc());
-   return I;
- }
- 
- // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
- // into "R ^ C", where C would be 0, and R is a symbolic value.
- //
- // If it was successful, true is returned, and the "R" and "C" is returned
- // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
- // and both "Res" and "ConstOpnd" remain unchanged.
- bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
-                                      APInt &ConstOpnd, Value *&Res) {
-   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
-   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
-   //                       = (x & ~c1) ^ (c1 ^ c2)
-   // It is useful only when c1 == c2.
-   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
-     return false;
- 
-   if (!Opnd1->getValue()->hasOneUse())
-     return false;
- 
-   const APInt &C1 = Opnd1->getConstPart();
-   if (C1 != ConstOpnd)
-     return false;
- 
-   Value *X = Opnd1->getSymbolicPart();
-   Res = createAndInstr(I, X, ~C1);
-   // ConstOpnd was C2, now C1 ^ C2.
-   ConstOpnd ^= C1;
- 
-   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
-     RedoInsts.insert(T);
-   return true;
- }
- 
- // Helper function of OptimizeXor(). It tries to simplify
- // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
- // symbolic value.
- //
- // If it was successful, true is returned, and the "R" and "C" is returned
- // via "Res" and "ConstOpnd", respectively (If the entire expression is
- // evaluated to a constant, the Res is set to NULL); otherwise, false is
- // returned, and both "Res" and "ConstOpnd" remain unchanged.
- bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
-                                      XorOpnd *Opnd2, APInt &ConstOpnd,
-                                      Value *&Res) {
-   Value *X = Opnd1->getSymbolicPart();
-   if (X != Opnd2->getSymbolicPart())
-     return false;
- 
-   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
-   int DeadInstNum = 1;
-   if (Opnd1->getValue()->hasOneUse())
-     DeadInstNum++;
-   if (Opnd2->getValue()->hasOneUse())
-     DeadInstNum++;
- 
-   // Xor-Rule 2:
-   //  (x | c1) ^ (x & c2)
-   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
-   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
-   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
-   //
-   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
-     if (Opnd2->isOrExpr())
-       std::swap(Opnd1, Opnd2);
- 
-     const APInt &C1 = Opnd1->getConstPart();
-     const APInt &C2 = Opnd2->getConstPart();
-     APInt C3((~C1) ^ C2);
- 
-     // Do not increase code size!
-     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
-       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
-       if (NewInstNum > DeadInstNum)
-         return false;
-     }
- 
-     Res = createAndInstr(I, X, C3);
-     ConstOpnd ^= C1;
-   } else if (Opnd1->isOrExpr()) {
-     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
-     //
-     const APInt &C1 = Opnd1->getConstPart();
-     const APInt &C2 = Opnd2->getConstPart();
-     APInt C3 = C1 ^ C2;
- 
-     // Do not increase code size
-     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
-       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
-       if (NewInstNum > DeadInstNum)
-         return false;
-     }
- 
-     Res = createAndInstr(I, X, C3);
-     ConstOpnd ^= C3;
-   } else {
-     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
-     //
-     const APInt &C1 = Opnd1->getConstPart();
-     const APInt &C2 = Opnd2->getConstPart();
-     APInt C3 = C1 ^ C2;
-     Res = createAndInstr(I, X, C3);
-   }
- 
-   // Put the original operands in the Redo list; hope they will be deleted
-   // as dead code.
-   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
-     RedoInsts.insert(T);
-   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
-     RedoInsts.insert(T);
- 
-   return true;
- }
- 
- /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
- /// to a single Value, it is returned, otherwise the Ops list is mutated as
- /// necessary.
- Value *ReassociatePass::OptimizeXor(Instruction *I,
-                                     SmallVectorImpl<ValueEntry> &Ops) {
-   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
-     return V;
- 
-   if (Ops.size() == 1)
-     return nullptr;
- 
-   SmallVector<XorOpnd, 8> Opnds;
-   SmallVector<XorOpnd*, 8> OpndPtrs;
-   Type *Ty = Ops[0].Op->getType();
-   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
- 
-   // Step 1: Convert ValueEntry to XorOpnd
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-     Value *V = Ops[i].Op;
-     const APInt *C;
-     // TODO: Support non-splat vectors.
-     if (match(V, m_APInt(C))) {
-       ConstOpnd ^= *C;
-     } else {
-       XorOpnd O(V);
-       O.setSymbolicRank(getRank(O.getSymbolicPart()));
-       Opnds.push_back(O);
-     }
-   }
- 
-   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
-   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
-   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
-   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
-   //  when new elements are added to the vector.
-   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
-     OpndPtrs.push_back(&Opnds[i]);
- 
-   // Step 2: Sort the Xor-Operands in a way such that the operands containing
-   //  the same symbolic value cluster together. For instance, the input operand
-   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
-   //  ("x | 123", "x & 789", "y & 456").
-   //
-   //  The purpose is twofold:
-   //  1) Cluster together the operands sharing the same symbolic-value.
-   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
-   //     could potentially shorten crital path, and expose more loop-invariants.
-   //     Note that values' rank are basically defined in RPO order (FIXME).
-   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
-   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
-   //     "z" in the order of X-Y-Z is better than any other orders.
-   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
-     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
-   });
- 
-   // Step 3: Combine adjacent operands
-   XorOpnd *PrevOpnd = nullptr;
-   bool Changed = false;
-   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
-     XorOpnd *CurrOpnd = OpndPtrs[i];
-     // The combined value
-     Value *CV;
- 
-     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
-     if (!ConstOpnd.isNullValue() &&
-         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
-       Changed = true;
-       if (CV)
-         *CurrOpnd = XorOpnd(CV);
-       else {
-         CurrOpnd->Invalidate();
-         continue;
-       }
-     }
- 
-     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
-       PrevOpnd = CurrOpnd;
-       continue;
-     }
- 
-     // step 3.2: When previous and current operands share the same symbolic
-     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
-     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
-       // Remove previous operand
-       PrevOpnd->Invalidate();
-       if (CV) {
-         *CurrOpnd = XorOpnd(CV);
-         PrevOpnd = CurrOpnd;
-       } else {
-         CurrOpnd->Invalidate();
-         PrevOpnd = nullptr;
-       }
-       Changed = true;
-     }
-   }
- 
-   // Step 4: Reassemble the Ops
-   if (Changed) {
-     Ops.clear();
-     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
-       XorOpnd &O = Opnds[i];
-       if (O.isInvalid())
-         continue;
-       ValueEntry VE(getRank(O.getValue()), O.getValue());
-       Ops.push_back(VE);
-     }
-     if (!ConstOpnd.isNullValue()) {
-       Value *C = ConstantInt::get(Ty, ConstOpnd);
-       ValueEntry VE(getRank(C), C);
-       Ops.push_back(VE);
-     }
-     unsigned Sz = Ops.size();
-     if (Sz == 1)
-       return Ops.back().Op;
-     if (Sz == 0) {
-       assert(ConstOpnd.isNullValue());
-       return ConstantInt::get(Ty, ConstOpnd);
-     }
-   }
- 
-   return nullptr;
- }
- 
- /// Optimize a series of operands to an 'add' instruction.  This
- /// optimizes based on identities.  If it can be reduced to a single Value, it
- /// is returned, otherwise the Ops list is mutated as necessary.
