[llvm] r217982 - Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.

David Blaikie dblaikie at gmail.com
Wed Sep 17 15:37:47 PDT 2014


Recommitted (while removing the virtual dtor) in r217990. Thanks!

On Wed, Sep 17, 2014 at 3:30 PM, Chris Bieneman <beanz at apple.com> wrote:

> Agreed. Yours is the better solution. If you’d like I can make the change.
>
> -Chris
>
> On Sep 17, 2014, at 3:28 PM, David Blaikie <dblaikie at gmail.com> wrote:
>
>
>
> On Wed, Sep 17, 2014 at 3:27 PM, Chris Bieneman <beanz at apple.com> wrote:
>
>> I put in a change in r217988 that should have resolved it. I think your
>> change will fail to build because now there are two destructors declared.
>>
>
> Yep - sorry, I seem to be a bit slow off the mark.
>
> Reverted my fix in r217989.
>
> Though it might be worth considering my fix over yours as it doesn't look
> like objects of this type are polymorphically owned - so no virtual dtor is
> necessary.
>
> - David
>
>
>>
>> -Chris
>>
>> On Sep 17, 2014, at 3:25 PM, David Blaikie <dblaikie at gmail.com> wrote:
>>
>> This introduced a -Wnon-virtual-dtor warning which I've fixed in r217988.
>> Let me know if that's not the right fix, etc.
>>
>> - David
>>
>> On Wed, Sep 17, 2014 at 1:55 PM, Chris Bieneman <beanz at apple.com> wrote:
>>
>>> Author: cbieneman
>>> Date: Wed Sep 17 15:55:46 2014
>>> New Revision: 217982
>>>
>>> URL: http://llvm.org/viewvc/llvm-project?rev=217982&view=rev
>>> Log:
>>> Refactoring SimplifyLibCalls to remove static initializers and generally
>>> cleaning up the code.
>>>
>>> Summary: This eliminates ~200 lines of code mostly file scoped struct
>>> definitions that were unnecessary.
>>>
>>> Reviewers: chandlerc, resistor
>>>
>>> Reviewed By: resistor
>>>
>>> Subscribers: morisset, resistor, llvm-commits
>>>
>>> Differential Revision: http://reviews.llvm.org/D5364
>>>
>>> Modified:
>>>     llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>>     llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>>     llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>>>
>>> Modified: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>> URL:
>>> http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff
>>>
>>> ==============================================================================
>>> --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>> (original)
>>> +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h Wed Sep
>>> 17 15:55:46 2014
>>> @@ -15,40 +15,114 @@
>>>  #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>>>  #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>>>
>>> +#include "llvm/ADT/StringRef.h"
>>> +#include "llvm/IR/IRBuilder.h"
>>> +
>>>  namespace llvm {
>>> -  class Value;
>>> -  class CallInst;
>>> -  class DataLayout;
>>> -  class Instruction;
>>> -  class TargetLibraryInfo;
>>> -  class LibCallSimplifierImpl;
>>> -
>>> -  /// LibCallSimplifier - This class implements a collection of
>>> optimizations
>>> -  /// that replace well formed calls to library functions with a more
>>> optimal
>>> -  /// form.  For example, replacing 'printf("Hello!")' with
>>> 'puts("Hello!")'.
>>> -  class LibCallSimplifier {
>>> -    /// Impl - A pointer to the actual implementation of the library
>>> call
>>> -    /// simplifier.
>>> -    LibCallSimplifierImpl *Impl;
>>> -
>>> -  public:
>>> -    LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo
>>> *TLI,
>>> -                      bool UnsafeFPShrink);
>>> -    virtual ~LibCallSimplifier();
>>> -
>>> -    /// optimizeCall - Take the given call instruction and return a more
>>> -    /// optimal value to replace the instruction with or 0 if a more
>>> -    /// optimal form can't be found.  Note that the returned value may
>>> -    /// be equal to the instruction being optimized.  In this case all
>>> -    /// other instructions that use the given instruction were modified
>>> -    /// and the given instruction is dead.
>>> -    Value *optimizeCall(CallInst *CI);
>>> -
>>> -    /// replaceAllUsesWith - This method is used when the library call
>>> -    /// simplifier needs to replace instructions other than the library
>>> -    /// call being modified.
>>> -    virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>>> -  };
>>> +class Value;
>>> +class CallInst;
>>> +class DataLayout;
>>> +class Instruction;
>>> +class TargetLibraryInfo;
>>> +class BasicBlock;
>>> +class Function;
>>> +
>>> +/// LibCallSimplifier - This class implements a collection of
>>> optimizations
>>> +/// that replace well formed calls to library functions with a more
>>> optimal
>>> +/// form.  For example, replacing 'printf("Hello!")' with
>>> 'puts("Hello!")'.
>>> +class LibCallSimplifier {
>>> +private:
>>> +  const DataLayout *DL;
>>> +  const TargetLibraryInfo *TLI;
>>> +  bool UnsafeFPShrink;
>>> +
>>> +public:
>>> +  LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
>>> +                    bool UnsafeFPShrink);
>>> +
>>> +  /// optimizeCall - Take the given call instruction and return a more
>>> +  /// optimal value to replace the instruction with or 0 if a more
>>> +  /// optimal form can't be found.  Note that the returned value may
>>> +  /// be equal to the instruction being optimized.  In this case all
>>> +  /// other instructions that use the given instruction were modified
>>> +  /// and the given instruction is dead.
>>> +  Value *optimizeCall(CallInst *CI);
>>> +
>>> +  /// replaceAllUsesWith - This method is used when the library call
>>> +  /// simplifier needs to replace instructions other than the library
>>> +  /// call being modified.
>>> +  virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>>> +
>>> +private:
>>> +  // Fortified Library Call Optimizations
>>> +  Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B);
>>> +
>>> +  // String and Memory Library Call Optimizations
>>> +  Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
>>> +
>>> +  // Math Library Optimizations
>>> +  Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool
>>> CheckRetType);
>>> +  Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizePow(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
>>> +
>>> +  // Integer Library Call Optimizations
>>> +  Value *optimizeFFS(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeAbs(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B);
>>> +
>>> +  // Formatting and IO Library Call Optimizations
>>> +  Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
>>> +                                int StreamArg = -1);
>>> +  Value *optimizePrintF(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizePuts(CallInst *CI, IRBuilder<> &B);
>>> +
>>> +  // Helper methods
>>> +  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>>> IRBuilder<> &B);
>>> +  void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>>> +                      SmallVectorImpl<CallInst *> &SinCalls,
>>> +                      SmallVectorImpl<CallInst *> &CosCalls,
>>> +                      SmallVectorImpl<CallInst *> &SinCosCalls);
>>> +  void replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, Value *Res);
>>> +  Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B);
>>> +  Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B);
>>> +
>>> +  /// hasFloatVersion - Checks if there is a float version of the
>>> specified
>>> +  /// function by checking for an existing function with name FuncName
>>> + f
>>> +  bool hasFloatVersion(StringRef FuncName);
>>> +};
>>>  } // End llvm namespace
>>>
>>>  #endif
>>>
>>> Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>> URL:
>>> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff
>>>
>>> ==============================================================================
>>> --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>> (original)
>>> +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Wed
>>> Sep 17 15:55:46 2014
>>> @@ -70,10 +70,11 @@ STATISTIC(NumExpand,    "Number of expan
>>>  STATISTIC(NumFactor   , "Number of factorizations");
>>>  STATISTIC(NumReassoc  , "Number of reassociations");
>>>
>>> -static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink",
>>> cl::Hidden,
>>> -                                   cl::init(false),
>>> -                                   cl::desc("Enable unsafe double to
>>> float "
>>> -                                            "shrinking for math lib
>>> calls"));
>>> +static cl::opt<bool>
>>> +    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
>>> +                         cl::init(false),
>>> +                         cl::desc("Enable unsafe double to float "
>>> +                                  "shrinking for math lib calls"));
>>>
>>>  // Initialization Routines
>>>  void llvm::initializeInstCombine(PassRegistry &Registry) {
>>> @@ -2913,7 +2914,7 @@ public:
>>>    InstCombinerLibCallSimplifier(const DataLayout *DL,
>>>                                  const TargetLibraryInfo *TLI,
>>>                                  InstCombiner *IC)
>>> -    : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
>>> +    : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) {
>>>      this->IC = IC;
>>>    }
>>>
>>>
>>> Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>>> URL:
>>> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff
>>>
>>> ==============================================================================
>>> --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
>>> +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Sep 17
>>> 15:55:46 2014
>>> @@ -35,57 +35,26 @@
>>>  using namespace llvm;
>>>
>>>  static cl::opt<bool>
>>> -ColdErrorCalls("error-reporting-is-cold",  cl::init(true),
>>> -  cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
>>> -
>>> -/// This class is the abstract base class for the set of optimizations
>>> that
>>> -/// corresponds to one library call.
>>> -namespace {
>>> -class LibCallOptimization {
>>> -protected:
>>> -  Function *Caller;
>>> -  const DataLayout *DL;
>>> -  const TargetLibraryInfo *TLI;
>>> -  const LibCallSimplifier *LCS;
>>> -  LLVMContext* Context;
>>> -public:
>>> -  LibCallOptimization() { }
>>> -  virtual ~LibCallOptimization() {}
>>> -
>>> -  /// callOptimizer - This pure virtual method is implemented by base
>>> classes to
>>> -  /// do various optimizations.  If this returns null then no
>>> transformation was
>>> -  /// performed.  If it returns CI, then it transformed the call and CI
>>> is to be
>>> -  /// deleted.  If it returns something else, replace CI with the new
>>> value and
>>> -  /// delete CI.
>>> -  virtual Value *callOptimizer(Function *Callee, CallInst *CI,
>>> IRBuilder<> &B)
>>> -    =0;
>>> -
>>> -  /// ignoreCallingConv - Returns false if this transformation could
>>> possibly
>>> -  /// change the calling convention.
>>> -  virtual bool ignoreCallingConv() { return false; }
>>> -
>>> -  Value *optimizeCall(CallInst *CI, const DataLayout *DL,
>>> -                      const TargetLibraryInfo *TLI,
>>> -                      const LibCallSimplifier *LCS, IRBuilder<> &B) {
>>> -    Caller = CI->getParent()->getParent();
>>> -    this->DL = DL;
>>> -    this->TLI = TLI;
>>> -    this->LCS = LCS;
>>> -    if (CI->getCalledFunction())
>>> -      Context = &CI->getCalledFunction()->getContext();
>>> -
>>> -    // We never change the calling convention.
>>> -    if (!ignoreCallingConv() && CI->getCallingConv() !=
>>> llvm::CallingConv::C)
>>> -      return nullptr;
>>> -
>>> -    return callOptimizer(CI->getCalledFunction(), CI, B);
>>> -  }
>>> -};
>>> +    ColdErrorCalls("error-reporting-is-cold", cl::init(true),
>>> cl::Hidden,
>>> +                   cl::desc("Treat error-reporting calls as cold"));
>>>
>>>
>>>  //===----------------------------------------------------------------------===//
>>>  // Helper Functions
>>>
>>>  //===----------------------------------------------------------------------===//
>>>
>>> +static bool ignoreCallingConv(LibFunc::Func Func) {
>>> +  switch (Func) {
>>> +  case LibFunc::abs:
>>> +  case LibFunc::labs:
>>> +  case LibFunc::llabs:
>>> +  case LibFunc::strlen:
>>> +    return true;
>>> +  default:
>>> +    return false;
>>> +  }
>>> +  llvm_unreachable();
>>> +}
>>> +
>>>  /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters
>>> that the
>>>  /// value is equal or not-equal to zero.
>>>  static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
>>> @@ -142,967 +111,912 @@ static bool hasUnaryFloatFn(const Target
>>>  // Fortified Library Call Optimizations
>>>
>>>  //===----------------------------------------------------------------------===//
>>>
>>> -struct FortifiedLibCallOptimization : public LibCallOptimization {
>>> -protected:
>>> -  virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>>> -                         bool isString) const = 0;
>>> -};
>>> -
>>> -struct InstFortifiedLibCallOptimization : public
>>> FortifiedLibCallOptimization {
>>> -  CallInst *CI;
>>> -
>>> -  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>>> -                  bool isString) const override {
>>> -    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>>> +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp,
>>> unsigned SizeArgOp,
>>> +                       bool isString) {
>>> +  if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>>> +    return true;
>>> +  if (ConstantInt *SizeCI =
>>> +          dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>>> +    if (SizeCI->isAllOnesValue())
>>>        return true;
>>> -    if (ConstantInt *SizeCI =
>>> -
>>>  dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>>> -      if (SizeCI->isAllOnesValue())
>>> -        return true;
>>> -      if (isString) {
>>> -        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>>> -        // If the length is 0 we don't know how long it is and so we
>>> can't
>>> -        // remove the check.
>>> -        if (Len == 0) return false;
>>> -        return SizeCI->getZExtValue() >= Len;
>>> -      }
>>> -      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
>>> -
>>> CI->getArgOperand(SizeArgOp)))
>>> -        return SizeCI->getZExtValue() >= Arg->getZExtValue();
>>> +    if (isString) {
>>> +      uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>>> +      // If the length is 0 we don't know how long it is and so we can't
>>> +      // remove the check.
>>> +      if (Len == 0)
>>> +        return false;
>>> +      return SizeCI->getZExtValue() >= Len;
>>>      }
>>> -    return false;
>>> +    if (ConstantInt *Arg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp)))
>>> +      return SizeCI->getZExtValue() >= Arg->getZExtValue();
>>>    }
>>> -};
>>> +  return false;
>>> +}
>>>
>>> -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    this->CI = CI;
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> -    // Check if this has the right signature.
>>> -    if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>>> -      return nullptr;
>>> -
>>> -    if (isFoldable(3, 2, false)) {
>>> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> -                     CI->getArgOperand(2), 1);
>>> -      return CI->getArgOperand(0);
>>> -    }
>>> -    return nullptr;
>>> -  }
>>> -};
>>> +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  LLVMContext &Context = CI->getContext();
>>>
>>> -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    this->CI = CI;
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> -    // Check if this has the right signature.
>>> -    if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>>> -      return nullptr;
>>> -
>>> -    if (isFoldable(3, 2, false)) {
>>> -      B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> -                      CI->getArgOperand(2), 1);
>>> -      return CI->getArgOperand(0);
>>> -    }
>>> +  // Check if this has the right signature.
>>> +  if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>>      return nullptr;
>>> -  }
>>> -};
>>>
>>> -struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    this->CI = CI;
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> -    // Check if this has the right signature.
>>> -    if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isIntegerTy() ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>>> -      return nullptr;
>>> -
>>> -    if (isFoldable(3, 2, false)) {
>>> -      Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> -                                   false);
>>> -      B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2),
>>> 1);
>>> -      return CI->getArgOperand(0);
>>> -    }
>>> -    return nullptr;
>>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> +    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> +                   CI->getArgOperand(2), 1);
>>> +    return CI->getArgOperand(0);
>>>    }
>>> -};
>>> +  return nullptr;
>>> +}
>>>
>>> -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    this->CI = CI;
>>> -    StringRef Name = Callee->getName();
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> -    // Check if this has the right signature.
>>> -    if (FT->getNumParams() != 3 ||
>>> -        FT->getReturnType() != FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(Context))
>>> -      return nullptr;
>>> -
>>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> -    if (Dst == Src)      // __strcpy_chk(x,x)  -> x
>>> -      return Src;
>>> -
>>> -    // If a) we don't have any length information, or b) we know this
>>> will
>>> -    // fit then just lower to a plain strcpy. Otherwise we'll keep our
>>> -    // strcpy_chk call which may fail at runtime if the size is too
>>> long.
>>> -    // TODO: It might be nice to get a maximum length out of the
>>> possible
>>> -    // string lengths for varying.
>>> -    if (isFoldable(2, 1, true)) {
>>> -      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> -      return Ret;
>>> -    } else {
>>> -      // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>>> -      uint64_t Len = GetStringLength(Src);
>>> -      if (Len == 0) return nullptr;
>>> -
>>> -      // This optimization require DataLayout.
>>> -      if (!DL) return nullptr;
>>> -
>>> -      Value *Ret =
>>> -       EmitMemCpyChk(Dst, Src,
>>> -                      ConstantInt::get(DL->getIntPtrType(Context), Len),
>>> -                      CI->getArgOperand(2), B, DL, TLI);
>>> -      return Ret;
>>> -    }
>>> +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  LLVMContext &Context = CI->getContext();
>>> +
>>> +  // Check if this has the right signature.
>>> +  if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>>      return nullptr;
>>> +
>>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> +    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> +                    CI->getArgOperand(2), 1);
>>> +    return CI->getArgOperand(0);
>>>    }
>>> -};
>>> +  return nullptr;
>>> +}
>>>
>>> -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    this->CI = CI;
>>> -    StringRef Name = Callee->getName();
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> -    // Check if this has the right signature.
>>> -    if (FT->getNumParams() != 3 ||
>>> -        FT->getReturnType() != FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> -      return nullptr;
>>> -
>>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> -    if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
>>> -      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> -      return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> -    }
>>> +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  LLVMContext &Context = CI->getContext();
>>>
>>> -    // If a) we don't have any length information, or b) we know this
>>> will
>>> -    // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>>> -    // stpcpy_chk call which may fail at runtime if the size is too
>>> long.
>>> -    // TODO: It might be nice to get a maximum length out of the
>>> possible
>>> -    // string lengths for varying.
>>> -    if (isFoldable(2, 1, true)) {
>>> -      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> -      return Ret;
>>> -    } else {
>>> -      // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>>> -      uint64_t Len = GetStringLength(Src);
>>> -      if (Len == 0) return nullptr;
>>> -
>>> -      // This optimization require DataLayout.
