[LNT] r237661 - More analysis test cases

Chris Matthews cmatthews5 at apple.com
Mon May 18 18:59:27 PDT 2015


Author: cmatthews
Date: Mon May 18 20:59:27 2015
New Revision: 237661

URL: http://llvm.org/viewvc/llvm-project?rev=237661&view=rev
Log:
More analysis test cases

Modified:
    lnt/trunk/tests/server/reporting/analysis.py

Modified: lnt/trunk/tests/server/reporting/analysis.py
URL: http://llvm.org/viewvc/llvm-project/lnt/trunk/tests/server/reporting/analysis.py?rev=237661&r1=237660&r2=237661&view=diff
==============================================================================
--- lnt/trunk/tests/server/reporting/analysis.py (original)
+++ lnt/trunk/tests/server/reporting/analysis.py Mon May 18 20:59:27 2015
@@ -2,12 +2,109 @@
 #
 # RUN: python %s
 import unittest
-import lnt.util.stats as stats
 from lnt.server.reporting.analysis import ComparisonResult, REGRESSED, IMPROVED
 from lnt.server.reporting.analysis import UNCHANGED_PASS, UNCHANGED_FAIL
 
+FLAT_LINE = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
+             1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
+
+FLAT_NOISE = [1.0129, 1.0131, 1.039, 1.0399, 1.0071, 1.0003, 1.023, 1.0386,
+              1.0025, 1.0273, 1.0014, 1.0101, 1.0075, 1.007, 1.0207, 1.0274,
+              1.0252, 1.0394, 1.0225, 1.0154, 1.0066, 1.0007, 1.0311, 1.0077]
+
+BIG_NUMBERS_FLAT = [10.2177, 10.4559, 10.463, 10.1278, 10.0132, 10.3997, 10.256,
+                    10.1849, 10.4397, 10.453, 10.1414, 10.4185, 10.0477, 10.3637,
+                    10.2025, 10.0212, 10.4823, 10.1047, 10.2676, 10.2971, 10.2329,
+                    10.0271, 10.0571, 10.4414]
+
+FLAT_NOISE2 = [10.2177, 10.4559, 10.463, 10.1278, 10.0132, 10.3997, 10.256,
+               10.1849, 10.4397, 10.453, 10.1414, 10.4185, 10.0477, 10.3637,
+               10.2025, 10.0212, 10.4823, 10.1047, 10.2676, 10.2971, 10.2329,
+               10.0271, 10.0571, 10.4414]
+
+SIMPLE_REGRESSION = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0,
+                     2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
+
+REGRESS_5 = [11.3978, 11.2272, 11.3756, 11.0, 11.1964, 11.0341, 11.1875,
+             11.2624, 11.3429, 11.0012, 12.2821, 12.2141, 12.3077, 12.4856,
+             12.3829, 12.4266, 12.3724, 12.3023, 12.0148, 12.1289, 12.2068,
+             12.2897, 12.0671, 12.2238]
+
+MS_5_REG = [11.3978, 11.2272, 11.3756, 11.0, 11.1964, 11.0341, 11.1875,
+            11.2624, 11.3429, 11.0012, 12.2821, 12.2141, 12.3077, 12.4856,
+            12.3829, 12.4266, 12.3724, 12.3023, 12.0148, 12.1289, 12.2068,
+            12.2897, 12.0671, 12.2238]
+
+IMP = [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 2.0,
+       2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
+
+IMP_NOISE = [13.2326, 13.1521, 13.0828, 13.4, 13.3142, 13.0989, 13.2671,
+             13.1749, 13.3357, 13.0381, 12.3538, 12.1364, 12.0743, 12.4843,
+             12.225, 12.261, 12.2779, 12.4818, 12.3725, 12.026, 12.2646,
+             12.0656, 12.0327, 12.4735]
+
+BIMODAL = [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0,
+           2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0]
+
+BIMODAL_NOISE = [11.1597, 12.0476, 11.2654, 12.2211, 11.2945, 12.2029, 11.3946,
+                 12.1823, 11.3261, 12.4447, 11.1011, 12.4827, 11.4645, 12.3512,
+                 11.381, 12.1887, 11.0718, 12.4719, 11.0017, 12.4311, 11.3296,
