[PATCH] D25325: [ELF] Change way we place non-scripted (orphan) sections

Rafael EspĂ­ndola via llvm-commits llvm-commits at lists.llvm.org
Mon Nov 7 07:38:58 PST 2016


Excellent test case!

I have included it as orphan2.s in the attached patch. What do you think?

Cheers,
Rafael


On 7 November 2016 at 09:50, Eugene Leviant <evgeny.leviant at gmail.com> wrote:
> Rafael, please take a look at orphan.s test case. To my understanding
> orphan .jcr is a relro section and
> should be put in the beginning of RW section list. Your patch places
> it somewhere in the middle.
> The NOBITS sections are placed correctly by both mine and your versions.
>
> I don't know if this relro section issue is serious, but I would still
> respect sort order.
>
> 2016-11-07 17:47 GMT+03:00 Eugene Leviant <evgeny.leviant at gmail.com>:
>> evgeny777 updated this revision to Diff 77031.
>> evgeny777 added a comment.
>>
>> Rebased +  modified test case orphan.s
>>
>>
>> https://reviews.llvm.org/D25325
>>
>> Files:
>>   ELF/Writer.cpp
>>   test/ELF/linkerscript/orphan.s
>>   test/ELF/linkerscript/sections-constraint.s
>>
-------------- next part --------------
diff --git a/ELF/Writer.cpp b/ELF/Writer.cpp
index 18d1c7d..8d70d1b 100644
--- a/ELF/Writer.cpp
+++ b/ELF/Writer.cpp
@@ -1,1467 +1,1505 @@
 //===- Writer.cpp ---------------------------------------------------------===//
 //
 //                             The LLVM Linker
 //
 // This file is distributed under the University of Illinois Open Source
 // License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 
 #include "Writer.h"
 #include "Config.h"
 #include "LinkerScript.h"
 #include "Memory.h"
 #include "OutputSections.h"
 #include "Relocations.h"
 #include "Strings.h"
 #include "SymbolTable.h"
 #include "SyntheticSections.h"
 #include "Target.h"
 
 #include "llvm/ADT/StringMap.h"
 #include "llvm/ADT/StringSwitch.h"
 #include "llvm/Support/FileOutputBuffer.h"
 #include "llvm/Support/raw_ostream.h"
 #include <climits>
 
 using namespace llvm;
 using namespace llvm::ELF;
 using namespace llvm::object;
 using namespace llvm::support;
 using namespace llvm::support::endian;
 
 using namespace lld;
 using namespace lld::elf;
 
 namespace {
 // The writer writes a SymbolTable result to a file.
 template <class ELFT> class Writer {
 public:
   typedef typename ELFT::uint uintX_t;
   typedef typename ELFT::Shdr Elf_Shdr;
   typedef typename ELFT::Ehdr Elf_Ehdr;
   typedef typename ELFT::Phdr Elf_Phdr;
   typedef typename ELFT::Sym Elf_Sym;
   typedef typename ELFT::SymRange Elf_Sym_Range;
   typedef typename ELFT::Rela Elf_Rela;
   void run();
 
 private:
   typedef PhdrEntry<ELFT> Phdr;
 
   void createSyntheticSections();
   void copyLocalSymbols();
   void addReservedSymbols();
   void addInputSec(InputSectionBase<ELFT> *S);
   void createSections();
   void forEachRelSec(std::function<void(InputSectionBase<ELFT> &,
                                         const typename ELFT::Shdr &)> Fn);
   void sortSections();
   void finalizeSections();
   void addPredefinedSections();
   bool needsGot();
 
   std::vector<Phdr> createPhdrs();
   void assignAddresses();
   void assignFileOffsets();
   void assignFileOffsetsBinary();
   void setPhdrs();
   void fixHeaders();
   void fixSectionAlignments();
   void fixAbsoluteSymbols();
   void openFile();
   void writeHeader();
   void writeSections();
   void writeSectionsBinary();
   void writeBuildId();
 
   std::unique_ptr<FileOutputBuffer> Buffer;
 
   std::vector<OutputSectionBase<ELFT> *> OutputSections;
   OutputSectionFactory<ELFT> Factory;
 
   void addRelIpltSymbols();
   void addStartEndSymbols();
   void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);
   OutputSectionBase<ELFT> *findSection(StringRef Name);
 
   std::vector<Phdr> Phdrs;
 
   uintX_t FileSize;
   uintX_t SectionHeaderOff;
 };
 } // anonymous namespace
 
 StringRef elf::getOutputSectionName(StringRef Name) {
   if (Config->Relocatable)
     return Name;
 
   for (StringRef V :
        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.",
         ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
         ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) {
     StringRef Prefix = V.drop_back();
     if (Name.startswith(V) || Name == Prefix)
       return Prefix;
   }
 
   // CommonSection is identified as "COMMON" in linker scripts.
   // By default, it should go to .bss section.
   if (Name == "COMMON")
     return ".bss";
 
   // ".zdebug_" is a prefix for ZLIB-compressed sections.
   // Because we decompressed input sections, we want to remove 'z'.
   if (Name.startswith(".zdebug_"))
     return Saver.save(Twine(".") + Name.substr(2));
   return Name;
 }
 
 template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) {
   if (!Config->PrintGcSections || !IS || IS == &InputSection<ELFT>::Discarded ||
       IS->Live)
     return;
   errs() << "removing unused section from '" << IS->Name << "' in file '"
          << IS->getFile()->getName() << "'\n";
 }
 
 template <class ELFT> static bool needsInterpSection() {
   return !Symtab<ELFT>::X->getSharedFiles().empty() &&
          !Config->DynamicLinker.empty() &&
          !Script<ELFT>::X->ignoreInterpSection();
 }
 
 template <class ELFT> void elf::writeResult() {
   Writer<ELFT>().run();
 }
 
 // The main function of the writer.
 template <class ELFT> void Writer<ELFT>::run() {
   createSyntheticSections();
   addReservedSymbols();
 
   if (Target->NeedsThunks)
     forEachRelSec(createThunks<ELFT>);
 
   Script<ELFT>::X->OutputSections = &OutputSections;
   if (ScriptConfig->HasSections) {
     Script<ELFT>::X->createSections(Factory);
   } else {
     createSections();
     Script<ELFT>::X->processCommands(Factory);
   }
 
   if (Config->Discard != DiscardPolicy::All)
     copyLocalSymbols();
 
   finalizeSections();
   if (HasError)
     return;
 
   if (Config->Relocatable) {
     assignFileOffsets();
   } else {
     Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs()
                                                 : createPhdrs();
     fixHeaders();
     if (ScriptConfig->HasSections) {
       Script<ELFT>::X->assignAddresses(Phdrs);
     } else {
       fixSectionAlignments();
       assignAddresses();
     }
 
     if (!Config->OFormatBinary)
       assignFileOffsets();
     else
       assignFileOffsetsBinary();
 
     setPhdrs();
     fixAbsoluteSymbols();
   }
 
   openFile();
   if (HasError)
     return;
   if (!Config->OFormatBinary) {
     writeHeader();
     writeSections();
   } else {
     writeSectionsBinary();
   }
   writeBuildId();
   if (HasError)
     return;
   if (auto EC = Buffer->commit())
     error(EC, "failed to write to the output file");
   if (Config->ExitEarly) {
     // Flush the output streams and exit immediately.  A full shutdown is a good
     // test that we are keeping track of all allocated memory, but actually
     // freeing it is a waste of time in a regular linker run.
     exitLld(0);
   }
 }
 
 // Initialize Out<ELFT> members.
 template <class ELFT> void Writer<ELFT>::createSyntheticSections() {
   // Initialize all pointers with NULL. This is needed because
   // you can call lld::elf::main more than once as a library.
   memset(&Out<ELFT>::First, 0, sizeof(Out<ELFT>));
 
