[llvm] r315735 - [Hexagon] Minimize number of repeated constant extenders
Rui Ueyama via llvm-commits
llvm-commits at lists.llvm.org
Sun Oct 15 16:20:59 PDT 2017
Looks like clang warns on some parts of this change. Can you fix?
[1278/3168] Building CXX object
lib/Target/Hexagon/CMakeFiles/LLVMHexagonCodeGen.dir/HexagonConstExtenders.cpp.o
/ssd/llvm-project/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp:421:16:
warning: unused function 'operator<<' [-Wunused-function]
raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
^
/ssd/llvm-project/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp:459:16:
warning: unused function 'operator<<' [-Wunused-function]
raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
^
/ssd/llvm-project/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp:520:16:
warning: unused function 'operator<<' [-Wunused-function]
raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
On Fri, Oct 13, 2017 at 12:02 PM, Krzysztof Parzyszek via llvm-commits <
llvm-commits at lists.llvm.org> wrote:
> Author: kparzysz
> Date: Fri Oct 13 12:02:59 2017
> New Revision: 315735
>
> URL: http://llvm.org/viewvc/llvm-project?rev=315735&view=rev
> Log:
> [Hexagon] Minimize number of repeated constant extenders
>
> Each constant extender requires an extra instruction, which adds to the
> code size and also reduces the number of available slots in an instruction
> packet. In most cases, the value of a repeated constant extender could be
> loaded into a register, and the instructions using the extender could be
> replaced with their counterparts that use that register instead.
>
> This patch adds a pass that tries to reduce the number of constant
> extenders, including extenders which differ only in an immediate offset
> known at compile time, e.g. @global and @global+12.
>
> Added:
> llvm/trunk/lib/Target/Hexagon/HexagonConstExtenders.cpp
> llvm/trunk/test/CodeGen/Hexagon/cext-opt-basic.mir
> Modified:
> llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
> llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp
> llvm/trunk/test/CodeGen/Hexagon/zextloadi1.ll
>
> Modified: llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/
> Hexagon/CMakeLists.txt?rev=315735&r1=315734&r2=315735&view=diff
> ============================================================
> ==================
> --- llvm/trunk/lib/Target/Hexagon/CMakeLists.txt (original)
> +++ llvm/trunk/lib/Target/Hexagon/CMakeLists.txt Fri Oct 13 12:02:59 2017
> @@ -20,6 +20,7 @@ add_llvm_target(HexagonCodeGen
> HexagonBranchRelaxation.cpp
> HexagonCFGOptimizer.cpp
> HexagonCommonGEP.cpp
> + HexagonConstExtenders.cpp
> HexagonConstPropagation.cpp
> HexagonCopyToCombine.cpp
> HexagonEarlyIfConv.cpp
>
> Added: llvm/trunk/lib/Target/Hexagon/HexagonConstExtenders.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/
> Hexagon/HexagonConstExtenders.cpp?rev=315735&view=auto
> ============================================================
> ==================
> --- llvm/trunk/lib/Target/Hexagon/HexagonConstExtenders.cpp (added)
> +++ llvm/trunk/lib/Target/Hexagon/HexagonConstExtenders.cpp Fri Oct 13
> 12:02:59 2017
> @@ -0,0 +1,1854 @@
> +//===- HexagonConstExtenders.cpp ------------------------------
> ------------===//
> +//
> +// The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===------------------------------------------------------
> ----------------===//
> +
> +#include "HexagonInstrInfo.h"
> +#include "HexagonRegisterInfo.h"
> +#include "HexagonSubtarget.h"
> +#include "llvm/ADT/SmallVector.h"
> +#include "llvm/CodeGen/MachineDominators.h"
> +#include "llvm/CodeGen/MachineFunctionPass.h"
> +#include "llvm/CodeGen/MachineInstrBuilder.h"
> +#include "llvm/CodeGen/MachineRegisterInfo.h"
> +#include "llvm/Support/CommandLine.h"
> +#include "llvm/Support/raw_ostream.h"
> +#include "llvm/Pass.h"
> +#include <map>
> +#include <set>
> +#include <utility>
> +#include <vector>
> +
> +#define DEBUG_TYPE "hexagon-cext-opt"
> +
> +using namespace llvm;
> +
> +static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold",
> + cl::init(3), cl::Hidden, cl::ZeroOrMore,
> + cl::desc("Minimum number of extenders to trigger replacement"));
> +
> +static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0),
> + cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements"));
> +
> +namespace llvm {
> + void initializeHexagonConstExtendersPass(PassRegistry&);
> + FunctionPass *createHexagonConstExtenders();
> +}
> +
> +namespace {
> + struct OffsetRange {
> + int32_t Min = INT_MIN, Max = INT_MAX;
> + uint8_t Align = 1;
> +
> + OffsetRange() = default;
> + OffsetRange(int32_t L, int32_t H, uint8_t A)
> + : Min(L), Max(H), Align(A) {}
> + OffsetRange &intersect(OffsetRange A) {
> + Align = std::max(Align, A.Align);
> + Min = std::max(Min, A.Min);
> + Max = std::min(Max, A.Max);
> + // Canonicalize empty ranges.
> + if (Min > Max)
> + std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
> + return *this;
> + }
> + OffsetRange &shift(int32_t S) {
> + assert(alignTo(std::abs(S), Align) == uint64_t(std::abs(S)));
> + Min += S;
> + Max += S;
> + return *this;
> + }
> + OffsetRange &extendBy(int32_t D) {
> + // If D < 0, extend Min, otherwise extend Max.
> + if (D < 0)
> + Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
> + else
> + Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
> + return *this;
> + }
> + bool empty() const {
> + return Min > Max;
> + }
> + bool contains(int32_t V) const {
> + return Min <= V && V <= Max && (V % Align) == 0;
> + }
> + bool operator==(const OffsetRange &R) const {
> + return Min == R.Min && Max == R.Max && Align == R.Align;
> + }
> + bool operator!=(const OffsetRange &R) const {
> + return !operator==(R);
> + }
> + bool operator<(const OffsetRange &R) const {
> + if (Min != R.Min)
> + return Min < R.Min;
> + if (Max != R.Max)
> + return Max < R.Max;
> + return Align < R.Align;
> + }
> + static OffsetRange zero() { return {0, 0, 1}; }
> + };
> +
> + struct RangeTree {
> + struct Node {
> + Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
> + unsigned Height = 1;
> + unsigned Count = 1;
> + int32_t MaxEnd;
> + const OffsetRange &Range;
> + Node *Left = nullptr, *Right = nullptr;
> + };
> +
> + Node *Root = nullptr;
> +
> + void add(const OffsetRange &R) {
> + Root = add(Root, R);
> + }
> + void erase(const Node *N) {
> + Root = remove(Root, N);
> + delete N;
> + }
> + void order(SmallVectorImpl<Node*> &Seq) const {
> + order(Root, Seq);
> + }
> + SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
> + SmallVector<Node*,8> Nodes;
> + nodesWith(Root, P, CheckAlign, Nodes);
> + return Nodes;
> + }
> + void dump() const;
> + ~RangeTree() {
> + SmallVector<Node*,8> Nodes;
> + order(Nodes);
> + for (Node *N : Nodes)
> + delete N;
> + }
> +
> + private:
> + void dump(const Node *N) const;
> + void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
> + void nodesWith(Node *N, int32_t P, bool CheckA,
> + SmallVectorImpl<Node*> &Seq) const;
> +
> + Node *add(Node *N, const OffsetRange &R);
> + Node *remove(Node *N, const Node *D);
> + Node *rotateLeft(Node *Lower, Node *Higher);
> + Node *rotateRight(Node *Lower, Node *Higher);
> + unsigned height(Node *N) {
> + return N != nullptr ? N->Height : 0;
> + }
> + Node *update(Node *N) {
> + assert(N != nullptr);
> + N->Height = 1 + std::max(height(N->Left), height(N->Right));
> + if (N->Left)
> + N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
> + if (N->Right)
> + N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
> + return N;
> + }
> + Node *rebalance(Node *N) {
> + assert(N != nullptr);
> + int32_t Balance = height(N->Right) - height(N->Left);
> + if (Balance < -1)
> + return rotateRight(N->Left, N);
> + if (Balance > 1)
> + return rotateLeft(N->Right, N);
> + return N;
> + }
> + };
> +
> + struct Loc {
> + MachineBasicBlock *Block = nullptr;
> + MachineBasicBlock::iterator At;
> +
> + Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
> + : Block(B), At(It) {
> + if (B->end() == It) {
> + Pos = -1;
> + } else {
> + assert(It->getParent() == B);
> + Pos = std::distance(B->begin(), It);
> + }
> + }
> + bool operator<(Loc A) const {
> + if (Block != A.Block)
> + return Block->getNumber() < A.Block->getNumber();
> + if (A.Pos == -1)
> + return Pos != A.Pos;
> + return Pos != -1 && Pos < A.Pos;
> + }
> + private:
> + int Pos = 0;
> + };
> +
> + struct HexagonConstExtenders : public MachineFunctionPass {
> + static char ID;
> + HexagonConstExtenders() : MachineFunctionPass(ID) {}
> +
> + void getAnalysisUsage(AnalysisUsage &AU) const override {
> + AU.addRequired<MachineDominatorTree>();
> + AU.addPreserved<MachineDominatorTree>();
> + MachineFunctionPass::getAnalysisUsage(AU);
> + }
> +
> + StringRef getPassName() const override {
> + return "Hexagon constant-extender optimization";
> + }
> + bool runOnMachineFunction(MachineFunction &MF) override;
> +
> + private:
> + struct Register {
> + Register() = default;
> + Register(unsigned R, unsigned S) : Reg(R), Sub(S) {}
> + Register(const MachineOperand &Op)
> + : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
> + Register &operator=(const MachineOperand &Op) {
> + if (Op.isReg()) {
> + Reg = Op.getReg();
> + Sub = Op.getSubReg();
> + } else if (Op.isFI()) {
> + Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex());
> + }
> + return *this;
> + }
> + bool isVReg() const {
> + return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) &&
> + TargetRegisterInfo::isVirtualRegister(Reg);
> + }
> + bool isSlot() const {
> + return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg);
> + }
> + operator MachineOperand() const {
> + if (isVReg())
> + return MachineOperand::CreateReg(Reg, /*Def*/false,
> /*Imp*/false,
> + /*Kill*/false, /*Dead*/false, /*Undef*/false,
> + /*EarlyClobber*/false, Sub);
> + if (TargetRegisterInfo::isStackSlot(Reg)) {
> + int FI = TargetRegisterInfo::stackSlot2Index(Reg);
> + return MachineOperand::CreateFI(FI);
> + }
> + llvm_unreachable("Cannot create MachineOperand");
> + }
> + bool operator==(Register R) const { return Reg == R.Reg && Sub ==
> R.Sub; }
> + bool operator!=(Register R) const { return !operator==(R); }
> + bool operator<(Register R) const {
> + // For std::map.
