[llvm] r299855 - Remove eol-style:native from BitVector.h
Zachary Turner via llvm-commits
llvm-commits at lists.llvm.org
Mon Apr 10 10:15:12 PDT 2017
Author: zturner
Date: Mon Apr 10 12:15:11 2017
New Revision: 299855
URL: http://llvm.org/viewvc/llvm-project?rev=299855&view=rev
Log:
Remove eol-style:native from BitVector.h
Modified:
llvm/trunk/include/llvm/ADT/BitVector.h (contents, props changed)
Modified: llvm/trunk/include/llvm/ADT/BitVector.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/BitVector.h?rev=299855&r1=299854&r2=299855&view=diff
==============================================================================
--- llvm/trunk/include/llvm/ADT/BitVector.h (original)
+++ llvm/trunk/include/llvm/ADT/BitVector.h Mon Apr 10 12:15:11 2017
@@ -1,592 +1,592 @@
-//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the BitVector class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ADT_BITVECTOR_H
-#define LLVM_ADT_BITVECTOR_H
-
-#include "llvm/Support/MathExtras.h"
-#include <algorithm>
-#include <cassert>
-#include <climits>
-#include <cstdint>
-#include <cstdlib>
-#include <cstring>
-#include <utility>
-
-namespace llvm {
-
-class BitVector {
- typedef unsigned long BitWord;
-
- enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
-
- static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
- "Unsupported word size");
-
- BitWord *Bits; // Actual bits.
- unsigned Size; // Size of bitvector in bits.
- unsigned Capacity; // Number of BitWords allocated in the Bits array.
-
-public:
- typedef unsigned size_type;
- // Encapsulation of a single bit.
- class reference {
- friend class BitVector;
-
- BitWord *WordRef;
- unsigned BitPos;
-
- public:
- reference(BitVector &b, unsigned Idx) {
- WordRef = &b.Bits[Idx / BITWORD_SIZE];
- BitPos = Idx % BITWORD_SIZE;
- }
-
- reference() = delete;
- reference(const reference&) = default;
-
- reference &operator=(reference t) {
- *this = bool(t);
- return *this;
- }
-
- reference& operator=(bool t) {
- if (t)
- *WordRef |= BitWord(1) << BitPos;
- else
- *WordRef &= ~(BitWord(1) << BitPos);
- return *this;
- }
-
- operator bool() const {
- return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
- }
- };
-
-
- /// BitVector default ctor - Creates an empty bitvector.
- BitVector() : Size(0), Capacity(0) {
- Bits = nullptr;
- }
-
- /// BitVector ctor - Creates a bitvector of specified number of bits. All
- /// bits are initialized to the specified value.
- explicit BitVector(unsigned s, bool t = false) : Size(s) {
- Capacity = NumBitWords(s);
- Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- init_words(Bits, Capacity, t);
- if (t)
- clear_unused_bits();
- }
-
- /// BitVector copy ctor.
- BitVector(const BitVector &RHS) : Size(RHS.size()) {
- if (Size == 0) {
- Bits = nullptr;
- Capacity = 0;
- return;
- }
-
- Capacity = NumBitWords(RHS.size());
- Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
- }
-
- BitVector(BitVector &&RHS)
- : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
- RHS.Bits = nullptr;
- RHS.Size = RHS.Capacity = 0;
- }
-
- ~BitVector() {
- std::free(Bits);
- }
-
- /// empty - Tests whether there are no bits in this bitvector.
- bool empty() const { return Size == 0; }
-
- /// size - Returns the number of bits in this bitvector.
- size_type size() const { return Size; }
-
- /// count - Returns the number of bits which are set.
- size_type count() const {
- unsigned NumBits = 0;
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- NumBits += countPopulation(Bits[i]);
- return NumBits;
- }
-
- /// any - Returns true if any bit is set.
- bool any() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return true;
- return false;
- }
-
- /// all - Returns true if all bits are set.
- bool all() const {
- for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
- if (Bits[i] != ~0UL)
- return false;
-
- // If bits remain check that they are ones. The unused bits are always zero.
- if (unsigned Remainder = Size % BITWORD_SIZE)
- return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
-
- return true;
- }
-
- /// none - Returns true if none of the bits are set.
