[llvm] r250868 - [Hexagon] Bit-based instruction simplification

Krzysztof Parzyszek via llvm-commits llvm-commits at lists.llvm.org
Tue Oct 20 15:57:14 PDT 2015


Author: kparzysz
Date: Tue Oct 20 17:57:13 2015
New Revision: 250868

URL: http://llvm.org/viewvc/llvm-project?rev=250868&view=rev
Log:
[Hexagon] Bit-based instruction simplification

Analyze bit patterns of operands and values of instructions to perform
various simplifications, dead/redundant code elimination, etc.

Added:
    llvm/trunk/lib/Target/Hexagon/HexagonBitSimplify.cpp
    llvm/trunk/test/CodeGen/Hexagon/bit-eval.ll
    llvm/trunk/test/CodeGen/Hexagon/bit-loop.ll
Modified:
    llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
    llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp
    llvm/trunk/test/CodeGen/Hexagon/adde.ll
    llvm/trunk/test/CodeGen/Hexagon/clr_set_toggle.ll
    llvm/trunk/test/CodeGen/Hexagon/opt-fabs.ll
    llvm/trunk/test/CodeGen/Hexagon/sube.ll

Modified: llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/CMakeLists.txt?rev=250868&r1=250867&r2=250868&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/CMakeLists.txt (original)
+++ llvm/trunk/lib/Target/Hexagon/CMakeLists.txt Tue Oct 20 17:57:13 2015
@@ -14,6 +14,7 @@ add_public_tablegen_target(HexagonCommon
 add_llvm_target(HexagonCodeGen
   BitTracker.cpp
   HexagonAsmPrinter.cpp
+  HexagonBitSimplify.cpp
   HexagonBitTracker.cpp
   HexagonCFGOptimizer.cpp
   HexagonCommonGEP.cpp

