[llvm] r299856 - Fix line endings.

Zachary Turner via llvm-commits llvm-commits at lists.llvm.org
Mon Apr 10 10:17:11 PDT 2017


Author: zturner
Date: Mon Apr 10 12:17:11 2017
New Revision: 299856

URL: http://llvm.org/viewvc/llvm-project?rev=299856&view=rev
Log:
Fix line endings.

Modified:
    llvm/trunk/include/llvm/ADT/BitVector.h

Modified: llvm/trunk/include/llvm/ADT/BitVector.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/BitVector.h?rev=299856&r1=299855&r2=299856&view=diff
==============================================================================
--- llvm/trunk/include/llvm/ADT/BitVector.h (original)
+++ llvm/trunk/include/llvm/ADT/BitVector.h Mon Apr 10 12:17:11 2017
@@ -1,592 +1,592 @@
-//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the BitVector class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ADT_BITVECTOR_H
-#define LLVM_ADT_BITVECTOR_H
-
-#include "llvm/Support/MathExtras.h"
-#include <algorithm>
-#include <cassert>
-#include <climits>
-#include <cstdint>
-#include <cstdlib>
-#include <cstring>
-#include <utility>
-
-namespace llvm {
-
-class BitVector {
-  typedef unsigned long BitWord;
-
-  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
-
-  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
-                "Unsupported word size");
-
-  BitWord  *Bits;        // Actual bits.
-  unsigned Size;         // Size of bitvector in bits.
-  unsigned Capacity;     // Number of BitWords allocated in the Bits array.
-
-public:
-  typedef unsigned size_type;
-  // Encapsulation of a single bit.
-  class reference {
-    friend class BitVector;
-
-    BitWord *WordRef;
-    unsigned BitPos;
-
-  public:
-    reference(BitVector &b, unsigned Idx) {
-      WordRef = &b.Bits[Idx / BITWORD_SIZE];
-      BitPos = Idx % BITWORD_SIZE;
-    }
-
-    reference() = delete;
-    reference(const reference&) = default;
-
-    reference &operator=(reference t) {
-      *this = bool(t);
-      return *this;
-    }
-
-    reference& operator=(bool t) {
-      if (t)
-        *WordRef |= BitWord(1) << BitPos;
-      else
-        *WordRef &= ~(BitWord(1) << BitPos);
-      return *this;
-    }
-
-    operator bool() const {
-      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
-    }
-  };
-
-
-  /// BitVector default ctor - Creates an empty bitvector.
-  BitVector() : Size(0), Capacity(0) {
-    Bits = nullptr;
-  }
-
-  /// BitVector ctor - Creates a bitvector of specified number of bits. All
-  /// bits are initialized to the specified value.
-  explicit BitVector(unsigned s, bool t = false) : Size(s) {
-    Capacity = NumBitWords(s);
-    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
-    init_words(Bits, Capacity, t);
-    if (t)
-      clear_unused_bits();
-  }
-
-  /// BitVector copy ctor.
-  BitVector(const BitVector &RHS) : Size(RHS.size()) {
-    if (Size == 0) {
-      Bits = nullptr;
-      Capacity = 0;
-      return;
-    }
-
-    Capacity = NumBitWords(RHS.size());
-    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
-    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
-  }
-
-  BitVector(BitVector &&RHS)
-    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
-    RHS.Bits = nullptr;
-    RHS.Size = RHS.Capacity = 0;
-  }
-
-  ~BitVector() {
-    std::free(Bits);
-  }
-
-  /// empty - Tests whether there are no bits in this bitvector.
-  bool empty() const { return Size == 0; }
-
-  /// size - Returns the number of bits in this bitvector.
-  size_type size() const { return Size; }
-
-  /// count - Returns the number of bits which are set.
-  size_type count() const {
-    unsigned NumBits = 0;
-    for (unsigned i = 0; i < NumBitWords(size()); ++i)
-      NumBits += countPopulation(Bits[i]);
-    return NumBits;
-  }
-
-  /// any - Returns true if any bit is set.
-  bool any() const {
-    for (unsigned i = 0; i < NumBitWords(size()); ++i)
-      if (Bits[i] != 0)
-        return true;
-    return false;
-  }
-
-  /// all - Returns true if all bits are set.