+                 12.0678, 11.0258, 12.3331]
+
+BM_ALTERNATE = [1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0,
+                2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0]
+
+BM_AL_NOISE = [11.3276, 12.0247, 12.2933, 11.337, 11.0047, 12.2884, 12.4807,
+               11.4142, 11.2305, 12.4549, 12.4898, 11.2168, 11.0961, 12.3487,
+               12.395, 11.0562, 11.2327, 12.3907, 12.3533, 11.2095, 11.3616,
+               12.2507, 12.295, 11.0373]
+
+BM_AL_REG = [1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0,
+             2.0, 2.0, 3.0, 3.0, 2.0, 2.0, 3.0, 3.0, 2.0, 2.0]
+
+BM_REGRESSION = [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 3.0,
+                 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0]
+
+BM_REGS_NOISE = [11.1433, 12.0805, 12.3661, 11.0146, 11.1983, 12.2693, 12.3474,
+                 11.4173, 11.3068, 12.2658, 12.1376, 13.3669, 13.1601, 12.0867,
+                 12.23, 13.3021, 13.263, 12.3641, 12.3352, 13.0674, 13.1938,
+                 12.2187, 12.1801]
+
+BM_REG_OVERLAP = [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.5,
+                  1.5, 2.5, 1.5, 2.5, 1.5, 2.5, 1.5, 2.5, 1.5, 2.5, 1.5]
+
+BM_REG_OVER_NOISE = [11.4327, 12.3285, 11.1276, 12.1334, 11.2259, 12.0603, 11.3169,
+                     12.4749, 11.1805, 12.0481, 11.1331, 12.012, 12.8302, 11.5071,
+                     12.6074, 11.6872, 12.9957, 11.5772, 12.8381, 11.8985, 12.7692,
+                     11.6686, 12.6311, 11.8401]
+
+SPIKE = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 15, 1.0,
+         1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
+
+NOISE_SPIKE = [11.4116, 11.3406, 11.3591, 11.2415, 11.1551, 11.0909, 11.3657,
+               11.0299, 25.0867, 11.2155, 11.1742, 11.487, 11.2852, 11.3026,
+               11.1036, 12.2208, 11.0029, 11.4335, 11.4661, 11.0444, 11.0467,
+               11.4942, 11.1692, 11.1597]
+
+SLOW_REG = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,
+            2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3]
+
+SLOW_REG_NOISE = [11.094, 11.1011, 11.5267, 11.5397, 11.6993, 11.7814, 11.6809,
+                  12.06, 12.281, 12.0899, 12.3967, 12.5441, 12.6527, 12.5586,
+                  12.8025, 12.9391, 13.0077, 12.7716, 13.0799, 13.324, 13.3028,
+                  13.4567, 13.2734, 13.6797]
+
+SLOW_IMP = [2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2,
+            1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
+
+SLOW_IMP_NOISE = [12.4592, 12.7874, 12.4891, 12.3433, 12.1183, 12.3755, 12.0194,
+                  11.7551, 11.9412, 11.9822, 11.55, 11.3235, 11.6681, 11.5486,
+                  11.2267, 11.0775, 11.1642, 10.8639, 10.8378, 10.8704, 10.5302,
+                  10.5058, 10.5191, 10.2733]
+
 
 class ComparisonResultTest(unittest.TestCase):
+
     """Test the generation of differnt types of comparison results."""
 
     def test_comp(self):
@@ -22,36 +119,195 @@ class ComparisonResultTest(unittest.Test
 
     def test_slower(self):
         """Test getting a simple regression."""
-        slower = ComparisonResult(min,
-                                  False, False, [10], [5])
+        slower = ComparisonResult(min, False, False, [10], [5])
         self.assertEquals(slower.get_value_status(), REGRESSED)
         self.assertTrue(slower.is_result_interesting())
 
     def test_faster(self):
         """Test getting a simple improvement."""
 
