[llvm] r217982 - Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
David Blaikie
dblaikie at gmail.com
Wed Sep 17 15:37:47 PDT 2014
Recommitted (while removing the virtual dtor) in r217990. Thanks!
On Wed, Sep 17, 2014 at 3:30 PM, Chris Bieneman <beanz at apple.com> wrote:
> Agreed. Yours is the better solution. If you’d like I can make the change.
>
> -Chris
>
> On Sep 17, 2014, at 3:28 PM, David Blaikie <dblaikie at gmail.com> wrote:
>
>
>
> On Wed, Sep 17, 2014 at 3:27 PM, Chris Bieneman <beanz at apple.com> wrote:
>
>> I put in a change in r217988 that should have resolved it. I think your
>> change will fail to build because now there are two destructors declared.
>>
>
> Yep - sorry, I seem to be a bit slow off the mark.
>
> Reverted my fix in r217989.
>
> Though it might be worth considering my fix over yours as it doesn't look
> like objects of this type are polymorphically owned - so no virtual dtor is
> necessary.
>
> - David
>
>
>>
>> -Chris
>>
>> On Sep 17, 2014, at 3:25 PM, David Blaikie <dblaikie at gmail.com> wrote:
>>
>> This introduced a -Wnon-virtual-dtor warning which I've fixed in r217988.
>> Let me know if that's not the right fix, etc.
>>
>> - David
>>
>> On Wed, Sep 17, 2014 at 1:55 PM, Chris Bieneman <beanz at apple.com> wrote:
>>
>>> Author: cbieneman
>>> Date: Wed Sep 17 15:55:46 2014
>>> New Revision: 217982
>>>
>>> URL: http://llvm.org/viewvc/llvm-project?rev=217982&view=rev
>>> Log:
>>> Refactoring SimplifyLibCalls to remove static initializers and generally
>>> cleaning up the code.
>>>
>>> Summary: This eliminates ~200 lines of code mostly file scoped struct
>>> definitions that were unnecessary.
>>>
>>> Reviewers: chandlerc, resistor
>>>
>>> Reviewed By: resistor
>>>
>>> Subscribers: morisset, resistor, llvm-commits
>>>
>>> Differential Revision: http://reviews.llvm.org/D5364
>>>
>>> Modified:
>>> llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>> llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>> llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>>>
>>> Modified: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>> URL:
>>> http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff
>>>
>>> ==============================================================================
>>> --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>> (original)
>>> +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h Wed Sep
>>> 17 15:55:46 2014
>>> @@ -15,40 +15,114 @@
>>> #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>>> #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>>>
>>> +#include "llvm/ADT/StringRef.h"
>>> +#include "llvm/IR/IRBuilder.h"
>>> +
>>> namespace llvm {
>>> - class Value;
>>> - class CallInst;
>>> - class DataLayout;
>>> - class Instruction;
>>> - class TargetLibraryInfo;
>>> - class LibCallSimplifierImpl;
>>> -
>>> - /// LibCallSimplifier - This class implements a collection of
>>> optimizations
>>> - /// that replace well formed calls to library functions with a more
>>> optimal
>>> - /// form. For example, replacing 'printf("Hello!")' with
>>> 'puts("Hello!")'.
>>> - class LibCallSimplifier {
>>> - /// Impl - A pointer to the actual implementation of the library
>>> call
>>> - /// simplifier.
>>> - LibCallSimplifierImpl *Impl;
>>> -
>>> - public:
>>> - LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo
>>> *TLI,
>>> - bool UnsafeFPShrink);
>>> - virtual ~LibCallSimplifier();
>>> -
>>> - /// optimizeCall - Take the given call instruction and return a more
>>> - /// optimal value to replace the instruction with or 0 if a more
>>> - /// optimal form can't be found. Note that the returned value may
>>> - /// be equal to the instruction being optimized. In this case all
>>> - /// other instructions that use the given instruction were modified
>>> - /// and the given instruction is dead.
>>> - Value *optimizeCall(CallInst *CI);
>>> -
>>> - /// replaceAllUsesWith - This method is used when the library call
>>> - /// simplifier needs to replace instructions other than the library
>>> - /// call being modified.
>>> - virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>>> - };
>>> +class Value;
>>> +class CallInst;
>>> +class DataLayout;
>>> +class Instruction;
>>> +class TargetLibraryInfo;
>>> +class BasicBlock;
>>> +class Function;
>>> +
>>> +/// LibCallSimplifier - This class implements a collection of
>>> optimizations
>>> +/// that replace well formed calls to library functions with a more
>>> optimal
>>> +/// form. For example, replacing 'printf("Hello!")' with
>>> 'puts("Hello!")'.
>>> +class LibCallSimplifier {
>>> +private:
>>> + const DataLayout *DL;
>>> + const TargetLibraryInfo *TLI;
>>> + bool UnsafeFPShrink;
>>> +
>>> +public:
>>> + LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
>>> + bool UnsafeFPShrink);
>>> +
>>> + /// optimizeCall - Take the given call instruction and return a more
>>> + /// optimal value to replace the instruction with or 0 if a more
>>> + /// optimal form can't be found. Note that the returned value may
>>> + /// be equal to the instruction being optimized. In this case all
>>> + /// other instructions that use the given instruction were modified
>>> + /// and the given instruction is dead.
>>> + Value *optimizeCall(CallInst *CI);
>>> +
>>> + /// replaceAllUsesWith - This method is used when the library call
>>> + /// simplifier needs to replace instructions other than the library
>>> + /// call being modified.
>>> + virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>>> +
>>> +private:
>>> + // Fortified Library Call Optimizations
>>> + Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B);
>>> +
>>> + // String and Memory Library Call Optimizations
>>> + Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
>>> +
>>> + // Math Library Optimizations
>>> + Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool
>>> CheckRetType);
>>> + Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizePow(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
>>> +
>>> + // Integer Library Call Optimizations
>>> + Value *optimizeFFS(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeAbs(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B);
>>> +
>>> + // Formatting and IO Library Call Optimizations
>>> + Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
>>> + int StreamArg = -1);
>>> + Value *optimizePrintF(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizePuts(CallInst *CI, IRBuilder<> &B);
>>> +
>>> + // Helper methods
>>> + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>>> IRBuilder<> &B);
>>> + void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>>> + SmallVectorImpl<CallInst *> &SinCalls,
>>> + SmallVectorImpl<CallInst *> &CosCalls,
>>> + SmallVectorImpl<CallInst *> &SinCosCalls);
>>> + void replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, Value *Res);
>>> + Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B);
>>> + Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B);
>>> +
>>> + /// hasFloatVersion - Checks if there is a float version of the
>>> specified
>>> + /// function by checking for an existing function with name FuncName
>>> + f
>>> + bool hasFloatVersion(StringRef FuncName);
>>> +};
>>> } // End llvm namespace
>>>
>>> #endif
>>>
>>> Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>> URL:
>>> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff
>>>
>>> ==============================================================================
>>> --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>> (original)
>>> +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Wed
>>> Sep 17 15:55:46 2014
>>> @@ -70,10 +70,11 @@ STATISTIC(NumExpand, "Number of expan
>>> STATISTIC(NumFactor , "Number of factorizations");
>>> STATISTIC(NumReassoc , "Number of reassociations");
>>>
>>> -static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink",
>>> cl::Hidden,
>>> - cl::init(false),
>>> - cl::desc("Enable unsafe double to
>>> float "
>>> - "shrinking for math lib
>>> calls"));
>>> +static cl::opt<bool>
>>> + EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
>>> + cl::init(false),
>>> + cl::desc("Enable unsafe double to float "
>>> + "shrinking for math lib calls"));
>>>
>>> // Initialization Routines
>>> void llvm::initializeInstCombine(PassRegistry &Registry) {
>>> @@ -2913,7 +2914,7 @@ public:
>>> InstCombinerLibCallSimplifier(const DataLayout *DL,
>>> const TargetLibraryInfo *TLI,
>>> InstCombiner *IC)
>>> - : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
>>> + : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) {
>>> this->IC = IC;
>>> }
>>>
>>>
>>> Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>>> URL:
>>> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff
>>>
>>> ==============================================================================
>>> --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
>>> +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Sep 17
>>> 15:55:46 2014
>>> @@ -35,57 +35,26 @@
>>> using namespace llvm;
>>>
>>> static cl::opt<bool>
>>> -ColdErrorCalls("error-reporting-is-cold", cl::init(true),
>>> - cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
>>> -
>>> -/// This class is the abstract base class for the set of optimizations
>>> that
>>> -/// corresponds to one library call.
>>> -namespace {
>>> -class LibCallOptimization {
>>> -protected:
>>> - Function *Caller;
>>> - const DataLayout *DL;
>>> - const TargetLibraryInfo *TLI;
>>> - const LibCallSimplifier *LCS;
>>> - LLVMContext* Context;
>>> -public:
>>> - LibCallOptimization() { }
>>> - virtual ~LibCallOptimization() {}
>>> -
>>> - /// callOptimizer - This pure virtual method is implemented by base
>>> classes to
>>> - /// do various optimizations. If this returns null then no
>>> transformation was
>>> - /// performed. If it returns CI, then it transformed the call and CI
>>> is to be
>>> - /// deleted. If it returns something else, replace CI with the new
>>> value and
>>> - /// delete CI.
>>> - virtual Value *callOptimizer(Function *Callee, CallInst *CI,
>>> IRBuilder<> &B)
>>> - =0;
>>> -
>>> - /// ignoreCallingConv - Returns false if this transformation could
>>> possibly
>>> - /// change the calling convention.
>>> - virtual bool ignoreCallingConv() { return false; }
>>> -
>>> - Value *optimizeCall(CallInst *CI, const DataLayout *DL,
>>> - const TargetLibraryInfo *TLI,
>>> - const LibCallSimplifier *LCS, IRBuilder<> &B) {
>>> - Caller = CI->getParent()->getParent();
>>> - this->DL = DL;
>>> - this->TLI = TLI;
>>> - this->LCS = LCS;
>>> - if (CI->getCalledFunction())
>>> - Context = &CI->getCalledFunction()->getContext();
>>> -
>>> - // We never change the calling convention.
>>> - if (!ignoreCallingConv() && CI->getCallingConv() !=
>>> llvm::CallingConv::C)
>>> - return nullptr;
>>> -
>>> - return callOptimizer(CI->getCalledFunction(), CI, B);
>>> - }
>>> -};
>>> + ColdErrorCalls("error-reporting-is-cold", cl::init(true),
>>> cl::Hidden,
>>> + cl::desc("Treat error-reporting calls as cold"));
>>>
>>>
>>> //===----------------------------------------------------------------------===//
>>> // Helper Functions
>>>
>>> //===----------------------------------------------------------------------===//
>>>
>>> +static bool ignoreCallingConv(LibFunc::Func Func) {
>>> + switch (Func) {
>>> + case LibFunc::abs:
>>> + case LibFunc::labs:
>>> + case LibFunc::llabs:
>>> + case LibFunc::strlen:
>>> + return true;
>>> + default:
>>> + return false;
>>> + }
>>> + llvm_unreachable();
>>> +}
>>> +
>>> /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters
>>> that the
>>> /// value is equal or not-equal to zero.
>>> static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
>>> @@ -142,967 +111,912 @@ static bool hasUnaryFloatFn(const Target
>>> // Fortified Library Call Optimizations
>>>
>>> //===----------------------------------------------------------------------===//
>>>
>>> -struct FortifiedLibCallOptimization : public LibCallOptimization {
>>> -protected:
>>> - virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>>> - bool isString) const = 0;
>>> -};
>>> -
>>> -struct InstFortifiedLibCallOptimization : public
>>> FortifiedLibCallOptimization {
>>> - CallInst *CI;
>>> -
>>> - bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>>> - bool isString) const override {
>>> - if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>>> +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp,
>>> unsigned SizeArgOp,
>>> + bool isString) {
>>> + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>>> + return true;
>>> + if (ConstantInt *SizeCI =
>>> + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>>> + if (SizeCI->isAllOnesValue())
>>> return true;
>>> - if (ConstantInt *SizeCI =
>>> -
>>> dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>>> - if (SizeCI->isAllOnesValue())
>>> - return true;
>>> - if (isString) {
>>> - uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>>> - // If the length is 0 we don't know how long it is and so we
>>> can't
>>> - // remove the check.
>>> - if (Len == 0) return false;
>>> - return SizeCI->getZExtValue() >= Len;
>>> - }
>>> - if (ConstantInt *Arg = dyn_cast<ConstantInt>(
>>> -
>>> CI->getArgOperand(SizeArgOp)))
>>> - return SizeCI->getZExtValue() >= Arg->getZExtValue();
>>> + if (isString) {
>>> + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>>> + // If the length is 0 we don't know how long it is and so we can't
>>> + // remove the check.
>>> + if (Len == 0)
>>> + return false;
>>> + return SizeCI->getZExtValue() >= Len;
>>> }
>>> - return false;
>>> + if (ConstantInt *Arg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp)))
>>> + return SizeCI->getZExtValue() >= Arg->getZExtValue();
>>> }
>>> -};
>>> + return false;
>>> +}
>>>
>>> -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - this->CI = CI;
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> - // Check if this has the right signature.
>>> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>>> - return nullptr;
>>> -
>>> - if (isFoldable(3, 2, false)) {
>>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> - CI->getArgOperand(2), 1);
>>> - return CI->getArgOperand(0);
>>> - }
>>> - return nullptr;
>>> - }
>>> -};
>>> +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + LLVMContext &Context = CI->getContext();
>>>
>>> -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - this->CI = CI;
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> - // Check if this has the right signature.
>>> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>>> - return nullptr;
>>> -
>>> - if (isFoldable(3, 2, false)) {
>>> - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> - CI->getArgOperand(2), 1);
>>> - return CI->getArgOperand(0);
>>> - }
>>> + // Check if this has the right signature.
>>> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>>> return nullptr;
>>> - }
>>> -};
>>>
>>> -struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - this->CI = CI;
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> - // Check if this has the right signature.
>>> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isIntegerTy() ||
>>> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>>> - return nullptr;
>>> -
>>> - if (isFoldable(3, 2, false)) {
>>> - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> - false);
>>> - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2),
>>> 1);
>>> - return CI->getArgOperand(0);
>>> - }
>>> - return nullptr;
>>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> + CI->getArgOperand(2), 1);
>>> + return CI->getArgOperand(0);
>>> }
>>> -};
>>> + return nullptr;
>>> +}
>>>
>>> -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - this->CI = CI;
>>> - StringRef Name = Callee->getName();
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> - // Check if this has the right signature.
>>> - if (FT->getNumParams() != 3 ||
>>> - FT->getReturnType() != FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> - FT->getParamType(2) != DL->getIntPtrType(Context))
>>> - return nullptr;
>>> -
>>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> - if (Dst == Src) // __strcpy_chk(x,x) -> x
>>> - return Src;
>>> -
>>> - // If a) we don't have any length information, or b) we know this
>>> will
>>> - // fit then just lower to a plain strcpy. Otherwise we'll keep our
>>> - // strcpy_chk call which may fail at runtime if the size is too
>>> long.
>>> - // TODO: It might be nice to get a maximum length out of the
>>> possible
>>> - // string lengths for varying.
>>> - if (isFoldable(2, 1, true)) {
>>> - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> - return Ret;
>>> - } else {
>>> - // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>>> - uint64_t Len = GetStringLength(Src);
>>> - if (Len == 0) return nullptr;
>>> -
>>> - // This optimization require DataLayout.
>>> - if (!DL) return nullptr;
>>> -
>>> - Value *Ret =
>>> - EmitMemCpyChk(Dst, Src,
>>> - ConstantInt::get(DL->getIntPtrType(Context), Len),
>>> - CI->getArgOperand(2), B, DL, TLI);
>>> - return Ret;
>>> - }
>>> +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + LLVMContext &Context = CI->getContext();
>>> +
>>> + // Check if this has the right signature.
>>> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>>> return nullptr;
>>> +
>>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> + CI->getArgOperand(2), 1);
>>> + return CI->getArgOperand(0);
>>> }
>>> -};
>>> + return nullptr;
>>> +}
>>>
>>> -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - this->CI = CI;
>>> - StringRef Name = Callee->getName();
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> - // Check if this has the right signature.
>>> - if (FT->getNumParams() != 3 ||
>>> - FT->getReturnType() != FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> - return nullptr;
>>> -
>>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>>> - Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> - }
>>> +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + LLVMContext &Context = CI->getContext();
>>>
>>> - // If a) we don't have any length information, or b) we know this
>>> will
>>> - // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>>> - // stpcpy_chk call which may fail at runtime if the size is too
>>> long.
>>> - // TODO: It might be nice to get a maximum length out of the
>>> possible
>>> - // string lengths for varying.