-  bool all() const {
-    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
-      if (Bits[i] != ~0UL)
-        return false;
-
-    // If bits remain check that they are ones. The unused bits are always zero.
-    if (unsigned Remainder = Size % BITWORD_SIZE)
-      return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
-
-    return true;
-  }
-
-  /// none - Returns true if none of the bits are set.
-  bool none() const {
-    return !any();
-  }
-
-  /// find_first - Returns the index of the first set bit, -1 if none
-  /// of the bits are set.
-  int find_first() const {
-    for (unsigned i = 0; i < NumBitWords(size()); ++i)
-      if (Bits[i] != 0)
-        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
-    return -1;
-  }
-
-  /// find_next - Returns the index of the next set bit following the
-  /// "Prev" bit. Returns -1 if the next set bit is not found.
-  int find_next(unsigned Prev) const {
-    ++Prev;
-    if (Prev >= Size)
-      return -1;
-
-    unsigned WordPos = Prev / BITWORD_SIZE;
-    unsigned BitPos = Prev % BITWORD_SIZE;
-    BitWord Copy = Bits[WordPos];
-    // Mask off previous bits.
-    Copy &= ~0UL << BitPos;
-
-    if (Copy != 0)
-      return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
-
-    // Check subsequent words.
-    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
-      if (Bits[i] != 0)
-        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
-    return -1;
-  }
-
-  /// clear - Clear all bits.
-  void clear() {
-    Size = 0;
-  }
-
-  /// resize - Grow or shrink the bitvector.
-  void resize(unsigned N, bool t = false) {
-    if (N > Capacity * BITWORD_SIZE) {
-      unsigned OldCapacity = Capacity;
-      grow(N);
-      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
-    }
-
-    // Set any old unused bits that are now included in the BitVector. This
-    // may set bits that are not included in the new vector, but we will clear
-    // them back out below.
-    if (N > Size)
-      set_unused_bits(t);
-
-    // Update the size, and clear out any bits that are now unused
-    unsigned OldSize = Size;
-    Size = N;
-    if (t || N < OldSize)
-      clear_unused_bits();
-  }
-
-  void reserve(unsigned N) {
-    if (N > Capacity * BITWORD_SIZE)
-      grow(N);
-  }
-
-  // Set, reset, flip
-  BitVector &set() {
-    init_words(Bits, Capacity, true);
-    clear_unused_bits();
-    return *this;
-  }
-
-  BitVector &set(unsigned Idx) {
-    assert(Bits && "Bits never allocated");
-    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
-    return *this;
-  }
-
-  /// set - Efficiently set a range of bits in [I, E)
-  BitVector &set(unsigned I, unsigned E) {
-    assert(I <= E && "Attempted to set backwards range!");
-    assert(E <= size() && "Attempted to set out-of-bounds range!");
-
-    if (I == E) return *this;
-
-    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
-      BitWord EMask = 1UL << (E % BITWORD_SIZE);
-      BitWord IMask = 1UL << (I % BITWORD_SIZE);
-      BitWord Mask = EMask - IMask;
-      Bits[I / BITWORD_SIZE] |= Mask;
-      return *this;
-    }
-
-    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
-    Bits[I / BITWORD_SIZE] |= PrefixMask;
-    I = alignTo(I, BITWORD_SIZE);
-
-    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
-      Bits[I / BITWORD_SIZE] = ~0UL;
-
-    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
-    if (I < E)
-      Bits[I / BITWORD_SIZE] |= PostfixMask;
-
-    return *this;
-  }
-
-  BitVector &reset() {
-    init_words(Bits, Capacity, false);
-    return *this;
-  }
-
-  BitVector &reset(unsigned Idx) {
-    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
-    return *this;
-  }
-
-  /// reset - Efficiently reset a range of bits in [I, E)
-  BitVector &reset(unsigned I, unsigned E) {
-    assert(I <= E && "Attempted to reset backwards range!");
-    assert(E <= size() && "Attempted to reset out-of-bounds range!");
-
-    if (I == E) return *this;
-
-    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
-      BitWord EMask = 1UL << (E % BITWORD_SIZE);
-      BitWord IMask = 1UL << (I % BITWORD_SIZE);
-      BitWord Mask = EMask - IMask;
-      Bits[I / BITWORD_SIZE] &= ~Mask;
-      return *this;
-    }
-
-    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
-    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
-    I = alignTo(I, BITWORD_SIZE);
-
-    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
-      Bits[I / BITWORD_SIZE] = 0UL;
-
-    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
-    if (I < E)
-      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
-
-    return *this;
-  }
-
-  BitVector &flip() {
-    for (unsigned i = 0; i < NumBitWords(size()); ++i)
-      Bits[i] = ~Bits[i];
-    clear_unused_bits();
-    return *this;
-  }
-
-  BitVector &flip(unsigned Idx) {
-    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
-    return *this;
-  }
-
-  // Indexing.