   // Create singleton output sections.
   Out<ELFT>::Bss =
       make<OutputSection<ELFT>>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
   Out<ELFT>::DynStrTab = make<StringTableSection<ELFT>>(".dynstr", true);
   Out<ELFT>::Dynamic = make<DynamicSection<ELFT>>();
   Out<ELFT>::EhFrame = make<EhOutputSection<ELFT>>();
   Out<ELFT>::Got = make<GotSection<ELFT>>();
   Out<ELFT>::Plt = make<PltSection<ELFT>>();
   Out<ELFT>::RelaDyn = make<RelocationSection<ELFT>>(
       Config->Rela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
   Out<ELFT>::ShStrTab = make<StringTableSection<ELFT>>(".shstrtab", false);
   Out<ELFT>::VerSym = make<VersionTableSection<ELFT>>();
   Out<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>();
 
   Out<ELFT>::ElfHeader = make<OutputSectionBase<ELFT>>("", 0, SHF_ALLOC);
   Out<ELFT>::ElfHeader->setSize(sizeof(Elf_Ehdr));
   Out<ELFT>::ProgramHeaders = make<OutputSectionBase<ELFT>>("", 0, SHF_ALLOC);
   Out<ELFT>::ProgramHeaders->updateAlignment(sizeof(uintX_t));
 
   if (needsInterpSection<ELFT>()) {
     In<ELFT>::Interp = make<InterpSection<ELFT>>();
     Symtab<ELFT>::X->Sections.push_back(In<ELFT>::Interp);
   } else {
     In<ELFT>::Interp = nullptr;
   }
 
   if (!Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic) {
     Out<ELFT>::DynSymTab =
         make<SymbolTableSection<ELFT>>(*Out<ELFT>::DynStrTab);
   }
 
   if (Config->EhFrameHdr)
     Out<ELFT>::EhFrameHdr = make<EhFrameHeader<ELFT>>();
 
   if (Config->GnuHash)
     Out<ELFT>::GnuHashTab = make<GnuHashTableSection<ELFT>>();
   if (Config->SysvHash)
     Out<ELFT>::HashTab = make<HashTableSection<ELFT>>();
   if (Config->GdbIndex)
     Out<ELFT>::GdbIndex = make<GdbIndexSection<ELFT>>();
 
   Out<ELFT>::GotPlt = make<GotPltSection<ELFT>>();
   Out<ELFT>::RelaPlt = make<RelocationSection<ELFT>>(
       Config->Rela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
   if (Config->Strip != StripPolicy::All) {
     Out<ELFT>::StrTab = make<StringTableSection<ELFT>>(".strtab", false);
     Out<ELFT>::SymTab = make<SymbolTableSection<ELFT>>(*Out<ELFT>::StrTab);
   }
 
   if (Config->EMachine == EM_MIPS && !Config->Shared) {
     // This is a MIPS specific section to hold a space within the data segment
     // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
     // See "Dynamic section" in Chapter 5 in the following document:
     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
     Out<ELFT>::MipsRldMap = make<OutputSection<ELFT>>(".rld_map", SHT_PROGBITS,
                                                       SHF_ALLOC | SHF_WRITE);
     Out<ELFT>::MipsRldMap->setSize(sizeof(uintX_t));
     Out<ELFT>::MipsRldMap->updateAlignment(sizeof(uintX_t));
   }
   if (!Config->VersionDefinitions.empty())
     Out<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>();
 
   // Initialize linker generated sections
   if (Config->BuildId == BuildIdKind::Fast)
     In<ELFT>::BuildId = make<BuildIdFastHash<ELFT>>();
   else if (Config->BuildId == BuildIdKind::Md5)
     In<ELFT>::BuildId = make<BuildIdMd5<ELFT>>();
   else if (Config->BuildId == BuildIdKind::Sha1)
     In<ELFT>::BuildId = make<BuildIdSha1<ELFT>>();
   else if (Config->BuildId == BuildIdKind::Uuid)
     In<ELFT>::BuildId = make<BuildIdUuid<ELFT>>();
   else if (Config->BuildId == BuildIdKind::Hexstring)
     In<ELFT>::BuildId = make<BuildIdHexstring<ELFT>>();
   else
     In<ELFT>::BuildId = nullptr;
 
   if (In<ELFT>::BuildId)
     Symtab<ELFT>::X->Sections.push_back(In<ELFT>::BuildId);
 
   CommonSection<ELFT> *Common = make<CommonSection<ELFT>>();
   if (!Common->Data.empty()) {
     In<ELFT>::Common = Common;
     Symtab<ELFT>::X->Sections.push_back(Common);
   }
 }
 
 template <class ELFT>
 static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName,
                                const SymbolBody &B) {
   if (B.isFile())
     return false;
 
   // We keep sections in symtab for relocatable output.
   if (B.isSection())
     return Config->Relocatable;
 
   // If sym references a section in a discarded group, don't keep it.
   if (Sec == &InputSection<ELFT>::Discarded)
     return false;
 
   if (Config->Discard == DiscardPolicy::None)
     return true;
 
   // In ELF assembly .L symbols are normally discarded by the assembler.
   // If the assembler fails to do so, the linker discards them if
   // * --discard-locals is used.
   // * The symbol is in a SHF_MERGE section, which is normally the reason for
   //   the assembler keeping the .L symbol.
   if (!SymName.startswith(".L") && !SymName.empty())
     return true;
 
   if (Config->Discard == DiscardPolicy::Locals)
     return false;
 
   return !Sec || !(Sec->Flags & SHF_MERGE);
 }
 
 template <class ELFT> static bool includeInSymtab(const SymbolBody &B) {
   if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj)
     return false;
 
   if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) {
     // Always include absolute symbols.
     if (!D->Section)
       return true;
     // Exclude symbols pointing to garbage-collected sections.
     if (!D->Section->Live)
       return false;
     if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section))
       if (!S->getSectionPiece(D->Value)->Live)
         return false;
   }
   return true;
 }
 
 // Local symbols are not in the linker's symbol table. This function scans
 // each object file's symbol table to copy local symbols to the output.
 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
   if (!Out<ELFT>::SymTab)
     return;
   for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) {
     StringRef StrTab = F->getStringTable();
     for (SymbolBody *B : F->getLocalSymbols()) {
       if (!B->IsLocal)
         fatal(getFilename(F) +
               ": broken object: getLocalSymbols returns a non-local symbol");
       auto *DR = dyn_cast<DefinedRegular<ELFT>>(B);
       // No reason to keep local undefined symbol in symtab.
       if (!DR)
         continue;
       if (!includeInSymtab<ELFT>(*B))
         continue;
       if (B->getNameOffset() >= StrTab.size())
         fatal(getFilename(F) + ": invalid symbol name offset");
       StringRef SymName(StrTab.data() + B->getNameOffset());
       InputSectionBase<ELFT> *Sec = DR->Section;
       if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B))
         continue;
       ++Out<ELFT>::SymTab->NumLocals;
       if (Config->Relocatable)
         B->DynsymIndex = Out<ELFT>::SymTab->NumLocals;
       F->KeptLocalSyms.push_back(
           std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName)));
     }
   }
 }
 
