[llvm] r217982 - Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
Chris Bieneman
beanz at apple.com
Wed Sep 17 15:30:18 PDT 2014
Agreed. Yours is the better solution. If you’d like I can make the change.
-Chris
> On Sep 17, 2014, at 3:28 PM, David Blaikie <dblaikie at gmail.com> wrote:
>
>
>
> On Wed, Sep 17, 2014 at 3:27 PM, Chris Bieneman <beanz at apple.com <mailto:beanz at apple.com>> wrote:
> I put in a change in r217988 that should have resolved it. I think your change will fail to build because now there are two destructors declared.
>
> Yep - sorry, I seem to be a bit slow off the mark.
>
> Reverted my fix in r217989.
>
> Though it might be worth considering my fix over yours as it doesn't look like objects of this type are polymorphically owned - so no virtual dtor is necessary.
>
> - David
>
>
> -Chris
>
>> On Sep 17, 2014, at 3:25 PM, David Blaikie <dblaikie at gmail.com <mailto:dblaikie at gmail.com>> wrote:
>>
>> This introduced a -Wnon-virtual-dtor warning which I've fixed in r217988. Let me know if that's not the right fix, etc.
>>
>> - David
>>
>> On Wed, Sep 17, 2014 at 1:55 PM, Chris Bieneman <beanz at apple.com <mailto:beanz at apple.com>> wrote:
>> Author: cbieneman
>> Date: Wed Sep 17 15:55:46 2014
>> New Revision: 217982
>>
>> URL: http://llvm.org/viewvc/llvm-project?rev=217982&view=rev <http://llvm.org/viewvc/llvm-project?rev=217982&view=rev>
>> Log:
>> Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
>>
>> Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.
>>
>> Reviewers: chandlerc, resistor
>>
>> Reviewed By: resistor
>>
>> Subscribers: morisset, resistor, llvm-commits
>>
>> Differential Revision: http://reviews.llvm.org/D5364 <http://reviews.llvm.org/D5364>
>>
>> Modified:
>> llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>> llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>> llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>>
>> Modified: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff>
>> ==============================================================================
>> --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h (original)
>> +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h Wed Sep 17 15:55:46 2014
>> @@ -15,40 +15,114 @@
>> #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>> #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>>
>> +#include "llvm/ADT/StringRef.h"
>> +#include "llvm/IR/IRBuilder.h"
>> +
>> namespace llvm {
>> - class Value;
>> - class CallInst;
>> - class DataLayout;
>> - class Instruction;
>> - class TargetLibraryInfo;
>> - class LibCallSimplifierImpl;
>> -
>> - /// LibCallSimplifier - This class implements a collection of optimizations
>> - /// that replace well formed calls to library functions with a more optimal
>> - /// form. For example, replacing 'printf("Hello!")' with 'puts("Hello!")'.
>> - class LibCallSimplifier {
>> - /// Impl - A pointer to the actual implementation of the library call
>> - /// simplifier.
>> - LibCallSimplifierImpl *Impl;
>> -
>> - public:
>> - LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
>> - bool UnsafeFPShrink);
>> - virtual ~LibCallSimplifier();
>> -
>> - /// optimizeCall - Take the given call instruction and return a more
>> - /// optimal value to replace the instruction with or 0 if a more
>> - /// optimal form can't be found. Note that the returned value may
>> - /// be equal to the instruction being optimized. In this case all
>> - /// other instructions that use the given instruction were modified
>> - /// and the given instruction is dead.
>> - Value *optimizeCall(CallInst *CI);
>> -
>> - /// replaceAllUsesWith - This method is used when the library call
>> - /// simplifier needs to replace instructions other than the library
>> - /// call being modified.
>> - virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>> - };
>> +class Value;
>> +class CallInst;
>> +class DataLayout;
>> +class Instruction;
>> +class TargetLibraryInfo;
>> +class BasicBlock;
>> +class Function;
>> +
>> +/// LibCallSimplifier - This class implements a collection of optimizations
>> +/// that replace well formed calls to library functions with a more optimal
>> +/// form. For example, replacing 'printf("Hello!")' with 'puts("Hello!")'.
>> +class LibCallSimplifier {
>> +private:
>> + const DataLayout *DL;
>> + const TargetLibraryInfo *TLI;
>> + bool UnsafeFPShrink;
>> +
>> +public:
>> + LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
>> + bool UnsafeFPShrink);
>> +
>> + /// optimizeCall - Take the given call instruction and return a more
>> + /// optimal value to replace the instruction with or 0 if a more
>> + /// optimal form can't be found. Note that the returned value may
>> + /// be equal to the instruction being optimized. In this case all
>> + /// other instructions that use the given instruction were modified
>> + /// and the given instruction is dead.
>> + Value *optimizeCall(CallInst *CI);
>> +
>> + /// replaceAllUsesWith - This method is used when the library call
>> + /// simplifier needs to replace instructions other than the library
>> + /// call being modified.
>> + virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>> +
>> +private:
>> + // Fortified Library Call Optimizations
>> + Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B);
>> +
>> + // String and Memory Library Call Optimizations
>> + Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
>> +
>> + // Math Library Optimizations
>> + Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType);
>> + Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizePow(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
>> +
>> + // Integer Library Call Optimizations
>> + Value *optimizeFFS(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeAbs(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B);
>> +
>> + // Formatting and IO Library Call Optimizations
>> + Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
>> + int StreamArg = -1);
>> + Value *optimizePrintF(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizePuts(CallInst *CI, IRBuilder<> &B);
>> +
>> + // Helper methods
>> + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B);
>> + void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>> + SmallVectorImpl<CallInst *> &SinCalls,
>> + SmallVectorImpl<CallInst *> &CosCalls,
>> + SmallVectorImpl<CallInst *> &SinCosCalls);
>> + void replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, Value *Res);
>> + Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B);
>> + Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B);
>> +
>> + /// hasFloatVersion - Checks if there is a float version of the specified
>> + /// function by checking for an existing function with name FuncName + f
>> + bool hasFloatVersion(StringRef FuncName);
>> +};
>> } // End llvm namespace
>>
>> #endif
>>
>> Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff>
>> ==============================================================================
>> --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp (original)
>> +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Wed Sep 17 15:55:46 2014
>> @@ -70,10 +70,11 @@ STATISTIC(NumExpand, "Number of expan
>> STATISTIC(NumFactor , "Number of factorizations");
>> STATISTIC(NumReassoc , "Number of reassociations");
>>
>> -static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
>> - cl::init(false),
>> - cl::desc("Enable unsafe double to float "
>> - "shrinking for math lib calls"));
>> +static cl::opt<bool>
>> + EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
>> + cl::init(false),
>> + cl::desc("Enable unsafe double to float "
>> + "shrinking for math lib calls"));
>>
>> // Initialization Routines
>> void llvm::initializeInstCombine(PassRegistry &Registry) {
>> @@ -2913,7 +2914,7 @@ public:
>> InstCombinerLibCallSimplifier(const DataLayout *DL,
>> const TargetLibraryInfo *TLI,
>> InstCombiner *IC)
>> - : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
>> + : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) {
>> this->IC = IC;
>> }
>>
>>
>> Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff>
>> ==============================================================================
>> --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
>> +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Sep 17 15:55:46 2014
>> @@ -35,57 +35,26 @@
>> using namespace llvm;
>>
>> static cl::opt<bool>
>> -ColdErrorCalls("error-reporting-is-cold", cl::init(true),
>> - cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
>> -
>> -/// This class is the abstract base class for the set of optimizations that
>> -/// corresponds to one library call.
>> -namespace {
>> -class LibCallOptimization {
>> -protected:
>> - Function *Caller;
>> - const DataLayout *DL;
>> - const TargetLibraryInfo *TLI;
>> - const LibCallSimplifier *LCS;
>> - LLVMContext* Context;
>> -public:
>> - LibCallOptimization() { }
>> - virtual ~LibCallOptimization() {}
>> -
>> - /// callOptimizer - This pure virtual method is implemented by base classes to
>> - /// do various optimizations. If this returns null then no transformation was
>> - /// performed. If it returns CI, then it transformed the call and CI is to be
>> - /// deleted. If it returns something else, replace CI with the new value and
>> - /// delete CI.
>> - virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
>> - =0;
>> -
>> - /// ignoreCallingConv - Returns false if this transformation could possibly
>> - /// change the calling convention.
>> - virtual bool ignoreCallingConv() { return false; }
>> -
>> - Value *optimizeCall(CallInst *CI, const DataLayout *DL,
>> - const TargetLibraryInfo *TLI,
>> - const LibCallSimplifier *LCS, IRBuilder<> &B) {
>> - Caller = CI->getParent()->getParent();
>> - this->DL = DL;
>> - this->TLI = TLI;
>> - this->LCS = LCS;
>> - if (CI->getCalledFunction())
>> - Context = &CI->getCalledFunction()->getContext();
>> -
>> - // We never change the calling convention.
>> - if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
>> - return nullptr;
>> -
>> - return callOptimizer(CI->getCalledFunction(), CI, B);
>> - }
>> -};
>> + ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
>> + cl::desc("Treat error-reporting calls as cold"));
>>
>> //===----------------------------------------------------------------------===//
>> // Helper Functions
>> //===----------------------------------------------------------------------===//
>>
>> +static bool ignoreCallingConv(LibFunc::Func Func) {
>> + switch (Func) {
>> + case LibFunc::abs:
>> + case LibFunc::labs:
>> + case LibFunc::llabs:
>> + case LibFunc::strlen:
>> + return true;
>> + default:
>> + return false;
>> + }
>> + llvm_unreachable();
>> +}
>> +
>> /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
>> /// value is equal or not-equal to zero.
>> static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
>> @@ -142,967 +111,912 @@ static bool hasUnaryFloatFn(const Target
>> // Fortified Library Call Optimizations
>> //===----------------------------------------------------------------------===//
>>
>> -struct FortifiedLibCallOptimization : public LibCallOptimization {
>> -protected:
>> - virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>> - bool isString) const = 0;
>> -};
>> -
>> -struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
>> - CallInst *CI;
>> -
>> - bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>> - bool isString) const override {
>> - if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>> +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp, unsigned SizeArgOp,
>> + bool isString) {
>> + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>> + return true;
>> + if (ConstantInt *SizeCI =
>> + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>> + if (SizeCI->isAllOnesValue())
>> return true;
>> - if (ConstantInt *SizeCI =
>> - dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>> - if (SizeCI->isAllOnesValue())
>> - return true;
>> - if (isString) {
>> - uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>> - // If the length is 0 we don't know how long it is and so we can't
>> - // remove the check.
>> - if (Len == 0) return false;
>> - return SizeCI->getZExtValue() >= Len;
>> - }
>> - if (ConstantInt *Arg = dyn_cast<ConstantInt>(
>> - CI->getArgOperand(SizeArgOp)))
>> - return SizeCI->getZExtValue() >= Arg->getZExtValue();
>> + if (isString) {
>> + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>> + // If the length is 0 we don't know how long it is and so we can't
>> + // remove the check.
>> + if (Len == 0)
>> + return false;
>> + return SizeCI->getZExtValue() >= Len;
>> }
>> - return false;
>> + if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp)))
>> + return SizeCI->getZExtValue() >= Arg->getZExtValue();
>> }
>> -};
>> + return false;
>> +}
>>
>> -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - this->CI = CI;
>> - FunctionType *FT = Callee->getFunctionType();
>> - LLVMContext &Context = CI->getParent()->getContext();
>> -
>> - // Check if this has the right signature.
>> - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>> - return nullptr;
>> -
>> - if (isFoldable(3, 2, false)) {
>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> - CI->getArgOperand(2), 1);
>> - return CI->getArgOperand(0);
>> - }
>> - return nullptr;
>> - }
>> -};
>> +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + LLVMContext &Context = CI->getContext();
>>
>> -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - this->CI = CI;
>> - FunctionType *FT = Callee->getFunctionType();
>> - LLVMContext &Context = CI->getParent()->getContext();
>> -
>> - // Check if this has the right signature.
>> - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>> - return nullptr;
>> -
>> - if (isFoldable(3, 2, false)) {
>> - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> - CI->getArgOperand(2), 1);
>> - return CI->getArgOperand(0);
>> - }
>> + // Check if this has the right signature.
>> + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>> return nullptr;
>> - }
>> -};
>>
>> -struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - this->CI = CI;
>> - FunctionType *FT = Callee->getFunctionType();
>> - LLVMContext &Context = CI->getParent()->getContext();
>> -
>> - // Check if this has the right signature.
>> - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isIntegerTy() ||
>> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>> - return nullptr;
>> -
>> - if (isFoldable(3, 2, false)) {
>> - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>> - false);
>> - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> - return CI->getArgOperand(0);
>> - }
>> - return nullptr;
>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> + CI->getArgOperand(2), 1);
>> + return CI->getArgOperand(0);
>> }
>> -};
>> + return nullptr;
>> +}
>>
>> -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - this->CI = CI;
>> - StringRef Name = Callee->getName();
>> - FunctionType *FT = Callee->getFunctionType();
>> - LLVMContext &Context = CI->getParent()->getContext();
>> -
>> - // Check if this has the right signature.
>> - if (FT->getNumParams() != 3 ||
>> - FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> - FT->getParamType(2) != DL->getIntPtrType(Context))
>> - return nullptr;
>> -
>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> - if (Dst == Src) // __strcpy_chk(x,x) -> x
>> - return Src;
>> -
>> - // If a) we don't have any length information, or b) we know this will
>> - // fit then just lower to a plain strcpy. Otherwise we'll keep our
>> - // strcpy_chk call which may fail at runtime if the size is too long.