-  reference operator[](unsigned Idx) {
-    assert (Idx < Size && "Out-of-bounds Bit access.");
-    return reference(*this, Idx);
-  }
-
-  bool operator[](unsigned Idx) const {
-    assert (Idx < Size && "Out-of-bounds Bit access.");
-    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
-    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
-  }
-
-  bool test(unsigned Idx) const {
-    return (*this)[Idx];
-  }
-
-  /// Test if any common bits are set.
-  bool anyCommon(const BitVector &RHS) const {
-    unsigned ThisWords = NumBitWords(size());
-    unsigned RHSWords  = NumBitWords(RHS.size());
-    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
-      if (Bits[i] & RHS.Bits[i])
-        return true;
-    return false;
-  }
-
-  // Comparison operators.
-  bool operator==(const BitVector &RHS) const {
-    unsigned ThisWords = NumBitWords(size());
-    unsigned RHSWords  = NumBitWords(RHS.size());
-    unsigned i;
-    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
-      if (Bits[i] != RHS.Bits[i])
-        return false;
-
-    // Verify that any extra words are all zeros.
-    if (i != ThisWords) {
-      for (; i != ThisWords; ++i)
-        if (Bits[i])
-          return false;
-    } else if (i != RHSWords) {
-      for (; i != RHSWords; ++i)
-        if (RHS.Bits[i])
-          return false;
-    }
-    return true;
-  }
-
-  bool operator!=(const BitVector &RHS) const {
-    return !(*this == RHS);
-  }
-
-  /// Intersection, union, disjoint union.
-  BitVector &operator&=(const BitVector &RHS) {
-    unsigned ThisWords = NumBitWords(size());
-    unsigned RHSWords  = NumBitWords(RHS.size());
-    unsigned i;
-    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
-      Bits[i] &= RHS.Bits[i];
-
-    // Any bits that are just in this bitvector become zero, because they aren't
-    // in the RHS bit vector.  Any words only in RHS are ignored because they
-    // are already zero in the LHS.
-    for (; i != ThisWords; ++i)
-      Bits[i] = 0;
-
-    return *this;
-  }
-
-  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
-  BitVector &reset(const BitVector &RHS) {
-    unsigned ThisWords = NumBitWords(size());
-    unsigned RHSWords  = NumBitWords(RHS.size());
-    unsigned i;
-    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
-      Bits[i] &= ~RHS.Bits[i];
-    return *this;
-  }
-
-  /// test - Check if (This - RHS) is zero.
-  /// This is the same as reset(RHS) and any().
-  bool test(const BitVector &RHS) const {
-    unsigned ThisWords = NumBitWords(size());
-    unsigned RHSWords  = NumBitWords(RHS.size());
-    unsigned i;
-    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
-      if ((Bits[i] & ~RHS.Bits[i]) != 0)
-        return true;
-
-    for (; i != ThisWords ; ++i)
-      if (Bits[i] != 0)
-        return true;
-
-    return false;
-  }
-
-  BitVector &operator|=(const BitVector &RHS) {
-    if (size() < RHS.size())
-      resize(RHS.size());
-    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
-      Bits[i] |= RHS.Bits[i];
-    return *this;
-  }
-
-  BitVector &operator^=(const BitVector &RHS) {
-    if (size() < RHS.size())
-      resize(RHS.size());
-    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
-      Bits[i] ^= RHS.Bits[i];
-    return *this;
-  }
-
-  // Assignment operator.