> + return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
> + }
> + unsigned Reg = 0, Sub = 0;
> + };
> +
> + struct ExtExpr {
> + // A subexpression in which the extender is used. In general, this
> + // represents an expression where adding D to the extender will be
> + // equivalent to adding D to the expression as a whole. In other
> + // words, expr(add(##V,D) = add(expr(##V),D).
> +
> + // The original motivation for this are the io/ur addressing modes,
> + // where the offset is extended. Consider the io example:
> + // In memw(Rs+##V), the ##V could be replaced by a register Rt to
> + // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
> + // register Rt must have exactly the value of ##V. If there was
> + // another instruction memw(Rs+##V+4), it would need a different Rt.
> + // Now, if Rt was initialized as "##V+Rs<<0", both of these
> + // instructions could use the same Rt, just with different offsets.
> + // Here it's clear that "initializer+4" should be the same as if
> + // the offset 4 was added to the ##V in the initializer.
> +
> + // The only kinds of expressions that support the requirement of
> + // commuting with addition are addition and subtraction from ##V.
> + // Include shifting the Rs to account for the ur addressing mode:
> + // ##Val + Rs << S
> + // ##Val - Rs
> + Register Rs;
> + unsigned S = 0;
> + bool Neg = false;
> +
> + ExtExpr() = default;
> + ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG)
> {}
> + // Expression is trivial if it does not modify the extender.
> + bool trivial() const {
> + return Rs.Reg == 0;
> + }
> + bool operator==(const ExtExpr &Ex) const {
> + return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
> + }
> + bool operator!=(const ExtExpr &Ex) const {
> + return !operator==(Ex);
> + }
> + bool operator<(const ExtExpr &Ex) const {
> + if (Rs != Ex.Rs)
> + return Rs < Ex.Rs;
> + if (S != Ex.S)
> + return S < Ex.S;
> + return !Neg && Ex.Neg;
> + }
> + };
> +
> + struct ExtDesc {
> + MachineInstr *UseMI = nullptr;
> + unsigned OpNum = -1u;
> + // The subexpression in which the extender is used (e.g. address
> + // computation).
> + ExtExpr Expr;
> + // Optional register that is assigned the value of Expr.
> + Register Rd;
> + // Def means that the output of the instruction may differ from the
> + // original by a constant c, and that the difference can be
> corrected
> + // by adding/subtracting c in all users of the defined register.
> + bool IsDef = false;
> +
> + MachineOperand &getOp() {
> + return UseMI->getOperand(OpNum);
> + }
> + const MachineOperand &getOp() const {
> + return UseMI->getOperand(OpNum);
> + }
> + };
> +
> + struct ExtRoot {
> + union {
> + const ConstantFP *CFP; // MO_FPImmediate
> + const char *SymbolName; // MO_ExternalSymbol
> + const GlobalValue *GV; // MO_GlobalAddress
> + const BlockAddress *BA; // MO_BlockAddress
> + int64_t ImmVal; // MO_Immediate, MO_TargetIndex,
> + // and MO_ConstantPoolIndex
> + } V;
> + unsigned Kind; // Same as in MachineOperand.
> + unsigned char TF; // TargetFlags.
> +
> + ExtRoot(const MachineOperand &Op);
> + bool operator==(const ExtRoot &ER) const {
> + return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
> + }
> + bool operator!=(const ExtRoot &ER) const {
> + return !operator==(ER);
> + }
> + bool operator<(const ExtRoot &ER) const;
> + };
> +
> + struct ExtValue : public ExtRoot {
> + int32_t Offset;
> +
> + ExtValue(const MachineOperand &Op);
> + ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
> + ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off)
> {}
> + bool operator<(const ExtValue &EV) const;
> + bool operator==(const ExtValue &EV) const {
> + return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
> + }
> + bool operator!=(const ExtValue &EV) const {
> + return !operator==(EV);
> + }
> + explicit operator MachineOperand() const;
> + };
> +
> + using IndexList = SetVector<unsigned>;
> + using ExtenderInit = std::pair<ExtValue, ExtExpr>;
> + using AssignmentMap = std::map<ExtenderInit, IndexList>;
> + using LocDefMap = std::map<Loc, IndexList>;
> +
> + const HexagonInstrInfo *HII = nullptr;
> + const HexagonRegisterInfo *HRI = nullptr;
> + MachineDominatorTree *MDT = nullptr;
> + MachineRegisterInfo *MRI = nullptr;
> + std::vector<ExtDesc> Extenders;
> + std::vector<unsigned> NewRegs;
> +
> + bool isStoreImmediate(unsigned Opc) const;
> + bool isRegOffOpcode(unsigned ExtOpc) const ;
> + unsigned getRegOffOpcode(unsigned ExtOpc) const;
> + unsigned getDirectRegReplacement(unsigned ExtOpc) const;
> + OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
> + OffsetRange getOffsetRange(const ExtDesc &ED) const;
> + OffsetRange getOffsetRange(Register Rd) const;
> +
> + void recordExtender(MachineInstr &MI, unsigned OpNum);
> + void collectInstr(MachineInstr &MI);
> + void collect(MachineFunction &MF);
> + void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
> + AssignmentMap &IMap);
> + void calculatePlacement(const ExtenderInit &ExtI, const IndexList
> &Refs,
> + LocDefMap &Defs);
> + Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
> + bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
> + bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
> + Register ExtR, int32_t &Diff);
> + bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit
> &ExtI);
> + bool replaceExtenders(const AssignmentMap &IMap);
> +
> + unsigned getOperandIndex(const MachineInstr &MI,
> + const MachineOperand &Op) const;
> + const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
> + const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
> + const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
> +
> + friend struct PrintRegister;
> + friend struct PrintExpr;
> + friend struct PrintInit;
> + friend struct PrintIMap;
> + friend raw_ostream &operator<< (raw_ostream &OS,
> + const struct PrintRegister &P);
> + friend raw_ostream &operator<< (raw_ostream &OS, const struct
> PrintExpr &P);
> + friend raw_ostream &operator<< (raw_ostream &OS, const struct
> PrintInit &P);
> + friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
> + friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
> + friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
> + friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange
> &OR);
> + friend raw_ostream &operator<< (raw_ostream &OS, const struct
> PrintIMap &P);
> + };
> +
> + using HCE = HexagonConstExtenders;
> +
> + raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
> + if (OR.Min > OR.Max)
> + OS << '!';
> + OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align);
> + return OS;
> + }
> +
> + struct PrintRegister {
> + PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
> + : Rs(R), HRI(I) {}
> + HCE::Register Rs;
> + const HexagonRegisterInfo &HRI;
> + };
> +
> + raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
> + if (P.Rs.Reg != 0)
> + OS << PrintReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
> + else
> + OS << "noreg";
> + return OS;
> + }
> +
> + struct PrintExpr {
> + PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
> + : Ex(E), HRI(I) {}
> + const HCE::ExtExpr &Ex;
> + const HexagonRegisterInfo &HRI;
> + };
> +
> + raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
> + OS << "## " << (P.Ex.Neg ? "- " : "+ ");
> + if (P.Ex.Rs.Reg != 0)
> + OS << PrintReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
> + else
> + OS << "__";
> + OS << " << " << P.Ex.S;
> + return OS;
> + }
> +
> + struct PrintInit {
> + PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
> + : ExtI(EI), HRI(I) {}
> + const HCE::ExtenderInit &ExtI;
> + const HexagonRegisterInfo &HRI;
> + };
> +
> + raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
> + OS << '[' << P.ExtI.first << ", "
> + << PrintExpr(P.ExtI.second, P.HRI) << ']';
> + return OS;
> + }
> +
> + raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
> + assert(ED.OpNum != -1u);
> + const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
> + const MachineFunction &MF = *MBB.getParent();
> + const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().