>>> -      if (!DL) return nullptr;
>>> -
>>> -      Type *PT = FT->getParamType(0);
>>> -      Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> -      Value *DstEnd = B.CreateGEP(Dst,
>>> -
>>> ConstantInt::get(DL->getIntPtrType(PT),
>>> -                                                   Len - 1));
>>> -      if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL,
>>> TLI))
>>> -        return nullptr;
>>> -      return DstEnd;
>>> -    }
>>> +  // Check if this has the right signature.
>>> +  if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isIntegerTy() ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
>>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>>      return nullptr;
>>> -  }
>>> -};
>>>
>>> -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    this->CI = CI;
>>> -    StringRef Name = Callee->getName();
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    LLVMContext &Context = CI->getParent()->getContext();
>>> -
>>> -    // Check if this has the right signature.
>>> -    if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> -        !FT->getParamType(2)->isIntegerTy() ||
>>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>>> -      return nullptr;
>>> -
>>> -    if (isFoldable(3, 2, false)) {
>>> -      Value *Ret = EmitStrNCpy(CI->getArgOperand(0),
>>> CI->getArgOperand(1),
>>> -                               CI->getArgOperand(2), B, DL, TLI,
>>> -                               Name.substr(2, 7));
>>> -      return Ret;
>>> -    }
>>> -    return nullptr;
>>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> +    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> false);
>>> +    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>>> +    return CI->getArgOperand(0);
>>>    }
>>> -};
>>> -
>>>
>>> -//===----------------------------------------------------------------------===//
>>> -// String and Memory Library Call Optimizations
>>>
>>> -//===----------------------------------------------------------------------===//
>>> -
>>> -struct StrCatOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strcat" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>>> -        FT->getParamType(0) != FT->getReturnType() ||
>>> -        FT->getParamType(1) != FT->getReturnType())
>>> -      return nullptr;
>>> -
>>> -    // Extract some information from the instruction
>>> -    Value *Dst = CI->getArgOperand(0);
>>> -    Value *Src = CI->getArgOperand(1);
>>> +  return nullptr;
>>> +}
>>>
>>> -    // See if we can get the length of the input string.
>>> +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  StringRef Name = Callee->getName();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  LLVMContext &Context = CI->getContext();
>>> +
>>> +  // Check if this has the right signature.
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(Context))
>>> +    return nullptr;
>>> +
>>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> +  if (Dst == Src) // __strcpy_chk(x,x)  -> x
>>> +    return Src;
>>> +
>>> +  // If a) we don't have any length information, or b) we know this will
>>> +  // fit then just lower to a plain strcpy. Otherwise we'll keep our
>>> +  // strcpy_chk call which may fail at runtime if the size is too long.
>>> +  // TODO: It might be nice to get a maximum length out of the possible
>>> +  // string lengths for varying.
>>> +  if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>>> +    Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> +    return Ret;
>>> +  } else {
>>> +    // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>>>      uint64_t Len = GetStringLength(Src);
>>> -    if (Len == 0) return nullptr;
>>> -    --Len;  // Unbias length.
>>> -
>>> -    // Handle the simple, do-nothing case: strcat(x, "") -> x
>>>      if (Len == 0)
>>> -      return Dst;
>>> +      return nullptr;
>>>
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +    // This optimization require DataLayout.
>>> +    if (!DL)
>>> +      return nullptr;
>>>
>>> -    return emitStrLenMemCpy(Src, Dst, Len, B);
>>> +    Value *Ret = EmitMemCpyChk(
>>> +        Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len),
>>> +        CI->getArgOperand(2), B, DL, TLI);
>>> +    return Ret;
>>>    }
>>> +  return nullptr;
>>> +}
>>>
>>> -  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>>> -                          IRBuilder<> &B) {
>>> -    // We need to find the end of the destination string.  That's where
>>> the
>>> -    // memory is to be moved to. We just generate a call to strlen.
>>> -    Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>>> -    if (!DstLen)
>>> +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  StringRef Name = Callee->getName();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  LLVMContext &Context = CI->getContext();
>>> +
>>> +  // Check if this has the right signature.
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> +    return nullptr;
>>> +
>>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> +  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
>>> +    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> +    return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> +  }
>>> +
>>> +  // If a) we don't have any length information, or b) we know this will
>>> +  // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>>> +  // stpcpy_chk call which may fail at runtime if the size is too long.
>>> +  // TODO: It might be nice to get a maximum length out of the possible
>>> +  // string lengths for varying.
>>> +  if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>>> +    Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>>> +    return Ret;
>>> +  } else {
>>> +    // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>>> +    uint64_t Len = GetStringLength(Src);
>>> +    if (Len == 0)
>>>        return nullptr;
>>>
>>> -    // Now that we have the destination's length, we must index into the
>>> -    // destination's pointer to get the actual memcpy destination (end
>>> of
>>> -    // the string .. we're concatenating).
>>> -    Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>>> +    // This optimization require DataLayout.
>>> +    if (!DL)
>>> +      return nullptr;
>>>
>>> -    // We have enough information to now generate the memcpy call to do
>>> the
>>> -    // concatenation for us.  Make a memcpy to copy the nul byte with
>>> align = 1.
>>> -    B.CreateMemCpy(CpyDst, Src,
>>> -                   ConstantInt::get(DL->getIntPtrType(*Context), Len +
>>> 1), 1);
>>> -    return Dst;
>>> +    Type *PT = FT->getParamType(0);
>>> +    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> +    Value *DstEnd =
>>> +        B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len -
>>> 1));
>>> +    if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL,
>>> TLI))
>>> +      return nullptr;
>>> +    return DstEnd;
>>>    }
>>> -};
>>> +  return nullptr;
>>> +}
>>>
>>> -struct StrNCatOpt : public StrCatOpt {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strncat" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 ||
>>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>>> -        FT->getParamType(0) != FT->getReturnType() ||
>>> -        FT->getParamType(1) != FT->getReturnType() ||
>>> -        !FT->getParamType(2)->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    // Extract some information from the instruction
>>> -    Value *Dst = CI->getArgOperand(0);
>>> -    Value *Src = CI->getArgOperand(1);
>>> -    uint64_t Len;
>>> -
>>> -    // We don't do anything if length is not constant
>>> -    if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> -      Len = LengthArg->getZExtValue();
>>> -    else
>>> -      return nullptr;
>>> -
>>> -    // See if we can get the length of the input string.
>>> -    uint64_t SrcLen = GetStringLength(Src);
>>> -    if (SrcLen == 0) return nullptr;
>>> -    --SrcLen;  // Unbias length.
>>> -
>>> -    // Handle the simple, do-nothing cases:
>>> -    // strncat(x, "", c) -> x
>>> -    // strncat(x,  c, 0) -> x
>>> -    if (SrcLen == 0 || Len == 0) return Dst;
>>> +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<>
>>> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  StringRef Name = Callee->getName();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  LLVMContext &Context = CI->getContext();
>>> +
>>> +  // Check if this has the right signature.
>>> +  if (FT->getNumParams() != 4 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>>> +      !FT->getParamType(2)->isIntegerTy() ||
>>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>> +    return nullptr;
>>> +
>>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>>> +    Value *Ret =
>>> +        EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> +                    CI->getArgOperand(2), B, DL, TLI, Name.substr(2,
>>> 7));
>>> +    return Ret;
>>> +  }
>>> +  return nullptr;
>>> +}
>>>
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>>
>>> +//===----------------------------------------------------------------------===//
>>> +// String and Memory Library Call Optimizations
>>>
>>> +//===----------------------------------------------------------------------===//
>>>
>>> -    // We don't optimize this case
>>> -    if (Len < SrcLen) return nullptr;
>>> +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strcat" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2||
>>> +      FT->getReturnType() != B.getInt8PtrTy() ||
>>> +      FT->getParamType(0) != FT->getReturnType() ||
>>> +      FT->getParamType(1) != FT->getReturnType())
>>> +    return nullptr;
>>> +
>>> +  // Extract some information from the instruction
>>> +  Value *Dst = CI->getArgOperand(0);
>>> +  Value *Src = CI->getArgOperand(1);
>>> +
>>> +  // See if we can get the length of the input string.
>>> +  uint64_t Len = GetStringLength(Src);
>>> +  if (Len == 0)
>>> +    return nullptr;
>>> +  --Len; // Unbias length.
>>>
>>> -    // strncat(x, s, c) -> strcat(x, s)
>>> -    // s is constant so the strcat can be optimized further
>>> -    return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>>> -  }
>>> -};
>>> -
>>> -struct StrChrOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strchr" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>>> -        FT->getParamType(0) != FT->getReturnType() ||
>>> -        !FT->getParamType(1)->isIntegerTy(32))
>>> -      return nullptr;
>>> -
>>> -    Value *SrcStr = CI->getArgOperand(0);
>>> -
>>> -    // If the second operand is non-constant, see if we can compute the
>>> length
>>> -    // of the input string and turn this into memchr.
>>> -    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> -    if (!CharC) {
>>> -      // These optimizations require DataLayout.
>>> -      if (!DL) return nullptr;
>>> +  // Handle the simple, do-nothing case: strcat(x, "") -> x
>>> +  if (Len == 0)
>>> +    return Dst;
>>>
>>> -      uint64_t Len = GetStringLength(SrcStr);
>>> -      if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr
>>> needs i32.
>>> -        return nullptr;
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>>
>>> -      return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
>>> -                        ConstantInt::get(DL->getIntPtrType(*Context),
>>> Len),
>>> -                        B, DL, TLI);
>>> -    }
>>> +  return emitStrLenMemCpy(Src, Dst, Len, B);
>>> +}
>>>
>>> -    // Otherwise, the character is a constant, see if the first
>>> argument is
>>> -    // a string literal.  If so, we can constant fold.
>>> -    StringRef Str;
>>> -    if (!getConstantStringInfo(SrcStr, Str)) {
>>> -      if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>>> -        return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
>>> "strchr");
>>> -      return nullptr;
>>> -    }
>>> +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst,
>>> uint64_t Len,
>>> +                                           IRBuilder<> &B) {
>>> +  // We need to find the end of the destination string.  That's where
>>> the
>>> +  // memory is to be moved to. We just generate a call to strlen.
>>> +  Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>>> +  if (!DstLen)
>>> +    return nullptr;
>>> +
>>> +  // Now that we have the destination's length, we must index into the
>>> +  // destination's pointer to get the actual memcpy destination (end of
>>> +  // the string .. we're concatenating).
>>> +  Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>>> +
>>> +  // We have enough information to now generate the memcpy call to do
>>> the
>>> +  // concatenation for us.  Make a memcpy to copy the nul byte with
>>> align = 1.
>>> +  B.CreateMemCpy(
>>> +      CpyDst, Src,
>>> +      ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1),
>>> 1);
>>> +  return Dst;
>>> +}
>>>
>>> -    // Compute the offset, make sure to handle the case when we're
>>> searching for
>>> -    // zero (a weird way to spell strlen).
>>> -    size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>>> -        Str.size() : Str.find(CharC->getSExtValue());
>>> -    if (I == StringRef::npos) // Didn't find the char.  strchr returns
>>> null.
>>> -      return Constant::getNullValue(CI->getType());
>>> +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strncat" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> B.getInt8PtrTy() ||
>>> +      FT->getParamType(0) != FT->getReturnType() ||
>>> +      FT->getParamType(1) != FT->getReturnType() ||
>>> +      !FT->getParamType(2)->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  // Extract some information from the instruction
>>> +  Value *Dst = CI->getArgOperand(0);
>>> +  Value *Src = CI->getArgOperand(1);
>>> +  uint64_t Len;
>>> +
>>> +  // We don't do anything if length is not constant
>>> +  if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> +    Len = LengthArg->getZExtValue();
>>> +  else
>>> +    return nullptr;
>>> +
>>> +  // See if we can get the length of the input string.
>>> +  uint64_t SrcLen = GetStringLength(Src);
>>> +  if (SrcLen == 0)
>>> +    return nullptr;
>>> +  --SrcLen; // Unbias length.
>>> +
>>> +  // Handle the simple, do-nothing cases:
>>> +  // strncat(x, "", c) -> x
>>> +  // strncat(x,  c, 0) -> x
>>> +  if (SrcLen == 0 || Len == 0)
>>> +    return Dst;
>>>
>>> -    // strchr(s+n,c)  -> gep(s+n+i,c)
>>> -    return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>>> -  }
>>> -};
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>> +
>>> +  // We don't optimize this case
>>> +  if (Len < SrcLen)
>>> +    return nullptr;
>>>
>>> -struct StrRChrOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strrchr" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>>> -        FT->getParamType(0) != FT->getReturnType() ||
>>> -        !FT->getParamType(1)->isIntegerTy(32))
>>> -      return nullptr;
>>> -
>>> -    Value *SrcStr = CI->getArgOperand(0);
>>> -    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> -
>>> -    // Cannot fold anything if we're not looking for a constant.
>>> -    if (!CharC)
>>> -      return nullptr;
>>> -
>>> -    StringRef Str;
>>> -    if (!getConstantStringInfo(SrcStr, Str)) {
>>> -      // strrchr(s, 0) -> strchr(s, 0)
>>> -      if (DL && CharC->isZero())
>>> -        return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>>> +  // strncat(x, s, c) -> strcat(x, s)
>>> +  // s is constant so the strcat can be optimized further
>>> +  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strchr" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> B.getInt8PtrTy() ||
>>> +      FT->getParamType(0) != FT->getReturnType() ||
>>> +      !FT->getParamType(1)->isIntegerTy(32))
>>> +    return nullptr;
>>> +
>>> +  Value *SrcStr = CI->getArgOperand(0);
>>> +
>>> +  // If the second operand is non-constant, see if we can compute the
>>> length
>>> +  // of the input string and turn this into memchr.
>>> +  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> +  if (!CharC) {
>>> +    // These optimizations require DataLayout.
>>> +    if (!DL)
>>>        return nullptr;
>>> -    }
>>>
>>> -    // Compute the offset.
>>> -    size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>>> -        Str.size() : Str.rfind(CharC->getSExtValue());
>>> -    if (I == StringRef::npos) // Didn't find the char. Return null.
>>> -      return Constant::getNullValue(CI->getType());
>>> +    uint64_t Len = GetStringLength(SrcStr);
>>> +    if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr
>>> needs i32.
>>> +      return nullptr;
>>>
>>> -    // strrchr(s+n,c) -> gep(s+n+i,c)
>>> -    return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>>> +    return EmitMemChr(
>>> +        SrcStr, CI->getArgOperand(1), // include nul.
>>> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B,
>>> DL, TLI);
>>>    }
>>> -};
>>> -
>>> -struct StrCmpOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strcmp" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        !FT->getReturnType()->isIntegerTy(32) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy())
>>> -      return nullptr;
>>> -
>>> -    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> -    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
>>> -      return ConstantInt::get(CI->getType(), 0);
>>> -
>>> -    StringRef Str1, Str2;
>>> -    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> -    bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>> -
>>> -    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
>>> -    if (HasStr1 && HasStr2)
>>> -      return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>>> -
>>> -    if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>>> -      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>>> -                                      CI->getType()));
>>> -
>>> -    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>>> -      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>> -
>>> -    // strcmp(P, "x") -> memcmp(P, "x", 2)
>>> -    uint64_t Len1 = GetStringLength(Str1P);
>>> -    uint64_t Len2 = GetStringLength(Str2P);
>>> -    if (Len1 && Len2) {
>>> -      // These optimizations require DataLayout.
>>> -      if (!DL) return nullptr;
>>> -
>>> -      return EmitMemCmp(Str1P, Str2P,
>>> -                        ConstantInt::get(DL->getIntPtrType(*Context),
>>> -                        std::min(Len1, Len2)), B, DL, TLI);
>>> -    }
>>>
>>> +  // Otherwise, the character is a constant, see if the first argument
>>> is
>>> +  // a string literal.  If so, we can constant fold.
>>> +  StringRef Str;
>>> +  if (!getConstantStringInfo(SrcStr, Str)) {
>>> +    if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>>> +      return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
>>> "strchr");
>>>      return nullptr;
>>>    }
>>> -};
>>>
>>> -struct StrNCmpOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strncmp" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 ||
>>> -        !FT->getReturnType()->isIntegerTy(32) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>>> -        !FT->getParamType(2)->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> -    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
>>> -      return ConstantInt::get(CI->getType(), 0);
>>> -
>>> -    // Get the length argument if it is constant.
>>> -    uint64_t Length;
>>> -    if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> -      Length = LengthArg->getZExtValue();
>>> -    else
>>> -      return nullptr;
>>> -
>>> -    if (Length == 0) // strncmp(x,y,0)   -> 0
>>> -      return ConstantInt::get(CI->getType(), 0);
>>> -
>>> -    if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>>> -      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>>> -
>>> -    StringRef Str1, Str2;
>>> -    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> -    bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>> -
>>> -    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
>>> -    if (HasStr1 && HasStr2) {
>>> -      StringRef SubStr1 = Str1.substr(0, Length);
>>> -      StringRef SubStr2 = Str2.substr(0, Length);
>>> -      return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>>> -    }
>>> +  // Compute the offset, make sure to handle the case when we're
>>> searching for
>>> +  // zero (a weird way to spell strlen).
>>> +  size_t I = (0xFF & CharC->getSExtValue()) == 0
>>> +                 ? Str.size()
>>> +                 : Str.find(CharC->getSExtValue());
>>> +  if (I == StringRef::npos) // Didn't find the char.  strchr returns
>>> null.