-  const BitVector &operator=(const BitVector &RHS) {
-    if (this == &RHS) return *this;
-
-    Size = RHS.size();
-    unsigned RHSWords = NumBitWords(Size);
-    if (Size <= Capacity * BITWORD_SIZE) {
-      if (Size)
-        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
-      clear_unused_bits();
-      return *this;
-    }
-
-    // Grow the bitvector to have enough elements.
-    Capacity = RHSWords;
-    assert(Capacity > 0 && "negative capacity?");
-    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
-    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
-
-    // Destroy the old bits.
-    std::free(Bits);
-    Bits = NewBits;
-
-    return *this;
-  }
-
-  const BitVector &operator=(BitVector &&RHS) {
-    if (this == &RHS) return *this;
-
-    std::free(Bits);
-    Bits = RHS.Bits;
-    Size = RHS.Size;
-    Capacity = RHS.Capacity;
-
-    RHS.Bits = nullptr;
-    RHS.Size = RHS.Capacity = 0;
-
-    return *this;
-  }
-
-  void swap(BitVector &RHS) {
-    std::swap(Bits, RHS.Bits);
-    std::swap(Size, RHS.Size);
-    std::swap(Capacity, RHS.Capacity);
-  }
-
-  //===--------------------------------------------------------------------===//
-  // Portable bit mask operations.
-  //===--------------------------------------------------------------------===//
-  //
-  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
-  // fixed word size makes it easier to work with literal bit vector constants
-  // in portable code.
-  //
-  // The LSB in each word is the lowest numbered bit.  The size of a portable
-  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
-  // given, the bit mask is assumed to cover the entire BitVector.
-
-  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
-  /// This computes "*this |= Mask".
-  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
-    applyMask<true, false>(Mask, MaskWords);
-  }
-
-  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
-  /// Don't resize. This computes "*this &= ~Mask".
-  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
-    applyMask<false, false>(Mask, MaskWords);
-  }
-
-  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
-  /// Don't resize.  This computes "*this |= ~Mask".
-  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
-    applyMask<true, true>(Mask, MaskWords);
-  }
-
-  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
-  /// Don't resize.  This computes "*this &= Mask".
-  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
-    applyMask<false, true>(Mask, MaskWords);
-  }
-
-private:
-  unsigned NumBitWords(unsigned S) const {
-    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
-  }
-
-  // Set the unused bits in the high words.
-  void set_unused_bits(bool t = true) {
-    //  Set high words first.
-    unsigned UsedWords = NumBitWords(Size);
-    if (Capacity > UsedWords)
-      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
-
-    //  Then set any stray high bits of the last used word.
-    unsigned ExtraBits = Size % BITWORD_SIZE;
-    if (ExtraBits) {
-      BitWord ExtraBitMask = ~0UL << ExtraBits;
-      if (t)
-        Bits[UsedWords-1] |= ExtraBitMask;
-      else
-        Bits[UsedWords-1] &= ~ExtraBitMask;
-    }
-  }
-
-  // Clear the unused bits in the high words.
-  void clear_unused_bits() {
-    set_unused_bits(false);
-  }
-
-  void grow(unsigned NewSize) {
-    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
-    assert(Capacity > 0 && "realloc-ing zero space");
-    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
-
-    clear_unused_bits();
-  }
-
-  void init_words(BitWord *B, unsigned NumWords, bool t) {
-    if (NumWords > 0)
-      memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
-  }
-
-  template<bool AddBits, bool InvertMask>
-  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
-    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
-    MaskWords = std::min(MaskWords, (size() + 31) / 32);
-    const unsigned Scale = BITWORD_SIZE / 32;
-    unsigned i;
-    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
-      BitWord BW = Bits[i];
-      // This inner loop should unroll completely when BITWORD_SIZE > 32.
-      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
-        uint32_t M = *Mask++;
-        if (InvertMask) M = ~M;
-        if (AddBits) BW |=   BitWord(M) << b;
-        else         BW &= ~(BitWord(M) << b);
-      }
-      Bits[i] = BW;
-    }
-    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
-      uint32_t M = *Mask++;
-      if (InvertMask) M = ~M;
-      if (AddBits) Bits[i] |=   BitWord(M) << b;
-      else         Bits[i] &= ~(BitWord(M) << b);
-    }
-    if (AddBits)
-      clear_unused_bits();
-  }
-
-public:
-  /// Return the size (in bytes) of the bit vector.