- bool none() const {
- return !any();
- }
-
- /// find_first - Returns the index of the first set bit, -1 if none
- /// of the bits are set.
- int find_first() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
- return -1;
- }
-
- /// find_next - Returns the index of the next set bit following the
- /// "Prev" bit. Returns -1 if the next set bit is not found.
- int find_next(unsigned Prev) const {
- ++Prev;
- if (Prev >= Size)
- return -1;
-
- unsigned WordPos = Prev / BITWORD_SIZE;
- unsigned BitPos = Prev % BITWORD_SIZE;
- BitWord Copy = Bits[WordPos];
- // Mask off previous bits.
- Copy &= ~0UL << BitPos;
-
- if (Copy != 0)
- return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
-
- // Check subsequent words.
- for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
- return -1;
- }
-
- /// clear - Clear all bits.
- void clear() {
- Size = 0;
- }
-
- /// resize - Grow or shrink the bitvector.
- void resize(unsigned N, bool t = false) {
- if (N > Capacity * BITWORD_SIZE) {
- unsigned OldCapacity = Capacity;
- grow(N);
- init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
- }
-
- // Set any old unused bits that are now included in the BitVector. This
- // may set bits that are not included in the new vector, but we will clear
- // them back out below.
- if (N > Size)
- set_unused_bits(t);
-
- // Update the size, and clear out any bits that are now unused
- unsigned OldSize = Size;
- Size = N;
- if (t || N < OldSize)
- clear_unused_bits();
- }
-
- void reserve(unsigned N) {
- if (N > Capacity * BITWORD_SIZE)
- grow(N);
- }
-
- // Set, reset, flip
- BitVector &set() {
- init_words(Bits, Capacity, true);
- clear_unused_bits();
- return *this;
- }
-
- BitVector &set(unsigned Idx) {
- assert(Bits && "Bits never allocated");
- Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
-
- /// set - Efficiently set a range of bits in [I, E)
- BitVector &set(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to set backwards range!");
- assert(E <= size() && "Attempted to set out-of-bounds range!");
-
- if (I == E) return *this;
-
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = 1UL << (E % BITWORD_SIZE);
- BitWord IMask = 1UL << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] |= Mask;
- return *this;
- }
-
- BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] |= PrefixMask;
- I = alignTo(I, BITWORD_SIZE);
-
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = ~0UL;
-
- BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] |= PostfixMask;
-
- return *this;
- }
-
- BitVector &reset() {
- init_words(Bits, Capacity, false);
- return *this;
- }
-
- BitVector &reset(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
- return *this;
- }
-
- /// reset - Efficiently reset a range of bits in [I, E)
- BitVector &reset(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to reset backwards range!");
- assert(E <= size() && "Attempted to reset out-of-bounds range!");
-
- if (I == E) return *this;
-
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = 1UL << (E % BITWORD_SIZE);
- BitWord IMask = 1UL << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] &= ~Mask;
- return *this;
- }
-
- BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] &= ~PrefixMask;
- I = alignTo(I, BITWORD_SIZE);
-
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = 0UL;
-
- BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] &= ~PostfixMask;
-
- return *this;
- }
-
- BitVector &flip() {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- Bits[i] = ~Bits[i];
- clear_unused_bits();
- return *this;
- }
-
- BitVector &flip(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
-
- // Indexing.
- reference operator[](unsigned Idx) {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- return reference(*this, Idx);
- }
-
- bool operator[](unsigned Idx) const {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
- return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
- }
-
- bool test(unsigned Idx) const {
- return (*this)[Idx];
- }
-
- /// Test if any common bits are set.
- bool anyCommon(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
- if (Bits[i] & RHS.Bits[i])
- return true;
- return false;
- }
-
- // Comparison operators.
- bool operator==(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if (Bits[i] != RHS.Bits[i])
- return false;
-
- // Verify that any extra words are all zeros.
- if (i != ThisWords) {
- for (; i != ThisWords; ++i)
- if (Bits[i])
- return false;
- } else if (i != RHSWords) {
- for (; i != RHSWords; ++i)
- if (RHS.Bits[i])
- return false;
- }
- return true;
- }
-
- bool operator!=(const BitVector &RHS) const {
- return !(*this == RHS);
- }
-
- /// Intersection, union, disjoint union.