Added: llvm/trunk/lib/Target/Hexagon/HexagonBitSimplify.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonBitSimplify.cpp?rev=250868&view=auto
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonBitSimplify.cpp (added)
+++ llvm/trunk/lib/Target/Hexagon/HexagonBitSimplify.cpp Tue Oct 20 17:57:13 2015
@@ -0,0 +1,2778 @@
+//===--- HexagonBitSimplify.cpp -------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hexbit"
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "HexagonTargetMachine.h"
+#include "HexagonBitTracker.h"
+
+using namespace llvm;
+
+namespace llvm {
+  void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
+  FunctionPass *createHexagonBitSimplify();
+}
+
+namespace {
+  // Set of virtual registers, based on BitVector.
+  struct RegisterSet : private BitVector {
+    RegisterSet() : BitVector() {}
+    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
+    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
+
+    using BitVector::clear;
+    using BitVector::count;
+
+    unsigned find_first() const {
+      int First = BitVector::find_first();
+      if (First < 0)
+        return 0;
+      return x2v(First);
+    }
+
+    unsigned find_next(unsigned Prev) const {
+      int Next = BitVector::find_next(v2x(Prev));
+      if (Next < 0)
+        return 0;
+      return x2v(Next);
+    }
+
+    RegisterSet &insert(unsigned R) {
+      unsigned Idx = v2x(R);
+      ensure(Idx);
+      return static_cast<RegisterSet&>(BitVector::set(Idx));
+    }
+    RegisterSet &remove(unsigned R) {
+      unsigned Idx = v2x(R);
+      if (Idx >= size())
+        return *this;
+      return static_cast<RegisterSet&>(BitVector::reset(Idx));
+    }
+
+    RegisterSet &insert(const RegisterSet &Rs) {
+      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
+    }
+    RegisterSet &remove(const RegisterSet &Rs) {
+      return static_cast<RegisterSet&>(BitVector::reset(Rs));
+    }
+
+    reference operator[](unsigned R) {
+      unsigned Idx = v2x(R);
+      ensure(Idx);
+      return BitVector::operator[](Idx);
+    }
+    bool operator[](unsigned R) const {
+      unsigned Idx = v2x(R);
+      assert(Idx < size());
+      return BitVector::operator[](Idx);
+    }
+    bool has(unsigned R) const {
+      unsigned Idx = v2x(R);
+      if (Idx >= size())
+        return false;
+      return BitVector::test(Idx);
+    }
+
+    bool empty() const {
+      return !BitVector::any();
+    }
+    bool includes(const RegisterSet &Rs) const {
+      // A.BitVector::test(B)  <=>  A-B != {}
+      return !Rs.BitVector::test(*this);
+    }
+    bool intersects(const RegisterSet &Rs) const {
+      return BitVector::anyCommon(Rs);
+    }
+
+  private:
+    void ensure(unsigned Idx) {
+      if (size() <= Idx)
+        resize(std::max(Idx+1, 32U));
+    }
+    static inline unsigned v2x(unsigned v) {
+      return TargetRegisterInfo::virtReg2Index(v);
+    }
+    static inline unsigned x2v(unsigned x) {
+      return TargetRegisterInfo::index2VirtReg(x);
+    }
+  };
+
+
+  struct PrintRegSet {
+    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
+      : RS(S), TRI(RI) {}
+    friend raw_ostream &operator<< (raw_ostream &OS,
+          const PrintRegSet &P);
+  private:
+    const RegisterSet &RS;
+    const TargetRegisterInfo *TRI;
+  };
+
+  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
+    LLVM_ATTRIBUTE_UNUSED;
+  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
+    OS << '{';
+    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
+      OS << ' ' << PrintReg(R, P.TRI);
+    OS << " }";
+    return OS;
+  }
+}
+
+
+namespace {
+  class Transformation;
+
+  class HexagonBitSimplify : public MachineFunctionPass {
+  public:
+    static char ID;
+    HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
+      initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
+    }
+    virtual const char *getPassName() const {
+      return "Hexagon bit simplification";
+    }
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<MachineDominatorTree>();
+      AU.addPreserved<MachineDominatorTree>();
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+
+    static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
+    static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
+    static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
+        const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
+    static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
+        uint16_t W);
+    static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
+        uint16_t W);
+    static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
+        uint16_t W, uint64_t &U);
+    static bool replaceReg(unsigned OldR, unsigned NewR,
+        MachineRegisterInfo &MRI);
+    static bool getSubregMask(const BitTracker::RegisterRef &RR,
+        unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
+    static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
+        unsigned NewSR, MachineRegisterInfo &MRI);
+    static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
+        unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
+    static bool parseRegSequence(const MachineInstr &I,
+        BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
+
+    static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
+        uint16_t Begin);
+    static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
+        uint16_t Begin, const HexagonInstrInfo &HII);
+
+    static const TargetRegisterClass *getFinalVRegClass(
+        const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
+    static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
+        const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
+
+  private:
+    MachineDominatorTree *MDT;
+
+    bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
+  };
+
+  char HexagonBitSimplify::ID = 0;
+  typedef HexagonBitSimplify HBS;
+
+
+  // The purpose of this class is to provide a common facility to traverse
+  // the function top-down or bottom-up via the dominator tree, and keep
+  // track of the available registers.
+  class Transformation {
+  public:
+    bool TopDown;
+    Transformation(bool TD) : TopDown(TD) {}
+    virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
+    virtual ~Transformation() {}
+  };
+}
+
+INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
+      "Hexagon bit simplification", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
+      "Hexagon bit simplification", false, false)
+
+
+bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
+      RegisterSet &AVs) {
+  MachineDomTreeNode *N = MDT->getNode(&B);
+  typedef GraphTraits<MachineDomTreeNode*> GTN;
+  bool Changed = false;
+
+  if (T.TopDown)
+    Changed = T.processBlock(B, AVs);
+
+  RegisterSet Defs;
+  for (auto &I : B)
+    getInstrDefs(I, Defs);
+  RegisterSet NewAVs = AVs;
+  NewAVs.insert(Defs);
+
+  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
+    MachineBasicBlock *SB = (*I)->getBlock();
+    Changed |= visitBlock(*SB, T, NewAVs);
+  }
+  if (!T.TopDown)
+    Changed |= T.processBlock(B, AVs);
+
+  return Changed;
+}
+
+//
+// Utility functions:
+//
+void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
+      RegisterSet &Defs) {
+  for (auto &Op : MI.operands()) {
+    if (!Op.isReg() || !Op.isDef())
+      continue;
+    unsigned R = Op.getReg();
+    if (!TargetRegisterInfo::isVirtualRegister(R))
+      continue;
+    Defs.insert(R);
+  }
+}
+
+void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
+      RegisterSet &Uses) {
+  for (auto &Op : MI.operands()) {
+    if (!Op.isReg() || !Op.isUse())
+      continue;
+    unsigned R = Op.getReg();
+    if (!TargetRegisterInfo::isVirtualRegister(R))
+      continue;
+    Uses.insert(R);
+  }
+}
+
+// Check if all the bits in range [B, E) in both cells are equal.
+bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
+      uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
+      uint16_t W) {
+  for (uint16_t i = 0; i < W; ++i) {
+    // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
+    if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
+      return false;
+    // Same for RC2[i].
+    if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
+      return false;
+    if (RC1[B1+i] != RC2[B2+i])
+      return false;
+  }
+  return true;
+}
+
+
+bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
+      uint16_t B, uint16_t W) {
+  assert(B < RC.width() && B+W <= RC.width());
+  for (uint16_t i = B; i < B+W; ++i)
+    if (!RC[i].num())
+      return false;
+  return true;
+}
+
+
+bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
+      uint16_t B, uint16_t W) {
+  assert(B < RC.width() && B+W <= RC.width());
+  for (uint16_t i = B; i < B+W; ++i)
+    if (!RC[i].is(0))
+      return false;
+  return true;
+}
+
+
+bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
+        uint16_t B, uint16_t W, uint64_t &U) {
+  assert(B < RC.width() && B+W <= RC.width());
+  int64_t T = 0;
+  for (uint16_t i = B+W; i > B; --i) {
+    const BitTracker::BitValue &BV = RC[i-1];
+    T <<= 1;
+    if (BV.is(1))
+      T |= 1;
+    else if (!BV.is(0))
+      return false;
+  }
+  U = T;
+  return true;
+}
+
+
+bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
+      MachineRegisterInfo &MRI) {
+  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
+      !TargetRegisterInfo::isVirtualRegister(NewR))
+    return false;
+  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
+  decltype(End) NextI;
+  for (auto I = Begin; I != End; I = NextI) {
+    NextI = std::next(I);
+    I->setReg(NewR);
+  }
+  return Begin != End;
+}
+
+
+bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
+      unsigned NewSR, MachineRegisterInfo &MRI) {
+  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
+      !TargetRegisterInfo::isVirtualRegister(NewR))
+    return false;
+  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
+  decltype(End) NextI;
+  for (auto I = Begin; I != End; I = NextI) {
+    NextI = std::next(I);
+    I->setReg(NewR);
+    I->setSubReg(NewSR);
+  }
+  return Begin != End;
+}
+
+
+bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
+      unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
+  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
+      !TargetRegisterInfo::isVirtualRegister(NewR))
+    return false;
+  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
+  decltype(End) NextI;
+  for (auto I = Begin; I != End; I = NextI) {
+    NextI = std::next(I);
+    if (I->getSubReg() != OldSR)
+      continue;
+    I->setReg(NewR);
+    I->setSubReg(NewSR);
+  }
+  return Begin != End;
+}
+
+
+// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
+// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
+// if this succeeded, otherwise return false.
+bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
+      unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
+  const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
+  if (RC == &Hexagon::IntRegsRegClass) {
+    assert(RR.Sub == 0);
+    Begin = 0;
+    Width = 32;
+    return true;
+  }
+  if (RC == &Hexagon::DoubleRegsRegClass) {
+    if (RR.Sub == 0) {
+      Begin = 0;
+      Width = 64;
+      return true;
+    }
+    assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
+    Width = 32;
+    Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
+    return true;
+  }
+  return false;
+}
+
+
+// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
+// subregister.
+bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
+      BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
+  assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
+  unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
+  assert(Sub1 != Sub2);
+  if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
+    SL = I.getOperand(1);
+    SH = I.getOperand(3);
+    return true;
+  }
+  if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
+    SH = I.getOperand(1);
+    SL = I.getOperand(3);
+    return true;
+  }
+  return false;
+}
+
+
+// All stores (except 64-bit stores) take a 32-bit register as the source
+// of the value to be stored. If the instruction stores into a location
+// that is shorter than 32 bits, some bits of the source register are not
+// used. For each store instruction, calculate the set of used bits in
+// the source register, and set appropriate bits in Bits. Return true if
+// the bits are calculated, false otherwise.
+bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
+      uint16_t Begin) {
+  using namespace Hexagon;
+
+  switch (Opc) {
+    // Store byte
+    case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
+    case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
+    case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
+    case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
+    case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
+    case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
+    case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
+    case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
+    case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
+    case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
+    case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
+    case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
+    case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
+    case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
+    case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
+    case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
+    case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
+    case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
+    case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
+    case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
+    case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
+    case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
+    case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
+    case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
+    case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
+    case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
+    case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
+    case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
+    case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
+    case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
+    case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
+    case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
+    case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
+    case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
+    case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
+    case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
+    case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
+    case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
+    case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
+    case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
+    case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
+    case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
+    case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
+    case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
+      Bits.set(Begin, Begin+8);
+      return true;
+
+    // Store low half
+    case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
+    case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
+    case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
+    case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
+    case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
+    case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
+    case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
+    case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
+    case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
+    case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
+    case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
+    case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
+    case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
+    case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
+    case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
+    case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
+    case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
+    case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
+    case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
+    case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
+    case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
+    case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
+    case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
+    case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
+    case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