>>> +    return Constant::getNullValue(CI->getType());
>>>
>>> -    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> -*x
>>> -      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>>> -                                      CI->getType()));
>>> +  // strchr(s+n,c)  -> gep(s+n+i,c)
>>> +  return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>>> +}
>>>
>>> -    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
>>> -      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>> +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strrchr" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> B.getInt8PtrTy() ||
>>> +      FT->getParamType(0) != FT->getReturnType() ||
>>> +      !FT->getParamType(1)->isIntegerTy(32))
>>> +    return nullptr;
>>> +
>>> +  Value *SrcStr = CI->getArgOperand(0);
>>> +  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> +
>>> +  // Cannot fold anything if we're not looking for a constant.
>>> +  if (!CharC)
>>> +    return nullptr;
>>>
>>> +  StringRef Str;
>>> +  if (!getConstantStringInfo(SrcStr, Str)) {
>>> +    // strrchr(s, 0) -> strchr(s, 0)
>>> +    if (DL && CharC->isZero())
>>> +      return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>>>      return nullptr;
>>>    }
>>> -};
>>>
>>> -struct StrCpyOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "strcpy" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getReturnType() != FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy())
>>> -      return nullptr;
>>> +  // Compute the offset.
>>> +  size_t I = (0xFF & CharC->getSExtValue()) == 0
>>> +                 ? Str.size()
>>> +                 : Str.rfind(CharC->getSExtValue());
>>> +  if (I == StringRef::npos) // Didn't find the char. Return null.
>>> +    return Constant::getNullValue(CI->getType());
>>>
>>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> -    if (Dst == Src)      // strcpy(x,x)  -> x
>>> -      return Src;
>>> +  // strrchr(s+n,c) -> gep(s+n+i,c)
>>> +  return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>>> +}
>>>
>>> +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strcmp" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32)
>>> ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != B.getInt8PtrTy())
>>> +    return nullptr;
>>> +
>>> +  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> +  if (Str1P == Str2P) // strcmp(x,x)  -> 0
>>> +    return ConstantInt::get(CI->getType(), 0);
>>> +
>>> +  StringRef Str1, Str2;
>>> +  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> +  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>> +
>>> +  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
>>> +  if (HasStr1 && HasStr2)
>>> +    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>>> +
>>> +  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>>> +    return B.CreateNeg(
>>> +        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>>> +
>>> +  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>>> +    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>> +
>>> +  // strcmp(P, "x") -> memcmp(P, "x", 2)
>>> +  uint64_t Len1 = GetStringLength(Str1P);
>>> +  uint64_t Len2 = GetStringLength(Str2P);
>>> +  if (Len1 && Len2) {
>>>      // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> -
>>> -    // See if we can get the length of the input string.
>>> -    uint64_t Len = GetStringLength(Src);
>>> -    if (Len == 0) return nullptr;
>>> +    if (!DL)
>>> +      return nullptr;
>>>
>>> -    // We have enough information to now generate the memcpy call to do
>>> the
>>> -    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>>> -    B.CreateMemCpy(Dst, Src,
>>> -                  ConstantInt::get(DL->getIntPtrType(*Context), Len),
>>> 1);
>>> -    return Dst;
>>> +    return EmitMemCmp(Str1P, Str2P,
>>> +
>>> ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> +                                       std::min(Len1, Len2)),
>>> +                      B, DL, TLI);
>>>    }
>>> -};
>>>
>>> -struct StpCpyOpt: public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Verify the "stpcpy" function prototype.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getReturnType() != FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy())
>>> -      return nullptr;
>>> +  return nullptr;
>>> +}
>>>
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strncmp" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32)
>>> ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != B.getInt8PtrTy() ||
>>> +      !FT->getParamType(2)->isIntegerTy())
>>> +    return nullptr;
>>>
>>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> -    if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
>>> -      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> -      return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> -    }
>>> +  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>>> +  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
>>> +    return ConstantInt::get(CI->getType(), 0);
>>>
>>> -    // See if we can get the length of the input string.
>>> -    uint64_t Len = GetStringLength(Src);
>>> -    if (Len == 0) return nullptr;
>>> +  // Get the length argument if it is constant.
>>> +  uint64_t Length;
>>> +  if (ConstantInt *LengthArg =
>>> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>>> +    Length = LengthArg->getZExtValue();
>>> +  else
>>> +    return nullptr;
>>>
>>> -    Type *PT = FT->getParamType(0);
>>> -    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> -    Value *DstEnd = B.CreateGEP(Dst,
>>> -                                ConstantInt::get(DL->getIntPtrType(PT),
>>> -                                                 Len - 1));
>>> -
>>> -    // We have enough information to now generate the memcpy call to do
>>> the
>>> -    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>>> -    B.CreateMemCpy(Dst, Src, LenV, 1);
>>> -    return DstEnd;
>>> -  }
>>> -};
>>> +  if (Length == 0) // strncmp(x,y,0)   -> 0
>>> +    return ConstantInt::get(CI->getType(), 0);
>>>
>>> -struct StrNCpyOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>>> -        !FT->getParamType(2)->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    Value *Dst = CI->getArgOperand(0);
>>> -    Value *Src = CI->getArgOperand(1);
>>> -    Value *LenOp = CI->getArgOperand(2);
>>> -
>>> -    // See if we can get the length of the input string.
>>> -    uint64_t SrcLen = GetStringLength(Src);
>>> -    if (SrcLen == 0) return nullptr;
>>> -    --SrcLen;
>>> -
>>> -    if (SrcLen == 0) {
>>> -      // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>>> -      B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>>> -      return Dst;
>>> -    }
>>> +  if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>>> +    return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>>>
>>> -    uint64_t Len;
>>> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>>> -      Len = LengthArg->getZExtValue();
>>> -    else
>>> -      return nullptr;
>>> +  StringRef Str1, Str2;
>>> +  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>>> +  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>>
>>> -    if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
>>> +  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
>>> +  if (HasStr1 && HasStr2) {
>>> +    StringRef SubStr1 = Str1.substr(0, Length);
>>> +    StringRef SubStr2 = Str2.substr(0, Length);
>>> +    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>>> +  }
>>>
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
>>> +    return B.CreateNeg(
>>> +        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>>>
>>> -    // Let strncpy handle the zero padding
>>> -    if (Len > SrcLen+1) return nullptr;
>>> +  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
>>> +    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
>>> CI->getType());
>>>
>>> -    Type *PT = FT->getParamType(0);
>>> -    // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>>> -    B.CreateMemCpy(Dst, Src,
>>> -                   ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
>>> +  return nullptr;
>>> +}
>>>
>>> -    return Dst;
>>> -  }
>>> -};
>>> +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "strcpy" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != B.getInt8PtrTy())
>>> +    return nullptr;
>>>
>>> -struct StrLenOpt : public LibCallOptimization {
>>> -  bool ignoreCallingConv() override { return true; }
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 1 ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>>> -        !FT->getReturnType()->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    Value *Src = CI->getArgOperand(0);
>>> -
>>> -    // Constant folding: strlen("xyz") -> 3
>>> -    if (uint64_t Len = GetStringLength(Src))
>>> -      return ConstantInt::get(CI->getType(), Len-1);
>>> -
>>> -    // strlen(x?"foo":"bars") --> x ? 3 : 4
>>> -    if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>>> -      uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>>> -      uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>>> -      if (LenTrue && LenFalse) {
>>> -        emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
>>> -                               SI->getDebugLoc(),
>>> -                               "folded strlen(select) to select of
>>> constants");
>>> -        return B.CreateSelect(SI->getCondition(),
>>> -                              ConstantInt::get(CI->getType(),
>>> LenTrue-1),
>>> -                              ConstantInt::get(CI->getType(),
>>> LenFalse-1));
>>> -      }
>>> -    }
>>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> +  if (Dst == Src) // strcpy(x,x)  -> x
>>> +    return Src;
>>>
>>> -    // strlen(x) != 0 --> *x != 0
>>> -    // strlen(x) == 0 --> *x == 0
>>> -    if (isOnlyUsedInZeroEqualityComparison(CI))
>>> -      return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"),
>>> CI->getType());
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>>
>>> +  // See if we can get the length of the input string.
>>> +  uint64_t Len = GetStringLength(Src);
>>> +  if (Len == 0)
>>>      return nullptr;
>>> -  }
>>> -};
>>>
>>> -struct StrPBrkOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>>> -        FT->getParamType(1) != FT->getParamType(0) ||
>>> -        FT->getReturnType() != FT->getParamType(0))
>>> -      return nullptr;
>>> +  // We have enough information to now generate the memcpy call to do
>>> the
>>> +  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>>> +  B.CreateMemCpy(Dst, Src,
>>> +                 ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> Len), 1);
>>> +  return Dst;
>>> +}
>>>
>>> -    StringRef S1, S2;
>>> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Verify the "stpcpy" function prototype.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != B.getInt8PtrTy())
>>> +    return nullptr;
>>>
>>> -    // strpbrk(s, "") -> NULL
>>> -    // strpbrk("", s) -> NULL
>>> -    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> -      return Constant::getNullValue(CI->getType());
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>>
>>> -    // Constant folding.
>>> -    if (HasS1 && HasS2) {
>>> -      size_t I = S1.find_first_of(S2);
>>> -      if (I == StringRef::npos) // No match.
>>> -        return Constant::getNullValue(CI->getType());
>>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>>> +  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
>>> +    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>>> +    return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>>> +  }
>>>
>>> -      return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I),
>>> "strpbrk");
>>> -    }
>>> +  // See if we can get the length of the input string.
>>> +  uint64_t Len = GetStringLength(Src);
>>> +  if (Len == 0)
>>> +    return nullptr;
>>>
>>> -    // strpbrk(s, "a") -> strchr(s, 'a')
>>> -    if (DL && HasS2 && S2.size() == 1)
>>> -      return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>>> +  Type *PT = FT->getParamType(0);
>>> +  Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>>> +  Value *DstEnd =
>>> +      B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len -
>>> 1));
>>>
>>> -    return nullptr;
>>> +  // We have enough information to now generate the memcpy call to do
>>> the
>>> +  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>>> +  B.CreateMemCpy(Dst, Src, LenV, 1);
>>> +  return DstEnd;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      FT->getParamType(0) != B.getInt8PtrTy() ||
>>> +      !FT->getParamType(2)->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  Value *Dst = CI->getArgOperand(0);
>>> +  Value *Src = CI->getArgOperand(1);
>>> +  Value *LenOp = CI->getArgOperand(2);
>>> +
>>> +  // See if we can get the length of the input string.
>>> +  uint64_t SrcLen = GetStringLength(Src);
>>> +  if (SrcLen == 0)
>>> +    return nullptr;
>>> +  --SrcLen;
>>> +
>>> +  if (SrcLen == 0) {
>>> +    // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>>> +    B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>>> +    return Dst;
>>>    }
>>> -};
>>>
>>> -struct StrToOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isPointerTy())
>>> -      return nullptr;
>>> +  uint64_t Len;
>>> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>>> +    Len = LengthArg->getZExtValue();
>>> +  else
>>> +    return nullptr;
>>>
>>> -    Value *EndPtr = CI->getArgOperand(1);
>>> -    if (isa<ConstantPointerNull>(EndPtr)) {
>>> -      // With a null EndPtr, this function won't capture the main
>>> argument.
>>> -      // It would be readonly too, except that it still may write to
>>> errno.
>>> -      CI->addAttribute(1, Attribute::NoCapture);
>>> -    }
>>> +  if (Len == 0)
>>> +    return Dst; // strncpy(x, y, 0) -> x
>>>
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>>      return nullptr;
>>> -  }
>>> -};
>>>
>>> -struct StrSpnOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>>> -        FT->getParamType(1) != FT->getParamType(0) ||
>>> -        !FT->getReturnType()->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    StringRef S1, S2;
>>> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> -
>>> -    // strspn(s, "") -> 0
>>> -    // strspn("", s) -> 0
>>> -    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> -      return Constant::getNullValue(CI->getType());
>>> +  // Let strncpy handle the zero padding
>>> +  if (Len > SrcLen + 1)
>>> +    return nullptr;
>>>
>>> -    // Constant folding.
>>> -    if (HasS1 && HasS2) {
>>> -      size_t Pos = S1.find_first_not_of(S2);
>>> -      if (Pos == StringRef::npos) Pos = S1.size();
>>> -      return ConstantInt::get(CI->getType(), Pos);
>>> -    }
>>> +  Type *PT = FT->getParamType(0);
>>> +  // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>>> +  B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT),
>>> Len), 1);
>>>
>>> -    return nullptr;
>>> +  return Dst;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 1 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> +      !FT->getReturnType()->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  Value *Src = CI->getArgOperand(0);
>>> +
>>> +  // Constant folding: strlen("xyz") -> 3
>>> +  if (uint64_t Len = GetStringLength(Src))
>>> +    return ConstantInt::get(CI->getType(), Len - 1);
>>> +
>>> +  // strlen(x?"foo":"bars") --> x ? 3 : 4
>>> +  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>>> +    uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>>> +    uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>>> +    if (LenTrue && LenFalse) {
>>> +      Function *Caller = CI->getParent()->getParent();
>>> +      emitOptimizationRemark(CI->getContext(), "simplify-libcalls",
>>> *Caller,
>>> +                             SI->getDebugLoc(),
>>> +                             "folded strlen(select) to select of
>>> constants");
>>> +      return B.CreateSelect(SI->getCondition(),
>>> +                            ConstantInt::get(CI->getType(), LenTrue -
>>> 1),
>>> +                            ConstantInt::get(CI->getType(), LenFalse -
>>> 1));
>>> +    }
>>>    }
>>> -};
>>>
>>> -struct StrCSpnOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>>> -        FT->getParamType(1) != FT->getParamType(0) ||
>>> -        !FT->getReturnType()->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    StringRef S1, S2;
>>> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +  // strlen(x) != 0 --> *x != 0
>>> +  // strlen(x) == 0 --> *x == 0
>>> +  if (isOnlyUsedInZeroEqualityComparison(CI))
>>> +    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"),
>>> CI->getType());
>>> +
>>> +  return nullptr;
>>> +}
>>>
>>> -    // strcspn("", s) -> 0
>>> -    if (HasS1 && S1.empty())
>>> +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> +      FT->getParamType(1) != FT->getParamType(0) ||
>>> +      FT->getReturnType() != FT->getParamType(0))
>>> +    return nullptr;
>>> +
>>> +  StringRef S1, S2;
>>> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +
>>> +  // strpbrk(s, "") -> NULL
>>> +  // strpbrk("", s) -> NULL
>>> +  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> +    return Constant::getNullValue(CI->getType());
>>> +
>>> +  // Constant folding.
>>> +  if (HasS1 && HasS2) {
>>> +    size_t I = S1.find_first_of(S2);
>>> +    if (I == StringRef::npos) // No match.
>>>        return Constant::getNullValue(CI->getType());
>>>
>>> -    // Constant folding.
>>> -    if (HasS1 && HasS2) {
>>> -      size_t Pos = S1.find_first_of(S2);
>>> -      if (Pos == StringRef::npos) Pos = S1.size();
>>> -      return ConstantInt::get(CI->getType(), Pos);
>>> -    }
>>> +    return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
>>> +  }
>>>
>>> -    // strcspn(s, "") -> strlen(s)
>>> -    if (DL && HasS2 && S2.empty())
>>> -      return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>>> +  // strpbrk(s, "a") -> strchr(s, 'a')
>>> +  if (DL && HasS2 && S2.size() == 1)
>>> +    return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>>>
>>> +  return nullptr;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy())
>>>      return nullptr;
>>> +
>>> +  Value *EndPtr = CI->getArgOperand(1);
>>> +  if (isa<ConstantPointerNull>(EndPtr)) {
>>> +    // With a null EndPtr, this function won't capture the main
>>> argument.
>>> +    // It would be readonly too, except that it still may write to
>>> errno.
>>> +    CI->addAttribute(1, Attribute::NoCapture);
>>>    }
>>> -};
>>>
>>> -struct StrStrOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        !FT->getReturnType()->isPointerTy())
>>> -      return nullptr;
>>> +  return nullptr;
>>> +}
>>>
>>> -    // fold strstr(x, x) -> x.
>>> -    if (CI->getArgOperand(0) == CI->getArgOperand(1))
>>> -      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>> +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> +      FT->getParamType(1) != FT->getParamType(0) ||
>>> +      !FT->getReturnType()->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  StringRef S1, S2;
>>> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +
>>> +  // strspn(s, "") -> 0
>>> +  // strspn("", s) -> 0
>>> +  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>>> +    return Constant::getNullValue(CI->getType());
>>> +
>>> +  // Constant folding.
>>> +  if (HasS1 && HasS2) {
>>> +    size_t Pos = S1.find_first_not_of(S2);
>>> +    if (Pos == StringRef::npos)
>>> +      Pos = S1.size();
>>> +    return ConstantInt::get(CI->getType(), Pos);
>>> +  }
>>>
>>> -    // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>>> -    if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0)))
>>> {
>>> -      Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>>> -      if (!StrLen)
>>> -        return nullptr;
>>> -      Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0),
>>> CI->getArgOperand(1),
>>> -                                   StrLen, B, DL, TLI);
>>> -      if (!StrNCmp)
>>> -        return nullptr;
>>> -      for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>>> -        ICmpInst *Old = cast<ICmpInst>(*UI++);
>>> -        Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
>>> -
>>> ConstantInt::getNullValue(StrNCmp->getType()),
>>> -                                  "cmp");
>>> -        LCS->replaceAllUsesWith(Old, Cmp);
>>> -      }
>>> -      return CI;
>>> -    }
>>> +  return nullptr;
>>> +}
>>>
>>> -    // See if either input string is a constant string.
>>> -    StringRef SearchStr, ToFindStr;
>>> -    bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0),
>>> SearchStr);
>>> -    bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1),
>>> ToFindStr);
>>> -
>>> -    // fold strstr(x, "") -> x.
>>> -    if (HasStr2 && ToFindStr.empty())
>>> -      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>> -
>>> -    // If both strings are known, constant fold it.