>>> - if (isFoldable(2, 1, true)) {
>>> - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> - return Ret;
>>> - } else {
>>> - // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>>> - uint64_t Len = GetStringLength(Src);
>>> - if (Len == 0) return nullptr;
>>> -
>>> - // This optimization require DataLayout.
>>> - if (!DL) return nullptr;
>>> -
>>> - Type *PT = FT->getParamType(0);
>>> - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> - Value *DstEnd = B.CreateGEP(Dst,
>>> -
>>> ConstantInt::get(DL->getIntPtrType(PT),
>>> - Len - 1));
>>> - if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL,
>>> TLI))
>>> - return nullptr;
>>> - return DstEnd;
>>> - }
>>> + // Check if this has the right signature.
>>> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isIntegerTy() ||
>>> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>>> return nullptr;
>>> - }
>>> -};
>>>
>>> -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - this->CI = CI;
>>> - StringRef Name = Callee->getName();
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> - // Check if this has the right signature.
>>> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> - !FT->getParamType(2)->isIntegerTy() ||
>>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>>> - return nullptr;
>>> -
>>> - if (isFoldable(3, 2, false)) {
>>> - Value *Ret = EmitStrNCpy(CI->getArgOperand(0),
>>> CI->getArgOperand(1),
>>> - CI->getArgOperand(2), B, DL, TLI,
>>> - Name.substr(2, 7));
>>> - return Ret;
>>> - }
>>> - return nullptr;
>>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> false);
>>> + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>>> + return CI->getArgOperand(0);
>>> }
>>> -};
>>> -
>>>
>>> -//===----------------------------------------------------------------------===//
>>> -// String and Memory Library Call Optimizations
>>>
>>> -//===----------------------------------------------------------------------===//
>>> -
>>> -struct StrCatOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strcat" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getReturnType() != B.getInt8PtrTy() ||
>>> - FT->getParamType(0) != FT->getReturnType() ||
>>> - FT->getParamType(1) != FT->getReturnType())
>>> - return nullptr;
>>> -
>>> - // Extract some information from the instruction
>>> - Value *Dst = CI->getArgOperand(0);
>>> - Value *Src = CI->getArgOperand(1);
>>> + return nullptr;
>>> +}
>>>
>>> - // See if we can get the length of the input string.
>>> +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + StringRef Name = Callee->getName();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + LLVMContext &Context = CI->getContext();
>>> +
>>> + // Check if this has the right signature.
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> + FT->getParamType(2) != DL->getIntPtrType(Context))
>>> + return nullptr;
>>> +
>>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> + if (Dst == Src) // __strcpy_chk(x,x) -> x
>>> + return Src;
>>> +
>>> + // If a) we don't have any length information, or b) we know this will
>>> + // fit then just lower to a plain strcpy. Otherwise we'll keep our
>>> + // strcpy_chk call which may fail at runtime if the size is too long.
>>> + // TODO: It might be nice to get a maximum length out of the possible
>>> + // string lengths for varying.
>>> + if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>>> + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> + return Ret;
>>> + } else {
>>> + // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>>> uint64_t Len = GetStringLength(Src);
>>> - if (Len == 0) return nullptr;
>>> - --Len; // Unbias length.
>>> -
>>> - // Handle the simple, do-nothing case: strcat(x, "") -> x
>>> if (Len == 0)
>>> - return Dst;
>>> + return nullptr;
>>>
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + // This optimization require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - return emitStrLenMemCpy(Src, Dst, Len, B);
>>> + Value *Ret = EmitMemCpyChk(
>>> + Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len),
>>> + CI->getArgOperand(2), B, DL, TLI);
>>> + return Ret;
>>> }
>>> + return nullptr;
>>> +}
>>>
>>> - Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>>> - IRBuilder<> &B) {
>>> - // We need to find the end of the destination string. That's where
>>> the
>>> - // memory is to be moved to. We just generate a call to strlen.
>>> - Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>>> - if (!DstLen)
>>> +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + StringRef Name = Callee->getName();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + LLVMContext &Context = CI->getContext();
>>> +
>>> + // Check if this has the right signature.
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> + return nullptr;
>>> +
>>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>>> + Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> + }
>>> +
>>> + // If a) we don't have any length information, or b) we know this will
>>> + // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>>> + // stpcpy_chk call which may fail at runtime if the size is too long.
>>> + // TODO: It might be nice to get a maximum length out of the possible
>>> + // string lengths for varying.
>>> + if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>>> + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> + return Ret;
>>> + } else {
>>> + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>>> + uint64_t Len = GetStringLength(Src);
>>> + if (Len == 0)
>>> return nullptr;
>>>
>>> - // Now that we have the destination's length, we must index into the
>>> - // destination's pointer to get the actual memcpy destination (end
>>> of
>>> - // the string .. we're concatenating).
>>> - Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>>> + // This optimization require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - // We have enough information to now generate the memcpy call to do
>>> the
>>> - // concatenation for us. Make a memcpy to copy the nul byte with
>>> align = 1.
>>> - B.CreateMemCpy(CpyDst, Src,
>>> - ConstantInt::get(DL->getIntPtrType(*Context), Len +
>>> 1), 1);
>>> - return Dst;
>>> + Type *PT = FT->getParamType(0);
>>> + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> + Value *DstEnd =
>>> + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len -
>>> 1));
>>> + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL,
>>> TLI))
>>> + return nullptr;
>>> + return DstEnd;
>>> }
>>> -};
>>> + return nullptr;
>>> +}
>>>
>>> -struct StrNCatOpt : public StrCatOpt {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strncat" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 ||
>>> - FT->getReturnType() != B.getInt8PtrTy() ||
>>> - FT->getParamType(0) != FT->getReturnType() ||
>>> - FT->getParamType(1) != FT->getReturnType() ||
>>> - !FT->getParamType(2)->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - // Extract some information from the instruction
>>> - Value *Dst = CI->getArgOperand(0);
>>> - Value *Src = CI->getArgOperand(1);
>>> - uint64_t Len;
>>> -
>>> - // We don't do anything if length is not constant
>>> - if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> - Len = LengthArg->getZExtValue();
>>> - else
>>> - return nullptr;
>>> -
>>> - // See if we can get the length of the input string.
>>> - uint64_t SrcLen = GetStringLength(Src);
>>> - if (SrcLen == 0) return nullptr;
>>> - --SrcLen; // Unbias length.
>>> -
>>> - // Handle the simple, do-nothing cases:
>>> - // strncat(x, "", c) -> x
>>> - // strncat(x, c, 0) -> x
>>> - if (SrcLen == 0 || Len == 0) return Dst;
>>> +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + StringRef Name = Callee->getName();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + LLVMContext &Context = CI->getContext();
>>> +
>>> + // Check if this has the right signature.
>>> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> + !FT->getParamType(2)->isIntegerTy() ||
>>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>>> + return nullptr;
>>> +
>>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> + Value *Ret =
>>> + EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> + CI->getArgOperand(2), B, DL, TLI, Name.substr(2,
>>> 7));
>>> + return Ret;
>>> + }
>>> + return nullptr;
>>> +}
>>>
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>>
>>> +//===----------------------------------------------------------------------===//
>>> +// String and Memory Library Call Optimizations
>>>
>>> +//===----------------------------------------------------------------------===//
>>>
>>> - // We don't optimize this case
>>> - if (Len < SrcLen) return nullptr;
>>> +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strcat" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2||
>>> + FT->getReturnType() != B.getInt8PtrTy() ||
>>> + FT->getParamType(0) != FT->getReturnType() ||
>>> + FT->getParamType(1) != FT->getReturnType())
>>> + return nullptr;
>>> +
>>> + // Extract some information from the instruction
>>> + Value *Dst = CI->getArgOperand(0);
>>> + Value *Src = CI->getArgOperand(1);
>>> +
>>> + // See if we can get the length of the input string.
>>> + uint64_t Len = GetStringLength(Src);
>>> + if (Len == 0)
>>> + return nullptr;
>>> + --Len; // Unbias length.
>>>
>>> - // strncat(x, s, c) -> strcat(x, s)
>>> - // s is constant so the strcat can be optimized further
>>> - return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>>> - }
>>> -};
>>> -
>>> -struct StrChrOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strchr" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getReturnType() != B.getInt8PtrTy() ||
>>> - FT->getParamType(0) != FT->getReturnType() ||
>>> - !FT->getParamType(1)->isIntegerTy(32))
>>> - return nullptr;
>>> -
>>> - Value *SrcStr = CI->getArgOperand(0);
>>> -
>>> - // If the second operand is non-constant, see if we can compute the
>>> length
>>> - // of the input string and turn this into memchr.
>>> - ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> - if (!CharC) {
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + // Handle the simple, do-nothing case: strcat(x, "") -> x
>>> + if (Len == 0)
>>> + return Dst;
>>>
>>> - uint64_t Len = GetStringLength(SrcStr);
>>> - if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr
>>> needs i32.
>>> - return nullptr;
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
>>> - ConstantInt::get(DL->getIntPtrType(*Context),
>>> Len),
>>> - B, DL, TLI);
>>> - }
>>> + return emitStrLenMemCpy(Src, Dst, Len, B);
>>> +}
>>>
>>> - // Otherwise, the character is a constant, see if the first
>>> argument is
>>> - // a string literal. If so, we can constant fold.
>>> - StringRef Str;
>>> - if (!getConstantStringInfo(SrcStr, Str)) {
>>> - if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>>> - return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
>>> "strchr");
>>> - return nullptr;
>>> - }
>>> +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst,
>>> uint64_t Len,
>>> + IRBuilder<> &B) {
>>> + // We need to find the end of the destination string. That's where
>>> the
>>> + // memory is to be moved to. We just generate a call to strlen.
>>> + Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>>> + if (!DstLen)
>>> + return nullptr;
>>> +
>>> + // Now that we have the destination's length, we must index into the
>>> + // destination's pointer to get the actual memcpy destination (end of
>>> + // the string .. we're concatenating).
>>> + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>>> +
>>> + // We have enough information to now generate the memcpy call to do
>>> the
>>> + // concatenation for us. Make a memcpy to copy the nul byte with
>>> align = 1.
>>> + B.CreateMemCpy(
>>> + CpyDst, Src,
>>> + ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1),
>>> 1);
>>> + return Dst;
>>> +}
>>>
>>> - // Compute the offset, make sure to handle the case when we're
>>> searching for
>>> - // zero (a weird way to spell strlen).
>>> - size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>>> - Str.size() : Str.find(CharC->getSExtValue());
>>> - if (I == StringRef::npos) // Didn't find the char. strchr returns
>>> null.
>>> - return Constant::getNullValue(CI->getType());
>>> +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strncat" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> B.getInt8PtrTy() ||
>>> + FT->getParamType(0) != FT->getReturnType() ||
>>> + FT->getParamType(1) != FT->getReturnType() ||
>>> + !FT->getParamType(2)->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + // Extract some information from the instruction
>>> + Value *Dst = CI->getArgOperand(0);
>>> + Value *Src = CI->getArgOperand(1);
>>> + uint64_t Len;
>>> +
>>> + // We don't do anything if length is not constant
>>> + if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> + Len = LengthArg->getZExtValue();
>>> + else
>>> + return nullptr;
>>> +
>>> + // See if we can get the length of the input string.
>>> + uint64_t SrcLen = GetStringLength(Src);
>>> + if (SrcLen == 0)
>>> + return nullptr;
>>> + --SrcLen; // Unbias length.
>>> +
>>> + // Handle the simple, do-nothing cases:
>>> + // strncat(x, "", c) -> x
>>> + // strncat(x, c, 0) -> x
>>> + if (SrcLen == 0 || Len == 0)
>>> + return Dst;
>>>
>>> - // strchr(s+n,c) -> gep(s+n+i,c)
>>> - return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>>> - }
>>> -};
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>> +
>>> + // We don't optimize this case
>>> + if (Len < SrcLen)
>>> + return nullptr;
>>>
>>> -struct StrRChrOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strrchr" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getReturnType() != B.getInt8PtrTy() ||
>>> - FT->getParamType(0) != FT->getReturnType() ||
>>> - !FT->getParamType(1)->isIntegerTy(32))
>>> - return nullptr;
>>> -
>>> - Value *SrcStr = CI->getArgOperand(0);
>>> - ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> -
>>> - // Cannot fold anything if we're not looking for a constant.
>>> - if (!CharC)
>>> - return nullptr;
>>> -
>>> - StringRef Str;
>>> - if (!getConstantStringInfo(SrcStr, Str)) {
>>> - // strrchr(s, 0) -> strchr(s, 0)
>>> - if (DL && CharC->isZero())
>>> - return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>>> + // strncat(x, s, c) -> strcat(x, s)
>>> + // s is constant so the strcat can be optimized further
>>> + return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strchr" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> B.getInt8PtrTy() ||
>>> + FT->getParamType(0) != FT->getReturnType() ||
>>> + !FT->getParamType(1)->isIntegerTy(32))
>>> + return nullptr;
>>> +
>>> + Value *SrcStr = CI->getArgOperand(0);
>>> +
>>> + // If the second operand is non-constant, see if we can compute the
>>> length
>>> + // of the input string and turn this into memchr.
>>> + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> + if (!CharC) {
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> return nullptr;
>>> - }
>>>
>>> - // Compute the offset.
>>> - size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>>> - Str.size() : Str.rfind(CharC->getSExtValue());
>>> - if (I == StringRef::npos) // Didn't find the char. Return null.
>>> - return Constant::getNullValue(CI->getType());
>>> + uint64_t Len = GetStringLength(SrcStr);
>>> + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr
>>> needs i32.
>>> + return nullptr;
>>>
>>> - // strrchr(s+n,c) -> gep(s+n+i,c)
>>> - return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>>> + return EmitMemChr(
>>> + SrcStr, CI->getArgOperand(1), // include nul.
>>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B,
>>> DL, TLI);
>>> }
>>> -};
>>> -
>>> -struct StrCmpOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strcmp" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - !FT->getReturnType()->isIntegerTy(32) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != B.getInt8PtrTy())
>>> - return nullptr;
>>> -
>>> - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> - if (Str1P == Str2P) // strcmp(x,x) -> 0
>>> - return ConstantInt::get(CI->getType(), 0);
>>> -
>>> - StringRef Str1, Str2;
>>> - bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> - bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>> -
>>> - // strcmp(x, y) -> cnst (if both x and y are constant strings)
>>> - if (HasStr1 && HasStr2)
>>> - return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>>> -
>>> - if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>>> - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>>> - CI->getType()));
>>> -
>>> - if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>>> - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>> -
>>> - // strcmp(P, "x") -> memcmp(P, "x", 2)
>>> - uint64_t Len1 = GetStringLength(Str1P);
>>> - uint64_t Len2 = GetStringLength(Str2P);
>>> - if (Len1 && Len2) {
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> -
>>> - return EmitMemCmp(Str1P, Str2P,
>>> - ConstantInt::get(DL->getIntPtrType(*Context),
>>> - std::min(Len1, Len2)), B, DL, TLI);
>>> - }
>>>
>>> + // Otherwise, the character is a constant, see if the first argument
>>> is
>>> + // a string literal. If so, we can constant fold.
>>> + StringRef Str;
>>> + if (!getConstantStringInfo(SrcStr, Str)) {
>>> + if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>>> + return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
>>> "strchr");
>>> return nullptr;
>>> }
>>> -};
>>>
>>> -struct StrNCmpOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strncmp" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 ||
>>> - !FT->getReturnType()->isIntegerTy(32) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>>> - !FT->getParamType(2)->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> - if (Str1P == Str2P) // strncmp(x,x,n) -> 0
>>> - return ConstantInt::get(CI->getType(), 0);
>>> -
>>> - // Get the length argument if it is constant.
>>> - uint64_t Length;
>>> - if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> - Length = LengthArg->getZExtValue();
>>> - else
>>> - return nullptr;
>>> -
>>> - if (Length == 0) // strncmp(x,y,0) -> 0
>>> - return ConstantInt::get(CI->getType(), 0);
>>> -
>>> - if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>>> - return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>>> -
>>> - StringRef Str1, Str2;
>>> - bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> - bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>> -
>>> - // strncmp(x, y) -> cnst (if both x and y are constant strings)
>>> - if (HasStr1 && HasStr2) {
>>> - StringRef SubStr1 = Str1.substr(0, Length);
>>> - StringRef SubStr2 = Str2.substr(0, Length);
>>> - return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>>> - }
>>> + // Compute the offset, make sure to handle the case when we're
>>> searching for
>>> + // zero (a weird way to spell strlen).
>>> + size_t I = (0xFF & CharC->getSExtValue()) == 0
>>> + ? Str.size()
>>> + : Str.find(CharC->getSExtValue());
>>> + if (I == StringRef::npos) // Didn't find the char. strchr returns
>>> null.