> getRegisterInfo();
> + OS << "bb#" << MBB.getNumber() << ": ";
> + if (ED.Rd.Reg != 0)
> + OS << PrintReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
> + else
> + OS << "__";
> + OS << " = " << PrintExpr(ED.Expr, HRI);
> + if (ED.IsDef)
> + OS << ", def";
> + return OS;
> + }
> +
> + raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
> + switch (ER.Kind) {
> + case MachineOperand::MO_Immediate:
> + OS << "imm:" << ER.V.ImmVal;
> + break;
> + case MachineOperand::MO_FPImmediate:
> + OS << "fpi:" << *ER.V.CFP;
> + break;
> + case MachineOperand::MO_ExternalSymbol:
> + OS << "sym:" << *ER.V.SymbolName;
> + break;
> + case MachineOperand::MO_GlobalAddress:
> + OS << "gad:" << ER.V.GV->getName();
> + break;
> + case MachineOperand::MO_BlockAddress:
> + OS << "blk:" << *ER.V.BA;
> + break;
> + case MachineOperand::MO_TargetIndex:
> + OS << "tgi:" << ER.V.ImmVal;
> + break;
> + case MachineOperand::MO_ConstantPoolIndex:
> + OS << "cpi:" << ER.V.ImmVal;
> + break;
> + case MachineOperand::MO_JumpTableIndex:
> + OS << "jti:" << ER.V.ImmVal;
> + break;
> + default:
> + OS << "???:" << ER.V.ImmVal;
> + break;
> + }
> + return OS;
> + }
> +
> + raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
> + OS << HCE::ExtRoot(EV) << " off:" << EV.Offset;
> + return OS;
> + }
> +
> + struct PrintIMap {
> + PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
> + : IMap(M), HRI(I) {}
> + const HCE::AssignmentMap &IMap;
> + const HexagonRegisterInfo &HRI;
> + };
> +
> + raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
> + OS << "{\n";
> + for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) {
> + OS << " " << PrintInit(Q.first, P.HRI) << " -> {";
> + for (unsigned I : Q.second)
> + OS << ' ' << I;
> + OS << " }\n";
> + }
> + OS << "}\n";
> + return OS;
> + }
> +}
> +
> +INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
> + "Hexagon constant-extender optimization", false, false)
> +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
> +INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
> + "Hexagon constant-extender optimization", false, false)
> +
> +static unsigned ReplaceCounter = 0;
> +
> +char HCE::ID = 0;
> +
> +void RangeTree::dump() const {
> + dbgs() << "Root: " << Root << '\n';
> + if (Root)
> + dump(Root);
> +}
> +
> +void RangeTree::dump(const Node *N) const {
> + dbgs() << "Node: " << N << '\n';
> + dbgs() << " Height: " << N->Height << '\n';
> + dbgs() << " Count: " << N->Count << '\n';
> + dbgs() << " MaxEnd: " << N->MaxEnd << '\n';
> + dbgs() << " Range: " << N->Range << '\n';
> + dbgs() << " Left: " << N->Left << '\n';
> + dbgs() << " Right: " << N->Right << "\n\n";
> +
> + if (N->Left)
> + dump(N->Left);
> + if (N->Right)
> + dump(N->Right);
> +}
> +
> +void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
> + if (N == nullptr)
> + return;
> + order(N->Left, Seq);
> + Seq.push_back(N);
> + order(N->Right, Seq);
> +}
> +
> +void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
> + SmallVectorImpl<Node*> &Seq) const {
> + if (N == nullptr || N->MaxEnd < P)
> + return;
> + nodesWith(N->Left, P, CheckA, Seq);
> + if (N->Range.Min <= P) {
> + if ((CheckA && N->Range.contains(P)) || (!CheckA && P <=
> N->Range.Max))
> + Seq.push_back(N);
> + nodesWith(N->Right, P, CheckA, Seq);
> + }
> +}
> +
> +RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
> + if (N == nullptr)
> + return new Node(R);
> +
> + if (N->Range == R) {
> + N->Count++;
> + return N;
> + }
> +
> + if (R < N->Range)
> + N->Left = add(N->Left, R);
> + else
> + N->Right = add(N->Right, R);
> + return rebalance(update(N));
> +}
> +
> +RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
> + assert(N != nullptr);
> +
> + if (N != D) {
> + assert(N->Range != D->Range && "N and D should not be equal");
> + if (D->Range < N->Range)
> + N->Left = remove(N->Left, D);
> + else
> + N->Right = remove(N->Right, D);
> + return rebalance(update(N));
> + }
> +
> + // We got to the node we need to remove. If any of its children are
> + // missing, simply replace it with the other child.
> + if (N->Left == nullptr || N->Right == nullptr)
> + return (N->Left == nullptr) ? N->Right : N->Left;
> +
> + // Find the rightmost child of N->Left, remove it and plug it in place
> + // of N.
> + Node *M = N->Left;
> + while (M->Right)
> + M = M->Right;
> + M->Left = remove(N->Left, M);
> + M->Right = N->Right;
> + return rebalance(update(M));
> +}
> +
> +RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
> + assert(Higher->Right == Lower);
> + // The Lower node is on the right from Higher. Make sure that Lower's
> + // balance is greater to the right. Otherwise the rotation will create
> + // an unbalanced tree again.
> + if (height(Lower->Left) > height(Lower->Right))
> + Lower = rotateRight(Lower->Left, Lower);
> + assert(height(Lower->Left) <= height(Lower->Right));
> + Higher->Right = Lower->Left;
> + update(Higher);
> + Lower->Left = Higher;
> + update(Lower);
> + return Lower;
> +}
> +
> +RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
> + assert(Higher->Left == Lower);
> + // The Lower node is on the left from Higher. Make sure that Lower's
> + // balance is greater to the left. Otherwise the rotation will create
> + // an unbalanced tree again.
> + if (height(Lower->Left) < height(Lower->Right))
> + Lower = rotateLeft(Lower->Right, Lower);
> + assert(height(Lower->Left) >= height(Lower->Right));
> + Higher->Left = Lower->Right;
> + update(Higher);
> + Lower->Right = Higher;
> + update(Lower);
> + return Lower;
> +}
> +
> +
> +HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
> + // Always store ImmVal, since it's the field used for comparisons.
> + V.ImmVal = 0;
> + if (Op.isImm())
> + ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the
> root).
> + else if (Op.isFPImm())
> + V.CFP = Op.getFPImm();
> + else if (Op.isSymbol())
> + V.SymbolName = Op.getSymbolName();
> + else if (Op.isGlobal())
> + V.GV = Op.getGlobal();
> + else if (Op.isBlockAddress())
> + V.BA = Op.getBlockAddress();
> + else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
> + V.ImmVal = Op.getIndex();
> + else
> + llvm_unreachable("Unexpected operand type");
> +
> + Kind = Op.getType();
> + TF = Op.getTargetFlags();
> +}
> +
> +bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
> + if (Kind != ER.Kind)
> + return Kind < ER.Kind;
> + switch (Kind) {
> + case MachineOperand::MO_Immediate:
> + case MachineOperand::MO_TargetIndex:
> + case MachineOperand::MO_ConstantPoolIndex:
> + case MachineOperand::MO_JumpTableIndex:
> + return V.ImmVal < ER.V.ImmVal;
> + case MachineOperand::MO_FPImmediate: {
> + const APFloat &ThisF = V.CFP->getValueAPF();
> + const APFloat &OtherF = ER.V.CFP->getValueAPF();
> + return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
> + }
> + case MachineOperand::MO_ExternalSymbol:
> + return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
> + case MachineOperand::MO_GlobalAddress:
> + assert(V.GV->hasName() && ER.V.GV->hasName());
> + return V.GV->getName() < ER.V.GV->getName();
> + case MachineOperand::MO_BlockAddress: {
> + const BasicBlock *ThisB = V.BA->getBasicBlock();
> + const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
> + assert(ThisB->getParent() == OtherB->getParent());
> + const Function &F = *ThisB->getParent();
> + return std::distance(F.begin(), ThisB->getIterator()) <
> + std::distance(F.begin(), OtherB->getIterator());
> + }
> + }
> + return V.ImmVal < ER.V.ImmVal;
> +}
> +
> +HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
> + if (Op.isImm())
> + Offset = Op.getImm();
> + else if (Op.isFPImm() || Op.isJTI())
> + Offset = 0;
> + else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
> + Op.isCPI() || Op.isTargetIndex())
> + Offset = Op.getOffset();
> + else
> + llvm_unreachable("Unexpected operand type");
> +}
> +
> +bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
> + const ExtRoot &ER = *this;
> + if (!(ER == ExtRoot(EV)))
> + return ER < EV;
> + return Offset < EV.Offset;
> +}
> +
> +HCE::ExtValue::operator MachineOperand() const {
> + switch (Kind) {
> + case MachineOperand::MO_Immediate:
> + return MachineOperand::CreateImm(V.ImmVal + Offset);
> + case MachineOperand::MO_FPImmediate:
> + assert(Offset == 0);
> + return MachineOperand::CreateFPImm(V.CFP);
> + case MachineOperand::MO_ExternalSymbol:
> + assert(Offset == 0);
> + return MachineOperand::CreateES(V.SymbolName, TF);
> + case MachineOperand::MO_GlobalAddress:
> + return MachineOperand::CreateGA(V.GV, Offset, TF);
> + case MachineOperand::MO_BlockAddress:
> + return MachineOperand::CreateBA(V.BA, Offset, TF);
> + case MachineOperand::MO_TargetIndex:
> + return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
> + case MachineOperand::MO_ConstantPoolIndex:
> + return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
> + case MachineOperand::MO_JumpTableIndex:
> + assert(Offset == 0);
> + default:
> + llvm_unreachable("Unhandled kind");
> + }
> +}
> +
> +bool HCE::isStoreImmediate(unsigned Opc) const {
> + switch (Opc) {
> + case Hexagon::S4_storeirbt_io:
> + case Hexagon::S4_storeirbf_io:
> + case Hexagon::S4_storeirht_io:
> + case Hexagon::S4_storeirhf_io:
> + case Hexagon::S4_storeirit_io:
> + case Hexagon::S4_storeirif_io:
> + case Hexagon::S4_storeirb_io:
> + case Hexagon::S4_storeirh_io:
> + case Hexagon::S4_storeiri_io:
> + return true;
> + default:
> + break;
> + }
> + return false;
> +}
> +
> +bool HCE::isRegOffOpcode(unsigned Opc) const {
> + switch (Opc) {
> + case Hexagon::L2_loadrub_io:
> + case Hexagon::L2_loadrb_io:
> + case Hexagon::L2_loadruh_io:
> + case Hexagon::L2_loadrh_io:
> + case Hexagon::L2_loadri_io:
> + case Hexagon::L2_loadrd_io:
> + case Hexagon::L2_loadbzw2_io:
> + case Hexagon::L2_loadbzw4_io:
> + case Hexagon::L2_loadbsw2_io:
> + case Hexagon::L2_loadbsw4_io:
> + case Hexagon::L2_loadalignh_io:
> + case Hexagon::L2_loadalignb_io:
> + case Hexagon::L2_ploadrubt_io:
> + case Hexagon::L2_ploadrubf_io:
> + case Hexagon::L2_ploadrbt_io:
> + case Hexagon::L2_ploadrbf_io:
> + case Hexagon::L2_ploadruht_io:
> + case Hexagon::L2_ploadruhf_io:
> + case Hexagon::L2_ploadrht_io:
> + case Hexagon::L2_ploadrhf_io:
> + case Hexagon::L2_ploadrit_io:
> + case Hexagon::L2_ploadrif_io:
> + case Hexagon::L2_ploadrdt_io:
> + case Hexagon::L2_ploadrdf_io:
> + case Hexagon::S2_storerb_io:
> + case Hexagon::S2_storerh_io:
> + case Hexagon::S2_storerf_io:
> + case Hexagon::S2_storeri_io:
> + case Hexagon::S2_storerd_io:
> + case Hexagon::S2_pstorerbt_io:
> + case Hexagon::S2_pstorerbf_io:
> + case Hexagon::S2_pstorerht_io:
> + case Hexagon::S2_pstorerhf_io:
> + case Hexagon::S2_pstorerft_io:
> + case Hexagon::S2_pstorerff_io:
> + case Hexagon::S2_pstorerit_io:
> + case Hexagon::S2_pstorerif_io:
> + case Hexagon::S2_pstorerdt_io:
> + case Hexagon::S2_pstorerdf_io:
> + case Hexagon::A2_addi:
> + return true;
> + default:
> + break;
> + }
> + return false;
> +}
> +
> +unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
> + // If there exists an instruction that takes a register and offset,
> + // that corresponds to the ExtOpc, return it, otherwise return 0.