+    case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
+    case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
+    case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
+    case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
+    case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
+    case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
+    case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
+    case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
+    case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
+    case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
+    case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
+    case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
+    case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
+    case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
+    case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
+    case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
+    case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
+    case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
+    case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
+    case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
+    case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
+      Bits.set(Begin, Begin+16);
+      return true;
+
+    // Store high half
+    case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
+    case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
+    case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
+    case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
+    case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
+    case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
+    case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
+    case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
+    case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
+    case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
+    case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
+    case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
+    case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
+    case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
+    case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
+    case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
+    case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
+    case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
+    case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
+    case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
+    case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
+    case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
+    case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
+    case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
+    case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
+    case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
+      Bits.set(Begin+16, Begin+32);
+      return true;
+  }
+
+  return false;
+}
+
+
+// For an instruction with opcode Opc, calculate the set of bits that it
+// uses in a register in operand OpN. This only calculates the set of used
+// bits for cases where it does not depend on any operands (as is the case
+// in shifts, for example). For concrete instructions from a program, the
+// operand may be a subregister of a larger register, while Bits would
+// correspond to the larger register in its entirety. Because of that,
+// the parameter Begin can be used to indicate which bit of Bits should be
+// considered the LSB of of the operand.
+bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
+      BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
+  using namespace Hexagon;
+
+  const MCInstrDesc &D = HII.get(Opc);
+  if (D.mayStore()) {
+    if (OpN == D.getNumOperands()-1)
+      return getUsedBitsInStore(Opc, Bits, Begin);
+    return false;
+  }
+
+  switch (Opc) {
+    // One register source. Used bits: R1[0-7].
+    case A2_sxtb:
+    case A2_zxtb:
+    case A4_cmpbeqi:
+    case A4_cmpbgti:
+    case A4_cmpbgtui:
+      if (OpN == 1) {
+        Bits.set(Begin, Begin+8);
+        return true;
+      }
+      break;
+
+    // One register source. Used bits: R1[0-15].
+    case A2_aslh:
+    case A2_sxth:
+    case A2_zxth:
+    case A4_cmpheqi:
+    case A4_cmphgti:
+    case A4_cmphgtui:
+      if (OpN == 1) {
+        Bits.set(Begin, Begin+16);
+        return true;
+      }
+      break;
+
+    // One register source. Used bits: R1[16-31].
+    case A2_asrh:
+      if (OpN == 1) {
+        Bits.set(Begin+16, Begin+32);
+        return true;
+      }
+      break;
+
+    // Two register sources. Used bits: R1[0-7], R2[0-7].
+    case A4_cmpbeq:
+    case A4_cmpbgt:
+    case A4_cmpbgtu:
+      if (OpN == 1) {
+        Bits.set(Begin, Begin+8);
+        return true;
+      }
+      break;
+
+    // Two register sources. Used bits: R1[0-15], R2[0-15].
+    case A4_cmpheq:
+    case A4_cmphgt:
+    case A4_cmphgtu:
+    case A2_addh_h16_ll:
+    case A2_addh_h16_sat_ll:
+    case A2_addh_l16_ll:
+    case A2_addh_l16_sat_ll:
+    case A2_combine_ll:
+    case A2_subh_h16_ll:
+    case A2_subh_h16_sat_ll:
+    case A2_subh_l16_ll:
+    case A2_subh_l16_sat_ll:
+    case M2_mpy_acc_ll_s0:
+    case M2_mpy_acc_ll_s1:
+    case M2_mpy_acc_sat_ll_s0:
+    case M2_mpy_acc_sat_ll_s1:
+    case M2_mpy_ll_s0:
+    case M2_mpy_ll_s1:
+    case M2_mpy_nac_ll_s0:
+    case M2_mpy_nac_ll_s1:
+    case M2_mpy_nac_sat_ll_s0:
+    case M2_mpy_nac_sat_ll_s1:
+    case M2_mpy_rnd_ll_s0:
+    case M2_mpy_rnd_ll_s1:
+    case M2_mpy_sat_ll_s0:
+    case M2_mpy_sat_ll_s1:
+    case M2_mpy_sat_rnd_ll_s0:
+    case M2_mpy_sat_rnd_ll_s1:
+    case M2_mpyd_acc_ll_s0:
+    case M2_mpyd_acc_ll_s1:
+    case M2_mpyd_ll_s0:
+    case M2_mpyd_ll_s1:
+    case M2_mpyd_nac_ll_s0:
+    case M2_mpyd_nac_ll_s1:
+    case M2_mpyd_rnd_ll_s0:
+    case M2_mpyd_rnd_ll_s1:
+    case M2_mpyu_acc_ll_s0:
+    case M2_mpyu_acc_ll_s1:
+    case M2_mpyu_ll_s0:
+    case M2_mpyu_ll_s1:
+    case M2_mpyu_nac_ll_s0:
+    case M2_mpyu_nac_ll_s1:
+    case M2_mpyud_acc_ll_s0:
+    case M2_mpyud_acc_ll_s1:
+    case M2_mpyud_ll_s0:
+    case M2_mpyud_ll_s1:
+    case M2_mpyud_nac_ll_s0:
+    case M2_mpyud_nac_ll_s1:
+      if (OpN == 1 || OpN == 2) {
+        Bits.set(Begin, Begin+16);
+        return true;
+      }
+      break;
+
+    // Two register sources. Used bits: R1[0-15], R2[16-31].
+    case A2_addh_h16_lh:
+    case A2_addh_h16_sat_lh:
+    case A2_combine_lh:
+    case A2_subh_h16_lh:
+    case A2_subh_h16_sat_lh:
+    case M2_mpy_acc_lh_s0:
+    case M2_mpy_acc_lh_s1:
+    case M2_mpy_acc_sat_lh_s0:
+    case M2_mpy_acc_sat_lh_s1:
+    case M2_mpy_lh_s0:
+    case M2_mpy_lh_s1:
+    case M2_mpy_nac_lh_s0:
+    case M2_mpy_nac_lh_s1:
+    case M2_mpy_nac_sat_lh_s0:
+    case M2_mpy_nac_sat_lh_s1:
+    case M2_mpy_rnd_lh_s0:
+    case M2_mpy_rnd_lh_s1:
+    case M2_mpy_sat_lh_s0:
+    case M2_mpy_sat_lh_s1:
+    case M2_mpy_sat_rnd_lh_s0:
+    case M2_mpy_sat_rnd_lh_s1:
+    case M2_mpyd_acc_lh_s0:
+    case M2_mpyd_acc_lh_s1:
+    case M2_mpyd_lh_s0:
+    case M2_mpyd_lh_s1:
+    case M2_mpyd_nac_lh_s0:
+    case M2_mpyd_nac_lh_s1:
+    case M2_mpyd_rnd_lh_s0:
+    case M2_mpyd_rnd_lh_s1:
+    case M2_mpyu_acc_lh_s0:
+    case M2_mpyu_acc_lh_s1:
+    case M2_mpyu_lh_s0:
+    case M2_mpyu_lh_s1:
+    case M2_mpyu_nac_lh_s0:
+    case M2_mpyu_nac_lh_s1:
+    case M2_mpyud_acc_lh_s0:
+    case M2_mpyud_acc_lh_s1:
+    case M2_mpyud_lh_s0:
+    case M2_mpyud_lh_s1:
+    case M2_mpyud_nac_lh_s0:
+    case M2_mpyud_nac_lh_s1:
+    // These four are actually LH.
+    case A2_addh_l16_hl:
+    case A2_addh_l16_sat_hl:
+    case A2_subh_l16_hl:
+    case A2_subh_l16_sat_hl:
+      if (OpN == 1) {
+        Bits.set(Begin, Begin+16);
+        return true;
+      }
+      if (OpN == 2) {
+        Bits.set(Begin+16, Begin+32);
+        return true;
+      }
+      break;
+
+    // Two register sources, used bits: R1[16-31], R2[0-15].
+    case A2_addh_h16_hl:
+    case A2_addh_h16_sat_hl:
+    case A2_combine_hl:
+    case A2_subh_h16_hl:
+    case A2_subh_h16_sat_hl:
+    case M2_mpy_acc_hl_s0:
+    case M2_mpy_acc_hl_s1:
+    case M2_mpy_acc_sat_hl_s0:
+    case M2_mpy_acc_sat_hl_s1:
+    case M2_mpy_hl_s0:
+    case M2_mpy_hl_s1:
+    case M2_mpy_nac_hl_s0:
+    case M2_mpy_nac_hl_s1:
+    case M2_mpy_nac_sat_hl_s0:
+    case M2_mpy_nac_sat_hl_s1:
+    case M2_mpy_rnd_hl_s0:
+    case M2_mpy_rnd_hl_s1:
+    case M2_mpy_sat_hl_s0:
+    case M2_mpy_sat_hl_s1:
+    case M2_mpy_sat_rnd_hl_s0:
+    case M2_mpy_sat_rnd_hl_s1:
+    case M2_mpyd_acc_hl_s0:
+    case M2_mpyd_acc_hl_s1:
+    case M2_mpyd_hl_s0:
+    case M2_mpyd_hl_s1:
+    case M2_mpyd_nac_hl_s0:
+    case M2_mpyd_nac_hl_s1:
+    case M2_mpyd_rnd_hl_s0:
+    case M2_mpyd_rnd_hl_s1:
+    case M2_mpyu_acc_hl_s0:
+    case M2_mpyu_acc_hl_s1:
+    case M2_mpyu_hl_s0:
+    case M2_mpyu_hl_s1:
+    case M2_mpyu_nac_hl_s0:
+    case M2_mpyu_nac_hl_s1:
+    case M2_mpyud_acc_hl_s0:
+    case M2_mpyud_acc_hl_s1:
+    case M2_mpyud_hl_s0:
+    case M2_mpyud_hl_s1:
+    case M2_mpyud_nac_hl_s0:
+    case M2_mpyud_nac_hl_s1:
+      if (OpN == 1) {
+        Bits.set(Begin+16, Begin+32);
+        return true;
+      }
+      if (OpN == 2) {
+        Bits.set(Begin, Begin+16);
+        return true;
+      }
+      break;
+
+    // Two register sources, used bits: R1[16-31], R2[16-31].
+    case A2_addh_h16_hh:
+    case A2_addh_h16_sat_hh:
+    case A2_combine_hh:
+    case A2_subh_h16_hh:
+    case A2_subh_h16_sat_hh:
+    case M2_mpy_acc_hh_s0:
+    case M2_mpy_acc_hh_s1:
+    case M2_mpy_acc_sat_hh_s0:
+    case M2_mpy_acc_sat_hh_s1:
+    case M2_mpy_hh_s0:
+    case M2_mpy_hh_s1:
+    case M2_mpy_nac_hh_s0:
+    case M2_mpy_nac_hh_s1:
+    case M2_mpy_nac_sat_hh_s0:
+    case M2_mpy_nac_sat_hh_s1:
+    case M2_mpy_rnd_hh_s0:
+    case M2_mpy_rnd_hh_s1:
+    case M2_mpy_sat_hh_s0:
+    case M2_mpy_sat_hh_s1:
+    case M2_mpy_sat_rnd_hh_s0:
+    case M2_mpy_sat_rnd_hh_s1:
+    case M2_mpyd_acc_hh_s0:
+    case M2_mpyd_acc_hh_s1:
+    case M2_mpyd_hh_s0:
+    case M2_mpyd_hh_s1:
+    case M2_mpyd_nac_hh_s0:
+    case M2_mpyd_nac_hh_s1:
+    case M2_mpyd_rnd_hh_s0:
+    case M2_mpyd_rnd_hh_s1:
+    case M2_mpyu_acc_hh_s0:
+    case M2_mpyu_acc_hh_s1:
+    case M2_mpyu_hh_s0:
+    case M2_mpyu_hh_s1:
+    case M2_mpyu_nac_hh_s0:
+    case M2_mpyu_nac_hh_s1:
+    case M2_mpyud_acc_hh_s0:
+    case M2_mpyud_acc_hh_s1:
+    case M2_mpyud_hh_s0:
+    case M2_mpyud_hh_s1:
+    case M2_mpyud_nac_hh_s0:
+    case M2_mpyud_nac_hh_s1:
+      if (OpN == 1 || OpN == 2) {
+        Bits.set(Begin+16, Begin+32);
+        return true;
+      }
+      break;
+  }
+
+  return false;
+}
+
+
+// Calculate the register class that matches Reg:Sub. For example, if
+// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
+// register class.
+const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
+      const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
+  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+    return nullptr;
+  auto *RC = MRI.getRegClass(RR.Reg);
+  if (RR.Sub == 0)
+    return RC;
+
+  auto VerifySR = [] (unsigned Sub) -> void {
+    assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
+  };
+
+  switch (RC->getID()) {
+    case Hexagon::DoubleRegsRegClassID:
+      VerifySR(RR.Sub);
+      return &Hexagon::IntRegsRegClass;
+  }
+  return nullptr;
+}
+
+
+// Check if RD could be replaced with RS at any possible use of RD.
+// For example a predicate register cannot be replaced with a integer
+// register, but a 64-bit register with a subregister can be replaced
+// with a 32-bit register.
+bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
+      const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
+  if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
+      !TargetRegisterInfo::isVirtualRegister(RS.Reg))
+    return false;
+  // Return false if one (or both) classes are nullptr.
+  auto *DRC = getFinalVRegClass(RD, MRI);
+  if (!DRC)
+    return false;
+
+  return DRC == getFinalVRegClass(RS, MRI);
+}
+
+
+//
+// Dead code elimination
+//
+namespace {
+  class DeadCodeElimination {
+  public:
+    DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
+      : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
+        MDT(mdt), MRI(mf.getRegInfo()) {}
+
+    bool run() {
+      return runOnNode(MDT.getRootNode());
+    }
+
+  private:
+    bool isDead(unsigned R) const;
+    bool runOnNode(MachineDomTreeNode *N);
+
+    MachineFunction &MF;
+    const HexagonInstrInfo &HII;
+    MachineDominatorTree &MDT;
+    MachineRegisterInfo &MRI;
+  };
+}
+
+
+bool DeadCodeElimination::isDead(unsigned R) const {
+  for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
+    MachineInstr *UseI = I->getParent();
+    if (UseI->isDebugValue())
+      continue;
+    if (UseI->isPHI()) {
+      assert(!UseI->getOperand(0).getSubReg());
+      unsigned DR = UseI->getOperand(0).getReg();
+      if (DR == R)
+        continue;
+    }
+    return false;
+  }
+  return true;
+}
+
+
+bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
+  bool Changed = false;
+  typedef GraphTraits<MachineDomTreeNode*> GTN;
+  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
+    Changed |= runOnNode(*I);
+
+  MachineBasicBlock *B = N->getBlock();
+  std::vector<MachineInstr*> Instrs;
+  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
+    Instrs.push_back(&*I);
+
+  for (auto MI : Instrs) {
+    unsigned Opc = MI->getOpcode();
+    // Do not touch lifetime markers. This is why the target-independent DCE
+    // cannot be used.
+    if (Opc == TargetOpcode::LIFETIME_START ||
+        Opc == TargetOpcode::LIFETIME_END)
+      continue;
+    bool Store = false;
+    if (MI->isInlineAsm())
+      continue;
+    // Delete PHIs if possible.
+    if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
+      continue;
+
+    bool AllDead = true;
+    SmallVector<unsigned,2> Regs;
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isDef())
+        continue;
+      unsigned R = Op.getReg();
+      if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
+        AllDead = false;
+        break;
+      }
+      Regs.push_back(R);
+    }
+    if (!AllDead)
+      continue;
+
+    B->erase(MI);
+    for (unsigned i = 0, n = Regs.size(); i != n; ++i)
+      MRI.markUsesInDebugValueAsUndef(Regs[i]);
+    Changed = true;
+  }
+
+  return Changed;
+}
+
+
+//
+// Eliminate redundant instructions
+//
+// This transformation will identify instructions where the output register
+// is the same as one of its input registers. This only works on instructions
+// that define a single register (unlike post-increment loads, for example).
+// The equality check is actually more detailed: the code calculates which
+// bits of the output are used, and only compares these bits with the input
+// registers.
+// If the output matches an input, the instruction is replaced with COPY.
+// The copies will be removed by another transformation.
+namespace {
+  class RedundantInstrElimination : public Transformation {
+  public:
+    RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
+          MachineRegisterInfo &mri)
+        : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
+    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+  private:
+    bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
+          unsigned &LostB, unsigned &LostE);
+    bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
+          unsigned &LostB, unsigned &LostE);
+    bool computeUsedBits(unsigned Reg, BitVector &Bits);
+    bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
+          uint16_t Begin);
+    bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
+
+    const HexagonInstrInfo &HII;
+    MachineRegisterInfo &MRI;
+    BitTracker &BT;
+  };
+}
+
+
+// Check if the instruction is a lossy shift left, where the input being
+// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
+// of bit indices that are lost.
+bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
+      unsigned OpN, unsigned &LostB, unsigned &LostE) {
+  using namespace Hexagon;
+  unsigned Opc = MI.getOpcode();
+  unsigned ImN, RegN, Width;
+  switch (Opc) {
+    case S2_asl_i_p:
+      ImN = 2;
+      RegN = 1;
+      Width = 64;
+      break;
+    case S2_asl_i_p_acc:
+    case S2_asl_i_p_and:
+    case S2_asl_i_p_nac:
+    case S2_asl_i_p_or:
+    case S2_asl_i_p_xacc:
+      ImN = 3;
+      RegN = 2;
+      Width = 64;
+      break;
+    case S2_asl_i_r:
+      ImN = 2;
+      RegN = 1;
+      Width = 32;
+      break;
+    case S2_addasl_rrri:
+    case S4_andi_asl_ri:
+    case S4_ori_asl_ri:
+    case S4_addi_asl_ri:
+    case S4_subi_asl_ri:
+    case S2_asl_i_r_acc:
+    case S2_asl_i_r_and:
+    case S2_asl_i_r_nac:
+    case S2_asl_i_r_or:
+    case S2_asl_i_r_sat:
+    case S2_asl_i_r_xacc:
+      ImN = 3;
+      RegN = 2;
+      Width = 32;
+      break;
+    default:
+      return false;
+  }
+
+  if (RegN != OpN)
+    return false;
+
+  assert(MI.getOperand(ImN).isImm());
+  unsigned S = MI.getOperand(ImN).getImm();
+  if (S == 0)
+    return false;
+  LostB = Width-S;
+  LostE = Width;
+  return true;
+}
+
+
+// Check if the instruction is a lossy shift right, where the input being
+// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
+// of bit indices that are lost.
+bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
+      unsigned OpN, unsigned &LostB, unsigned &LostE) {
+  using namespace Hexagon;
+  unsigned Opc = MI.getOpcode();
+  unsigned ImN, RegN;
+  switch (Opc) {
+    case S2_asr_i_p:
+    case S2_lsr_i_p:
+      ImN = 2;
+      RegN = 1;
+      break;
+    case S2_asr_i_p_acc:
+    case S2_asr_i_p_and:
+    case S2_asr_i_p_nac:
+    case S2_asr_i_p_or:
+    case S2_lsr_i_p_acc:
+    case S2_lsr_i_p_and:
+    case S2_lsr_i_p_nac:
+    case S2_lsr_i_p_or:
+    case S2_lsr_i_p_xacc:
+      ImN = 3;
+      RegN = 2;
+      break;
+    case S2_asr_i_r:
+    case S2_lsr_i_r:
+      ImN = 2;
+      RegN = 1;
+      break;
+    case S4_andi_lsr_ri:
+    case S4_ori_lsr_ri:
+    case S4_addi_lsr_ri:
+    case S4_subi_lsr_ri:
+    case S2_asr_i_r_acc:
+    case S2_asr_i_r_and:
+    case S2_asr_i_r_nac:
+    case S2_asr_i_r_or:
+    case S2_lsr_i_r_acc:
+    case S2_lsr_i_r_and:
+    case S2_lsr_i_r_nac:
+    case S2_lsr_i_r_or:
+    case S2_lsr_i_r_xacc:
+      ImN = 3;
+      RegN = 2;
+      break;
+
+    default:
+      return false;
+  }
+
+  if (RegN != OpN)
+    return false;
+
+  assert(MI.getOperand(ImN).isImm());
+  unsigned S = MI.getOperand(ImN).getImm();
+  LostB = 0;
+  LostE = S;
+  return true;
+}
+
+
+// Calculate the bit vector that corresponds to the used bits of register Reg.
+// The vector Bits has the same size, as the size of Reg in bits. If the cal-
+// culation fails (i.e. the used bits are unknown), it returns false. Other-
+// wise, it returns true and sets the corresponding bits in Bits.
+bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
+  BitVector Used(Bits.size());
+  RegisterSet Visited;
+  std::vector<unsigned> Pending;
+  Pending.push_back(Reg);
+
+  for (unsigned i = 0; i < Pending.size(); ++i) {
+    unsigned R = Pending[i];
+    if (Visited.has(R))
+      continue;
+    Visited.insert(R);
+    for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
+      BitTracker::RegisterRef UR = *I;
+      unsigned B, W;
+      if (!HBS::getSubregMask(UR, B, W, MRI))
+        return false;
+      MachineInstr &UseI = *I->getParent();
+      if (UseI.isPHI() || UseI.isCopy()) {
+        unsigned DefR = UseI.getOperand(0).getReg();
+        if (!TargetRegisterInfo::isVirtualRegister(DefR))
+          return false;
+        Pending.push_back(DefR);
+      } else {
+        if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
+          return false;
+      }
+    }
+  }
+  Bits |= Used;
+  return true;
+}
+
+
+// Calculate the bits used by instruction MI in a register in operand OpN.
+// Return true/false if the calculation succeeds/fails. If is succeeds, set
+// used bits in Bits. This function does not reset any bits in Bits, so
+// subsequent calls over different instructions will result in the union
+// of the used bits in all these instructions.
+// The register in question may be used with a sub-register, whereas Bits
+// holds the bits for the entire register. To keep track of that, the
+// argument Begin indicates where in Bits is the lowest-significant bit
+// of the register used in operand OpN. For example, in instruction:
+//   vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
+// the operand 1 is a 32-bit register, which happens to be a subregister
+// of the 64-bit register vreg2, and that subregister starts at position 32.
+// In this case Begin=32, since Bits[32] would be the lowest-significant bit
+// of vreg2:subreg_hireg.
+bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
+      unsigned OpN, BitVector &Bits, uint16_t Begin) {
+  unsigned Opc = MI.getOpcode();
+  BitVector T(Bits.size());
+  bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
+  // Even if we don't have bits yet, we could still provide some information
+  // if the instruction is a lossy shift: the lost bits will be marked as
+  // not used.
+  unsigned LB, LE;
+  if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
+    assert(MI.getOperand(OpN).isReg());
+    BitTracker::RegisterRef RR = MI.getOperand(OpN);
+    const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
+    uint16_t Width = RC->getSize()*8;
+
+    if (!GotBits)
+      T.set(Begin, Begin+Width);
+    assert(LB <= LE && LB < Width && LE <= Width);
+    T.reset(Begin+LB, Begin+LE);
+    GotBits = true;
+  }
+  if (GotBits)
+    Bits |= T;
+  return GotBits;
+}
+
+
+// Calculates the used bits in RD ("defined register"), and checks if these
+// bits in RS ("used register") and RD are identical.
+bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
+      BitTracker::RegisterRef RS) {
+  const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
+  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+
+  unsigned DB, DW;
+  if (!HBS::getSubregMask(RD, DB, DW, MRI))
+    return false;
+  unsigned SB, SW;
+  if (!HBS::getSubregMask(RS, SB, SW, MRI))
+    return false;
+  if (SW != DW)
+    return false;
+
+  BitVector Used(DC.width());
+  if (!computeUsedBits(RD.Reg, Used))
+    return false;
+
+  for (unsigned i = 0; i != DW; ++i)
+    if (Used[i+DB] && DC[DB+i] != SC[SB+i])
+      return false;
+  return true;
+}
+
+
+bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
+      const RegisterSet&) {
+  bool Changed = false;
+
+  for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
+    NextI = std::next(I);
+    MachineInstr *MI = &*I;
+
+    if (MI->getOpcode() == TargetOpcode::COPY)
+      continue;
+    if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
+      continue;
+    unsigned NumD = MI->getDesc().getNumDefs();
+    if (NumD != 1)
+      continue;
+
+    BitTracker::RegisterRef RD = MI->getOperand(0);
+    if (!BT.has(RD.Reg))
+      continue;
+    const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
+
+    // Find a source operand that is equal to the result.
+    for (auto &Op : MI->uses()) {
+      if (!Op.isReg())
+        continue;
+      BitTracker::RegisterRef RS = Op;
+      if (!BT.has(RS.Reg))
+        continue;
+      if (!HBS::isTransparentCopy(RD, RS, MRI))
+        continue;
+
+      unsigned BN, BW;
+      if (!HBS::getSubregMask(RS, BN, BW, MRI))
+        continue;
+
+      const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+      if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
+        continue;
+
+      // If found, replace the instruction with a COPY.
+      DebugLoc DL = MI->getDebugLoc();
+      const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
+      unsigned NewR = MRI.createVirtualRegister(FRC);
+      BuildMI(B, I, DL, HII.get(TargetOpcode::COPY), NewR)
+          .addReg(RS.Reg, 0, RS.Sub);
+      HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+      BT.put(BitTracker::RegisterRef(NewR), SC);
+      Changed = true;
+      break;
+    }
+  }
+
+  return Changed;
+}
+
+
+//
+// Const generation
+//
+// Recognize instructions that produce constant values known at compile-time.
+// Replace them with register definitions that load these constants directly.
+namespace {
+  class ConstGeneration : public Transformation {
+  public:
+    ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
+        MachineRegisterInfo &mri)
+      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
+    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+  private:
+    bool isTfrConst(const MachineInstr *MI) const;
+    bool isConst(unsigned R, int64_t &V) const;
+    unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
+        MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
+
+    const HexagonInstrInfo &HII;
+    MachineRegisterInfo &MRI;
+    BitTracker &BT;
+  };
+}
+
+bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
+  if (!BT.has(R))
+    return false;
+  const BitTracker::RegisterCell &RC = BT.lookup(R);
+  int64_t T = 0;
+  for (unsigned i = RC.width(); i > 0; --i) {
+    const BitTracker::BitValue &V = RC[i-1];
+    T <<= 1;
+    if (V.is(1))
+      T |= 1;
+    else if (!V.is(0))
+      return false;
+  }
+  C = T;
+  return true;
+}
+
+
+bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
+  unsigned Opc = MI->getOpcode();
+  switch (Opc) {
+    case Hexagon::A2_combineii:
+    case Hexagon::A4_combineii:
+    case Hexagon::A2_tfrsi:
+    case Hexagon::A2_tfrpi:
+    case Hexagon::TFR_PdTrue:
+    case Hexagon::TFR_PdFalse:
+    case Hexagon::CONST32_Int_Real:
+    case Hexagon::CONST64_Int_Real:
+      return true;
+  }
+  return false;
+}
+
+
+// Generate a transfer-immediate instruction that is appropriate for the
+// register class and the actual value being transferred.
+unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
+      MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
+  unsigned Reg = MRI.createVirtualRegister(RC);
+  if (RC == &Hexagon::IntRegsRegClass) {
+    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
+        .addImm(int32_t(C));
+    return Reg;
+  }
+
+  if (RC == &Hexagon::DoubleRegsRegClass) {
+    if (isInt<8>(C)) {
+      BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
+          .addImm(C);
+      return Reg;
+    }
+
+    unsigned Lo = Lo_32(C), Hi = Hi_32(C);
+    if (isInt<8>(Lo) || isInt<8>(Hi)) {
+      unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
+                                  : Hexagon::A4_combineii;
+      BuildMI(B, At, DL, HII.get(Opc), Reg)
+          .addImm(int32_t(Hi))
+          .addImm(int32_t(Lo));
+      return Reg;
+    }
+
+    BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
+        .addImm(C);
+    return Reg;
+  }
+
+  if (RC == &Hexagon::PredRegsRegClass) {
+    unsigned Opc;
+    if (C == 0)
+      Opc = Hexagon::TFR_PdFalse;
+    else if ((C & 0xFF) == 0xFF)
+      Opc = Hexagon::TFR_PdTrue;
+    else
+      return 0;
+    BuildMI(B, At, DL, HII.get(Opc), Reg);
+    return Reg;
+  }
+
+  return 0;
+}
+
+
+bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
+  bool Changed = false;
+  RegisterSet Defs;
+
+  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
+    if (isTfrConst(I))
+      continue;
+    Defs.clear();
+    HBS::getInstrDefs(*I, Defs);
+    if (Defs.count() != 1)
+      continue;
+    unsigned DR = Defs.find_first();
+    if (!TargetRegisterInfo::isVirtualRegister(DR))
+      continue;
+    int64_t C;
+    if (isConst(DR, C)) {
+      DebugLoc DL = I->getDebugLoc();
+      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
+      unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
+      if (ImmReg) {
+        HBS::replaceReg(DR, ImmReg, MRI);
+        BT.put(ImmReg, BT.lookup(DR));
+        Changed = true;
+      }
+    }
+  }
+  return Changed;
+}
+
+
+//
+// Copy generation
+//
+// Identify pairs of available registers which hold identical values.
+// In such cases, only one of them needs to be calculated, the other one
+// will be defined as a copy of the first.
+//
+// Copy propagation
+//
+// Eliminate register copies RD = RS, by replacing the uses of RD with
+// with uses of RS.
+namespace {
+  class CopyGeneration : public Transformation {
+  public:
+    CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
+        MachineRegisterInfo &mri)
+      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
+    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+  private:
+    bool findMatch(const BitTracker::RegisterRef &Inp,
+        BitTracker::RegisterRef &Out, const RegisterSet &AVs);
+
+    const HexagonInstrInfo &HII;
+    MachineRegisterInfo &MRI;
+    BitTracker &BT;
+  };
+
+  class CopyPropagation : public Transformation {
+  public:
+    CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
+        : Transformation(false), MRI(mri) {}
+    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+    static bool isCopyReg(unsigned Opc);
+  private:
+    bool propagateRegCopy(MachineInstr &MI);
+
+    MachineRegisterInfo &MRI;
+  };
+
+}
+
+
+/// Check if there is a register in AVs that is identical to Inp. If so,
+/// set Out to the found register. The output may be a pair Reg:Sub.
+bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
+      BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
+  if (!BT.has(Inp.Reg))
+    return false;
+  const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
+  unsigned B, W;
+  if (!HBS::getSubregMask(Inp, B, W, MRI))
+    return false;
+
+  for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
+    if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
+      continue;
+    const BitTracker::RegisterCell &RC = BT.lookup(R);
+    unsigned RW = RC.width();
+    if (W == RW) {
+      if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
+        continue;
+      if (!HBS::isEqual(InpRC, B, RC, 0, W))
+        continue;
+      Out.Reg = R;
+      Out.Sub = 0;
+      return true;
+    }
+    // Check if there is a super-register, whose part (with a subregister)
+    // is equal to the input.
+    // Only do double registers for now.
+    if (W*2 != RW)
+      continue;
+    if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
+      continue;
+
+    if (HBS::isEqual(InpRC, B, RC, 0, W))
+      Out.Sub = Hexagon::subreg_loreg;
+    else if (HBS::isEqual(InpRC, B, RC, W, W))
+      Out.Sub = Hexagon::subreg_hireg;
+    else
+      continue;
+    Out.Reg = R;
+    return true;
+  }
+  return false;
+}
+
+
+bool CopyGeneration::processBlock(MachineBasicBlock &B,
+      const RegisterSet &AVs) {
+  RegisterSet AVB(AVs);
+  bool Changed = false;
+  RegisterSet Defs;
+
+  for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
+       ++I, AVB.insert(Defs)) {
+    NextI = std::next(I);
+    Defs.clear();
+    HBS::getInstrDefs(*I, Defs);
+
+    unsigned Opc = I->getOpcode();
+    if (CopyPropagation::isCopyReg(Opc))
+      continue;
+
+    for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
+      BitTracker::RegisterRef MR;
+      if (!findMatch(R, MR, AVB))
+        continue;
+      DebugLoc DL = I->getDebugLoc();
+      auto *FRC = HBS::getFinalVRegClass(MR, MRI);
+      unsigned NewR = MRI.createVirtualRegister(FRC);
+      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
+      BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
+        .addReg(MR.Reg, 0, MR.Sub);
+      BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
+    }
+  }
+
+  return Changed;
+}
+
+
+bool CopyPropagation::isCopyReg(unsigned Opc) {
+  switch (Opc) {
+    case TargetOpcode::COPY:
+    case TargetOpcode::REG_SEQUENCE:
+    case Hexagon::A2_tfr:
+    case Hexagon::A2_tfrp:
+    case Hexagon::A2_combinew:
+    case Hexagon::A4_combineir:
+    case Hexagon::A4_combineri:
+      return true;
+    default:
+      break;
+  }
+  return false;
+}
+
+
+bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
+  bool Changed = false;
+  unsigned Opc = MI.getOpcode();
+  BitTracker::RegisterRef RD = MI.getOperand(0);
+  assert(MI.getOperand(0).getSubReg() == 0);
+
+  switch (Opc) {
+    case TargetOpcode::COPY:
+    case Hexagon::A2_tfr:
+    case Hexagon::A2_tfrp: {
+      BitTracker::RegisterRef RS = MI.getOperand(1);
+      if (!HBS::isTransparentCopy(RD, RS, MRI))
+        break;
+      if (RS.Sub != 0)
+        Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
+      else
+        Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
+      break;
+    }
+    case TargetOpcode::REG_SEQUENCE: {
+      BitTracker::RegisterRef SL, SH;
+      if (HBS::parseRegSequence(MI, SL, SH)) {
+        Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
+                                         SL.Reg, SL.Sub, MRI);
+        Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
+                                          SH.Reg, SH.Sub, MRI);
+      }
+      break;
+    }
+    case Hexagon::A2_combinew: {
+      BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
+      Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
+                                       RL.Reg, RL.Sub, MRI);
+      Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
+                                        RH.Reg, RH.Sub, MRI);
+      break;
+    }
+    case Hexagon::A4_combineir:
+    case Hexagon::A4_combineri: {
+      unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
+      unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
+                                                    : Hexagon::subreg_hireg;
+      BitTracker::RegisterRef RS = MI.getOperand(SrcX);
+      Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
+      break;
+    }
+  }
+  return Changed;
+}
+
+
+bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
+  std::vector<MachineInstr*> Instrs;