-  size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
-};
-
-static inline size_t capacity_in_bytes(const BitVector &X) {
-  return X.getMemorySize();
-}
-
-} // end namespace llvm
-
-namespace std {
-  /// Implement std::swap in terms of BitVector swap.
-  inline void
-  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
-    LHS.swap(RHS);
-  }
-} // end namespace std
-
-#endif // LLVM_ADT_BITVECTOR_H
+//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the BitVector class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_BITVECTOR_H
+#define LLVM_ADT_BITVECTOR_H
+
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <utility>
+
+namespace llvm {
+
+class BitVector {
+  typedef unsigned long BitWord;
+
+  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
+
+  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
+                "Unsupported word size");
+
+  BitWord  *Bits;        // Actual bits.
+  unsigned Size;         // Size of bitvector in bits.
+  unsigned Capacity;     // Number of BitWords allocated in the Bits array.
+
+public:
+  typedef unsigned size_type;
+  // Encapsulation of a single bit.
+  class reference {
+    friend class BitVector;
+
+    BitWord *WordRef;
+    unsigned BitPos;
+
+  public:
+    reference(BitVector &b, unsigned Idx) {
+      WordRef = &b.Bits[Idx / BITWORD_SIZE];
+      BitPos = Idx % BITWORD_SIZE;
+    }
+
+    reference() = delete;
+    reference(const reference&) = default;
+
+    reference &operator=(reference t) {
+      *this = bool(t);
+      return *this;
+    }
+
+    reference& operator=(bool t) {
+      if (t)
+        *WordRef |= BitWord(1) << BitPos;
+      else
+        *WordRef &= ~(BitWord(1) << BitPos);
+      return *this;
+    }
+
+    operator bool() const {
+      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
+    }
+  };
+
+
+  /// BitVector default ctor - Creates an empty bitvector.
+  BitVector() : Size(0), Capacity(0) {
+    Bits = nullptr;
+  }
+
+  /// BitVector ctor - Creates a bitvector of specified number of bits. All
+  /// bits are initialized to the specified value.
+  explicit BitVector(unsigned s, bool t = false) : Size(s) {
+    Capacity = NumBitWords(s);
+    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+    init_words(Bits, Capacity, t);
+    if (t)
+      clear_unused_bits();
+  }
+
+  /// BitVector copy ctor.
+  BitVector(const BitVector &RHS) : Size(RHS.size()) {
+    if (Size == 0) {
+      Bits = nullptr;
+      Capacity = 0;
+      return;
+    }
+
+    Capacity = NumBitWords(RHS.size());
+    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
+  }
+
+  BitVector(BitVector &&RHS)
+    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
+    RHS.Bits = nullptr;
+    RHS.Size = RHS.Capacity = 0;
+  }
+
+  ~BitVector() {
+    std::free(Bits);
+  }
+
+  /// empty - Tests whether there are no bits in this bitvector.
+  bool empty() const { return Size == 0; }
+
+  /// size - Returns the number of bits in this bitvector.
+  size_type size() const { return Size; }
+
+  /// count - Returns the number of bits which are set.
+  size_type count() const {
+    unsigned NumBits = 0;
+    for (unsigned i = 0; i < NumBitWords(size()); ++i)
+      NumBits += countPopulation(Bits[i]);
+    return NumBits;
+  }
+
+  /// any - Returns true if any bit is set.
+  bool any() const {
+    for (unsigned i = 0; i < NumBitWords(size()); ++i)
+      if (Bits[i] != 0)
+        return true;
+    return false;
+  }
+
+  /// all - Returns true if all bits are set.
+  bool all() const {
+    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
+      if (Bits[i] != ~0UL)
+        return false;
+
+    // If bits remain check that they are ones. The unused bits are always zero.
+    if (unsigned Remainder = Size % BITWORD_SIZE)
+      return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
+
+    return true;
+  }
+
+  /// none - Returns true if none of the bits are set.
+  bool none() const {
+    return !any();
+  }
+
+  /// find_first - Returns the index of the first set bit, -1 if none
+  /// of the bits are set.