-        faster = ComparisonResult(min,
-                                  False, False, [5], [10])
+        faster = ComparisonResult(min, False, False, [5], [10])
+        self.assertEquals(faster.get_value_status(), IMPROVED)
+        self.assertTrue(faster.is_result_interesting())
+
+    def test_really_faster(self):
+        """Test getting a simple improvement."""
+
+        faster = ComparisonResult(min, False, False, [5, 6], [10, 10, 10])
         self.assertEquals(faster.get_value_status(), IMPROVED)
         self.assertTrue(faster.is_result_interesting())
 
     def test_improved_status(self):
         """Test getting a test status improvement."""
-        improved = ComparisonResult(min,
-                                    False, True, [1], None)
+        improved = ComparisonResult(min, False, True, [1], None)
         self.assertEquals(improved.get_test_status(), IMPROVED)
 
     def test_regressed_status(self):
         """Test getting a test status improvement."""
-        improved = ComparisonResult(min,
-                                    True, False, None, [10])
+        improved = ComparisonResult(min, True, False, None, [10])
         self.assertEquals(improved.get_test_status(), REGRESSED)
 
     def test_keep_on_failing_status(self):
         """Test getting a repeated fail."""
-        improved = ComparisonResult(min,
-                                    True, True, None, None)
+        improved = ComparisonResult(min, True, True, None, None)
         self.assertEquals(improved.get_test_status(), UNCHANGED_FAIL)
 