 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
 // we would like to make sure appear is a specific order to maximize their
 // coverage by a single signed 16-bit offset from the TOC base pointer.
 // Conversely, the special .tocbss section should be first among all SHT_NOBITS
 // sections. This will put it next to the loaded special PPC64 sections (and,
 // thus, within reach of the TOC base pointer).
 static int getPPC64SectionRank(StringRef SectionName) {
   return StringSwitch<int>(SectionName)
       .Case(".tocbss", 0)
       .Case(".branch_lt", 2)
       .Case(".toc", 3)
       .Case(".toc1", 4)
       .Case(".opd", 5)
       .Default(1);
 }
 
 template <class ELFT>
 bool elf::isRelroSection(const OutputSectionBase<ELFT> *Sec) {
   if (!Config->ZRelro)
     return false;
   typename ELFT::uint Flags = Sec->getFlags();
   if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
     return false;
   if (Flags & SHF_TLS)
     return true;
   uint32_t Type = Sec->getType();
   if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
       Type == SHT_PREINIT_ARRAY)
     return true;
   if (Sec == Out<ELFT>::GotPlt)
     return Config->ZNow;
   if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got)
     return true;
   StringRef S = Sec->getName();
   return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" ||
          S == ".eh_frame";
 }
 
 template <class ELFT>
 static bool compareSectionsNonScript(const OutputSectionBase<ELFT> *A,
                                      const OutputSectionBase<ELFT> *B) {
   // Put .interp first because some loaders want to see that section
   // on the first page of the executable file when loaded into memory.
   bool AIsInterp = A->getName() == ".interp";
   bool BIsInterp = B->getName() == ".interp";
   if (AIsInterp != BIsInterp)
     return AIsInterp;
 
   typedef typename ELFT::uint uintX_t;
   uintX_t AFlags = A->getFlags();
   uintX_t BFlags = B->getFlags();
 
   // Allocatable sections go first to reduce the total PT_LOAD size and
   // so debug info doesn't change addresses in actual code.
   bool AIsAlloc = AFlags & SHF_ALLOC;
   bool BIsAlloc = BFlags & SHF_ALLOC;
   if (AIsAlloc != BIsAlloc)
     return AIsAlloc;
 
   // We don't have any special requirements for the relative order of two non
   // allocatable sections.
   if (!AIsAlloc)
     return false;
 
   // We want the read only sections first so that they go in the PT_LOAD
   // covering the program headers at the start of the file.
   bool AIsWritable = AFlags & SHF_WRITE;
   bool BIsWritable = BFlags & SHF_WRITE;
   if (AIsWritable != BIsWritable)
     return BIsWritable;
 
   if (!ScriptConfig->HasSections) {
     // For a corresponding reason, put non exec sections first (the program
     // header PT_LOAD is not executable).
     // We only do that if we are not using linker scripts, since with linker
     // scripts ro and rx sections are in the same PT_LOAD, so their relative
     // order is not important.
     bool AIsExec = AFlags & SHF_EXECINSTR;
     bool BIsExec = BFlags & SHF_EXECINSTR;
     if (AIsExec != BIsExec)
       return BIsExec;
   }
 
   // If we got here we know that both A and B are in the same PT_LOAD.
 
   // The TLS initialization block needs to be a single contiguous block in a R/W
   // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
   // sections are placed here as they don't take up virtual address space in the
   // PT_LOAD.
   bool AIsTls = AFlags & SHF_TLS;
   bool BIsTls = BFlags & SHF_TLS;
   if (AIsTls != BIsTls)
     return AIsTls;
 
   // The next requirement we have is to put nobits sections last. The
   // reason is that the only thing the dynamic linker will see about
   // them is a p_memsz that is larger than p_filesz. Seeing that it
   // zeros the end of the PT_LOAD, so that has to correspond to the
   // nobits sections.
   bool AIsNoBits = A->getType() == SHT_NOBITS;
   bool BIsNoBits = B->getType() == SHT_NOBITS;
   if (AIsNoBits != BIsNoBits)
     return BIsNoBits;
 
   // We place RelRo section before plain r/w ones.
   bool AIsRelRo = isRelroSection(A);
   bool BIsRelRo = isRelroSection(B);
   if (AIsRelRo != BIsRelRo)
     return AIsRelRo;
 
   // Some architectures have additional ordering restrictions for sections
   // within the same PT_LOAD.
   if (Config->EMachine == EM_PPC64)
     return getPPC64SectionRank(A->getName()) <
            getPPC64SectionRank(B->getName());
 
   return false;
 }
 
 // Output section ordering is determined by this function.
 template <class ELFT>
 static bool compareSections(const OutputSectionBase<ELFT> *A,
                             const OutputSectionBase<ELFT> *B) {
   // For now, put sections mentioned in a linker script first.
   int AIndex = Script<ELFT>::X->getSectionIndex(A->getName());
   int BIndex = Script<ELFT>::X->getSectionIndex(B->getName());
   bool AInScript = AIndex != INT_MAX;
   bool BInScript = BIndex != INT_MAX;
   if (AInScript != BInScript)
     return AInScript;
   // If both are in the script, use that order.
   if (AInScript)
     return AIndex < BIndex;
 
   return compareSectionsNonScript(A, B);
 }
 
 template <class ELFT> static bool isDiscarded(InputSectionBase<ELFT> *S) {
   return !S || S == &InputSection<ELFT>::Discarded || !S->Live;
 }
 
 // Program header entry
 template <class ELFT>
 PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) {
   H.p_type = Type;
   H.p_flags = Flags;
 }
 
 template <class ELFT> void PhdrEntry<ELFT>::add(OutputSectionBase<ELFT> *Sec) {
   Last = Sec;
   if (!First)
     First = Sec;
   H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->getAlignment());
   if (H.p_type == PT_LOAD)
     Sec->FirstInPtLoad = First;
 }
 
 template <class ELFT>
 static Symbol *
 addOptionalSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec,
                      typename ELFT::uint Val, uint8_t StOther = STV_HIDDEN) {
   SymbolBody *S = Symtab<ELFT>::X->find(Name);
   if (!S)
     return nullptr;
   if (!S->isUndefined() && !S->isShared())
     return S->symbol();
   return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther);
 }
 
 // The beginning and the ending of .rel[a].plt section are marked
 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
 // executable. The runtime needs these symbols in order to resolve
 // all IRELATIVE relocs on startup. For dynamic executables, we don't
 // need these symbols, since IRELATIVE relocs are resolved through GOT
 // and PLT. For details, see http://www.airs.com/blog/archives/403.
 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
   if (Out<ELFT>::DynSymTab || !Out<ELFT>::RelaPlt)
     return;
   StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start";
   addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 0);
 
   S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end";
   addOptionalSynthetic(S, Out<ELFT>::RelaPlt,
                        DefinedSynthetic<ELFT>::SectionEnd);
 }
 
 // The linker is expected to define some symbols depending on
 // the linking result. This function defines such symbols.
 template <class ELFT> void Writer<ELFT>::addReservedSymbols() {
   if (Config->EMachine == EM_MIPS && !Config->Relocatable) {
     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
     // so that it points to an absolute address which is relative to GOT.
     // See "Global Data Symbols" in Chapter 6 in the following document:
     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
     Symtab<ELFT>::X->addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset,
                                   STV_HIDDEN);
 
     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
     // start of function and 'gp' pointer into GOT.
     Symbol *Sym =
         addOptionalSynthetic("_gp_disp", Out<ELFT>::Got, MipsGPOffset);
     if (Sym)
       ElfSym<ELFT>::MipsGpDisp = Sym->body();
 
     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
     // pointer. This symbol is used in the code generated by .cpload pseudo-op
     // in case of using -mno-shared option.
     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
     addOptionalSynthetic("__gnu_local_gp", Out<ELFT>::Got, MipsGPOffset);
   }
 
   // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol
   // is magical and is used to produce a R_386_GOTPC relocation.
   // The R_386_GOTPC relocation value doesn't actually depend on the
   // symbol value, so it could use an index of STN_UNDEF which, according
   // to the spec, means the symbol value is 0.
   // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in
   // the object file.
   // The situation is even stranger on x86_64 where the assembly doesn't
   // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as
   // an undefined symbol in the .o files.
   // Given that the symbol is effectively unused, we just create a dummy
   // hidden one to avoid the undefined symbol error.
   if (!Config->Relocatable)
     Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_");
 
   // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
   // static linking the linker is required to optimize away any references to
   // __tls_get_addr, so it's not defined anywhere. Create a hidden definition
   // to avoid the undefined symbol error. As usual special cases are ARM and
   // MIPS - the libc for these targets defines __tls_get_addr itself because
   // there are no TLS optimizations for these targets.
   if (!Out<ELFT>::DynSymTab &&
       (Config->EMachine != EM_MIPS && Config->EMachine != EM_ARM))
     Symtab<ELFT>::X->addIgnored("__tls_get_addr");
 