- Value *ReassociatePass::OptimizeAdd(Instruction *I,
-                                     SmallVectorImpl<ValueEntry> &Ops) {
-   // Scan the operand lists looking for X and -X pairs.  If we find any, we
-   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
-   // scan for any
-   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
- 
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-     Value *TheOp = Ops[i].Op;
-     // Check to see if we've seen this operand before.  If so, we factor all
-     // instances of the operand together.  Due to our sorting criteria, we know
-     // that these need to be next to each other in the vector.
-     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
-       // Rescan the list, remove all instances of this operand from the expr.
-       unsigned NumFound = 0;
-       do {
-         Ops.erase(Ops.begin()+i);
-         ++NumFound;
-       } while (i != Ops.size() && Ops[i].Op == TheOp);
- 
-       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
-                         << '\n');
-       ++NumFactor;
- 
-       // Insert a new multiply.
-       Type *Ty = TheOp->getType();
-       Constant *C = Ty->isIntOrIntVectorTy() ?
-         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
-       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
- 
-       // Now that we have inserted a multiply, optimize it. This allows us to
-       // handle cases that require multiple factoring steps, such as this:
-       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
-       RedoInsts.insert(Mul);
- 
-       // If every add operand was a duplicate, return the multiply.
-       if (Ops.empty())
-         return Mul;
- 
-       // Otherwise, we had some input that didn't have the dupe, such as
-       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
-       // things being added by this operation.
-       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
- 
-       --i;
-       e = Ops.size();
-       continue;
-     }
- 
-     // Check for X and -X or X and ~X in the operand list.
-     Value *X;
-     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
-         !match(TheOp, m_FNeg(m_Value(X))))
-       continue;
- 
-     unsigned FoundX = FindInOperandList(Ops, i, X);
-     if (FoundX == i)
-       continue;
- 
-     // Remove X and -X from the operand list.
-     if (Ops.size() == 2 &&
-         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
-       return Constant::getNullValue(X->getType());
- 
-     // Remove X and ~X from the operand list.
-     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
-       return Constant::getAllOnesValue(X->getType());
- 
-     Ops.erase(Ops.begin()+i);
-     if (i < FoundX)
-       --FoundX;
-     else
-       --i;   // Need to back up an extra one.
-     Ops.erase(Ops.begin()+FoundX);
-     ++NumAnnihil;
-     --i;     // Revisit element.
-     e -= 2;  // Removed two elements.
- 
-     // if X and ~X we append -1 to the operand list.
-     if (match(TheOp, m_Not(m_Value()))) {
-       Value *V = Constant::getAllOnesValue(X->getType());
-       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
-       e += 1;
-     }
-   }
- 
-   // Scan the operand list, checking to see if there are any common factors
-   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
-   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
-   // To efficiently find this, we count the number of times a factor occurs
-   // for any ADD operands that are MULs.
-   DenseMap<Value*, unsigned> FactorOccurrences;
- 
-   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
-   // where they are actually the same multiply.
-   unsigned MaxOcc = 0;
-   Value *MaxOccVal = nullptr;
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-     BinaryOperator *BOp =
-         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
-     if (!BOp)
-       continue;
- 
-     // Compute all of the factors of this added value.
-     SmallVector<Value*, 8> Factors;
-     FindSingleUseMultiplyFactors(BOp, Factors);
-     assert(Factors.size() > 1 && "Bad linearize!");
- 
-     // Add one to FactorOccurrences for each unique factor in this op.
-     SmallPtrSet<Value*, 8> Duplicates;
-     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
-       Value *Factor = Factors[i];
-       if (!Duplicates.insert(Factor).second)
-         continue;
- 
-       unsigned Occ = ++FactorOccurrences[Factor];
-       if (Occ > MaxOcc) {
-         MaxOcc = Occ;
-         MaxOccVal = Factor;
-       }
- 
-       // If Factor is a negative constant, add the negated value as a factor
-       // because we can percolate the negate out.  Watch for minint, which
-       // cannot be positivified.
-       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
-         if (CI->isNegative() && !CI->isMinValue(true)) {
-           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
-           if (!Duplicates.insert(Factor).second)
-             continue;
-           unsigned Occ = ++FactorOccurrences[Factor];
-           if (Occ > MaxOcc) {
-             MaxOcc = Occ;
-             MaxOccVal = Factor;
-           }
-         }
-       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
-         if (CF->isNegative()) {
-           APFloat F(CF->getValueAPF());
-           F.changeSign();
-           Factor = ConstantFP::get(CF->getContext(), F);
-           if (!Duplicates.insert(Factor).second)
-             continue;
-           unsigned Occ = ++FactorOccurrences[Factor];
-           if (Occ > MaxOcc) {
-             MaxOcc = Occ;
-             MaxOccVal = Factor;
-           }
-         }
-       }
-     }
-   }
- 
-   // If any factor occurred more than one time, we can pull it out.
-   if (MaxOcc > 1) {
-     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
-                       << '\n');
-     ++NumFactor;
- 
-     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
-     // this, we could otherwise run into situations where removing a factor
-     // from an expression will drop a use of maxocc, and this can cause
-     // RemoveFactorFromExpression on successive values to behave 
diff erently.
-     Instruction *DummyInst =
-         I->getType()->isIntOrIntVectorTy()
-             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
-             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
- 
-     SmallVector<WeakTrackingVH, 4> NewMulOps;
-     for (unsigned i = 0; i != Ops.size(); ++i) {
-       // Only try to remove factors from expressions we're allowed to.
-       BinaryOperator *BOp =
-           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
-       if (!BOp)
-         continue;
- 
-       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
-         // The factorized operand may occur several times.  Convert them all in
-         // one fell swoop.
-         for (unsigned j = Ops.size(); j != i;) {
-           --j;
-           if (Ops[j].Op == Ops[i].Op) {
-             NewMulOps.push_back(V);
-             Ops.erase(Ops.begin()+j);
-           }
-         }
-         --i;
-       }
-     }
- 
-     // No need for extra uses anymore.