> + using namespace Hexagon;
> + switch (ExtOpc) {
> + case A2_tfrsi: return A2_addi;
> + default:
> + break;
> + }
> + const MCInstrDesc &D = HII->get(ExtOpc);
> + if (D.mayLoad() || D.mayStore()) {
> + uint64_t F = D.TSFlags;
> + unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
> + switch (AM) {
> + case HexagonII::Absolute:
> + case HexagonII::AbsoluteSet:
> + case HexagonII::BaseLongOffset:
> + switch (ExtOpc) {
> + case PS_loadrubabs:
> + case L4_loadrub_ap:
> + case L4_loadrub_ur: return L2_loadrub_io;
> + case PS_loadrbabs:
> + case L4_loadrb_ap:
> + case L4_loadrb_ur: return L2_loadrb_io;
> + case PS_loadruhabs:
> + case L4_loadruh_ap:
> + case L4_loadruh_ur: return L2_loadruh_io;
> + case PS_loadrhabs:
> + case L4_loadrh_ap:
> + case L4_loadrh_ur: return L2_loadrh_io;
> + case PS_loadriabs:
> + case L4_loadri_ap:
> + case L4_loadri_ur: return L2_loadri_io;
> + case PS_loadrdabs:
> + case L4_loadrd_ap:
> + case L4_loadrd_ur: return L2_loadrd_io;
> + case L4_loadbzw2_ap:
> + case L4_loadbzw2_ur: return L2_loadbzw2_io;
> + case L4_loadbzw4_ap:
> + case L4_loadbzw4_ur: return L2_loadbzw4_io;
> + case L4_loadbsw2_ap:
> + case L4_loadbsw2_ur: return L2_loadbsw2_io;
> + case L4_loadbsw4_ap:
> + case L4_loadbsw4_ur: return L2_loadbsw4_io;
> + case L4_loadalignh_ap:
> + case L4_loadalignh_ur: return L2_loadalignh_io;
> + case L4_loadalignb_ap:
> + case L4_loadalignb_ur: return L2_loadalignb_io;
> + case L4_ploadrubt_abs: return L2_ploadrubt_io;
> + case L4_ploadrubf_abs: return L2_ploadrubf_io;
> + case L4_ploadrbt_abs: return L2_ploadrbt_io;
> + case L4_ploadrbf_abs: return L2_ploadrbf_io;
> + case L4_ploadruht_abs: return L2_ploadruht_io;
> + case L4_ploadruhf_abs: return L2_ploadruhf_io;
> + case L4_ploadrht_abs: return L2_ploadrht_io;
> + case L4_ploadrhf_abs: return L2_ploadrhf_io;
> + case L4_ploadrit_abs: return L2_ploadrit_io;
> + case L4_ploadrif_abs: return L2_ploadrif_io;
> + case L4_ploadrdt_abs: return L2_ploadrdt_io;
> + case L4_ploadrdf_abs: return L2_ploadrdf_io;
> + case PS_storerbabs:
> + case S4_storerb_ap:
> + case S4_storerb_ur: return S2_storerb_io;
> + case PS_storerhabs:
> + case S4_storerh_ap:
> + case S4_storerh_ur: return S2_storerh_io;
> + case PS_storerfabs:
> + case S4_storerf_ap:
> + case S4_storerf_ur: return S2_storerf_io;
> + case PS_storeriabs:
> + case S4_storeri_ap:
> + case S4_storeri_ur: return S2_storeri_io;
> + case PS_storerdabs:
> + case S4_storerd_ap:
> + case S4_storerd_ur: return S2_storerd_io;
> + case S4_pstorerbt_abs: return S2_pstorerbt_io;
> + case S4_pstorerbf_abs: return S2_pstorerbf_io;
> + case S4_pstorerht_abs: return S2_pstorerht_io;
> + case S4_pstorerhf_abs: return S2_pstorerhf_io;
> + case S4_pstorerft_abs: return S2_pstorerft_io;
> + case S4_pstorerff_abs: return S2_pstorerff_io;
> + case S4_pstorerit_abs: return S2_pstorerit_io;
> + case S4_pstorerif_abs: return S2_pstorerif_io;
> + case S4_pstorerdt_abs: return S2_pstorerdt_io;
> + case S4_pstorerdf_abs: return S2_pstorerdf_io;
> + default:
> + break;
> + }
> + break;
> + case HexagonII::BaseImmOffset:
> + if (!isStoreImmediate(ExtOpc))
> + return ExtOpc;
> + break;
> + default:
> + break;
> + }
> + }
> + return 0;
> +}
> +
> +unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
> + switch (ExtOpc) {
> + case Hexagon::A2_addi: return Hexagon::A2_add;
> + case Hexagon::A2_andir: return Hexagon::A2_and;
> + case Hexagon::A2_combineii: return Hexagon::A4_combineri;
> + case Hexagon::A2_orir: return Hexagon::A2_or;
> + case Hexagon::A2_paddif: return Hexagon::A2_paddf;
> + case Hexagon::A2_paddit: return Hexagon::A2_paddt;
> + case Hexagon::A2_subri: return Hexagon::A2_sub;
> + case Hexagon::A2_tfrsi: return TargetOpcode::COPY;
> + case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq;
> + case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt;
> + case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu;
> + case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq;
> + case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt;
> + case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu;
> + case Hexagon::A4_combineii: return Hexagon::A4_combineir;
> + case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE;
> + case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE;
> + case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq;
> + case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq;
> + case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf;
> + case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt;
> + case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq;
> + case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt;
> + case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu;
> + case Hexagon::C2_muxii: return Hexagon::C2_muxir;
> + case Hexagon::C2_muxir: return Hexagon::C2_mux;
> + case Hexagon::C2_muxri: return Hexagon::C2_mux;
> + case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte;
> + case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu;
> + case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq;
> + case Hexagon::M2_accii: return Hexagon::M2_acci; // T
> -> T
> + /* No M2_macsin */
> + case Hexagon::M2_macsip: return Hexagon::M2_maci; // T
> -> T
> + case Hexagon::M2_mpysin: return Hexagon::M2_mpyi;
> + case Hexagon::M2_mpysip: return Hexagon::M2_mpyi;
> + case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi;
> + case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T
> -> T
> + case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr;
> + case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _
> -> T
> + case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _
> -> T
> + case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _
> -> T
> + case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T
> -> T
> + case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T
> -> T
> + case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T
> -> T
> + case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T
> -> T
> + case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T
> -> T
> + case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T
> -> T
> + case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _
> -> T
> + case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T
> -> T
> + case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T
> -> T
> +
> + // Store-immediates:
> + case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io;
> + case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io;
> + case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io;
> + case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io;
> + case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io;
> + case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io;
> + case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io;
> + case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io;
> + case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io;
> +
> + default:
> + break;
> + }
> + return 0;
> +}
> +
> +// Return the allowable deviation from the current value of Rb which the
> +// instruction MI can accommodate.
> +// The instruction MI is a user of register Rb, which is defined via an
> +// extender. It may be possible for MI to be tweaked to work for a
> register
> +// defined with a slightly different value. For example
> +// ... = L2_loadrub_io Rb, 0
> +// can be modifed to be
> +// ... = L2_loadrub_io Rb', 1
> +// if Rb' = Rb-1.