+  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
+    Instrs.push_back(&*I);
+
+  bool Changed = false;
+  for (auto I : Instrs) {
+    unsigned Opc = I->getOpcode();
+    if (!CopyPropagation::isCopyReg(Opc))
+      continue;
+    Changed |= propagateRegCopy(*I);
+  }
+
+  return Changed;
+}
+
+
+//
+// Bit simplification
+//
+// Recognize patterns that can be simplified and replace them with the
+// simpler forms.
+// This is by no means complete
+namespace {
+  class BitSimplification : public Transformation {
+  public:
+    BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
+        MachineRegisterInfo &mri)
+      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
+    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+  private:
+    struct RegHalf : public BitTracker::RegisterRef {
+      bool Low;  // Low/High halfword.
+    };
+
+    bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
+          unsigned B, RegHalf &RH);
+
+    bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
+          BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
+    unsigned getCombineOpcode(bool HLow, bool LLow);
+
+    bool genStoreUpperHalf(MachineInstr *MI);
+    bool genStoreImmediate(MachineInstr *MI);
+    bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
+          const BitTracker::RegisterCell &RC);
+    bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
+          const BitTracker::RegisterCell &RC);
+    bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
+          const BitTracker::RegisterCell &RC);
+    bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
+          const BitTracker::RegisterCell &RC);
+    bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
+          const BitTracker::RegisterCell &RC);
+
+    const HexagonInstrInfo &HII;
+    MachineRegisterInfo &MRI;
+    BitTracker &BT;
+  };
+}
+
+
+// Check if the bits [B..B+16) in register cell RC form a valid halfword,
+// i.e. [0..16), [16..32), etc. of some register. If so, return true and
+// set the information about the found register in RH.
+bool BitSimplification::matchHalf(unsigned SelfR,
+      const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
+  // XXX This could be searching in the set of available registers, in case
+  // the match is not exact.
+
+  // Match 16-bit chunks, where the RC[B..B+15] references exactly one
+  // register and all the bits B..B+15 match between RC and the register.
+  // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
+  // and RC = { [0]:0 [1-15]:v1[1-15]... }.
+  bool Low = false;
+  unsigned I = B;
+  while (I < B+16 && RC[I].num())
+    I++;
+  if (I == B+16)
+    return false;
+
+  unsigned Reg = RC[I].RefI.Reg;
+  unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
+  if (P < I-B)
+    return false;
+  unsigned Pos = P - (I-B);
+
+  if (Reg == 0 || Reg == SelfR)    // Don't match "self".
+    return false;
+  if (!TargetRegisterInfo::isVirtualRegister(Reg))
+    return false;
+  if (!BT.has(Reg))
+    return false;
+
+  const BitTracker::RegisterCell &SC = BT.lookup(Reg);
+  if (Pos+16 > SC.width())
+    return false;
+
+  for (unsigned i = 0; i < 16; ++i) {
+    const BitTracker::BitValue &RV = RC[i+B];
+    if (RV.Type == BitTracker::BitValue::Ref) {
+      if (RV.RefI.Reg != Reg)
+        return false;
+      if (RV.RefI.Pos != i+Pos)
+        return false;
+      continue;
+    }
+    if (RC[i+B] != SC[i+Pos])
+      return false;
+  }
+
+  unsigned Sub = 0;
+  switch (Pos) {
+    case 0:
+      Sub = Hexagon::subreg_loreg;
+      Low = true;
+      break;
+    case 16:
+      Sub = Hexagon::subreg_loreg;
+      Low = false;
+      break;
+    case 32:
+      Sub = Hexagon::subreg_hireg;
+      Low = true;
+      break;
+    case 48:
+      Sub = Hexagon::subreg_hireg;
+      Low = false;
+      break;
+    default:
+      return false;
+  }
+
+  RH.Reg = Reg;
+  RH.Sub = Sub;
+  RH.Low = Low;
+  // If the subregister is not valid with the register, set it to 0.
+  if (!HBS::getFinalVRegClass(RH, MRI))
+    RH.Sub = 0;
+
+  return true;
+}
+
+
+// Check if RC matches the pattern of a S2_packhl. If so, return true and
+// set the inputs Rs and Rt.
+bool BitSimplification::matchPackhl(unsigned SelfR,
+      const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
+      BitTracker::RegisterRef &Rt) {
+  RegHalf L1, H1, L2, H2;
+
+  if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
+    return false;
+  if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
+    return false;
+
+  // Rs = H1.L1, Rt = H2.L2
+  if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
+    return false;
+  if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
+    return false;
+
+  Rs = H1;
+  Rt = H2;
+  return true;
+}
+
+
+unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
+  return HLow ? LLow ? Hexagon::A2_combine_ll
+                     : Hexagon::A2_combine_lh
+              : LLow ? Hexagon::A2_combine_hl
+                     : Hexagon::A2_combine_hh;
+}
+
+
+// If MI stores the upper halfword of a register (potentially obtained via
+// shifts or extracts), replace it with a storerf instruction. This could
+// cause the "extraction" code to become dead.
+bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
+  unsigned Opc = MI->getOpcode();
+  if (Opc != Hexagon::S2_storerh_io)
+    return false;
+
+  MachineOperand &ValOp = MI->getOperand(2);
+  BitTracker::RegisterRef RS = ValOp;
+  if (!BT.has(RS.Reg))
+    return false;
+  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
+  RegHalf H;
+  if (!matchHalf(0, RC, 0, H))
+    return false;
+  if (H.Low)
+    return false;
+  MI->setDesc(HII.get(Hexagon::S2_storerf_io));
+  ValOp.setReg(H.Reg);
+  ValOp.setSubReg(H.Sub);
+  return true;
+}
+
+
+// If MI stores a value known at compile-time, and the value is within a range
+// that avoids using constant-extenders, replace it with a store-immediate.
+bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
+  unsigned Opc = MI->getOpcode();
+  unsigned Align = 0;
+  switch (Opc) {
+    case Hexagon::S2_storeri_io:
+      Align++;
+    case Hexagon::S2_storerh_io:
+      Align++;
+    case Hexagon::S2_storerb_io:
+      break;
+    default:
+      return false;
+  }
+
+  // Avoid stores to frame-indices (due to an unknown offset).
+  if (!MI->getOperand(0).isReg())
+    return false;
+  MachineOperand &OffOp = MI->getOperand(1);
+  if (!OffOp.isImm())
+    return false;
+
+  int64_t Off = OffOp.getImm();
+  // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
+  if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
+    return false;
+  // Source register:
+  BitTracker::RegisterRef RS = MI->getOperand(2);
+  if (!BT.has(RS.Reg))
+    return false;
+  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
+  uint64_t U;
+  if (!HBS::getConst(RC, 0, RC.width(), U))
+    return false;
+
+  // Only consider 8-bit values to avoid constant-extenders.
+  int V;
+  switch (Opc) {
+    case Hexagon::S2_storerb_io:
+      V = int8_t(U);
+      break;
+    case Hexagon::S2_storerh_io:
+      V = int16_t(U);
+      break;
+    case Hexagon::S2_storeri_io:
+      V = int32_t(U);
+      break;
+  }
+  if (!isInt<8>(V))
+    return false;
+
+  MI->RemoveOperand(2);
+  switch (Opc) {
+    case Hexagon::S2_storerb_io:
+      MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
+      break;
+    case Hexagon::S2_storerh_io:
+      MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
+      break;
+    case Hexagon::S2_storeri_io:
+      MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
+      break;
+  }
+  MI->addOperand(MachineOperand::CreateImm(V));
+  return true;
+}
+
+
+// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
+// last instruction in a sequence that results in something equivalent to
+// the pack-halfwords. The intent is to cause the entire sequence to become
+// dead.
+bool BitSimplification::genPackhl(MachineInstr *MI,
+      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+  unsigned Opc = MI->getOpcode();
+  if (Opc == Hexagon::S2_packhl)
+    return false;
+  BitTracker::RegisterRef Rs, Rt;
+  if (!matchPackhl(RD.Reg, RC, Rs, Rt))
+    return false;
+
+  MachineBasicBlock &B = *MI->getParent();
+  unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
+  DebugLoc DL = MI->getDebugLoc();
+  BuildMI(B, MI, DL, HII.get(Hexagon::S2_packhl), NewR)
+      .addReg(Rs.Reg, 0, Rs.Sub)
+      .addReg(Rt.Reg, 0, Rt.Sub);
+  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+  BT.put(BitTracker::RegisterRef(NewR), RC);
+  return true;
+}
+
+
+// If MI produces halfword of the input in the low half of the output,
+// replace it with zero-extend or extractu.
+bool BitSimplification::genExtractHalf(MachineInstr *MI,
+      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+  RegHalf L;
+  // Check for halfword in low 16 bits, zeros elsewhere.
+  if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
+    return false;
+
+  unsigned Opc = MI->getOpcode();
+  MachineBasicBlock &B = *MI->getParent();
+  DebugLoc DL = MI->getDebugLoc();
+
+  // Prefer zxth, since zxth can go in any slot, while extractu only in
+  // slots 2 and 3.
+  unsigned NewR = 0;
+  if (L.Low && Opc != Hexagon::A2_zxth) {
+    NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+    BuildMI(B, MI, DL, HII.get(Hexagon::A2_zxth), NewR)
+        .addReg(L.Reg, 0, L.Sub);
+  } else if (!L.Low && Opc != Hexagon::S2_extractu) {
+    NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+    BuildMI(B, MI, DL, HII.get(Hexagon::S2_extractu), NewR)
+        .addReg(L.Reg, 0, L.Sub)
+        .addImm(16)
+        .addImm(16);
+  }
+  if (NewR == 0)
+    return false;
+  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+  BT.put(BitTracker::RegisterRef(NewR), RC);
+  return true;
+}
+
+
+// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
+// combine.
+bool BitSimplification::genCombineHalf(MachineInstr *MI,
+      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+  RegHalf L, H;
+  // Check for combine h/l
+  if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
+    return false;
+  // Do nothing if this is just a reg copy.
+  if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
+    return false;
+
+  unsigned Opc = MI->getOpcode();
+  unsigned COpc = getCombineOpcode(H.Low, L.Low);
+  if (COpc == Opc)
+    return false;
+
+  MachineBasicBlock &B = *MI->getParent();
+  DebugLoc DL = MI->getDebugLoc();
+  unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+  BuildMI(B, MI, DL, HII.get(COpc), NewR)
+      .addReg(H.Reg, 0, H.Sub)
+      .addReg(L.Reg, 0, L.Sub);
+  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+  BT.put(BitTracker::RegisterRef(NewR), RC);
+  return true;
+}
+
+
+// If MI resets high bits of a register and keeps the lower ones, replace it
+// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
+bool BitSimplification::genExtractLow(MachineInstr *MI,
+      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+  unsigned Opc = MI->getOpcode();
+  switch (Opc) {
+    case Hexagon::A2_zxtb:
+    case Hexagon::A2_zxth:
+    case Hexagon::S2_extractu:
+      return false;
+  }
+  if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
+    int32_t Imm = MI->getOperand(2).getImm();
+    if (isInt<10>(Imm))
+      return false;
+  }
+
+  if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
+    return false;
+  unsigned W = RC.width();
+  while (W > 0 && RC[W-1].is(0))
+    W--;
+  if (W == 0 || W == RC.width())
+    return false;
+  unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
+                  : (W == 16) ? Hexagon::A2_zxth
+                  : (W < 10)  ? Hexagon::A2_andir
+                  : Hexagon::S2_extractu;
+  MachineBasicBlock &B = *MI->getParent();
+  DebugLoc DL = MI->getDebugLoc();
+
+  for (auto &Op : MI->uses()) {
+    if (!Op.isReg())
+      continue;
+    BitTracker::RegisterRef RS = Op;
+    if (!BT.has(RS.Reg))
+      continue;
+    const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+    unsigned BN, BW;
+    if (!HBS::getSubregMask(RS, BN, BW, MRI))
+      continue;
+    if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
+      continue;
+
+    unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+    auto MIB = BuildMI(B, MI, DL, HII.get(NewOpc), NewR)
+                  .addReg(RS.Reg, 0, RS.Sub);
+    if (NewOpc == Hexagon::A2_andir)
+      MIB.addImm((1 << W) - 1);
+    else if (NewOpc == Hexagon::S2_extractu)
+      MIB.addImm(W).addImm(0);
+    HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+    BT.put(BitTracker::RegisterRef(NewR), RC);
+    return true;
+  }
+  return false;
+}
+
+
+// Check for tstbit simplification opportunity, where the bit being checked
+// can be tracked back to another register. For example:
+//   vreg2 = S2_lsr_i_r  vreg1, 5
+//   vreg3 = S2_tstbit_i vreg2, 0
+// =>
+//   vreg3 = S2_tstbit_i vreg1, 5
+bool BitSimplification::simplifyTstbit(MachineInstr *MI,
+      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+  unsigned Opc = MI->getOpcode();
+  if (Opc != Hexagon::S2_tstbit_i)
+    return false;
+
+  unsigned BN = MI->getOperand(2).getImm();
+  BitTracker::RegisterRef RS = MI->getOperand(1);
+  unsigned F, W;
+  DebugLoc DL = MI->getDebugLoc();
+  if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
+    return false;
+  MachineBasicBlock &B = *MI->getParent();
+
+  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+  const BitTracker::BitValue &V = SC[F+BN];
+  if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
+    const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
+    // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
+    // a double register, need to use a subregister and adjust bit
+    // number.
+    unsigned P = UINT_MAX;
+    BitTracker::RegisterRef RR(V.RefI.Reg, 0);
+    if (TC == &Hexagon::DoubleRegsRegClass) {
+      P = V.RefI.Pos;
+      RR.Sub = Hexagon::subreg_loreg;
+      if (P >= 32) {
+        P -= 32;
+        RR.Sub = Hexagon::subreg_hireg;
+      }
+    } else if (TC == &Hexagon::IntRegsRegClass) {
+      P = V.RefI.Pos;
+    }
+    if (P != UINT_MAX) {
+      unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
+      BuildMI(B, MI, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
+          .addReg(RR.Reg, 0, RR.Sub)
+          .addImm(P);
+      HBS::replaceReg(RD.Reg, NewR, MRI);
+      BT.put(NewR, RC);
+      return true;
+    }
+  } else if (V.is(0) || V.is(1)) {
+    unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
+    unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
+    BuildMI(B, MI, DL, HII.get(NewOpc), NewR);
+    HBS::replaceReg(RD.Reg, NewR, MRI);
+    return true;
+  }
+
+  return false;
+}
+
+
+bool BitSimplification::processBlock(MachineBasicBlock &B,
+      const RegisterSet &AVs) {
+  bool Changed = false;
+  RegisterSet AVB = AVs;
+  RegisterSet Defs;
+
+  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
+    MachineInstr *MI = &*I;
+    Defs.clear();
+    HBS::getInstrDefs(*MI, Defs);
+
+    unsigned Opc = MI->getOpcode();
+    if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
+      continue;
+
+    if (MI->mayStore()) {
+      bool T = genStoreUpperHalf(MI);
+      T = T || genStoreImmediate(MI);
+      Changed |= T;
+      continue;
+    }
+
+    if (Defs.count() != 1)
+      continue;
+    const MachineOperand &Op0 = MI->getOperand(0);
+    if (!Op0.isReg() || !Op0.isDef())
+      continue;
+    BitTracker::RegisterRef RD = Op0;
+    if (!BT.has(RD.Reg))
+      continue;
+    const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
+    const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
+
+    if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
+      bool T = genPackhl(MI, RD, RC);
+      Changed |= T;
+      continue;
+    }
+
+    if (FRC->getID() == Hexagon::IntRegsRegClassID) {
+      bool T = genExtractHalf(MI, RD, RC);
+      T = T || genCombineHalf(MI, RD, RC);
+      T = T || genExtractLow(MI, RD, RC);
+      Changed |= T;
+      continue;
+    }
+
+    if (FRC->getID() == Hexagon::PredRegsRegClassID) {
+      bool T = simplifyTstbit(MI, RD, RC);
+      Changed |= T;
+      continue;
+    }
+  }
+  return Changed;
+}
+
+
+bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
+  auto &HST = MF.getSubtarget<HexagonSubtarget>();
+  auto &HRI = *HST.getRegisterInfo();
+  auto &HII = *HST.getInstrInfo();
+
+  MDT = &getAnalysis<MachineDominatorTree>();
+  MachineRegisterInfo &MRI = MF.getRegInfo();
+  bool Changed;
+
+  Changed = DeadCodeElimination(MF, *MDT).run();
+
+  const HexagonEvaluator HE(HRI, MRI, HII, MF);
+  BitTracker BT(HE, MF);
+  DEBUG(BT.trace(true));
+  BT.run();
+
+  MachineBasicBlock &Entry = MF.front();
+
+  RegisterSet AIG;  // Available registers for IG.
+  ConstGeneration ImmG(BT, HII, MRI);
+  Changed |= visitBlock(Entry, ImmG, AIG);
+
+  RegisterSet ARE;  // Available registers for RIE.
+  RedundantInstrElimination RIE(BT, HII, MRI);
+  Changed |= visitBlock(Entry, RIE, ARE);
+
+  RegisterSet ACG;  // Available registers for CG.