>>> + return Constant::getNullValue(CI->getType());
>>>
>>> - if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
>>> - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>>> - CI->getType()));
>>> + // strchr(s+n,c) -> gep(s+n+i,c)
>>> + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>>> +}
>>>
>>> - if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
>>> - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>> +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strrchr" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> B.getInt8PtrTy() ||
>>> + FT->getParamType(0) != FT->getReturnType() ||
>>> + !FT->getParamType(1)->isIntegerTy(32))
>>> + return nullptr;
>>> +
>>> + Value *SrcStr = CI->getArgOperand(0);
>>> + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> +
>>> + // Cannot fold anything if we're not looking for a constant.
>>> + if (!CharC)
>>> + return nullptr;
>>>
>>> + StringRef Str;
>>> + if (!getConstantStringInfo(SrcStr, Str)) {
>>> + // strrchr(s, 0) -> strchr(s, 0)
>>> + if (DL && CharC->isZero())
>>> + return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>>> return nullptr;
>>> }
>>> -};
>>>
>>> -struct StrCpyOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "strcpy" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getReturnType() != FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != B.getInt8PtrTy())
>>> - return nullptr;
>>> + // Compute the offset.
>>> + size_t I = (0xFF & CharC->getSExtValue()) == 0
>>> + ? Str.size()
>>> + : Str.rfind(CharC->getSExtValue());
>>> + if (I == StringRef::npos) // Didn't find the char. Return null.
>>> + return Constant::getNullValue(CI->getType());
>>>
>>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> - if (Dst == Src) // strcpy(x,x) -> x
>>> - return Src;
>>> + // strrchr(s+n,c) -> gep(s+n+i,c)
>>> + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>>> +}
>>>
>>> +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strcmp" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32)
>>> ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != B.getInt8PtrTy())
>>> + return nullptr;
>>> +
>>> + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> + if (Str1P == Str2P) // strcmp(x,x) -> 0
>>> + return ConstantInt::get(CI->getType(), 0);
>>> +
>>> + StringRef Str1, Str2;
>>> + bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> + bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>> +
>>> + // strcmp(x, y) -> cnst (if both x and y are constant strings)
>>> + if (HasStr1 && HasStr2)
>>> + return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>>> +
>>> + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>>> + return B.CreateNeg(
>>> + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>>> +
>>> + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>>> + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>> +
>>> + // strcmp(P, "x") -> memcmp(P, "x", 2)
>>> + uint64_t Len1 = GetStringLength(Str1P);
>>> + uint64_t Len2 = GetStringLength(Str2P);
>>> + if (Len1 && Len2) {
>>> // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> -
>>> - // See if we can get the length of the input string.
>>> - uint64_t Len = GetStringLength(Src);
>>> - if (Len == 0) return nullptr;
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - // We have enough information to now generate the memcpy call to do
>>> the
>>> - // copy for us. Make a memcpy to copy the nul byte with align = 1.
>>> - B.CreateMemCpy(Dst, Src,
>>> - ConstantInt::get(DL->getIntPtrType(*Context), Len),
>>> 1);
>>> - return Dst;
>>> + return EmitMemCmp(Str1P, Str2P,
>>> +
>>> ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> + std::min(Len1, Len2)),
>>> + B, DL, TLI);
>>> }
>>> -};
>>>
>>> -struct StpCpyOpt: public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Verify the "stpcpy" function prototype.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getReturnType() != FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != B.getInt8PtrTy())
>>> - return nullptr;
>>> + return nullptr;
>>> +}
>>>
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strncmp" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32)
>>> ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != B.getInt8PtrTy() ||
>>> + !FT->getParamType(2)->isIntegerTy())
>>> + return nullptr;
>>>
>>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>>> - Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> - }
>>> + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> + if (Str1P == Str2P) // strncmp(x,x,n) -> 0
>>> + return ConstantInt::get(CI->getType(), 0);
>>>
>>> - // See if we can get the length of the input string.
>>> - uint64_t Len = GetStringLength(Src);
>>> - if (Len == 0) return nullptr;
>>> + // Get the length argument if it is constant.
>>> + uint64_t Length;
>>> + if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> + Length = LengthArg->getZExtValue();
>>> + else
>>> + return nullptr;
>>>
>>> - Type *PT = FT->getParamType(0);
>>> - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> - Value *DstEnd = B.CreateGEP(Dst,
>>> - ConstantInt::get(DL->getIntPtrType(PT),
>>> - Len - 1));
>>> -
>>> - // We have enough information to now generate the memcpy call to do
>>> the
>>> - // copy for us. Make a memcpy to copy the nul byte with align = 1.
>>> - B.CreateMemCpy(Dst, Src, LenV, 1);
>>> - return DstEnd;
>>> - }
>>> -};
>>> + if (Length == 0) // strncmp(x,y,0) -> 0
>>> + return ConstantInt::get(CI->getType(), 0);
>>>
>>> -struct StrNCpyOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>>> - !FT->getParamType(2)->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - Value *Dst = CI->getArgOperand(0);
>>> - Value *Src = CI->getArgOperand(1);
>>> - Value *LenOp = CI->getArgOperand(2);
>>> -
>>> - // See if we can get the length of the input string.
>>> - uint64_t SrcLen = GetStringLength(Src);
>>> - if (SrcLen == 0) return nullptr;
>>> - --SrcLen;
>>> -
>>> - if (SrcLen == 0) {
>>> - // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>>> - B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>>> - return Dst;
>>> - }
>>> + if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>>> + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>>>
>>> - uint64_t Len;
>>> - if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>>> - Len = LengthArg->getZExtValue();
>>> - else
>>> - return nullptr;
>>> + StringRef Str1, Str2;
>>> + bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> + bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>>
>>> - if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
>>> + // strncmp(x, y) -> cnst (if both x and y are constant strings)
>>> + if (HasStr1 && HasStr2) {
>>> + StringRef SubStr1 = Str1.substr(0, Length);
>>> + StringRef SubStr2 = Str2.substr(0, Length);
>>> + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>>> + }
>>>
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
>>> + return B.CreateNeg(
>>> + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>>>
>>> - // Let strncpy handle the zero padding
>>> - if (Len > SrcLen+1) return nullptr;
>>> + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
>>> + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>>
>>> - Type *PT = FT->getParamType(0);
>>> - // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>>> - B.CreateMemCpy(Dst, Src,
>>> - ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
>>> + return nullptr;
>>> +}
>>>
>>> - return Dst;
>>> - }
>>> -};
>>> +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "strcpy" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != B.getInt8PtrTy())
>>> + return nullptr;
>>>
>>> -struct StrLenOpt : public LibCallOptimization {
>>> - bool ignoreCallingConv() override { return true; }
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 1 ||
>>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>>> - !FT->getReturnType()->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - Value *Src = CI->getArgOperand(0);
>>> -
>>> - // Constant folding: strlen("xyz") -> 3
>>> - if (uint64_t Len = GetStringLength(Src))
>>> - return ConstantInt::get(CI->getType(), Len-1);
>>> -
>>> - // strlen(x?"foo":"bars") --> x ? 3 : 4
>>> - if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>>> - uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>>> - uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>>> - if (LenTrue && LenFalse) {
>>> - emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
>>> - SI->getDebugLoc(),
>>> - "folded strlen(select) to select of
>>> constants");
>>> - return B.CreateSelect(SI->getCondition(),
>>> - ConstantInt::get(CI->getType(),
>>> LenTrue-1),
>>> - ConstantInt::get(CI->getType(),
>>> LenFalse-1));
>>> - }
>>> - }
>>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> + if (Dst == Src) // strcpy(x,x) -> x
>>> + return Src;
>>>
>>> - // strlen(x) != 0 --> *x != 0
>>> - // strlen(x) == 0 --> *x == 0
>>> - if (isOnlyUsedInZeroEqualityComparison(CI))
>>> - return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"),
>>> CI->getType());
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> + // See if we can get the length of the input string.
>>> + uint64_t Len = GetStringLength(Src);
>>> + if (Len == 0)
>>> return nullptr;
>>> - }
>>> -};
>>>
>>> -struct StrPBrkOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>>> - FT->getParamType(1) != FT->getParamType(0) ||
>>> - FT->getReturnType() != FT->getParamType(0))
>>> - return nullptr;
>>> + // We have enough information to now generate the memcpy call to do
>>> the
>>> + // copy for us. Make a memcpy to copy the nul byte with align = 1.
>>> + B.CreateMemCpy(Dst, Src,
>>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> Len), 1);
>>> + return Dst;
>>> +}
>>>
>>> - StringRef S1, S2;
>>> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Verify the "stpcpy" function prototype.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != B.getInt8PtrTy())
>>> + return nullptr;
>>>
>>> - // strpbrk(s, "") -> NULL
>>> - // strpbrk("", s) -> NULL
>>> - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> - return Constant::getNullValue(CI->getType());
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - // Constant folding.
>>> - if (HasS1 && HasS2) {
>>> - size_t I = S1.find_first_of(S2);
>>> - if (I == StringRef::npos) // No match.
>>> - return Constant::getNullValue(CI->getType());
>>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>>> + Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> + }
>>>
>>> - return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I),
>>> "strpbrk");
>>> - }
>>> + // See if we can get the length of the input string.
>>> + uint64_t Len = GetStringLength(Src);
>>> + if (Len == 0)
>>> + return nullptr;
>>>
>>> - // strpbrk(s, "a") -> strchr(s, 'a')
>>> - if (DL && HasS2 && S2.size() == 1)
>>> - return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>>> + Type *PT = FT->getParamType(0);
>>> + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> + Value *DstEnd =
>>> + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len -
>>> 1));
>>>
>>> - return nullptr;
>>> + // We have enough information to now generate the memcpy call to do
>>> the
>>> + // copy for us. Make a memcpy to copy the nul byte with align = 1.
>>> + B.CreateMemCpy(Dst, Src, LenV, 1);
>>> + return DstEnd;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + FT->getParamType(0) != B.getInt8PtrTy() ||
>>> + !FT->getParamType(2)->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + Value *Dst = CI->getArgOperand(0);
>>> + Value *Src = CI->getArgOperand(1);
>>> + Value *LenOp = CI->getArgOperand(2);
>>> +
>>> + // See if we can get the length of the input string.
>>> + uint64_t SrcLen = GetStringLength(Src);
>>> + if (SrcLen == 0)
>>> + return nullptr;
>>> + --SrcLen;
>>> +
>>> + if (SrcLen == 0) {
>>> + // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>>> + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>>> + return Dst;
>>> }
>>> -};
>>>
>>> -struct StrToOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isPointerTy())
>>> - return nullptr;
>>> + uint64_t Len;
>>> + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>>> + Len = LengthArg->getZExtValue();
>>> + else
>>> + return nullptr;
>>>
>>> - Value *EndPtr = CI->getArgOperand(1);
>>> - if (isa<ConstantPointerNull>(EndPtr)) {
>>> - // With a null EndPtr, this function won't capture the main
>>> argument.
>>> - // It would be readonly too, except that it still may write to
>>> errno.
>>> - CI->addAttribute(1, Attribute::NoCapture);
>>> - }
>>> + if (Len == 0)
>>> + return Dst; // strncpy(x, y, 0) -> x
>>>
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> return nullptr;
>>> - }
>>> -};
>>>
>>> -struct StrSpnOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>>> - FT->getParamType(1) != FT->getParamType(0) ||
>>> - !FT->getReturnType()->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - StringRef S1, S2;
>>> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> -
>>> - // strspn(s, "") -> 0
>>> - // strspn("", s) -> 0
>>> - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> - return Constant::getNullValue(CI->getType());
>>> + // Let strncpy handle the zero padding
>>> + if (Len > SrcLen + 1)
>>> + return nullptr;
>>>
>>> - // Constant folding.
>>> - if (HasS1 && HasS2) {
>>> - size_t Pos = S1.find_first_not_of(S2);
>>> - if (Pos == StringRef::npos) Pos = S1.size();
>>> - return ConstantInt::get(CI->getType(), Pos);
>>> - }
>>> + Type *PT = FT->getParamType(0);
>>> + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>>> + B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT),
>>> Len), 1);
>>>
>>> - return nullptr;
>>> + return Dst;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 1 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> + !FT->getReturnType()->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + Value *Src = CI->getArgOperand(0);
>>> +
>>> + // Constant folding: strlen("xyz") -> 3
>>> + if (uint64_t Len = GetStringLength(Src))
>>> + return ConstantInt::get(CI->getType(), Len - 1);
>>> +
>>> + // strlen(x?"foo":"bars") --> x ? 3 : 4
>>> + if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>>> + uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>>> + uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>>> + if (LenTrue && LenFalse) {
>>> + Function *Caller = CI->getParent()->getParent();
>>> + emitOptimizationRemark(CI->getContext(), "simplify-libcalls",
>>> *Caller,
>>> + SI->getDebugLoc(),
>>> + "folded strlen(select) to select of
>>> constants");
>>> + return B.CreateSelect(SI->getCondition(),
>>> + ConstantInt::get(CI->getType(), LenTrue -
>>> 1),
>>> + ConstantInt::get(CI->getType(), LenFalse -
>>> 1));
>>> + }
>>> }
>>> -};
>>>
>>> -struct StrCSpnOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>>> - FT->getParamType(1) != FT->getParamType(0) ||
>>> - !FT->getReturnType()->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - StringRef S1, S2;
>>> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> + // strlen(x) != 0 --> *x != 0
>>> + // strlen(x) == 0 --> *x == 0
>>> + if (isOnlyUsedInZeroEqualityComparison(CI))
>>> + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"),
>>> CI->getType());
>>> +
>>> + return nullptr;
>>> +}
>>>
>>> - // strcspn("", s) -> 0
>>> - if (HasS1 && S1.empty())
>>> +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> + FT->getParamType(1) != FT->getParamType(0) ||
>>> + FT->getReturnType() != FT->getParamType(0))
>>> + return nullptr;
>>> +
>>> + StringRef S1, S2;
>>> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +
>>> + // strpbrk(s, "") -> NULL
>>> + // strpbrk("", s) -> NULL
>>> + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> + return Constant::getNullValue(CI->getType());
>>> +
>>> + // Constant folding.
>>> + if (HasS1 && HasS2) {
>>> + size_t I = S1.find_first_of(S2);
>>> + if (I == StringRef::npos) // No match.
>>> return Constant::getNullValue(CI->getType());
>>>
>>> - // Constant folding.
>>> - if (HasS1 && HasS2) {
>>> - size_t Pos = S1.find_first_of(S2);
>>> - if (Pos == StringRef::npos) Pos = S1.size();
>>> - return ConstantInt::get(CI->getType(), Pos);
>>> - }
>>> + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
>>> + }
>>>
>>> - // strcspn(s, "") -> strlen(s)
>>> - if (DL && HasS2 && S2.empty())
>>> - return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>>> + // strpbrk(s, "a") -> strchr(s, 'a')
>>> + if (DL && HasS2 && S2.size() == 1)
>>> + return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>>>
>>> + return nullptr;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy())
>>> return nullptr;
>>> +
>>> + Value *EndPtr = CI->getArgOperand(1);
>>> + if (isa<ConstantPointerNull>(EndPtr)) {
>>> + // With a null EndPtr, this function won't capture the main
>>> argument.
>>> + // It would be readonly too, except that it still may write to
>>> errno.
>>> + CI->addAttribute(1, Attribute::NoCapture);
>>> }
>>> -};
>>>
>>> -struct StrStrOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - !FT->getReturnType()->isPointerTy())
>>> - return nullptr;
>>> + return nullptr;
>>> +}
>>>
>>> - // fold strstr(x, x) -> x.
>>> - if (CI->getArgOperand(0) == CI->getArgOperand(1))
>>> - return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>> +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> + FT->getParamType(1) != FT->getParamType(0) ||
>>> + !FT->getReturnType()->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + StringRef S1, S2;
>>> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +
>>> + // strspn(s, "") -> 0
>>> + // strspn("", s) -> 0
>>> + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> + return Constant::getNullValue(CI->getType());
>>> +
>>> + // Constant folding.
>>> + if (HasS1 && HasS2) {
>>> + size_t Pos = S1.find_first_not_of(S2);
>>> + if (Pos == StringRef::npos)
>>> + Pos = S1.size();
>>> + return ConstantInt::get(CI->getType(), Pos);
>>> + }
>>>
>>> - // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>>> - if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0)))
>>> {
>>> - Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>>> - if (!StrLen)
>>> - return nullptr;
>>> - Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0),
>>> CI->getArgOperand(1),
>>> - StrLen, B, DL, TLI);
>>> - if (!StrNCmp)
>>> - return nullptr;
>>> - for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>>> - ICmpInst *Old = cast<ICmpInst>(*UI++);
>>> - Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
>>> -
>>> ConstantInt::getNullValue(StrNCmp->getType()),
>>> - "cmp");
>>> - LCS->replaceAllUsesWith(Old, Cmp);
>>> - }
>>> - return CI;
>>> - }
>>> + return nullptr;
>>> +}
>>>
>>> - // See if either input string is a constant string.