- BitVector &operator&=(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= RHS.Bits[i];
-
- // Any bits that are just in this bitvector become zero, because they aren't
- // in the RHS bit vector. Any words only in RHS are ignored because they
- // are already zero in the LHS.
- for (; i != ThisWords; ++i)
- Bits[i] = 0;
-
- return *this;
- }
-
- /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
- BitVector &reset(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= ~RHS.Bits[i];
- return *this;
- }
-
- /// test - Check if (This - RHS) is zero.
- /// This is the same as reset(RHS) and any().
- bool test(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if ((Bits[i] & ~RHS.Bits[i]) != 0)
- return true;
-
- for (; i != ThisWords ; ++i)
- if (Bits[i] != 0)
- return true;
-
- return false;
- }
-
- BitVector &operator|=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] |= RHS.Bits[i];
- return *this;
- }
-
- BitVector &operator^=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] ^= RHS.Bits[i];
- return *this;
- }
-
- // Assignment operator.
- const BitVector &operator=(const BitVector &RHS) {
- if (this == &RHS) return *this;
-
- Size = RHS.size();
- unsigned RHSWords = NumBitWords(Size);
- if (Size <= Capacity * BITWORD_SIZE) {
- if (Size)
- std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
- clear_unused_bits();
- return *this;
- }
-
- // Grow the bitvector to have enough elements.
- Capacity = RHSWords;
- assert(Capacity > 0 && "negative capacity?");
- BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
-
- // Destroy the old bits.
- std::free(Bits);
- Bits = NewBits;
-
- return *this;
- }
-
- const BitVector &operator=(BitVector &&RHS) {
- if (this == &RHS) return *this;
-
- std::free(Bits);
- Bits = RHS.Bits;
- Size = RHS.Size;
- Capacity = RHS.Capacity;
-
- RHS.Bits = nullptr;
- RHS.Size = RHS.Capacity = 0;
-
- return *this;
- }
-
- void swap(BitVector &RHS) {
- std::swap(Bits, RHS.Bits);
- std::swap(Size, RHS.Size);
- std::swap(Capacity, RHS.Capacity);
- }
-
- //===--------------------------------------------------------------------===//
- // Portable bit mask operations.
- //===--------------------------------------------------------------------===//
- //
- // These methods all operate on arrays of uint32_t, each holding 32 bits. The
- // fixed word size makes it easier to work with literal bit vector constants
- // in portable code.
- //
- // The LSB in each word is the lowest numbered bit. The size of a portable
- // bit mask is always a whole multiple of 32 bits. If no bit mask size is
- // given, the bit mask is assumed to cover the entire BitVector.
-
- /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
- /// This computes "*this |= Mask".
- void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, false>(Mask, MaskWords);
- }
-
- /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
- /// Don't resize. This computes "*this &= ~Mask".
- void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, false>(Mask, MaskWords);
- }
-
- /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this |= ~Mask".
- void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, true>(Mask, MaskWords);
- }
-
- /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this &= Mask".
- void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, true>(Mask, MaskWords);
- }
-
-private:
- unsigned NumBitWords(unsigned S) const {
- return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
- }
-
- // Set the unused bits in the high words.
- void set_unused_bits(bool t = true) {
- // Set high words first.
- unsigned UsedWords = NumBitWords(Size);
- if (Capacity > UsedWords)
- init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
-
- // Then set any stray high bits of the last used word.
- unsigned ExtraBits = Size % BITWORD_SIZE;
- if (ExtraBits) {
- BitWord ExtraBitMask = ~0UL << ExtraBits;
- if (t)
- Bits[UsedWords-1] |= ExtraBitMask;
- else
- Bits[UsedWords-1] &= ~ExtraBitMask;
- }
- }
-
- // Clear the unused bits in the high words.