+  CopyGeneration CopyG(BT, HII, MRI);
+  Changed |= visitBlock(Entry, CopyG, ACG);
+
+  RegisterSet ACP;  // Available registers for CP.
+  CopyPropagation CopyP(HRI, MRI);
+  Changed |= visitBlock(Entry, CopyP, ACP);
+
+  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
+
+  BT.run();
+  RegisterSet ABS;  // Available registers for BS.
+  BitSimplification BitS(BT, HII, MRI);
+  Changed |= visitBlock(Entry, BitS, ABS);
+
+  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
+
+  if (Changed) {
+    for (auto &B : MF)
+      for (auto &I : B)
+        I.clearKillInfo();
+    DeadCodeElimination(MF, *MDT).run();
+  }
+  return Changed;
+}
+
+
+// Recognize loops where the code at the end of the loop matches the code
+// before the entry of the loop, and the matching code is such that is can
+// be simplified. This pass relies on the bit simplification above and only
+// prepares code in a way that can be handled by the bit simplifcation.
+//
+// This is the motivating testcase (and explanation):
+//
+// {
+//   loop0(.LBB0_2, r1)      // %for.body.preheader
+//   r5:4 = memd(r0++#8)
+// }
+// {
+//   r3 = lsr(r4, #16)
+//   r7:6 = combine(r5, r5)
+// }
+// {
+//   r3 = insert(r5, #16, #16)
+//   r7:6 = vlsrw(r7:6, #16)
+// }
+// .LBB0_2:
+// {
+//   memh(r2+#4) = r5
+//   memh(r2+#6) = r6            # R6 is really R5.H
+// }
+// {
+//   r2 = add(r2, #8)
+//   memh(r2+#0) = r4
+//   memh(r2+#2) = r3            # R3 is really R4.H
+// }
+// {
+//   r5:4 = memd(r0++#8)
+// }
+// {                             # "Shuffling" code that sets up R3 and R6
+//   r3 = lsr(r4, #16)           # so that their halves can be stored in the
+//   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
+// }                             # the stores if the code was at the beginning
+// {                             # of the loop iteration. Since the same code
+//   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
+//   r7:6 = vlsrw(r7:6, #16)     # there.
+// }:endloop0
+//
+//
+// The outcome:
+//
+// {
+//   loop0(.LBB0_2, r1)
+//   r5:4 = memd(r0++#8)
+// }
+// .LBB0_2:
+// {
+//   memh(r2+#4) = r5
+//   memh(r2+#6) = r5.h
+// }
+// {
+//   r2 = add(r2, #8)
+//   memh(r2+#0) = r4
+//   memh(r2+#2) = r4.h
+// }
+// {
+//   r5:4 = memd(r0++#8)
+// }:endloop0
+
+namespace llvm {
+  FunctionPass *createHexagonLoopRescheduling();
+  void initializeHexagonLoopReschedulingPass(PassRegistry&);
+}
+
+namespace {
+  class HexagonLoopRescheduling : public MachineFunctionPass {
+  public:
+    static char ID;
+    HexagonLoopRescheduling() : MachineFunctionPass(ID),
+        HII(0), HRI(0), MRI(0), BTP(0) {
+      initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
+    }
+
+    bool runOnMachineFunction(MachineFunction &MF) override;
+
+  private:
+    const HexagonInstrInfo *HII;
+    const HexagonRegisterInfo *HRI;
+    MachineRegisterInfo *MRI;
+    BitTracker *BTP;
+
+    struct LoopCand {
+      LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
+            MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
+      MachineBasicBlock *LB, *PB, *EB;
+    };
+    typedef std::vector<MachineInstr*> InstrList;
+    struct InstrGroup {
+      BitTracker::RegisterRef Inp, Out;
+      InstrList Ins;
+    };
+    struct PhiInfo {
+      PhiInfo(MachineInstr &P, MachineBasicBlock &B);
+      unsigned DefR;
+      BitTracker::RegisterRef LR, PR;
+      MachineBasicBlock *LB, *PB;
+    };
+
+    static unsigned getDefReg(const MachineInstr *MI);
+    bool isConst(unsigned Reg) const;
+    bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
+    bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
+    bool isShuffleOf(unsigned OutR, unsigned InpR) const;
+    bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
+        unsigned &InpR2) const;
+    void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
+        MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
+    bool processLoop(LoopCand &C);
+  };
+}
+
+char HexagonLoopRescheduling::ID = 0;
+
+INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
+  "Hexagon Loop Rescheduling", false, false)
+
+
+HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
+      MachineBasicBlock &B) {
+  DefR = HexagonLoopRescheduling::getDefReg(&P);
+  LB = &B;
+  PB = nullptr;
+  for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
+    const MachineOperand &OpB = P.getOperand(i+1);
+    if (OpB.getMBB() == &B) {
+      LR = P.getOperand(i);
+      continue;
+    }
+    PB = OpB.getMBB();
+    PR = P.getOperand(i);
+  }
+}
+
+
+unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
+  RegisterSet Defs;
+  HBS::getInstrDefs(*MI, Defs);
+  if (Defs.count() != 1)
+    return 0;
+  return Defs.find_first();
+}
+
+
+bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
+  if (!BTP->has(Reg))
+    return false;
+  const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
+  for (unsigned i = 0, w = RC.width(); i < w; ++i) {
+    const BitTracker::BitValue &V = RC[i];
+    if (!V.is(0) && !V.is(1))
+      return false;
+  }
+  return true;
+}
+
+
+bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
+      unsigned DefR) const {
+  unsigned Opc = MI->getOpcode();
+  switch (Opc) {
+    case TargetOpcode::COPY:
+    case Hexagon::S2_lsr_i_r:
+    case Hexagon::S2_asr_i_r:
+    case Hexagon::S2_asl_i_r:
+    case Hexagon::S2_lsr_i_p:
+    case Hexagon::S2_asr_i_p:
+    case Hexagon::S2_asl_i_p:
+    case Hexagon::S2_insert:
+    case Hexagon::A2_or:
+    case Hexagon::A2_orp:
+    case Hexagon::A2_and:
+    case Hexagon::A2_andp:
+    case Hexagon::A2_combinew:
+    case Hexagon::A4_combineri:
+    case Hexagon::A4_combineir:
+    case Hexagon::A2_combineii:
+    case Hexagon::A4_combineii:
+    case Hexagon::A2_combine_ll:
+    case Hexagon::A2_combine_lh:
+    case Hexagon::A2_combine_hl:
+    case Hexagon::A2_combine_hh:
+      return true;
+  }
+  return false;
+}
+
+
+bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
+      unsigned InpR) const {
+  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
+    const MachineOperand &Op = MI->getOperand(i);
+    if (!Op.isReg())
+      continue;
+    if (Op.getReg() == InpR)
+      return i == n-1;
+  }
+  return false;
+}
+
+
+bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
+  if (!BTP->has(OutR) || !BTP->has(InpR))
+    return false;
+  const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
+  for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
+    const BitTracker::BitValue &V = OutC[i];
+    if (V.Type != BitTracker::BitValue::Ref)
+      continue;
+    if (V.RefI.Reg != InpR)
+      return false;
+  }
+  return true;
+}
+
+
+bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
+      unsigned OutR2, unsigned &InpR2) const {
+  if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
+    return false;
+  const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
+  const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
+  unsigned W = OutC1.width();
+  unsigned MatchR = 0;
+  if (W != OutC2.width())
+    return false;
+  for (unsigned i = 0; i < W; ++i) {
+    const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
+    if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
+      return false;
+    if (V1.Type != BitTracker::BitValue::Ref)
+      continue;
+    if (V1.RefI.Pos != V2.RefI.Pos)
+      return false;
+    if (V1.RefI.Reg != InpR1)
+      return false;
+    if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
+      return false;
+    if (!MatchR)
+      MatchR = V2.RefI.Reg;
+    else if (V2.RefI.Reg != MatchR)
+      return false;
+  }
+  InpR2 = MatchR;
+  return true;
+}
+
+
+void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
+      MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
+      unsigned NewPredR) {
+  DenseMap<unsigned,unsigned> RegMap;
+
+  const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
+  unsigned PhiR = MRI->createVirtualRegister(PhiRC);
+  BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
+    .addReg(NewPredR)
+    .addMBB(&PB)
+    .addReg(G.Inp.Reg)
+    .addMBB(&LB);
+  RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
+
+  for (unsigned i = G.Ins.size(); i > 0; --i) {
+    const MachineInstr *SI = G.Ins[i-1];
+    unsigned DR = getDefReg(SI);
+    const TargetRegisterClass *RC = MRI->getRegClass(DR);
+    unsigned NewDR = MRI->createVirtualRegister(RC);
+    DebugLoc DL = SI->getDebugLoc();
+
+    auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
+    for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
+      const MachineOperand &Op = SI->getOperand(j);
+      if (!Op.isReg()) {
+        MIB.addOperand(Op);
+        continue;
+      }
+      if (!Op.isUse())
+        continue;
+      unsigned UseR = RegMap[Op.getReg()];
+      MIB.addReg(UseR, 0, Op.getSubReg());
+    }
+    RegMap.insert(std::make_pair(DR, NewDR));
+  }
+
+  HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
+}
+
+
+bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
+  DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
+  std::vector<PhiInfo> Phis;
+  for (auto &I : *C.LB) {
+    if (!I.isPHI())
+      break;
+    unsigned PR = getDefReg(&I);
+    if (isConst(PR))
+      continue;
+    bool BadUse = false, GoodUse = false;
+    for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
+      MachineInstr *UseI = UI->getParent();
+      if (UseI->getParent() != C.LB) {
+        BadUse = true;
+        break;
+      }
+      if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
+        GoodUse = true;
+    }
+    if (BadUse || !GoodUse)
+      continue;
+
+    Phis.push_back(PhiInfo(I, *C.LB));
+  }
+
+  DEBUG({
+    dbgs() << "Phis: {";
+    for (auto &I : Phis) {
+      dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
+             << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
+             << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
+             << I.LB->getNumber() << ')';
+    }
+    dbgs() << " }\n";
+  });
+
+  if (Phis.empty())
+    return false;
+
+  bool Changed = false;
+  InstrList ShufIns;
+
+  // Go backwards in the block: for each bit shuffling instruction, check
+  // if that instruction could potentially be moved to the front of the loop:
+  // the output of the loop cannot be used in a non-shuffling instruction
+  // in this loop.
+  for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
+    if (I->isTerminator())
+      continue;
+    if (I->isPHI())
+      break;
+
+    RegisterSet Defs;
+    HBS::getInstrDefs(*I, Defs);
+    if (Defs.count() != 1)
+      continue;
+    unsigned DefR = Defs.find_first();
+    if (!TargetRegisterInfo::isVirtualRegister(DefR))
+      continue;
+    if (!isBitShuffle(&*I, DefR))
+      continue;
+
+    bool BadUse = false;
+    for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
+      MachineInstr *UseI = UI->getParent();
+      if (UseI->getParent() == C.LB) {
+        if (UseI->isPHI()) {
+          // If the use is in a phi node in this loop, then it should be
+          // the value corresponding to the back edge.
+          unsigned Idx = UI.getOperandNo();
+          if (UseI->getOperand(Idx+1).getMBB() != C.LB)
+            BadUse = true;
+        } else {
+          auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
+          if (F == ShufIns.end())
+            BadUse = true;
+        }
+      } else {
+        // There is a use outside of the loop, but there is no epilog block
+        // suitable for a copy-out.
+        if (C.EB == nullptr)
+          BadUse = true;
+      }
+      if (BadUse)
+        break;
+    }
+
+    if (BadUse)
+      continue;
+    ShufIns.push_back(&*I);
+  }
+
+  // Partition the list of shuffling instructions into instruction groups,
+  // where each group has to be moved as a whole (i.e. a group is a chain of
+  // dependent instructions). A group produces a single live output register,
+  // which is meant to be the input of the loop phi node (although this is
+  // not checked here yet). It also uses a single register as its input,
+  // which is some value produced in the loop body. After moving the group
+  // to the beginning of the loop, that input register would need to be
+  // the loop-carried register (through a phi node) instead of the (currently
+  // loop-carried) output register.
+  typedef std::vector<InstrGroup> InstrGroupList;
+  InstrGroupList Groups;
+
+  for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
+    MachineInstr *SI = ShufIns[i];
+    if (SI == nullptr)
+      continue;
+
+    InstrGroup G;
+    G.Ins.push_back(SI);
+    G.Out.Reg = getDefReg(SI);
+    RegisterSet Inputs;
+    HBS::getInstrUses(*SI, Inputs);
+
+    for (unsigned j = i+1; j < n; ++j) {
+      MachineInstr *MI = ShufIns[j];
+      if (MI == nullptr)
+        continue;
+      RegisterSet Defs;
+      HBS::getInstrDefs(*MI, Defs);
+      // If this instruction does not define any pending inputs, skip it.
+      if (!Defs.intersects(Inputs))
+        continue;
+      // Otherwise, add it to the current group and remove the inputs that
+      // are defined by MI.
+      G.Ins.push_back(MI);
+      Inputs.remove(Defs);
+      // Then add all registers used by MI.
+      HBS::getInstrUses(*MI, Inputs);
+      ShufIns[j] = nullptr;
+    }
+
+    // Only add a group if it requires at most one register.
+    if (Inputs.count() > 1)
+      continue;
+    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
+      return G.Out.Reg == P.LR.Reg;
+    };
+    if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
+      continue;
+
+    G.Inp.Reg = Inputs.find_first();
+    Groups.push_back(G);
+  }
+
+  DEBUG({
+    for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
+      InstrGroup &G = Groups[i];
+      dbgs() << "Group[" << i << "] inp: "
+             << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
+             << "  out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
+      for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
+        dbgs() << "  " << *G.Ins[j];
+    }
+  });
+
+  for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
+    InstrGroup &G = Groups[i];
+    if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
+      continue;
+    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
+      return G.Out.Reg == P.LR.Reg;
+    };
+    auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
+    if (F == Phis.end())
+      continue;
+    unsigned PredR = 0;
+    if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
+      const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
+      unsigned Opc = DefPredR->getOpcode();
+      if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
+        continue;
+      if (!DefPredR->getOperand(1).isImm())
+        continue;
+      if (DefPredR->getOperand(1).getImm() != 0)
+        continue;
+      const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
+      if (RC != MRI->getRegClass(F->PR.Reg)) {
+        PredR = MRI->createVirtualRegister(RC);
+        unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
+                                                          : Hexagon::A2_tfrpi;
+        auto T = C.PB->getFirstTerminator();
+        DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
+        BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
+          .addImm(0);
+      } else {
+        PredR = F->PR.Reg;
+      }
+    }
+    assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
+    moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
+    Changed = true;
+  }
+
+  return Changed;
+}
+
+
+bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
+  auto &HST = MF.getSubtarget<HexagonSubtarget>();
+  HII = HST.getInstrInfo();
+  HRI = HST.getRegisterInfo();
+  MRI = &MF.getRegInfo();
+  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
+  BitTracker BT(HE, MF);
+  DEBUG(BT.trace(true));
+  BT.run();
+  BTP = &BT;
+
+  std::vector<LoopCand> Cand;
+
+  for (auto &B : MF) {
+    if (B.pred_size() != 2 || B.succ_size() != 2)
+      continue;
+    MachineBasicBlock *PB = nullptr;
+    bool IsLoop = false;
+    for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
+      if (*PI != &B)
+        PB = *PI;
+      else
+        IsLoop = true;
+    }
+    if (!IsLoop)
+      continue;
+
+    MachineBasicBlock *EB = nullptr;
+    for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
+      if (*SI == &B)
+        continue;
+      // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
+      // edge from B to EP is non-critical.
+      if ((*SI)->pred_size() == 1)
+        EB = *SI;
+      break;
+    }
+
+    Cand.push_back(LoopCand(&B, PB, EB));
+  }
+
+  bool Changed = false;
+  for (auto &C : Cand)
+    Changed |= processLoop(C);
+
+  return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+//                         Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createHexagonLoopRescheduling() {
+  return new HexagonLoopRescheduling();
+}
+
+FunctionPass *llvm::createHexagonBitSimplify() {
+  return new HexagonBitSimplify();
+}
+