-     DummyInst->deleteValue();
- 
-     unsigned NumAddedValues = NewMulOps.size();
-     Value *V = EmitAddTreeOfValues(I, NewMulOps);
- 
-     // Now that we have inserted the add tree, optimize it. This allows us to
-     // handle cases that require multiple factoring steps, such as this:
-     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
-     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
-     (void)NumAddedValues;
-     if (Instruction *VI = dyn_cast<Instruction>(V))
-       RedoInsts.insert(VI);
- 
-     // Create the multiply.
-     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
- 
-     // Rerun associate on the multiply in case the inner expression turned into
-     // a multiply.  We want to make sure that we keep things in canonical form.
-     RedoInsts.insert(V2);
- 
-     // If every add operand included the factor (e.g. "A*B + A*C"), then the
-     // entire result expression is just the multiply "A*(B+C)".
-     if (Ops.empty())
-       return V2;
- 
-     // Otherwise, we had some input that didn't have the factor, such as
-     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
-     // things being added by this operation.
-     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
-   }
- 
-   return nullptr;
- }
- 
- /// Build up a vector of value/power pairs factoring a product.
- ///
- /// Given a series of multiplication operands, build a vector of factors and
- /// the powers each is raised to when forming the final product. Sort them in
- /// the order of descending power.
- ///
- ///      (x*x)          -> [(x, 2)]
- ///     ((x*x)*x)       -> [(x, 3)]
- ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
- ///
- /// \returns Whether any factors have a power greater than one.
- static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
-                                    SmallVectorImpl<Factor> &Factors) {
-   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
-   // Compute the sum of powers of simplifiable factors.
-   unsigned FactorPowerSum = 0;
-   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
-     Value *Op = Ops[Idx-1].Op;
- 
-     // Count the number of occurrences of this value.
-     unsigned Count = 1;
-     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
-       ++Count;
-     // Track for simplification all factors which occur 2 or more times.
-     if (Count > 1)
-       FactorPowerSum += Count;
-   }
- 
-   // We can only simplify factors if the sum of the powers of our simplifiable
-   // factors is 4 or higher. When that is the case, we will *always* have
-   // a simplification. This is an important invariant to prevent cyclicly
-   // trying to simplify already minimal formations.
-   if (FactorPowerSum < 4)
-     return false;
- 
-   // Now gather the simplifiable factors, removing them from Ops.
-   FactorPowerSum = 0;
-   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
-     Value *Op = Ops[Idx-1].Op;
- 
-     // Count the number of occurrences of this value.
-     unsigned Count = 1;
-     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
-       ++Count;
-     if (Count == 1)
-       continue;
-     // Move an even number of occurrences to Factors.
-     Count &= ~1U;
-     Idx -= Count;
-     FactorPowerSum += Count;
-     Factors.push_back(Factor(Op, Count));
-     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
-   }
- 
-   // None of the adjustments above should have reduced the sum of factor powers
-   // below our mininum of '4'.
-   assert(FactorPowerSum >= 4);
- 
-   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
-     return LHS.Power > RHS.Power;
-   });
-   return true;
- }
- 
- /// Build a tree of multiplies, computing the product of Ops.
- static Value *buildMultiplyTree(IRBuilder<> &Builder,
-                                 SmallVectorImpl<Value*> &Ops) {
-   if (Ops.size() == 1)
-     return Ops.back();
- 
-   Value *LHS = Ops.pop_back_val();
-   do {
-     if (LHS->getType()->isIntOrIntVectorTy())
-       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
-     else
-       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
-   } while (!Ops.empty());
- 
-   return LHS;
- }
- 
- /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
- ///
- /// Given a vector of values raised to various powers, where no two values are
- /// equal and the powers are sorted in decreasing order, compute the minimal
- /// DAG of multiplies to compute the final product, and return that product
- /// value.
- Value *
- ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
-                                          SmallVectorImpl<Factor> &Factors) {
-   assert(Factors[0].Power);
-   SmallVector<Value *, 4> OuterProduct;
-   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
-        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
-     if (Factors[Idx].Power != Factors[LastIdx].Power) {
-       LastIdx = Idx;
-       continue;
-     }
- 
-     // We want to multiply across all the factors with the same power so that
-     // we can raise them to that power as a single entity. Build a mini tree
-     // for that.
-     SmallVector<Value *, 4> InnerProduct;
-     InnerProduct.push_back(Factors[LastIdx].Base);
-     do {
-       InnerProduct.push_back(Factors[Idx].Base);
-       ++Idx;
-     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
- 
-     // Reset the base value of the first factor to the new expression tree.
-     // We'll remove all the factors with the same power in a second pass.
-     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
-     if (Instruction *MI = dyn_cast<Instruction>(M))
-       RedoInsts.insert(MI);
- 
-     LastIdx = Idx;
-   }
-   // Unique factors with equal powers -- we've folded them into the first one's
-   // base.
-   Factors.erase(std::unique(Factors.begin(), Factors.end(),
-                             [](const Factor &LHS, const Factor &RHS) {
-                               return LHS.Power == RHS.Power;
-                             }),
-                 Factors.end());
- 
-   // Iteratively collect the base of each factor with an add power into the
-   // outer product, and halve each power in preparation for squaring the
-   // expression.
-   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
-     if (Factors[Idx].Power & 1)
-       OuterProduct.push_back(Factors[Idx].Base);
-     Factors[Idx].Power >>= 1;
-   }
-   if (Factors[0].Power) {
-     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
-     OuterProduct.push_back(SquareRoot);
-     OuterProduct.push_back(SquareRoot);
-   }
-   if (OuterProduct.size() == 1)
-     return OuterProduct.front();
- 
-   Value *V = buildMultiplyTree(Builder, OuterProduct);
-   return V;
- }
- 
- Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
-                                     SmallVectorImpl<ValueEntry> &Ops) {
-   // We can only optimize the multiplies when there is a chain of more than
-   // three, such that a balanced tree might require fewer total multiplies.
-   if (Ops.size() < 4)
-     return nullptr;
- 
-   // Try to turn linear trees of multiplies without other uses of the
-   // intermediate stages into minimal multiply DAGs with perfect sub-expression
-   // re-use.
-   SmallVector<Factor, 4> Factors;
-   if (!collectMultiplyFactors(Ops, Factors))
-     return nullptr; // All distinct factors, so nothing left for us to do.
- 
-   IRBuilder<> Builder(I);
-   // The reassociate transformation for FP operations is performed only
-   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
-   // to the newly generated operations.
-   if (auto FPI = dyn_cast<FPMathOperator>(I))
-     Builder.setFastMathFlags(FPI->getFastMathFlags());
- 
-   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
-   if (Ops.empty())
-     return V;
- 
-   ValueEntry NewEntry = ValueEntry(getRank(V), V);
-   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
-   return nullptr;
- }
- 
- Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
-                                            SmallVectorImpl<ValueEntry> &Ops) {
-   // Now that we have the linearized expression tree, try to optimize it.