+    def test_noticeable_regression(self):
+        """Test a big looking jump."""
+        regressed = ComparisonResult(min, False, False, [10.0, 10.1],
+                                     [5.0, 5.1, 4.9, 5.0])
+        self.assertEquals(regressed.get_value_status(), REGRESSED)
+
+    def test_no_regression_flat_line(self):
+        """This is a flat line, it should have no changes."""
+        flat = ComparisonResult(min, False, False, [1.0], FLAT_LINE[0:10])
+        self.assertEquals(flat.get_value_status(), UNCHANGED_PASS)
+
+    def test_no_regression_flat_line_noise(self):
+        """Now 4% noise."""
+        flat = ComparisonResult(min, False, False, [1.020], FLAT_NOISE[0:10])
+        ret = flat.get_value_status()
+        # Fixme
+        # self.assertEquals(ret, UNCHANGED_PASS)
+
+    def test_big_no_regression_flat_line_noise(self):
+        """Same data, but bigger 10 + 5% variation."""
+        flat = ComparisonResult(min, False, False, [10.25], FLAT_NOISE2[0:10])
+        ret = flat.get_value_status()
+        # Fixme
+        # self.assertEquals(ret, UNCHANGED_PASS)
+
+    def test_big_no_regression_flat_line_multi(self):
+        """Same data, but bigger 10 + 5% variation, multisample current."""
+        flat = ComparisonResult(min, False, False, [10.0606, 10.4169, 10.1859],
+                                BIG_NUMBERS_FLAT[0:10])
+        ret = flat.get_value_status()
+        # Fixme
+        # self.assertEquals(ret, UNCHANGED_PASS)
+
+    def test_simple_regression(self):
+        """Flat line that jumps to another flat line."""
+        flat = ComparisonResult(
+            min, False, False, [SIMPLE_REGRESSION[10]], SIMPLE_REGRESSION[0:9])
+        self.assertEquals(flat.get_value_status(), REGRESSED)
+
+    def test_noisy_regression_5(self):
+        """A regression in 5% noise."""
+        flat = ComparisonResult(min, False, False, [12.2821], REGRESS_5[0:9])
+        self.assertEquals(flat.get_value_status(), REGRESSED)
+
+    def test_noisy_regression_5_multi(self):
+        """A regression in 5% noise, more current samples."""
+        flat = ComparisonResult(min, False, False, [12.2821, 12.2141, 12.3077],
+                                MS_5_REG[0:9])
+        ret = flat.get_value_status()
+        self.assertEquals(ret, REGRESSED)
+
+    def test_simple_improvement(self):
+        """An improvement without noise."""
+        flat = ComparisonResult(min, False, False, [IMP[10]], IMP[0:9])
+        self.assertEquals(flat.get_value_status(), IMPROVED)
+
+    def test_noise_improvement(self):
+        """An improvement with 5% noise."""
+        flat = ComparisonResult(min, False, False, [IMP_NOISE[10]],
+                                IMP_NOISE[0:9])
+        self.assertEquals(flat.get_value_status(), IMPROVED)
+
+    def test_bimodal(self):
+        """A bimodal line, with no regressions."""
+        bimodal = ComparisonResult(min, False, False, [BIMODAL[10]],
+                                   BIMODAL[0:9])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), UNCHANGED_PASS)
+
+    def test_noise_bimodal(self):
+        """Bimodal line with 5% noise."""
+        bimodal = ComparisonResult(min, False, False, [BIMODAL_NOISE[10]],
+                                   BIMODAL_NOISE[0:9])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), UNCHANGED_PASS)
+
+    def test_bimodal_alternating(self):
+        """Bimodal which sticks in a mode for a while."""
+        bimodal = ComparisonResult(min, False, False, [BM_ALTERNATE[10]],
+                                   BM_ALTERNATE[0:9])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), UNCHANGED_PASS)
+
+    def test_noise_bimodal_alternating(self):
+        """Bimodal alternating with 5% noise."""
+        bimodal = ComparisonResult(min, False, False, [BM_AL_NOISE[10]],
+                                   BM_AL_NOISE[0:9])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), UNCHANGED_PASS)
+
+    def test_bimodal_alternating_regression(self):
+        """Bimodal alternating regression."""
+        bimodal = ComparisonResult(min, False, False, [BM_AL_REG[11]],
+                                   BM_AL_REG[0:10])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), REGRESSED)
+
+    def test_bimodal_regression(self):
+        """A regression in a bimodal line."""
+        bimodal = ComparisonResult(min, False, False, [BM_REGRESSION[12]],
+                                   BM_REGRESSION[0:11])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), REGRESSED)
+
+    def test_noise_bimodal_regression(self):
+        bimodal = ComparisonResult(
+            min, False, False, [BM_REGS_NOISE[12]], BM_REGS_NOISE[0:11])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), REGRESSED)
+
+    def test_bimodal_overlapping_regression(self):
+        bimodal = ComparisonResult(min, False, False, [BM_REG_OVERLAP[12]],
+                                   BM_REG_OVERLAP[0:11])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), REGRESSED)
+
+    def test_noise_bimodal_overlapping_regression(self):
+        bimodal = ComparisonResult(
+            min, False, False, [BM_REG_OVER_NOISE[12]],
+            BM_REG_OVER_NOISE[0:11])
+        # Fixme
+        # self.assertEquals(bimodal.get_value_status(), REGRESSED)
+
+    def test_single_spike(self):
+        spike = ComparisonResult(min, False, False, [SPIKE[12]], SPIKE[0:11])
+        self.assertEquals(spike.get_value_status(), UNCHANGED_PASS)
+
+    def test_noise_single_spike(self):
+        spike = ComparisonResult(min, False, False,
+                                 [NOISE_SPIKE[12]], NOISE_SPIKE[0:11])
+        # Fixme
+        # self.assertEquals(spike.get_value_status(), UNCHANGED_PASS)
+
+    def test_slow_regression(self):
+        slow = ComparisonResult(min, False, False,
+                                [SLOW_REG[12]], SLOW_REG[0:11])
+        # Fixme
+        # self.assertEquals(slow.get_value_status(), REGRESSED)
+
+    def test_noise_slow_regression(self):
+        slow = ComparisonResult(
+            min, False, False, [SLOW_REG_NOISE[12]], SLOW_REG_NOISE[0:11])
+        # Fixme
+        # self.assertEquals(slow.get_value_status(), REGRESSED)
+
+    def test_slow_improvement(self):
+        slow = ComparisonResult(
+            min, False, False, [SLOW_IMP[12]], SLOW_IMP[0:11])
+        # Fixme
+        # self.assertEquals(slow.get_value_status(), IMPROVED)
+
+    def test_noise_slow_improvement(self):
+        slow = ComparisonResult(
+            min, False, False, [SLOW_IMP_NOISE[12]], SLOW_IMP_NOISE[0:11])
+        # Fixme
+        # self.assertEquals(slow.get_value_status(), IMPROVED)
+
 if __name__ == '__main__':
     unittest.main()





More information about the llvm-commits mailing list