   // If linker script do layout we do not need to create any standart symbols.
   if (ScriptConfig->HasSections)
     return;
 
   ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start");
 
   auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1,
                        DefinedRegular<ELFT> *&Sym2) {
     Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT);
 
     // The name without the underscore is not a reserved name,
     // so it is defined only when there is a reference against it.
     assert(S.startswith("_"));
     S = S.substr(1);
     if (SymbolBody *B = Symtab<ELFT>::X->find(S))
       if (B->isUndefined())
         Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT);
   };
 
   Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2);
   Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2);
   Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2);
 }
 
 // Sort input sections by section name suffixes for
 // __attribute__((init_priority(N))).
 template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) {
   if (S)
     reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini();
 }
 
 // Sort input sections by the special rule for .ctors and .dtors.
 template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) {
   if (S)
     reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors();
 }
 
 template <class ELFT>
 void Writer<ELFT>::forEachRelSec(
     std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)>
         Fn) {
   for (InputSectionBase<ELFT> *IS : Symtab<ELFT>::X->Sections) {
     if (isDiscarded(IS))
       continue;
     // Scan all relocations. Each relocation goes through a series
     // of tests to determine if it needs special treatment, such as
     // creating GOT, PLT, copy relocations, etc.
     // Note that relocations for non-alloc sections are directly
     // processed by InputSection::relocateNonAlloc.
     if (!(IS->Flags & SHF_ALLOC))
       continue;
     if (auto *S = dyn_cast<InputSection<ELFT>>(IS)) {
       for (const Elf_Shdr *RelSec : S->RelocSections)
         Fn(*S, *RelSec);
       continue;
     }
     if (auto *S = dyn_cast<EhInputSection<ELFT>>(IS))
       if (S->RelocSection)
         Fn(*S, *S->RelocSection);
   }
 }
 
 template <class ELFT>
 void Writer<ELFT>::addInputSec(InputSectionBase<ELFT> *IS) {
   if (isDiscarded(IS)) {
     reportDiscarded(IS);
     return;
   }
   OutputSectionBase<ELFT> *Sec;
   bool IsNew;
   StringRef OutsecName = getOutputSectionName(IS->Name);
   std::tie(Sec, IsNew) = Factory.create(IS, OutsecName);
   if (IsNew)
     OutputSections.push_back(Sec);
   Sec->addSection(IS);
 }
 
 template <class ELFT> void Writer<ELFT>::createSections() {
   for (InputSectionBase<ELFT> *IS : Symtab<ELFT>::X->Sections)
     addInputSec(IS);
 
   sortInitFini(findSection(".init_array"));
   sortInitFini(findSection(".fini_array"));
   sortCtorsDtors(findSection(".ctors"));
   sortCtorsDtors(findSection(".dtors"));
 
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     Sec->assignOffsets();
 }
 
+template <class ELFT>
+static bool canSharePtLoad(const OutputSectionBase<ELFT> &S1,
+                           const OutputSectionBase<ELFT> &S2) {
+  if (!(S1.getFlags() & SHF_ALLOC) || !(S2.getFlags() & SHF_ALLOC))
+    return false;
+
+  bool S1IsWrite = S1.getFlags() & SHF_WRITE;
+  bool S2IsWrite = S2.getFlags() & SHF_WRITE;
+  if (S1IsWrite != S2IsWrite)
+    return false;
+
+  if (!S1IsWrite)
+    return true; // RO and RX share a PT_LOAD with linker scripts.
+  return (S1.getFlags() & SHF_EXECINSTR) == (S2.getFlags() & SHF_EXECINSTR);
+}
+
 template <class ELFT> void Writer<ELFT>::sortSections() {
   if (!ScriptConfig->HasSections) {
     std::stable_sort(OutputSections.begin(), OutputSections.end(),
                      compareSectionsNonScript<ELFT>);
     return;
   }
   Script<ELFT>::X->adjustSectionsBeforeSorting();
 
   // The order of the sections in the script is arbitrary and may not agree with
   // compareSectionsNonScript. This means that we cannot easily define a
   // strict weak ordering. To see why, consider a comparison of a section in the
   // script and one not in the script. We have a two simple options:
   // * Make them equivalent (a is not less than b, and b is not less than a).
   //   The problem is then that equivalence has to be transitive and we can
   //   have sections a, b and c with only b in a script and a less than c
   //   which breaks this property.
   // * Use compareSectionsNonScript. Given that the script order doesn't have
   //   to match, we can end up with sections a, b, c, d where b and c are in the
   //   script and c is compareSectionsNonScript less than b. In which case d
   //   can be equivalent to c, a to b and d < a. As a concrete example:
   //   .a (rx) # not in script
   //   .b (rx) # in script
   //   .c (ro) # in script
   //   .d (ro) # not in script
   //
   // The way we define an order then is:
   // *  First put script sections at the start and sort the script and
   //    non-script sections independently.
-  // *  Move each non-script section to the first position where it
-  //    compareSectionsNonScript less than the successor.
+  // *  Move each non-script section to its preferred position. We try
+  //    to put each section in the last position where it it can share
+  //    a PT_LOAD.
 
   std::stable_sort(OutputSections.begin(), OutputSections.end(),
                    compareSections<ELFT>);
 
   auto I = OutputSections.begin();
   auto E = OutputSections.end();
   auto NonScriptI = std::find_if(I, E, [](OutputSectionBase<ELFT> *S) {
     return Script<ELFT>::X->getSectionIndex(S->getName()) == INT_MAX;
   });
   while (NonScriptI != E) {
-    auto FirstGreater =
-        std::find_if(I, NonScriptI, [&](OutputSectionBase<ELFT> *S) {
-          return compareSectionsNonScript<ELFT>(*NonScriptI, S);
+    auto BestPos =
+        std::max_element(I, NonScriptI, [&](OutputSectionBase<ELFT> *&A,
+                                            OutputSectionBase<ELFT> *&B) {
+          bool ACanSharePtLoad = canSharePtLoad(**NonScriptI, *A);
+          bool BCanSharePtLoad = canSharePtLoad(**NonScriptI, *B);
+          if (ACanSharePtLoad != BCanSharePtLoad)
+            return BCanSharePtLoad;
+
+          bool ACmp = compareSectionsNonScript<ELFT>(*NonScriptI, A);
+          bool BCmp = compareSectionsNonScript<ELFT>(*NonScriptI, B);
+          if (ACmp != BCmp)
+            return BCmp; // FIXME: missing test
+
+          size_t PosA = &A - &OutputSections[0];
+          size_t PosB = &B - &OutputSections[0];
+          if (ACmp)
+            return PosA > PosB;
+          return PosA < PosB;
         });
-    std::rotate(FirstGreater, NonScriptI, NonScriptI + 1);
+
+    // max_element only returns NonScriptI if the range is empty. If the range
+    // is not empty we should consider moving the the element forward one
+    // position.
+    if (BestPos != NonScriptI &&
+        !compareSectionsNonScript<ELFT>(*NonScriptI, *BestPos))
+      ++BestPos;
+    std::rotate(BestPos, NonScriptI, NonScriptI + 1);
     ++NonScriptI;
-    ++I;
   }
 }
 
 // Create output section objects and add them to OutputSections.
 template <class ELFT> void Writer<ELFT>::finalizeSections() {
   Out<ELFT>::DebugInfo = findSection(".debug_info");
   Out<ELFT>::PreinitArray = findSection(".preinit_array");
   Out<ELFT>::InitArray = findSection(".init_array");
   Out<ELFT>::FiniArray = findSection(".fini_array");
 
   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
   // symbols for sections, so that the runtime can get the start and end
   // addresses of each section by section name. Add such symbols.
   if (!Config->Relocatable) {
     addStartEndSymbols();
     for (OutputSectionBase<ELFT> *Sec : OutputSections)
       addStartStopSymbols(Sec);
   }
 