-   // Start by folding any constants that we found.
-   Constant *Cst = nullptr;
-   unsigned Opcode = I->getOpcode();
-   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
-     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
-     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
-   }
-   // If there was nothing but constants then we are done.
-   if (Ops.empty())
-     return Cst;
- 
-   // Put the combined constant back at the end of the operand list, except if
-   // there is no point.  For example, an add of 0 gets dropped here, while a
-   // multiplication by zero turns the whole expression into zero.
-   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
-     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
-       return Cst;
-     Ops.push_back(ValueEntry(0, Cst));
-   }
- 
-   if (Ops.size() == 1) return Ops[0].Op;
- 
-   // Handle destructive annihilation due to identities between elements in the
-   // argument list here.
-   unsigned NumOps = Ops.size();
-   switch (Opcode) {
-   default: break;
-   case Instruction::And:
-   case Instruction::Or:
-     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
-       return Result;
-     break;
- 
-   case Instruction::Xor:
-     if (Value *Result = OptimizeXor(I, Ops))
-       return Result;
-     break;
- 
-   case Instruction::Add:
-   case Instruction::FAdd:
-     if (Value *Result = OptimizeAdd(I, Ops))
-       return Result;
-     break;
- 
-   case Instruction::Mul:
-   case Instruction::FMul:
-     if (Value *Result = OptimizeMul(I, Ops))
-       return Result;
-     break;
-   }
- 
-   if (Ops.size() != NumOps)
-     return OptimizeExpression(I, Ops);
-   return nullptr;
- }
- 
- // Remove dead instructions and if any operands are trivially dead add them to
- // Insts so they will be removed as well.
- void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
-                                                 OrderedSet &Insts) {
-   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
-   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
-   ValueRankMap.erase(I);
-   Insts.remove(I);
-   RedoInsts.remove(I);
-+  llvm::salvageDebugInfoOrMarkUndef(*I);
-   I->eraseFromParent();
-   for (auto Op : Ops)
-     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
-       if (OpInst->use_empty())
-         Insts.insert(OpInst);
- }
- 
- /// Zap the given instruction, adding interesting operands to the work list.
- void ReassociatePass::EraseInst(Instruction *I) {
-   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
-   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
- 
-   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
-   // Erase the dead instruction.
-   ValueRankMap.erase(I);
-   RedoInsts.remove(I);
-+  llvm::salvageDebugInfoOrMarkUndef(*I);
-   I->eraseFromParent();
-   // Optimize its operands.
-   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
-   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
-     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
-       // If this is a node in an expression tree, climb to the expression root
-       // and add that since that's where optimization actually happens.
-       unsigned Opcode = Op->getOpcode();
-       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
-              Visited.insert(Op).second)
-         Op = Op->user_back();
- 
-       // The instruction we're going to push may be coming from a
-       // dead block, and Reassociate skips the processing of unreachable
-       // blocks because it's a waste of time and also because it can
-       // lead to infinite loop due to LLVM's non-standard definition
-       // of dominance.
-       if (ValueRankMap.find(Op) != ValueRankMap.end())
-         RedoInsts.insert(Op);
-     }
- 
-   MadeChange = true;
- }
- 
- /// Recursively analyze an expression to build a list of instructions that have
- /// negative floating-point constant operands. The caller can then transform
- /// the list to create positive constants for better reassociation and CSE.
- static void getNegatibleInsts(Value *V,
-                               SmallVectorImpl<Instruction *> &Candidates) {
-   // Handle only one-use instructions. Combining negations does not justify
-   // replicating instructions.
-   Instruction *I;
-   if (!match(V, m_OneUse(m_Instruction(I))))
-     return;
- 
-   // Handle expressions of multiplications and divisions.
-   // TODO: This could look through floating-point casts.
-   const APFloat *C;
-   switch (I->getOpcode()) {
-     case Instruction::FMul:
-       // Not expecting non-canonical code here. Bail out and wait.
-       if (match(I->getOperand(0), m_Constant()))
-         break;
- 
-       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
-         Candidates.push_back(I);
-         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
-       }
-       getNegatibleInsts(I->getOperand(0), Candidates);
-       getNegatibleInsts(I->getOperand(1), Candidates);
-       break;
-     case Instruction::FDiv:
-       // Not expecting non-canonical code here. Bail out and wait.
-       if (match(I->getOperand(0), m_Constant()) &&
-           match(I->getOperand(1), m_Constant()))
-         break;
- 
-       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
-           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
-         Candidates.push_back(I);
-         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
-       }
-       getNegatibleInsts(I->getOperand(0), Candidates);
-       getNegatibleInsts(I->getOperand(1), Candidates);
-       break;
-     default:
-       break;
-   }
- }
- 
- /// Given an fadd/fsub with an operand that is a one-use instruction
- /// (the fadd/fsub), try to change negative floating-point constants into
- /// positive constants to increase potential for reassociation and CSE.
- Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
-                                                               Instruction *Op,
-                                                               Value *OtherOp) {
-   assert((I->getOpcode() == Instruction::FAdd ||
-           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
- 
-   // Collect instructions with negative FP constants from the subtree that ends
-   // in Op.
-   SmallVector<Instruction *, 4> Candidates;
-   getNegatibleInsts(Op, Candidates);
-   if (Candidates.empty())
-     return nullptr;
- 
-   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
-   // resulting subtract will be broken up later.  This can get us into an
-   // infinite loop during reassociation.
-   bool IsFSub = I->getOpcode() == Instruction::FSub;
-   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
-   if (NeedsSubtract && ShouldBreakUpSubtract(I))
-     return nullptr;
- 
-   for (Instruction *Negatible : Candidates) {
-     const APFloat *C;
-     if (match(Negatible->getOperand(0), m_APFloat(C))) {
-       assert(!match(Negatible->getOperand(1), m_Constant()) &&
-              "Expecting only 1 constant operand");
-       assert(C->isNegative() && "Expected negative FP constant");
-       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
-       MadeChange = true;
-     }
-     if (match(Negatible->getOperand(1), m_APFloat(C))) {
-       assert(!match(Negatible->getOperand(0), m_Constant()) &&
-              "Expecting only 1 constant operand");
-       assert(C->isNegative() && "Expected negative FP constant");
-       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
-       MadeChange = true;
-     }
-   }
-   assert(MadeChange == true && "Negative constant candidate was not changed");
- 
-   // Negations cancelled out.
-   if (Candidates.size() % 2 == 0)
-     return I;
- 
-   // Negate the final operand in the expression by flipping the opcode of this
-   // fadd/fsub.