>>> - StringRef SearchStr, ToFindStr;
>>> - bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0),
>>> SearchStr);
>>> - bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1),
>>> ToFindStr);
>>> -
>>> - // fold strstr(x, "") -> x.
>>> - if (HasStr2 && ToFindStr.empty())
>>> - return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>> -
>>> - // If both strings are known, constant fold it.
>>> - if (HasStr1 && HasStr2) {
>>> - size_t Offset = SearchStr.find(ToFindStr);
>>> -
>>> - if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>>> - return Constant::getNullValue(CI->getType());
>>> -
>>> - // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>>> - Value *Result = CastToCStr(CI->getArgOperand(0), B);
>>> - Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>>> - return B.CreateBitCast(Result, CI->getType());
>>> - }
>>> +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> + FT->getParamType(1) != FT->getParamType(0) ||
>>> + !FT->getReturnType()->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + StringRef S1, S2;
>>> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +
>>> + // strcspn("", s) -> 0
>>> + if (HasS1 && S1.empty())
>>> + return Constant::getNullValue(CI->getType());
>>> +
>>> + // Constant folding.
>>> + if (HasS1 && HasS2) {
>>> + size_t Pos = S1.find_first_of(S2);
>>> + if (Pos == StringRef::npos)
>>> + Pos = S1.size();
>>> + return ConstantInt::get(CI->getType(), Pos);
>>> + }
>>> +
>>> + // strcspn(s, "") -> strlen(s)
>>> + if (DL && HasS2 && S2.empty())
>>> + return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>>>
>>> - // fold strstr(x, "y") -> strchr(x, 'y').
>>> - if (HasStr2 && ToFindStr.size() == 1) {
>>> - Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B,
>>> DL, TLI);
>>> - return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>>> - }
>>> + return nullptr;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + !FT->getReturnType()->isPointerTy())
>>> return nullptr;
>>> - }
>>> -};
>>>
>>> -struct MemCmpOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - !FT->getReturnType()->isIntegerTy(32))
>>> + // fold strstr(x, x) -> x.
>>> + if (CI->getArgOperand(0) == CI->getArgOperand(1))
>>> + return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>> +
>>> + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>>> + if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
>>> + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>>> + if (!StrLen)
>>> return nullptr;
>>> + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0),
>>> CI->getArgOperand(1),
>>> + StrLen, B, DL, TLI);
>>> + if (!StrNCmp)
>>> + return nullptr;
>>> + for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>>> + ICmpInst *Old = cast<ICmpInst>(*UI++);
>>> + Value *Cmp =
>>> + B.CreateICmp(Old->getPredicate(), StrNCmp,
>>> + ConstantInt::getNullValue(StrNCmp->getType()),
>>> "cmp");
>>> + replaceAllUsesWith(Old, Cmp);
>>> + }
>>> + return CI;
>>> + }
>>>
>>> - Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>>> + // See if either input string is a constant string.
>>> + StringRef SearchStr, ToFindStr;
>>> + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
>>> + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>>>
>>> - if (LHS == RHS) // memcmp(s,s,x) -> 0
>>> - return Constant::getNullValue(CI->getType());
>>> + // fold strstr(x, "") -> x.
>>> + if (HasStr2 && ToFindStr.empty())
>>> + return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>>
>>> - // Make sure we have a constant length.
>>> - ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> - if (!LenC) return nullptr;
>>> - uint64_t Len = LenC->getZExtValue();
>>> + // If both strings are known, constant fold it.
>>> + if (HasStr1 && HasStr2) {
>>> + size_t Offset = SearchStr.find(ToFindStr);
>>>
>>> - if (Len == 0) // memcmp(s1,s2,0) -> 0
>>> + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>>> return Constant::getNullValue(CI->getType());
>>>
>>> - // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>>> - if (Len == 1) {
>>> - Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B),
>>> "lhsc"),
>>> - CI->getType(), "lhsv");
>>> - Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B),
>>> "rhsc"),
>>> - CI->getType(), "rhsv");
>>> - return B.CreateSub(LHSV, RHSV, "chardiff");
>>> - }
>>> + // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>>> + Value *Result = CastToCStr(CI->getArgOperand(0), B);
>>> + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>>> + return B.CreateBitCast(Result, CI->getType());
>>> + }
>>>
>>> - // Constant folding: memcmp(x, y, l) -> cnst (all arguments are
>>> constant)
>>> - StringRef LHSStr, RHSStr;
>>> - if (getConstantStringInfo(LHS, LHSStr) &&
>>> - getConstantStringInfo(RHS, RHSStr)) {
>>> - // Make sure we're not reading out-of-bounds memory.
>>> - if (Len > LHSStr.size() || Len > RHSStr.size())
>>> - return nullptr;
>>> - // Fold the memcmp and normalize the result. This way we get
>>> consistent
>>> - // results across multiple platforms.
>>> - uint64_t Ret = 0;
>>> - int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>>> - if (Cmp < 0)
>>> - Ret = -1;
>>> - else if (Cmp > 0)
>>> - Ret = 1;
>>> - return ConstantInt::get(CI->getType(), Ret);
>>> - }
>>> + // fold strstr(x, "y") -> strchr(x, 'y').
>>> + if (HasStr2 && ToFindStr.size() == 1) {
>>> + Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B,
>>> DL, TLI);
>>> + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>>> + }
>>> + return nullptr;
>>> +}
>>>
>>> - return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + !FT->getReturnType()->isIntegerTy(32))
>>> + return nullptr;
>>> +
>>> + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>>> +
>>> + if (LHS == RHS) // memcmp(s,s,x) -> 0
>>> + return Constant::getNullValue(CI->getType());
>>> +
>>> + // Make sure we have a constant length.
>>> + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> + if (!LenC)
>>> + return nullptr;
>>> + uint64_t Len = LenC->getZExtValue();
>>> +
>>> + if (Len == 0) // memcmp(s1,s2,0) -> 0
>>> + return Constant::getNullValue(CI->getType());
>>> +
>>> + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>>> + if (Len == 1) {
>>> + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
>>> + CI->getType(), "lhsv");
>>> + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
>>> + CI->getType(), "rhsv");
>>> + return B.CreateSub(LHSV, RHSV, "chardiff");
>>> + }
>>> +
>>> + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are
>>> constant)
>>> + StringRef LHSStr, RHSStr;
>>> + if (getConstantStringInfo(LHS, LHSStr) &&
>>> + getConstantStringInfo(RHS, RHSStr)) {
>>> + // Make sure we're not reading out-of-bounds memory.
>>> + if (Len > LHSStr.size() || Len > RHSStr.size())
>>> + return nullptr;
>>> + // Fold the memcmp and normalize the result. This way we get
>>> consistent
>>> + // results across multiple platforms.
>>> + uint64_t Ret = 0;
>>> + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>>> + if (Cmp < 0)
>>> + Ret = -1;
>>> + else if (Cmp > 0)
>>> + Ret = 1;
>>> + return ConstantInt::get(CI->getType(), Ret);
>>> }
>>> -};
>>>
>>> -struct MemCpyOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + return nullptr;
>>> +}
>>>
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - FT->getParamType(2) != DL->getIntPtrType(*Context))
>>> - return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> - CI->getArgOperand(2), 1);
>>> - return CI->getArgOperand(0);
>>> - }
>>> -};
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>>> + return nullptr;
>>>
>>> -struct MemMoveOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>>> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> + CI->getArgOperand(2), 1);
>>> + return CI->getArgOperand(0);
>>> +}
>>>
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - FT->getParamType(2) != DL->getIntPtrType(*Context))
>>> - return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>>> - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> - CI->getArgOperand(2), 1);
>>> - return CI->getArgOperand(0);
>>> - }
>>> -};
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>>> + return nullptr;
>>>
>>> -struct MemSetOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>>> + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> + CI->getArgOperand(2), 1);
>>> + return CI->getArgOperand(0);
>>> +}
>>>
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isPointerTy() ||
>>> - !FT->getParamType(1)->isIntegerTy() ||
>>> - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> - return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>>> - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> false);
>>> - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>>> - return CI->getArgOperand(0);
>>> - }
>>> -};
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isIntegerTy() ||
>>> + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> + return nullptr;
>>> +
>>> + // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>>> + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> false);
>>> + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>>> + return CI->getArgOperand(0);
>>> +}
>>>
>>>
>>> //===----------------------------------------------------------------------===//
>>> // Math Library Optimizations
>>> @@ -1111,935 +1025,847 @@ struct MemSetOpt : public LibCallOptimiz
>>>
>>> //===----------------------------------------------------------------------===//
>>> // Double -> Float Shrinking Optimizations for Unary Functions like
>>> 'floor'
>>>
>>> -struct UnaryDoubleFPOpt : public LibCallOptimization {
>>> - bool CheckRetType;
>>> - UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType)
>>> {}
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>>> - !FT->getParamType(0)->isDoubleTy())
>>> - return nullptr;
>>> -
>>> - if (CheckRetType) {
>>> - // Check if all the uses for function like 'sin' are converted to
>>> float.
>>> - for (User *U : CI->users()) {
>>> - FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>>> - if (!Cast || !Cast->getType()->isFloatTy())
>>> - return nullptr;
>>> - }
>>> +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI,
>>> IRBuilder<> &B,
>>> + bool CheckRetType) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>>> + !FT->getParamType(0)->isDoubleTy())
>>> + return nullptr;
>>> +
>>> + if (CheckRetType) {
>>> + // Check if all the uses for function like 'sin' are converted to
>>> float.
>>> + for (User *U : CI->users()) {
>>> + FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>>> + if (!Cast || !Cast->getType()->isFloatTy())
>>> + return nullptr;
>>> }
>>> + }
>>>
>>> - // If this is something like 'floor((double)floatval)', convert to
>>> floorf.
>>> - FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> - if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>>> - return nullptr;
>>> + // If this is something like 'floor((double)floatval)', convert to
>>> floorf.
>>> + FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> + if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>>> + return nullptr;
>>>
>>> - // floor((double)floatval) -> (double)floorf(floatval)
>>> - Value *V = Cast->getOperand(0);
>>> - V = EmitUnaryFloatFnCall(V, Callee->getName(), B,
>>> Callee->getAttributes());
>>> - return B.CreateFPExt(V, B.getDoubleTy());
>>> - }
>>> -};
>>> + // floor((double)floatval) -> (double)floorf(floatval)
>>> + Value *V = Cast->getOperand(0);
>>> + V = EmitUnaryFloatFnCall(V, Callee->getName(), B,
>>> Callee->getAttributes());
>>> + return B.CreateFPExt(V, B.getDoubleTy());
>>> +}
>>>
>>> // Double -> Float Shrinking Optimizations for Binary Functions like
>>> 'fmin/fmax'
>>> -struct BinaryDoubleFPOpt : public LibCallOptimization {
>>> - bool CheckRetType;
>>> - BinaryDoubleFPOpt(bool CheckReturnType):
>>> CheckRetType(CheckReturnType) {}
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> - // result type.
>>> - if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - !FT->getParamType(0)->isFloatingPointTy())
>>> - return nullptr;
>>> -
>>> - if (CheckRetType) {
>>> - // Check if all the uses for function like 'fmin/fmax' are
>>> converted to
>>> - // float.
>>> - for (User *U : CI->users()) {
>>> - FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>>> - if (!Cast || !Cast->getType()->isFloatTy())
>>> - return nullptr;
>>> - }
>>> - }
>>> +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI,
>>> IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> + // result type.
>>> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + !FT->getParamType(0)->isFloatingPointTy())
>>> + return nullptr;
>>> +
>>> + // If this is something like 'fmin((double)floatval1,
>>> (double)floatval2)',
>>> + // we convert it to fminf.
>>> + FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> + FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>>> + if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2
>>> ||
>>> + !Cast2->getOperand(0)->getType()->isFloatTy())
>>> + return nullptr;
>>> +
>>> + // fmin((double)floatval1, (double)floatval2)
>>> + // -> (double)fmin(floatval1, floatval2)
>>> + Value *V = nullptr;
>>> + Value *V1 = Cast1->getOperand(0);
>>> + Value *V2 = Cast2->getOperand(0);
>>> + V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>>> + Callee->getAttributes());
>>> + return B.CreateFPExt(V, B.getDoubleTy());
>>> +}
>>>
>>> - // If this is something like 'fmin((double)floatval1,
>>> (double)floatval2)',
>>> - // we convert it to fminf.
>>> - FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> - FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>>> - if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
>>> - !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
>>> - return nullptr;
>>> -
>>> - // fmin((double)floatval1, (double)floatval2)
>>> - // -> (double)fmin(floatval1, floatval2)
>>> - Value *V = nullptr;
>>> - Value *V1 = Cast1->getOperand(0);
>>> - Value *V2 = Cast2->getOperand(0);
>>> - V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>>> - Callee->getAttributes());
>>> - return B.CreateFPExt(V, B.getDoubleTy());
>>> - }
>>> -};
>>> -
>>> -struct UnsafeFPLibCallOptimization : public LibCallOptimization {
>>> - bool UnsafeFPShrink;
>>> - UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
>>> - this->UnsafeFPShrink = UnsafeFPShrink;
>>> - }
>>> -};
>>> -
>>> -struct CosOpt : public UnsafeFPLibCallOptimization {
>>> - CosOpt(bool UnsafeFPShrink) :
>>> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - Value *Ret = nullptr;
>>> - if (UnsafeFPShrink && Callee->getName() == "cos" &&
>>> - TLI->has(LibFunc::cosf)) {
>>> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>>> - }
>>> +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + Value *Ret = nullptr;
>>> + if (UnsafeFPShrink && Callee->getName() == "cos" &&
>>> TLI->has(LibFunc::cosf)) {
>>> + Ret = optimizeUnaryDoubleFP(CI, B, true);
>>> + }
>>>
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // Just make sure this has 1 argument of FP type, which matches the
>>> - // result type.
>>> - if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isFloatingPointTy())
>>> - return Ret;
>>> -
>>> - // cos(-x) -> cos(x)
>>> - Value *Op1 = CI->getArgOperand(0);
>>> - if (BinaryOperator::isFNeg(Op1)) {
>>> - BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>>> - return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>>> - }
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // Just make sure this has 1 argument of FP type, which matches the
>>> + // result type.
>>> + if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isFloatingPointTy())
>>> return Ret;
>>> +
>>> + // cos(-x) -> cos(x)
>>> + Value *Op1 = CI->getArgOperand(0);
>>> + if (BinaryOperator::isFNeg(Op1)) {
>>> + BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>>> + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>>> }
>>> -};
>>> + return Ret;
>>> +}
>>>
>>> -struct PowOpt : public UnsafeFPLibCallOptimization {
>>> - PowOpt(bool UnsafeFPShrink) :
>>> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - Value *Ret = nullptr;
>>> - if (UnsafeFPShrink && Callee->getName() == "pow" &&
>>> - TLI->has(LibFunc::powf)) {
>>> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>>> - }
>>> +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>>
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> - // result type.
>>> - if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - FT->getParamType(0) != FT->getParamType(1) ||
>>> - !FT->getParamType(0)->isFloatingPointTy())
>>> - return Ret;
>>> -
>>> - Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>>> - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>>> - // pow(1.0, x) -> 1.0
>>> - if (Op1C->isExactlyValue(1.0))
>>> - return Op1C;
>>> - // pow(2.0, x) -> exp2(x)
>>> - if (Op1C->isExactlyValue(2.0) &&
>>> - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2,
>>> LibFunc::exp2f,
>>> - LibFunc::exp2l))
>>> - return EmitUnaryFloatFnCall(Op2, "exp2", B,
>>> Callee->getAttributes());
>>> - // pow(10.0, x) -> exp10(x)
>>> - if (Op1C->isExactlyValue(10.0) &&
>>> - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10,
>>> LibFunc::exp10f,
>>> - LibFunc::exp10l))
>>> - return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10),
>>> B,
>>> - Callee->getAttributes());
>>> - }
>>> + Value *Ret = nullptr;
>>> + if (UnsafeFPShrink && Callee->getName() == "pow" &&
>>> TLI->has(LibFunc::powf)) {
>>> + Ret = optimizeUnaryDoubleFP(CI, B, true);
>>> + }
>>>
>>> - ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>>> - if (!Op2C) return Ret;
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> + // result type.