   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
   // It should be okay as no one seems to care about the type.
   // Even the author of gold doesn't remember why gold behaves that way.
   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
   if (Out<ELFT>::DynSymTab)
     Symtab<ELFT>::X->addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0,
                                   STV_HIDDEN);
 
   // Define __rel[a]_iplt_{start,end} symbols if needed.
   addRelIpltSymbols();
 
   if (!Out<ELFT>::EhFrame->empty()) {
     OutputSections.push_back(Out<ELFT>::EhFrame);
     Out<ELFT>::EhFrame->finalize();
   }
 
   // Scan relocations. This must be done after every symbol is declared so that
   // we can correctly decide if a dynamic relocation is needed.
   forEachRelSec(scanRelocations<ELFT>);
 
   // Now that we have defined all possible symbols including linker-
   // synthesized ones. Visit all symbols to give the finishing touches.
   for (Symbol *S : Symtab<ELFT>::X->getSymbols()) {
     SymbolBody *Body = S->body();
 
     if (!includeInSymtab<ELFT>(*Body))
       continue;
     if (Out<ELFT>::SymTab)
       Out<ELFT>::SymTab->addSymbol(Body);
 
     if (Out<ELFT>::DynSymTab && S->includeInDynsym()) {
       Out<ELFT>::DynSymTab->addSymbol(Body);
       if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
         if (SS->file()->isNeeded())
           Out<ELFT>::VerNeed->addSymbol(SS);
     }
   }
 
   // Do not proceed if there was an undefined symbol.
   if (HasError)
     return;
 
   // So far we have added sections from input object files.
   // This function adds linker-created Out<ELFT>::* sections.
   addPredefinedSections();
 
   sortSections();
 
   unsigned I = 1;
   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
     Sec->SectionIndex = I++;
     Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName()));
   }
 
   // Finalizers fix each section's size.
   // .dynsym is finalized early since that may fill up .gnu.hash.
   if (Out<ELFT>::DynSymTab)
     Out<ELFT>::DynSymTab->finalize();
 
   // Fill other section headers. The dynamic table is finalized
   // at the end because some tags like RELSZ depend on result
   // of finalizing other sections.
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     if (Sec != Out<ELFT>::Dynamic)
       Sec->finalize();
 
   if (Out<ELFT>::DynSymTab)
     Out<ELFT>::Dynamic->finalize();
 
   // Now that all output offsets are fixed. Finalize mergeable sections
   // to fix their maps from input offsets to output offsets.
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     Sec->finalizePieces();
 }
 
 template <class ELFT> bool Writer<ELFT>::needsGot() {
   if (!Out<ELFT>::Got->empty())
     return true;
 
   // We add the .got section to the result for dynamic MIPS target because
   // its address and properties are mentioned in the .dynamic section.
   if (Config->EMachine == EM_MIPS && !Config->Relocatable)
     return true;
 
   // If we have a relocation that is relative to GOT (such as GOTOFFREL),
   // we need to emit a GOT even if it's empty.
   return Out<ELFT>::Got->HasGotOffRel;
 }
 
 // This function add Out<ELFT>::* sections to OutputSections.
 template <class ELFT> void Writer<ELFT>::addPredefinedSections() {
   auto Add = [&](OutputSectionBase<ELFT> *OS) {
     if (OS)
       OutputSections.push_back(OS);
   };
 
   // This order is not the same as the final output order
   // because we sort the sections using their attributes below.
   if (Out<ELFT>::GdbIndex && Out<ELFT>::DebugInfo)
     Add(Out<ELFT>::GdbIndex);
   Add(Out<ELFT>::SymTab);
   Add(Out<ELFT>::ShStrTab);
   Add(Out<ELFT>::StrTab);
   if (Out<ELFT>::DynSymTab) {
     Add(Out<ELFT>::DynSymTab);
 
     bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0;
     if (Out<ELFT>::VerDef || HasVerNeed)
       Add(Out<ELFT>::VerSym);
     Add(Out<ELFT>::VerDef);
     if (HasVerNeed)
       Add(Out<ELFT>::VerNeed);
 
     Add(Out<ELFT>::GnuHashTab);
     Add(Out<ELFT>::HashTab);
     Add(Out<ELFT>::Dynamic);
     Add(Out<ELFT>::DynStrTab);
     if (Out<ELFT>::RelaDyn->hasRelocs())
       Add(Out<ELFT>::RelaDyn);
     Add(Out<ELFT>::MipsRldMap);
   }
 
   // We always need to add rel[a].plt to output if it has entries.
   // Even during static linking it can contain R_[*]_IRELATIVE relocations.
   if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs())
     Add(Out<ELFT>::RelaPlt);
 
   if (needsGot())
     Add(Out<ELFT>::Got);
   if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
     Add(Out<ELFT>::GotPlt);
   if (!Out<ELFT>::Plt->empty())
     Add(Out<ELFT>::Plt);
   if (!Out<ELFT>::EhFrame->empty())
     Add(Out<ELFT>::EhFrameHdr);
   if (Out<ELFT>::Bss->getSize() > 0)
     Add(Out<ELFT>::Bss);
 }
 
 // The linker is expected to define SECNAME_start and SECNAME_end
 // symbols for a few sections. This function defines them.
 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
   auto Define = [&](StringRef Start, StringRef End,
                     OutputSectionBase<ELFT> *OS) {
     // These symbols resolve to the image base if the section does not exist.
     addOptionalSynthetic(Start, OS, 0);
     addOptionalSynthetic(End, OS, OS ? DefinedSynthetic<ELFT>::SectionEnd : 0);
   };
 
   Define("__preinit_array_start", "__preinit_array_end",
          Out<ELFT>::PreinitArray);
   Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray);
   Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray);
 
   if (OutputSectionBase<ELFT> *Sec = findSection(".ARM.exidx"))
     Define("__exidx_start", "__exidx_end", Sec);
 }
 
 // If a section name is valid as a C identifier (which is rare because of
 // the leading '.'), linkers are expected to define __start_<secname> and
 // __stop_<secname> symbols. They are at beginning and end of the section,
 // respectively. This is not requested by the ELF standard, but GNU ld and
 // gold provide the feature, and used by many programs.
 template <class ELFT>
 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
   StringRef S = Sec->getName();
   if (!isValidCIdentifier(S))
     return;
   addOptionalSynthetic(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT);
   addOptionalSynthetic(Saver.save("__stop_" + S), Sec,
                        DefinedSynthetic<ELFT>::SectionEnd, STV_DEFAULT);
 }
 
 template <class ELFT>
 OutputSectionBase<ELFT> *Writer<ELFT>::findSection(StringRef Name) {
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     if (Sec->getName() == Name)
       return Sec;
   return nullptr;
 }
 
 template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) {
   if (!(Sec->getFlags() & SHF_ALLOC))
     return false;
 
   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
   // responsible for allocating space for them, not the PT_LOAD that
   // contains the TLS initialization image.
   if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS)
     return false;
   return true;
 }
 
 // Linker scripts are responsible for aligning addresses. Unfortunately, most
 // linker scripts are designed for creating two PT_LOADs only, one RX and one
 // RW. This means that there is no alignment in the RO to RX transition and we
 // cannot create a PT_LOAD there.
 template <class ELFT>
 static typename ELFT::uint computeFlags(typename ELFT::uint F) {
   if (ScriptConfig->HasSections && !(F & PF_W))
     return F | PF_X;
   return F;
 }
 
 // Decide which program headers to create and which sections to include in each
 // one.
 template <class ELFT> std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() {
   std::vector<Phdr> Ret;
   auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * {
     Ret.emplace_back(Type, Flags);
     return &Ret.back();
   };
 
   // The first phdr entry is PT_PHDR which describes the program header itself.
   Phdr &Hdr = *AddHdr(PT_PHDR, PF_R);
   Hdr.add(Out<ELFT>::ProgramHeaders);
 