>>> -    if (HasStr1 && HasStr2) {
>>> -      size_t Offset = SearchStr.find(ToFindStr);
>>> -
>>> -      if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>>> -        return Constant::getNullValue(CI->getType());
>>> -
>>> -      // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>>> -      Value *Result = CastToCStr(CI->getArgOperand(0), B);
>>> -      Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>>> -      return B.CreateBitCast(Result, CI->getType());
>>> -    }
>>> +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || FT->getParamType(0) !=
>>> B.getInt8PtrTy() ||
>>> +      FT->getParamType(1) != FT->getParamType(0) ||
>>> +      !FT->getReturnType()->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  StringRef S1, S2;
>>> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>>> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>>> +
>>> +  // strcspn("", s) -> 0
>>> +  if (HasS1 && S1.empty())
>>> +    return Constant::getNullValue(CI->getType());
>>> +
>>> +  // Constant folding.
>>> +  if (HasS1 && HasS2) {
>>> +    size_t Pos = S1.find_first_of(S2);
>>> +    if (Pos == StringRef::npos)
>>> +      Pos = S1.size();
>>> +    return ConstantInt::get(CI->getType(), Pos);
>>> +  }
>>> +
>>> +  // strcspn(s, "") -> strlen(s)
>>> +  if (DL && HasS2 && S2.empty())
>>> +    return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>>>
>>> -    // fold strstr(x, "y") -> strchr(x, 'y').
>>> -    if (HasStr2 && ToFindStr.size() == 1) {
>>> -      Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B,
>>> DL, TLI);
>>> -      return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>>> -    }
>>> +  return nullptr;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      !FT->getReturnType()->isPointerTy())
>>>      return nullptr;
>>> -  }
>>> -};
>>>
>>> -struct MemCmpOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        !FT->getReturnType()->isIntegerTy(32))
>>> +  // fold strstr(x, x) -> x.
>>> +  if (CI->getArgOperand(0) == CI->getArgOperand(1))
>>> +    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>> +
>>> +  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>>> +  if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
>>> +    Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>>> +    if (!StrLen)
>>>        return nullptr;
>>> +    Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0),
>>> CI->getArgOperand(1),
>>> +                                 StrLen, B, DL, TLI);
>>> +    if (!StrNCmp)
>>> +      return nullptr;
>>> +    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>>> +      ICmpInst *Old = cast<ICmpInst>(*UI++);
>>> +      Value *Cmp =
>>> +          B.CreateICmp(Old->getPredicate(), StrNCmp,
>>> +                       ConstantInt::getNullValue(StrNCmp->getType()),
>>> "cmp");
>>> +      replaceAllUsesWith(Old, Cmp);
>>> +    }
>>> +    return CI;
>>> +  }
>>>
>>> -    Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>>> +  // See if either input string is a constant string.
>>> +  StringRef SearchStr, ToFindStr;
>>> +  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
>>> +  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>>>
>>> -    if (LHS == RHS)  // memcmp(s,s,x) -> 0
>>> -      return Constant::getNullValue(CI->getType());
>>> +  // fold strstr(x, "") -> x.
>>> +  if (HasStr2 && ToFindStr.empty())
>>> +    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>>
>>> -    // Make sure we have a constant length.
>>> -    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> -    if (!LenC) return nullptr;
>>> -    uint64_t Len = LenC->getZExtValue();
>>> +  // If both strings are known, constant fold it.
>>> +  if (HasStr1 && HasStr2) {
>>> +    size_t Offset = SearchStr.find(ToFindStr);
>>>
>>> -    if (Len == 0) // memcmp(s1,s2,0) -> 0
>>> +    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>>>        return Constant::getNullValue(CI->getType());
>>>
>>> -    // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>>> -    if (Len == 1) {
>>> -      Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B),
>>> "lhsc"),
>>> -                                 CI->getType(), "lhsv");
>>> -      Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B),
>>> "rhsc"),
>>> -                                 CI->getType(), "rhsv");
>>> -      return B.CreateSub(LHSV, RHSV, "chardiff");
>>> -    }
>>> +    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>>> +    Value *Result = CastToCStr(CI->getArgOperand(0), B);
>>> +    Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>>> +    return B.CreateBitCast(Result, CI->getType());
>>> +  }
>>>
>>> -    // Constant folding: memcmp(x, y, l) -> cnst (all arguments are
>>> constant)
>>> -    StringRef LHSStr, RHSStr;
>>> -    if (getConstantStringInfo(LHS, LHSStr) &&
>>> -        getConstantStringInfo(RHS, RHSStr)) {
>>> -      // Make sure we're not reading out-of-bounds memory.
>>> -      if (Len > LHSStr.size() || Len > RHSStr.size())
>>> -        return nullptr;
>>> -      // Fold the memcmp and normalize the result.  This way we get
>>> consistent
>>> -      // results across multiple platforms.
>>> -      uint64_t Ret = 0;
>>> -      int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>>> -      if (Cmp < 0)
>>> -        Ret = -1;
>>> -      else if (Cmp > 0)
>>> -        Ret = 1;
>>> -      return ConstantInt::get(CI->getType(), Ret);
>>> -    }
>>> +  // fold strstr(x, "y") -> strchr(x, 'y').
>>> +  if (HasStr2 && ToFindStr.size() == 1) {
>>> +    Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B,
>>> DL, TLI);
>>> +    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>>> +  }
>>> +  return nullptr;
>>> +}
>>>
>>> -    return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      !FT->getReturnType()->isIntegerTy(32))
>>> +    return nullptr;
>>> +
>>> +  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>>> +
>>> +  if (LHS == RHS) // memcmp(s,s,x) -> 0
>>> +    return Constant::getNullValue(CI->getType());
>>> +
>>> +  // Make sure we have a constant length.
>>> +  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> +  if (!LenC)
>>> +    return nullptr;
>>> +  uint64_t Len = LenC->getZExtValue();
>>> +
>>> +  if (Len == 0) // memcmp(s1,s2,0) -> 0
>>> +    return Constant::getNullValue(CI->getType());
>>> +
>>> +  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>>> +  if (Len == 1) {
>>> +    Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
>>> +                               CI->getType(), "lhsv");
>>> +    Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
>>> +                               CI->getType(), "rhsv");
>>> +    return B.CreateSub(LHSV, RHSV, "chardiff");
>>> +  }
>>> +
>>> +  // Constant folding: memcmp(x, y, l) -> cnst (all arguments are
>>> constant)
>>> +  StringRef LHSStr, RHSStr;
>>> +  if (getConstantStringInfo(LHS, LHSStr) &&
>>> +      getConstantStringInfo(RHS, RHSStr)) {
>>> +    // Make sure we're not reading out-of-bounds memory.
>>> +    if (Len > LHSStr.size() || Len > RHSStr.size())
>>> +      return nullptr;
>>> +    // Fold the memcmp and normalize the result.  This way we get
>>> consistent
>>> +    // results across multiple platforms.
>>> +    uint64_t Ret = 0;
>>> +    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>>> +    if (Cmp < 0)
>>> +      Ret = -1;
>>> +    else if (Cmp > 0)
>>> +      Ret = 1;
>>> +    return ConstantInt::get(CI->getType(), Ret);
>>>    }
>>> -};
>>>
>>> -struct MemCpyOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +  return nullptr;
>>> +}
>>>
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(*Context))
>>> -      return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>>
>>> -    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>>> -    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> -                   CI->getArgOperand(2), 1);
>>> -    return CI->getArgOperand(0);
>>> -  }
>>> -};
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>>> +    return nullptr;
>>>
>>> -struct MemMoveOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +  // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>>> +  B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> +                 CI->getArgOperand(2), 1);
>>> +  return CI->getArgOperand(0);
>>> +}
>>>
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(*Context))
>>> -      return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>>
>>> -    // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>>> -    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> -                    CI->getArgOperand(2), 1);
>>> -    return CI->getArgOperand(0);
>>> -  }
>>> -};
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>>> +    return nullptr;
>>>
>>> -struct MemSetOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +  // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>>> +  B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>>> +                  CI->getArgOperand(2), 1);
>>> +  return CI->getArgOperand(0);
>>> +}
>>>
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isPointerTy() ||
>>> -        !FT->getParamType(1)->isIntegerTy() ||
>>> -        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> -      return nullptr;
>>> +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>> +    return nullptr;
>>>
>>> -    // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>>> -    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> false);
>>> -    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>>> -    return CI->getArgOperand(0);
>>> -  }
>>> -};
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 3 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isIntegerTy() ||
>>> +      FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>>> +    return nullptr;
>>> +
>>> +  // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>>> +  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>>> false);
>>> +  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>>> +  return CI->getArgOperand(0);
>>> +}
>>>
>>>
>>>  //===----------------------------------------------------------------------===//
>>>  // Math Library Optimizations
>>> @@ -1111,935 +1025,847 @@ struct MemSetOpt : public LibCallOptimiz
>>>
>>>  //===----------------------------------------------------------------------===//
>>>  // Double -> Float Shrinking Optimizations for Unary Functions like
>>> 'floor'
>>>
>>> -struct UnaryDoubleFPOpt : public LibCallOptimization {
>>> -  bool CheckRetType;
>>> -  UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType)
>>> {}
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>>> -        !FT->getParamType(0)->isDoubleTy())
>>> -      return nullptr;
>>> -
>>> -    if (CheckRetType) {
>>> -      // Check if all the uses for function like 'sin' are converted to
>>> float.
>>> -      for (User *U : CI->users()) {
>>> -        FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>>> -        if (!Cast || !Cast->getType()->isFloatTy())
>>> -          return nullptr;
>>> -      }
>>> +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI,
>>> IRBuilder<> &B,
>>> +                                                bool CheckRetType) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>>> +      !FT->getParamType(0)->isDoubleTy())
>>> +    return nullptr;
>>> +
>>> +  if (CheckRetType) {
>>> +    // Check if all the uses for function like 'sin' are converted to
>>> float.
>>> +    for (User *U : CI->users()) {
>>> +      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>>> +      if (!Cast || !Cast->getType()->isFloatTy())
>>> +        return nullptr;
>>>      }
>>> +  }
>>>
>>> -    // If this is something like 'floor((double)floatval)', convert to
>>> floorf.
>>> -    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> -    if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>>> -      return nullptr;
>>> +  // If this is something like 'floor((double)floatval)', convert to
>>> floorf.
>>> +  FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> +  if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>>> +    return nullptr;
>>>
>>> -    // floor((double)floatval) -> (double)floorf(floatval)
>>> -    Value *V = Cast->getOperand(0);
>>> -    V = EmitUnaryFloatFnCall(V, Callee->getName(), B,
>>> Callee->getAttributes());
>>> -    return B.CreateFPExt(V, B.getDoubleTy());
>>> -  }
>>> -};
>>> +  // floor((double)floatval) -> (double)floorf(floatval)
>>> +  Value *V = Cast->getOperand(0);
>>> +  V = EmitUnaryFloatFnCall(V, Callee->getName(), B,
>>> Callee->getAttributes());
>>> +  return B.CreateFPExt(V, B.getDoubleTy());
>>> +}
>>>
>>>  // Double -> Float Shrinking Optimizations for Binary Functions like
>>> 'fmin/fmax'
>>> -struct BinaryDoubleFPOpt : public LibCallOptimization {
>>> -  bool CheckRetType;
>>> -  BinaryDoubleFPOpt(bool CheckReturnType):
>>> CheckRetType(CheckReturnType) {}
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> -    // result type.
>>> -    if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        !FT->getParamType(0)->isFloatingPointTy())
>>> -      return nullptr;
>>> -
>>> -    if (CheckRetType) {
>>> -      // Check if all the uses for function like 'fmin/fmax' are
>>> converted to
>>> -      // float.
>>> -      for (User *U : CI->users()) {
>>> -        FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>>> -        if (!Cast || !Cast->getType()->isFloatTy())
>>> -          return nullptr;
>>> -      }
>>> -    }
>>> +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI,
>>> IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> +  // result type.
>>> +  if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      !FT->getParamType(0)->isFloatingPointTy())
>>> +    return nullptr;
>>> +
>>> +  // If this is something like 'fmin((double)floatval1,
>>> (double)floatval2)',
>>> +  // we convert it to fminf.
>>> +  FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> +  FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>>> +  if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2
>>> ||
>>> +      !Cast2->getOperand(0)->getType()->isFloatTy())
>>> +    return nullptr;
>>> +
>>> +  // fmin((double)floatval1, (double)floatval2)
>>> +  //                      -> (double)fmin(floatval1, floatval2)
>>> +  Value *V = nullptr;
>>> +  Value *V1 = Cast1->getOperand(0);
>>> +  Value *V2 = Cast2->getOperand(0);
>>> +  V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>>> +                            Callee->getAttributes());
>>> +  return B.CreateFPExt(V, B.getDoubleTy());
>>> +}
>>>
>>> -    // If this is something like 'fmin((double)floatval1,
>>> (double)floatval2)',
>>> -    // we convert it to fminf.
>>> -    FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>>> -    FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>>> -    if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
>>> -        !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
>>> -      return nullptr;
>>> -
>>> -    // fmin((double)floatval1, (double)floatval2)
>>> -    //                      -> (double)fmin(floatval1, floatval2)
>>> -    Value *V = nullptr;
>>> -    Value *V1 = Cast1->getOperand(0);
>>> -    Value *V2 = Cast2->getOperand(0);
>>> -    V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>>> -                              Callee->getAttributes());
>>> -    return B.CreateFPExt(V, B.getDoubleTy());
>>> -  }
>>> -};
>>> -
>>> -struct UnsafeFPLibCallOptimization : public LibCallOptimization {
>>> -  bool UnsafeFPShrink;
>>> -  UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
>>> -    this->UnsafeFPShrink = UnsafeFPShrink;
>>> -  }
>>> -};
>>> -
>>> -struct CosOpt : public UnsafeFPLibCallOptimization {
>>> -  CosOpt(bool UnsafeFPShrink) :
>>> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    Value *Ret = nullptr;
>>> -    if (UnsafeFPShrink && Callee->getName() == "cos" &&
>>> -        TLI->has(LibFunc::cosf)) {
>>> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>>> -    }
>>> +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  Value *Ret = nullptr;
>>> +  if (UnsafeFPShrink && Callee->getName() == "cos" &&
>>> TLI->has(LibFunc::cosf)) {
>>> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>>> +  }
>>>
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // Just make sure this has 1 argument of FP type, which matches the
>>> -    // result type.
>>> -    if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isFloatingPointTy())
>>> -      return Ret;
>>> -
>>> -    // cos(-x) -> cos(x)
>>> -    Value *Op1 = CI->getArgOperand(0);
>>> -    if (BinaryOperator::isFNeg(Op1)) {
>>> -      BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>>> -      return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>>> -    }
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // Just make sure this has 1 argument of FP type, which matches the
>>> +  // result type.
>>> +  if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isFloatingPointTy())
>>>      return Ret;
>>> +
>>> +  // cos(-x) -> cos(x)
>>> +  Value *Op1 = CI->getArgOperand(0);
>>> +  if (BinaryOperator::isFNeg(Op1)) {
>>> +    BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>>> +    return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>>>    }
>>> -};
>>> +  return Ret;
>>> +}
>>>
>>> -struct PowOpt : public UnsafeFPLibCallOptimization {
>>> -  PowOpt(bool UnsafeFPShrink) :
>>> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    Value *Ret = nullptr;
>>> -    if (UnsafeFPShrink && Callee->getName() == "pow" &&
>>> -        TLI->has(LibFunc::powf)) {
>>> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>>> -    }
>>> +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>>
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> -    // result type.
>>> -    if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        FT->getParamType(0) != FT->getParamType(1) ||
>>> -        !FT->getParamType(0)->isFloatingPointTy())
>>> -      return Ret;
>>> -
>>> -    Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>>> -    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>>> -      // pow(1.0, x) -> 1.0
>>> -      if (Op1C->isExactlyValue(1.0))
>>> -        return Op1C;
>>> -      // pow(2.0, x) -> exp2(x)
>>> -      if (Op1C->isExactlyValue(2.0) &&
>>> -          hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2,
>>> LibFunc::exp2f,
>>> -                          LibFunc::exp2l))
>>> -        return EmitUnaryFloatFnCall(Op2, "exp2", B,
>>> Callee->getAttributes());
>>> -      // pow(10.0, x) -> exp10(x)
>>> -      if (Op1C->isExactlyValue(10.0) &&
>>> -          hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10,
>>> LibFunc::exp10f,
>>> -                          LibFunc::exp10l))
>>> -        return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10),
>>> B,
>>> -                                    Callee->getAttributes());
>>> -    }
>>> +  Value *Ret = nullptr;
>>> +  if (UnsafeFPShrink && Callee->getName() == "pow" &&
>>> TLI->has(LibFunc::powf)) {
>>> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>>> +  }
>>>
>>> -    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>>> -    if (!Op2C) return Ret;
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> +  // result type.
>>> +  if (FT->getNumParams() != 2 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      FT->getParamType(0) != FT->getParamType(1) ||
>>> +      !FT->getParamType(0)->isFloatingPointTy())
>>> +    return Ret;
>>>
>>> -    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
>>> -      return ConstantFP::get(CI->getType(), 1.0);
>>> +  Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>>> +  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>>> +    // pow(1.0, x) -> 1.0
>>> +    if (Op1C->isExactlyValue(1.0))
>>> +      return Op1C;
>>> +    // pow(2.0, x) -> exp2(x)
>>> +    if (Op1C->isExactlyValue(2.0) &&
>>> +        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2,
>>> LibFunc::exp2f,
>>> +                        LibFunc::exp2l))
>>> +      return EmitUnaryFloatFnCall(Op2, "exp2", B,
>>> Callee->getAttributes());
>>> +    // pow(10.0, x) -> exp10(x)
>>> +    if (Op1C->isExactlyValue(10.0) &&
>>> +        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10,
>>> LibFunc::exp10f,
>>> +                        LibFunc::exp10l))
>>> +      return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
>>> +                                  Callee->getAttributes());
>>> +  }
>>>
>>> -    if (Op2C->isExactlyValue(0.5) &&
>>> -        hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt,
>>> LibFunc::sqrtf,
>>> -                        LibFunc::sqrtl) &&
>>> -        hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs,
>>> LibFunc::fabsf,
>>> -                        LibFunc::fabsl)) {
>>> -      // Expand pow(x, 0.5) to (x == -infinity ? +infinity :
>>> fabs(sqrt(x))).