Modified: llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp?rev=250868&r1=250867&r2=250868&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp Tue Oct 20 17:57:13 2015
@@ -62,6 +62,12 @@ static cl::opt<bool> EnableGenPred("hexa
 static cl::opt<bool> DisableHSDR("disable-hsdr", cl::init(false), cl::Hidden,
   cl::desc("Disable splitting double registers"));
 
+static cl::opt<bool> EnableBitSimplify("hexagon-bit", cl::init(true),
+  cl::Hidden, cl::desc("Bit simplification"));
+
+static cl::opt<bool> EnableLoopResched("hexagon-loop-resched", cl::init(true),
+  cl::Hidden, cl::desc("Loop rescheduling"));
+
 /// HexagonTargetMachineModule - Note that this is used on hosts that
 /// cannot link in a library unless there are references into the
 /// library.  In particular, it seems that it is not possible to get
@@ -84,6 +90,7 @@ SchedCustomRegistry("hexagon", "Run Hexa
                     createVLIWMachineSched);
 
 namespace llvm {
+  FunctionPass *createHexagonBitSimplify();
   FunctionPass *createHexagonCallFrameInformation();
   FunctionPass *createHexagonCFGOptimizer();
   FunctionPass *createHexagonCommonGEP();
@@ -99,6 +106,7 @@ namespace llvm {
   FunctionPass *createHexagonHardwareLoops();
   FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
                                      CodeGenOpt::Level OptLevel);
+  FunctionPass *createHexagonLoopRescheduling();
   FunctionPass *createHexagonNewValueJump();
   FunctionPass *createHexagonOptimizeSZextends();
   FunctionPass *createHexagonPacketizer();
@@ -223,9 +231,15 @@ bool HexagonPassConfig::addInstSelector(
     // Create logical operations on predicate registers.
     if (EnableGenPred)
       addPass(createHexagonGenPredicate(), false);
+    // Rotate loops to expose bit-simplification opportunities.
+    if (EnableLoopResched)
+      addPass(createHexagonLoopRescheduling(), false);
     // Split double registers.
     if (!DisableHSDR)
       addPass(createHexagonSplitDoubleRegs());
+    // Bit simplification.
+    if (EnableBitSimplify)
+      addPass(createHexagonBitSimplify(), false);
     addPass(createHexagonPeephole());
     printAndVerify("After hexagon peephole pass");
     if (EnableGenInsert)