   // PT_INTERP must be the second entry if exists.
   if (OutputSectionBase<ELFT> *Sec = findSection(".interp")) {
     Phdr &Hdr = *AddHdr(PT_INTERP, Sec->getPhdrFlags());
     Hdr.add(Sec);
   }
 
   // Add the first PT_LOAD segment for regular output sections.
   uintX_t Flags = computeFlags<ELFT>(PF_R);
   Phdr *Load = AddHdr(PT_LOAD, Flags);
   if (!ScriptConfig->HasSections) {
     Load->add(Out<ELFT>::ElfHeader);
     Load->add(Out<ELFT>::ProgramHeaders);
   }
 
   Phdr TlsHdr(PT_TLS, PF_R);
   Phdr RelRo(PT_GNU_RELRO, PF_R);
   Phdr Note(PT_NOTE, PF_R);
   Phdr ARMExidx(PT_ARM_EXIDX, PF_R);
   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
     if (!(Sec->getFlags() & SHF_ALLOC))
       break;
 
     // If we meet TLS section then we create TLS header
     // and put all TLS sections inside for further use when
     // assign addresses.
     if (Sec->getFlags() & SHF_TLS)
       TlsHdr.add(Sec);
 
     if (!needsPtLoad(Sec))
       continue;
 
     // Segments are contiguous memory regions that has the same attributes
     // (e.g. executable or writable). There is one phdr for each segment.
     // Therefore, we need to create a new phdr when the next section has
     // different flags or is loaded at a discontiguous address using AT linker
     // script command.
     uintX_t NewFlags = computeFlags<ELFT>(Sec->getPhdrFlags());
     if (Script<ELFT>::X->hasLMA(Sec->getName()) || Flags != NewFlags) {
       Load = AddHdr(PT_LOAD, NewFlags);
       Flags = NewFlags;
     }
 
     Load->add(Sec);
 
     if (isRelroSection(Sec))
       RelRo.add(Sec);
     if (Sec->getType() == SHT_NOTE)
       Note.add(Sec);
     if (Config->EMachine == EM_ARM && Sec->getType() == SHT_ARM_EXIDX)
       ARMExidx.add(Sec);
   }
 
   // Add the TLS segment unless it's empty.
   if (TlsHdr.First)
     Ret.push_back(std::move(TlsHdr));
 
   // Add an entry for .dynamic.
   if (Out<ELFT>::DynSymTab) {
     Phdr &H = *AddHdr(PT_DYNAMIC, Out<ELFT>::Dynamic->getPhdrFlags());
     H.add(Out<ELFT>::Dynamic);
   }
 
   // PT_GNU_RELRO includes all sections that should be marked as
   // read-only by dynamic linker after proccessing relocations.
   if (RelRo.First)
     Ret.push_back(std::move(RelRo));
 
   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
   if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) {
     Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, Out<ELFT>::EhFrameHdr->getPhdrFlags());
     Hdr.add(Out<ELFT>::EhFrameHdr);
   }
 
   // PT_OPENBSD_RANDOMIZE specifies the location and size of a part of the
   // memory image of the program that must be filled with random data before any
   // code in the object is executed.
   if (OutputSectionBase<ELFT> *Sec = findSection(".openbsd.randomdata")) {
     Phdr &Hdr = *AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags());
     Hdr.add(Sec);
   }
 
   // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
   if (ARMExidx.First)
     Ret.push_back(std::move(ARMExidx));
 
   // PT_GNU_STACK is a special section to tell the loader to make the
   // pages for the stack non-executable.
   if (!Config->ZExecstack) {
     Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W);
     if (Config->ZStackSize != uint64_t(-1))
       Hdr.H.p_memsz = Config->ZStackSize;
   }
 
   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
   // is expected to perform W^X violations, such as calling mprotect(2) or
   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
   // OpenBSD.
   if (Config->ZWxneeded)
     AddHdr(PT_OPENBSD_WXNEEDED, PF_X);
 
   if (Note.First)
     Ret.push_back(std::move(Note));
   return Ret;
 }
 
 // The first section of each PT_LOAD and the first section after PT_GNU_RELRO
 // have to be page aligned so that the dynamic linker can set the permissions.
 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
   for (const Phdr &P : Phdrs)
     if (P.H.p_type == PT_LOAD)
       P.First->PageAlign = true;
 
   for (const Phdr &P : Phdrs) {
     if (P.H.p_type != PT_GNU_RELRO)
       continue;
     // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
     // have to align it to a page.
     auto End = OutputSections.end();
     auto I = std::find(OutputSections.begin(), End, P.Last);
     if (I == End || (I + 1) == End)
       continue;
     OutputSectionBase<ELFT> *Sec = *(I + 1);
     if (needsPtLoad(Sec))
       Sec->PageAlign = true;
   }
 }
 
 // We should set file offsets and VAs for elf header and program headers
 // sections. These are special, we do not include them into output sections
 // list, but have them to simplify the code.
 template <class ELFT> void Writer<ELFT>::fixHeaders() {
   uintX_t BaseVA = ScriptConfig->HasSections ? 0 : Config->ImageBase;
   Out<ELFT>::ElfHeader->setVA(BaseVA);
   uintX_t Off = Out<ELFT>::ElfHeader->getSize();
   Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA);
   Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size());
 }
 
 // Assign VAs (addresses at run-time) to output sections.
 template <class ELFT> void Writer<ELFT>::assignAddresses() {
   uintX_t VA = Config->ImageBase + getHeaderSize<ELFT>();
   uintX_t ThreadBssOffset = 0;
   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
     uintX_t Alignment = Sec->getAlignment();
     if (Sec->PageAlign)
       Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize);
 
     auto I = Config->SectionStartMap.find(Sec->getName());
     if (I != Config->SectionStartMap.end())
       VA = I->second;
 
     // We only assign VAs to allocated sections.
     if (needsPtLoad(Sec)) {
       VA = alignTo(VA, Alignment);
       Sec->setVA(VA);
       VA += Sec->getSize();
     } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) {
       uintX_t TVA = VA + ThreadBssOffset;
       TVA = alignTo(TVA, Alignment);
       Sec->setVA(TVA);
       ThreadBssOffset = TVA - VA + Sec->getSize();
     }
   }
 }
 
 // Adjusts the file alignment for a given output section and returns
 // its new file offset. The file offset must be the same with its
 // virtual address (modulo the page size) so that the loader can load
 // executables without any address adjustment.
 template <class ELFT, class uintX_t>
 static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) {
   uintX_t Alignment = Sec->getAlignment();
   if (Sec->PageAlign)
     Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize);
   Off = alignTo(Off, Alignment);
 
   OutputSectionBase<ELFT> *First = Sec->FirstInPtLoad;
   // If the section is not in a PT_LOAD, we have no other constraint.
   if (!First)
     return Off;
 
   // If two sections share the same PT_LOAD the file offset is calculated using
   // this formula: Off2 = Off1 + (VA2 - VA1).
   if (Sec == First)
     return alignTo(Off, Target->MaxPageSize, Sec->getVA());
   return First->getFileOffset() + Sec->getVA() - First->getVA();
 }
 
 template <class ELFT, class uintX_t>
 void setOffset(OutputSectionBase<ELFT> *Sec, uintX_t &Off) {
   if (Sec->getType() == SHT_NOBITS) {
     Sec->setFileOffset(Off);
     return;
   }
 
   Off = getFileAlignment<ELFT>(Off, Sec);
   Sec->setFileOffset(Off);
   Off += Sec->getSize();
 }
 
 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
   uintX_t Off = 0;
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     if (Sec->getFlags() & SHF_ALLOC)
       setOffset(Sec, Off);
   FileSize = alignTo(Off, sizeof(uintX_t));
 }
 
 // Assign file offsets to output sections.
 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
   uintX_t Off = 0;
   setOffset(Out<ELFT>::ElfHeader, Off);
   setOffset(Out<ELFT>::ProgramHeaders, Off);
 
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     setOffset(Sec, Off);
 