-   assert(Candidates.size() % 2 == 1 && "Expected odd number");
-   IRBuilder<> Builder(I);
-   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
-                           : Builder.CreateFSubFMF(OtherOp, Op, I);
-   I->replaceAllUsesWith(NewInst);
-   RedoInsts.insert(I);
-   return dyn_cast<Instruction>(NewInst);
- }
- 
- /// Canonicalize expressions that contain a negative floating-point constant
- /// of the following form:
- ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
- ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
- ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
- ///
- /// The fadd/fsub opcode may be switched to allow folding a negation into the
- /// input instruction.
- Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
-   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
-   Value *X;
-   Instruction *Op;
-   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
-     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
-       I = R;
-   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
-     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
-       I = R;
-   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
-     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
-       I = R;
-   return I;
- }
- 
- /// Inspect and optimize the given instruction. Note that erasing
- /// instructions is not allowed.
- void ReassociatePass::OptimizeInst(Instruction *I) {
-   // Only consider operations that we understand.
-   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
-     return;
- 
-   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
-     // If an operand of this shift is a reassociable multiply, or if the shift
-     // is used by a reassociable multiply or add, turn into a multiply.
-     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
-         (I->hasOneUse() &&
-          (isReassociableOp(I->user_back(), Instruction::Mul) ||
-           isReassociableOp(I->user_back(), Instruction::Add)))) {
-       Instruction *NI = ConvertShiftToMul(I);
-       RedoInsts.insert(I);
-       MadeChange = true;
-       I = NI;
-     }
- 
-   // Commute binary operators, to canonicalize the order of their operands.
-   // This can potentially expose more CSE opportunities, and makes writing other
-   // transformations simpler.
-   if (I->isCommutative())
-     canonicalizeOperands(I);
- 
-   // Canonicalize negative constants out of expressions.
-   if (Instruction *Res = canonicalizeNegFPConstants(I))
-     I = Res;
- 
-   // Don't optimize floating-point instructions unless they are 'fast'.
-   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
-     return;
- 
-   // Do not reassociate boolean (i1) expressions.  We want to preserve the
-   // original order of evaluation for short-circuited comparisons that
-   // SimplifyCFG has folded to AND/OR expressions.  If the expression
-   // is not further optimized, it is likely to be transformed back to a
-   // short-circuited form for code gen, and the source order may have been
-   // optimized for the most likely conditions.
-   if (I->getType()->isIntegerTy(1))
-     return;
- 
-   // If this is a subtract instruction which is not already in negate form,
-   // see if we can convert it to X+-Y.
-   if (I->getOpcode() == Instruction::Sub) {
-     if (ShouldBreakUpSubtract(I)) {
-       Instruction *NI = BreakUpSubtract(I, RedoInsts);
-       RedoInsts.insert(I);
-       MadeChange = true;
-       I = NI;
-     } else if (match(I, m_Neg(m_Value()))) {
-       // Otherwise, this is a negation.  See if the operand is a multiply tree
-       // and if this is not an inner node of a multiply tree.
-       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
-           (!I->hasOneUse() ||
-            !isReassociableOp(I->user_back(), Instruction::Mul))) {
-         Instruction *NI = LowerNegateToMultiply(I);
-         // If the negate was simplified, revisit the users to see if we can
-         // reassociate further.
-         for (User *U : NI->users()) {
-           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
-             RedoInsts.insert(Tmp);
-         }
-         RedoInsts.insert(I);
-         MadeChange = true;
-         I = NI;
-       }
-     }
-   } else if (I->getOpcode() == Instruction::FNeg ||
-              I->getOpcode() == Instruction::FSub) {
-     if (ShouldBreakUpSubtract(I)) {
-       Instruction *NI = BreakUpSubtract(I, RedoInsts);
-       RedoInsts.insert(I);
-       MadeChange = true;
-       I = NI;
-     } else if (match(I, m_FNeg(m_Value()))) {
-       // Otherwise, this is a negation.  See if the operand is a multiply tree
-       // and if this is not an inner node of a multiply tree.
-       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
-                                            I->getOperand(0);
-       if (isReassociableOp(Op, Instruction::FMul) &&
-           (!I->hasOneUse() ||
-            !isReassociableOp(I->user_back(), Instruction::FMul))) {
-         // If the negate was simplified, revisit the users to see if we can
-         // reassociate further.
-         Instruction *NI = LowerNegateToMultiply(I);
-         for (User *U : NI->users()) {
-           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
-             RedoInsts.insert(Tmp);
-         }
-         RedoInsts.insert(I);
-         MadeChange = true;
-         I = NI;
-       }
-     }
-   }
- 
-   // If this instruction is an associative binary operator, process it.
-   if (!I->isAssociative()) return;
-   BinaryOperator *BO = cast<BinaryOperator>(I);
- 
-   // If this is an interior node of a reassociable tree, ignore it until we
-   // get to the root of the tree, to avoid N^2 analysis.
-   unsigned Opcode = BO->getOpcode();
-   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
-     // During the initial run we will get to the root of the tree.
-     // But if we get here while we are redoing instructions, there is no
-     // guarantee that the root will be visited. So Redo later
-     if (BO->user_back() != BO &&
-         BO->getParent() == BO->user_back()->getParent())
-       RedoInsts.insert(BO->user_back());
-     return;
-   }
- 
-   // If this is an add tree that is used by a sub instruction, ignore it
-   // until we process the subtract.
-   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
-       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
-     return;
-   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
-       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
-     return;
- 
-   ReassociateExpression(BO);
- }
- 
- void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
-   // First, walk the expression tree, linearizing the tree, collecting the
-   // operand information.
-   SmallVector<RepeatedValue, 8> Tree;
-   MadeChange |= LinearizeExprTree(I, Tree);
-   SmallVector<ValueEntry, 8> Ops;
-   Ops.reserve(Tree.size());
-   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
-     RepeatedValue E = Tree[i];
-     Ops.append(E.second.getZExtValue(),
-                ValueEntry(getRank(E.first), E.first));
-   }
- 
-   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
- 
-   // Now that we have linearized the tree to a list and have gathered all of
-   // the operands and their ranks, sort the operands by their rank.  Use a
-   // stable_sort so that values with equal ranks will have their relative
-   // positions maintained (and so the compiler is deterministic).  Note that
-   // this sorts so that the highest ranking values end up at the beginning of
-   // the vector.
-   llvm::stable_sort(Ops);
- 
-   // Now that we have the expression tree in a convenient
-   // sorted form, optimize it globally if possible.
-   if (Value *V = OptimizeExpression(I, Ops)) {
-     if (V == I)
-       // Self-referential expression in unreachable code.
-       return;
-     // This expression tree simplified to something that isn't a tree,
-     // eliminate it.