>>> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + FT->getParamType(0) != FT->getParamType(1) ||
>>> + !FT->getParamType(0)->isFloatingPointTy())
>>> + return Ret;
>>>
>>> - if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
>>> - return ConstantFP::get(CI->getType(), 1.0);
>>> + Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>>> + if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>>> + // pow(1.0, x) -> 1.0
>>> + if (Op1C->isExactlyValue(1.0))
>>> + return Op1C;
>>> + // pow(2.0, x) -> exp2(x)
>>> + if (Op1C->isExactlyValue(2.0) &&
>>> + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2,
>>> LibFunc::exp2f,
>>> + LibFunc::exp2l))
>>> + return EmitUnaryFloatFnCall(Op2, "exp2", B,
>>> Callee->getAttributes());
>>> + // pow(10.0, x) -> exp10(x)
>>> + if (Op1C->isExactlyValue(10.0) &&
>>> + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10,
>>> LibFunc::exp10f,
>>> + LibFunc::exp10l))
>>> + return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
>>> + Callee->getAttributes());
>>> + }
>>>
>>> - if (Op2C->isExactlyValue(0.5) &&
>>> - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt,
>>> LibFunc::sqrtf,
>>> - LibFunc::sqrtl) &&
>>> - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs,
>>> LibFunc::fabsf,
>>> - LibFunc::fabsl)) {
>>> - // Expand pow(x, 0.5) to (x == -infinity ? +infinity :
>>> fabs(sqrt(x))).
>>> - // This is faster than calling pow, and still handles negative
>>> zero
>>> - // and negative infinity correctly.
>>> - // TODO: In fast-math mode, this could be just sqrt(x).
>>> - // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>>> - Value *Inf = ConstantFP::getInfinity(CI->getType());
>>> - Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>>> - Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
>>> - Callee->getAttributes());
>>> - Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
>>> - Callee->getAttributes());
>>> - Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>>> - Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>>> - return Sel;
>>> - }
>>> + ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>>> + if (!Op2C)
>>> + return Ret;
>>>
>>> - if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
>>> - return Op1;
>>> - if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
>>> - return B.CreateFMul(Op1, Op1, "pow2");
>>> - if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>>> - return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
>>> - Op1, "powrecip");
>>> - return nullptr;
>>> - }
>>> -};
>>> -
>>> -struct Exp2Opt : public UnsafeFPLibCallOptimization {
>>> - Exp2Opt(bool UnsafeFPShrink) :
>>> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - Value *Ret = nullptr;
>>> - if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>>> - TLI->has(LibFunc::exp2f)) {
>>> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>>> - }
>>> + if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
>>> + return ConstantFP::get(CI->getType(), 1.0);
>>>
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // Just make sure this has 1 argument of FP type, which matches the
>>> - // result type.
>>> - if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isFloatingPointTy())
>>> - return Ret;
>>> -
>>> - Value *Op = CI->getArgOperand(0);
>>> - // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
>>> - // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
>>> - LibFunc::Func LdExp = LibFunc::ldexpl;
>>> - if (Op->getType()->isFloatTy())
>>> - LdExp = LibFunc::ldexpf;
>>> - else if (Op->getType()->isDoubleTy())
>>> - LdExp = LibFunc::ldexp;
>>> -
>>> - if (TLI->has(LdExp)) {
>>> - Value *LdExpArg = nullptr;
>>> - if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>>> - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <=
>>> 32)
>>> - LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>>> - } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>>> - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <
>>> 32)
>>> - LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>>> - }
>>> -
>>> - if (LdExpArg) {
>>> - Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
>>> - if (!Op->getType()->isFloatTy())
>>> - One = ConstantExpr::getFPExtend(One, Op->getType());
>>> -
>>> - Module *M = Caller->getParent();
>>> - Value *Callee =
>>> - M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>>> - Op->getType(), B.getInt32Ty(), NULL);
>>> - CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>>> - if (const Function *F =
>>> dyn_cast<Function>(Callee->stripPointerCasts()))
>>> - CI->setCallingConv(F->getCallingConv());
>>> + if (Op2C->isExactlyValue(0.5) &&
>>> + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt,
>>> LibFunc::sqrtf,
>>> + LibFunc::sqrtl) &&
>>> + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs,
>>> LibFunc::fabsf,
>>> + LibFunc::fabsl)) {
>>> + // Expand pow(x, 0.5) to (x == -infinity ? +infinity :
>>> fabs(sqrt(x))).
>>> + // This is faster than calling pow, and still handles negative zero
>>> + // and negative infinity correctly.
>>> + // TODO: In fast-math mode, this could be just sqrt(x).
>>> + // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>>> + Value *Inf = ConstantFP::getInfinity(CI->getType());
>>> + Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>>> + Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
>>> Callee->getAttributes());
>>> + Value *FAbs =
>>> + EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
>>> + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>>> + Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>>> + return Sel;
>>> + }
>>> +
>>> + if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
>>> + return Op1;
>>> + if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
>>> + return B.CreateFMul(Op1, Op1, "pow2");
>>> + if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>>> + return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1,
>>> "powrecip");
>>> + return nullptr;
>>> +}
>>>
>>> - return CI;
>>> - }
>>> - }
>>> - return Ret;
>>> +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + Function *Caller = CI->getParent()->getParent();
>>> +
>>> + Value *Ret = nullptr;
>>> + if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>>> + TLI->has(LibFunc::exp2f)) {
>>> + Ret = optimizeUnaryDoubleFP(CI, B, true);
>>> }
>>> -};
>>>
>>> -struct SinCosPiOpt : public LibCallOptimization {
>>> - SinCosPiOpt() {}
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // Just make sure this has 1 argument of FP type, which matches the
>>> + // result type.
>>> + if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isFloatingPointTy())
>>> + return Ret;
>>>
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Make sure the prototype is as expected, otherwise the rest of the
>>> - // function is probably invalid and likely to abort.
>>> - if (!isTrigLibCall(CI))
>>> - return nullptr;
>>> -
>>> - Value *Arg = CI->getArgOperand(0);
>>> - SmallVector<CallInst *, 1> SinCalls;
>>> - SmallVector<CallInst *, 1> CosCalls;
>>> - SmallVector<CallInst *, 1> SinCosCalls;
>>> -
>>> - bool IsFloat = Arg->getType()->isFloatTy();
>>> -
>>> - // Look for all compatible sinpi, cospi and sincospi calls with the
>>> same
>>> - // argument. If there are enough (in some sense) we can make the
>>> - // substitution.
>>> - for (User *U : Arg->users())
>>> - classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>>> - SinCosCalls);
>>> -
>>> - // It's only worthwhile if both sinpi and cospi are actually used.
>>> - if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>>> - return nullptr;
>>> -
>>> - Value *Sin, *Cos, *SinCos;
>>> - insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
>>> - SinCos);
>>> -
>>> - replaceTrigInsts(SinCalls, Sin);
>>> - replaceTrigInsts(CosCalls, Cos);
>>> - replaceTrigInsts(SinCosCalls, SinCos);
>>> -
>>> - return nullptr;
>>> - }
>>> -
>>> - bool isTrigLibCall(CallInst *CI) {
>>> - Function *Callee = CI->getCalledFunction();
>>> - FunctionType *FT = Callee->getFunctionType();
>>> -
>>> - // We can only hope to do anything useful if we can ignore things
>>> like errno
>>> - // and floating-point exceptions.
>>> - bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
>>> - CI->hasFnAttr(Attribute::ReadNone);
>>> -
>>> - // Other than that we need float(float) or double(double)
>>> - return AttributesSafe && FT->getNumParams() == 1 &&
>>> - FT->getReturnType() == FT->getParamType(0) &&
>>> - (FT->getParamType(0)->isFloatTy() ||
>>> - FT->getParamType(0)->isDoubleTy());
>>> - }
>>> -
>>> - void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>>> - SmallVectorImpl<CallInst *> &SinCalls,
>>> - SmallVectorImpl<CallInst *> &CosCalls,
>>> - SmallVectorImpl<CallInst *> &SinCosCalls) {
>>> - CallInst *CI = dyn_cast<CallInst>(Val);
>>> -
>>> - if (!CI)
>>> - return;
>>> -
>>> - Function *Callee = CI->getCalledFunction();
>>> - StringRef FuncName = Callee->getName();
>>> - LibFunc::Func Func;
>>> - if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
>>> - !isTrigLibCall(CI))
>>> - return;
>>> -
>>> - if (IsFloat) {
>>> - if (Func == LibFunc::sinpif)
>>> - SinCalls.push_back(CI);
>>> - else if (Func == LibFunc::cospif)
>>> - CosCalls.push_back(CI);
>>> - else if (Func == LibFunc::sincospif_stret)
>>> - SinCosCalls.push_back(CI);
>>> - } else {
>>> - if (Func == LibFunc::sinpi)
>>> - SinCalls.push_back(CI);
>>> - else if (Func == LibFunc::cospi)
>>> - CosCalls.push_back(CI);
>>> - else if (Func == LibFunc::sincospi_stret)
>>> - SinCosCalls.push_back(CI);
>>> - }
>>> - }
>>> + Value *Op = CI->getArgOperand(0);
>>> + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
>>> + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
>>> + LibFunc::Func LdExp = LibFunc::ldexpl;
>>> + if (Op->getType()->isFloatTy())
>>> + LdExp = LibFunc::ldexpf;
>>> + else if (Op->getType()->isDoubleTy())
>>> + LdExp = LibFunc::ldexp;
>>> +
>>> + if (TLI->has(LdExp)) {
>>> + Value *LdExpArg = nullptr;
>>> + if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>>> + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
>>> + LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>>> + } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>>> + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
>>> + LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>>> + }
>>> +
>>> + if (LdExpArg) {
>>> + Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
>>> + if (!Op->getType()->isFloatTy())
>>> + One = ConstantExpr::getFPExtend(One, Op->getType());
>>> +
>>> + Module *M = Caller->getParent();
>>> + Value *Callee =
>>> + M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>>> + Op->getType(), B.getInt32Ty(), NULL);
>>> + CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>>> + if (const Function *F =
>>> dyn_cast<Function>(Callee->stripPointerCasts()))
>>> + CI->setCallingConv(F->getCallingConv());
>>>
>>> - void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
>>> - for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
>>> - E = Calls.end();
>>> - I != E; ++I) {
>>> - LCS->replaceAllUsesWith(*I, Res);
>>> + return CI;
>>> }
>>> }
>>> + return Ret;
>>> +}
>>>
>>> - void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value
>>> *Arg,
>>> - bool UseFloat, Value *&Sin, Value *&Cos,
>>> - Value *&SinCos) {
>>> - Type *ArgTy = Arg->getType();
>>> - Type *ResTy;
>>> - StringRef Name;
>>> -
>>> - Triple T(OrigCallee->getParent()->getTargetTriple());
>>> - if (UseFloat) {
>>> - Name = "__sincospif_stret";
>>> -
>>> - assert(T.getArch() != Triple::x86 && "x86 messy and unsupported
>>> for now");
>>> - // x86_64 can't use {float, float} since that would be returned
>>> in both
>>> - // xmm0 and xmm1, which isn't what a real struct would do.
>>> - ResTy = T.getArch() == Triple::x86_64
>>> - ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>>> - : static_cast<Type *>(StructType::get(ArgTy, ArgTy,
>>> NULL));
>>> - } else {
>>> - Name = "__sincospi_stret";
>>> - ResTy = StructType::get(ArgTy, ArgTy, NULL);
>>> - }
>>> +static bool isTrigLibCall(CallInst *CI);
>>> +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee,
>>> Value *Arg,
>>> + bool UseFloat, Value *&Sin, Value *&Cos,
>>> + Value *&SinCos);
>>>
>>> - Module *M = OrigCallee->getParent();
>>> - Value *Callee = M->getOrInsertFunction(Name,
>>> OrigCallee->getAttributes(),
>>> - ResTy, ArgTy, NULL);
>>> -
>>> - if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>>> - // If the argument is an instruction, it must dominate all uses
>>> so put our
>>> - // sincos call there.
>>> - BasicBlock::iterator Loc = ArgInst;
>>> - B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>>> - } else {
>>> - // Otherwise (e.g. for a constant) the beginning of the function
>>> is as
>>> - // good a place as any.
>>> - BasicBlock &EntryBB =
>>> B.GetInsertBlock()->getParent()->getEntryBlock();
>>> - B.SetInsertPoint(&EntryBB, EntryBB.begin());
>>> - }
>>> +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<>
>>> &B) {
>>>
>>> - SinCos = B.CreateCall(Callee, Arg, "sincospi");
>>> + // Make sure the prototype is as expected, otherwise the rest of the
>>> + // function is probably invalid and likely to abort.
>>> + if (!isTrigLibCall(CI))
>>> + return nullptr;
>>>
>>> - if (SinCos->getType()->isStructTy()) {
>>> - Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>>> - Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>>> - } else {
>>> - Sin = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 0),
>>> - "sinpi");
>>> - Cos = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 1),
>>> - "cospi");
>>> - }
>>> + Value *Arg = CI->getArgOperand(0);
>>> + SmallVector<CallInst *, 1> SinCalls;
>>> + SmallVector<CallInst *, 1> CosCalls;
>>> + SmallVector<CallInst *, 1> SinCosCalls;
>>> +
>>> + bool IsFloat = Arg->getType()->isFloatTy();
>>> +
>>> + // Look for all compatible sinpi, cospi and sincospi calls with the
>>> same
>>> + // argument. If there are enough (in some sense) we can make the
>>> + // substitution.
>>> + for (User *U : Arg->users())
>>> + classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>>> + SinCosCalls);
>>> +
>>> + // It's only worthwhile if both sinpi and cospi are actually used.
>>> + if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>>> + return nullptr;
>>> +
>>> + Value *Sin, *Cos, *SinCos;
>>> + insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
>>> SinCos);
>>> +
>>> + replaceTrigInsts(SinCalls, Sin);
>>> + replaceTrigInsts(CosCalls, Cos);
>>> + replaceTrigInsts(SinCosCalls, SinCos);
>>> +
>>> + return nullptr;
>>> +}
>>> +
>>> +static bool isTrigLibCall(CallInst *CI) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> +
>>> + // We can only hope to do anything useful if we can ignore things
>>> like errno
>>> + // and floating-point exceptions.
>>> + bool AttributesSafe =
>>> + CI->hasFnAttr(Attribute::NoUnwind) &&
>>> CI->hasFnAttr(Attribute::ReadNone);
>>> +
>>> + // Other than that we need float(float) or double(double)
>>> + return AttributesSafe && FT->getNumParams() == 1 &&
>>> + FT->getReturnType() == FT->getParamType(0) &&
>>> + (FT->getParamType(0)->isFloatTy() ||
>>> + FT->getParamType(0)->isDoubleTy());
>>> +}
>>> +
>>> +void
>>> +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool
>>> IsFloat,
>>> + SmallVectorImpl<CallInst *> &SinCalls,
>>> + SmallVectorImpl<CallInst *> &CosCalls,
>>> + SmallVectorImpl<CallInst *>
>>> &SinCosCalls) {
>>> + CallInst *CI = dyn_cast<CallInst>(Val);
>>> +
>>> + if (!CI)
>>> + return;
>>> +
>>> + Function *Callee = CI->getCalledFunction();
>>> + StringRef FuncName = Callee->getName();
>>> + LibFunc::Func Func;
>>> + if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
>>> !isTrigLibCall(CI))
>>> + return;
>>> +
>>> + if (IsFloat) {
>>> + if (Func == LibFunc::sinpif)
>>> + SinCalls.push_back(CI);
>>> + else if (Func == LibFunc::cospif)
>>> + CosCalls.push_back(CI);
>>> + else if (Func == LibFunc::sincospif_stret)
>>> + SinCosCalls.push_back(CI);
>>> + } else {
>>> + if (Func == LibFunc::sinpi)
>>> + SinCalls.push_back(CI);
>>> + else if (Func == LibFunc::cospi)
>>> + CosCalls.push_back(CI);
>>> + else if (Func == LibFunc::sincospi_stret)
>>> + SinCosCalls.push_back(CI);
>>> }
>>> +}
>>>
>>> -};
>>> +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *>
>>> &Calls,
>>> + Value *Res) {
>>> + for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E =
>>> Calls.end();
>>> + I != E; ++I) {
>>> + replaceAllUsesWith(*I, Res);
>>> + }
>>> +}
>>> +
>>> +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>>> + bool UseFloat, Value *&Sin, Value *&Cos, Value
>>> *&SinCos) {
>>> + Type *ArgTy = Arg->getType();
>>> + Type *ResTy;
>>> + StringRef Name;
>>> +
>>> + Triple T(OrigCallee->getParent()->getTargetTriple());
>>> + if (UseFloat) {
>>> + Name = "__sincospif_stret";
>>> +
>>> + assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for
>>> now");
>>> + // x86_64 can't use {float, float} since that would be returned in
>>> both
>>> + // xmm0 and xmm1, which isn't what a real struct would do.