+  int find_first() const {
+    for (unsigned i = 0; i < NumBitWords(size()); ++i)
+      if (Bits[i] != 0)
+        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
+    return -1;
+  }
+
+  /// find_next - Returns the index of the next set bit following the
+  /// "Prev" bit. Returns -1 if the next set bit is not found.
+  int find_next(unsigned Prev) const {
+    ++Prev;
+    if (Prev >= Size)
+      return -1;
+
+    unsigned WordPos = Prev / BITWORD_SIZE;
+    unsigned BitPos = Prev % BITWORD_SIZE;
+    BitWord Copy = Bits[WordPos];
+    // Mask off previous bits.
+    Copy &= ~0UL << BitPos;
+
+    if (Copy != 0)
+      return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
+
+    // Check subsequent words.
+    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
+      if (Bits[i] != 0)
+        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
+    return -1;
+  }
+
+  /// clear - Clear all bits.
+  void clear() {
+    Size = 0;
+  }
+
+  /// resize - Grow or shrink the bitvector.
+  void resize(unsigned N, bool t = false) {
+    if (N > Capacity * BITWORD_SIZE) {
+      unsigned OldCapacity = Capacity;
+      grow(N);
+      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
+    }
+
+    // Set any old unused bits that are now included in the BitVector. This
+    // may set bits that are not included in the new vector, but we will clear
+    // them back out below.
+    if (N > Size)
+      set_unused_bits(t);
+
+    // Update the size, and clear out any bits that are now unused
+    unsigned OldSize = Size;
+    Size = N;
+    if (t || N < OldSize)
+      clear_unused_bits();
+  }
+
+  void reserve(unsigned N) {
+    if (N > Capacity * BITWORD_SIZE)
+      grow(N);
+  }
+
+  // Set, reset, flip
+  BitVector &set() {
+    init_words(Bits, Capacity, true);
+    clear_unused_bits();
+    return *this;
+  }
+
+  BitVector &set(unsigned Idx) {
+    assert(Bits && "Bits never allocated");
+    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
+    return *this;
+  }
+
+  /// set - Efficiently set a range of bits in [I, E)
+  BitVector &set(unsigned I, unsigned E) {
+    assert(I <= E && "Attempted to set backwards range!");
+    assert(E <= size() && "Attempted to set out-of-bounds range!");
+
+    if (I == E) return *this;
+
+    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+      BitWord EMask = 1UL << (E % BITWORD_SIZE);
+      BitWord IMask = 1UL << (I % BITWORD_SIZE);
+      BitWord Mask = EMask - IMask;
+      Bits[I / BITWORD_SIZE] |= Mask;
+      return *this;
+    }
+
+    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+    Bits[I / BITWORD_SIZE] |= PrefixMask;
+    I = alignTo(I, BITWORD_SIZE);
+
+    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+      Bits[I / BITWORD_SIZE] = ~0UL;
+
+    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+    if (I < E)
+      Bits[I / BITWORD_SIZE] |= PostfixMask;
+
+    return *this;
+  }
+
+  BitVector &reset() {
+    init_words(Bits, Capacity, false);
+    return *this;
+  }
+
+  BitVector &reset(unsigned Idx) {
+    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
+    return *this;
+  }
+
+  /// reset - Efficiently reset a range of bits in [I, E)
+  BitVector &reset(unsigned I, unsigned E) {
+    assert(I <= E && "Attempted to reset backwards range!");
+    assert(E <= size() && "Attempted to reset out-of-bounds range!");
+
+    if (I == E) return *this;
+
+    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+      BitWord EMask = 1UL << (E % BITWORD_SIZE);
+      BitWord IMask = 1UL << (I % BITWORD_SIZE);
+      BitWord Mask = EMask - IMask;
+      Bits[I / BITWORD_SIZE] &= ~Mask;
+      return *this;
+    }
+
+    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
+    I = alignTo(I, BITWORD_SIZE);
+
+    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+      Bits[I / BITWORD_SIZE] = 0UL;
+
+    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+    if (I < E)
+      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
+
+    return *this;
+  }
+
+  BitVector &flip() {
+    for (unsigned i = 0; i < NumBitWords(size()); ++i)
+      Bits[i] = ~Bits[i];
+    clear_unused_bits();
+    return *this;
+  }
+
+  BitVector &flip(unsigned Idx) {
+    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
+    return *this;
+  }
+
+  // Indexing.