-     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
-     I->replaceAllUsesWith(V);
-     if (Instruction *VI = dyn_cast<Instruction>(V))
-       if (I->getDebugLoc())
-         VI->setDebugLoc(I->getDebugLoc());
-     RedoInsts.insert(I);
-     ++NumAnnihil;
-     return;
-   }
- 
-   // We want to sink immediates as deeply as possible except in the case where
-   // this is a multiply tree used only by an add, and the immediate is a -1.
-   // In this case we reassociate to put the negation on the outside so that we
-   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
-   if (I->hasOneUse()) {
-     if (I->getOpcode() == Instruction::Mul &&
-         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
-         isa<ConstantInt>(Ops.back().Op) &&
-         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
-       ValueEntry Tmp = Ops.pop_back_val();
-       Ops.insert(Ops.begin(), Tmp);
-     } else if (I->getOpcode() == Instruction::FMul &&
-                cast<Instruction>(I->user_back())->getOpcode() ==
-                    Instruction::FAdd &&
-                isa<ConstantFP>(Ops.back().Op) &&
-                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
-       ValueEntry Tmp = Ops.pop_back_val();
-       Ops.insert(Ops.begin(), Tmp);
-     }
-   }
- 
-   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
- 
-   if (Ops.size() == 1) {
-     if (Ops[0].Op == I)
-       // Self-referential expression in unreachable code.
-       return;
- 
-     // This expression tree simplified to something that isn't a tree,
-     // eliminate it.
-     I->replaceAllUsesWith(Ops[0].Op);
-     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
-       OI->setDebugLoc(I->getDebugLoc());
-     RedoInsts.insert(I);
-     return;
-   }
- 
-   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
-     // Find the pair with the highest count in the pairmap and move it to the
-     // back of the list so that it can later be CSE'd.
-     // example:
-     //   a*b*c*d*e
-     // if c*e is the most "popular" pair, we can express this as
-     //   (((c*e)*d)*b)*a
-     unsigned Max = 1;
-     unsigned BestRank = 0;
-     std::pair<unsigned, unsigned> BestPair;
-     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
-     for (unsigned i = 0; i < Ops.size() - 1; ++i)
-       for (unsigned j = i + 1; j < Ops.size(); ++j) {
-         unsigned Score = 0;
-         Value *Op0 = Ops[i].Op;
-         Value *Op1 = Ops[j].Op;
-         if (std::less<Value *>()(Op1, Op0))
-           std::swap(Op0, Op1);
-         auto it = PairMap[Idx].find({Op0, Op1});
-         if (it != PairMap[Idx].end()) {
-           // Functions like BreakUpSubtract() can erase the Values we're using
-           // as keys and create new Values after we built the PairMap. There's a
-           // small chance that the new nodes can have the same address as
-           // something already in the table. We shouldn't accumulate the stored
-           // score in that case as it refers to the wrong Value.
-           if (it->second.isValid())
-             Score += it->second.Score;
-         }
- 
-         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
-         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
-           BestPair = {i, j};
-           Max = Score;
-           BestRank = MaxRank;
-         }
-       }
-     if (Max > 1) {
-       auto Op0 = Ops[BestPair.first];
-       auto Op1 = Ops[BestPair.second];
-       Ops.erase(&Ops[BestPair.second]);
-       Ops.erase(&Ops[BestPair.first]);
-       Ops.push_back(Op0);
-       Ops.push_back(Op1);
-     }
-   }
-   // Now that we ordered and optimized the expressions, splat them back into
-   // the expression tree, removing any unneeded nodes.
-   RewriteExprTree(I, Ops);
- }
- 
- void
- ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
-   // Make a "pairmap" of how often each operand pair occurs.
-   for (BasicBlock *BI : RPOT) {
-     for (Instruction &I : *BI) {
-       if (!I.isAssociative())
-         continue;
- 
-       // Ignore nodes that aren't at the root of trees.
-       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
-         continue;
- 
-       // Collect all operands in a single reassociable expression.
-       // Since Reassociate has already been run once, we can assume things
-       // are already canonical according to Reassociation's regime.
-       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
-       SmallVector<Value *, 8> Ops;
-       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
-         Value *Op = Worklist.pop_back_val();
-         Instruction *OpI = dyn_cast<Instruction>(Op);
-         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
-           Ops.push_back(Op);
-           continue;
-         }
-         // Be paranoid about self-referencing expressions in unreachable code.
-         if (OpI->getOperand(0) != OpI)
-           Worklist.push_back(OpI->getOperand(0));
-         if (OpI->getOperand(1) != OpI)
-           Worklist.push_back(OpI->getOperand(1));
-       }
-       // Skip extremely long expressions.
-       if (Ops.size() > GlobalReassociateLimit)
-         continue;
- 
-       // Add all pairwise combinations of operands to the pair map.
-       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
-       SmallSet<std::pair<Value *, Value*>, 32> Visited;
-       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
-         for (unsigned j = i + 1; j < Ops.size(); ++j) {
-           // Canonicalize operand orderings.
-           Value *Op0 = Ops[i];
-           Value *Op1 = Ops[j];
-           if (std::less<Value *>()(Op1, Op0))
-             std::swap(Op0, Op1);
-           if (!Visited.insert({Op0, Op1}).second)
-             continue;
-           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
-           if (!res.second) {
-             // If either key value has been erased then we've got the same
-             // address by coincidence. That can't happen here because nothing is
-             // erasing values but it can happen by the time we're querying the
-             // map.
-             assert(res.first->second.isValid() && "WeakVH invalidated");
-             ++res.first->second.Score;
-           }
-         }
-       }
-     }
-   }
- }
- 
- PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
-   // Get the functions basic blocks in Reverse Post Order. This order is used by
-   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
-   // blocks (it has been seen that the analysis in this pass could hang when
-   // analysing dead basic blocks).
-   ReversePostOrderTraversal<Function *> RPOT(&F);
- 
-   // Calculate the rank map for F.
-   BuildRankMap(F, RPOT);
- 
-   // Build the pair map before running reassociate.
-   // Technically this would be more accurate if we did it after one round
-   // of reassociation, but in practice it doesn't seem to help much on
-   // real-world code, so don't waste the compile time running reassociate
-   // twice.
-   // If a user wants, they could expicitly run reassociate twice in their
-   // pass pipeline for further potential gains.
-   // It might also be possible to update the pair map during runtime, but the
-   // overhead of that may be large if there's many reassociable chains.
-   BuildPairMap(RPOT);
- 
-   MadeChange = false;
- 
-   // Traverse the same blocks that were analysed by BuildRankMap.
-   for (BasicBlock *BI : RPOT) {
-     assert(RankMap.count(&*BI) && "BB should be ranked.");
-     // Optimize every instruction in the basic block.