   SectionHeaderOff = alignTo(Off, sizeof(uintX_t));
   FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
 }
 
 // Finalize the program headers. We call this function after we assign
 // file offsets and VAs to all sections.
 template <class ELFT> void Writer<ELFT>::setPhdrs() {
   for (Phdr &P : Phdrs) {
     Elf_Phdr &H = P.H;
     OutputSectionBase<ELFT> *First = P.First;
     OutputSectionBase<ELFT> *Last = P.Last;
     if (First) {
       H.p_filesz = Last->getFileOff() - First->getFileOff();
       if (Last->getType() != SHT_NOBITS)
         H.p_filesz += Last->getSize();
       H.p_memsz = Last->getVA() + Last->getSize() - First->getVA();
       H.p_offset = First->getFileOff();
       H.p_vaddr = First->getVA();
       if (!P.HasLMA)
         H.p_paddr = First->getLMA();
     }
     if (H.p_type == PT_LOAD)
       H.p_align = Config->MaxPageSize;
     else if (H.p_type == PT_GNU_RELRO)
       H.p_align = 1;
 
     // The TLS pointer goes after PT_TLS. At least glibc will align it,
     // so round up the size to make sure the offsets are correct.
     if (H.p_type == PT_TLS) {
       Out<ELFT>::TlsPhdr = &H;
       if (H.p_memsz)
         H.p_memsz = alignTo(H.p_memsz, H.p_align);
     }
   }
 }
 
 template <class ELFT> static typename ELFT::uint getEntryAddr() {
   if (Config->Entry.empty())
     return Config->EntryAddr;
   if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Entry))
     return B->getVA<ELFT>();
   warn("entry symbol " + Config->Entry + " not found, assuming 0");
   return 0;
 }
 
 template <class ELFT> static uint8_t getELFEncoding() {
   if (ELFT::TargetEndianness == llvm::support::little)
     return ELFDATA2LSB;
   return ELFDATA2MSB;
 }
 
 static uint16_t getELFType() {
   if (Config->Pic)
     return ET_DYN;
   if (Config->Relocatable)
     return ET_REL;
   return ET_EXEC;
 }
 
 // This function is called after we have assigned address and size
 // to each section. This function fixes some predefined absolute
 // symbol values that depend on section address and size.
 template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() {
   // __ehdr_start is the location of program headers.
   if (ElfSym<ELFT>::EhdrStart)
     ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->getVA();
 
   auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) {
     if (S1)
       S1->Value = V;
     if (S2)
       S2->Value = V;
   };
 
   // _etext is the first location after the last read-only loadable segment.
   // _edata is the first location after the last read-write loadable segment.
   // _end is the first location after the uninitialized data region.
   for (Phdr &P : Phdrs) {
     Elf_Phdr &H = P.H;
     if (H.p_type != PT_LOAD)
       continue;
     Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz);
 
     uintX_t Val = H.p_vaddr + H.p_filesz;
     if (H.p_flags & PF_W)
       Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val);
     else
       Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val);
   }
 }
 
 template <class ELFT> void Writer<ELFT>::writeHeader() {
   uint8_t *Buf = Buffer->getBufferStart();
   memcpy(Buf, "\177ELF", 4);
 
   // Write the ELF header.
   auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
   EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
   EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>();
   EHdr->e_ident[EI_VERSION] = EV_CURRENT;
   EHdr->e_ident[EI_OSABI] = Config->OSABI;
   EHdr->e_type = getELFType();
   EHdr->e_machine = Config->EMachine;
   EHdr->e_version = EV_CURRENT;
   EHdr->e_entry = getEntryAddr<ELFT>();
   EHdr->e_shoff = SectionHeaderOff;
   EHdr->e_ehsize = sizeof(Elf_Ehdr);
   EHdr->e_phnum = Phdrs.size();
   EHdr->e_shentsize = sizeof(Elf_Shdr);
   EHdr->e_shnum = OutputSections.size() + 1;
   EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;
 
   if (Config->EMachine == EM_ARM)
     // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
     // but we don't have any firm guarantees of conformance. Linux AArch64
     // kernels (as of 2016) require an EABI version to be set.
     EHdr->e_flags = EF_ARM_EABI_VER5;
   else if (Config->EMachine == EM_MIPS)
     EHdr->e_flags = getMipsEFlags<ELFT>();
 
   if (!Config->Relocatable) {
     EHdr->e_phoff = sizeof(Elf_Ehdr);
     EHdr->e_phentsize = sizeof(Elf_Phdr);
   }
 
   // Write the program header table.
   auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
   for (Phdr &P : Phdrs)
     *HBuf++ = P.H;
 
   // Write the section header table. Note that the first table entry is null.
   auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     Sec->writeHeaderTo(++SHdrs);
 }
 
 template <class ELFT> void Writer<ELFT>::openFile() {
   ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
       FileOutputBuffer::create(Config->OutputFile, FileSize,
                                FileOutputBuffer::F_executable);
   if (auto EC = BufferOrErr.getError())
     error(EC, "failed to open " + Config->OutputFile);
   else
     Buffer = std::move(*BufferOrErr);
 }
 
 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
   uint8_t *Buf = Buffer->getBufferStart();
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     if (Sec->getFlags() & SHF_ALLOC)
       Sec->writeTo(Buf + Sec->getFileOff());
 }
 
 // Convert the .ARM.exidx table entries that use relative PREL31 offsets to
 // Absolute addresses. This form is internal to LLD and is only used to
 // make reordering the table simpler.
 static void ARMExidxEntryPrelToAbs(uint8_t *Loc, uint64_t EntryVA) {
   uint64_t Addr = Target->getImplicitAddend(Loc, R_ARM_PREL31) + EntryVA;
   bool InlineEntry =
       (read32le(Loc + 4) == 1 || (read32le(Loc + 4) & 0x80000000));
   if (InlineEntry)
     // Set flag in unused bit of code address so that when we convert back we
     // know which table entries to leave alone.
     Addr |= 0x1;
   else
     write32le(Loc + 4,
               Target->getImplicitAddend(Loc + 4, R_ARM_PREL31) + EntryVA + 4);
   write32le(Loc, Addr);
 }
 
 // Convert the .ARM.exidx table entries from the internal to LLD form using
 // absolute addresses back to relative PREL31 offsets.
 static void ARMExidxEntryAbsToPrel(uint8_t *Loc, uint64_t EntryVA) {
   uint64_t Off = read32le(Loc) - EntryVA;
   // ARMExidxEntryPreltoAbs sets bit 0 if the table entry has inline data
   // that is not an address
   bool InlineEntry = Off & 0x1;
   Target->relocateOne(Loc, R_ARM_PREL31, Off & ~0x1);
   if (!InlineEntry)
     Target->relocateOne(Loc + 4, R_ARM_PREL31,
                         read32le(Loc + 4) - (EntryVA + 4));
 }
 
 // The table formed by the .ARM.exidx OutputSection has entries with two
 // 4-byte fields:
 // | PREL31 offset to function | Action to take for function |
 // The table must be ordered in ascending virtual address of the functions
 // identified by the first field of the table. Instead of using the
 // SHF_LINK_ORDER dependency to reorder the sections prior to relocation we
 // sort the table post-relocation.
 // Ref: Exception handling ABI for the ARM architecture
 static void sortARMExidx(uint8_t *Buf, uint64_t OutSecVA, uint64_t Size) {
   struct ARMExidxEntry {
     ulittle32_t Target;
     ulittle32_t Action;
   };
   ARMExidxEntry *Start = (ARMExidxEntry *)Buf;
   size_t NumEnt = Size / sizeof(ARMExidxEntry);
   for (uint64_t Off = 0; Off < Size; Off += 8)
     ARMExidxEntryPrelToAbs(Buf + Off, OutSecVA + Off);
   std::stable_sort(Start, Start + NumEnt,
                    [](const ARMExidxEntry &A, const ARMExidxEntry &B) {
                      return A.Target < B.Target;
                    });
   for (uint64_t Off = 0; Off < Size; Off += 8)
     ARMExidxEntryAbsToPrel(Buf + Off, OutSecVA + Off);
 }
 