- void clear_unused_bits() {
- set_unused_bits(false);
- }
-
- void grow(unsigned NewSize) {
- Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
- assert(Capacity > 0 && "realloc-ing zero space");
- Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
-
- clear_unused_bits();
- }
-
- void init_words(BitWord *B, unsigned NumWords, bool t) {
- if (NumWords > 0)
- memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
- }
-
- template<bool AddBits, bool InvertMask>
- void applyMask(const uint32_t *Mask, unsigned MaskWords) {
- static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
- MaskWords = std::min(MaskWords, (size() + 31) / 32);
- const unsigned Scale = BITWORD_SIZE / 32;
- unsigned i;
- for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
- BitWord BW = Bits[i];
- // This inner loop should unroll completely when BITWORD_SIZE > 32.
- for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) BW |= BitWord(M) << b;
- else BW &= ~(BitWord(M) << b);
- }
- Bits[i] = BW;
- }
- for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) Bits[i] |= BitWord(M) << b;
- else Bits[i] &= ~(BitWord(M) << b);
- }
- if (AddBits)
- clear_unused_bits();
- }
-
-public:
- /// Return the size (in bytes) of the bit vector.
- size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
-};
-
-static inline size_t capacity_in_bytes(const BitVector &X) {
- return X.getMemorySize();
-}
-
-} // end namespace llvm
-
-namespace std {
- /// Implement std::swap in terms of BitVector swap.
- inline void
- swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
- LHS.swap(RHS);
- }
-} // end namespace std
-
-#endif // LLVM_ADT_BITVECTOR_H
+//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the BitVector class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_BITVECTOR_H
+#define LLVM_ADT_BITVECTOR_H
+
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <utility>
+
+namespace llvm {
+
+class BitVector {
+ typedef unsigned long BitWord;
+
+ enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
+
+ static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
+ "Unsupported word size");
+
+ BitWord *Bits; // Actual bits.
+ unsigned Size; // Size of bitvector in bits.
+ unsigned Capacity; // Number of BitWords allocated in the Bits array.
+
+public:
+ typedef unsigned size_type;
+ // Encapsulation of a single bit.
+ class reference {
+ friend class BitVector;
+
+ BitWord *WordRef;
+ unsigned BitPos;
+
+ public:
+ reference(BitVector &b, unsigned Idx) {
+ WordRef = &b.Bits[Idx / BITWORD_SIZE];
+ BitPos = Idx % BITWORD_SIZE;
+ }
+
+ reference() = delete;
+ reference(const reference&) = default;
+
+ reference &operator=(reference t) {
+ *this = bool(t);
+ return *this;
+ }
+
+ reference& operator=(bool t) {
+ if (t)
+ *WordRef |= BitWord(1) << BitPos;
+ else
+ *WordRef &= ~(BitWord(1) << BitPos);
+ return *this;
+ }
+
+ operator bool() const {
+ return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
+ }
+ };
+
+
+ /// BitVector default ctor - Creates an empty bitvector.
+ BitVector() : Size(0), Capacity(0) {
+ Bits = nullptr;
+ }
+
+ /// BitVector ctor - Creates a bitvector of specified number of bits. All
+ /// bits are initialized to the specified value.
+ explicit BitVector(unsigned s, bool t = false) : Size(s) {
+ Capacity = NumBitWords(s);
+ Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+ init_words(Bits, Capacity, t);
+ if (t)
+ clear_unused_bits();
+ }
+
+ /// BitVector copy ctor.
+ BitVector(const BitVector &RHS) : Size(RHS.size()) {
+ if (Size == 0) {
+ Bits = nullptr;
+ Capacity = 0;
+ return;
+ }
+
+ Capacity = NumBitWords(RHS.size());
+ Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+ std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
+ }
+
+ BitVector(BitVector &&RHS)
+ : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
+ RHS.Bits = nullptr;
+ RHS.Size = RHS.Capacity = 0;
+ }
+
+ ~BitVector() {
+ std::free(Bits);
+ }
+
+ /// empty - Tests whether there are no bits in this bitvector.
+ bool empty() const { return Size == 0; }
+
+ /// size - Returns the number of bits in this bitvector.
+ size_type size() const { return Size; }
+
+ /// count - Returns the number of bits which are set.
+ size_type count() const {
+ unsigned NumBits = 0;
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ NumBits += countPopulation(Bits[i]);
+ return NumBits;
+ }
+
+ /// any - Returns true if any bit is set.