>>> -      // This is faster than calling pow, and still handles negative
>>> zero
>>> -      // and negative infinity correctly.
>>> -      // TODO: In fast-math mode, this could be just sqrt(x).
>>> -      // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>>> -      Value *Inf = ConstantFP::getInfinity(CI->getType());
>>> -      Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>>> -      Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
>>> -                                         Callee->getAttributes());
>>> -      Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
>>> -                                         Callee->getAttributes());
>>> -      Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>>> -      Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>>> -      return Sel;
>>> -    }
>>> +  ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>>> +  if (!Op2C)
>>> +    return Ret;
>>>
>>> -    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
>>> -      return Op1;
>>> -    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
>>> -      return B.CreateFMul(Op1, Op1, "pow2");
>>> -    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>>> -      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
>>> -                          Op1, "powrecip");
>>> -    return nullptr;
>>> -  }
>>> -};
>>> -
>>> -struct Exp2Opt : public UnsafeFPLibCallOptimization {
>>> -  Exp2Opt(bool UnsafeFPShrink) :
>>> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    Value *Ret = nullptr;
>>> -    if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>>> -        TLI->has(LibFunc::exp2f)) {
>>> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>>> -    }
>>> +  if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
>>> +    return ConstantFP::get(CI->getType(), 1.0);
>>>
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // Just make sure this has 1 argument of FP type, which matches the
>>> -    // result type.
>>> -    if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isFloatingPointTy())
>>> -      return Ret;
>>> -
>>> -    Value *Op = CI->getArgOperand(0);
>>> -    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
>>> -    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
>>> -    LibFunc::Func LdExp = LibFunc::ldexpl;
>>> -    if (Op->getType()->isFloatTy())
>>> -      LdExp = LibFunc::ldexpf;
>>> -    else if (Op->getType()->isDoubleTy())
>>> -      LdExp = LibFunc::ldexp;
>>> -
>>> -    if (TLI->has(LdExp)) {
>>> -      Value *LdExpArg = nullptr;
>>> -      if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>>> -        if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <=
>>> 32)
>>> -          LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>>> -      } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>>> -        if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <
>>> 32)
>>> -          LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>>> -      }
>>> -
>>> -      if (LdExpArg) {
>>> -        Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
>>> -        if (!Op->getType()->isFloatTy())
>>> -          One = ConstantExpr::getFPExtend(One, Op->getType());
>>> -
>>> -        Module *M = Caller->getParent();
>>> -        Value *Callee =
>>> -            M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>>> -                                   Op->getType(), B.getInt32Ty(), NULL);
>>> -        CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>>> -        if (const Function *F =
>>> dyn_cast<Function>(Callee->stripPointerCasts()))
>>> -          CI->setCallingConv(F->getCallingConv());
>>> +  if (Op2C->isExactlyValue(0.5) &&
>>> +      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt,
>>> LibFunc::sqrtf,
>>> +                      LibFunc::sqrtl) &&
>>> +      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs,
>>> LibFunc::fabsf,
>>> +                      LibFunc::fabsl)) {
>>> +    // Expand pow(x, 0.5) to (x == -infinity ? +infinity :
>>> fabs(sqrt(x))).
>>> +    // This is faster than calling pow, and still handles negative zero
>>> +    // and negative infinity correctly.
>>> +    // TODO: In fast-math mode, this could be just sqrt(x).
>>> +    // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>>> +    Value *Inf = ConstantFP::getInfinity(CI->getType());
>>> +    Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>>> +    Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
>>> Callee->getAttributes());
>>> +    Value *FAbs =
>>> +        EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
>>> +    Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>>> +    Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>>> +    return Sel;
>>> +  }
>>> +
>>> +  if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
>>> +    return Op1;
>>> +  if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
>>> +    return B.CreateFMul(Op1, Op1, "pow2");
>>> +  if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>>> +    return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1,
>>> "powrecip");
>>> +  return nullptr;
>>> +}
>>>
>>> -        return CI;
>>> -      }
>>> -    }
>>> -    return Ret;
>>> +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  Function *Caller = CI->getParent()->getParent();
>>> +
>>> +  Value *Ret = nullptr;
>>> +  if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>>> +      TLI->has(LibFunc::exp2f)) {
>>> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>>>    }
>>> -};
>>>
>>> -struct SinCosPiOpt : public LibCallOptimization {
>>> -  SinCosPiOpt() {}
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // Just make sure this has 1 argument of FP type, which matches the
>>> +  // result type.
>>> +  if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isFloatingPointTy())
>>> +    return Ret;
>>>
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Make sure the prototype is as expected, otherwise the rest of the
>>> -    // function is probably invalid and likely to abort.
>>> -    if (!isTrigLibCall(CI))
>>> -      return nullptr;
>>> -
>>> -    Value *Arg = CI->getArgOperand(0);
>>> -    SmallVector<CallInst *, 1> SinCalls;
>>> -    SmallVector<CallInst *, 1> CosCalls;
>>> -    SmallVector<CallInst *, 1> SinCosCalls;
>>> -
>>> -    bool IsFloat = Arg->getType()->isFloatTy();
>>> -
>>> -    // Look for all compatible sinpi, cospi and sincospi calls with the
>>> same
>>> -    // argument. If there are enough (in some sense) we can make the
>>> -    // substitution.
>>> -    for (User *U : Arg->users())
>>> -      classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>>> -                     SinCosCalls);
>>> -
>>> -    // It's only worthwhile if both sinpi and cospi are actually used.
>>> -    if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>>> -      return nullptr;
>>> -
>>> -    Value *Sin, *Cos, *SinCos;
>>> -    insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
>>> -                     SinCos);
>>> -
>>> -    replaceTrigInsts(SinCalls, Sin);
>>> -    replaceTrigInsts(CosCalls, Cos);
>>> -    replaceTrigInsts(SinCosCalls, SinCos);
>>> -
>>> -    return nullptr;
>>> -  }
>>> -
>>> -  bool isTrigLibCall(CallInst *CI) {
>>> -    Function *Callee = CI->getCalledFunction();
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -
>>> -    // We can only hope to do anything useful if we can ignore things
>>> like errno
>>> -    // and floating-point exceptions.
>>> -    bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
>>> -                          CI->hasFnAttr(Attribute::ReadNone);
>>> -
>>> -    // Other than that we need float(float) or double(double)
>>> -    return AttributesSafe && FT->getNumParams() == 1 &&
>>> -           FT->getReturnType() == FT->getParamType(0) &&
>>> -           (FT->getParamType(0)->isFloatTy() ||
>>> -            FT->getParamType(0)->isDoubleTy());
>>> -  }
>>> -
>>> -  void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>>> -                      SmallVectorImpl<CallInst *> &SinCalls,
>>> -                      SmallVectorImpl<CallInst *> &CosCalls,
>>> -                      SmallVectorImpl<CallInst *> &SinCosCalls) {
>>> -    CallInst *CI = dyn_cast<CallInst>(Val);
>>> -
>>> -    if (!CI)
>>> -      return;
>>> -
>>> -    Function *Callee = CI->getCalledFunction();
>>> -    StringRef FuncName = Callee->getName();
>>> -    LibFunc::Func Func;
>>> -    if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
>>> -        !isTrigLibCall(CI))
>>> -      return;
>>> -
>>> -    if (IsFloat) {
>>> -      if (Func == LibFunc::sinpif)
>>> -        SinCalls.push_back(CI);
>>> -      else if (Func == LibFunc::cospif)
>>> -        CosCalls.push_back(CI);
>>> -      else if (Func == LibFunc::sincospif_stret)
>>> -        SinCosCalls.push_back(CI);
>>> -    } else {
>>> -      if (Func == LibFunc::sinpi)
>>> -        SinCalls.push_back(CI);
>>> -      else if (Func == LibFunc::cospi)
>>> -        CosCalls.push_back(CI);
>>> -      else if (Func == LibFunc::sincospi_stret)
>>> -        SinCosCalls.push_back(CI);
>>> -    }
>>> -  }
>>> +  Value *Op = CI->getArgOperand(0);
>>> +  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
>>> +  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
>>> +  LibFunc::Func LdExp = LibFunc::ldexpl;
>>> +  if (Op->getType()->isFloatTy())
>>> +    LdExp = LibFunc::ldexpf;
>>> +  else if (Op->getType()->isDoubleTy())
>>> +    LdExp = LibFunc::ldexp;
>>> +
>>> +  if (TLI->has(LdExp)) {
>>> +    Value *LdExpArg = nullptr;
>>> +    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>>> +      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
>>> +        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>>> +    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>>> +      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
>>> +        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>>> +    }
>>> +
>>> +    if (LdExpArg) {
>>> +      Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
>>> +      if (!Op->getType()->isFloatTy())
>>> +        One = ConstantExpr::getFPExtend(One, Op->getType());
>>> +
>>> +      Module *M = Caller->getParent();
>>> +      Value *Callee =
>>> +          M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>>> +                                 Op->getType(), B.getInt32Ty(), NULL);
>>> +      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>>> +      if (const Function *F =
>>> dyn_cast<Function>(Callee->stripPointerCasts()))
>>> +        CI->setCallingConv(F->getCallingConv());
>>>
>>> -  void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
>>> -    for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
>>> -           E = Calls.end();
>>> -         I != E; ++I) {
>>> -      LCS->replaceAllUsesWith(*I, Res);
>>> +      return CI;
>>>      }
>>>    }
>>> +  return Ret;
>>> +}
>>>
>>> -  void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value
>>> *Arg,
>>> -                        bool UseFloat, Value *&Sin, Value *&Cos,
>>> -                        Value *&SinCos) {
>>> -    Type *ArgTy = Arg->getType();
>>> -    Type *ResTy;
>>> -    StringRef Name;
>>> -
>>> -    Triple T(OrigCallee->getParent()->getTargetTriple());
>>> -    if (UseFloat) {
>>> -      Name = "__sincospif_stret";
>>> -
>>> -      assert(T.getArch() != Triple::x86 && "x86 messy and unsupported
>>> for now");
>>> -      // x86_64 can't use {float, float} since that would be returned
>>> in both
>>> -      // xmm0 and xmm1, which isn't what a real struct would do.
>>> -      ResTy = T.getArch() == Triple::x86_64
>>> -                  ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>>> -                  : static_cast<Type *>(StructType::get(ArgTy, ArgTy,
>>> NULL));
>>> -    } else {
>>> -      Name = "__sincospi_stret";
>>> -      ResTy = StructType::get(ArgTy, ArgTy, NULL);
>>> -    }
>>> +static bool isTrigLibCall(CallInst *CI);
>>> +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee,
>>> Value *Arg,
>>> +                             bool UseFloat, Value *&Sin, Value *&Cos,
>>> +                             Value *&SinCos);
>>>
>>> -    Module *M = OrigCallee->getParent();
>>> -    Value *Callee = M->getOrInsertFunction(Name,
>>> OrigCallee->getAttributes(),
>>> -                                           ResTy, ArgTy, NULL);
>>> -
>>> -    if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>>> -      // If the argument is an instruction, it must dominate all uses
>>> so put our
>>> -      // sincos call there.
>>> -      BasicBlock::iterator Loc = ArgInst;
>>> -      B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>>> -    } else {
>>> -      // Otherwise (e.g. for a constant) the beginning of the function
>>> is as
>>> -      // good a place as any.
>>> -      BasicBlock &EntryBB =
>>> B.GetInsertBlock()->getParent()->getEntryBlock();
>>> -      B.SetInsertPoint(&EntryBB, EntryBB.begin());
>>> -    }
>>> +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<>
>>> &B) {
>>>
>>> -    SinCos = B.CreateCall(Callee, Arg, "sincospi");
>>> +  // Make sure the prototype is as expected, otherwise the rest of the
>>> +  // function is probably invalid and likely to abort.
>>> +  if (!isTrigLibCall(CI))
>>> +    return nullptr;
>>>
>>> -    if (SinCos->getType()->isStructTy()) {
>>> -      Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>>> -      Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>>> -    } else {
>>> -      Sin = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 0),
>>> -                                   "sinpi");
>>> -      Cos = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 1),
>>> -                                   "cospi");
>>> -    }
>>> +  Value *Arg = CI->getArgOperand(0);
>>> +  SmallVector<CallInst *, 1> SinCalls;
>>> +  SmallVector<CallInst *, 1> CosCalls;
>>> +  SmallVector<CallInst *, 1> SinCosCalls;
>>> +
>>> +  bool IsFloat = Arg->getType()->isFloatTy();
>>> +
>>> +  // Look for all compatible sinpi, cospi and sincospi calls with the
>>> same
>>> +  // argument. If there are enough (in some sense) we can make the
>>> +  // substitution.
>>> +  for (User *U : Arg->users())
>>> +    classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>>> +                   SinCosCalls);
>>> +
>>> +  // It's only worthwhile if both sinpi and cospi are actually used.
>>> +  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>>> +    return nullptr;
>>> +
>>> +  Value *Sin, *Cos, *SinCos;
>>> +  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
>>> SinCos);
>>> +
>>> +  replaceTrigInsts(SinCalls, Sin);
>>> +  replaceTrigInsts(CosCalls, Cos);
>>> +  replaceTrigInsts(SinCosCalls, SinCos);
>>> +
>>> +  return nullptr;
>>> +}
>>> +
>>> +static bool isTrigLibCall(CallInst *CI) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +
>>> +  // We can only hope to do anything useful if we can ignore things
>>> like errno
>>> +  // and floating-point exceptions.
>>> +  bool AttributesSafe =
>>> +      CI->hasFnAttr(Attribute::NoUnwind) &&
>>> CI->hasFnAttr(Attribute::ReadNone);
>>> +
>>> +  // Other than that we need float(float) or double(double)
>>> +  return AttributesSafe && FT->getNumParams() == 1 &&
>>> +         FT->getReturnType() == FT->getParamType(0) &&
>>> +         (FT->getParamType(0)->isFloatTy() ||
>>> +          FT->getParamType(0)->isDoubleTy());
>>> +}
>>> +
>>> +void
>>> +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool
>>> IsFloat,
>>> +                                  SmallVectorImpl<CallInst *> &SinCalls,
>>> +                                  SmallVectorImpl<CallInst *> &CosCalls,
>>> +                                  SmallVectorImpl<CallInst *>
>>> &SinCosCalls) {
>>> +  CallInst *CI = dyn_cast<CallInst>(Val);
>>> +
>>> +  if (!CI)
>>> +    return;
>>> +
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  StringRef FuncName = Callee->getName();
>>> +  LibFunc::Func Func;
>>> +  if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
>>> !isTrigLibCall(CI))
>>> +    return;
>>> +
>>> +  if (IsFloat) {
>>> +    if (Func == LibFunc::sinpif)
>>> +      SinCalls.push_back(CI);
>>> +    else if (Func == LibFunc::cospif)
>>> +      CosCalls.push_back(CI);
>>> +    else if (Func == LibFunc::sincospif_stret)
>>> +      SinCosCalls.push_back(CI);
>>> +  } else {
>>> +    if (Func == LibFunc::sinpi)
>>> +      SinCalls.push_back(CI);
>>> +    else if (Func == LibFunc::cospi)
>>> +      CosCalls.push_back(CI);
>>> +    else if (Func == LibFunc::sincospi_stret)
>>> +      SinCosCalls.push_back(CI);
>>>    }
>>> +}
>>>
>>> -};
>>> +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *>
>>> &Calls,
>>> +                                         Value *Res) {
>>> +  for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E =
>>> Calls.end();
>>> +       I != E; ++I) {
>>> +    replaceAllUsesWith(*I, Res);
>>> +  }
>>> +}
>>> +
>>> +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>>> +                      bool UseFloat, Value *&Sin, Value *&Cos, Value
>>> *&SinCos) {
>>> +  Type *ArgTy = Arg->getType();
>>> +  Type *ResTy;
>>> +  StringRef Name;
>>> +
>>> +  Triple T(OrigCallee->getParent()->getTargetTriple());
>>> +  if (UseFloat) {
>>> +    Name = "__sincospif_stret";
>>> +
>>> +    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for
>>> now");
>>> +    // x86_64 can't use {float, float} since that would be returned in
>>> both
>>> +    // xmm0 and xmm1, which isn't what a real struct would do.
>>> +    ResTy = T.getArch() == Triple::x86_64
>>> +                ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>>> +                : static_cast<Type *>(StructType::get(ArgTy, ArgTy,
>>> NULL));
>>> +  } else {
>>> +    Name = "__sincospi_stret";
>>> +    ResTy = StructType::get(ArgTy, ArgTy, NULL);
>>> +  }
>>> +
>>> +  Module *M = OrigCallee->getParent();
>>> +  Value *Callee = M->getOrInsertFunction(Name,
>>> OrigCallee->getAttributes(),
>>> +                                         ResTy, ArgTy, NULL);
>>> +
>>> +  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>>> +    // If the argument is an instruction, it must dominate all uses so
>>> put our
>>> +    // sincos call there.
>>> +    BasicBlock::iterator Loc = ArgInst;
>>> +    B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>>> +  } else {
>>> +    // Otherwise (e.g. for a constant) the beginning of the function is
>>> as
>>> +    // good a place as any.