>> - // TODO: It might be nice to get a maximum length out of the possible
>> - // string lengths for varying.
>> - if (isFoldable(2, 1, true)) {
>> - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> - return Ret;
>> - } else {
>> - // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>> - uint64_t Len = GetStringLength(Src);
>> - if (Len == 0) return nullptr;
>> -
>> - // This optimization require DataLayout.
>> - if (!DL) return nullptr;
>> -
>> - Value *Ret =
>> - EmitMemCpyChk(Dst, Src,
>> - ConstantInt::get(DL->getIntPtrType(Context), Len),
>> - CI->getArgOperand(2), B, DL, TLI);
>> - return Ret;
>> - }
>> +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + LLVMContext &Context = CI->getContext();
>> +
>> + // Check if this has the right signature.
>> + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>> return nullptr;
>> +
>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> + CI->getArgOperand(2), 1);
>> + return CI->getArgOperand(0);
>> }
>> -};
>> + return nullptr;
>> +}
>>
>> -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - this->CI = CI;
>> - StringRef Name = Callee->getName();
>> - FunctionType *FT = Callee->getFunctionType();
>> - LLVMContext &Context = CI->getParent()->getContext();
>> -
>> - // Check if this has the right signature.
>> - if (FT->getNumParams() != 3 ||
>> - FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> - return nullptr;
>> -
>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>> - Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> - }
>> +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + LLVMContext &Context = CI->getContext();
>>
>> - // If a) we don't have any length information, or b) we know this will
>> - // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>> - // stpcpy_chk call which may fail at runtime if the size is too long.
>> - // TODO: It might be nice to get a maximum length out of the possible
>> - // string lengths for varying.
>> - if (isFoldable(2, 1, true)) {
>> - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> - return Ret;
>> - } else {
>> - // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>> - uint64_t Len = GetStringLength(Src);
>> - if (Len == 0) return nullptr;
>> -
>> - // This optimization require DataLayout.
>> - if (!DL) return nullptr;
>> -
>> - Type *PT = FT->getParamType(0);
>> - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> - Value *DstEnd = B.CreateGEP(Dst,
>> - ConstantInt::get(DL->getIntPtrType(PT),
>> - Len - 1));
>> - if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
>> - return nullptr;
>> - return DstEnd;
>> - }
>> + // Check if this has the right signature.
>> + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isIntegerTy() ||
>> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>> return nullptr;
>> - }
>> -};
>>
>> -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - this->CI = CI;
>> - StringRef Name = Callee->getName();
>> - FunctionType *FT = Callee->getFunctionType();
>> - LLVMContext &Context = CI->getParent()->getContext();
>> -
>> - // Check if this has the right signature.
>> - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> - !FT->getParamType(2)->isIntegerTy() ||
>> - FT->getParamType(3) != DL->getIntPtrType(Context))
>> - return nullptr;
>> -
>> - if (isFoldable(3, 2, false)) {
>> - Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> - CI->getArgOperand(2), B, DL, TLI,
>> - Name.substr(2, 7));
>> - return Ret;
>> - }
>> - return nullptr;
>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
>> + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> + return CI->getArgOperand(0);
>> }
>> -};
>> -
>> -//===----------------------------------------------------------------------===//
>> -// String and Memory Library Call Optimizations
>> -//===----------------------------------------------------------------------===//
>> -
>> -struct StrCatOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strcat" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getReturnType() != B.getInt8PtrTy() ||
>> - FT->getParamType(0) != FT->getReturnType() ||
>> - FT->getParamType(1) != FT->getReturnType())
>> - return nullptr;
>> -
>> - // Extract some information from the instruction
>> - Value *Dst = CI->getArgOperand(0);
>> - Value *Src = CI->getArgOperand(1);
>> + return nullptr;
>> +}
>>
>> - // See if we can get the length of the input string.
>> +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + StringRef Name = Callee->getName();
>> + FunctionType *FT = Callee->getFunctionType();
>> + LLVMContext &Context = CI->getContext();
>> +
>> + // Check if this has the right signature.
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> + FT->getParamType(2) != DL->getIntPtrType(Context))
>> + return nullptr;
>> +
>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> + if (Dst == Src) // __strcpy_chk(x,x) -> x
>> + return Src;
>> +
>> + // If a) we don't have any length information, or b) we know this will
>> + // fit then just lower to a plain strcpy. Otherwise we'll keep our
>> + // strcpy_chk call which may fail at runtime if the size is too long.
>> + // TODO: It might be nice to get a maximum length out of the possible
>> + // string lengths for varying.
>> + if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>> + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> + return Ret;
>> + } else {
>> + // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>> uint64_t Len = GetStringLength(Src);
>> - if (Len == 0) return nullptr;
>> - --Len; // Unbias length.
>> -
>> - // Handle the simple, do-nothing case: strcat(x, "") -> x
>> if (Len == 0)
>> - return Dst;
>> + return nullptr;
>>
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + // This optimization require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - return emitStrLenMemCpy(Src, Dst, Len, B);
>> + Value *Ret = EmitMemCpyChk(
>> + Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len),
>> + CI->getArgOperand(2), B, DL, TLI);
>> + return Ret;
>> }
>> + return nullptr;
>> +}
>>
>> - Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>> - IRBuilder<> &B) {
>> - // We need to find the end of the destination string. That's where the
>> - // memory is to be moved to. We just generate a call to strlen.
>> - Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>> - if (!DstLen)
>> +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + StringRef Name = Callee->getName();
>> + FunctionType *FT = Callee->getFunctionType();
>> + LLVMContext &Context = CI->getContext();
>> +
>> + // Check if this has the right signature.
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> + return nullptr;
>> +
>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>> + Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> + }
>> +
>> + // If a) we don't have any length information, or b) we know this will
>> + // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>> + // stpcpy_chk call which may fail at runtime if the size is too long.
>> + // TODO: It might be nice to get a maximum length out of the possible
>> + // string lengths for varying.
>> + if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>> + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> + return Ret;
>> + } else {
>> + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>> + uint64_t Len = GetStringLength(Src);
>> + if (Len == 0)
>> return nullptr;
>>
>> - // Now that we have the destination's length, we must index into the
>> - // destination's pointer to get the actual memcpy destination (end of
>> - // the string .. we're concatenating).
>> - Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>> + // This optimization require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - // We have enough information to now generate the memcpy call to do the
>> - // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
>> - B.CreateMemCpy(CpyDst, Src,
>> - ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
>> - return Dst;
>> + Type *PT = FT->getParamType(0);
>> + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> + Value *DstEnd =
>> + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
>> + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
>> + return nullptr;
>> + return DstEnd;
>> }
>> -};
>> + return nullptr;
>> +}
>>
>> -struct StrNCatOpt : public StrCatOpt {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strncat" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 ||
>> - FT->getReturnType() != B.getInt8PtrTy() ||
>> - FT->getParamType(0) != FT->getReturnType() ||
>> - FT->getParamType(1) != FT->getReturnType() ||
>> - !FT->getParamType(2)->isIntegerTy())
>> - return nullptr;
>> -
>> - // Extract some information from the instruction
>> - Value *Dst = CI->getArgOperand(0);
>> - Value *Src = CI->getArgOperand(1);
>> - uint64_t Len;
>> -
>> - // We don't do anything if length is not constant
>> - if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> - Len = LengthArg->getZExtValue();
>> - else
>> - return nullptr;
>> -
>> - // See if we can get the length of the input string.
>> - uint64_t SrcLen = GetStringLength(Src);
>> - if (SrcLen == 0) return nullptr;
>> - --SrcLen; // Unbias length.
>> -
>> - // Handle the simple, do-nothing cases:
>> - // strncat(x, "", c) -> x
>> - // strncat(x, c, 0) -> x
>> - if (SrcLen == 0 || Len == 0) return Dst;
>> +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + StringRef Name = Callee->getName();
>> + FunctionType *FT = Callee->getFunctionType();
>> + LLVMContext &Context = CI->getContext();
>> +
>> + // Check if this has the right signature.
>> + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> + !FT->getParamType(2)->isIntegerTy() ||
>> + FT->getParamType(3) != DL->getIntPtrType(Context))
>> + return nullptr;
>> +
>> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> + Value *Ret =
>> + EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> + CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
>> + return Ret;
>> + }
>> + return nullptr;
>> +}
>>
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> +//===----------------------------------------------------------------------===//
>> +// String and Memory Library Call Optimizations
>> +//===----------------------------------------------------------------------===//
>>
>> - // We don't optimize this case
>> - if (Len < SrcLen) return nullptr;
>> +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strcat" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2||
>> + FT->getReturnType() != B.getInt8PtrTy() ||
>> + FT->getParamType(0) != FT->getReturnType() ||
>> + FT->getParamType(1) != FT->getReturnType())
>> + return nullptr;
>> +
>> + // Extract some information from the instruction
>> + Value *Dst = CI->getArgOperand(0);
>> + Value *Src = CI->getArgOperand(1);
>> +
>> + // See if we can get the length of the input string.
>> + uint64_t Len = GetStringLength(Src);
>> + if (Len == 0)
>> + return nullptr;
>> + --Len; // Unbias length.
>>
>> - // strncat(x, s, c) -> strcat(x, s)
>> - // s is constant so the strcat can be optimized further
>> - return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>> - }
>> -};
>> -
>> -struct StrChrOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strchr" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getReturnType() != B.getInt8PtrTy() ||
>> - FT->getParamType(0) != FT->getReturnType() ||
>> - !FT->getParamType(1)->isIntegerTy(32))
>> - return nullptr;
>> -
>> - Value *SrcStr = CI->getArgOperand(0);
>> -
>> - // If the second operand is non-constant, see if we can compute the length
>> - // of the input string and turn this into memchr.
>> - ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> - if (!CharC) {
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + // Handle the simple, do-nothing case: strcat(x, "") -> x
>> + if (Len == 0)
>> + return Dst;
>>
>> - uint64_t Len = GetStringLength(SrcStr);
>> - if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
>> - return nullptr;
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
>> - ConstantInt::get(DL->getIntPtrType(*Context), Len),
>> - B, DL, TLI);
>> - }
>> + return emitStrLenMemCpy(Src, Dst, Len, B);
>> +}
>>
>> - // Otherwise, the character is a constant, see if the first argument is
>> - // a string literal. If so, we can constant fold.
>> - StringRef Str;
>> - if (!getConstantStringInfo(SrcStr, Str)) {
>> - if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>> - return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
>> - return nullptr;
>> - }
>> +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>> + IRBuilder<> &B) {
>> + // We need to find the end of the destination string. That's where the
>> + // memory is to be moved to. We just generate a call to strlen.
>> + Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>> + if (!DstLen)
>> + return nullptr;
>> +
>> + // Now that we have the destination's length, we must index into the
>> + // destination's pointer to get the actual memcpy destination (end of
>> + // the string .. we're concatenating).
>> + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>> +
>> + // We have enough information to now generate the memcpy call to do the
>> + // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
>> + B.CreateMemCpy(
>> + CpyDst, Src,
>> + ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
>> + return Dst;
>> +}
>>
>> - // Compute the offset, make sure to handle the case when we're searching for
>> - // zero (a weird way to spell strlen).
>> - size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>> - Str.size() : Str.find(CharC->getSExtValue());
>> - if (I == StringRef::npos) // Didn't find the char. strchr returns null.
>> - return Constant::getNullValue(CI->getType());
>> +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strncat" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
>> + FT->getParamType(0) != FT->getReturnType() ||
>> + FT->getParamType(1) != FT->getReturnType() ||
>> + !FT->getParamType(2)->isIntegerTy())
>> + return nullptr;
>> +
>> + // Extract some information from the instruction
>> + Value *Dst = CI->getArgOperand(0);
>> + Value *Src = CI->getArgOperand(1);
>> + uint64_t Len;
>> +
>> + // We don't do anything if length is not constant
>> + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> + Len = LengthArg->getZExtValue();
>> + else
>> + return nullptr;
>> +
>> + // See if we can get the length of the input string.
>> + uint64_t SrcLen = GetStringLength(Src);
>> + if (SrcLen == 0)
>> + return nullptr;
>> + --SrcLen; // Unbias length.
>> +
>> + // Handle the simple, do-nothing cases:
>> + // strncat(x, "", c) -> x
>> + // strncat(x, c, 0) -> x
>> + if (SrcLen == 0 || Len == 0)
>> + return Dst;
>>
>> - // strchr(s+n,c) -> gep(s+n+i,c)
>> - return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>> - }
>> -};
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>> +
>> + // We don't optimize this case
>> + if (Len < SrcLen)
>> + return nullptr;
>>
>> -struct StrRChrOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strrchr" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getReturnType() != B.getInt8PtrTy() ||
>> - FT->getParamType(0) != FT->getReturnType() ||
>> - !FT->getParamType(1)->isIntegerTy(32))
>> - return nullptr;
>> -
>> - Value *SrcStr = CI->getArgOperand(0);
>> - ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> -
>> - // Cannot fold anything if we're not looking for a constant.
>> - if (!CharC)
>> - return nullptr;
>> -
>> - StringRef Str;
>> - if (!getConstantStringInfo(SrcStr, Str)) {
>> - // strrchr(s, 0) -> strchr(s, 0)
>> - if (DL && CharC->isZero())
>> - return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>> + // strncat(x, s, c) -> strcat(x, s)
>> + // s is constant so the strcat can be optimized further
>> + return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strchr" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
>> + FT->getParamType(0) != FT->getReturnType() ||
>> + !FT->getParamType(1)->isIntegerTy(32))
>> + return nullptr;
>> +
>> + Value *SrcStr = CI->getArgOperand(0);
>> +
>> + // If the second operand is non-constant, see if we can compute the length
>> + // of the input string and turn this into memchr.
>> + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> + if (!CharC) {
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> return nullptr;
>> - }
>>
>> - // Compute the offset.
>> - size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>> - Str.size() : Str.rfind(CharC->getSExtValue());
>> - if (I == StringRef::npos) // Didn't find the char. Return null.
>> - return Constant::getNullValue(CI->getType());
>> + uint64_t Len = GetStringLength(SrcStr);
>> + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
>> + return nullptr;
>>
>> - // strrchr(s+n,c) -> gep(s+n+i,c)
>> - return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>> + return EmitMemChr(
>> + SrcStr, CI->getArgOperand(1), // include nul.
>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI);
>> }
>> -};
>> -
>> -struct StrCmpOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strcmp" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - !FT->getReturnType()->isIntegerTy(32) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != B.getInt8PtrTy())
>> - return nullptr;
>> -
>> - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> - if (Str1P == Str2P) // strcmp(x,x) -> 0
>> - return ConstantInt::get(CI->getType(), 0);
>> -
>> - StringRef Str1, Str2;
>> - bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> - bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> -
>> - // strcmp(x, y) -> cnst (if both x and y are constant strings)
>> - if (HasStr1 && HasStr2)
>> - return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>> -
>> - if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>> - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>> - CI->getType()));
>> -
>> - if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>> - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> -
>> - // strcmp(P, "x") -> memcmp(P, "x", 2)
>> - uint64_t Len1 = GetStringLength(Str1P);
>> - uint64_t Len2 = GetStringLength(Str2P);
>> - if (Len1 && Len2) {
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> -
>> - return EmitMemCmp(Str1P, Str2P,
>> - ConstantInt::get(DL->getIntPtrType(*Context),
>> - std::min(Len1, Len2)), B, DL, TLI);
>> - }
>>
>> + // Otherwise, the character is a constant, see if the first argument is
>> + // a string literal. If so, we can constant fold.
>> + StringRef Str;
>> + if (!getConstantStringInfo(SrcStr, Str)) {
>> + if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>> + return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
>> return nullptr;
>> }
>> -};
>>
>> -struct StrNCmpOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strncmp" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 ||
>> - !FT->getReturnType()->isIntegerTy(32) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>> - !FT->getParamType(2)->isIntegerTy())
>> - return nullptr;
>> -
>> - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> - if (Str1P == Str2P) // strncmp(x,x,n) -> 0
>> - return ConstantInt::get(CI->getType(), 0);
>> -
>> - // Get the length argument if it is constant.
>> - uint64_t Length;
>> - if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> - Length = LengthArg->getZExtValue();
>> - else
>> - return nullptr;
>> -
>> - if (Length == 0) // strncmp(x,y,0) -> 0
>> - return ConstantInt::get(CI->getType(), 0);
>> -
>> - if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>> - return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>> -
>> - StringRef Str1, Str2;
>> - bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> - bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> -
>> - // strncmp(x, y) -> cnst (if both x and y are constant strings)
>> - if (HasStr1 && HasStr2) {
>> - StringRef SubStr1 = Str1.substr(0, Length);
>> - StringRef SubStr2 = Str2.substr(0, Length);
>> - return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>> - }
>> + // Compute the offset, make sure to handle the case when we're searching for
>> + // zero (a weird way to spell strlen).
>> + size_t I = (0xFF & CharC->getSExtValue()) == 0
>> + ? Str.size()
>> + : Str.find(CharC->getSExtValue());
>> + if (I == StringRef::npos) // Didn't find the char. strchr returns null.
>> + return Constant::getNullValue(CI->getType());
>>
>> - if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
>> - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>> - CI->getType()));
>> + // strchr(s+n,c) -> gep(s+n+i,c)
>> + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>> +}
>>
>> - if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
>> - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strrchr" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
>> + FT->getParamType(0) != FT->getReturnType() ||
>> + !FT->getParamType(1)->isIntegerTy(32))
>> + return nullptr;
>> +
>> + Value *SrcStr = CI->getArgOperand(0);
>> + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> +
>> + // Cannot fold anything if we're not looking for a constant.
>> + if (!CharC)
>> + return nullptr;
>>
>> + StringRef Str;
>> + if (!getConstantStringInfo(SrcStr, Str)) {
>> + // strrchr(s, 0) -> strchr(s, 0)
>> + if (DL && CharC->isZero())
>> + return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>> return nullptr;
>> }
>> -};
>>
>> -struct StrCpyOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "strcpy" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != B.getInt8PtrTy())
>> - return nullptr;
>> + // Compute the offset.
>> + size_t I = (0xFF & CharC->getSExtValue()) == 0
>> + ? Str.size()
>> + : Str.rfind(CharC->getSExtValue());
>> + if (I == StringRef::npos) // Didn't find the char. Return null.
>> + return Constant::getNullValue(CI->getType());
>>
>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> - if (Dst == Src) // strcpy(x,x) -> x
>> - return Src;
>> + // strrchr(s+n,c) -> gep(s+n+i,c)
>> + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>> +}
>>
>> +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strcmp" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != B.getInt8PtrTy())
>> + return nullptr;
>> +
>> + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> + if (Str1P == Str2P) // strcmp(x,x) -> 0
>> + return ConstantInt::get(CI->getType(), 0);
>> +
>> + StringRef Str1, Str2;
>> + bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> + bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> +
>> + // strcmp(x, y) -> cnst (if both x and y are constant strings)
>> + if (HasStr1 && HasStr2)
>> + return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>> +
>> + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>> + return B.CreateNeg(
>> + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>> +
>> + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>> + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> +
>> + // strcmp(P, "x") -> memcmp(P, "x", 2)
>> + uint64_t Len1 = GetStringLength(Str1P);
>> + uint64_t Len2 = GetStringLength(Str2P);
>> + if (Len1 && Len2) {
>> // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> -
>> - // See if we can get the length of the input string.
>> - uint64_t Len = GetStringLength(Src);
>> - if (Len == 0) return nullptr;
>> + if (!DL)
>> + return nullptr;
>>
>> - // We have enough information to now generate the memcpy call to do the
>> - // copy for us. Make a memcpy to copy the nul byte with align = 1.
>> - B.CreateMemCpy(Dst, Src,
>> - ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
>> - return Dst;
>> + return EmitMemCmp(Str1P, Str2P,
>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>> + std::min(Len1, Len2)),
>> + B, DL, TLI);
>> }
>> -};
>>
>> -struct StpCpyOpt: public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Verify the "stpcpy" function prototype.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != B.getInt8PtrTy())
>> - return nullptr;
>> + return nullptr;
>> +}
>>
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strncmp" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != B.getInt8PtrTy() ||
>> + !FT->getParamType(2)->isIntegerTy())
>> + return nullptr;
>>
>> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>> - Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> - }
>> + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> + if (Str1P == Str2P) // strncmp(x,x,n) -> 0
>> + return ConstantInt::get(CI->getType(), 0);
>>
>> - // See if we can get the length of the input string.
>> - uint64_t Len = GetStringLength(Src);
>> - if (Len == 0) return nullptr;
>> + // Get the length argument if it is constant.
>> + uint64_t Length;
>> + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> + Length = LengthArg->getZExtValue();
>> + else
>> + return nullptr;
>>
>> - Type *PT = FT->getParamType(0);
>> - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> - Value *DstEnd = B.CreateGEP(Dst,
>> - ConstantInt::get(DL->getIntPtrType(PT),
>> - Len - 1));
>> -
>> - // We have enough information to now generate the memcpy call to do the
>> - // copy for us. Make a memcpy to copy the nul byte with align = 1.
>> - B.CreateMemCpy(Dst, Src, LenV, 1);
>> - return DstEnd;
>> - }
>> -};
>> + if (Length == 0) // strncmp(x,y,0) -> 0
>> + return ConstantInt::get(CI->getType(), 0);
>>
>> -struct StrNCpyOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>> - !FT->getParamType(2)->isIntegerTy())
>> - return nullptr;
>> -
>> - Value *Dst = CI->getArgOperand(0);
>> - Value *Src = CI->getArgOperand(1);
>> - Value *LenOp = CI->getArgOperand(2);
>> -
>> - // See if we can get the length of the input string.
>> - uint64_t SrcLen = GetStringLength(Src);
>> - if (SrcLen == 0) return nullptr;
>> - --SrcLen;
>> -
>> - if (SrcLen == 0) {
>> - // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>> - B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>> - return Dst;
>> - }
>> + if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>> + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>>
>> - uint64_t Len;
>> - if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>> - Len = LengthArg->getZExtValue();
>> - else
>> - return nullptr;
>> + StringRef Str1, Str2;
>> + bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> + bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>>
>> - if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
>> + // strncmp(x, y) -> cnst (if both x and y are constant strings)
>> + if (HasStr1 && HasStr2) {
>> + StringRef SubStr1 = Str1.substr(0, Length);
>> + StringRef SubStr2 = Str2.substr(0, Length);
>> + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>> + }
>>
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
>> + return B.CreateNeg(
>> + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>>
>> - // Let strncpy handle the zero padding
>> - if (Len > SrcLen+1) return nullptr;
>> + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
>> + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>>
>> - Type *PT = FT->getParamType(0);
>> - // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>> - B.CreateMemCpy(Dst, Src,
>> - ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
>> + return nullptr;
>> +}
>>
>> - return Dst;
>> - }
>> -};
>> +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "strcpy" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != B.getInt8PtrTy())
>> + return nullptr;
>>
>> -struct StrLenOpt : public LibCallOptimization {
>> - bool ignoreCallingConv() override { return true; }
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 1 ||
>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>> - !FT->getReturnType()->isIntegerTy())
>> - return nullptr;
>> -
>> - Value *Src = CI->getArgOperand(0);
>> -
>> - // Constant folding: strlen("xyz") -> 3
>> - if (uint64_t Len = GetStringLength(Src))
>> - return ConstantInt::get(CI->getType(), Len-1);
>> -
>> - // strlen(x?"foo":"bars") --> x ? 3 : 4
>> - if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>> - uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>> - uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>> - if (LenTrue && LenFalse) {
>> - emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
>> - SI->getDebugLoc(),
>> - "folded strlen(select) to select of constants");
>> - return B.CreateSelect(SI->getCondition(),
>> - ConstantInt::get(CI->getType(), LenTrue-1),
>> - ConstantInt::get(CI->getType(), LenFalse-1));
>> - }
>> - }
>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> + if (Dst == Src) // strcpy(x,x) -> x
>> + return Src;
>>
>> - // strlen(x) != 0 --> *x != 0
>> - // strlen(x) == 0 --> *x == 0
>> - if (isOnlyUsedInZeroEqualityComparison(CI))
>> - return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> + // See if we can get the length of the input string.
>> + uint64_t Len = GetStringLength(Src);
>> + if (Len == 0)
>> return nullptr;
>> - }
>> -};
>>
>> -struct StrPBrkOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>> - FT->getParamType(1) != FT->getParamType(0) ||
>> - FT->getReturnType() != FT->getParamType(0))
>> - return nullptr;
>> + // We have enough information to now generate the memcpy call to do the
>> + // copy for us. Make a memcpy to copy the nul byte with align = 1.
>> + B.CreateMemCpy(Dst, Src,
>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1);
>> + return Dst;
>> +}
>>
>> - StringRef S1, S2;
>> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Verify the "stpcpy" function prototype.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != B.getInt8PtrTy())
>> + return nullptr;
>>
>> - // strpbrk(s, "") -> NULL
>> - // strpbrk("", s) -> NULL
>> - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> - return Constant::getNullValue(CI->getType());
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - // Constant folding.
>> - if (HasS1 && HasS2) {
>> - size_t I = S1.find_first_of(S2);
>> - if (I == StringRef::npos) // No match.
>> - return Constant::getNullValue(CI->getType());
>> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
>> + Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> + }
>>
>> - return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
>> - }
>> + // See if we can get the length of the input string.
>> + uint64_t Len = GetStringLength(Src);
>> + if (Len == 0)
>> + return nullptr;
>>
>> - // strpbrk(s, "a") -> strchr(s, 'a')
>> - if (DL && HasS2 && S2.size() == 1)
>> - return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>> + Type *PT = FT->getParamType(0);
>> + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> + Value *DstEnd =
>> + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
>>
>> - return nullptr;
>> + // We have enough information to now generate the memcpy call to do the
>> + // copy for us. Make a memcpy to copy the nul byte with align = 1.
>> + B.CreateMemCpy(Dst, Src, LenV, 1);
>> + return DstEnd;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + FT->getParamType(0) != B.getInt8PtrTy() ||
>> + !FT->getParamType(2)->isIntegerTy())
>> + return nullptr;
>> +
>> + Value *Dst = CI->getArgOperand(0);
>> + Value *Src = CI->getArgOperand(1);
>> + Value *LenOp = CI->getArgOperand(2);
>> +
>> + // See if we can get the length of the input string.
>> + uint64_t SrcLen = GetStringLength(Src);
>> + if (SrcLen == 0)
>> + return nullptr;
>> + --SrcLen;
>> +
>> + if (SrcLen == 0) {
>> + // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>> + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>> + return Dst;
>> }
>> -};
>>
>> -struct StrToOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy())
>> - return nullptr;
>> + uint64_t Len;
>> + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>> + Len = LengthArg->getZExtValue();
>> + else
>> + return nullptr;
>>
>> - Value *EndPtr = CI->getArgOperand(1);
>> - if (isa<ConstantPointerNull>(EndPtr)) {
>> - // With a null EndPtr, this function won't capture the main argument.
>> - // It would be readonly too, except that it still may write to errno.