+ bool any() const {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return true;
+ return false;
+ }
+
+ /// all - Returns true if all bits are set.
+ bool all() const {
+ for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
+ if (Bits[i] != ~0UL)
+ return false;
+
+ // If bits remain check that they are ones. The unused bits are always zero.
+ if (unsigned Remainder = Size % BITWORD_SIZE)
+ return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
+
+ return true;
+ }
+
+ /// none - Returns true if none of the bits are set.
+ bool none() const {
+ return !any();
+ }
+
+ /// find_first - Returns the index of the first set bit, -1 if none
+ /// of the bits are set.
+ int find_first() const {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
+ return -1;
+ }
+
+ /// find_next - Returns the index of the next set bit following the
+ /// "Prev" bit. Returns -1 if the next set bit is not found.
+ int find_next(unsigned Prev) const {
+ ++Prev;
+ if (Prev >= Size)
+ return -1;
+
+ unsigned WordPos = Prev / BITWORD_SIZE;
+ unsigned BitPos = Prev % BITWORD_SIZE;
+ BitWord Copy = Bits[WordPos];
+ // Mask off previous bits.
+ Copy &= ~0UL << BitPos;
+
+ if (Copy != 0)
+ return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
+
+ // Check subsequent words.
+ for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
+ return -1;
+ }
+
+ /// clear - Clear all bits.
+ void clear() {
+ Size = 0;
+ }
+
+ /// resize - Grow or shrink the bitvector.
+ void resize(unsigned N, bool t = false) {
+ if (N > Capacity * BITWORD_SIZE) {
+ unsigned OldCapacity = Capacity;
+ grow(N);
+ init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
+ }
+
+ // Set any old unused bits that are now included in the BitVector. This
+ // may set bits that are not included in the new vector, but we will clear
+ // them back out below.
+ if (N > Size)
+ set_unused_bits(t);
+
+ // Update the size, and clear out any bits that are now unused
+ unsigned OldSize = Size;
+ Size = N;
+ if (t || N < OldSize)
+ clear_unused_bits();
+ }
+
+ void reserve(unsigned N) {
+ if (N > Capacity * BITWORD_SIZE)
+ grow(N);
+ }
+
+ // Set, reset, flip
+ BitVector &set() {
+ init_words(Bits, Capacity, true);
+ clear_unused_bits();
+ return *this;
+ }
+
+ BitVector &set(unsigned Idx) {
+ assert(Bits && "Bits never allocated");
+ Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
+ return *this;
+ }
+
+ /// set - Efficiently set a range of bits in [I, E)
+ BitVector &set(unsigned I, unsigned E) {
+ assert(I <= E && "Attempted to set backwards range!");
+ assert(E <= size() && "Attempted to set out-of-bounds range!");
+
+ if (I == E) return *this;
+
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+ BitWord EMask = 1UL << (E % BITWORD_SIZE);
+ BitWord IMask = 1UL << (I % BITWORD_SIZE);
+ BitWord Mask = EMask - IMask;
+ Bits[I / BITWORD_SIZE] |= Mask;
+ return *this;
+ }
+
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+ Bits[I / BITWORD_SIZE] |= PrefixMask;
+ I = alignTo(I, BITWORD_SIZE);
+
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+ Bits[I / BITWORD_SIZE] = ~0UL;
+
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+ if (I < E)
+ Bits[I / BITWORD_SIZE] |= PostfixMask;
+
+ return *this;
+ }
+
+ BitVector &reset() {
+ init_words(Bits, Capacity, false);
+ return *this;
+ }
+
+ BitVector &reset(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
+ return *this;
+ }
+
+ /// reset - Efficiently reset a range of bits in [I, E)
+ BitVector &reset(unsigned I, unsigned E) {
+ assert(I <= E && "Attempted to reset backwards range!");
+ assert(E <= size() && "Attempted to reset out-of-bounds range!");
+
+ if (I == E) return *this;
+
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+ BitWord EMask = 1UL << (E % BITWORD_SIZE);
+ BitWord IMask = 1UL << (I % BITWORD_SIZE);
+ BitWord Mask = EMask - IMask;
+ Bits[I / BITWORD_SIZE] &= ~Mask;
+ return *this;
+ }
+
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+ Bits[I / BITWORD_SIZE] &= ~PrefixMask;
+ I = alignTo(I, BITWORD_SIZE);
+
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+ Bits[I / BITWORD_SIZE] = 0UL;
+
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+ if (I < E)
+ Bits[I / BITWORD_SIZE] &= ~PostfixMask;
+
+ return *this;
+ }
+
+ BitVector &flip() {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ Bits[i] = ~Bits[i];
+ clear_unused_bits();
+ return *this;
+ }
+
+ BitVector &flip(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
+ return *this;
+ }
+
+ // Indexing.