-     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
-       if (isInstructionTriviallyDead(&*II)) {
-         EraseInst(&*II++);
-       } else {
-         OptimizeInst(&*II);
-         assert(II->getParent() == &*BI && "Moved to a 
diff erent block!");
-         ++II;
-       }
- 
-     // Make a copy of all the instructions to be redone so we can remove dead
-     // instructions.
-     OrderedSet ToRedo(RedoInsts);
-     // Iterate over all instructions to be reevaluated and remove trivially dead
-     // instructions. If any operand of the trivially dead instruction becomes
-     // dead mark it for deletion as well. Continue this process until all
-     // trivially dead instructions have been removed.
-     while (!ToRedo.empty()) {
-       Instruction *I = ToRedo.pop_back_val();
-       if (isInstructionTriviallyDead(I)) {
-         RecursivelyEraseDeadInsts(I, ToRedo);
-         MadeChange = true;
-       }
-     }
- 
-     // Now that we have removed dead instructions, we can reoptimize the
-     // remaining instructions.
-     while (!RedoInsts.empty()) {
-       Instruction *I = RedoInsts.front();
-       RedoInsts.erase(RedoInsts.begin());
-       if (isInstructionTriviallyDead(I))
-         EraseInst(I);
-       else
-         OptimizeInst(I);
-     }
-   }
- 
-   // We are done with the rank map and pair map.
-   RankMap.clear();
-   ValueRankMap.clear();
-   for (auto &Entry : PairMap)
-     Entry.clear();
- 
-   if (MadeChange) {
-     PreservedAnalyses PA;
-     PA.preserveSet<CFGAnalyses>();
-     PA.preserve<GlobalsAA>();
-     return PA;
-   }
- 
-   return PreservedAnalyses::all();
- }
- 
- namespace {
- 
-   class ReassociateLegacyPass : public FunctionPass {
-     ReassociatePass Impl;
- 
-   public:
-     static char ID; // Pass identification, replacement for typeid
- 
-     ReassociateLegacyPass() : FunctionPass(ID) {
-       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
-     }
- 
-     bool runOnFunction(Function &F) override {
-       if (skipFunction(F))
-         return false;
- 
-       FunctionAnalysisManager DummyFAM;
-       auto PA = Impl.run(F, DummyFAM);
-       return !PA.areAllPreserved();
-     }
- 
-     void getAnalysisUsage(AnalysisUsage &AU) const override {
-       AU.setPreservesCFG();
-       AU.addPreserved<GlobalsAAWrapperPass>();
-     }
-   };
- 
- } // end anonymous namespace
- 
- char ReassociateLegacyPass::ID = 0;
- 
- INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
-                 "Reassociate expressions", false, false)
- 
- // Public interface to the Reassociate pass
- FunctionPass *llvm::createReassociatePass() {
-   return new ReassociateLegacyPass();
- }

diff  --git a/llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll b/llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll
deleted file mode 100644
index 34e0b9a04bb3..000000000000
--- a/llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll
+++ /dev/null
@@ -1,50 +0,0 @@
-; RUN: opt < %s -reassociate -S | FileCheck %s
-
-; Check that reassociate pass now salvages debug info when dropping instructions.
-
-define hidden i32 @main(i32 %argc, i8** %argv) {
-entry:
-  ; CHECK: call void @llvm.dbg.value(metadata i32 %argc, metadata [[VAR_B:![0-9]+]], metadata !DIExpression(DW_OP_plus_uconst, 1, DW_OP_stack_value))
-  %add = add nsw i32 %argc, 1, !dbg !26
-  call void @llvm.dbg.value(metadata i32 %add, metadata !22, metadata !DIExpression()), !dbg !25
-  %add1 = add nsw i32 %argc, %add, !dbg !27
-  ret i32 %add1, !dbg !28
-}
-
-declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
-declare void @llvm.dbg.value(metadata, metadata, metadata) #1
-
-!llvm.dbg.cu = !{!0}
-!llvm.module.flags = !{!3, !4, !5, !6}
-!llvm.ident = !{!7}
-
-!0 = distinct !DICompileUnit(language: DW_LANG_C_plus_plus_14, file: !1, producer: "clang version 10.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, debugInfoForProfiling: true, nameTableKind: None)
-!1 = !DIFile(filename: "test2.cpp", directory: "C:\")
-!2 = !{}
-!3 = !{i32 2, !"Dwarf Version", i32 4}
-!4 = !{i32 2, !"Debug Info Version", i32 3}
-!5 = !{i32 1, !"wchar_size", i32 2}
-!6 = !{i32 7, !"PIC Level", i32 2}
-!7 = !{!"clang version 10.0.0"}
-!8 = distinct !DISubprogram(name: "main", scope: !9, file: !9, line: 1, type: !10, scopeLine: 1, flags: DIFlagPrototyped, spFlags: DISPFlagDefinition, unit: !0, retainedNodes: !18)
-!9 = !DIFile(filename: "./test2.cpp", directory: "C:\")
-!10 = !DISubroutineType(types: !11)
-!11 = !{!12, !13, !14}
-!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
-!13 = !DIDerivedType(tag: DW_TAG_const_type, baseType: !12)
-!14 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !15, size: 64)
-!15 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !16, size: 64)
-!16 = !DIDerivedType(tag: DW_TAG_const_type, baseType: !17)
-!17 = !DIBasicType(name: "char", size: 8, encoding: DW_ATE_signed_char)
-!18 = !{!19, !20, !21, !22, !23, !24}
-!19 = !DILocalVariable(name: "argc", arg: 1, scope: !8, file: !9, line: 1, type: !13)
-!20 = !DILocalVariable(name: "argv", arg: 2, scope: !8, file: !9, line: 1, type: !14)
-!21 = !DILocalVariable(name: "a", scope: !8, file: !9, line: 2, type: !12)
-; CHECK: [[VAR_B]] = !DILocalVariable(name: "b"
-!22 = !DILocalVariable(name: "b", scope: !8, file: !9, line: 3, type: !12)
-!23 = !DILocalVariable(name: "to_return", scope: !8, file: !9, line: 4, type: !12)
-!24 = !DILocalVariable(name: "result", scope: !8, file: !9, line: 5, type: !12)
-!25 = !DILocation(line: 0, scope: !8)
-!26 = !DILocation(line: 3, scope: !8)
-!27 = !DILocation(line: 4, scope: !8)
-!28 = !DILocation(line: 6, scope: !8)

diff  --git a/llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll b/llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll
deleted file mode 100644
index 98c51c5cf8bb..000000000000
--- a/llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll
+++ /dev/null
@@ -1,95 +0,0 @@
-; RUN: opt < %s -reassociate -S | FileCheck %s
-
-; Check that reassociate pass now undefs debug intrinsics that reference a value
-; that gets dropped and cannot be salvaged.