>> - CI->addAttribute(1, Attribute::NoCapture);
>> - }
>> + if (Len == 0)
>> + return Dst; // strncpy(x, y, 0) -> x
>>
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> return nullptr;
>> - }
>> -};
>>
>> -struct StrSpnOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>> - FT->getParamType(1) != FT->getParamType(0) ||
>> - !FT->getReturnType()->isIntegerTy())
>> - return nullptr;
>> -
>> - StringRef S1, S2;
>> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> -
>> - // strspn(s, "") -> 0
>> - // strspn("", s) -> 0
>> - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> - return Constant::getNullValue(CI->getType());
>> + // Let strncpy handle the zero padding
>> + if (Len > SrcLen + 1)
>> + return nullptr;
>>
>> - // Constant folding.
>> - if (HasS1 && HasS2) {
>> - size_t Pos = S1.find_first_not_of(S2);
>> - if (Pos == StringRef::npos) Pos = S1.size();
>> - return ConstantInt::get(CI->getType(), Pos);
>> - }
>> + Type *PT = FT->getParamType(0);
>> + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>> + B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
>>
>> - return nullptr;
>> + return Dst;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> + !FT->getReturnType()->isIntegerTy())
>> + return nullptr;
>> +
>> + Value *Src = CI->getArgOperand(0);
>> +
>> + // Constant folding: strlen("xyz") -> 3
>> + if (uint64_t Len = GetStringLength(Src))
>> + return ConstantInt::get(CI->getType(), Len - 1);
>> +
>> + // strlen(x?"foo":"bars") --> x ? 3 : 4
>> + if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>> + uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>> + uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>> + if (LenTrue && LenFalse) {
>> + Function *Caller = CI->getParent()->getParent();
>> + emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
>> + SI->getDebugLoc(),
>> + "folded strlen(select) to select of constants");
>> + return B.CreateSelect(SI->getCondition(),
>> + ConstantInt::get(CI->getType(), LenTrue - 1),
>> + ConstantInt::get(CI->getType(), LenFalse - 1));
>> + }
>> }
>> -};
>>
>> -struct StrCSpnOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - FT->getParamType(0) != B.getInt8PtrTy() ||
>> - FT->getParamType(1) != FT->getParamType(0) ||
>> - !FT->getReturnType()->isIntegerTy())
>> - return nullptr;
>> -
>> - StringRef S1, S2;
>> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> + // strlen(x) != 0 --> *x != 0
>> + // strlen(x) == 0 --> *x == 0
>> + if (isOnlyUsedInZeroEqualityComparison(CI))
>> + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
>> +
>> + return nullptr;
>> +}
>>
>> - // strcspn("", s) -> 0
>> - if (HasS1 && S1.empty())
>> +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> + FT->getParamType(1) != FT->getParamType(0) ||
>> + FT->getReturnType() != FT->getParamType(0))
>> + return nullptr;
>> +
>> + StringRef S1, S2;
>> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +
>> + // strpbrk(s, "") -> NULL
>> + // strpbrk("", s) -> NULL
>> + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> + return Constant::getNullValue(CI->getType());
>> +
>> + // Constant folding.
>> + if (HasS1 && HasS2) {
>> + size_t I = S1.find_first_of(S2);
>> + if (I == StringRef::npos) // No match.
>> return Constant::getNullValue(CI->getType());
>>
>> - // Constant folding.
>> - if (HasS1 && HasS2) {
>> - size_t Pos = S1.find_first_of(S2);
>> - if (Pos == StringRef::npos) Pos = S1.size();
>> - return ConstantInt::get(CI->getType(), Pos);
>> - }
>> + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
>> + }
>>
>> - // strcspn(s, "") -> strlen(s)
>> - if (DL && HasS2 && S2.empty())
>> - return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>> + // strpbrk(s, "a") -> strchr(s, 'a')
>> + if (DL && HasS2 && S2.size() == 1)
>> + return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>>
>> + return nullptr;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy())
>> return nullptr;
>> +
>> + Value *EndPtr = CI->getArgOperand(1);
>> + if (isa<ConstantPointerNull>(EndPtr)) {
>> + // With a null EndPtr, this function won't capture the main argument.
>> + // It would be readonly too, except that it still may write to errno.
>> + CI->addAttribute(1, Attribute::NoCapture);
>> }
>> -};
>>
>> -struct StrStrOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - !FT->getReturnType()->isPointerTy())
>> - return nullptr;
>> + return nullptr;
>> +}
>>
>> - // fold strstr(x, x) -> x.
>> - if (CI->getArgOperand(0) == CI->getArgOperand(1))
>> - return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> + FT->getParamType(1) != FT->getParamType(0) ||
>> + !FT->getReturnType()->isIntegerTy())
>> + return nullptr;
>> +
>> + StringRef S1, S2;
>> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +
>> + // strspn(s, "") -> 0
>> + // strspn("", s) -> 0
>> + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> + return Constant::getNullValue(CI->getType());
>> +
>> + // Constant folding.
>> + if (HasS1 && HasS2) {
>> + size_t Pos = S1.find_first_not_of(S2);
>> + if (Pos == StringRef::npos)
>> + Pos = S1.size();
>> + return ConstantInt::get(CI->getType(), Pos);
>> + }
>>
>> - // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>> - if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
>> - Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>> - if (!StrLen)
>> - return nullptr;
>> - Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
>> - StrLen, B, DL, TLI);
>> - if (!StrNCmp)
>> - return nullptr;
>> - for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>> - ICmpInst *Old = cast<ICmpInst>(*UI++);
>> - Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
>> - ConstantInt::getNullValue(StrNCmp->getType()),
>> - "cmp");
>> - LCS->replaceAllUsesWith(Old, Cmp);
>> - }
>> - return CI;
>> - }
>> + return nullptr;
>> +}
>>
>> - // See if either input string is a constant string.
>> - StringRef SearchStr, ToFindStr;
>> - bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
>> - bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>> -
>> - // fold strstr(x, "") -> x.
>> - if (HasStr2 && ToFindStr.empty())
>> - return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> -
>> - // If both strings are known, constant fold it.
>> - if (HasStr1 && HasStr2) {
>> - size_t Offset = SearchStr.find(ToFindStr);
>> -
>> - if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>> - return Constant::getNullValue(CI->getType());
>> -
>> - // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>> - Value *Result = CastToCStr(CI->getArgOperand(0), B);
>> - Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>> - return B.CreateBitCast(Result, CI->getType());
>> - }
>> +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> + FT->getParamType(1) != FT->getParamType(0) ||
>> + !FT->getReturnType()->isIntegerTy())
>> + return nullptr;
>> +
>> + StringRef S1, S2;
>> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +
>> + // strcspn("", s) -> 0
>> + if (HasS1 && S1.empty())
>> + return Constant::getNullValue(CI->getType());
>> +
>> + // Constant folding.
>> + if (HasS1 && HasS2) {
>> + size_t Pos = S1.find_first_of(S2);
>> + if (Pos == StringRef::npos)
>> + Pos = S1.size();
>> + return ConstantInt::get(CI->getType(), Pos);
>> + }
>> +
>> + // strcspn(s, "") -> strlen(s)
>> + if (DL && HasS2 && S2.empty())
>> + return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>>
>> - // fold strstr(x, "y") -> strchr(x, 'y').
>> - if (HasStr2 && ToFindStr.size() == 1) {
>> - Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
>> - return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>> - }
>> + return nullptr;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + !FT->getReturnType()->isPointerTy())
>> return nullptr;
>> - }
>> -};
>>
>> -struct MemCmpOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - !FT->getReturnType()->isIntegerTy(32))
>> + // fold strstr(x, x) -> x.
>> + if (CI->getArgOperand(0) == CI->getArgOperand(1))
>> + return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> +
>> + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>> + if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
>> + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>> + if (!StrLen)
>> return nullptr;
>> + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
>> + StrLen, B, DL, TLI);
>> + if (!StrNCmp)
>> + return nullptr;
>> + for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>> + ICmpInst *Old = cast<ICmpInst>(*UI++);
>> + Value *Cmp =
>> + B.CreateICmp(Old->getPredicate(), StrNCmp,
>> + ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
>> + replaceAllUsesWith(Old, Cmp);
>> + }
>> + return CI;
>> + }
>>
>> - Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>> + // See if either input string is a constant string.
>> + StringRef SearchStr, ToFindStr;
>> + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
>> + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>>
>> - if (LHS == RHS) // memcmp(s,s,x) -> 0
>> - return Constant::getNullValue(CI->getType());
>> + // fold strstr(x, "") -> x.
>> + if (HasStr2 && ToFindStr.empty())
>> + return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>>
>> - // Make sure we have a constant length.
>> - ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> - if (!LenC) return nullptr;
>> - uint64_t Len = LenC->getZExtValue();
>> + // If both strings are known, constant fold it.
>> + if (HasStr1 && HasStr2) {
>> + size_t Offset = SearchStr.find(ToFindStr);
>>
>> - if (Len == 0) // memcmp(s1,s2,0) -> 0
>> + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>> return Constant::getNullValue(CI->getType());
>>
>> - // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>> - if (Len == 1) {
>> - Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
>> - CI->getType(), "lhsv");
>> - Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
>> - CI->getType(), "rhsv");
>> - return B.CreateSub(LHSV, RHSV, "chardiff");
>> - }
>> + // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>> + Value *Result = CastToCStr(CI->getArgOperand(0), B);
>> + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>> + return B.CreateBitCast(Result, CI->getType());
>> + }
>>
>> - // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
>> - StringRef LHSStr, RHSStr;
>> - if (getConstantStringInfo(LHS, LHSStr) &&
>> - getConstantStringInfo(RHS, RHSStr)) {
>> - // Make sure we're not reading out-of-bounds memory.
>> - if (Len > LHSStr.size() || Len > RHSStr.size())
>> - return nullptr;
>> - // Fold the memcmp and normalize the result. This way we get consistent
>> - // results across multiple platforms.
>> - uint64_t Ret = 0;
>> - int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>> - if (Cmp < 0)
>> - Ret = -1;
>> - else if (Cmp > 0)
>> - Ret = 1;
>> - return ConstantInt::get(CI->getType(), Ret);
>> - }
>> + // fold strstr(x, "y") -> strchr(x, 'y').
>> + if (HasStr2 && ToFindStr.size() == 1) {
>> + Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
>> + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>> + }
>> + return nullptr;
>> +}
>>
>> - return nullptr;
>> +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + !FT->getReturnType()->isIntegerTy(32))
>> + return nullptr;
>> +
>> + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>> +
>> + if (LHS == RHS) // memcmp(s,s,x) -> 0
>> + return Constant::getNullValue(CI->getType());
>> +
>> + // Make sure we have a constant length.
>> + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> + if (!LenC)
>> + return nullptr;
>> + uint64_t Len = LenC->getZExtValue();
>> +
>> + if (Len == 0) // memcmp(s1,s2,0) -> 0
>> + return Constant::getNullValue(CI->getType());
>> +
>> + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>> + if (Len == 1) {
>> + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
>> + CI->getType(), "lhsv");
>> + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
>> + CI->getType(), "rhsv");
>> + return B.CreateSub(LHSV, RHSV, "chardiff");
>> + }
>> +
>> + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
>> + StringRef LHSStr, RHSStr;
>> + if (getConstantStringInfo(LHS, LHSStr) &&
>> + getConstantStringInfo(RHS, RHSStr)) {
>> + // Make sure we're not reading out-of-bounds memory.
>> + if (Len > LHSStr.size() || Len > RHSStr.size())
>> + return nullptr;
>> + // Fold the memcmp and normalize the result. This way we get consistent
>> + // results across multiple platforms.
>> + uint64_t Ret = 0;
>> + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>> + if (Cmp < 0)
>> + Ret = -1;
>> + else if (Cmp > 0)
>> + Ret = 1;
>> + return ConstantInt::get(CI->getType(), Ret);
>> }
>> -};
>>
>> -struct MemCpyOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + return nullptr;
>> +}
>>
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - FT->getParamType(2) != DL->getIntPtrType(*Context))
>> - return nullptr;
>> +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> - CI->getArgOperand(2), 1);
>> - return CI->getArgOperand(0);
>> - }
>> -};
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>> + return nullptr;
>>
>> -struct MemMoveOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> + CI->getArgOperand(2), 1);
>> + return CI->getArgOperand(0);
>> +}
>>
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - FT->getParamType(2) != DL->getIntPtrType(*Context))
>> - return nullptr;
>> +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>> - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> - CI->getArgOperand(2), 1);
>> - return CI->getArgOperand(0);
>> - }
>> -};
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>> + return nullptr;
>>
>> -struct MemSetOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>> + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> + CI->getArgOperand(2), 1);
>> + return CI->getArgOperand(0);
>> +}
>>
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isIntegerTy() ||
>> - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> - return nullptr;
>> +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>> - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
>> - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> - return CI->getArgOperand(0);
>> - }
>> -};
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isIntegerTy() ||
>> + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> + return nullptr;
>> +
>> + // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>> + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
>> + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> + return CI->getArgOperand(0);
>> +}
>>
>> //===----------------------------------------------------------------------===//
>> // Math Library Optimizations
>> @@ -1111,935 +1025,847 @@ struct MemSetOpt : public LibCallOptimiz
>> //===----------------------------------------------------------------------===//
>> // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
>>
>> -struct UnaryDoubleFPOpt : public LibCallOptimization {
>> - bool CheckRetType;
>> - UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>> - !FT->getParamType(0)->isDoubleTy())
>> - return nullptr;
>> -
>> - if (CheckRetType) {
>> - // Check if all the uses for function like 'sin' are converted to float.