+  reference operator[](unsigned Idx) {
+    assert (Idx < Size && "Out-of-bounds Bit access.");
+    return reference(*this, Idx);
+  }
+
+  bool operator[](unsigned Idx) const {
+    assert (Idx < Size && "Out-of-bounds Bit access.");
+    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
+    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
+  }
+
+  bool test(unsigned Idx) const {
+    return (*this)[Idx];
+  }
+
+  /// Test if any common bits are set.
+  bool anyCommon(const BitVector &RHS) const {
+    unsigned ThisWords = NumBitWords(size());
+    unsigned RHSWords  = NumBitWords(RHS.size());
+    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
+      if (Bits[i] & RHS.Bits[i])
+        return true;
+    return false;
+  }
+
+  // Comparison operators.
+  bool operator==(const BitVector &RHS) const {
+    unsigned ThisWords = NumBitWords(size());
+    unsigned RHSWords  = NumBitWords(RHS.size());
+    unsigned i;
+    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+      if (Bits[i] != RHS.Bits[i])
+        return false;
+
+    // Verify that any extra words are all zeros.
+    if (i != ThisWords) {
+      for (; i != ThisWords; ++i)
+        if (Bits[i])
+          return false;
+    } else if (i != RHSWords) {
+      for (; i != RHSWords; ++i)
+        if (RHS.Bits[i])
+          return false;
+    }
+    return true;
+  }
+
+  bool operator!=(const BitVector &RHS) const {
+    return !(*this == RHS);
+  }
+
+  /// Intersection, union, disjoint union.
+  BitVector &operator&=(const BitVector &RHS) {
+    unsigned ThisWords = NumBitWords(size());
+    unsigned RHSWords  = NumBitWords(RHS.size());
+    unsigned i;
+    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+      Bits[i] &= RHS.Bits[i];
+
+    // Any bits that are just in this bitvector become zero, because they aren't
+    // in the RHS bit vector.  Any words only in RHS are ignored because they
+    // are already zero in the LHS.
+    for (; i != ThisWords; ++i)
+      Bits[i] = 0;
+
+    return *this;
+  }
+
+  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
+  BitVector &reset(const BitVector &RHS) {
+    unsigned ThisWords = NumBitWords(size());
+    unsigned RHSWords  = NumBitWords(RHS.size());
+    unsigned i;
+    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+      Bits[i] &= ~RHS.Bits[i];
+    return *this;
+  }
+
+  /// test - Check if (This - RHS) is zero.
+  /// This is the same as reset(RHS) and any().
+  bool test(const BitVector &RHS) const {
+    unsigned ThisWords = NumBitWords(size());
+    unsigned RHSWords  = NumBitWords(RHS.size());
+    unsigned i;
+    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+      if ((Bits[i] & ~RHS.Bits[i]) != 0)
+        return true;
+
+    for (; i != ThisWords ; ++i)
+      if (Bits[i] != 0)
+        return true;
+
+    return false;
+  }
+
+  BitVector &operator|=(const BitVector &RHS) {
+    if (size() < RHS.size())
+      resize(RHS.size());
+    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+      Bits[i] |= RHS.Bits[i];
+    return *this;
+  }
+
+  BitVector &operator^=(const BitVector &RHS) {
+    if (size() < RHS.size())
+      resize(RHS.size());
+    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+      Bits[i] ^= RHS.Bits[i];
+    return *this;
+  }
+
+  // Assignment operator.
+  const BitVector &operator=(const BitVector &RHS) {
+    if (this == &RHS) return *this;
+
+    Size = RHS.size();
+    unsigned RHSWords = NumBitWords(Size);
+    if (Size <= Capacity * BITWORD_SIZE) {
+      if (Size)
+        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
+      clear_unused_bits();
+      return *this;
+    }
+
+    // Grow the bitvector to have enough elements.
+    Capacity = RHSWords;
+    assert(Capacity > 0 && "negative capacity?");
+    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
+
+    // Destroy the old bits.