> +OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI)
> const {
> + unsigned Opc = MI.getOpcode();
> + // Instructions that are constant-extended may be replaced with
> something
> + // else that no longer offers the same range as the original.
> + if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
> + return OffsetRange::zero();
> +
> + if (Opc == Hexagon::A2_addi) {
> + const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
> + if (Rb != Register(Op1) || !Op2.isImm())
> + return OffsetRange::zero();
> + OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
> + return R.shift(Op2.getImm());
> + }
> +
> + // HII::getBaseAndOffsetPosition returns the increment position as
> "offset".
> + if (HII->isPostIncrement(MI))
> + return OffsetRange::zero();
> +
> + const MCInstrDesc &D = HII->get(Opc);
> + assert(D.mayLoad() || D.mayStore());
> +
> + unsigned BaseP, OffP;
> + if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
> + Rb != Register(MI.getOperand(BaseP)) ||
> + !MI.getOperand(OffP).isImm())
> + return OffsetRange::zero();
> +
> + uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
> + HexagonII::MemAccesSizeMask;
> + uint8_t A = HexagonII::getMemAccessSizeInBytes(
> HexagonII::MemAccessSize(F));
> + unsigned L = Log2_32(A);
> + unsigned S = 10+L; // sint11_L
> + int32_t Min = -alignDown((1<<S)-1, A);
> + int32_t Max = 0; // Force non-negative offsets.
> +
> + OffsetRange R = { Min, Max, A };
> + int32_t Off = MI.getOperand(OffP).getImm();
> + return R.shift(Off);
> +}
> +
> +// Return the allowable deviation from the current value of the extender
> ED,
> +// for which the instruction corresponding to ED can be modified without
> +// using an extender.
> +// The instruction uses the extender directly. It will be replaced with
> +// another instruction, say MJ, where the extender will be replaced with a
> +// register. MJ can allow some variability with respect to the value of
> +// that register, as is the case with indexed memory instructions.
> +OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
> + // The only way that there can be a non-zero range available is if
> + // the instruction using ED will be converted to an indexed memory
> + // instruction.
> + unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
> + switch (IdxOpc) {
> + case 0:
> + return OffsetRange::zero();
> + case Hexagon::A2_addi: // s16
> + return { -32767, 32767, 1 };
> + case Hexagon::A2_subri: // s10
> + return { -511, 511, 1 };
> + }
> +
> + if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
> + return OffsetRange::zero();
> + const MCInstrDesc &D = HII->get(IdxOpc);
> + uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
> + HexagonII::MemAccesSizeMask;
> + uint8_t A = HexagonII::getMemAccessSizeInBytes(
> HexagonII::MemAccessSize(F));
> + unsigned L = Log2_32(A);
> + unsigned S = 10+L; // sint11_L
> + int32_t Min = -alignDown((1<<S)-1, A);
> + int32_t Max = 0; // Force non-negative offsets.
> + return { Min, Max, A };
> +}
> +
> +// Get the allowable deviation from the current value of Rd by checking
> +// all uses of Rd.
> +OffsetRange HCE::getOffsetRange(Register Rd) const {
> + OffsetRange Range;
> + for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
> + // Make sure that the register being used by this operand is identical
> + // to the register that was defined: using a different subregister
> + // precludes any non-trivial range.
> + if (Rd != Register(Op))
> + return OffsetRange::zero();
> + Range.intersect(getOffsetRange(Rd, *Op.getParent()));
> + }
> + return Range;
> +}
> +
> +void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
> + unsigned Opc = MI.getOpcode();
> + ExtDesc ED;
> + ED.OpNum = OpNum;
> +
> + bool IsLoad = MI.mayLoad();
> + bool IsStore = MI.mayStore();
> +
> + if (IsLoad || IsStore) {
> + unsigned AM = HII->getAddrMode(MI);
> + switch (AM) {
> + // (Re: ##Off + Rb<<S) = Rd: ##Val
> + case HexagonII::Absolute: // (__: ## + __<<_)
> + break;
> + case HexagonII::AbsoluteSet: // (Rd: ## + __<<_)
> + ED.Rd = MI.getOperand(OpNum-1);
> + ED.IsDef = true;
> + break;
> + case HexagonII::BaseImmOffset: // (__: ## + Rs<<0)
> + // Store-immediates are treated as non-memory operations, since
> + // it's the value being stored that is extended (as opposed to
> + // a part of the address).
> + if (!isStoreImmediate(Opc))
> + ED.Expr.Rs = MI.getOperand(OpNum-1);
> + break;
> + case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
> + ED.Expr.Rs = MI.getOperand(OpNum-2);
> + ED.Expr.S = MI.getOperand(OpNum-1).getImm();
> + break;
> + default:
> + llvm_unreachable("Unhandled memory instruction");
> + }
> + } else {
> + switch (Opc) {
> + case Hexagon::A2_tfrsi: // (Rd: ## + __<<_)
> + ED.Rd = MI.getOperand(0);
> + ED.IsDef = true;
> + break;
> + case Hexagon::A2_combineii: // (Rd: ## + __<<_)
> + case Hexagon::A4_combineir:
> + ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
> + ED.IsDef = true;
> + break;
> + case Hexagon::A4_combineri: // (Rd: ## + __<<_)
> + ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
> + ED.IsDef = true;
> + break;
> + case Hexagon::A2_addi: // (Rd: ## + Rs<<0)
> + ED.Rd = MI.getOperand(0);
> + ED.Expr.Rs = MI.getOperand(OpNum-1);
> + break;
> + case Hexagon::M2_accii: // (__: ## + Rs<<0)
> + case Hexagon::M2_naccii:
> + case Hexagon::S4_addaddi:
> + ED.Expr.Rs = MI.getOperand(OpNum-1);
> + break;
> + case Hexagon::A2_subri: // (Rd: ## - Rs<<0)
> + ED.Rd = MI.getOperand(0);
> + ED.Expr.Rs = MI.getOperand(OpNum+1);
> + ED.Expr.Neg = true;
> + break;
> + case Hexagon::S4_subaddi: // (__: ## - Rs<<0)
> + ED.Expr.Rs = MI.getOperand(OpNum+1);
> + ED.Expr.Neg = true;
> + default: // (__: ## + __<<_)
> + break;
> + }
> + }
> +
> + ED.UseMI = &MI;
> + Extenders.push_back(ED);
> +}
> +
> +void HCE::collectInstr(MachineInstr &MI) {
> + if (!HII->isConstExtended(MI))
> + return;
> +
> + // Skip some non-convertible instructions.
> + unsigned Opc = MI.getOpcode();
> + switch (Opc) {
> + case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt).
> + case Hexagon::C4_addipc:
> + case Hexagon::S4_or_andi:
> + case Hexagon::S4_or_andix:
> + case Hexagon::S4_or_ori:
> + return;
> + }
> + recordExtender(MI, HII->getCExtOpNum(MI));
> +}
> +
> +void HCE::collect(MachineFunction &MF) {
> + Extenders.clear();
> + for (MachineBasicBlock &MBB : MF)
> + for (MachineInstr &MI : MBB)
> + collectInstr(MI);
> +}
> +
> +void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
> + AssignmentMap &IMap) {
> + // Sanity check: make sure that all extenders in the range [Begin..End)
> + // share the same root ER.
> + for (unsigned I = Begin; I != End; ++I)
> + assert(ER == ExtRoot(Extenders[I].getOp()));
> +
> + // Construct the list of ranges, such that for each P in Ranges[I],
> + // a register Reg = ER+P can be used in place of Extender[I]. If the
> + // instruction allows, uses in the form of Reg+Off are considered
> + // (here, Off = required_value - P).
> + std::vector<OffsetRange> Ranges(End-Begin);
> +
> + // For each extender that is a def, visit all uses of the defined
> register,
> + // and produce an offset range that works for all uses. The def doesn't
> + // have to be checked, because it can become dead if all uses can be
> updated
> + // to use a different reg/offset.
> + for (unsigned I = Begin; I != End; ++I) {
> + const ExtDesc &ED = Extenders[I];
> + if (!ED.IsDef)
> + continue;
> + ExtValue EV(ED);
> + DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n');
> + assert(ED.Rd.Reg != 0);
> + Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
> + // A2_tfrsi is a special case: it will be replaced with A2_addi, which
> + // has a 16-bit signed offset. This means that A2_tfrsi not only has a
> + // range coming from its uses, but also from the fact that its
> replacement
> + // has a range as well.
> + if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
> + int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX
> hardcoded
> + Ranges[I-Begin].extendBy(-D).extendBy(D);
> + }
> + }
> +
> + // Visit all non-def extenders. For each one, determine the offset range
> + // available for it.
> + for (unsigned I = Begin; I != End; ++I) {
> + const ExtDesc &ED = Extenders[I];
> + if (ED.IsDef)
> + continue;
> + ExtValue EV(ED);
> + DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n');
> + OffsetRange Dev = getOffsetRange(ED);
> + Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
> + }
> +
> + // Here for each I there is a corresponding Range[I]. Construct the
> + // inverse map, that to each range will assign the set of indexes in
> + // [Begin..End) that this range corresponds to.
> + std::map<OffsetRange, IndexList> RangeMap;
> + for (unsigned I = Begin; I != End; ++I)
> + RangeMap[Ranges[I-Begin]].insert(I);
> +
> + DEBUG({
> + dbgs() << "Ranges\n";
> + for (unsigned I = Begin; I != End; ++I)
> + dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n';
> + dbgs() << "RangeMap\n";
> + for (auto &P : RangeMap) {
> + dbgs() << " " << P.first << " ->";
> + for (unsigned I : P.second)
> + dbgs() << ' ' << I;
> + dbgs() << '\n';
> + }
> + });
> +
> + // Select the definition points, and generate the assignment between
> + // these points and the uses.