 // Write section contents to a mmap'ed file.
 template <class ELFT> void Writer<ELFT>::writeSections() {
   uint8_t *Buf = Buffer->getBufferStart();
 
   // PPC64 needs to process relocations in the .opd section
   // before processing relocations in code-containing sections.
   Out<ELFT>::Opd = findSection(".opd");
   if (Out<ELFT>::Opd) {
     Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->getFileOff();
     Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->getFileOff());
   }
 
   for (OutputSectionBase<ELFT> *Sec : OutputSections)
     if (Sec != Out<ELFT>::Opd && Sec != Out<ELFT>::EhFrameHdr)
       Sec->writeTo(Buf + Sec->getFileOff());
 
   OutputSectionBase<ELFT> *ARMExidx = findSection(".ARM.exidx");
   if (!Config->Relocatable)
     if (auto *OS = dyn_cast_or_null<OutputSection<ELFT>>(ARMExidx))
       sortARMExidx(Buf + OS->getFileOff(), OS->getVA(), OS->getSize());
 
   // The .eh_frame_hdr depends on .eh_frame section contents, therefore
   // it should be written after .eh_frame is written.
   if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr)
     Out<ELFT>::EhFrameHdr->writeTo(Buf + Out<ELFT>::EhFrameHdr->getFileOff());
 }
 
 template <class ELFT> void Writer<ELFT>::writeBuildId() {
   if (!In<ELFT>::BuildId || !In<ELFT>::BuildId->OutSec)
     return;
 
   // Compute a hash of all sections of the output file.
   uint8_t *Start = Buffer->getBufferStart();
   uint8_t *End = Start + FileSize;
   In<ELFT>::BuildId->writeBuildId({Start, End});
 }
 
 template void elf::writeResult<ELF32LE>();
 template void elf::writeResult<ELF32BE>();
 template void elf::writeResult<ELF64LE>();
 template void elf::writeResult<ELF64BE>();
 
 template struct elf::PhdrEntry<ELF32LE>;
 template struct elf::PhdrEntry<ELF32BE>;
 template struct elf::PhdrEntry<ELF64LE>;
 template struct elf::PhdrEntry<ELF64BE>;
 
 template bool elf::isRelroSection<ELF32LE>(const OutputSectionBase<ELF32LE> *);
 template bool elf::isRelroSection<ELF32BE>(const OutputSectionBase<ELF32BE> *);
 template bool elf::isRelroSection<ELF64LE>(const OutputSectionBase<ELF64LE> *);
 template bool elf::isRelroSection<ELF64BE>(const OutputSectionBase<ELF64BE> *);
 
 template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *);
 template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *);
 template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *);
 template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *);
diff --git a/test/ELF/linkerscript/orphan.s b/test/ELF/linkerscript/orphan.s
new file mode 100644
index 0000000..3fbb3ee
--- /dev/null
+++ b/test/ELF/linkerscript/orphan.s
@@ -0,0 +1,28 @@
+# REQUIRES: x86
+# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t
+# RUN: echo "SECTIONS {       \
+# RUN:  .rw : { *(.rw) }      \
+# RUN:  .text : { *(.text) }  \
+# RUN:  .rx : { *(.ro) }      \
+# RUN: }" > %t.script
+# RUN: ld.lld -o %t1 --script %t.script %t
+# RUN: llvm-objdump -section-headers %t1 | FileCheck %s
+
+# CHECK:       0               00000000 0000000000000000
+# CHECK-NEXT:  1 .rw           00000008 0000000000000000 DATA
+# CHECK-NEXT:  2 .orphan.2     00000008 0000000000000008 DATA
+# CHECK-NEXT:  3 .text         00000000 0000000000000010 TEXT DATA
+# CHECK-NEXT:  4 .rx           00000001 0000000000000010 TEXT DATA
+# CHECK-NEXT:  5 .orphan.1     00000008 0000000000000011 TEXT DATA
+
+.section .rw, "aw"
+ .quad 0
+
+.section .rx, "ax"
+ nop
+
+.section .orphan.1, "ax"
+ .quad 0
+
+.section .orphan.2, "aw"
+ .quad 0
diff --git a/test/ELF/linkerscript/orphan2.s b/test/ELF/linkerscript/orphan2.s
new file mode 100644
index 0000000..5e03ca9
--- /dev/null
+++ b/test/ELF/linkerscript/orphan2.s
@@ -0,0 +1,31 @@
+# REQUIRES: x86
+# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t
+# RUN: echo "SECTIONS {       \
+# RUN:  .text : { *(.text) }  \
+# RUN:  .rw1 : { *(.rw1) }    \
+# RUN:  .rw2 : { *(.rw2) }    \
+# RUN:  .rw3 : { *(.rw3) }    \
+# RUN: }" > %t.script
+# RUN: ld.lld -o %t1 --script %t.script %t
+# RUN: llvm-objdump -section-headers %t1 | FileCheck %s
+
+# .jcp is relro, so it should be first.
+
+# CHECK:       0               00000000 0000000000000000
+# CHECK-NEXT:  1 .text         00000000 0000000000000000 TEXT DATA
+# CHECK-NEXT:  2 .jcr          00000008 0000000000000000 DATA
+# CHECK-NEXT:  3 .rw1          00000008 0000000000000008 DATA
+# CHECK-NEXT:  4 .rw2          00000008 0000000000000010 DATA
+# CHECK-NEXT:  5 .rw3          00000008 0000000000000018 DATA
+
+.section .rw1, "aw"
+ .quad 0
+
+.section .rw2, "aw"
+ .quad 0
+
+.section .rw3, "aw"
+ .quad 0
+
+.section .jcr, "aw"
+ .quad 0
diff --git a/test/ELF/linkerscript/sections-constraint.s b/test/ELF/linkerscript/sections-constraint.s
index a270e13..4d95ec1 100644
--- a/test/ELF/linkerscript/sections-constraint.s
+++ b/test/ELF/linkerscript/sections-constraint.s
@@ -1,46 +1,46 @@
 # REQUIRES: x86
 # RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t
 # RUN: echo "SECTIONS { \
 # RUN:  .writable : ONLY_IF_RW { *(.writable) } \
 # RUN:  .readable : ONLY_IF_RO { *(.readable) }}" > %t.script
 # RUN: ld.lld -o %t1 --script %t.script %t
 # RUN: llvm-objdump -section-headers %t1 | \
 # RUN:   FileCheck -check-prefix=BASE %s
 # BASE: Sections:
 # BASE-NEXT: Idx Name          Size
 # BASE-NEXT:   0               00000000
 # BASE:   .writable     00000004
 # BASE:   .readable     00000004
 
 # RUN: echo "SECTIONS { \
 # RUN:  .foo : ONLY_IF_RO { *(.foo.*) } \
 # RUN:  .writable : ONLY_IF_RW { *(.writable) } \
 # RUN:  .readable : ONLY_IF_RO { *(.readable) }}" > %t2.script
 # RUN: ld.lld -o %t2 --script %t2.script %t
 # RUN: llvm-objdump -section-headers %t2 | \
 # RUN:   FileCheck -check-prefix=NO1 %s
 # NO1: Sections:
 # NO1-NEXT: Idx Name          Size
 # NO1-NEXT: 0               00000000
 # NO1:  .writable     00000004
+# NO1:  .foo.2        00000004
 # NO1:  .readable     00000004
 # NO1:  .foo.1        00000004
-# NO1:  .foo.2        00000004
 
 .global _start
 _start:
   nop
 
 .section .writable, "aw"
 writable:
  .long 1
 
 .section .readable, "a"
 readable:
  .long 2
 
 .section .foo.1, "awx"
  .long 0
 
 .section .foo.2, "aw"
  .long 0


More information about the llvm-commits mailing list