-
-define hidden i32 @main() local_unnamed_addr {
-entry:
-  %foo = alloca i32, align 4, !dbg !20
-  %foo.0.foo.0..sroa_cast = bitcast i32* %foo to i8*, !dbg !20
-  call void @llvm.lifetime.start.p0i8(i64 4, i8* nonnull %foo.0.foo.0..sroa_cast), !dbg !20
-  store volatile i32 4, i32* %foo, align 4, !dbg !20, !tbaa !21
-  %foo.0.foo.0. = load volatile i32, i32* %foo, align 4, !dbg !25, !tbaa !21
-  %foo.0.foo.0.15 = load volatile i32, i32* %foo, align 4, !dbg !27, !tbaa !21
-  %foo.0.foo.0.16 = load volatile i32, i32* %foo, align 4, !dbg !28, !tbaa !21
-  ; CHECK-NOT: %add = add nsw i32 %foo.0.foo.0., %foo.0.foo.0.15
-  %add = add nsw i32 %foo.0.foo.0., %foo.0.foo.0.15, !dbg !29
-  ; CHECK: call void @llvm.dbg.value(metadata i32 undef, metadata [[VAR_A:![0-9]+]], metadata !DIExpression())
-  call void @llvm.dbg.value(metadata i32 %add, metadata !19, metadata !DIExpression()), !dbg !26
-  %foo.0.foo.0.17 = load volatile i32, i32* %foo, align 4, !dbg !30, !tbaa !21
-  %cmp = icmp eq i32 %foo.0.foo.0.17, 4, !dbg !30
-  br i1 %cmp, label %if.then, label %if.end, !dbg !32
-
-  ; CHECK-LABEL: if.then:
-if.then:
-  ; CHECK-NOT: %add1 = add nsw i32 %add, %foo.0.foo.0.16
-  %add1 = add nsw i32 %add, %foo.0.foo.0.16, !dbg !33
-  ; CHECK: call void @llvm.dbg.value(metadata i32 undef, metadata [[VAR_A]], metadata !DIExpression())
-  call void @llvm.dbg.value(metadata i32 %add1, metadata !19, metadata !DIExpression()), !dbg !26
-  ; CHECK: call void @llvm.dbg.value(metadata i32 undef, metadata [[VAR_CHEESE:![0-9]+]], metadata !DIExpression())
-  call void @llvm.dbg.value(metadata i32 %add, metadata !18, metadata !DIExpression()), !dbg !26
-  %sub = add nsw i32 %add, -12, !dbg !34
-  %sub3 = sub nsw i32 %add1, %sub, !dbg !34
-  %mul = mul nsw i32 %sub3, 20, !dbg !36
-  %div = sdiv i32 %mul, 3, !dbg !37
-  br label %if.end, !dbg !38
-
-if.end:
-  %a.0 = phi i32 [ %div, %if.then ], [ 0, %entry ], !dbg !39
-  call void @llvm.lifetime.end.p0i8(i64 4, i8* nonnull %foo.0.foo.0..sroa_cast), !dbg !40
-  ret i32 %a.0, !dbg !41
-}
-
-declare void @llvm.lifetime.start.p0i8(i64 immarg, i8* nocapture) #1
-declare void @llvm.dbg.declare(metadata, metadata, metadata) #2
-declare void @llvm.lifetime.end.p0i8(i64 immarg, i8* nocapture) #1
-declare void @llvm.dbg.value(metadata, metadata, metadata) #2
-
-!llvm.dbg.cu = !{!0}
-!llvm.module.flags = !{!3, !4, !5, !6}
-!llvm.ident = !{!7}
-
-!0 = distinct !DICompileUnit(language: DW_LANG_C_plus_plus_14, file: !1, producer: "clang version 10.0.0", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, debugInfoForProfiling: true, nameTableKind: None)
-!1 = !DIFile(filename: "test.cpp", directory: "F:\")
-!2 = !{}
-!3 = !{i32 2, !"Dwarf Version", i32 4}
-!4 = !{i32 2, !"Debug Info Version", i32 3}
-!5 = !{i32 1, !"wchar_size", i32 2}
-!6 = !{i32 7, !"PIC Level", i32 2}
-!7 = !{!"clang version 10.0.0"}
-!8 = distinct !DISubprogram(name: "main", scope: !9, file: !9, line: 1, type: !10, scopeLine: 1, flags: DIFlagPrototyped, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !0, retainedNodes: !13)
-!9 = !DIFile(filename: "./test.cpp", directory: "F:\")
-!10 = !DISubroutineType(types: !11)
-!11 = !{!12}
-!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
-!13 = !{!14, !16, !17, !18, !19}
-!14 = !DILocalVariable(name: "foo", scope: !8, file: !9, line: 2, type: !15)
-!15 = !DIDerivedType(tag: DW_TAG_volatile_type, baseType: !12)
-!16 = !DILocalVariable(name: "read1", scope: !8, file: !9, line: 3, type: !12)
-!17 = !DILocalVariable(name: "read2", scope: !8, file: !9, line: 4, type: !12)
-; CHECK: [[VAR_CHEESE]] = !DILocalVariable(name: "cheese"
-!18 = !DILocalVariable(name: "cheese", scope: !8, file: !9, line: 6, type: !12)
-; CHECK: [[VAR_A]] = !DILocalVariable(name: "a"
-!19 = !DILocalVariable(name: "a", scope: !8, file: !9, line: 7, type: !12)
-!20 = !DILocation(line: 2, scope: !8)
-!21 = !{!22, !22, i64 0}
-!22 = !{!"int", !23, i64 0}
-!23 = !{!"omnipotent char", !24, i64 0}
-!24 = !{!"Simple C++ TBAA"}
-!25 = !DILocation(line: 3, scope: !8)
-!26 = !DILocation(line: 0, scope: !8)
-!27 = !DILocation(line: 4, scope: !8)
-!28 = !DILocation(line: 6, scope: !8)
-!29 = !DILocation(line: 7, scope: !8)
-!30 = !DILocation(line: 10, scope: !31)
-!31 = distinct !DILexicalBlock(scope: !8, file: !9, line: 10)
-!32 = !DILocation(line: 10, scope: !8)
-!33 = !DILocation(line: 8, scope: !8)
-!34 = !DILocation(line: 12, scope: !35)
-!35 = distinct !DILexicalBlock(scope: !31, file: !9, line: 10)
-!36 = !DILocation(line: 13, scope: !35)
-!37 = !DILocation(line: 14, scope: !35)
-!38 = !DILocation(line: 15, scope: !35)
-!39 = !DILocation(line: 0, scope: !31)
-!40 = !DILocation(line: 20, scope: !8)
-!41 = !DILocation(line: 19, scope: !8)


        


More information about the llvm-commits mailing list