>>> +    BasicBlock &EntryBB =
>>> B.GetInsertBlock()->getParent()->getEntryBlock();
>>> +    B.SetInsertPoint(&EntryBB, EntryBB.begin());
>>> +  }
>>> +
>>> +  SinCos = B.CreateCall(Callee, Arg, "sincospi");
>>> +
>>> +  if (SinCos->getType()->isStructTy()) {
>>> +    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>>> +    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>>> +  } else {
>>> +    Sin = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 0),
>>> +                                 "sinpi");
>>> +    Cos = B.CreateExtractElement(SinCos,
>>> ConstantInt::get(B.getInt32Ty(), 1),
>>> +                                 "cospi");
>>> +  }
>>> +}
>>>
>>>
>>>  //===----------------------------------------------------------------------===//
>>>  // Integer Library Call Optimizations
>>>
>>>  //===----------------------------------------------------------------------===//
>>>
>>> -struct FFSOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> -    // result type.
>>> -    if (FT->getNumParams() != 1 ||
>>> -        !FT->getReturnType()->isIntegerTy(32) ||
>>> -        !FT->getParamType(0)->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    Value *Op = CI->getArgOperand(0);
>>> -
>>> -    // Constant fold.
>>> -    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>>> -      if (CI->isZero()) // ffs(0) -> 0.
>>> -        return B.getInt32(0);
>>> -      // ffs(c) -> cttz(c)+1
>>> -      return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>>> -    }
>>> +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // Just make sure this has 2 arguments of the same FP type, which
>>> match the
>>> +  // result type.
>>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32)
>>> ||
>>> +      !FT->getParamType(0)->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  Value *Op = CI->getArgOperand(0);
>>> +
>>> +  // Constant fold.
>>> +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>>> +    if (CI->isZero()) // ffs(0) -> 0.
>>> +      return B.getInt32(0);
>>> +    // ffs(c) -> cttz(c)+1
>>> +    return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>>> +  }
>>> +
>>> +  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>>> +  Type *ArgType = Op->getType();
>>> +  Value *F =
>>> +      Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz,
>>> ArgType);
>>> +  Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>>> +  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>>> +  V = B.CreateIntCast(V, B.getInt32Ty(), false);
>>>
>>> -    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>>> -    Type *ArgType = Op->getType();
>>> -    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
>>> -                                         Intrinsic::cttz, ArgType);
>>> -    Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>>> -    V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>>> -    V = B.CreateIntCast(V, B.getInt32Ty(), false);
>>> -
>>> -    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>>> -    return B.CreateSelect(Cond, V, B.getInt32(0));
>>> -  }
>>> -};
>>> -
>>> -struct AbsOpt : public LibCallOptimization {
>>> -  bool ignoreCallingConv() override { return true; }
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // We require integer(integer) where the types agree.
>>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy()
>>> ||
>>> -        FT->getParamType(0) != FT->getReturnType())
>>> -      return nullptr;
>>> -
>>> -    // abs(x) -> x >s -1 ? x : -x
>>> -    Value *Op = CI->getArgOperand(0);
>>> -    Value *Pos = B.CreateICmpSGT(Op,
>>> Constant::getAllOnesValue(Op->getType()),
>>> -                                 "ispos");
>>> -    Value *Neg = B.CreateNeg(Op, "neg");
>>> -    return B.CreateSelect(Pos, Op, Neg);
>>> -  }
>>> -};
>>> -
>>> -struct IsDigitOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // We require integer(i32)
>>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy()
>>> ||
>>> -        !FT->getParamType(0)->isIntegerTy(32))
>>> -      return nullptr;
>>> -
>>> -    // isdigit(c) -> (c-'0') <u 10
>>> -    Value *Op = CI->getArgOperand(0);
>>> -    Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>>> -    Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>>> -    return B.CreateZExt(Op, CI->getType());
>>> -  }
>>> -};
>>> -
>>> -struct IsAsciiOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // We require integer(i32)
>>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy()
>>> ||
>>> -        !FT->getParamType(0)->isIntegerTy(32))
>>> -      return nullptr;
>>> -
>>> -    // isascii(c) -> c <u 128
>>> -    Value *Op = CI->getArgOperand(0);
>>> -    Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>>> -    return B.CreateZExt(Op, CI->getType());
>>> -  }
>>> -};
>>> -
>>> -struct ToAsciiOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    // We require i32(i32)
>>> -    if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> -        !FT->getParamType(0)->isIntegerTy(32))
>>> -      return nullptr;
>>> -
>>> -    // toascii(c) -> c & 0x7f
>>> -    return B.CreateAnd(CI->getArgOperand(0),
>>> -                       ConstantInt::get(CI->getType(),0x7F));
>>> -  }
>>> -};
>>> +  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>>> +  return B.CreateSelect(Cond, V, B.getInt32(0));
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // We require integer(integer) where the types agree.
>>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>>> +      FT->getParamType(0) != FT->getReturnType())
>>> +    return nullptr;
>>> +
>>> +  // abs(x) -> x >s -1 ? x : -x
>>> +  Value *Op = CI->getArgOperand(0);
>>> +  Value *Pos =
>>> +      B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
>>> "ispos");
>>> +  Value *Neg = B.CreateNeg(Op, "neg");
>>> +  return B.CreateSelect(Pos, Op, Neg);
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // We require integer(i32)
>>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>>> +      !FT->getParamType(0)->isIntegerTy(32))
>>> +    return nullptr;
>>> +
>>> +  // isdigit(c) -> (c-'0') <u 10
>>> +  Value *Op = CI->getArgOperand(0);
>>> +  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>>> +  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>>> +  return B.CreateZExt(Op, CI->getType());
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // We require integer(i32)
>>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>>> +      !FT->getParamType(0)->isIntegerTy(32))
>>> +    return nullptr;
>>> +
>>> +  // isascii(c) -> c <u 128
>>> +  Value *Op = CI->getArgOperand(0);
>>> +  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>>> +  return B.CreateZExt(Op, CI->getType());
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  // We require i32(i32)
>>> +  if (FT->getNumParams() != 1 || FT->getReturnType() !=
>>> FT->getParamType(0) ||
>>> +      !FT->getParamType(0)->isIntegerTy(32))
>>> +    return nullptr;
>>> +
>>> +  // toascii(c) -> c & 0x7f
>>> +  return B.CreateAnd(CI->getArgOperand(0),
>>> +                     ConstantInt::get(CI->getType(), 0x7F));
>>> +}
>>>
>>>
>>>  //===----------------------------------------------------------------------===//
>>>  // Formatting and IO Library Call Optimizations
>>>
>>>  //===----------------------------------------------------------------------===//
>>>
>>> -struct ErrorReportingOpt : public LibCallOptimization {
>>> -  ErrorReportingOpt(int S = -1) : StreamArg(S) {}
>>> +static bool isReportingError(Function *Callee, CallInst *CI, int
>>> StreamArg);
>>>
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &) override {
>>> -    // Error reporting calls should be cold, mark them as such.
>>> -    // This applies even to non-builtin calls: it is only a hint and
>>> applies to
>>> -    // functions that the frontend might not understand as builtins.
>>> -
>>> -    // This heuristic was suggested in:
>>> -    // Improving Static Branch Prediction in a Compiler
>>> -    // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>>> -    // Proceedings of PACT'98, Oct. 1998, IEEE
>>> -
>>> -    if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee,
>>> CI)) {
>>> -      CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>>> -    }
>>> +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI,
>>> IRBuilder<> &B,
>>> +                                                 int StreamArg) {
>>> +  // Error reporting calls should be cold, mark them as such.
>>> +  // This applies even to non-builtin calls: it is only a hint and
>>> applies to
>>> +  // functions that the frontend might not understand as builtins.
>>> +
>>> +  // This heuristic was suggested in:
>>> +  // Improving Static Branch Prediction in a Compiler
>>> +  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>>> +  // Proceedings of PACT'98, Oct. 1998, IEEE
>>> +  Function *Callee = CI->getCalledFunction();
>>>
>>> -    return nullptr;
>>> +  if (!CI->hasFnAttr(Attribute::Cold) &&
>>> +      isReportingError(Callee, CI, StreamArg)) {
>>> +    CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>>>    }
>>>
>>> -protected:
>>> -  bool isReportingError(Function *Callee, CallInst *CI) {
>>> -    if (!ColdErrorCalls)
>>> -      return false;
>>> -
>>> -    if (!Callee || !Callee->isDeclaration())
>>> -      return false;
>>> -
>>> -    if (StreamArg < 0)
>>> -      return true;
>>> +  return nullptr;
>>> +}
>>>
>>> -    // These functions might be considered cold, but only if their
>>> stream
>>> -    // argument is stderr.
>>> +static bool isReportingError(Function *Callee, CallInst *CI, int
>>> StreamArg) {
>>> +  if (!ColdErrorCalls)
>>> +    return false;
>>>
>>> -    if (StreamArg >= (int) CI->getNumArgOperands())
>>> -      return false;
>>> -    LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>>> -    if (!LI)
>>> -      return false;
>>> -    GlobalVariable *GV =
>>> dyn_cast<GlobalVariable>(LI->getPointerOperand());
>>> -    if (!GV || !GV->isDeclaration())
>>> -      return false;
>>> -    return GV->getName() == "stderr";
>>> -  }
>>> -
>>> -  int StreamArg;
>>> -};
>>> -
>>> -struct PrintFOpt : public LibCallOptimization {
>>> -  Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>>> -                                   IRBuilder<> &B) {
>>> -    // Check for a fixed format string.
>>> -    StringRef FormatStr;
>>> -    if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>>> -      return nullptr;
>>> -
>>> -    // Empty format string -> noop.
>>> -    if (FormatStr.empty())  // Tolerate printf's declared void.
>>> -      return CI->use_empty() ? (Value*)CI :
>>> -                               ConstantInt::get(CI->getType(), 0);
>>> -
>>> -    // Do not do any of the following transformations if the printf
>>> return value
>>> -    // is used, in general the printf return value is not compatible
>>> with either
>>> -    // putchar() or puts().
>>> -    if (!CI->use_empty())
>>> -      return nullptr;
>>> -
>>> -    // printf("x") -> putchar('x'), even for '%'.
>>> -    if (FormatStr.size() == 1) {
>>> -      Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>>> -      if (CI->use_empty() || !Res) return Res;
>>> -      return B.CreateIntCast(Res, CI->getType(), true);
>>> -    }
>>> +  if (!Callee || !Callee->isDeclaration())
>>> +    return false;
>>>
>>> -    // printf("foo\n") --> puts("foo")
>>> -    if (FormatStr[FormatStr.size()-1] == '\n' &&
>>> -        FormatStr.find('%') == StringRef::npos) { // No format
>>> characters.
>>> -      // Create a string literal with no \n on it.  We expect the
>>> constant merge
>>> -      // pass to be run after this pass, to merge duplicate strings.
>>> -      FormatStr = FormatStr.drop_back();
>>> -      Value *GV = B.CreateGlobalString(FormatStr, "str");
>>> -      Value *NewCI = EmitPutS(GV, B, DL, TLI);
>>> -      return (CI->use_empty() || !NewCI) ?
>>> -              NewCI :
>>> -              ConstantInt::get(CI->getType(), FormatStr.size()+1);
>>> -    }
>>> +  if (StreamArg < 0)
>>> +    return true;
>>>
>>> -    // Optimize specific format strings.
>>> -    // printf("%c", chr) --> putchar(chr)
>>> -    if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>>> -        CI->getArgOperand(1)->getType()->isIntegerTy()) {
>>> -      Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>>> +  // These functions might be considered cold, but only if their stream
>>> +  // argument is stderr.
>>>
>>> -      if (CI->use_empty() || !Res) return Res;
>>> -      return B.CreateIntCast(Res, CI->getType(), true);
>>> -    }
>>> +  if (StreamArg >= (int)CI->getNumArgOperands())
>>> +    return false;
>>> +  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>>> +  if (!LI)
>>> +    return false;
>>> +  GlobalVariable *GV =
>>> dyn_cast<GlobalVariable>(LI->getPointerOperand());
>>> +  if (!GV || !GV->isDeclaration())
>>> +    return false;
>>> +  return GV->getName() == "stderr";
>>> +}
>>>
>>> -    // printf("%s\n", str) --> puts(str)
>>> -    if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>>> -        CI->getArgOperand(1)->getType()->isPointerTy()) {
>>> -      return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>>> -    }
>>> -    return nullptr;
>>> +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI,
>>> IRBuilder<> &B) {
>>> +  // Check for a fixed format string.
>>> +  StringRef FormatStr;
>>> +  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>>> +    return nullptr;
>>> +
>>> +  // Empty format string -> noop.
>>> +  if (FormatStr.empty()) // Tolerate printf's declared void.
>>> +    return CI->use_empty() ? (Value *)CI :
>>> ConstantInt::get(CI->getType(), 0);
>>> +
>>> +  // Do not do any of the following transformations if the printf
>>> return value
>>> +  // is used, in general the printf return value is not compatible with
>>> either
>>> +  // putchar() or puts().
>>> +  if (!CI->use_empty())
>>> +    return nullptr;
>>> +
>>> +  // printf("x") -> putchar('x'), even for '%'.
>>> +  if (FormatStr.size() == 1) {
>>> +    Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>>> +    if (CI->use_empty() || !Res)
>>> +      return Res;
>>> +    return B.CreateIntCast(Res, CI->getType(), true);
>>> +  }
>>> +
>>> +  // printf("foo\n") --> puts("foo")
>>> +  if (FormatStr[FormatStr.size() - 1] == '\n' &&
>>> +      FormatStr.find('%') == StringRef::npos) { // No format characters.
>>> +    // Create a string literal with no \n on it.  We expect the
>>> constant merge
>>> +    // pass to be run after this pass, to merge duplicate strings.
>>> +    FormatStr = FormatStr.drop_back();
>>> +    Value *GV = B.CreateGlobalString(FormatStr, "str");
>>> +    Value *NewCI = EmitPutS(GV, B, DL, TLI);
>>> +    return (CI->use_empty() || !NewCI)
>>> +               ? NewCI
>>> +               : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
>>> +  }
>>> +
>>> +  // Optimize specific format strings.
>>> +  // printf("%c", chr) --> putchar(chr)
>>> +  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>>> +      CI->getArgOperand(1)->getType()->isIntegerTy()) {
>>> +    Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>>> +
>>> +    if (CI->use_empty() || !Res)
>>> +      return Res;
>>> +    return B.CreateIntCast(Res, CI->getType(), true);
>>> +  }
>>> +
>>> +  // printf("%s\n", str) --> puts(str)
>>> +  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>>> +      CI->getArgOperand(1)->getType()->isPointerTy()) {
>>> +    return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>>>    }
>>> +  return nullptr;
>>> +}
>>>
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Require one fixed pointer argument and an integer/void result.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> -        !(FT->getReturnType()->isIntegerTy() ||
>>> -          FT->getReturnType()->isVoidTy()))
>>> -      return nullptr;
>>> +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
>>>
>>> -    if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>>> -      return V;
>>> -    }
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Require one fixed pointer argument and an integer/void result.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !(FT->getReturnType()->isIntegerTy() ||
>>> FT->getReturnType()->isVoidTy()))
>>> +    return nullptr;
>>> +
>>> +  if (Value *V = optimizePrintFString(CI, B)) {
>>> +    return V;
>>> +  }
>>>
>>> -    // printf(format, ...) -> iprintf(format, ...) if no floating point
>>> -    // arguments.
>>> -    if (TLI->has(LibFunc::iprintf) &&
>>> !callHasFloatingPointArgument(CI)) {
>>> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> -      Constant *IPrintFFn =
>>> +  // printf(format, ...) -> iprintf(format, ...) if no floating point
>>> +  // arguments.
>>> +  if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
>>> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> +    Constant *IPrintFFn =
>>>          M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
>>> -      CallInst *New = cast<CallInst>(CI->clone());
>>> -      New->setCalledFunction(IPrintFFn);
>>> -      B.Insert(New);
>>> -      return New;
>>> -    }
>>> -    return nullptr;
>>> +    CallInst *New = cast<CallInst>(CI->clone());
>>> +    New->setCalledFunction(IPrintFFn);
>>> +    B.Insert(New);
>>> +    return New;
>>>    }
>>> -};
>>> +  return nullptr;
>>> +}
>>>
>>> -struct SPrintFOpt : public LibCallOptimization {
>>> -  Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
>>> -                                   IRBuilder<> &B) {
>>> -    // Check for a fixed format string.
>>> -    StringRef FormatStr;
>>> -    if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> -      return nullptr;
>>> -
>>> -    // If we just have a format string (nothing else crazy) transform
>>> it.
>>> -    if (CI->getNumArgOperands() == 2) {
>>> -      // Make sure there's no % in the constant array.  We could try to
>>> handle
>>> -      // %% -> % in the future if we cared.
>>> -      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> -        if (FormatStr[i] == '%')
>>> -          return nullptr; // we found a format specifier, bail out.
>>> -
>>> -      // These optimizations require DataLayout.
>>> -      if (!DL) return nullptr;
>>> -
>>> -      // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>>> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>>> -                     ConstantInt::get(DL->getIntPtrType(*Context), //
>>> Copy the
>>> -                                      FormatStr.size() + 1), 1);   //
>>> nul byte.
>>> -      return ConstantInt::get(CI->getType(), FormatStr.size());
>>> -    }
>>> +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
>>> IRBuilder<> &B) {
>>> +  // Check for a fixed format string.
>>> +  StringRef FormatStr;
>>> +  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> +    return nullptr;
>>>
>>> -    // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> -    // and have an extra operand.
>>> -    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> -        CI->getNumArgOperands() < 3)
>>> -      return nullptr;
>>> -
>>> -    // Decode the second character of the format string.