+ reference operator[](unsigned Idx) {
+ assert (Idx < Size && "Out-of-bounds Bit access.");
+ return reference(*this, Idx);
+ }
+
+ bool operator[](unsigned Idx) const {
+ assert (Idx < Size && "Out-of-bounds Bit access.");
+ BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
+ return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
+ }
+
+ bool test(unsigned Idx) const {
+ return (*this)[Idx];
+ }
+
+ /// Test if any common bits are set.
+ bool anyCommon(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
+ if (Bits[i] & RHS.Bits[i])
+ return true;
+ return false;
+ }
+
+ // Comparison operators.
+ bool operator==(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ if (Bits[i] != RHS.Bits[i])
+ return false;
+
+ // Verify that any extra words are all zeros.
+ if (i != ThisWords) {
+ for (; i != ThisWords; ++i)
+ if (Bits[i])
+ return false;
+ } else if (i != RHSWords) {
+ for (; i != RHSWords; ++i)
+ if (RHS.Bits[i])
+ return false;
+ }
+ return true;
+ }
+
+ bool operator!=(const BitVector &RHS) const {
+ return !(*this == RHS);
+ }
+
+ /// Intersection, union, disjoint union.
+ BitVector &operator&=(const BitVector &RHS) {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ Bits[i] &= RHS.Bits[i];
+
+ // Any bits that are just in this bitvector become zero, because they aren't
+ // in the RHS bit vector. Any words only in RHS are ignored because they
+ // are already zero in the LHS.
+ for (; i != ThisWords; ++i)
+ Bits[i] = 0;
+
+ return *this;
+ }
+
+ /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
+ BitVector &reset(const BitVector &RHS) {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ Bits[i] &= ~RHS.Bits[i];
+ return *this;
+ }
+
+ /// test - Check if (This - RHS) is zero.
+ /// This is the same as reset(RHS) and any().
+ bool test(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ if ((Bits[i] & ~RHS.Bits[i]) != 0)
+ return true;
+
+ for (; i != ThisWords ; ++i)
+ if (Bits[i] != 0)
+ return true;
+
+ return false;
+ }
+
+ BitVector &operator|=(const BitVector &RHS) {
+ if (size() < RHS.size())
+ resize(RHS.size());
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+ Bits[i] |= RHS.Bits[i];
+ return *this;
+ }
+
+ BitVector &operator^=(const BitVector &RHS) {
+ if (size() < RHS.size())
+ resize(RHS.size());
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+ Bits[i] ^= RHS.Bits[i];
+ return *this;
+ }
+
+ // Assignment operator.
+ const BitVector &operator=(const BitVector &RHS) {
+ if (this == &RHS) return *this;
+
+ Size = RHS.size();
+ unsigned RHSWords = NumBitWords(Size);
+ if (Size <= Capacity * BITWORD_SIZE) {
+ if (Size)
+ std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
+ clear_unused_bits();
+ return *this;
+ }
+
+ // Grow the bitvector to have enough elements.
+ Capacity = RHSWords;
+ assert(Capacity > 0 && "negative capacity?");
+ BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+ std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
+
+ // Destroy the old bits.
+ std::free(Bits);
+ Bits = NewBits;
+
+ return *this;
+ }
+
+ const BitVector &operator=(BitVector &&RHS) {
+ if (this == &RHS) return *this;
+
+ std::free(Bits);
+ Bits = RHS.Bits;
+ Size = RHS.Size;
+ Capacity = RHS.Capacity;
+
+ RHS.Bits = nullptr;
+ RHS.Size = RHS.Capacity = 0;
+
+ return *this;
+ }
+
+ void swap(BitVector &RHS) {
+ std::swap(Bits, RHS.Bits);
+ std::swap(Size, RHS.Size);
+ std::swap(Capacity, RHS.Capacity);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Portable bit mask operations.