>>> + ResTy = T.getArch() == Triple::x86_64
>>> + ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>>> + : static_cast<Type *>(StructType::get(ArgTy, ArgTy,
>>> NULL));
>>> + } else {
>>> + Name = "__sincospi_stret";
>>> + ResTy = StructType::get(ArgTy, ArgTy, NULL);
>>> + }
>>> +
>>> + Module *M = OrigCallee->getParent();
>>> + Value *Callee = M->getOrInsertFunction(Name,
>>> OrigCallee->getAttributes(),
>>> + ResTy, ArgTy, NULL);
>>> +
>>> + if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>>> + // If the argument is an instruction, it must dominate all uses so
>>> put our
>>> + // sincos call there.
>>> + BasicBlock::iterator Loc = ArgInst;
>>> + B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>>> + } else {
>>> + // Otherwise (e.g. for a constant) the beginning of the function is
>>> as
>>> + // good a place as any.
>>> + BasicBlock &EntryBB =
>>> B.GetInsertBlock()->getParent()->getEntryBlock();
>>> + B.SetInsertPoint(&EntryBB, EntryBB.begin());
>>> + }
>>> +
>>> + SinCos = B.CreateCall(Callee, Arg, "sincospi");
>>> +
>>> + if (SinCos->getType()->isStructTy()) {
>>> + Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>>> + Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>>> + } else {
>>> + Sin = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 0),
>>> + "sinpi");
>>> + Cos = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 1),
>>> + "cospi");
>>> + }
>>> +}
>>>
>>>
>>> //===----------------------------------------------------------------------===//
>>> // Integer Library Call Optimizations
>>>
>>> //===----------------------------------------------------------------------===//
>>>
>>> -struct FFSOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> - // result type.
>>> - if (FT->getNumParams() != 1 ||
>>> - !FT->getReturnType()->isIntegerTy(32) ||
>>> - !FT->getParamType(0)->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - Value *Op = CI->getArgOperand(0);
>>> -
>>> - // Constant fold.
>>> - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>>> - if (CI->isZero()) // ffs(0) -> 0.
>>> - return B.getInt32(0);
>>> - // ffs(c) -> cttz(c)+1
>>> - return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>>> - }
>>> +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> + // result type.
>>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32)
>>> ||
>>> + !FT->getParamType(0)->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + Value *Op = CI->getArgOperand(0);
>>> +
>>> + // Constant fold.
>>> + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>>> + if (CI->isZero()) // ffs(0) -> 0.
>>> + return B.getInt32(0);
>>> + // ffs(c) -> cttz(c)+1
>>> + return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>>> + }
>>> +
>>> + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>>> + Type *ArgType = Op->getType();
>>> + Value *F =
>>> + Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz,
>>> ArgType);
>>> + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>>> + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>>> + V = B.CreateIntCast(V, B.getInt32Ty(), false);
>>>
>>> - // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>>> - Type *ArgType = Op->getType();
>>> - Value *F = Intrinsic::getDeclaration(Callee->getParent(),
>>> - Intrinsic::cttz, ArgType);
>>> - Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>>> - V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>>> - V = B.CreateIntCast(V, B.getInt32Ty(), false);
>>> -
>>> - Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>>> - return B.CreateSelect(Cond, V, B.getInt32(0));
>>> - }
>>> -};
>>> -
>>> -struct AbsOpt : public LibCallOptimization {
>>> - bool ignoreCallingConv() override { return true; }
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // We require integer(integer) where the types agree.
>>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy()
>>> ||
>>> - FT->getParamType(0) != FT->getReturnType())
>>> - return nullptr;
>>> -
>>> - // abs(x) -> x >s -1 ? x : -x
>>> - Value *Op = CI->getArgOperand(0);
>>> - Value *Pos = B.CreateICmpSGT(Op,
>>> Constant::getAllOnesValue(Op->getType()),
>>> - "ispos");
>>> - Value *Neg = B.CreateNeg(Op, "neg");
>>> - return B.CreateSelect(Pos, Op, Neg);
>>> - }
>>> -};
>>> -
>>> -struct IsDigitOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // We require integer(i32)
>>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy()
>>> ||
>>> - !FT->getParamType(0)->isIntegerTy(32))
>>> - return nullptr;
>>> -
>>> - // isdigit(c) -> (c-'0') <u 10
>>> - Value *Op = CI->getArgOperand(0);
>>> - Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>>> - Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>>> - return B.CreateZExt(Op, CI->getType());
>>> - }
>>> -};
>>> -
>>> -struct IsAsciiOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // We require integer(i32)
>>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy()
>>> ||
>>> - !FT->getParamType(0)->isIntegerTy(32))
>>> - return nullptr;
>>> -
>>> - // isascii(c) -> c <u 128
>>> - Value *Op = CI->getArgOperand(0);
>>> - Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>>> - return B.CreateZExt(Op, CI->getType());
>>> - }
>>> -};
>>> -
>>> -struct ToAsciiOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - // We require i32(i32)
>>> - if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> - !FT->getParamType(0)->isIntegerTy(32))
>>> - return nullptr;
>>> -
>>> - // toascii(c) -> c & 0x7f
>>> - return B.CreateAnd(CI->getArgOperand(0),
>>> - ConstantInt::get(CI->getType(),0x7F));
>>> - }
>>> -};
>>> + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>>> + return B.CreateSelect(Cond, V, B.getInt32(0));
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // We require integer(integer) where the types agree.
>>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>>> + FT->getParamType(0) != FT->getReturnType())
>>> + return nullptr;
>>> +
>>> + // abs(x) -> x >s -1 ? x : -x
>>> + Value *Op = CI->getArgOperand(0);
>>> + Value *Pos =
>>> + B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
>>> "ispos");
>>> + Value *Neg = B.CreateNeg(Op, "neg");
>>> + return B.CreateSelect(Pos, Op, Neg);
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // We require integer(i32)
>>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>>> + !FT->getParamType(0)->isIntegerTy(32))
>>> + return nullptr;
>>> +
>>> + // isdigit(c) -> (c-'0') <u 10
>>> + Value *Op = CI->getArgOperand(0);
>>> + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>>> + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>>> + return B.CreateZExt(Op, CI->getType());
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // We require integer(i32)
>>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>>> + !FT->getParamType(0)->isIntegerTy(32))
>>> + return nullptr;
>>> +
>>> + // isascii(c) -> c <u 128
>>> + Value *Op = CI->getArgOperand(0);
>>> + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>>> + return B.CreateZExt(Op, CI->getType());
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + // We require i32(i32)
>>> + if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> + !FT->getParamType(0)->isIntegerTy(32))
>>> + return nullptr;
>>> +
>>> + // toascii(c) -> c & 0x7f
>>> + return B.CreateAnd(CI->getArgOperand(0),
>>> + ConstantInt::get(CI->getType(), 0x7F));
>>> +}
>>>
>>>
>>> //===----------------------------------------------------------------------===//
>>> // Formatting and IO Library Call Optimizations
>>>
>>> //===----------------------------------------------------------------------===//
>>>
>>> -struct ErrorReportingOpt : public LibCallOptimization {
>>> - ErrorReportingOpt(int S = -1) : StreamArg(S) {}
>>> +static bool isReportingError(Function *Callee, CallInst *CI, int
>>> StreamArg);
>>>
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &) override {
>>> - // Error reporting calls should be cold, mark them as such.
>>> - // This applies even to non-builtin calls: it is only a hint and
>>> applies to
>>> - // functions that the frontend might not understand as builtins.
>>> -
>>> - // This heuristic was suggested in:
>>> - // Improving Static Branch Prediction in a Compiler
>>> - // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>>> - // Proceedings of PACT'98, Oct. 1998, IEEE
>>> -
>>> - if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee,
>>> CI)) {
>>> - CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>>> - }
>>> +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI,
>>> IRBuilder<> &B,
>>> + int StreamArg) {
>>> + // Error reporting calls should be cold, mark them as such.
>>> + // This applies even to non-builtin calls: it is only a hint and
>>> applies to
>>> + // functions that the frontend might not understand as builtins.
>>> +
>>> + // This heuristic was suggested in:
>>> + // Improving Static Branch Prediction in a Compiler
>>> + // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>>> + // Proceedings of PACT'98, Oct. 1998, IEEE
>>> + Function *Callee = CI->getCalledFunction();
>>>
>>> - return nullptr;
>>> + if (!CI->hasFnAttr(Attribute::Cold) &&
>>> + isReportingError(Callee, CI, StreamArg)) {
>>> + CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>>> }
>>>
>>> -protected:
>>> - bool isReportingError(Function *Callee, CallInst *CI) {
>>> - if (!ColdErrorCalls)
>>> - return false;
>>> -
>>> - if (!Callee || !Callee->isDeclaration())
>>> - return false;
>>> -
>>> - if (StreamArg < 0)
>>> - return true;
>>> + return nullptr;
>>> +}
>>>
>>> - // These functions might be considered cold, but only if their
>>> stream
>>> - // argument is stderr.
>>> +static bool isReportingError(Function *Callee, CallInst *CI, int
>>> StreamArg) {
>>> + if (!ColdErrorCalls)
>>> + return false;
>>>
>>> - if (StreamArg >= (int) CI->getNumArgOperands())
>>> - return false;
>>> - LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>>> - if (!LI)
>>> - return false;
>>> - GlobalVariable *GV =
>>> dyn_cast<GlobalVariable>(LI->getPointerOperand());
>>> - if (!GV || !GV->isDeclaration())
>>> - return false;
>>> - return GV->getName() == "stderr";
>>> - }
>>> -
>>> - int StreamArg;
>>> -};
>>> -
>>> -struct PrintFOpt : public LibCallOptimization {
>>> - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) {
>>> - // Check for a fixed format string.
>>> - StringRef FormatStr;
>>> - if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>>> - return nullptr;
>>> -
>>> - // Empty format string -> noop.
>>> - if (FormatStr.empty()) // Tolerate printf's declared void.
>>> - return CI->use_empty() ? (Value*)CI :
>>> - ConstantInt::get(CI->getType(), 0);
>>> -
>>> - // Do not do any of the following transformations if the printf
>>> return value
>>> - // is used, in general the printf return value is not compatible
>>> with either
>>> - // putchar() or puts().
>>> - if (!CI->use_empty())
>>> - return nullptr;
>>> -
>>> - // printf("x") -> putchar('x'), even for '%'.
>>> - if (FormatStr.size() == 1) {
>>> - Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>>> - if (CI->use_empty() || !Res) return Res;
>>> - return B.CreateIntCast(Res, CI->getType(), true);
>>> - }
>>> + if (!Callee || !Callee->isDeclaration())
>>> + return false;
>>>
>>> - // printf("foo\n") --> puts("foo")
>>> - if (FormatStr[FormatStr.size()-1] == '\n' &&
>>> - FormatStr.find('%') == StringRef::npos) { // No format
>>> characters.
>>> - // Create a string literal with no \n on it. We expect the
>>> constant merge
>>> - // pass to be run after this pass, to merge duplicate strings.
>>> - FormatStr = FormatStr.drop_back();
>>> - Value *GV = B.CreateGlobalString(FormatStr, "str");
>>> - Value *NewCI = EmitPutS(GV, B, DL, TLI);
>>> - return (CI->use_empty() || !NewCI) ?
>>> - NewCI :
>>> - ConstantInt::get(CI->getType(), FormatStr.size()+1);
>>> - }
>>> + if (StreamArg < 0)
>>> + return true;
>>>
>>> - // Optimize specific format strings.
>>> - // printf("%c", chr) --> putchar(chr)
>>> - if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>>> - CI->getArgOperand(1)->getType()->isIntegerTy()) {
>>> - Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>>> + // These functions might be considered cold, but only if their stream
>>> + // argument is stderr.
>>>
>>> - if (CI->use_empty() || !Res) return Res;
>>> - return B.CreateIntCast(Res, CI->getType(), true);
>>> - }
>>> + if (StreamArg >= (int)CI->getNumArgOperands())
>>> + return false;
>>> + LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>>> + if (!LI)
>>> + return false;
>>> + GlobalVariable *GV =
>>> dyn_cast<GlobalVariable>(LI->getPointerOperand());
>>> + if (!GV || !GV->isDeclaration())
>>> + return false;
>>> + return GV->getName() == "stderr";
>>> +}
>>>
>>> - // printf("%s\n", str) --> puts(str)
>>> - if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>>> - CI->getArgOperand(1)->getType()->isPointerTy()) {
>>> - return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>>> - }
>>> - return nullptr;
>>> +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI,
>>> IRBuilder<> &B) {
>>> + // Check for a fixed format string.
>>> + StringRef FormatStr;
>>> + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>>> + return nullptr;
>>> +
>>> + // Empty format string -> noop.
>>> + if (FormatStr.empty()) // Tolerate printf's declared void.
>>> + return CI->use_empty() ? (Value *)CI :
>>> ConstantInt::get(CI->getType(), 0);
>>> +
>>> + // Do not do any of the following transformations if the printf
>>> return value
>>> + // is used, in general the printf return value is not compatible with
>>> either
>>> + // putchar() or puts().
>>> + if (!CI->use_empty())
>>> + return nullptr;
>>> +
>>> + // printf("x") -> putchar('x'), even for '%'.
>>> + if (FormatStr.size() == 1) {
>>> + Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>>> + if (CI->use_empty() || !Res)
>>> + return Res;
>>> + return B.CreateIntCast(Res, CI->getType(), true);
>>> + }
>>> +
>>> + // printf("foo\n") --> puts("foo")
>>> + if (FormatStr[FormatStr.size() - 1] == '\n' &&
>>> + FormatStr.find('%') == StringRef::npos) { // No format characters.
>>> + // Create a string literal with no \n on it. We expect the
>>> constant merge
>>> + // pass to be run after this pass, to merge duplicate strings.
>>> + FormatStr = FormatStr.drop_back();
>>> + Value *GV = B.CreateGlobalString(FormatStr, "str");
>>> + Value *NewCI = EmitPutS(GV, B, DL, TLI);
>>> + return (CI->use_empty() || !NewCI)
>>> + ? NewCI
>>> + : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
>>> + }
>>> +
>>> + // Optimize specific format strings.
>>> + // printf("%c", chr) --> putchar(chr)
>>> + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>>> + CI->getArgOperand(1)->getType()->isIntegerTy()) {
>>> + Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>>> +
>>> + if (CI->use_empty() || !Res)
>>> + return Res;
>>> + return B.CreateIntCast(Res, CI->getType(), true);
>>> + }
>>> +
>>> + // printf("%s\n", str) --> puts(str)
>>> + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>>> + CI->getArgOperand(1)->getType()->isPointerTy()) {
>>> + return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>>> }
>>> + return nullptr;
>>> +}
>>>
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Require one fixed pointer argument and an integer/void result.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> - !(FT->getReturnType()->isIntegerTy() ||
>>> - FT->getReturnType()->isVoidTy()))
>>> - return nullptr;
>>> +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
>>>
>>> - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>>> - return V;
>>> - }
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Require one fixed pointer argument and an integer/void result.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> + !(FT->getReturnType()->isIntegerTy() ||
>>> FT->getReturnType()->isVoidTy()))
>>> + return nullptr;
>>> +
>>> + if (Value *V = optimizePrintFString(CI, B)) {
>>> + return V;
>>> + }
>>>
>>> - // printf(format, ...) -> iprintf(format, ...) if no floating point
>>> - // arguments.
>>> - if (TLI->has(LibFunc::iprintf) &&
>>> !callHasFloatingPointArgument(CI)) {
>>> - Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> - Constant *IPrintFFn =
>>> + // printf(format, ...) -> iprintf(format, ...) if no floating point
>>> + // arguments.
>>> + if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
>>> + Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> + Constant *IPrintFFn =
>>> M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
>>> - CallInst *New = cast<CallInst>(CI->clone());
>>> - New->setCalledFunction(IPrintFFn);
>>> - B.Insert(New);
>>> - return New;
>>> - }
>>> - return nullptr;
>>> + CallInst *New = cast<CallInst>(CI->clone());
>>> + New->setCalledFunction(IPrintFFn);
>>> + B.Insert(New);
>>> + return New;
>>> }
>>> -};
>>> + return nullptr;
>>> +}
>>>
>>> -struct SPrintFOpt : public LibCallOptimization {
>>> - Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) {
>>> - // Check for a fixed format string.
>>> - StringRef FormatStr;
>>> - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> - return nullptr;
>>> -
>>> - // If we just have a format string (nothing else crazy) transform
>>> it.
>>> - if (CI->getNumArgOperands() == 2) {
>>> - // Make sure there's no % in the constant array. We could try to
>>> handle
>>> - // %% -> % in the future if we cared.
>>> - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> - if (FormatStr[i] == '%')
>>> - return nullptr; // we found a format specifier, bail out.