>>> -    if (FormatStr[1] == 'c') {
>>> -      // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>>> -      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return
>>> nullptr;
>>> -      Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(),
>>> "char");
>>> -      Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>>> -      B.CreateStore(V, Ptr);
>>> -      Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>>> -      B.CreateStore(B.getInt8(0), Ptr);
>>> +  // If we just have a format string (nothing else crazy) transform it.
>>> +  if (CI->getNumArgOperands() == 2) {
>>> +    // Make sure there's no % in the constant array.  We could try to
>>> handle
>>> +    // %% -> % in the future if we cared.
>>> +    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> +      if (FormatStr[i] == '%')
>>> +        return nullptr; // we found a format specifier, bail out.
>>>
>>> -      return ConstantInt::get(CI->getType(), 1);
>>> -    }
>>> +    // These optimizations require DataLayout.
>>> +    if (!DL)
>>> +      return nullptr;
>>>
>>> -    if (FormatStr[1] == 's') {
>>> -      // These optimizations require DataLayout.
>>> -      if (!DL) return nullptr;
>>> +    // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>>> +    B.CreateMemCpy(
>>> +        CI->getArgOperand(0), CI->getArgOperand(1),
>>> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> +                         FormatStr.size() + 1),
>>> +        1); // Copy the null byte.
>>> +    return ConstantInt::get(CI->getType(), FormatStr.size());
>>> +  }
>>>
>>> -      // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str,
>>> strlen(str)+1, 1)
>>> -      if (!CI->getArgOperand(2)->getType()->isPointerTy()) return
>>> nullptr;
>>> +  // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> +  // and have an extra operand.
>>> +  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> +      CI->getNumArgOperands() < 3)
>>> +    return nullptr;
>>>
>>> -      Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>>> -      if (!Len)
>>> -        return nullptr;
>>> -      Value *IncLen = B.CreateAdd(Len,
>>> -                                  ConstantInt::get(Len->getType(), 1),
>>> -                                  "leninc");
>>> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2),
>>> IncLen, 1);
>>> +  // Decode the second character of the format string.
>>> +  if (FormatStr[1] == 'c') {
>>> +    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>>> +    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>>> +      return nullptr;
>>> +    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(),
>>> "char");
>>> +    Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>>> +    B.CreateStore(V, Ptr);
>>> +    Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>>> +    B.CreateStore(B.getInt8(0), Ptr);
>>>
>>> -      // The sprintf result is the unincremented number of bytes in the
>>> string.
>>> -      return B.CreateIntCast(Len, CI->getType(), false);
>>> -    }
>>> -    return nullptr;
>>> +    return ConstantInt::get(CI->getType(), 1);
>>>    }
>>>
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Require two fixed pointer arguments and an integer result.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        !FT->getReturnType()->isIntegerTy())
>>> +  if (FormatStr[1] == 's') {
>>> +    // These optimizations require DataLayout.
>>> +    if (!DL)
>>>        return nullptr;
>>>
>>> -    if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
>>> -      return V;
>>> -    }
>>> +    // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str,
>>> strlen(str)+1, 1)
>>> +    if (!CI->getArgOperand(2)->getType()->isPointerTy())
>>> +      return nullptr;
>>>
>>> -    // sprintf(str, format, ...) -> siprintf(str, format, ...) if no
>>> floating
>>> -    // point arguments.
>>> -    if (TLI->has(LibFunc::siprintf) &&
>>> !callHasFloatingPointArgument(CI)) {
>>> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> -      Constant *SIPrintFFn =
>>> +    Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>>> +    if (!Len)
>>> +      return nullptr;
>>> +    Value *IncLen =
>>> +        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
>>> +    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen,
>>> 1);
>>> +
>>> +    // The sprintf result is the unincremented number of bytes in the
>>> string.
>>> +    return B.CreateIntCast(Len, CI->getType(), false);
>>> +  }
>>> +  return nullptr;
>>> +}
>>> +
>>> +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Require two fixed pointer arguments and an integer result.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      !FT->getReturnType()->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  if (Value *V = optimizeSPrintFString(CI, B)) {
>>> +    return V;
>>> +  }
>>> +
>>> +  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no
>>> floating
>>> +  // point arguments.
>>> +  if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI))
>>> {
>>> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> +    Constant *SIPrintFFn =
>>>          M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
>>> -      CallInst *New = cast<CallInst>(CI->clone());
>>> -      New->setCalledFunction(SIPrintFFn);
>>> -      B.Insert(New);
>>> -      return New;
>>> -    }
>>> -    return nullptr;
>>> +    CallInst *New = cast<CallInst>(CI->clone());
>>> +    New->setCalledFunction(SIPrintFFn);
>>> +    B.Insert(New);
>>> +    return New;
>>>    }
>>> -};
>>> +  return nullptr;
>>> +}
>>>
>>> -struct FPrintFOpt : public LibCallOptimization {
>>> -  Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>>> -                                   IRBuilder<> &B) {
>>> -    ErrorReportingOpt ER(/* StreamArg = */ 0);
>>> -    (void) ER.callOptimizer(Callee, CI, B);
>>> -
>>> -    // All the optimizations depend on the format string.
>>> -    StringRef FormatStr;
>>> -    if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> -      return nullptr;
>>> -
>>> -    // Do not do any of the following transformations if the fprintf
>>> return
>>> -    // value is used, in general the fprintf return value is not
>>> compatible
>>> -    // with fwrite(), fputc() or fputs().
>>> -    if (!CI->use_empty())
>>> -      return nullptr;
>>> -
>>> -    // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>>> -    if (CI->getNumArgOperands() == 2) {
>>> -      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> -        if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
>>> -          return nullptr; // We found a format specifier.
>>> -
>>> -      // These optimizations require DataLayout.
>>> -      if (!DL) return nullptr;
>>> -
>>> -      return EmitFWrite(CI->getArgOperand(1),
>>> -                        ConstantInt::get(DL->getIntPtrType(*Context),
>>> -                                         FormatStr.size()),
>>> -                        CI->getArgOperand(0), B, DL, TLI);
>>> -    }
>>> +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
>>> IRBuilder<> &B) {
>>> +  optimizeErrorReporting(CI, B, 0);
>>> +
>>> +  // All the optimizations depend on the format string.
>>> +  StringRef FormatStr;
>>> +  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>>> +    return nullptr;
>>>
>>> -    // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> -    // and have an extra operand.
>>> -    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> -        CI->getNumArgOperands() < 3)
>>> +  // Do not do any of the following transformations if the fprintf
>>> return
>>> +  // value is used, in general the fprintf return value is not
>>> compatible
>>> +  // with fwrite(), fputc() or fputs().
>>> +  if (!CI->use_empty())
>>> +    return nullptr;
>>> +
>>> +  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>>> +  if (CI->getNumArgOperands() == 2) {
>>> +    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>>> +      if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
>>> +        return nullptr;        // We found a format specifier.
>>> +
>>> +    // These optimizations require DataLayout.
>>> +    if (!DL)
>>>        return nullptr;
>>>
>>> -    // Decode the second character of the format string.
>>> -    if (FormatStr[1] == 'c') {
>>> -      // fprintf(F, "%c", chr) --> fputc(chr, F)
>>> -      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return
>>> nullptr;
>>> -      return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
>>> DL, TLI);
>>> -    }
>>> +    return EmitFWrite(
>>> +        CI->getArgOperand(1),
>>> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>>> FormatStr.size()),
>>> +        CI->getArgOperand(0), B, DL, TLI);
>>> +  }
>>>
>>> -    if (FormatStr[1] == 's') {
>>> -      // fprintf(F, "%s", str) --> fputs(str, F)
>>> -      if (!CI->getArgOperand(2)->getType()->isPointerTy())
>>> -        return nullptr;
>>> -      return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B,
>>> DL, TLI);
>>> -    }
>>> +  // The remaining optimizations require the format string to be "%s"
>>> or "%c"
>>> +  // and have an extra operand.
>>> +  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>>> +      CI->getNumArgOperands() < 3)
>>>      return nullptr;
>>> -  }
>>>
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Require two fixed paramters as pointers and integer result.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        !FT->getReturnType()->isIntegerTy())
>>> +  // Decode the second character of the format string.
>>> +  if (FormatStr[1] == 'c') {
>>> +    // fprintf(F, "%c", chr) --> fputc(chr, F)
>>> +    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>>>        return nullptr;
>>> +    return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
>>> TLI);
>>> +  }
>>>
>>> -    if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>>> -      return V;
>>> -    }
>>> +  if (FormatStr[1] == 's') {
>>> +    // fprintf(F, "%s", str) --> fputs(str, F)
>>> +    if (!CI->getArgOperand(2)->getType()->isPointerTy())
>>> +      return nullptr;
>>> +    return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
>>> TLI);
>>> +  }
>>> +  return nullptr;
>>> +}
>>>
>>> -    // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if
>>> no
>>> -    // floating point arguments.
>>> -    if (TLI->has(LibFunc::fiprintf) &&
>>> !callHasFloatingPointArgument(CI)) {
>>> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> -      Constant *FIPrintFFn =
>>> +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B)
>>> {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Require two fixed paramters as pointers and integer result.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() ||
>>> +      !FT->getReturnType()->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  if (Value *V = optimizeFPrintFString(CI, B)) {
>>> +    return V;
>>> +  }
>>> +
>>> +  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
>>> +  // floating point arguments.
>>> +  if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI))
>>> {
>>> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
>>> +    Constant *FIPrintFFn =
>>>          M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
>>> -      CallInst *New = cast<CallInst>(CI->clone());
>>> -      New->setCalledFunction(FIPrintFFn);
>>> -      B.Insert(New);
>>> -      return New;
>>> -    }
>>> -    return nullptr;
>>> +    CallInst *New = cast<CallInst>(CI->clone());
>>> +    New->setCalledFunction(FIPrintFFn);
>>> +    B.Insert(New);
>>> +    return New;
>>>    }
>>> -};
>>> +  return nullptr;
>>> +}
>>>
>>> -struct FWriteOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    ErrorReportingOpt ER(/* StreamArg = */ 3);
>>> -    (void) ER.callOptimizer(Callee, CI, B);
>>> -
>>> -    // Require a pointer, an integer, an integer, a pointer, returning
>>> integer.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> -        !FT->getParamType(1)->isIntegerTy() ||
>>> -        !FT->getParamType(2)->isIntegerTy() ||
>>> -        !FT->getParamType(3)->isPointerTy() ||
>>> -        !FT->getReturnType()->isIntegerTy())
>>> -      return nullptr;
>>> -
>>> -    // Get the element size and count.
>>> -    ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> -    ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> -    if (!SizeC || !CountC) return nullptr;
>>> -    uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
>>> -
>>> -    // If this is writing zero records, remove the call (it's a noop).
>>> -    if (Bytes == 0)
>>> -      return ConstantInt::get(CI->getType(), 0);
>>> -
>>> -    // If this is writing one byte, turn it into fputc.
>>> -    // This optimisation is only valid, if the return value is unused.
>>> -    if (Bytes == 1 && CI->use_empty()) {  // fwrite(S,1,1,F) ->
>>> fputc(S[0],F)
>>> -      Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B),
>>> "char");
>>> -      Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>>> -      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>>> -    }
>>> +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
>>> +  optimizeErrorReporting(CI, B, 3);
>>>
>>> -    return nullptr;
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Require a pointer, an integer, an integer, a pointer, returning
>>> integer.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isIntegerTy() ||
>>> +      !FT->getParamType(2)->isIntegerTy() ||
>>> +      !FT->getParamType(3)->isPointerTy() ||
>>> +      !FT->getReturnType()->isIntegerTy())
>>> +    return nullptr;
>>> +
>>> +  // Get the element size and count.
>>> +  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>>> +  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>>> +  if (!SizeC || !CountC)
>>> +    return nullptr;
>>> +  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
>>> +
>>> +  // If this is writing zero records, remove the call (it's a noop).
>>> +  if (Bytes == 0)
>>> +    return ConstantInt::get(CI->getType(), 0);
>>> +
>>> +  // If this is writing one byte, turn it into fputc.
>>> +  // This optimisation is only valid, if the return value is unused.
>>> +  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) ->
>>> fputc(S[0],F)
>>> +    Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B),
>>> "char");
>>> +    Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>>> +    return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>>>    }
>>> -};
>>>
>>> -struct FPutsOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    ErrorReportingOpt ER(/* StreamArg = */ 1);
>>> -    (void) ER.callOptimizer(Callee, CI, B);
>>> +  return nullptr;
>>> +}
>>>
>>> -    // These optimizations require DataLayout.
>>> -    if (!DL) return nullptr;
>>> +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
>>> +  optimizeErrorReporting(CI, B, 1);
>>>
>>> -    // Require two pointers.  Also, we can't optimize if return value
>>> is used.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy()
>>> ||
>>> -        !FT->getParamType(1)->isPointerTy() ||
>>> -        !CI->use_empty())
>>> -      return nullptr;
>>> -
>>> -    // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>>> -    uint64_t Len = GetStringLength(CI->getArgOperand(0));
>>> -    if (!Len) return nullptr;
>>> -    // Known to have no uses (see above).
>>> -    return EmitFWrite(CI->getArgOperand(0),
>>> -                      ConstantInt::get(DL->getIntPtrType(*Context),
>>> Len-1),
>>> -                      CI->getArgOperand(1), B, DL, TLI);
>>> -  }
>>> -};
>>> -
>>> -struct PutsOpt : public LibCallOptimization {
>>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>>> -                       IRBuilder<> &B) override {
>>> -    // Require one fixed pointer argument and an integer/void result.
>>> -    FunctionType *FT = Callee->getFunctionType();
>>> -    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> -        !(FT->getReturnType()->isIntegerTy() ||
>>> -          FT->getReturnType()->isVoidTy()))
>>> -      return nullptr;
>>> -
>>> -    // Check for a constant string.
>>> -    StringRef Str;
>>> -    if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>>> -      return nullptr;
>>> -
>>> -    if (Str.empty() && CI->use_empty()) {
>>> -      // puts("") -> putchar('\n')
>>> -      Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>>> -      if (CI->use_empty() || !Res) return Res;
>>> -      return B.CreateIntCast(Res, CI->getType(), true);
>>> -    }
>>> +  Function *Callee = CI->getCalledFunction();
>>>
>>> +  // These optimizations require DataLayout.
>>> +  if (!DL)
>>>      return nullptr;
>>> -  }
>>> -};
>>>
>>> -} // End anonymous namespace.
>>> +  // Require two pointers.  Also, we can't optimize if return value is
>>> used.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
>>> +    return nullptr;
>>>
>>> -namespace llvm {
>>> +  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>>> +  uint64_t Len = GetStringLength(CI->getArgOperand(0));
>>> +  if (!Len)
>>> +    return nullptr;
>>>
>>> -class LibCallSimplifierImpl {
>>> -  const DataLayout *DL;
>>> -  const TargetLibraryInfo *TLI;
>>> -  const LibCallSimplifier *LCS;
>>> -  bool UnsafeFPShrink;
>>> -
>>> -  // Math library call optimizations.
>>> -  CosOpt Cos;
>>> -  PowOpt Pow;
>>> -  Exp2Opt Exp2;
>>> -public:
>>> -  LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo
>>> *TLI,
>>> -                        const LibCallSimplifier *LCS,
>>> -                        bool UnsafeFPShrink = false)
>>> -    : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
>>> -    this->DL = DL;
>>> -    this->TLI = TLI;
>>> -    this->LCS = LCS;
>>> -    this->UnsafeFPShrink = UnsafeFPShrink;
>>> -  }
>>> -
>>> -  Value *optimizeCall(CallInst *CI);
>>> -  LibCallOptimization *lookupOptimization(CallInst *CI);
>>> -  bool hasFloatVersion(StringRef FuncName);
>>> -};
>>> +  // Known to have no uses (see above).
>>> +  return EmitFWrite(
>>> +      CI->getArgOperand(0),
>>> +      ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
>>> +      CI->getArgOperand(1), B, DL, TLI);
>>> +}
>>>
>>> -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
>>> +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
>>> +  Function *Callee = CI->getCalledFunction();
>>> +  // Require one fixed pointer argument and an integer/void result.
>>> +  FunctionType *FT = Callee->getFunctionType();
>>> +  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>>> +      !(FT->getReturnType()->isIntegerTy() ||
>>> FT->getReturnType()->isVoidTy()))
>>> +    return nullptr;
>>> +
>>> +  // Check for a constant string.
>>> +  StringRef Str;
>>> +  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>>> +    return nullptr;
>>> +
>>> +  if (Str.empty() && CI->use_empty()) {
>>> +    // puts("") -> putchar('\n')
>>> +    Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>>> +    if (CI->use_empty() || !Res)
>>> +      return Res;
>>> +    return B.CreateIntCast(Res, CI->getType(), true);
>>> +  }
>>> +
>>> +  return nullptr;
>>> +}
>>> +
>>> +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
>>>    LibFunc::Func Func;
>>>    SmallString<20> FloatFuncName = FuncName;
>>>    FloatFuncName += 'f';
>>> @@ -2048,263 +1874,204 @@ bool LibCallSimplifierImpl::hasFloatVers
>>>    return false;
>>>  }
>>>
>>> -// Fortified library call optimizations.
>>> -static MemCpyChkOpt MemCpyChk;
>>> -static MemMoveChkOpt MemMoveChk;
>>> -static MemSetChkOpt MemSetChk;
>>> -static StrCpyChkOpt StrCpyChk;
>>> -static StpCpyChkOpt StpCpyChk;
>>> -static StrNCpyChkOpt StrNCpyChk;
>>> -
>>> -// String library call optimizations.