+ //===--------------------------------------------------------------------===//
+ //
+ // These methods all operate on arrays of uint32_t, each holding 32 bits. The
+ // fixed word size makes it easier to work with literal bit vector constants
+ // in portable code.
+ //
+ // The LSB in each word is the lowest numbered bit. The size of a portable
+ // bit mask is always a whole multiple of 32 bits. If no bit mask size is
+ // given, the bit mask is assumed to cover the entire BitVector.
+
+ /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
+ /// This computes "*this |= Mask".
+ void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<true, false>(Mask, MaskWords);
+ }
+
+ /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
+ /// Don't resize. This computes "*this &= ~Mask".
+ void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<false, false>(Mask, MaskWords);
+ }
+
+ /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
+ /// Don't resize. This computes "*this |= ~Mask".
+ void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<true, true>(Mask, MaskWords);
+ }
+
+ /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
+ /// Don't resize. This computes "*this &= Mask".
+ void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<false, true>(Mask, MaskWords);
+ }
+
+private:
+ unsigned NumBitWords(unsigned S) const {
+ return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
+ }
+
+ // Set the unused bits in the high words.
+ void set_unused_bits(bool t = true) {
+ // Set high words first.
+ unsigned UsedWords = NumBitWords(Size);
+ if (Capacity > UsedWords)
+ init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
+
+ // Then set any stray high bits of the last used word.
+ unsigned ExtraBits = Size % BITWORD_SIZE;
+ if (ExtraBits) {
+ BitWord ExtraBitMask = ~0UL << ExtraBits;
+ if (t)
+ Bits[UsedWords-1] |= ExtraBitMask;
+ else
+ Bits[UsedWords-1] &= ~ExtraBitMask;
+ }
+ }
+
+ // Clear the unused bits in the high words.
+ void clear_unused_bits() {
+ set_unused_bits(false);
+ }
+
+ void grow(unsigned NewSize) {
+ Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
+ assert(Capacity > 0 && "realloc-ing zero space");
+ Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
+
+ clear_unused_bits();
+ }
+
+ void init_words(BitWord *B, unsigned NumWords, bool t) {
+ if (NumWords > 0)
+ memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
+ }
+
+ template<bool AddBits, bool InvertMask>
+ void applyMask(const uint32_t *Mask, unsigned MaskWords) {
+ static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
+ MaskWords = std::min(MaskWords, (size() + 31) / 32);
+ const unsigned Scale = BITWORD_SIZE / 32;
+ unsigned i;
+ for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
+ BitWord BW = Bits[i];
+ // This inner loop should unroll completely when BITWORD_SIZE > 32.
+ for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
+ uint32_t M = *Mask++;
+ if (InvertMask) M = ~M;
+ if (AddBits) BW |= BitWord(M) << b;
+ else BW &= ~(BitWord(M) << b);
+ }
+ Bits[i] = BW;
+ }
+ for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
+ uint32_t M = *Mask++;
+ if (InvertMask) M = ~M;
+ if (AddBits) Bits[i] |= BitWord(M) << b;
+ else Bits[i] &= ~(BitWord(M) << b);
+ }
+ if (AddBits)
+ clear_unused_bits();
+ }
+
+public:
+ /// Return the size (in bytes) of the bit vector.
+ size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
+};
+
+static inline size_t capacity_in_bytes(const BitVector &X) {
+ return X.getMemorySize();
+}
+
+} // end namespace llvm
+
+namespace std {
+ /// Implement std::swap in terms of BitVector swap.
+ inline void
+ swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
+ LHS.swap(RHS);
+ }
+} // end namespace std
+
+#endif // LLVM_ADT_BITVECTOR_H
Propchange: llvm/trunk/include/llvm/ADT/BitVector.h
------------------------------------------------------------------------------
--- svn:eol-style (original)
+++ svn:eol-style (removed)
@@ -1 +0,0 @@
-native
More information about the llvm-commits
mailing list