> +
> + // For each candidate offset, keep a pair CandData consisting of
> + // the total number of ranges containing that candidate, and the
> + // vector of corresponding RangeTree nodes.
> + using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
> + std::map<int32_t, CandData> CandMap;
> +
> + RangeTree Tree;
> + for (const OffsetRange &R : Ranges)
> + Tree.add(R);
> + SmallVector<RangeTree::Node*,8> Nodes;
> + Tree.order(Nodes);
> +
> + auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes) {
> + uint8_t Align = 1;
> + for (RangeTree::Node *N : Nodes)
> + Align = std::max(Align, N->Range.Align);
> + return Align;
> + };
> +
> + // Construct the set of all potential definition points from the
> endpoints
> + // of the ranges. If a given endpoint also belongs to a different range,
> + // but with a higher alignment, also consider the more-highly-aligned
> + // value of this endpoint.
> + std::set<int32_t> CandSet;
> + for (RangeTree::Node *N : Nodes) {
> + const OffsetRange &R = N->Range;
> + uint8_t A0 = MaxAlign(Tree.nodesWith(R.Min, false));
> + CandSet.insert(R.Min);
> + if (R.Align < A0)
> + CandSet.insert(R.Min < 0 ? -alignDown(-R.Min, A0) : alignTo(R.Min,
> A0));
> + uint8_t A1 = MaxAlign(Tree.nodesWith(R.Max, false));
> + CandSet.insert(R.Max);
> + if (R.Align < A1)
> + CandSet.insert(R.Max < 0 ? -alignTo(-R.Max, A1) : alignDown(R.Max,
> A1));
> + }
> +
> + // Build the assignment map: candidate C -> { list of extender indexes
> }.
> + // This has to be done iteratively:
> + // - pick the candidate that covers the maximum number of extenders,
> + // - add the candidate to the map,
> + // - remove the extenders from the pool.
> + while (true) {
> + using CMap = std::map<int32_t,unsigned>;
> + CMap Counts;
> + for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
> + auto &&V = Tree.nodesWith(*It);
> + unsigned N = std::accumulate(V.begin(), V.end(), 0u,
> + [](unsigned Acc, const RangeTree::Node *N) {
> + return Acc + N->Count;
> + });
> + if (N != 0)
> + Counts.insert({*It, N});
> + It = (N != 0) ? std::next(It) : CandSet.erase(It);
> + }
> + if (Counts.empty())
> + break;
> +
> + // Find the best candidate with respect to the number of extenders
> covered.
> + auto BestIt = std::max_element(Counts.begin(), Counts.end(),
> + [](const CMap::value_type &A, const CMap::value_type
> &B) {
> + return A.second < B.second ||
> + (A.second == B.second && A < B);
> + });
> + int32_t Best = BestIt->first;
> + ExtValue BestV(ER, Best);
> + for (RangeTree::Node *N : Tree.nodesWith(Best)) {
> + for (unsigned I : RangeMap[N->Range])
> + IMap[{BestV,Extenders[I].Expr}].insert(I);
> + Tree.erase(N);
> + }
> + }
> +
> + DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));
> +
> + // There is some ambiguity in what initializer should be used, if the
> + // descriptor's subexpression is non-trivial: it can be the entire
> + // subexpression (which is what has been done so far), or it can be
> + // the extender's value itself, if all corresponding extenders have the
> + // exact value of the initializer (i.e. require offset of 0).
> +
> + // To reduce the number of initializers, merge such special cases.
> + for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
> + // Skip trivial initializers.
> + if (P.first.second.trivial())
> + continue;
> + // If the corresponding trivial initializer does not exist, skip this
> + // entry.
> + const ExtValue &EV = P.first.first;
> + AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
> + if (F == IMap.end())
> + continue;
> + // Finally, check if all extenders have the same value as the
> initializer.
> + auto SameValue = [&EV,this](unsigned I) {
> + const ExtDesc &ED = Extenders[I];
> + return ExtValue(ED).Offset == EV.Offset;
> + };
> + if (all_of(P.second, SameValue)) {
> + F->second.insert(P.second.begin(), P.second.end());
> + P.second.clear();
> + }
> + }
> +
> + DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
> +}
> +
> +void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList
> &Refs,
> + LocDefMap &Defs) {
> + if (Refs.empty())
> + return;
> +
> + // The placement calculation is somewhat simple right now: it finds a
> + // single location for the def that dominates all refs. Since this may
> + // place the def far from the uses, producing several locations for
> + // defs that collectively dominate all refs could be better.
> + // For now only do the single one.
> + DenseSet<MachineBasicBlock*> Blocks;
> + DenseSet<MachineInstr*> RefMIs;
> + const ExtDesc &ED0 = Extenders[Refs[0]];
> + MachineBasicBlock *DomB = ED0.UseMI->getParent();
> + RefMIs.insert(ED0.UseMI);
> + Blocks.insert(DomB);
> + for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
> + const ExtDesc &ED = Extenders[Refs[i]];
> + MachineBasicBlock *MBB = ED.UseMI->getParent();
> + RefMIs.insert(ED.UseMI);
> + DomB = MDT->findNearestCommonDominator(DomB, MBB);
> + Blocks.insert(MBB);
> + }
> +
> +#ifndef NDEBUG
> + // The block DomB should be dominated by the def of each register used
> + // in the initializer.
> + Register Rs = ExtI.second.Rs; // Only one reg allowed now.
> + const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) :
> nullptr;
> +
> + // This should be guaranteed given that the entire expression is used
> + // at each instruction in Refs. Add an assertion just in case.
> + assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
> +#endif
> +
> + MachineBasicBlock::iterator It;
> + if (Blocks.count(DomB)) {
> + // Try to find the latest possible location for the def.
> + MachineBasicBlock::iterator End = DomB->end();
> + for (It = DomB->begin(); It != End; ++It)
> + if (RefMIs.count(&*It))
> + break;
> + assert(It != End && "Should have found a ref in DomB");
> + } else {
> + // DomB does not contain any refs.
> + It = DomB->getFirstTerminator();
> + }
> + Loc DefLoc(DomB, It);
> + Defs.emplace(DefLoc, Refs);
> +}
> +
> +HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
> + unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
> + MachineBasicBlock &MBB = *DefL.Block;
> + MachineBasicBlock::iterator At = DefL.At;
> + DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
> + const ExtValue &EV = ExtI.first;
> + MachineOperand ExtOp(EV);
> +
> + const ExtExpr &Ex = ExtI.second;
> + const MachineInstr *InitI = nullptr;
> +
> + if (Ex.Rs.isSlot()) {
> + assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
> + assert(!Ex.Neg && "Cannot subtract a stack slot");
> + // DefR = PS_fi Rb,##EV
> + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
> + .add(MachineOperand(Ex.Rs))
> + .add(ExtOp);
> + } else {
> + assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual
> register");
> + if (Ex.trivial()) {
> + // DefR = ##EV
> + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
> + .add(ExtOp);
> + } else if (Ex.S == 0) {
> + if (Ex.Neg) {
> + // DefR = sub(##EV,Rb)
> + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
> + .add(ExtOp)
> + .add(MachineOperand(Ex.Rs));
> + } else {
> + // DefR = add(Rb,##EV)
> + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
> + .add(MachineOperand(Ex.Rs))
> + .add(ExtOp);
> + }
> + } else {
> + unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
> + : Hexagon::S4_addi_asl_ri;
> + // DefR = add(##EV,asl(Rb,S))
> + InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
> + .add(ExtOp)
> + .add(MachineOperand(Ex.Rs))
> + .addImm(Ex.S);
> + }
> + }
> +
> + assert(InitI);
> + (void)InitI;
> + DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
> + << " for initializer: " << PrintInit(ExtI, *HRI)
> + << "\n " << *InitI);
> + return { DefR, 0 };
> +}
> +
> +// Replace the extender at index Idx with the register ExtR.
> +bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
> + MachineInstr &MI = *ED.UseMI;
> + MachineBasicBlock &MBB = *MI.getParent();
> + MachineBasicBlock::iterator At = MI.getIterator();
> + DebugLoc dl = MI.getDebugLoc();
> + unsigned ExtOpc = MI.getOpcode();
> +
> + // With a few exceptions, direct replacement amounts to creating an
> + // instruction with a corresponding register opcode, with all operands
> + // the same, except for the register used in place of the extender.
> + unsigned RegOpc = getDirectRegReplacement(ExtOpc);
> +
> + if (RegOpc == TargetOpcode::REG_SEQUENCE) {
> + if (ExtOpc == Hexagon::A4_combineri)
> + BuildMI(MBB, At, dl, HII->get(RegOpc))
> + .add(MI.getOperand(0))
> + .add(MI.getOperand(1))
> + .addImm(Hexagon::isub_hi)
> + .add(MachineOperand(ExtR))
> + .addImm(Hexagon::isub_lo);
> + else if (ExtOpc == Hexagon::A4_combineir)
> + BuildMI(MBB, At, dl, HII->get(RegOpc))
> + .add(MI.getOperand(0))
> + .add(MachineOperand(ExtR))
> + .addImm(Hexagon::isub_hi)
> + .add(MI.getOperand(2))
> + .addImm(Hexagon::isub_lo);
> + else
> + llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
> + MBB.erase(MI);
> + return true;
> + }
> + if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
> + unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
> + : Hexagon::C2_cmpltu;
> + BuildMI(MBB, At, dl, HII->get(NewOpc))
> + .add(MI.getOperand(0))
> + .add(MachineOperand(ExtR))
> + .add(MI.getOperand(1));
> + MBB.erase(MI);
> + return true;
> + }
> +
> + if (RegOpc != 0) {
> + MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
> + unsigned RegN = ED.OpNum;
> + // Copy all operands except the one that has the extender.
> + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
> + if (i != RegN)
> + MIB.add(MI.getOperand(i));
> + else
> + MIB.add(MachineOperand(ExtR));
> + }
> + MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
> + MBB.erase(MI);
> + return true;
> + }
> +
> + if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) {
> + // For memory instructions, there is an asymmetry in the addressing
> + // modes. Addressing modes allowing extenders can be replaced with
> + // addressing modes that use registers, but the order of operands
> + // (or even their number) may be different.
> + // Replacements:
> + // BaseImmOffset (io) -> BaseRegOffset (rr)
> + // BaseLongOffset (ur) -> BaseRegOffset (rr)
> + unsigned RegOpc, Shift;
> + unsigned AM = HII->getAddrMode(MI);
> + if (AM == HexagonII::BaseImmOffset) {
> + RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
> + Shift = 0;
> + } else if (AM == HexagonII::BaseLongOffset) {
> + // Loads: Rd = L4_loadri_ur Rs, S, ##
> + // Stores: S4_storeri_ur Rs, S, ##, Rt
> + RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
> + Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
> + } else {
> + llvm_unreachable("Unexpected addressing mode");
> + }
> +#ifndef NDEBUG
> + if (RegOpc == -1u) {
> + dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr
> version\n";
> + llvm_unreachable("No corresponding rr instruction");
> + }
> +#endif
> +
> + unsigned BaseP, OffP;
> + HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
> +
> + // Build an rr instruction: (RegOff + RegBase<<0)
> + MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
> + // First, add the def for loads.
> + if (MI.mayLoad())
> + MIB.add(getLoadResultOp(MI));
> + // Handle possible predication.
> + if (HII->isPredicated(MI))
> + MIB.add(getPredicateOp(MI));
> + // Build the address.
> + MIB.add(MachineOperand(ExtR)); // RegOff
> + MIB.add(MI.getOperand(BaseP)); // RegBase
> + MIB.addImm(Shift); // << Shift
> + // Add the stored value for stores.
> + if (MI.mayStore())
> + MIB.add(getStoredValueOp(MI));
> + MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
> + MBB.erase(MI);
> + return true;
> + }
> +
> +#ifndef NDEBUG
> + dbgs() << '\n' << MI;
> +#endif
> + llvm_unreachable("Unhandled exact replacement");
> + return false;
> +}
> +
> +// Replace the extender ED with a form corresponding to the initializer
> ExtI.
> +bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
> + Register ExtR, int32_t &Diff) {
> + MachineInstr &MI = *ED.UseMI;
> + MachineBasicBlock &MBB = *MI.getParent();
> + MachineBasicBlock::iterator At = MI.getIterator();
> + DebugLoc dl = MI.getDebugLoc();
> + unsigned ExtOpc = MI.getOpcode();
> +
> + if (ExtOpc == Hexagon::A2_tfrsi) {
> + // A2_tfrsi is a special case: it's replaced with A2_addi, which
> introduces
> + // another range. One range is the one that's common to all tfrsi's
> uses,
> + // this one is the range of immediates in A2_addi. When calculating
> ranges,
> + // the addi's 16-bit argument was included, so now we need to make it
> such
> + // that the produced value is in the range for the uses alone.
> + // Most of the time, simply adding Diff will make the addi produce
> exact
> + // result, but if Diff is outside of the 16-bit range, some adjustment
> + // will be needed.
> + unsigned IdxOpc = getRegOffOpcode(ExtOpc);
> + assert(IdxOpc == Hexagon::A2_addi);
> +
> + // Clamp Diff to the 16 bit range.
> + int32_t D = isInt<16>(Diff) ? Diff : (Diff > 32767 ? 32767 : -32767);
> + BuildMI(MBB, At, dl, HII->get(IdxOpc))
> + .add(MI.getOperand(0))
> + .add(MachineOperand(ExtR))
> + .addImm(D);
> + Diff -= D;
> +#ifndef NDEBUG
> + // Make sure the output is within allowable range for uses.
> + OffsetRange Uses = getOffsetRange(MI.getOperand(0));
> + assert(Uses.contains(Diff));
> +#endif
> + MBB.erase(MI);
> + return true;
> + }
> +
> + const ExtValue &EV = ExtI.first; (void)EV;
> + const ExtExpr &Ex = ExtI.second; (void)Ex;
> +
> + if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
> + // If addi/subri are replaced with the exactly matching initializer,
> + // they amount to COPY.
> + // Check that the initializer is an exact match (for simplicity).
> + bool IsAddi = ExtOpc == Hexagon::A2_addi;
> + const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
> + const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
> + assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
> + "Initializer mismatch");
> + BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
> + .add(MI.getOperand(0))
> + .add(MachineOperand(ExtR));
> + Diff = 0;
> + MBB.erase(MI);
> + return true;
> + }
> + if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
> + ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
> + // M2_accii: add(Rt,add(Rs,V)) (tied)
> + // M2_naccii: sub(Rt,add(Rs,V))
> + // S4_addaddi: add(Rt,add(Rs,V))
> + // S4_subaddi: add(Rt,sub(V,Rs))
> + // Check that Rs and V match the initializer expression. The Rs+V is
> the
> + // combination that is considered "subexpression" for V, although Rx+V
> + // would also be valid.
> + bool IsSub = ExtOpc == Hexagon::S4_subaddi;
> + Register Rs = MI.getOperand(IsSub ? 3 : 2);
> + ExtValue V = MI.getOperand(IsSub ? 2 : 3);
> + assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer
> mismatch");
> + unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
> + : Hexagon::A2_add;
> + BuildMI(MBB, At, dl, HII->get(NewOpc))
> + .add(MI.getOperand(0))
> + .add(MI.getOperand(1))
> + .add(MachineOperand(ExtR));
> + MBB.erase(MI);
> + return true;
> + }
> +
> + if (MI.mayLoad() || MI.mayStore()) {
> + unsigned IdxOpc = getRegOffOpcode(ExtOpc);
> + assert(IdxOpc && "Expecting indexed opcode");
> + MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
> + // Construct the new indexed instruction.
> + // First, add the def for loads.
> + if (MI.mayLoad())
> + MIB.add(getLoadResultOp(MI));
> + // Handle possible predication.
> + if (HII->isPredicated(MI))
> + MIB.add(getPredicateOp(MI));
> + // Build the address.
> + MIB.add(MachineOperand(ExtR));
> + MIB.addImm(Diff);
> + // Add the stored value for stores.
> + if (MI.mayStore())
> + MIB.add(getStoredValueOp(MI));
> + MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
> + MBB.erase(MI);
> + return true;
> + }
> +
> +#ifndef NDEBUG
> + dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI;
> +#endif
> + llvm_unreachable("Unhandled expr replacement");
> + return false;
> +}
> +
> +bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit
> &ExtI) {
> + if (ReplaceLimit.getNumOccurrences()) {
> + if (ReplaceLimit <= ReplaceCounter)
> + return false;
> + ++ReplaceCounter;
> + }
> + const ExtDesc &ED = Extenders[Idx];
> + assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
> + const ExtValue &DefV = ExtI.first;
> + assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root
> mismatch");
> + const ExtExpr &DefEx = ExtI.second;
> +
> + ExtValue EV(ED);
> + int32_t Diff = EV.Offset - DefV.Offset;
> + const MachineInstr &MI = *ED.UseMI;
> + DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
> + << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');
> +
> + // These two addressing modes must be converted into indexed forms
> + // regardless of what the initializer looks like.
> + bool IsAbs = false, IsAbsSet = false;
> + if (MI.mayLoad() || MI.mayStore()) {
> + unsigned AM = HII->getAddrMode(MI);
> + IsAbs = AM == HexagonII::Absolute;
> + IsAbsSet = AM == HexagonII::AbsoluteSet;
> + }
> +
> + // If it's a def, remember all operands that need to be updated.
> + // If ED is a def, and Diff is not 0, then all uses of the register Rd
> + // defined by ED must be in the form (Rd, imm), i.e. the immediate
> offset
> + // must follow the Rd in the operand list.
> + std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
> + if (ED.IsDef && Diff != 0) {
> + for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
> + MachineInstr &UI = *Op.getParent();
> + RegOps.push_back({&UI, getOperandIndex(UI, Op)});
> + }
> + }
> +
> + // Replace the instruction.
> + bool Replaced = false;
> + if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
> + Replaced = replaceInstrExact(ED, ExtR);
> + else
> + Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
> +
> + if (Diff != 0 && Replaced && ED.IsDef) {
> + // Update offsets of the def's uses.
> + for (std::pair<MachineInstr*,unsigned> P : RegOps) {
> + unsigned J = P.second;
> + assert(P.first->getNumOperands() < J+1 &&
> + P.first->getOperand(J+1).isImm());
> + MachineOperand &ImmOp = P.first->getOperand(J+1);
> + ImmOp.setImm(ImmOp.getImm() + Diff);
> + }
> + // If it was an absolute-set instruction, the "set" part has been
> removed.
> + // ExtR will now be the register with the extended value, and since
> all
> + // users of Rd have been updated, all that needs to be done is to
> replace
> + // Rd with ExtR.