>> - for (User *U : CI->users()) {
>> - FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>> - if (!Cast || !Cast->getType()->isFloatTy())
>> - return nullptr;
>> - }
>> +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
>> + bool CheckRetType) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>> + !FT->getParamType(0)->isDoubleTy())
>> + return nullptr;
>> +
>> + if (CheckRetType) {
>> + // Check if all the uses for function like 'sin' are converted to float.
>> + for (User *U : CI->users()) {
>> + FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>> + if (!Cast || !Cast->getType()->isFloatTy())
>> + return nullptr;
>> }
>> + }
>>
>> - // If this is something like 'floor((double)floatval)', convert to floorf.
>> - FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> - if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>> - return nullptr;
>> + // If this is something like 'floor((double)floatval)', convert to floorf.
>> + FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> + if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>> + return nullptr;
>>
>> - // floor((double)floatval) -> (double)floorf(floatval)
>> - Value *V = Cast->getOperand(0);
>> - V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
>> - return B.CreateFPExt(V, B.getDoubleTy());
>> - }
>> -};
>> + // floor((double)floatval) -> (double)floorf(floatval)
>> + Value *V = Cast->getOperand(0);
>> + V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
>> + return B.CreateFPExt(V, B.getDoubleTy());
>> +}
>>
>> // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
>> -struct BinaryDoubleFPOpt : public LibCallOptimization {
>> - bool CheckRetType;
>> - BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - // Just make sure this has 2 arguments of the same FP type, which match the
>> - // result type.
>> - if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - !FT->getParamType(0)->isFloatingPointTy())
>> - return nullptr;
>> -
>> - if (CheckRetType) {
>> - // Check if all the uses for function like 'fmin/fmax' are converted to
>> - // float.
>> - for (User *U : CI->users()) {
>> - FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>> - if (!Cast || !Cast->getType()->isFloatTy())
>> - return nullptr;
>> - }
>> - }
>> +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + // Just make sure this has 2 arguments of the same FP type, which match the
>> + // result type.
>> + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + !FT->getParamType(0)->isFloatingPointTy())
>> + return nullptr;
>> +
>> + // If this is something like 'fmin((double)floatval1, (double)floatval2)',
>> + // we convert it to fminf.
>> + FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> + FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>> + if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 ||
>> + !Cast2->getOperand(0)->getType()->isFloatTy())
>> + return nullptr;
>> +
>> + // fmin((double)floatval1, (double)floatval2)
>> + // -> (double)fmin(floatval1, floatval2)
>> + Value *V = nullptr;
>> + Value *V1 = Cast1->getOperand(0);
>> + Value *V2 = Cast2->getOperand(0);
>> + V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>> + Callee->getAttributes());
>> + return B.CreateFPExt(V, B.getDoubleTy());
>> +}
>>
>> - // If this is something like 'fmin((double)floatval1, (double)floatval2)',
>> - // we convert it to fminf.
>> - FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> - FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>> - if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
>> - !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
>> - return nullptr;
>> -
>> - // fmin((double)floatval1, (double)floatval2)
>> - // -> (double)fmin(floatval1, floatval2)
>> - Value *V = nullptr;
>> - Value *V1 = Cast1->getOperand(0);
>> - Value *V2 = Cast2->getOperand(0);
>> - V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>> - Callee->getAttributes());
>> - return B.CreateFPExt(V, B.getDoubleTy());
>> - }
>> -};
>> -
>> -struct UnsafeFPLibCallOptimization : public LibCallOptimization {
>> - bool UnsafeFPShrink;
>> - UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
>> - this->UnsafeFPShrink = UnsafeFPShrink;
>> - }
>> -};
>> -
>> -struct CosOpt : public UnsafeFPLibCallOptimization {
>> - CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - Value *Ret = nullptr;
>> - if (UnsafeFPShrink && Callee->getName() == "cos" &&
>> - TLI->has(LibFunc::cosf)) {
>> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>> - }
>> +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + Value *Ret = nullptr;
>> + if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
>> + Ret = optimizeUnaryDoubleFP(CI, B, true);
>> + }
>>
>> - FunctionType *FT = Callee->getFunctionType();
>> - // Just make sure this has 1 argument of FP type, which matches the
>> - // result type.
>> - if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isFloatingPointTy())
>> - return Ret;
>> -
>> - // cos(-x) -> cos(x)
>> - Value *Op1 = CI->getArgOperand(0);
>> - if (BinaryOperator::isFNeg(Op1)) {
>> - BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>> - return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>> - }
>> + FunctionType *FT = Callee->getFunctionType();
>> + // Just make sure this has 1 argument of FP type, which matches the
>> + // result type.
>> + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isFloatingPointTy())
>> return Ret;
>> +
>> + // cos(-x) -> cos(x)
>> + Value *Op1 = CI->getArgOperand(0);
>> + if (BinaryOperator::isFNeg(Op1)) {
>> + BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>> + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>> }
>> -};
>> + return Ret;
>> +}
>>
>> -struct PowOpt : public UnsafeFPLibCallOptimization {
>> - PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - Value *Ret = nullptr;
>> - if (UnsafeFPShrink && Callee->getName() == "pow" &&
>> - TLI->has(LibFunc::powf)) {
>> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>> - }
>> +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>>
>> - FunctionType *FT = Callee->getFunctionType();
>> - // Just make sure this has 2 arguments of the same FP type, which match the
>> - // result type.
>> - if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> - FT->getParamType(0) != FT->getParamType(1) ||
>> - !FT->getParamType(0)->isFloatingPointTy())
>> - return Ret;
>> -
>> - Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>> - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>> - // pow(1.0, x) -> 1.0
>> - if (Op1C->isExactlyValue(1.0))
>> - return Op1C;
>> - // pow(2.0, x) -> exp2(x)
>> - if (Op1C->isExactlyValue(2.0) &&
>> - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
>> - LibFunc::exp2l))
>> - return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
>> - // pow(10.0, x) -> exp10(x)
>> - if (Op1C->isExactlyValue(10.0) &&
>> - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
>> - LibFunc::exp10l))
>> - return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
>> - Callee->getAttributes());
>> - }
>> + Value *Ret = nullptr;
>> + if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
>> + Ret = optimizeUnaryDoubleFP(CI, B, true);
>> + }
>>
>> - ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>> - if (!Op2C) return Ret;
>> + FunctionType *FT = Callee->getFunctionType();
>> + // Just make sure this has 2 arguments of the same FP type, which match the
>> + // result type.
>> + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> + FT->getParamType(0) != FT->getParamType(1) ||
>> + !FT->getParamType(0)->isFloatingPointTy())
>> + return Ret;
>>
>> - if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
>> - return ConstantFP::get(CI->getType(), 1.0);
>> + Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>> + if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>> + // pow(1.0, x) -> 1.0
>> + if (Op1C->isExactlyValue(1.0))
>> + return Op1C;
>> + // pow(2.0, x) -> exp2(x)
>> + if (Op1C->isExactlyValue(2.0) &&
>> + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
>> + LibFunc::exp2l))
>> + return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
>> + // pow(10.0, x) -> exp10(x)
>> + if (Op1C->isExactlyValue(10.0) &&
>> + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
>> + LibFunc::exp10l))
>> + return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
>> + Callee->getAttributes());
>> + }
>>
>> - if (Op2C->isExactlyValue(0.5) &&
>> - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
>> - LibFunc::sqrtl) &&
>> - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
>> - LibFunc::fabsl)) {
>> - // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
>> - // This is faster than calling pow, and still handles negative zero
>> - // and negative infinity correctly.
>> - // TODO: In fast-math mode, this could be just sqrt(x).
>> - // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>> - Value *Inf = ConstantFP::getInfinity(CI->getType());
>> - Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>> - Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
>> - Callee->getAttributes());
>> - Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
>> - Callee->getAttributes());
>> - Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>> - Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>> - return Sel;
>> - }
>> + ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>> + if (!Op2C)
>> + return Ret;
>>
>> - if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
>> - return Op1;
>> - if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
>> - return B.CreateFMul(Op1, Op1, "pow2");
>> - if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>> - return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
>> - Op1, "powrecip");
>> - return nullptr;
>> - }
>> -};
>> -
>> -struct Exp2Opt : public UnsafeFPLibCallOptimization {
>> - Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - Value *Ret = nullptr;
>> - if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>> - TLI->has(LibFunc::exp2f)) {
>> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>> - }
>> + if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
>> + return ConstantFP::get(CI->getType(), 1.0);
>>
>> - FunctionType *FT = Callee->getFunctionType();
>> - // Just make sure this has 1 argument of FP type, which matches the
>> - // result type.
>> - if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isFloatingPointTy())
>> - return Ret;
>> -
>> - Value *Op = CI->getArgOperand(0);
>> - // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
>> - // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
>> - LibFunc::Func LdExp = LibFunc::ldexpl;
>> - if (Op->getType()->isFloatTy())
>> - LdExp = LibFunc::ldexpf;
>> - else if (Op->getType()->isDoubleTy())
>> - LdExp = LibFunc::ldexp;
>> -
>> - if (TLI->has(LdExp)) {
>> - Value *LdExpArg = nullptr;
>> - if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>> - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
>> - LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>> - } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>> - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
>> - LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>> - }
>> -
>> - if (LdExpArg) {
>> - Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
>> - if (!Op->getType()->isFloatTy())
>> - One = ConstantExpr::getFPExtend(One, Op->getType());
>> -
>> - Module *M = Caller->getParent();
>> - Value *Callee =
>> - M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>> - Op->getType(), B.getInt32Ty(), NULL);
>> - CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>> - if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
>> - CI->setCallingConv(F->getCallingConv());
>> + if (Op2C->isExactlyValue(0.5) &&
>> + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
>> + LibFunc::sqrtl) &&
>> + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
>> + LibFunc::fabsl)) {
>> + // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
>> + // This is faster than calling pow, and still handles negative zero
>> + // and negative infinity correctly.
>> + // TODO: In fast-math mode, this could be just sqrt(x).
>> + // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>> + Value *Inf = ConstantFP::getInfinity(CI->getType());
>> + Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>> + Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
>> + Value *FAbs =
>> + EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
>> + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>> + Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>> + return Sel;
>> + }
>> +
>> + if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
>> + return Op1;
>> + if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
>> + return B.CreateFMul(Op1, Op1, "pow2");
>> + if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>> + return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
>> + return nullptr;
>> +}
>>
>> - return CI;
>> - }
>> - }
>> - return Ret;
>> +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + Function *Caller = CI->getParent()->getParent();
>> +
>> + Value *Ret = nullptr;
>> + if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>> + TLI->has(LibFunc::exp2f)) {
>> + Ret = optimizeUnaryDoubleFP(CI, B, true);
>> }
>> -};
>>
>> -struct SinCosPiOpt : public LibCallOptimization {
>> - SinCosPiOpt() {}
>> + FunctionType *FT = Callee->getFunctionType();
>> + // Just make sure this has 1 argument of FP type, which matches the
>> + // result type.
>> + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isFloatingPointTy())
>> + return Ret;
>>
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Make sure the prototype is as expected, otherwise the rest of the
>> - // function is probably invalid and likely to abort.
>> - if (!isTrigLibCall(CI))
>> - return nullptr;
>> -
>> - Value *Arg = CI->getArgOperand(0);
>> - SmallVector<CallInst *, 1> SinCalls;
>> - SmallVector<CallInst *, 1> CosCalls;
>> - SmallVector<CallInst *, 1> SinCosCalls;
>> -
>> - bool IsFloat = Arg->getType()->isFloatTy();
>> -
>> - // Look for all compatible sinpi, cospi and sincospi calls with the same
>> - // argument. If there are enough (in some sense) we can make the
>> - // substitution.
>> - for (User *U : Arg->users())
>> - classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>> - SinCosCalls);
>> -
>> - // It's only worthwhile if both sinpi and cospi are actually used.
>> - if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>> - return nullptr;
>> -
>> - Value *Sin, *Cos, *SinCos;
>> - insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
>> - SinCos);
>> -
>> - replaceTrigInsts(SinCalls, Sin);
>> - replaceTrigInsts(CosCalls, Cos);
>> - replaceTrigInsts(SinCosCalls, SinCos);
>> -
>> - return nullptr;
>> - }
>> -
>> - bool isTrigLibCall(CallInst *CI) {
>> - Function *Callee = CI->getCalledFunction();
>> - FunctionType *FT = Callee->getFunctionType();
>> -
>> - // We can only hope to do anything useful if we can ignore things like errno
>> - // and floating-point exceptions.
>> - bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
>> - CI->hasFnAttr(Attribute::ReadNone);
>> -
>> - // Other than that we need float(float) or double(double)
>> - return AttributesSafe && FT->getNumParams() == 1 &&
>> - FT->getReturnType() == FT->getParamType(0) &&
>> - (FT->getParamType(0)->isFloatTy() ||
>> - FT->getParamType(0)->isDoubleTy());
>> - }
>> -
>> - void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>> - SmallVectorImpl<CallInst *> &SinCalls,
>> - SmallVectorImpl<CallInst *> &CosCalls,
>> - SmallVectorImpl<CallInst *> &SinCosCalls) {
>> - CallInst *CI = dyn_cast<CallInst>(Val);
>> -
>> - if (!CI)
>> - return;
>> -
>> - Function *Callee = CI->getCalledFunction();
>> - StringRef FuncName = Callee->getName();
>> - LibFunc::Func Func;
>> - if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
>> - !isTrigLibCall(CI))
>> - return;
>> -
>> - if (IsFloat) {
>> - if (Func == LibFunc::sinpif)
>> - SinCalls.push_back(CI);
>> - else if (Func == LibFunc::cospif)
>> - CosCalls.push_back(CI);
>> - else if (Func == LibFunc::sincospif_stret)
>> - SinCosCalls.push_back(CI);
>> - } else {
>> - if (Func == LibFunc::sinpi)
>> - SinCalls.push_back(CI);
>> - else if (Func == LibFunc::cospi)
>> - CosCalls.push_back(CI);
>> - else if (Func == LibFunc::sincospi_stret)
>> - SinCosCalls.push_back(CI);
>> - }
>> - }
>> + Value *Op = CI->getArgOperand(0);
>> + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
>> + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
>> + LibFunc::Func LdExp = LibFunc::ldexpl;
>> + if (Op->getType()->isFloatTy())
>> + LdExp = LibFunc::ldexpf;
>> + else if (Op->getType()->isDoubleTy())
>> + LdExp = LibFunc::ldexp;
>> +
>> + if (TLI->has(LdExp)) {
>> + Value *LdExpArg = nullptr;
>> + if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>> + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
>> + LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>> + } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>> + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
>> + LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>> + }
>> +
>> + if (LdExpArg) {
>> + Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
>> + if (!Op->getType()->isFloatTy())
>> + One = ConstantExpr::getFPExtend(One, Op->getType());
>> +
>> + Module *M = Caller->getParent();
>> + Value *Callee =
>> + M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>> + Op->getType(), B.getInt32Ty(), NULL);
>> + CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>> + if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
>> + CI->setCallingConv(F->getCallingConv());
>>
>> - void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
>> - for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
>> - E = Calls.end();
>> - I != E; ++I) {
>> - LCS->replaceAllUsesWith(*I, Res);
>> + return CI;
>> }
>> }
>> + return Ret;
>> +}
>>
>> - void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>> - bool UseFloat, Value *&Sin, Value *&Cos,
>> - Value *&SinCos) {
>> - Type *ArgTy = Arg->getType();
>> - Type *ResTy;
>> - StringRef Name;
>> -
>> - Triple T(OrigCallee->getParent()->getTargetTriple());
>> - if (UseFloat) {
>> - Name = "__sincospif_stret";
>> -
>> - assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
>> - // x86_64 can't use {float, float} since that would be returned in both
>> - // xmm0 and xmm1, which isn't what a real struct would do.
>> - ResTy = T.getArch() == Triple::x86_64
>> - ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>> - : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
>> - } else {
>> - Name = "__sincospi_stret";
>> - ResTy = StructType::get(ArgTy, ArgTy, NULL);
>> - }
>> +static bool isTrigLibCall(CallInst *CI);
>> +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>> + bool UseFloat, Value *&Sin, Value *&Cos,
>> + Value *&SinCos);
>>
>> - Module *M = OrigCallee->getParent();
>> - Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
>> - ResTy, ArgTy, NULL);
>> -
>> - if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>> - // If the argument is an instruction, it must dominate all uses so put our
>> - // sincos call there.
>> - BasicBlock::iterator Loc = ArgInst;
>> - B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>> - } else {
>> - // Otherwise (e.g. for a constant) the beginning of the function is as
>> - // good a place as any.
>> - BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
>> - B.SetInsertPoint(&EntryBB, EntryBB.begin());
>> - }
>> +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
>>
>> - SinCos = B.CreateCall(Callee, Arg, "sincospi");
>> + // Make sure the prototype is as expected, otherwise the rest of the
>> + // function is probably invalid and likely to abort.
>> + if (!isTrigLibCall(CI))
>> + return nullptr;
>>
>> - if (SinCos->getType()->isStructTy()) {
>> - Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>> - Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>> - } else {
>> - Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
>> - "sinpi");
>> - Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
>> - "cospi");
>> - }
>> + Value *Arg = CI->getArgOperand(0);
>> + SmallVector<CallInst *, 1> SinCalls;
>> + SmallVector<CallInst *, 1> CosCalls;
>> + SmallVector<CallInst *, 1> SinCosCalls;
>> +
>> + bool IsFloat = Arg->getType()->isFloatTy();
>> +
>> + // Look for all compatible sinpi, cospi and sincospi calls with the same
>> + // argument. If there are enough (in some sense) we can make the
>> + // substitution.
>> + for (User *U : Arg->users())
>> + classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>> + SinCosCalls);
>> +
>> + // It's only worthwhile if both sinpi and cospi are actually used.
>> + if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>> + return nullptr;
>> +
>> + Value *Sin, *Cos, *SinCos;
>> + insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
>> +
>> + replaceTrigInsts(SinCalls, Sin);
>> + replaceTrigInsts(CosCalls, Cos);
>> + replaceTrigInsts(SinCosCalls, SinCos);
>> +
>> + return nullptr;
>> +}
>> +
>> +static bool isTrigLibCall(CallInst *CI) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> +
>> + // We can only hope to do anything useful if we can ignore things like errno
>> + // and floating-point exceptions.
>> + bool AttributesSafe =
>> + CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
>> +
>> + // Other than that we need float(float) or double(double)
>> + return AttributesSafe && FT->getNumParams() == 1 &&
>> + FT->getReturnType() == FT->getParamType(0) &&
>> + (FT->getParamType(0)->isFloatTy() ||
>> + FT->getParamType(0)->isDoubleTy());
>> +}
>> +
>> +void
>> +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>> + SmallVectorImpl<CallInst *> &SinCalls,
>> + SmallVectorImpl<CallInst *> &CosCalls,
>> + SmallVectorImpl<CallInst *> &SinCosCalls) {
>> + CallInst *CI = dyn_cast<CallInst>(Val);
>> +
>> + if (!CI)
>> + return;
>> +
>> + Function *Callee = CI->getCalledFunction();
>> + StringRef FuncName = Callee->getName();
>> + LibFunc::Func Func;
>> + if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
>> + return;
>> +
>> + if (IsFloat) {
>> + if (Func == LibFunc::sinpif)
>> + SinCalls.push_back(CI);
>> + else if (Func == LibFunc::cospif)
>> + CosCalls.push_back(CI);
>> + else if (Func == LibFunc::sincospif_stret)
>> + SinCosCalls.push_back(CI);
>> + } else {
>> + if (Func == LibFunc::sinpi)
>> + SinCalls.push_back(CI);
>> + else if (Func == LibFunc::cospi)
>> + CosCalls.push_back(CI);
>> + else if (Func == LibFunc::sincospi_stret)
>> + SinCosCalls.push_back(CI);
>> }
>> +}
>>
>> -};
>> +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
>> + Value *Res) {
>> + for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
>> + I != E; ++I) {
>> + replaceAllUsesWith(*I, Res);
>> + }
>> +}
>> +
>> +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>> + bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
>> + Type *ArgTy = Arg->getType();
>> + Type *ResTy;
>> + StringRef Name;
>> +
>> + Triple T(OrigCallee->getParent()->getTargetTriple());
>> + if (UseFloat) {
>> + Name = "__sincospif_stret";
>> +
>> + assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
>> + // x86_64 can't use {float, float} since that would be returned in both
>> + // xmm0 and xmm1, which isn't what a real struct would do.
>> + ResTy = T.getArch() == Triple::x86_64
>> + ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>> + : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
>> + } else {
>> + Name = "__sincospi_stret";
>> + ResTy = StructType::get(ArgTy, ArgTy, NULL);
>> + }
>> +
>> + Module *M = OrigCallee->getParent();
>> + Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
>> + ResTy, ArgTy, NULL);
>> +
>> + if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>> + // If the argument is an instruction, it must dominate all uses so put our
>> + // sincos call there.
>> + BasicBlock::iterator Loc = ArgInst;
>> + B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>> + } else {
>> + // Otherwise (e.g. for a constant) the beginning of the function is as
>> + // good a place as any.
>> + BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
>> + B.SetInsertPoint(&EntryBB, EntryBB.begin());
>> + }
>> +
>> + SinCos = B.CreateCall(Callee, Arg, "sincospi");
>> +
>> + if (SinCos->getType()->isStructTy()) {
>> + Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>> + Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>> + } else {
>> + Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
>> + "sinpi");
>> + Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
>> + "cospi");
>> + }
>> +}
>>
>> //===----------------------------------------------------------------------===//
>> // Integer Library Call Optimizations
>> //===----------------------------------------------------------------------===//
>>
>> -struct FFSOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - // Just make sure this has 2 arguments of the same FP type, which match the
>> - // result type.
>> - if (FT->getNumParams() != 1 ||
>> - !FT->getReturnType()->isIntegerTy(32) ||
>> - !FT->getParamType(0)->isIntegerTy())
>> - return nullptr;
>> -
>> - Value *Op = CI->getArgOperand(0);
>> -
>> - // Constant fold.
>> - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>> - if (CI->isZero()) // ffs(0) -> 0.
>> - return B.getInt32(0);
>> - // ffs(c) -> cttz(c)+1
>> - return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>> - }
>> +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + // Just make sure this has 2 arguments of the same FP type, which match the
>> + // result type.
>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
>> + !FT->getParamType(0)->isIntegerTy())
>> + return nullptr;
>> +
>> + Value *Op = CI->getArgOperand(0);
>> +
>> + // Constant fold.
>> + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>> + if (CI->isZero()) // ffs(0) -> 0.
>> + return B.getInt32(0);
>> + // ffs(c) -> cttz(c)+1
>> + return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>> + }
>> +
>> + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>> + Type *ArgType = Op->getType();
>> + Value *F =
>> + Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
>> + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>> + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>> + V = B.CreateIntCast(V, B.getInt32Ty(), false);
>>
>> - // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>> - Type *ArgType = Op->getType();
>> - Value *F = Intrinsic::getDeclaration(Callee->getParent(),
>> - Intrinsic::cttz, ArgType);
>> - Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>> - V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>> - V = B.CreateIntCast(V, B.getInt32Ty(), false);
>> -
>> - Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>> - return B.CreateSelect(Cond, V, B.getInt32(0));
>> - }
>> -};
>> -
>> -struct AbsOpt : public LibCallOptimization {
>> - bool ignoreCallingConv() override { return true; }
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - // We require integer(integer) where the types agree.
>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> - FT->getParamType(0) != FT->getReturnType())
>> - return nullptr;
>> -
>> - // abs(x) -> x >s -1 ? x : -x
>> - Value *Op = CI->getArgOperand(0);
>> - Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
>> - "ispos");
>> - Value *Neg = B.CreateNeg(Op, "neg");
>> - return B.CreateSelect(Pos, Op, Neg);
>> - }
>> -};
>> -
>> -struct IsDigitOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - // We require integer(i32)
>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> - !FT->getParamType(0)->isIntegerTy(32))
>> - return nullptr;
>> -
>> - // isdigit(c) -> (c-'0') <u 10
>> - Value *Op = CI->getArgOperand(0);
>> - Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>> - Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>> - return B.CreateZExt(Op, CI->getType());
>> - }
>> -};
>> -
>> -struct IsAsciiOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - // We require integer(i32)
>> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> - !FT->getParamType(0)->isIntegerTy(32))
>> - return nullptr;
>> -
>> - // isascii(c) -> c <u 128
>> - Value *Op = CI->getArgOperand(0);
>> - Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>> - return B.CreateZExt(Op, CI->getType());
>> - }
>> -};
>> -
>> -struct ToAsciiOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - FunctionType *FT = Callee->getFunctionType();
>> - // We require i32(i32)
>> - if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> - !FT->getParamType(0)->isIntegerTy(32))
>> - return nullptr;
>> -
>> - // toascii(c) -> c & 0x7f
>> - return B.CreateAnd(CI->getArgOperand(0),
>> - ConstantInt::get(CI->getType(),0x7F));
>> - }
>> -};
>> + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>> + return B.CreateSelect(Cond, V, B.getInt32(0));
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + // We require integer(integer) where the types agree.
>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> + FT->getParamType(0) != FT->getReturnType())
>> + return nullptr;
>> +
>> + // abs(x) -> x >s -1 ? x : -x
>> + Value *Op = CI->getArgOperand(0);
>> + Value *Pos =
>> + B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
>> + Value *Neg = B.CreateNeg(Op, "neg");
>> + return B.CreateSelect(Pos, Op, Neg);
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + // We require integer(i32)
>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> + !FT->getParamType(0)->isIntegerTy(32))
>> + return nullptr;
>> +
>> + // isdigit(c) -> (c-'0') <u 10
>> + Value *Op = CI->getArgOperand(0);
>> + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>> + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>> + return B.CreateZExt(Op, CI->getType());
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + // We require integer(i32)
>> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> + !FT->getParamType(0)->isIntegerTy(32))
>> + return nullptr;
>> +
>> + // isascii(c) -> c <u 128
>> + Value *Op = CI->getArgOperand(0);
>> + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>> + return B.CreateZExt(Op, CI->getType());
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + FunctionType *FT = Callee->getFunctionType();
>> + // We require i32(i32)
>> + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> + !FT->getParamType(0)->isIntegerTy(32))
>> + return nullptr;
>> +
>> + // toascii(c) -> c & 0x7f
>> + return B.CreateAnd(CI->getArgOperand(0),
>> + ConstantInt::get(CI->getType(), 0x7F));
>> +}
>>
>> //===----------------------------------------------------------------------===//
>> // Formatting and IO Library Call Optimizations
>> //===----------------------------------------------------------------------===//
>>
>> -struct ErrorReportingOpt : public LibCallOptimization {
>> - ErrorReportingOpt(int S = -1) : StreamArg(S) {}
>> +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
>>
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &) override {
>> - // Error reporting calls should be cold, mark them as such.
>> - // This applies even to non-builtin calls: it is only a hint and applies to
>> - // functions that the frontend might not understand as builtins.