>>> -
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> -
>>> - // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> - ConstantInt::get(DL->getIntPtrType(*Context), //
>>> Copy the
>>> - FormatStr.size() + 1), 1); //
>>> nul byte.
>>> - return ConstantInt::get(CI->getType(), FormatStr.size());
>>> - }
>>> +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
>>> IRBuilder<> &B) {
>>> + // Check for a fixed format string.
>>> + StringRef FormatStr;
>>> + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> + return nullptr;
>>>
>>> - // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> - // and have an extra operand.
>>> - if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> - CI->getNumArgOperands() < 3)
>>> - return nullptr;
>>> -
>>> - // Decode the second character of the format string.
>>> - if (FormatStr[1] == 'c') {
>>> - // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>>> - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return
>>> nullptr;
>>> - Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(),
>>> "char");
>>> - Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>>> - B.CreateStore(V, Ptr);
>>> - Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>>> - B.CreateStore(B.getInt8(0), Ptr);
>>> + // If we just have a format string (nothing else crazy) transform it.
>>> + if (CI->getNumArgOperands() == 2) {
>>> + // Make sure there's no % in the constant array. We could try to
>>> handle
>>> + // %% -> % in the future if we cared.
>>> + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> + if (FormatStr[i] == '%')
>>> + return nullptr; // we found a format specifier, bail out.
>>>
>>> - return ConstantInt::get(CI->getType(), 1);
>>> - }
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> + return nullptr;
>>>
>>> - if (FormatStr[1] == 's') {
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> + // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>>> + B.CreateMemCpy(
>>> + CI->getArgOperand(0), CI->getArgOperand(1),
>>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> + FormatStr.size() + 1),
>>> + 1); // Copy the null byte.
>>> + return ConstantInt::get(CI->getType(), FormatStr.size());
>>> + }
>>>
>>> - // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str,
>>> strlen(str)+1, 1)
>>> - if (!CI->getArgOperand(2)->getType()->isPointerTy()) return
>>> nullptr;
>>> + // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> + // and have an extra operand.
>>> + if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> + CI->getNumArgOperands() < 3)
>>> + return nullptr;
>>>
>>> - Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>>> - if (!Len)
>>> - return nullptr;
>>> - Value *IncLen = B.CreateAdd(Len,
>>> - ConstantInt::get(Len->getType(), 1),
>>> - "leninc");
>>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2),
>>> IncLen, 1);
>>> + // Decode the second character of the format string.
>>> + if (FormatStr[1] == 'c') {
>>> + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>>> + if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>>> + return nullptr;
>>> + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(),
>>> "char");
>>> + Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>>> + B.CreateStore(V, Ptr);
>>> + Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>>> + B.CreateStore(B.getInt8(0), Ptr);
>>>
>>> - // The sprintf result is the unincremented number of bytes in the
>>> string.
>>> - return B.CreateIntCast(Len, CI->getType(), false);
>>> - }
>>> - return nullptr;
>>> + return ConstantInt::get(CI->getType(), 1);
>>> }
>>>
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Require two fixed pointer arguments and an integer result.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - !FT->getReturnType()->isIntegerTy())
>>> + if (FormatStr[1] == 's') {
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> return nullptr;
>>>
>>> - if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
>>> - return V;
>>> - }
>>> + // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str,
>>> strlen(str)+1, 1)
>>> + if (!CI->getArgOperand(2)->getType()->isPointerTy())
>>> + return nullptr;
>>>
>>> - // sprintf(str, format, ...) -> siprintf(str, format, ...) if no
>>> floating
>>> - // point arguments.
>>> - if (TLI->has(LibFunc::siprintf) &&
>>> !callHasFloatingPointArgument(CI)) {
>>> - Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> - Constant *SIPrintFFn =
>>> + Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>>> + if (!Len)
>>> + return nullptr;
>>> + Value *IncLen =
>>> + B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
>>> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen,
>>> 1);
>>> +
>>> + // The sprintf result is the unincremented number of bytes in the
>>> string.
>>> + return B.CreateIntCast(Len, CI->getType(), false);
>>> + }
>>> + return nullptr;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Require two fixed pointer arguments and an integer result.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + !FT->getReturnType()->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + if (Value *V = optimizeSPrintFString(CI, B)) {
>>> + return V;
>>> + }
>>> +
>>> + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no
>>> floating
>>> + // point arguments.
>>> + if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI))
>>> {
>>> + Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> + Constant *SIPrintFFn =
>>> M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
>>> - CallInst *New = cast<CallInst>(CI->clone());
>>> - New->setCalledFunction(SIPrintFFn);
>>> - B.Insert(New);
>>> - return New;
>>> - }
>>> - return nullptr;
>>> + CallInst *New = cast<CallInst>(CI->clone());
>>> + New->setCalledFunction(SIPrintFFn);
>>> + B.Insert(New);
>>> + return New;
>>> }
>>> -};
>>> + return nullptr;
>>> +}
>>>
>>> -struct FPrintFOpt : public LibCallOptimization {
>>> - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) {
>>> - ErrorReportingOpt ER(/* StreamArg = */ 0);
>>> - (void) ER.callOptimizer(Callee, CI, B);
>>> -
>>> - // All the optimizations depend on the format string.
>>> - StringRef FormatStr;
>>> - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> - return nullptr;
>>> -
>>> - // Do not do any of the following transformations if the fprintf
>>> return
>>> - // value is used, in general the fprintf return value is not
>>> compatible
>>> - // with fwrite(), fputc() or fputs().
>>> - if (!CI->use_empty())
>>> - return nullptr;
>>> -
>>> - // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>>> - if (CI->getNumArgOperands() == 2) {
>>> - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> - if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
>>> - return nullptr; // We found a format specifier.
>>> -
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> -
>>> - return EmitFWrite(CI->getArgOperand(1),
>>> - ConstantInt::get(DL->getIntPtrType(*Context),
>>> - FormatStr.size()),
>>> - CI->getArgOperand(0), B, DL, TLI);
>>> - }
>>> +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
>>> IRBuilder<> &B) {
>>> + optimizeErrorReporting(CI, B, 0);
>>> +
>>> + // All the optimizations depend on the format string.
>>> + StringRef FormatStr;
>>> + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> + return nullptr;
>>>
>>> - // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> - // and have an extra operand.
>>> - if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> - CI->getNumArgOperands() < 3)
>>> + // Do not do any of the following transformations if the fprintf
>>> return
>>> + // value is used, in general the fprintf return value is not
>>> compatible
>>> + // with fwrite(), fputc() or fputs().
>>> + if (!CI->use_empty())
>>> + return nullptr;
>>> +
>>> + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>>> + if (CI->getNumArgOperands() == 2) {
>>> + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> + if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
>>> + return nullptr; // We found a format specifier.
>>> +
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> return nullptr;
>>>
>>> - // Decode the second character of the format string.
>>> - if (FormatStr[1] == 'c') {
>>> - // fprintf(F, "%c", chr) --> fputc(chr, F)
>>> - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return
>>> nullptr;
>>> - return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
>>> DL, TLI);
>>> - }
>>> + return EmitFWrite(
>>> + CI->getArgOperand(1),
>>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> FormatStr.size()),
>>> + CI->getArgOperand(0), B, DL, TLI);
>>> + }
>>>
>>> - if (FormatStr[1] == 's') {
>>> - // fprintf(F, "%s", str) --> fputs(str, F)
>>> - if (!CI->getArgOperand(2)->getType()->isPointerTy())
>>> - return nullptr;
>>> - return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B,
>>> DL, TLI);
>>> - }
>>> + // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> + // and have an extra operand.
>>> + if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> + CI->getNumArgOperands() < 3)
>>> return nullptr;
>>> - }
>>>
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Require two fixed paramters as pointers and integer result.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - !FT->getReturnType()->isIntegerTy())
>>> + // Decode the second character of the format string.
>>> + if (FormatStr[1] == 'c') {
>>> + // fprintf(F, "%c", chr) --> fputc(chr, F)
>>> + if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>>> return nullptr;
>>> + return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
>>> TLI);
>>> + }
>>>
>>> - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>>> - return V;
>>> - }
>>> + if (FormatStr[1] == 's') {
>>> + // fprintf(F, "%s", str) --> fputs(str, F)
>>> + if (!CI->getArgOperand(2)->getType()->isPointerTy())
>>> + return nullptr;
>>> + return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
>>> TLI);
>>> + }
>>> + return nullptr;
>>> +}
>>>
>>> - // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if
>>> no
>>> - // floating point arguments.
>>> - if (TLI->has(LibFunc::fiprintf) &&
>>> !callHasFloatingPointArgument(CI)) {
>>> - Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> - Constant *FIPrintFFn =
>>> +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B)
>>> {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Require two fixed paramters as pointers and integer result.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() ||
>>> + !FT->getReturnType()->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + if (Value *V = optimizeFPrintFString(CI, B)) {
>>> + return V;
>>> + }
>>> +
>>> + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
>>> + // floating point arguments.
>>> + if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI))
>>> {
>>> + Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> + Constant *FIPrintFFn =
>>> M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
>>> - CallInst *New = cast<CallInst>(CI->clone());
>>> - New->setCalledFunction(FIPrintFFn);
>>> - B.Insert(New);
>>> - return New;
>>> - }
>>> - return nullptr;
>>> + CallInst *New = cast<CallInst>(CI->clone());
>>> + New->setCalledFunction(FIPrintFFn);
>>> + B.Insert(New);
>>> + return New;
>>> }
>>> -};
>>> + return nullptr;
>>> +}
>>>
>>> -struct FWriteOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - ErrorReportingOpt ER(/* StreamArg = */ 3);
>>> - (void) ER.callOptimizer(Callee, CI, B);
>>> -
>>> - // Require a pointer, an integer, an integer, a pointer, returning
>>> integer.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> - !FT->getParamType(1)->isIntegerTy() ||
>>> - !FT->getParamType(2)->isIntegerTy() ||
>>> - !FT->getParamType(3)->isPointerTy() ||
>>> - !FT->getReturnType()->isIntegerTy())
>>> - return nullptr;
>>> -
>>> - // Get the element size and count.
>>> - ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> - ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> - if (!SizeC || !CountC) return nullptr;
>>> - uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
>>> -
>>> - // If this is writing zero records, remove the call (it's a noop).
>>> - if (Bytes == 0)
>>> - return ConstantInt::get(CI->getType(), 0);
>>> -
>>> - // If this is writing one byte, turn it into fputc.
>>> - // This optimisation is only valid, if the return value is unused.
>>> - if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) ->
>>> fputc(S[0],F)
>>> - Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B),
>>> "char");
>>> - Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>>> - return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>>> - }
>>> +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
>>> + optimizeErrorReporting(CI, B, 3);
>>>
>>> - return nullptr;
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Require a pointer, an integer, an integer, a pointer, returning
>>> integer.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isIntegerTy() ||
>>> + !FT->getParamType(2)->isIntegerTy() ||
>>> + !FT->getParamType(3)->isPointerTy() ||
>>> + !FT->getReturnType()->isIntegerTy())
>>> + return nullptr;
>>> +
>>> + // Get the element size and count.
>>> + ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> + ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> + if (!SizeC || !CountC)
>>> + return nullptr;
>>> + uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
>>> +
>>> + // If this is writing zero records, remove the call (it's a noop).
>>> + if (Bytes == 0)
>>> + return ConstantInt::get(CI->getType(), 0);
>>> +
>>> + // If this is writing one byte, turn it into fputc.
>>> + // This optimisation is only valid, if the return value is unused.
>>> + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) ->
>>> fputc(S[0],F)
>>> + Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B),
>>> "char");
>>> + Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>>> + return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>>> }
>>> -};
>>>
>>> -struct FPutsOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - ErrorReportingOpt ER(/* StreamArg = */ 1);
>>> - (void) ER.callOptimizer(Callee, CI, B);
>>> + return nullptr;
>>> +}
>>>
>>> - // These optimizations require DataLayout.
>>> - if (!DL) return nullptr;
>>> +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
>>> + optimizeErrorReporting(CI, B, 1);
>>>
>>> - // Require two pointers. Also, we can't optimize if return value
>>> is used.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> - !FT->getParamType(1)->isPointerTy() ||
>>> - !CI->use_empty())
>>> - return nullptr;
>>> -
>>> - // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>>> - uint64_t Len = GetStringLength(CI->getArgOperand(0));
>>> - if (!Len) return nullptr;
>>> - // Known to have no uses (see above).
>>> - return EmitFWrite(CI->getArgOperand(0),
>>> - ConstantInt::get(DL->getIntPtrType(*Context),
>>> Len-1),
>>> - CI->getArgOperand(1), B, DL, TLI);
>>> - }
>>> -};
>>> -
>>> -struct PutsOpt : public LibCallOptimization {
>>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>>> - IRBuilder<> &B) override {
>>> - // Require one fixed pointer argument and an integer/void result.
>>> - FunctionType *FT = Callee->getFunctionType();
>>> - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> - !(FT->getReturnType()->isIntegerTy() ||
>>> - FT->getReturnType()->isVoidTy()))
>>> - return nullptr;
>>> -
>>> - // Check for a constant string.
>>> - StringRef Str;
>>> - if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>>> - return nullptr;
>>> -
>>> - if (Str.empty() && CI->use_empty()) {
>>> - // puts("") -> putchar('\n')
>>> - Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>>> - if (CI->use_empty() || !Res) return Res;
>>> - return B.CreateIntCast(Res, CI->getType(), true);
>>> - }
>>> + Function *Callee = CI->getCalledFunction();
>>>
>>> + // These optimizations require DataLayout.
>>> + if (!DL)
>>> return nullptr;
>>> - }
>>> -};
>>>
>>> -} // End anonymous namespace.
>>> + // Require two pointers. Also, we can't optimize if return value is
>>> used.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> + !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
>>> + return nullptr;
>>>
>>> -namespace llvm {
>>> + // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>>> + uint64_t Len = GetStringLength(CI->getArgOperand(0));
>>> + if (!Len)
>>> + return nullptr;
>>>
>>> -class LibCallSimplifierImpl {
>>> - const DataLayout *DL;
>>> - const TargetLibraryInfo *TLI;
>>> - const LibCallSimplifier *LCS;
>>> - bool UnsafeFPShrink;
>>> -
>>> - // Math library call optimizations.
>>> - CosOpt Cos;
>>> - PowOpt Pow;
>>> - Exp2Opt Exp2;
>>> -public:
>>> - LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo
>>> *TLI,
>>> - const LibCallSimplifier *LCS,
>>> - bool UnsafeFPShrink = false)
>>> - : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
>>> - this->DL = DL;
>>> - this->TLI = TLI;
>>> - this->LCS = LCS;
>>> - this->UnsafeFPShrink = UnsafeFPShrink;
>>> - }
>>> -
>>> - Value *optimizeCall(CallInst *CI);
>>> - LibCallOptimization *lookupOptimization(CallInst *CI);
>>> - bool hasFloatVersion(StringRef FuncName);
>>> -};
>>> + // Known to have no uses (see above).
>>> + return EmitFWrite(
>>> + CI->getArgOperand(0),
>>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
>>> + CI->getArgOperand(1), B, DL, TLI);
>>> +}
>>>
>>> -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
>>> +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
>>> + Function *Callee = CI->getCalledFunction();
>>> + // Require one fixed pointer argument and an integer/void result.
>>> + FunctionType *FT = Callee->getFunctionType();
>>> + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> + !(FT->getReturnType()->isIntegerTy() ||
>>> FT->getReturnType()->isVoidTy()))
>>> + return nullptr;
>>> +
>>> + // Check for a constant string.
>>> + StringRef Str;
>>> + if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>>> + return nullptr;
>>> +
>>> + if (Str.empty() && CI->use_empty()) {
>>> + // puts("") -> putchar('\n')
>>> + Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>>> + if (CI->use_empty() || !Res)
>>> + return Res;
>>> + return B.CreateIntCast(Res, CI->getType(), true);
>>> + }
>>> +
>>> + return nullptr;
>>> +}
>>> +
>>> +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
>>> LibFunc::Func Func;
>>> SmallString<20> FloatFuncName = FuncName;
>>> FloatFuncName += 'f';
>>> @@ -2048,263 +1874,204 @@ bool LibCallSimplifierImpl::hasFloatVers
>>> return false;
>>> }
>>>
>>> -// Fortified library call optimizations.
>>> -static MemCpyChkOpt MemCpyChk;
>>> -static MemMoveChkOpt MemMoveChk;
>>> -static MemSetChkOpt MemSetChk;
>>> -static StrCpyChkOpt StrCpyChk;
>>> -static StpCpyChkOpt StpCpyChk;
>>> -static StrNCpyChkOpt StrNCpyChk;
>>> -
>>> -// String library call optimizations.