>>> -static StrCatOpt StrCat;
>>> -static StrNCatOpt StrNCat;
>>> -static StrChrOpt StrChr;
>>> -static StrRChrOpt StrRChr;
>>> -static StrCmpOpt StrCmp;
>>> -static StrNCmpOpt StrNCmp;
>>> -static StrCpyOpt StrCpy;
>>> -static StpCpyOpt StpCpy;
>>> -static StrNCpyOpt StrNCpy;
>>> -static StrLenOpt StrLen;
>>> -static StrPBrkOpt StrPBrk;
>>> -static StrToOpt StrTo;
>>> -static StrSpnOpt StrSpn;
>>> -static StrCSpnOpt StrCSpn;
>>> -static StrStrOpt StrStr;
>>> -
>>> -// Memory library call optimizations.
>>> -static MemCmpOpt MemCmp;
>>> -static MemCpyOpt MemCpy;
>>> -static MemMoveOpt MemMove;
>>> -static MemSetOpt MemSet;
>>> -
>>> -// Math library call optimizations.
>>> -static UnaryDoubleFPOpt UnaryDoubleFP(false);
>>> -static BinaryDoubleFPOpt BinaryDoubleFP(false);
>>> -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>>> -static SinCosPiOpt SinCosPi;
>>> -
>>> -  // Integer library call optimizations.
>>> -static FFSOpt FFS;
>>> -static AbsOpt Abs;
>>> -static IsDigitOpt IsDigit;
>>> -static IsAsciiOpt IsAscii;
>>> -static ToAsciiOpt ToAscii;
>>> -
>>> -// Formatting and IO library call optimizations.
>>> -static ErrorReportingOpt ErrorReporting;
>>> -static ErrorReportingOpt ErrorReporting0(0);
>>> -static ErrorReportingOpt ErrorReporting1(1);
>>> -static PrintFOpt PrintF;
>>> -static SPrintFOpt SPrintF;
>>> -static FPrintFOpt FPrintF;
>>> -static FWriteOpt FWrite;
>>> -static FPutsOpt FPuts;
>>> -static PutsOpt Puts;
>>> +Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>>> +  if (CI->isNoBuiltin())
>>> +    return nullptr;
>>>
>>> -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst
>>> *CI) {
>>>    LibFunc::Func Func;
>>>    Function *Callee = CI->getCalledFunction();
>>>    StringRef FuncName = Callee->getName();
>>> +  IRBuilder<> Builder(CI);
>>> +  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
>>>
>>>    // Next check for intrinsics.
>>>    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
>>> +    if (!isCallingConvC)
>>> +      return nullptr;
>>>      switch (II->getIntrinsicID()) {
>>>      case Intrinsic::pow:
>>> -       return &Pow;
>>> +      return optimizePow(CI, Builder);
>>>      case Intrinsic::exp2:
>>> -       return &Exp2;
>>> +      return optimizeExp2(CI, Builder);
>>>      default:
>>> -       return nullptr;
>>> +      return nullptr;
>>>      }
>>>    }
>>>
>>>    // Then check for known library functions.
>>>    if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
>>> +    // We never change the calling convention.
>>> +    if (!ignoreCallingConv(Func) && !isCallingConvC)
>>> +      return nullptr;
>>>      switch (Func) {
>>> -      case LibFunc::strcat:
>>> -        return &StrCat;
>>> -      case LibFunc::strncat:
>>> -        return &StrNCat;
>>> -      case LibFunc::strchr:
>>> -        return &StrChr;
>>> -      case LibFunc::strrchr:
>>> -        return &StrRChr;
>>> -      case LibFunc::strcmp:
>>> -        return &StrCmp;
>>> -      case LibFunc::strncmp:
>>> -        return &StrNCmp;
>>> -      case LibFunc::strcpy:
>>> -        return &StrCpy;
>>> -      case LibFunc::stpcpy:
>>> -        return &StpCpy;
>>> -      case LibFunc::strncpy:
>>> -        return &StrNCpy;
>>> -      case LibFunc::strlen:
>>> -        return &StrLen;
>>> -      case LibFunc::strpbrk:
>>> -        return &StrPBrk;
>>> -      case LibFunc::strtol:
>>> -      case LibFunc::strtod:
>>> -      case LibFunc::strtof:
>>> -      case LibFunc::strtoul:
>>> -      case LibFunc::strtoll:
>>> -      case LibFunc::strtold:
>>> -      case LibFunc::strtoull:
>>> -        return &StrTo;
>>> -      case LibFunc::strspn:
>>> -        return &StrSpn;
>>> -      case LibFunc::strcspn:
>>> -        return &StrCSpn;
>>> -      case LibFunc::strstr:
>>> -        return &StrStr;
>>> -      case LibFunc::memcmp:
>>> -        return &MemCmp;
>>> -      case LibFunc::memcpy:
>>> -        return &MemCpy;
>>> -      case LibFunc::memmove:
>>> -        return &MemMove;
>>> -      case LibFunc::memset:
>>> -        return &MemSet;
>>> -      case LibFunc::cosf:
>>> -      case LibFunc::cos:
>>> -      case LibFunc::cosl:
>>> -        return &Cos;
>>> -      case LibFunc::sinpif:
>>> -      case LibFunc::sinpi:
>>> -      case LibFunc::cospif:
>>> -      case LibFunc::cospi:
>>> -        return &SinCosPi;
>>> -      case LibFunc::powf:
>>> -      case LibFunc::pow:
>>> -      case LibFunc::powl:
>>> -        return &Pow;
>>> -      case LibFunc::exp2l:
>>> -      case LibFunc::exp2:
>>> -      case LibFunc::exp2f:
>>> -        return &Exp2;
>>> -      case LibFunc::ffs:
>>> -      case LibFunc::ffsl:
>>> -      case LibFunc::ffsll:
>>> -        return &FFS;
>>> -      case LibFunc::abs:
>>> -      case LibFunc::labs:
>>> -      case LibFunc::llabs:
>>> -        return &Abs;
>>> -      case LibFunc::isdigit:
>>> -        return &IsDigit;
>>> -      case LibFunc::isascii:
>>> -        return &IsAscii;
>>> -      case LibFunc::toascii:
>>> -        return &ToAscii;
>>> -      case LibFunc::printf:
>>> -        return &PrintF;
>>> -      case LibFunc::sprintf:
>>> -        return &SPrintF;
>>> -      case LibFunc::fprintf:
>>> -        return &FPrintF;
>>> -      case LibFunc::fwrite:
>>> -        return &FWrite;
>>> -      case LibFunc::fputs:
>>> -        return &FPuts;
>>> -      case LibFunc::puts:
>>> -        return &Puts;
>>> -      case LibFunc::perror:
>>> -        return &ErrorReporting;
>>> -      case LibFunc::vfprintf:
>>> -      case LibFunc::fiprintf:
>>> -        return &ErrorReporting0;
>>> -      case LibFunc::fputc:
>>> -        return &ErrorReporting1;
>>> -      case LibFunc::ceil:
>>> -      case LibFunc::fabs:
>>> -      case LibFunc::floor:
>>> -      case LibFunc::rint:
>>> -      case LibFunc::round:
>>> -      case LibFunc::nearbyint:
>>> -      case LibFunc::trunc:
>>> -        if (hasFloatVersion(FuncName))
>>> -          return &UnaryDoubleFP;
>>> -        return nullptr;
>>> -      case LibFunc::acos:
>>> -      case LibFunc::acosh:
>>> -      case LibFunc::asin:
>>> -      case LibFunc::asinh:
>>> -      case LibFunc::atan:
>>> -      case LibFunc::atanh:
>>> -      case LibFunc::cbrt:
>>> -      case LibFunc::cosh:
>>> -      case LibFunc::exp:
>>> -      case LibFunc::exp10:
>>> -      case LibFunc::expm1:
>>> -      case LibFunc::log:
>>> -      case LibFunc::log10:
>>> -      case LibFunc::log1p:
>>> -      case LibFunc::log2:
>>> -      case LibFunc::logb:
>>> -      case LibFunc::sin:
>>> -      case LibFunc::sinh:
>>> -      case LibFunc::sqrt:
>>> -      case LibFunc::tan:
>>> -      case LibFunc::tanh:
>>> -        if (UnsafeFPShrink && hasFloatVersion(FuncName))
>>> -         return &UnsafeUnaryDoubleFP;
>>> -        return nullptr;
>>> -      case LibFunc::fmin:
>>> -      case LibFunc::fmax:
>>> -        if (hasFloatVersion(FuncName))
>>> -          return &BinaryDoubleFP;
>>> -        return nullptr;
>>> -      case LibFunc::memcpy_chk:
>>> -        return &MemCpyChk;
>>> -      default:
>>> -        return nullptr;
>>> -      }
>>> +    case LibFunc::strcat:
>>> +      return optimizeStrCat(CI, Builder);
>>> +    case LibFunc::strncat:
>>> +      return optimizeStrNCat(CI, Builder);
>>> +    case LibFunc::strchr:
>>> +      return optimizeStrChr(CI, Builder);
>>> +    case LibFunc::strrchr:
>>> +      return optimizeStrRChr(CI, Builder);
>>> +    case LibFunc::strcmp:
>>> +      return optimizeStrCmp(CI, Builder);
>>> +    case LibFunc::strncmp:
>>> +      return optimizeStrNCmp(CI, Builder);
>>> +    case LibFunc::strcpy:
>>> +      return optimizeStrCpy(CI, Builder);
>>> +    case LibFunc::stpcpy:
>>> +      return optimizeStpCpy(CI, Builder);
>>> +    case LibFunc::strncpy:
>>> +      return optimizeStrNCpy(CI, Builder);
>>> +    case LibFunc::strlen:
>>> +      return optimizeStrLen(CI, Builder);
>>> +    case LibFunc::strpbrk:
>>> +      return optimizeStrPBrk(CI, Builder);
>>> +    case LibFunc::strtol:
>>> +    case LibFunc::strtod:
>>> +    case LibFunc::strtof:
>>> +    case LibFunc::strtoul:
>>> +    case LibFunc::strtoll:
>>> +    case LibFunc::strtold:
>>> +    case LibFunc::strtoull:
>>> +      return optimizeStrTo(CI, Builder);
>>> +    case LibFunc::strspn:
>>> +      return optimizeStrSpn(CI, Builder);
>>> +    case LibFunc::strcspn:
>>> +      return optimizeStrCSpn(CI, Builder);
>>> +    case LibFunc::strstr:
>>> +      return optimizeStrStr(CI, Builder);
>>> +    case LibFunc::memcmp:
>>> +      return optimizeMemCmp(CI, Builder);
>>> +    case LibFunc::memcpy:
>>> +      return optimizeMemCpy(CI, Builder);
>>> +    case LibFunc::memmove:
>>> +      return optimizeMemMove(CI, Builder);
>>> +    case LibFunc::memset:
>>> +      return optimizeMemSet(CI, Builder);
>>> +    case LibFunc::cosf:
>>> +    case LibFunc::cos:
>>> +    case LibFunc::cosl:
>>> +      return optimizeCos(CI, Builder);
>>> +    case LibFunc::sinpif:
>>> +    case LibFunc::sinpi:
>>> +    case LibFunc::cospif:
>>> +    case LibFunc::cospi:
>>> +      return optimizeSinCosPi(CI, Builder);
>>> +    case LibFunc::powf:
>>> +    case LibFunc::pow:
>>> +    case LibFunc::powl:
>>> +      return optimizePow(CI, Builder);
>>> +    case LibFunc::exp2l:
>>> +    case LibFunc::exp2:
>>> +    case LibFunc::exp2f:
>>> +      return optimizeExp2(CI, Builder);
>>> +    case LibFunc::ffs:
>>> +    case LibFunc::ffsl:
>>> +    case LibFunc::ffsll:
>>> +      return optimizeFFS(CI, Builder);
>>> +    case LibFunc::abs:
>>> +    case LibFunc::labs:
>>> +    case LibFunc::llabs:
>>> +      return optimizeAbs(CI, Builder);
>>> +    case LibFunc::isdigit:
>>> +      return optimizeIsDigit(CI, Builder);
>>> +    case LibFunc::isascii:
>>> +      return optimizeIsAscii(CI, Builder);
>>> +    case LibFunc::toascii:
>>> +      return optimizeToAscii(CI, Builder);
>>> +    case LibFunc::printf:
>>> +      return optimizePrintF(CI, Builder);
>>> +    case LibFunc::sprintf:
>>> +      return optimizeSPrintF(CI, Builder);
>>> +    case LibFunc::fprintf:
>>> +      return optimizeFPrintF(CI, Builder);
>>> +    case LibFunc::fwrite:
>>> +      return optimizeFWrite(CI, Builder);
>>> +    case LibFunc::fputs:
>>> +      return optimizeFPuts(CI, Builder);
>>> +    case LibFunc::puts:
>>> +      return optimizePuts(CI, Builder);
>>> +    case LibFunc::perror:
>>> +      return optimizeErrorReporting(CI, Builder);
>>> +    case LibFunc::vfprintf:
>>> +    case LibFunc::fiprintf:
>>> +      return optimizeErrorReporting(CI, Builder, 0);
>>> +    case LibFunc::fputc:
>>> +      return optimizeErrorReporting(CI, Builder, 1);
>>> +    case LibFunc::ceil:
>>> +    case LibFunc::fabs:
>>> +    case LibFunc::floor:
>>> +    case LibFunc::rint:
>>> +    case LibFunc::round:
>>> +    case LibFunc::nearbyint:
>>> +    case LibFunc::trunc:
>>> +      if (hasFloatVersion(FuncName))
>>> +        return optimizeUnaryDoubleFP(CI, Builder, false);
>>> +      return nullptr;
>>> +    case LibFunc::acos:
>>> +    case LibFunc::acosh:
>>> +    case LibFunc::asin:
>>> +    case LibFunc::asinh:
>>> +    case LibFunc::atan:
>>> +    case LibFunc::atanh:
>>> +    case LibFunc::cbrt:
>>> +    case LibFunc::cosh:
>>> +    case LibFunc::exp:
>>> +    case LibFunc::exp10:
>>> +    case LibFunc::expm1:
>>> +    case LibFunc::log:
>>> +    case LibFunc::log10:
>>> +    case LibFunc::log1p:
>>> +    case LibFunc::log2:
>>> +    case LibFunc::logb:
>>> +    case LibFunc::sin:
>>> +    case LibFunc::sinh:
>>> +    case LibFunc::sqrt:
>>> +    case LibFunc::tan:
>>> +    case LibFunc::tanh:
>>> +      if (UnsafeFPShrink && hasFloatVersion(FuncName))
>>> +        return optimizeUnaryDoubleFP(CI, Builder, true);
>>> +      return nullptr;
>>> +    case LibFunc::fmin:
>>> +    case LibFunc::fmax:
>>> +      if (hasFloatVersion(FuncName))
>>> +        return optimizeBinaryDoubleFP(CI, Builder);
>>> +      return nullptr;
>>> +    case LibFunc::memcpy_chk:
>>> +      return optimizeMemCpyChk(CI, Builder);
>>> +    default:
>>> +      return nullptr;
>>> +    }
>>>    }
>>>
>>> +  if (!isCallingConvC)
>>> +    return nullptr;
>>> +
>>>    // Finally check for fortified library calls.
>>>    if (FuncName.endswith("_chk")) {
>>>      if (FuncName == "__memmove_chk")
>>> -      return &MemMoveChk;
>>> +      return optimizeMemMoveChk(CI, Builder);
>>>      else if (FuncName == "__memset_chk")
>>> -      return &MemSetChk;
>>> +      return optimizeMemSetChk(CI, Builder);
>>>      else if (FuncName == "__strcpy_chk")
>>> -      return &StrCpyChk;
>>> +      return optimizeStrCpyChk(CI, Builder);
>>>      else if (FuncName == "__stpcpy_chk")
>>> -      return &StpCpyChk;
>>> +      return optimizeStpCpyChk(CI, Builder);
>>>      else if (FuncName == "__strncpy_chk")
>>> -      return &StrNCpyChk;
>>> +      return optimizeStrNCpyChk(CI, Builder);
>>>      else if (FuncName == "__stpncpy_chk")
>>> -      return &StrNCpyChk;
>>> +      return optimizeStrNCpyChk(CI, Builder);
>>>    }
>>>
>>>    return nullptr;
>>> -
>>> -}
>>> -
>>> -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
>>> -  LibCallOptimization *LCO = lookupOptimization(CI);
>>> -  if (LCO) {
>>> -    IRBuilder<> Builder(CI);
>>> -    return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
>>> -  }
>>> -  return nullptr;
>>>  }
>>>
>>>  LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
>>>                                       const TargetLibraryInfo *TLI,
>>> -                                     bool UnsafeFPShrink) {
>>> -  Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
>>> -}
>>> -
>>> -LibCallSimplifier::~LibCallSimplifier() {
>>> -  delete Impl;
>>> -}
>>> -
>>> -Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>>> -  if (CI->isNoBuiltin()) return nullptr;
>>> -  return Impl->optimizeCall(CI);
>>> +                                     bool UnsafeFPShrink) :
>>> +                                     DL(DL),
>>> +                                     TLI(TLI),
>>> +                                     UnsafeFPShrink(UnsafeFPShrink) {
>>>  }
>>>
>>>  void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With)
>>> const {
>>> @@ -2312,8 +2079,6 @@ void LibCallSimplifier::replaceAllUsesWi
>>>    I->eraseFromParent();
>>>  }
>>>
>>> -}
>>> -
>>>  // TODO:
>>>  //   Additional cases that we need to add to this file:
>>>  //
>>>
>>>
>>> _______________________________________________
>>> llvm-commits mailing list
>>> llvm-commits at cs.uiuc.edu
>>> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>>>
>>
>>
>>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20140917/c97688c3/attachment.html>


More information about the llvm-commits mailing list