>> -
>> - // This heuristic was suggested in:
>> - // Improving Static Branch Prediction in a Compiler
>> - // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>> - // Proceedings of PACT'98, Oct. 1998, IEEE
>> -
>> - if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
>> - CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>> - }
>> +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
>> + int StreamArg) {
>> + // Error reporting calls should be cold, mark them as such.
>> + // This applies even to non-builtin calls: it is only a hint and applies to
>> + // functions that the frontend might not understand as builtins.
>> +
>> + // This heuristic was suggested in:
>> + // Improving Static Branch Prediction in a Compiler
>> + // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>> + // Proceedings of PACT'98, Oct. 1998, IEEE
>> + Function *Callee = CI->getCalledFunction();
>>
>> - return nullptr;
>> + if (!CI->hasFnAttr(Attribute::Cold) &&
>> + isReportingError(Callee, CI, StreamArg)) {
>> + CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>> }
>>
>> -protected:
>> - bool isReportingError(Function *Callee, CallInst *CI) {
>> - if (!ColdErrorCalls)
>> - return false;
>> -
>> - if (!Callee || !Callee->isDeclaration())
>> - return false;
>> -
>> - if (StreamArg < 0)
>> - return true;
>> + return nullptr;
>> +}
>>
>> - // These functions might be considered cold, but only if their stream
>> - // argument is stderr.
>> +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
>> + if (!ColdErrorCalls)
>> + return false;
>>
>> - if (StreamArg >= (int) CI->getNumArgOperands())
>> - return false;
>> - LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>> - if (!LI)
>> - return false;
>> - GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
>> - if (!GV || !GV->isDeclaration())
>> - return false;
>> - return GV->getName() == "stderr";
>> - }
>> -
>> - int StreamArg;
>> -};
>> -
>> -struct PrintFOpt : public LibCallOptimization {
>> - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) {
>> - // Check for a fixed format string.
>> - StringRef FormatStr;
>> - if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>> - return nullptr;
>> -
>> - // Empty format string -> noop.
>> - if (FormatStr.empty()) // Tolerate printf's declared void.
>> - return CI->use_empty() ? (Value*)CI :
>> - ConstantInt::get(CI->getType(), 0);
>> -
>> - // Do not do any of the following transformations if the printf return value
>> - // is used, in general the printf return value is not compatible with either
>> - // putchar() or puts().
>> - if (!CI->use_empty())
>> - return nullptr;
>> -
>> - // printf("x") -> putchar('x'), even for '%'.
>> - if (FormatStr.size() == 1) {
>> - Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>> - if (CI->use_empty() || !Res) return Res;
>> - return B.CreateIntCast(Res, CI->getType(), true);
>> - }
>> + if (!Callee || !Callee->isDeclaration())
>> + return false;
>>
>> - // printf("foo\n") --> puts("foo")
>> - if (FormatStr[FormatStr.size()-1] == '\n' &&
>> - FormatStr.find('%') == StringRef::npos) { // No format characters.
>> - // Create a string literal with no \n on it. We expect the constant merge
>> - // pass to be run after this pass, to merge duplicate strings.
>> - FormatStr = FormatStr.drop_back();
>> - Value *GV = B.CreateGlobalString(FormatStr, "str");
>> - Value *NewCI = EmitPutS(GV, B, DL, TLI);
>> - return (CI->use_empty() || !NewCI) ?
>> - NewCI :
>> - ConstantInt::get(CI->getType(), FormatStr.size()+1);
>> - }
>> + if (StreamArg < 0)
>> + return true;
>>
>> - // Optimize specific format strings.
>> - // printf("%c", chr) --> putchar(chr)
>> - if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>> - CI->getArgOperand(1)->getType()->isIntegerTy()) {
>> - Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>> + // These functions might be considered cold, but only if their stream
>> + // argument is stderr.
>>
>> - if (CI->use_empty() || !Res) return Res;
>> - return B.CreateIntCast(Res, CI->getType(), true);
>> - }
>> + if (StreamArg >= (int)CI->getNumArgOperands())
>> + return false;
>> + LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>> + if (!LI)
>> + return false;
>> + GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
>> + if (!GV || !GV->isDeclaration())
>> + return false;
>> + return GV->getName() == "stderr";
>> +}
>>
>> - // printf("%s\n", str) --> puts(str)
>> - if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>> - CI->getArgOperand(1)->getType()->isPointerTy()) {
>> - return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>> - }
>> - return nullptr;
>> +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
>> + // Check for a fixed format string.
>> + StringRef FormatStr;
>> + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>> + return nullptr;
>> +
>> + // Empty format string -> noop.
>> + if (FormatStr.empty()) // Tolerate printf's declared void.
>> + return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
>> +
>> + // Do not do any of the following transformations if the printf return value
>> + // is used, in general the printf return value is not compatible with either
>> + // putchar() or puts().
>> + if (!CI->use_empty())
>> + return nullptr;
>> +
>> + // printf("x") -> putchar('x'), even for '%'.
>> + if (FormatStr.size() == 1) {
>> + Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>> + if (CI->use_empty() || !Res)
>> + return Res;
>> + return B.CreateIntCast(Res, CI->getType(), true);
>> + }
>> +
>> + // printf("foo\n") --> puts("foo")
>> + if (FormatStr[FormatStr.size() - 1] == '\n' &&
>> + FormatStr.find('%') == StringRef::npos) { // No format characters.
>> + // Create a string literal with no \n on it. We expect the constant merge
>> + // pass to be run after this pass, to merge duplicate strings.
>> + FormatStr = FormatStr.drop_back();
>> + Value *GV = B.CreateGlobalString(FormatStr, "str");
>> + Value *NewCI = EmitPutS(GV, B, DL, TLI);
>> + return (CI->use_empty() || !NewCI)
>> + ? NewCI
>> + : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
>> + }
>> +
>> + // Optimize specific format strings.
>> + // printf("%c", chr) --> putchar(chr)
>> + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>> + CI->getArgOperand(1)->getType()->isIntegerTy()) {
>> + Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>> +
>> + if (CI->use_empty() || !Res)
>> + return Res;
>> + return B.CreateIntCast(Res, CI->getType(), true);
>> + }
>> +
>> + // printf("%s\n", str) --> puts(str)
>> + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>> + CI->getArgOperand(1)->getType()->isPointerTy()) {
>> + return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>> }
>> + return nullptr;
>> +}
>>
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Require one fixed pointer argument and an integer/void result.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> - !(FT->getReturnType()->isIntegerTy() ||
>> - FT->getReturnType()->isVoidTy()))
>> - return nullptr;
>> +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
>>
>> - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>> - return V;
>> - }
>> + Function *Callee = CI->getCalledFunction();
>> + // Require one fixed pointer argument and an integer/void result.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> + !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
>> + return nullptr;
>> +
>> + if (Value *V = optimizePrintFString(CI, B)) {
>> + return V;
>> + }
>>
>> - // printf(format, ...) -> iprintf(format, ...) if no floating point
>> - // arguments.
>> - if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
>> - Module *M = B.GetInsertBlock()->getParent()->getParent();
>> - Constant *IPrintFFn =
>> + // printf(format, ...) -> iprintf(format, ...) if no floating point
>> + // arguments.
>> + if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
>> + Module *M = B.GetInsertBlock()->getParent()->getParent();
>> + Constant *IPrintFFn =
>> M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
>> - CallInst *New = cast<CallInst>(CI->clone());
>> - New->setCalledFunction(IPrintFFn);
>> - B.Insert(New);
>> - return New;
>> - }
>> - return nullptr;
>> + CallInst *New = cast<CallInst>(CI->clone());
>> + New->setCalledFunction(IPrintFFn);
>> + B.Insert(New);
>> + return New;
>> }
>> -};
>> + return nullptr;
>> +}
>>
>> -struct SPrintFOpt : public LibCallOptimization {
>> - Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) {
>> - // Check for a fixed format string.
>> - StringRef FormatStr;
>> - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> - return nullptr;
>> -
>> - // If we just have a format string (nothing else crazy) transform it.
>> - if (CI->getNumArgOperands() == 2) {
>> - // Make sure there's no % in the constant array. We could try to handle
>> - // %% -> % in the future if we cared.
>> - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> - if (FormatStr[i] == '%')
>> - return nullptr; // we found a format specifier, bail out.
>> -
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> -
>> - // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> - ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
>> - FormatStr.size() + 1), 1); // nul byte.
>> - return ConstantInt::get(CI->getType(), FormatStr.size());
>> - }
>> +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
>> + // Check for a fixed format string.
>> + StringRef FormatStr;
>> + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> + return nullptr;
>>
>> - // The remaining optimizations require the format string to be "%s" or "%c"
>> - // and have an extra operand.
>> - if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> - CI->getNumArgOperands() < 3)
>> - return nullptr;
>> -
>> - // Decode the second character of the format string.
>> - if (FormatStr[1] == 'c') {
>> - // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>> - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
>> - Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
>> - Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>> - B.CreateStore(V, Ptr);
>> - Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>> - B.CreateStore(B.getInt8(0), Ptr);
>> + // If we just have a format string (nothing else crazy) transform it.
>> + if (CI->getNumArgOperands() == 2) {
>> + // Make sure there's no % in the constant array. We could try to handle
>> + // %% -> % in the future if we cared.
>> + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> + if (FormatStr[i] == '%')
>> + return nullptr; // we found a format specifier, bail out.
>>
>> - return ConstantInt::get(CI->getType(), 1);
>> - }
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> + return nullptr;
>>
>> - if (FormatStr[1] == 's') {
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> + // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>> + B.CreateMemCpy(
>> + CI->getArgOperand(0), CI->getArgOperand(1),
>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>> + FormatStr.size() + 1),
>> + 1); // Copy the null byte.
>> + return ConstantInt::get(CI->getType(), FormatStr.size());
>> + }
>>
>> - // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
>> - if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
>> + // The remaining optimizations require the format string to be "%s" or "%c"
>> + // and have an extra operand.
>> + if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> + CI->getNumArgOperands() < 3)
>> + return nullptr;
>>
>> - Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>> - if (!Len)
>> - return nullptr;
>> - Value *IncLen = B.CreateAdd(Len,
>> - ConstantInt::get(Len->getType(), 1),
>> - "leninc");
>> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
>> + // Decode the second character of the format string.
>> + if (FormatStr[1] == 'c') {
>> + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>> + if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>> + return nullptr;
>> + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
>> + Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>> + B.CreateStore(V, Ptr);
>> + Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>> + B.CreateStore(B.getInt8(0), Ptr);
>>
>> - // The sprintf result is the unincremented number of bytes in the string.
>> - return B.CreateIntCast(Len, CI->getType(), false);
>> - }
>> - return nullptr;
>> + return ConstantInt::get(CI->getType(), 1);
>> }
>>
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Require two fixed pointer arguments and an integer result.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - !FT->getReturnType()->isIntegerTy())
>> + if (FormatStr[1] == 's') {
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> return nullptr;
>>
>> - if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
>> - return V;
>> - }
>> + // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
>> + if (!CI->getArgOperand(2)->getType()->isPointerTy())
>> + return nullptr;
>>
>> - // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
>> - // point arguments.
>> - if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
>> - Module *M = B.GetInsertBlock()->getParent()->getParent();
>> - Constant *SIPrintFFn =
>> + Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>> + if (!Len)
>> + return nullptr;
>> + Value *IncLen =
>> + B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
>> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
>> +
>> + // The sprintf result is the unincremented number of bytes in the string.
>> + return B.CreateIntCast(Len, CI->getType(), false);
>> + }
>> + return nullptr;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Require two fixed pointer arguments and an integer result.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + !FT->getReturnType()->isIntegerTy())
>> + return nullptr;
>> +
>> + if (Value *V = optimizeSPrintFString(CI, B)) {
>> + return V;
>> + }
>> +
>> + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
>> + // point arguments.
>> + if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
>> + Module *M = B.GetInsertBlock()->getParent()->getParent();
>> + Constant *SIPrintFFn =
>> M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
>> - CallInst *New = cast<CallInst>(CI->clone());
>> - New->setCalledFunction(SIPrintFFn);
>> - B.Insert(New);
>> - return New;
>> - }
>> - return nullptr;
>> + CallInst *New = cast<CallInst>(CI->clone());
>> + New->setCalledFunction(SIPrintFFn);
>> + B.Insert(New);
>> + return New;
>> }
>> -};
>> + return nullptr;
>> +}
>>
>> -struct FPrintFOpt : public LibCallOptimization {
>> - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) {
>> - ErrorReportingOpt ER(/* StreamArg = */ 0);
>> - (void) ER.callOptimizer(Callee, CI, B);
>> -
>> - // All the optimizations depend on the format string.
>> - StringRef FormatStr;
>> - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> - return nullptr;
>> -
>> - // Do not do any of the following transformations if the fprintf return
>> - // value is used, in general the fprintf return value is not compatible
>> - // with fwrite(), fputc() or fputs().
>> - if (!CI->use_empty())
>> - return nullptr;
>> -
>> - // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>> - if (CI->getNumArgOperands() == 2) {
>> - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> - if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
>> - return nullptr; // We found a format specifier.
>> -
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> -
>> - return EmitFWrite(CI->getArgOperand(1),
>> - ConstantInt::get(DL->getIntPtrType(*Context),
>> - FormatStr.size()),
>> - CI->getArgOperand(0), B, DL, TLI);
>> - }
>> +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
>> + optimizeErrorReporting(CI, B, 0);
>> +
>> + // All the optimizations depend on the format string.
>> + StringRef FormatStr;
>> + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> + return nullptr;
>>
>> - // The remaining optimizations require the format string to be "%s" or "%c"
>> - // and have an extra operand.