Modified: llvm/trunk/test/CodeGen/Hexagon/adde.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/adde.ll?rev=250868&r1=250867&r2=250868&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/adde.ll (original)
+++ llvm/trunk/test/CodeGen/Hexagon/adde.ll Tue Oct 20 17:57:13 2015
@@ -1,4 +1,4 @@
-; RUN: llc -march=hexagon -disable-hsdr -hexagon-expand-condsets=0 < %s | FileCheck %s
+; RUN: llc -march=hexagon -disable-hsdr -hexagon-expand-condsets=0 -hexagon-bit=0 < %s | FileCheck %s
 
 ; CHECK: r{{[0-9]+:[0-9]+}} = #1
 ; CHECK: r{{[0-9]+:[0-9]+}} = #0

Added: llvm/trunk/test/CodeGen/Hexagon/bit-eval.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/bit-eval.ll?rev=250868&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/bit-eval.ll (added)
+++ llvm/trunk/test/CodeGen/Hexagon/bit-eval.ll Tue Oct 20 17:57:13 2015
@@ -0,0 +1,53 @@
+; RUN: llc < %s | FileCheck %s
+
+target datalayout = "e-m:e-p:32:32-i1:32-i64:64-a:0-v32:32-n16:32"
+target triple = "hexagon"
+
+; CHECK-LABEL: test1:
+; CHECK: r0 = ##1073741824
+define i32 @test1() #0 {
+entry:
+  %0 = tail call i32 @llvm.hexagon.S2.asr.i.r.rnd(i32 2147483647, i32 0)
+  ret i32 %0
+}
+
+; CHECK-LABEL: test2:
+; CHECK: r0 = ##1073741824
+define i32 @test2() #0 {
+entry:
+  %0 = tail call i32 @llvm.hexagon.S2.asr.i.r.rnd.goodsyntax(i32 2147483647, i32 1)
+  ret i32 %0
+}
+
+; CHECK-LABEL: test3:
+; CHECK: r1:0 = #1
+define i64 @test3() #0 {
+entry:
+  %0 = tail call i64 @llvm.hexagon.S4.extractp(i64 -1, i32 63, i32 63)
+  ret i64 %0
+}
+
+; CHECK-LABEL: test4:
+; CHECK: r0 = #1
+define i32 @test4() #0 {
+entry:
+  %0 = tail call i32 @llvm.hexagon.S4.extract(i32 -1, i32 31, i32 31)
+  ret i32 %0
+}
+
+; CHECK-LABEL: test5:
+; CHECK: r0 = ##-1073741569
+define i32 @test5() #0 {
+entry:
+  %0 = tail call i32 @llvm.hexagon.S4.subi.lsr.ri(i32 255, i32 -2147483648, i32 1)
+  ret i32 %0
+}
+
+declare i32 @llvm.hexagon.S2.asr.i.r.rnd(i32, i32) #0
+declare i32 @llvm.hexagon.S2.asr.i.r.rnd.goodsyntax(i32, i32) #0
+declare i64 @llvm.hexagon.S4.extractp(i64, i32, i32) #0
+declare i32 @llvm.hexagon.S4.extract(i32, i32, i32) #0
+declare i32 @llvm.hexagon.S4.subi.lsr.ri(i32, i32, i32) #0
+
+attributes #0 = { nounwind readnone }
+

Added: llvm/trunk/test/CodeGen/Hexagon/bit-loop.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/bit-loop.ll?rev=250868&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/bit-loop.ll (added)
+++ llvm/trunk/test/CodeGen/Hexagon/bit-loop.ll Tue Oct 20 17:57:13 2015
@@ -0,0 +1,80 @@
+; RUN: llc < %s | FileCheck %s
+; CHECK-DAG: memh(r{{[0-9]+}}+#0) = r{{[0-9]+}}
+; CHECK-DAG: memh(r{{[0-9]+}}+#2) = r{{[0-9]+}}.h
+; CHECK-DAG: memh(r{{[0-9]+}}+#4) = r{{[0-9]+}}
+; CHECK-DAG: memh(r{{[0-9]+}}+#6) = r{{[0-9]+}}.h
+
+target datalayout = "e-m:e-p:32:32-i1:32-i64:64-a:0-v32:32-n16:32"
+target triple = "hexagon"
+
+; Function Attrs: nounwind
+define void @foo(i64* nocapture readonly %r64, i16 zeroext %n, i16 zeroext %s, i64* nocapture %p64) #0 {
+entry:
+  %conv = zext i16 %n to i32
+  %cmp = icmp eq i16 %n, 0
+  br i1 %cmp, label %for.end, label %for.body.preheader
+
+for.body.preheader:                               ; preds = %entry
+  %0 = load i64, i64* %r64, align 8, !tbaa !1
+  %v.sroa.0.0.extract.trunc = trunc i64 %0 to i16
+  %v.sroa.4.0.extract.shift = lshr i64 %0, 16
+  %v.sroa.4.0.extract.trunc = trunc i64 %v.sroa.4.0.extract.shift to i16
+  %v.sroa.5.0.extract.shift = lshr i64 %0, 32
+  %v.sroa.5.0.extract.trunc = trunc i64 %v.sroa.5.0.extract.shift to i16
+  %v.sroa.6.0.extract.shift = lshr i64 %0, 48
+  %v.sroa.6.0.extract.trunc = trunc i64 %v.sroa.6.0.extract.shift to i16
+  %1 = bitcast i64* %p64 to i16*
+  %conv2 = zext i16 %s to i32
+  %add.ptr = getelementptr inbounds i16, i16* %1, i32 %conv2
+  %add.ptr.sum = add nuw nsw i32 %conv2, 1
+  %add.ptr3 = getelementptr inbounds i16, i16* %1, i32 %add.ptr.sum
+  %add.ptr.sum50 = add nuw nsw i32 %conv2, 2
+  %add.ptr4 = getelementptr inbounds i16, i16* %1, i32 %add.ptr.sum50
+  %add.ptr.sum51 = add nuw nsw i32 %conv2, 3
+  %add.ptr5 = getelementptr inbounds i16, i16* %1, i32 %add.ptr.sum51
+  br label %for.body
+
+for.body:                                         ; preds = %for.body.preheader, %for.body
+  %add.ptr11.phi = phi i16* [ %add.ptr11.inc, %for.body ], [ %add.ptr, %for.body.preheader ]
+  %add.ptr16.phi = phi i16* [ %add.ptr16.inc, %for.body ], [ %add.ptr3, %for.body.preheader ]
+  %add.ptr21.phi = phi i16* [ %add.ptr21.inc, %for.body ], [ %add.ptr4, %for.body.preheader ]
+  %add.ptr26.phi = phi i16* [ %add.ptr26.inc, %for.body ], [ %add.ptr5, %for.body.preheader ]
+  %i.058.pmt = phi i32 [ %inc.pmt, %for.body ], [ 0, %for.body.preheader ]
+  %v.sroa.0.157 = phi i16 [ %v.sroa.0.0.extract.trunc34, %for.body ], [ %v.sroa.0.0.extract.trunc, %for.body.preheader ]
+  %v.sroa.4.156 = phi i16 [ %v.sroa.4.0.extract.trunc36, %for.body ], [ %v.sroa.4.0.extract.trunc, %for.body.preheader ]
+  %v.sroa.5.155 = phi i16 [ %v.sroa.5.0.extract.trunc38, %for.body ], [ %v.sroa.5.0.extract.trunc, %for.body.preheader ]
+  %v.sroa.6.154 = phi i16 [ %v.sroa.6.0.extract.trunc40, %for.body ], [ %v.sroa.6.0.extract.trunc, %for.body.preheader ]
+  %q64.153.pn = phi i64* [ %q64.153, %for.body ], [ %r64, %for.body.preheader ]
+  %q64.153 = getelementptr inbounds i64, i64* %q64.153.pn, i32 1
+  store i16 %v.sroa.0.157, i16* %add.ptr11.phi, align 2, !tbaa !5
+  store i16 %v.sroa.4.156, i16* %add.ptr16.phi, align 2, !tbaa !5
+  store i16 %v.sroa.5.155, i16* %add.ptr21.phi, align 2, !tbaa !5
+  store i16 %v.sroa.6.154, i16* %add.ptr26.phi, align 2, !tbaa !5
+  %2 = load i64, i64* %q64.153, align 8, !tbaa !1
+  %v.sroa.0.0.extract.trunc34 = trunc i64 %2 to i16
+  %v.sroa.4.0.extract.shift35 = lshr i64 %2, 16
+  %v.sroa.4.0.extract.trunc36 = trunc i64 %v.sroa.4.0.extract.shift35 to i16
+  %v.sroa.5.0.extract.shift37 = lshr i64 %2, 32
+  %v.sroa.5.0.extract.trunc38 = trunc i64 %v.sroa.5.0.extract.shift37 to i16
+  %v.sroa.6.0.extract.shift39 = lshr i64 %2, 48
+  %v.sroa.6.0.extract.trunc40 = trunc i64 %v.sroa.6.0.extract.shift39 to i16
+  %inc.pmt = add i32 %i.058.pmt, 1
+  %cmp8 = icmp slt i32 %inc.pmt, %conv
+  %add.ptr11.inc = getelementptr i16, i16* %add.ptr11.phi, i32 4
+  %add.ptr16.inc = getelementptr i16, i16* %add.ptr16.phi, i32 4
+  %add.ptr21.inc = getelementptr i16, i16* %add.ptr21.phi, i32 4
+  %add.ptr26.inc = getelementptr i16, i16* %add.ptr26.phi, i32 4
+  br i1 %cmp8, label %for.body, label %for.end
+
+for.end:                                          ; preds = %for.body, %entry
+  ret void
+}
+
+attributes #0 = { nounwind }
+
+!1 = !{!2, !2, i64 0}
+!2 = !{!"long long", !3, i64 0}
+!3 = !{!"omnipotent char", !4, i64 0}
+!4 = !{!"Simple C/C++ TBAA"}
+!5 = !{!6, !6, i64 0}
+!6 = !{!"short", !3, i64 0}

Modified: llvm/trunk/test/CodeGen/Hexagon/clr_set_toggle.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/clr_set_toggle.ll?rev=250868&r1=250867&r2=250868&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/clr_set_toggle.ll (original)
+++ llvm/trunk/test/CodeGen/Hexagon/clr_set_toggle.ll Tue Oct 20 17:57:13 2015
@@ -1,4 +1,4 @@
-; RUN: llc -march=hexagon -mcpu=hexagonv5  < %s | FileCheck %s
+; RUN: llc -march=hexagon -mcpu=hexagonv5 -hexagon-bit=0 < %s | FileCheck %s
 ; Optimized bitwise operations.
 
 define i32 @my_clrbit(i32 %x) nounwind {

Modified: llvm/trunk/test/CodeGen/Hexagon/opt-fabs.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/opt-fabs.ll?rev=250868&r1=250867&r2=250868&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/opt-fabs.ll (original)
+++ llvm/trunk/test/CodeGen/Hexagon/opt-fabs.ll Tue Oct 20 17:57:13 2015
@@ -1,4 +1,4 @@
-; RUN: llc -mtriple=hexagon-unknown-elf -mcpu=hexagonv5  < %s | FileCheck %s
+; RUN: llc -mtriple=hexagon-unknown-elf -mcpu=hexagonv5 -hexagon-bit=0 < %s | FileCheck %s
 ; Optimize fabsf to clrbit in V5.
 
 ; CHECK: r{{[0-9]+}} = clrbit(r{{[0-9]+}}, #31)

Modified: llvm/trunk/test/CodeGen/Hexagon/sube.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/sube.ll?rev=250868&r1=250867&r2=250868&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/sube.ll (original)
+++ llvm/trunk/test/CodeGen/Hexagon/sube.ll Tue Oct 20 17:57:13 2015
@@ -1,4 +1,4 @@
-; RUN: llc -march=hexagon -disable-hsdr -hexagon-expand-condsets=0 < %s | FileCheck %s
+; RUN: llc -march=hexagon -disable-hsdr -hexagon-expand-condsets=0 -hexagon-bit=0 < %s | FileCheck %s
 
 ; CHECK: r{{[0-9]+:[0-9]+}} = #1
 ; CHECK: r{{[0-9]+:[0-9]+}} = #0




More information about the llvm-commits mailing list