+    std::free(Bits);
+    Bits = NewBits;
+
+    return *this;
+  }
+
+  const BitVector &operator=(BitVector &&RHS) {
+    if (this == &RHS) return *this;
+
+    std::free(Bits);
+    Bits = RHS.Bits;
+    Size = RHS.Size;
+    Capacity = RHS.Capacity;
+
+    RHS.Bits = nullptr;
+    RHS.Size = RHS.Capacity = 0;
+
+    return *this;
+  }
+
+  void swap(BitVector &RHS) {
+    std::swap(Bits, RHS.Bits);
+    std::swap(Size, RHS.Size);
+    std::swap(Capacity, RHS.Capacity);
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Portable bit mask operations.
+  //===--------------------------------------------------------------------===//
+  //
+  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
+  // fixed word size makes it easier to work with literal bit vector constants
+  // in portable code.
+  //
+  // The LSB in each word is the lowest numbered bit.  The size of a portable
+  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
+  // given, the bit mask is assumed to cover the entire BitVector.
+
+  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
+  /// This computes "*this |= Mask".
+  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+    applyMask<true, false>(Mask, MaskWords);
+  }
+
+  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
+  /// Don't resize. This computes "*this &= ~Mask".
+  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+    applyMask<false, false>(Mask, MaskWords);
+  }
+
+  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
+  /// Don't resize.  This computes "*this |= ~Mask".
+  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+    applyMask<true, true>(Mask, MaskWords);
+  }
+
+  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
+  /// Don't resize.  This computes "*this &= Mask".
+  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+    applyMask<false, true>(Mask, MaskWords);
+  }
+
+private:
+  unsigned NumBitWords(unsigned S) const {
+    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
+  }
+
+  // Set the unused bits in the high words.
+  void set_unused_bits(bool t = true) {
+    //  Set high words first.
+    unsigned UsedWords = NumBitWords(Size);
+    if (Capacity > UsedWords)
+      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
+
+    //  Then set any stray high bits of the last used word.
+    unsigned ExtraBits = Size % BITWORD_SIZE;
+    if (ExtraBits) {
+      BitWord ExtraBitMask = ~0UL << ExtraBits;
+      if (t)
+        Bits[UsedWords-1] |= ExtraBitMask;
+      else
+        Bits[UsedWords-1] &= ~ExtraBitMask;
+    }
+  }
+
+  // Clear the unused bits in the high words.
+  void clear_unused_bits() {
+    set_unused_bits(false);
+  }
+
+  void grow(unsigned NewSize) {
+    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
+    assert(Capacity > 0 && "realloc-ing zero space");
+    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
+
+    clear_unused_bits();
+  }
+
+  void init_words(BitWord *B, unsigned NumWords, bool t) {
+    if (NumWords > 0)
+      memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
+  }
+
+  template<bool AddBits, bool InvertMask>
+  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
+    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
+    MaskWords = std::min(MaskWords, (size() + 31) / 32);
+    const unsigned Scale = BITWORD_SIZE / 32;
+    unsigned i;
+    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
+      BitWord BW = Bits[i];
+      // This inner loop should unroll completely when BITWORD_SIZE > 32.
+      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
+        uint32_t M = *Mask++;
+        if (InvertMask) M = ~M;
+        if (AddBits) BW |=   BitWord(M) << b;
+        else         BW &= ~(BitWord(M) << b);
+      }
+      Bits[i] = BW;
+    }
+    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
+      uint32_t M = *Mask++;
+      if (InvertMask) M = ~M;
+      if (AddBits) Bits[i] |=   BitWord(M) << b;
+      else         Bits[i] &= ~(BitWord(M) << b);
+    }
+    if (AddBits)
+      clear_unused_bits();
+  }
+
+public:
+  /// Return the size (in bytes) of the bit vector.
+  size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
+};
+
+static inline size_t capacity_in_bytes(const BitVector &X) {
+  return X.getMemorySize();
+}
+
+} // end namespace llvm
+
+namespace std {
+  /// Implement std::swap in terms of BitVector swap.
+  inline void
+  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
+    LHS.swap(RHS);
+  }
+} // end namespace std
+
+#endif // LLVM_ADT_BITVECTOR_H




More information about the llvm-commits mailing list