> + if (IsAbsSet) {
> + assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
> + MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
> + }
> + }
> +
> + return Replaced;
> +}
> +
> +bool HCE::replaceExtenders(const AssignmentMap &IMap) {
> + LocDefMap Defs;
> + bool Changed = false;
> +
> + for (const std::pair<ExtenderInit,IndexList> &P : IMap) {
> + const IndexList &Idxs = P.second;
> + if (Idxs.size() < CountThreshold)
> + continue;
> +
> + Defs.clear();
> + calculatePlacement(P.first, Idxs, Defs);
> + for (const std::pair<Loc,IndexList> &Q : Defs) {
> + Register DefR = insertInitializer(Q.first, P.first);
> + NewRegs.push_back(DefR.Reg);
> + for (unsigned I : Q.second)
> + Changed |= replaceInstr(I, DefR, P.first);
> + }
> + }
> + return Changed;
> +}
> +
> +unsigned HCE::getOperandIndex(const MachineInstr &MI,
> + const MachineOperand &Op) const {
> + for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
> + if (&MI.getOperand(i) == &Op)
> + return i;
> + llvm_unreachable("Not an operand of MI");
> +}
> +
> +const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
> + assert(HII->isPredicated(MI));
> + for (const MachineOperand &Op : MI.operands()) {
> + if (!Op.isReg() || !Op.isUse() ||
> + MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
> + continue;
> + assert(Op.getSubReg() == 0 && "Predicate register with a
> subregister");
> + return Op;
> + }
> + llvm_unreachable("Predicate operand not found");
> +}
> +
> +const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
> + assert(MI.mayLoad());
> + return MI.getOperand(0);
> +}
> +
> +const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const
> {
> + assert(MI.mayStore());
> + return MI.getOperand(MI.getNumExplicitOperands()-1);
> +}
> +
> +bool HCE::runOnMachineFunction(MachineFunction &MF) {
> + if (skipFunction(*MF.getFunction()))
> + return false;
> + DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));
> +
> + HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
> + HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
> + MDT = &getAnalysis<MachineDominatorTree>();
> + MRI = &MF.getRegInfo();
> + AssignmentMap IMap;
> +
> + collect(MF);
> + std::sort(Extenders.begin(), Extenders.end(),
> + [](const ExtDesc &A, const ExtDesc &B) {
> + return ExtValue(A) < ExtValue(B);
> + });
> +
> + bool Changed = false;
> + DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
> + for (unsigned I = 0, E = Extenders.size(); I != E; ) {
> + unsigned B = I;
> + const ExtRoot &T = Extenders[B].getOp();
> + while (I != E && ExtRoot(Extenders[I].getOp()) == T)
> + ++I;
> +
> + IMap.clear();
> + assignInits(T, B, I, IMap);
> + Changed |= replaceExtenders(IMap);
> + }
> +
> + DEBUG({
> + if (Changed)
> + MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
> + else
> + dbgs() << "No changes\n";
> + });
> + return Changed;
> +}
> +
> +FunctionPass *llvm::createHexagonConstExtenders() {
> + return new HexagonConstExtenders();
> +}
>
> Modified: llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/
> Hexagon/HexagonTargetMachine.cpp?rev=315735&r1=315734&r2=315735&view=diff
> ============================================================
> ==================
> --- llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp (original)
> +++ llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp Fri Oct 13
> 12:02:59 2017
> @@ -28,6 +28,9 @@
>
> using namespace llvm;
>
> +static cl::opt<bool> EnableCExtOpt("hexagon-cext", cl::Hidden,
> cl::ZeroOrMore,
> + cl::init(true), cl::desc("Enable Hexagon constant-extender
> optimization"));
> +
> static cl::opt<bool> EnableRDFOpt("rdf-opt", cl::Hidden, cl::ZeroOrMore,
> cl::init(true), cl::desc("Enable RDF-based optimizations"));
>
> @@ -119,6 +122,7 @@ SchedCustomRegistry("hexagon", "Run Hexa
>
> namespace llvm {
> extern char &HexagonExpandCondsetsID;
> + void initializeHexagonConstExtendersPass(PassRegistry&);
> void initializeHexagonEarlyIfConversionPass(PassRegistry&);
> void initializeHexagonExpandCondsetsPass(PassRegistry&);
> void initializeHexagonGenMuxPass(PassRegistry&);
> @@ -135,6 +139,7 @@ namespace llvm {
> FunctionPass *createHexagonCallFrameInformation();
> FunctionPass *createHexagonCFGOptimizer();
> FunctionPass *createHexagonCommonGEP();
> + FunctionPass *createHexagonConstExtenders();
> FunctionPass *createHexagonConstPropagationPass();
> FunctionPass *createHexagonCopyToCombine();
> FunctionPass *createHexagonEarlyIfConversion();
> @@ -176,6 +181,7 @@ extern "C" void LLVMInitializeHexagonTar
> RegisterTargetMachine<HexagonTargetMachine> X(getTheHexagonTarget());
>
> PassRegistry &PR = *PassRegistry::getPassRegistry();
> + initializeHexagonConstExtendersPass(PR);
> initializeHexagonEarlyIfConversionPass(PR);
> initializeHexagonGenMuxPass(PR);
> initializeHexagonLoopIdiomRecognizePass(PR);
> @@ -340,6 +346,8 @@ bool HexagonPassConfig::addInstSelector(
>
> void HexagonPassConfig::addPreRegAlloc() {
> if (getOptLevel() != CodeGenOpt::None) {
> + if (EnableCExtOpt)
> + addPass(createHexagonConstExtenders());
> if (EnableExpandCondsets)
> insertPass(&RegisterCoalescerID, &HexagonExpandCondsetsID);
> if (!DisableStoreWidening)
>
> Added: llvm/trunk/test/CodeGen/Hexagon/cext-opt-basic.mir
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/
> CodeGen/Hexagon/cext-opt-basic.mir?rev=315735&view=auto
> ============================================================
> ==================
> --- llvm/trunk/test/CodeGen/Hexagon/cext-opt-basic.mir (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/cext-opt-basic.mir Fri Oct 13
> 12:02:59 2017
> @@ -0,0 +1,75 @@
> +# RUN: llc -march=hexagon -run-pass hexagon-cext-opt
> -hexagon-cext-threshold=3 %s -o - | FileCheck %s
> +
> +--- |
> + define void @test0() { ret void }
> + define void @test1() { ret void }
> + define void @test2() { ret void }
> + @global_address = global [1024 x i32] zeroinitializer, align 8
> +...
> +
> +# CHECK-LABEL: name: test0
> +# CHECK: [[B:%[0-9]+]] = A2_tfrsi @global_address
> +# CHECK: L2_loadri_io [[B]], 0
> +# CHECK: L2_loadri_io [[B]], 4
> +# CHECK: L2_loadri_io [[B]], 8
> +---
> +name: test0
> +registers:
> + - { id: 0, class: intregs }
> + - { id: 1, class: intregs }
> + - { id: 2, class: intregs }
> +body: |
> + bb.0:
> + %0 = PS_loadriabs @global_address
> + %1 = PS_loadriabs @global_address+4
> + %2 = PS_loadriabs @global_address+8
> +...
> +
> +# CHECK-LABEL: name: test1
> +# CHECK: [[C:%[0-9]+]] = COPY %r0
> +# CHECK: [[B:%[0-9]+]] = A2_addi [[C]], @global_address
> +# CHECK: L2_loadri_io [[B]], 0
> +# CHECK: L2_loadri_io [[B]], 4
> +# CHECK: L2_loadri_io [[B]], 8
> +---
> +name: test1
> +registers:
> + - { id: 0, class: intregs }
> + - { id: 1, class: intregs }
> + - { id: 2, class: intregs }
> + - { id: 3, class: intregs }
> +body: |
> + bb.0:
> + liveins: %r0
> + %0 = COPY %r0
> + %1 = L4_loadri_ur %0, 0, @global_address
> + %2 = L4_loadri_ur %0, 0, @global_address+4
> + %3 = L4_loadri_ur %0, 0, @global_address+8
> +...
> +
> +# CHECK-LABEL: name: test2
> +# CHECK: [[C:%[0-9]+]] = COPY %r0
> +# CHECK: [[B:%[0-9]+]] = A2_tfrsi @global_address + 4
> +# CHECK: [[T0:%[0-9]+]] = A2_addi [[B]], -4
> +# CHECK: %r0 = COPY [[T0]]
> +# CHECK: [[T1:%[0-9]+]] = A2_addi [[B]], -2
> +# CHECK: %r1 = COPY [[T1]]
> +# CHECK: L4_loadri_rr [[B]], [[C]], 0
> +---
> +name: test2
> +registers:
> + - { id: 0, class: intregs }
> + - { id: 1, class: intregs }
> + - { id: 2, class: intregs }
> + - { id: 3, class: intregs }
> +body: |
> + bb.0:
> + liveins: %r0
> + %0 = COPY %r0
> + %1 = A2_tfrsi @global_address
> + %r0 = COPY %1
> + %2 = A2_tfrsi @global_address+2
> + %r1 = COPY %2
> + %3 = L4_loadri_ur %0, 0, @global_address+4
> +...
> +
>
> Modified: llvm/trunk/test/CodeGen/Hexagon/zextloadi1.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/
> CodeGen/Hexagon/zextloadi1.ll?rev=315735&r1=315734&r2=315735&view=diff
> ============================================================
> ==================
> --- llvm/trunk/test/CodeGen/Hexagon/zextloadi1.ll (original)
> +++ llvm/trunk/test/CodeGen/Hexagon/zextloadi1.ll Fri Oct 13 12:02:59 2017
> @@ -1,4 +1,4 @@
> -; RUN: llc -march=hexagon < %s | FileCheck %s
> +; RUN: llc -march=hexagon -hexagon-cext=0 < %s | FileCheck %s
>
> @i65_l = external global i65
> @i65_s = external global i65
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20171015/6dd64434/attachment-0001.html>
More information about the llvm-commits
mailing list