>>> -static StrCatOpt StrCat;
>>> -static StrNCatOpt StrNCat;
>>> -static StrChrOpt StrChr;
>>> -static StrRChrOpt StrRChr;
>>> -static StrCmpOpt StrCmp;
>>> -static StrNCmpOpt StrNCmp;
>>> -static StrCpyOpt StrCpy;
>>> -static StpCpyOpt StpCpy;
>>> -static StrNCpyOpt StrNCpy;
>>> -static StrLenOpt StrLen;
>>> -static StrPBrkOpt StrPBrk;
>>> -static StrToOpt StrTo;
>>> -static StrSpnOpt StrSpn;
>>> -static StrCSpnOpt StrCSpn;
>>> -static StrStrOpt StrStr;
>>> -
>>> -// Memory library call optimizations.
>>> -static MemCmpOpt MemCmp;
>>> -static MemCpyOpt MemCpy;
>>> -static MemMoveOpt MemMove;
>>> -static MemSetOpt MemSet;
>>> -
>>> -// Math library call optimizations.
>>> -static UnaryDoubleFPOpt UnaryDoubleFP(false);
>>> -static BinaryDoubleFPOpt BinaryDoubleFP(false);
>>> -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> -static SinCosPiOpt SinCosPi;
>>> -
>>> - // Integer library call optimizations.
>>> -static FFSOpt FFS;
>>> -static AbsOpt Abs;
>>> -static IsDigitOpt IsDigit;
>>> -static IsAsciiOpt IsAscii;
>>> -static ToAsciiOpt ToAscii;
>>> -
>>> -// Formatting and IO library call optimizations.
>>> -static ErrorReportingOpt ErrorReporting;
>>> -static ErrorReportingOpt ErrorReporting0(0);
>>> -static ErrorReportingOpt ErrorReporting1(1);
>>> -static PrintFOpt PrintF;
>>> -static SPrintFOpt SPrintF;
>>> -static FPrintFOpt FPrintF;
>>> -static FWriteOpt FWrite;
>>> -static FPutsOpt FPuts;
>>> -static PutsOpt Puts;
>>> +Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>>> + if (CI->isNoBuiltin())
>>> + return nullptr;
>>>
>>> -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst
>>> *CI) {
>>> LibFunc::Func Func;
>>> Function *Callee = CI->getCalledFunction();
>>> StringRef FuncName = Callee->getName();
>>> + IRBuilder<> Builder(CI);
>>> + bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
>>>
>>> // Next check for intrinsics.
>>> if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
>>> + if (!isCallingConvC)
>>> + return nullptr;
>>> switch (II->getIntrinsicID()) {
>>> case Intrinsic::pow:
>>> - return &Pow;
>>> + return optimizePow(CI, Builder);
>>> case Intrinsic::exp2:
>>> - return &Exp2;
>>> + return optimizeExp2(CI, Builder);
>>> default:
>>> - return nullptr;
>>> + return nullptr;
>>> }
>>> }
>>>
>>> // Then check for known library functions.
>>> if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
>>> + // We never change the calling convention.
>>> + if (!ignoreCallingConv(Func) && !isCallingConvC)
>>> + return nullptr;
>>> switch (Func) {
>>> - case LibFunc::strcat:
>>> - return &StrCat;
>>> - case LibFunc::strncat:
>>> - return &StrNCat;
>>> - case LibFunc::strchr:
>>> - return &StrChr;
>>> - case LibFunc::strrchr:
>>> - return &StrRChr;
>>> - case LibFunc::strcmp:
>>> - return &StrCmp;
>>> - case LibFunc::strncmp:
>>> - return &StrNCmp;
>>> - case LibFunc::strcpy:
>>> - return &StrCpy;
>>> - case LibFunc::stpcpy:
>>> - return &StpCpy;
>>> - case LibFunc::strncpy:
>>> - return &StrNCpy;
>>> - case LibFunc::strlen:
>>> - return &StrLen;
>>> - case LibFunc::strpbrk:
>>> - return &StrPBrk;
>>> - case LibFunc::strtol:
>>> - case LibFunc::strtod:
>>> - case LibFunc::strtof:
>>> - case LibFunc::strtoul:
>>> - case LibFunc::strtoll:
>>> - case LibFunc::strtold:
>>> - case LibFunc::strtoull:
>>> - return &StrTo;
>>> - case LibFunc::strspn:
>>> - return &StrSpn;
>>> - case LibFunc::strcspn:
>>> - return &StrCSpn;
>>> - case LibFunc::strstr:
>>> - return &StrStr;
>>> - case LibFunc::memcmp:
>>> - return &MemCmp;
>>> - case LibFunc::memcpy:
>>> - return &MemCpy;
>>> - case LibFunc::memmove:
>>> - return &MemMove;
>>> - case LibFunc::memset:
>>> - return &MemSet;
>>> - case LibFunc::cosf:
>>> - case LibFunc::cos:
>>> - case LibFunc::cosl:
>>> - return &Cos;
>>> - case LibFunc::sinpif:
>>> - case LibFunc::sinpi:
>>> - case LibFunc::cospif:
>>> - case LibFunc::cospi:
>>> - return &SinCosPi;
>>> - case LibFunc::powf:
>>> - case LibFunc::pow:
>>> - case LibFunc::powl:
>>> - return &Pow;
>>> - case LibFunc::exp2l:
>>> - case LibFunc::exp2:
>>> - case LibFunc::exp2f:
>>> - return &Exp2;
>>> - case LibFunc::ffs:
>>> - case LibFunc::ffsl:
>>> - case LibFunc::ffsll:
>>> - return &FFS;
>>> - case LibFunc::abs:
>>> - case LibFunc::labs:
>>> - case LibFunc::llabs:
>>> - return &Abs;
>>> - case LibFunc::isdigit:
>>> - return &IsDigit;
>>> - case LibFunc::isascii:
>>> - return &IsAscii;
>>> - case LibFunc::toascii:
>>> - return &ToAscii;
>>> - case LibFunc::printf:
>>> - return &PrintF;
>>> - case LibFunc::sprintf:
>>> - return &SPrintF;
>>> - case LibFunc::fprintf:
>>> - return &FPrintF;
>>> - case LibFunc::fwrite:
>>> - return &FWrite;
>>> - case LibFunc::fputs:
>>> - return &FPuts;
>>> - case LibFunc::puts:
>>> - return &Puts;
>>> - case LibFunc::perror:
>>> - return &ErrorReporting;
>>> - case LibFunc::vfprintf:
>>> - case LibFunc::fiprintf:
>>> - return &ErrorReporting0;
>>> - case LibFunc::fputc:
>>> - return &ErrorReporting1;
>>> - case LibFunc::ceil:
>>> - case LibFunc::fabs:
>>> - case LibFunc::floor:
>>> - case LibFunc::rint:
>>> - case LibFunc::round:
>>> - case LibFunc::nearbyint:
>>> - case LibFunc::trunc:
>>> - if (hasFloatVersion(FuncName))
>>> - return &UnaryDoubleFP;
>>> - return nullptr;
>>> - case LibFunc::acos:
>>> - case LibFunc::acosh:
>>> - case LibFunc::asin:
>>> - case LibFunc::asinh:
>>> - case LibFunc::atan:
>>> - case LibFunc::atanh:
>>> - case LibFunc::cbrt:
>>> - case LibFunc::cosh:
>>> - case LibFunc::exp:
>>> - case LibFunc::exp10:
>>> - case LibFunc::expm1:
>>> - case LibFunc::log:
>>> - case LibFunc::log10:
>>> - case LibFunc::log1p:
>>> - case LibFunc::log2:
>>> - case LibFunc::logb:
>>> - case LibFunc::sin:
>>> - case LibFunc::sinh:
>>> - case LibFunc::sqrt:
>>> - case LibFunc::tan:
>>> - case LibFunc::tanh:
>>> - if (UnsafeFPShrink && hasFloatVersion(FuncName))
>>> - return &UnsafeUnaryDoubleFP;
>>> - return nullptr;
>>> - case LibFunc::fmin:
>>> - case LibFunc::fmax:
>>> - if (hasFloatVersion(FuncName))
>>> - return &BinaryDoubleFP;
>>> - return nullptr;
>>> - case LibFunc::memcpy_chk:
>>> - return &MemCpyChk;
>>> - default:
>>> - return nullptr;
>>> - }
>>> + case LibFunc::strcat:
>>> + return optimizeStrCat(CI, Builder);
>>> + case LibFunc::strncat:
>>> + return optimizeStrNCat(CI, Builder);
>>> + case LibFunc::strchr:
>>> + return optimizeStrChr(CI, Builder);
>>> + case LibFunc::strrchr:
>>> + return optimizeStrRChr(CI, Builder);
>>> + case LibFunc::strcmp:
>>> + return optimizeStrCmp(CI, Builder);
>>> + case LibFunc::strncmp:
>>> + return optimizeStrNCmp(CI, Builder);
>>> + case LibFunc::strcpy:
>>> + return optimizeStrCpy(CI, Builder);
>>> + case LibFunc::stpcpy:
>>> + return optimizeStpCpy(CI, Builder);
>>> + case LibFunc::strncpy:
>>> + return optimizeStrNCpy(CI, Builder);
>>> + case LibFunc::strlen:
>>> + return optimizeStrLen(CI, Builder);
>>> + case LibFunc::strpbrk:
>>> + return optimizeStrPBrk(CI, Builder);
>>> + case LibFunc::strtol:
>>> + case LibFunc::strtod:
>>> + case LibFunc::strtof:
>>> + case LibFunc::strtoul:
>>> + case LibFunc::strtoll:
>>> + case LibFunc::strtold:
>>> + case LibFunc::strtoull:
>>> + return optimizeStrTo(CI, Builder);
>>> + case LibFunc::strspn:
>>> + return optimizeStrSpn(CI, Builder);
>>> + case LibFunc::strcspn:
>>> + return optimizeStrCSpn(CI, Builder);
>>> + case LibFunc::strstr:
>>> + return optimizeStrStr(CI, Builder);
>>> + case LibFunc::memcmp:
>>> + return optimizeMemCmp(CI, Builder);
>>> + case LibFunc::memcpy:
>>> + return optimizeMemCpy(CI, Builder);
>>> + case LibFunc::memmove:
>>> + return optimizeMemMove(CI, Builder);
>>> + case LibFunc::memset:
>>> + return optimizeMemSet(CI, Builder);
>>> + case LibFunc::cosf:
>>> + case LibFunc::cos:
>>> + case LibFunc::cosl:
>>> + return optimizeCos(CI, Builder);
>>> + case LibFunc::sinpif:
>>> + case LibFunc::sinpi:
>>> + case LibFunc::cospif:
>>> + case LibFunc::cospi:
>>> + return optimizeSinCosPi(CI, Builder);
>>> + case LibFunc::powf:
>>> + case LibFunc::pow:
>>> + case LibFunc::powl:
>>> + return optimizePow(CI, Builder);
>>> + case LibFunc::exp2l:
>>> + case LibFunc::exp2:
>>> + case LibFunc::exp2f:
>>> + return optimizeExp2(CI, Builder);
>>> + case LibFunc::ffs:
>>> + case LibFunc::ffsl:
>>> + case LibFunc::ffsll:
>>> + return optimizeFFS(CI, Builder);
>>> + case LibFunc::abs:
>>> + case LibFunc::labs:
>>> + case LibFunc::llabs:
>>> + return optimizeAbs(CI, Builder);
>>> + case LibFunc::isdigit:
>>> + return optimizeIsDigit(CI, Builder);
>>> + case LibFunc::isascii:
>>> + return optimizeIsAscii(CI, Builder);
>>> + case LibFunc::toascii:
>>> + return optimizeToAscii(CI, Builder);
>>> + case LibFunc::printf:
>>> + return optimizePrintF(CI, Builder);
>>> + case LibFunc::sprintf:
>>> + return optimizeSPrintF(CI, Builder);
>>> + case LibFunc::fprintf:
>>> + return optimizeFPrintF(CI, Builder);
>>> + case LibFunc::fwrite:
>>> + return optimizeFWrite(CI, Builder);
>>> + case LibFunc::fputs:
>>> + return optimizeFPuts(CI, Builder);
>>> + case LibFunc::puts:
>>> + return optimizePuts(CI, Builder);
>>> + case LibFunc::perror:
>>> + return optimizeErrorReporting(CI, Builder);
>>> + case LibFunc::vfprintf:
>>> + case LibFunc::fiprintf:
>>> + return optimizeErrorReporting(CI, Builder, 0);
>>> + case LibFunc::fputc:
>>> + return optimizeErrorReporting(CI, Builder, 1);
>>> + case LibFunc::ceil:
>>> + case LibFunc::fabs:
>>> + case LibFunc::floor:
>>> + case LibFunc::rint:
>>> + case LibFunc::round:
>>> + case LibFunc::nearbyint:
>>> + case LibFunc::trunc:
>>> + if (hasFloatVersion(FuncName))
>>> + return optimizeUnaryDoubleFP(CI, Builder, false);
>>> + return nullptr;
>>> + case LibFunc::acos:
>>> + case LibFunc::acosh:
>>> + case LibFunc::asin:
>>> + case LibFunc::asinh:
>>> + case LibFunc::atan:
>>> + case LibFunc::atanh:
>>> + case LibFunc::cbrt:
>>> + case LibFunc::cosh:
>>> + case LibFunc::exp:
>>> + case LibFunc::exp10:
>>> + case LibFunc::expm1:
>>> + case LibFunc::log:
>>> + case LibFunc::log10:
>>> + case LibFunc::log1p:
>>> + case LibFunc::log2:
>>> + case LibFunc::logb:
>>> + case LibFunc::sin:
>>> + case LibFunc::sinh:
>>> + case LibFunc::sqrt:
>>> + case LibFunc::tan:
>>> + case LibFunc::tanh:
>>> + if (UnsafeFPShrink && hasFloatVersion(FuncName))
>>> + return optimizeUnaryDoubleFP(CI, Builder, true);
>>> + return nullptr;
>>> + case LibFunc::fmin:
>>> + case LibFunc::fmax:
>>> + if (hasFloatVersion(FuncName))
>>> + return optimizeBinaryDoubleFP(CI, Builder);
>>> + return nullptr;
>>> + case LibFunc::memcpy_chk:
>>> + return optimizeMemCpyChk(CI, Builder);
>>> + default:
>>> + return nullptr;
>>> + }
>>> }
>>>
>>> + if (!isCallingConvC)
>>> + return nullptr;
>>> +
>>> // Finally check for fortified library calls.
>>> if (FuncName.endswith("_chk")) {
>>> if (FuncName == "__memmove_chk")
>>> - return &MemMoveChk;
>>> + return optimizeMemMoveChk(CI, Builder);
>>> else if (FuncName == "__memset_chk")
>>> - return &MemSetChk;
>>> + return optimizeMemSetChk(CI, Builder);
>>> else if (FuncName == "__strcpy_chk")
>>> - return &StrCpyChk;
>>> + return optimizeStrCpyChk(CI, Builder);
>>> else if (FuncName == "__stpcpy_chk")
>>> - return &StpCpyChk;
>>> + return optimizeStpCpyChk(CI, Builder);
>>> else if (FuncName == "__strncpy_chk")
>>> - return &StrNCpyChk;
>>> + return optimizeStrNCpyChk(CI, Builder);
>>> else if (FuncName == "__stpncpy_chk")
>>> - return &StrNCpyChk;
>>> + return optimizeStrNCpyChk(CI, Builder);
>>> }
>>>
>>> return nullptr;
>>> -
>>> -}
>>> -
>>> -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
>>> - LibCallOptimization *LCO = lookupOptimization(CI);
>>> - if (LCO) {
>>> - IRBuilder<> Builder(CI);
>>> - return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
>>> - }
>>> - return nullptr;
>>> }
>>>
>>> LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
>>> const TargetLibraryInfo *TLI,
>>> - bool UnsafeFPShrink) {
>>> - Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
>>> -}
>>> -
>>> -LibCallSimplifier::~LibCallSimplifier() {
>>> - delete Impl;
>>> -}
>>> -
>>> -Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>>> - if (CI->isNoBuiltin()) return nullptr;
>>> - return Impl->optimizeCall(CI);
>>> + bool UnsafeFPShrink) :
>>> + DL(DL),
>>> + TLI(TLI),
>>> + UnsafeFPShrink(UnsafeFPShrink) {
>>> }
>>>
>>> void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With)
>>> const {
>>> @@ -2312,8 +2079,6 @@ void LibCallSimplifier::replaceAllUsesWi
>>> I->eraseFromParent();
>>> }
>>>
>>> -}
>>> -
>>> // TODO:
>>> // Additional cases that we need to add to this file:
>>> //
>>>
>>>
>>> _______________________________________________
>>> llvm-commits mailing list
>>> llvm-commits at cs.uiuc.edu
>>> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>>>
>>
>>
>>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20140917/c97688c3/attachment.html>
More information about the llvm-commits
mailing list