>> - if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> - CI->getNumArgOperands() < 3)
>> + // Do not do any of the following transformations if the fprintf return
>> + // value is used, in general the fprintf return value is not compatible
>> + // with fwrite(), fputc() or fputs().
>> + if (!CI->use_empty())
>> + return nullptr;
>> +
>> + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>> + if (CI->getNumArgOperands() == 2) {
>> + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> + if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
>> + return nullptr; // We found a format specifier.
>> +
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> return nullptr;
>>
>> - // Decode the second character of the format string.
>> - if (FormatStr[1] == 'c') {
>> - // fprintf(F, "%c", chr) --> fputc(chr, F)
>> - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
>> - return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> - }
>> + return EmitFWrite(
>> + CI->getArgOperand(1),
>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()),
>> + CI->getArgOperand(0), B, DL, TLI);
>> + }
>>
>> - if (FormatStr[1] == 's') {
>> - // fprintf(F, "%s", str) --> fputs(str, F)
>> - if (!CI->getArgOperand(2)->getType()->isPointerTy())
>> - return nullptr;
>> - return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> - }
>> + // The remaining optimizations require the format string to be "%s" or "%c"
>> + // and have an extra operand.
>> + if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> + CI->getNumArgOperands() < 3)
>> return nullptr;
>> - }
>>
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Require two fixed paramters as pointers and integer result.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - !FT->getReturnType()->isIntegerTy())
>> + // Decode the second character of the format string.
>> + if (FormatStr[1] == 'c') {
>> + // fprintf(F, "%c", chr) --> fputc(chr, F)
>> + if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>> return nullptr;
>> + return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> + }
>>
>> - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>> - return V;
>> - }
>> + if (FormatStr[1] == 's') {
>> + // fprintf(F, "%s", str) --> fputs(str, F)
>> + if (!CI->getArgOperand(2)->getType()->isPointerTy())
>> + return nullptr;
>> + return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> + }
>> + return nullptr;
>> +}
>>
>> - // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
>> - // floating point arguments.
>> - if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
>> - Module *M = B.GetInsertBlock()->getParent()->getParent();
>> - Constant *FIPrintFFn =
>> +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Require two fixed paramters as pointers and integer result.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() ||
>> + !FT->getReturnType()->isIntegerTy())
>> + return nullptr;
>> +
>> + if (Value *V = optimizeFPrintFString(CI, B)) {
>> + return V;
>> + }
>> +
>> + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
>> + // floating point arguments.
>> + if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
>> + Module *M = B.GetInsertBlock()->getParent()->getParent();
>> + Constant *FIPrintFFn =
>> M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
>> - CallInst *New = cast<CallInst>(CI->clone());
>> - New->setCalledFunction(FIPrintFFn);
>> - B.Insert(New);
>> - return New;
>> - }
>> - return nullptr;
>> + CallInst *New = cast<CallInst>(CI->clone());
>> + New->setCalledFunction(FIPrintFFn);
>> + B.Insert(New);
>> + return New;
>> }
>> -};
>> + return nullptr;
>> +}
>>
>> -struct FWriteOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - ErrorReportingOpt ER(/* StreamArg = */ 3);
>> - (void) ER.callOptimizer(Callee, CI, B);
>> -
>> - // Require a pointer, an integer, an integer, a pointer, returning integer.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isIntegerTy() ||
>> - !FT->getParamType(2)->isIntegerTy() ||
>> - !FT->getParamType(3)->isPointerTy() ||
>> - !FT->getReturnType()->isIntegerTy())
>> - return nullptr;
>> -
>> - // Get the element size and count.
>> - ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> - ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> - if (!SizeC || !CountC) return nullptr;
>> - uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
>> -
>> - // If this is writing zero records, remove the call (it's a noop).
>> - if (Bytes == 0)
>> - return ConstantInt::get(CI->getType(), 0);
>> -
>> - // If this is writing one byte, turn it into fputc.
>> - // This optimisation is only valid, if the return value is unused.
>> - if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
>> - Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
>> - Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>> - return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>> - }
>> +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
>> + optimizeErrorReporting(CI, B, 3);
>>
>> - return nullptr;
>> + Function *Callee = CI->getCalledFunction();
>> + // Require a pointer, an integer, an integer, a pointer, returning integer.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isIntegerTy() ||
>> + !FT->getParamType(2)->isIntegerTy() ||
>> + !FT->getParamType(3)->isPointerTy() ||
>> + !FT->getReturnType()->isIntegerTy())
>> + return nullptr;
>> +
>> + // Get the element size and count.
>> + ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> + ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> + if (!SizeC || !CountC)
>> + return nullptr;
>> + uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
>> +
>> + // If this is writing zero records, remove the call (it's a noop).
>> + if (Bytes == 0)
>> + return ConstantInt::get(CI->getType(), 0);
>> +
>> + // If this is writing one byte, turn it into fputc.
>> + // This optimisation is only valid, if the return value is unused.
>> + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
>> + Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
>> + Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>> + return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>> }
>> -};
>>
>> -struct FPutsOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - ErrorReportingOpt ER(/* StreamArg = */ 1);
>> - (void) ER.callOptimizer(Callee, CI, B);
>> + return nullptr;
>> +}
>>
>> - // These optimizations require DataLayout.
>> - if (!DL) return nullptr;
>> +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
>> + optimizeErrorReporting(CI, B, 1);
>>
>> - // Require two pointers. Also, we can't optimize if return value is used.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> - !FT->getParamType(1)->isPointerTy() ||
>> - !CI->use_empty())
>> - return nullptr;
>> -
>> - // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>> - uint64_t Len = GetStringLength(CI->getArgOperand(0));
>> - if (!Len) return nullptr;
>> - // Known to have no uses (see above).
>> - return EmitFWrite(CI->getArgOperand(0),
>> - ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
>> - CI->getArgOperand(1), B, DL, TLI);
>> - }
>> -};
>> -
>> -struct PutsOpt : public LibCallOptimization {
>> - Value *callOptimizer(Function *Callee, CallInst *CI,
>> - IRBuilder<> &B) override {
>> - // Require one fixed pointer argument and an integer/void result.
>> - FunctionType *FT = Callee->getFunctionType();
>> - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> - !(FT->getReturnType()->isIntegerTy() ||
>> - FT->getReturnType()->isVoidTy()))
>> - return nullptr;
>> -
>> - // Check for a constant string.
>> - StringRef Str;
>> - if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>> - return nullptr;
>> -
>> - if (Str.empty() && CI->use_empty()) {
>> - // puts("") -> putchar('\n')
>> - Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>> - if (CI->use_empty() || !Res) return Res;
>> - return B.CreateIntCast(Res, CI->getType(), true);
>> - }
>> + Function *Callee = CI->getCalledFunction();
>>
>> + // These optimizations require DataLayout.
>> + if (!DL)
>> return nullptr;
>> - }
>> -};
>>
>> -} // End anonymous namespace.
>> + // Require two pointers. Also, we can't optimize if return value is used.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> + !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
>> + return nullptr;
>>
>> -namespace llvm {
>> + // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>> + uint64_t Len = GetStringLength(CI->getArgOperand(0));
>> + if (!Len)
>> + return nullptr;
>>
>> -class LibCallSimplifierImpl {
>> - const DataLayout *DL;
>> - const TargetLibraryInfo *TLI;
>> - const LibCallSimplifier *LCS;
>> - bool UnsafeFPShrink;
>> -
>> - // Math library call optimizations.
>> - CosOpt Cos;
>> - PowOpt Pow;
>> - Exp2Opt Exp2;
>> -public:
>> - LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
>> - const LibCallSimplifier *LCS,
>> - bool UnsafeFPShrink = false)
>> - : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
>> - this->DL = DL;
>> - this->TLI = TLI;
>> - this->LCS = LCS;
>> - this->UnsafeFPShrink = UnsafeFPShrink;
>> - }
>> -
>> - Value *optimizeCall(CallInst *CI);
>> - LibCallOptimization *lookupOptimization(CallInst *CI);
>> - bool hasFloatVersion(StringRef FuncName);
>> -};
>> + // Known to have no uses (see above).
>> + return EmitFWrite(
>> + CI->getArgOperand(0),
>> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
>> + CI->getArgOperand(1), B, DL, TLI);
>> +}
>>
>> -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
>> +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
>> + Function *Callee = CI->getCalledFunction();
>> + // Require one fixed pointer argument and an integer/void result.
>> + FunctionType *FT = Callee->getFunctionType();
>> + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> + !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
>> + return nullptr;
>> +
>> + // Check for a constant string.
>> + StringRef Str;
>> + if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>> + return nullptr;
>> +
>> + if (Str.empty() && CI->use_empty()) {
>> + // puts("") -> putchar('\n')
>> + Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>> + if (CI->use_empty() || !Res)
>> + return Res;
>> + return B.CreateIntCast(Res, CI->getType(), true);
>> + }
>> +
>> + return nullptr;
>> +}
>> +
>> +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
>> LibFunc::Func Func;
>> SmallString<20> FloatFuncName = FuncName;
>> FloatFuncName += 'f';
>> @@ -2048,263 +1874,204 @@ bool LibCallSimplifierImpl::hasFloatVers
>> return false;
>> }
>>
>> -// Fortified library call optimizations.
>> -static MemCpyChkOpt MemCpyChk;
>> -static MemMoveChkOpt MemMoveChk;
>> -static MemSetChkOpt MemSetChk;
>> -static StrCpyChkOpt StrCpyChk;
>> -static StpCpyChkOpt StpCpyChk;
>> -static StrNCpyChkOpt StrNCpyChk;
>> -
>> -// String library call optimizations.
>> -static StrCatOpt StrCat;
>> -static StrNCatOpt StrNCat;
>> -static StrChrOpt StrChr;
>> -static StrRChrOpt StrRChr;
>> -static StrCmpOpt StrCmp;
>> -static StrNCmpOpt StrNCmp;
>> -static StrCpyOpt StrCpy;
>> -static StpCpyOpt StpCpy;
>> -static StrNCpyOpt StrNCpy;
>> -static StrLenOpt StrLen;
>> -static StrPBrkOpt StrPBrk;
>> -static StrToOpt StrTo;
>> -static StrSpnOpt StrSpn;
>> -static StrCSpnOpt StrCSpn;
>> -static StrStrOpt StrStr;
>> -
>> -// Memory library call optimizations.
>> -static MemCmpOpt MemCmp;
>> -static MemCpyOpt MemCpy;
>> -static MemMoveOpt MemMove;
>> -static MemSetOpt MemSet;
>> -
>> -// Math library call optimizations.
>> -static UnaryDoubleFPOpt UnaryDoubleFP(false);
>> -static BinaryDoubleFPOpt BinaryDoubleFP(false);
>> -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> -static SinCosPiOpt SinCosPi;
>> -
>> - // Integer library call optimizations.
>> -static FFSOpt FFS;
>> -static AbsOpt Abs;
>> -static IsDigitOpt IsDigit;
>> -static IsAsciiOpt IsAscii;
>> -static ToAsciiOpt ToAscii;
>> -
>> -// Formatting and IO library call optimizations.
>> -static ErrorReportingOpt ErrorReporting;
>> -static ErrorReportingOpt ErrorReporting0(0);
>> -static ErrorReportingOpt ErrorReporting1(1);
>> -static PrintFOpt PrintF;
>> -static SPrintFOpt SPrintF;
>> -static FPrintFOpt FPrintF;
>> -static FWriteOpt FWrite;
>> -static FPutsOpt FPuts;
>> -static PutsOpt Puts;
>> +Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>> + if (CI->isNoBuiltin())
>> + return nullptr;
>>
>> -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
>> LibFunc::Func Func;
>> Function *Callee = CI->getCalledFunction();
>> StringRef FuncName = Callee->getName();
>> + IRBuilder<> Builder(CI);
>> + bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
>>
>> // Next check for intrinsics.
>> if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
>> + if (!isCallingConvC)
>> + return nullptr;
>> switch (II->getIntrinsicID()) {
>> case Intrinsic::pow:
>> - return &Pow;
>> + return optimizePow(CI, Builder);
>> case Intrinsic::exp2:
>> - return &Exp2;
>> + return optimizeExp2(CI, Builder);
>> default:
>> - return nullptr;
>> + return nullptr;
>> }
>> }
>>
>> // Then check for known library functions.
>> if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
>> + // We never change the calling convention.
>> + if (!ignoreCallingConv(Func) && !isCallingConvC)
>> + return nullptr;
>> switch (Func) {
>> - case LibFunc::strcat:
>> - return &StrCat;
>> - case LibFunc::strncat:
>> - return &StrNCat;
>> - case LibFunc::strchr:
>> - return &StrChr;
>> - case LibFunc::strrchr:
>> - return &StrRChr;
>> - case LibFunc::strcmp:
>> - return &StrCmp;
>> - case LibFunc::strncmp:
>> - return &StrNCmp;
>> - case LibFunc::strcpy:
>> - return &StrCpy;
>> - case LibFunc::stpcpy:
>> - return &StpCpy;
>> - case LibFunc::strncpy:
>> - return &StrNCpy;
>> - case LibFunc::strlen:
>> - return &StrLen;
>> - case LibFunc::strpbrk:
>> - return &StrPBrk;
>> - case LibFunc::strtol:
>> - case LibFunc::strtod:
>> - case LibFunc::strtof:
>> - case LibFunc::strtoul:
>> - case LibFunc::strtoll:
>> - case LibFunc::strtold:
>> - case LibFunc::strtoull:
>> - return &StrTo;
>> - case LibFunc::strspn:
>> - return &StrSpn;
>> - case LibFunc::strcspn:
>> - return &StrCSpn;
>> - case LibFunc::strstr:
>> - return &StrStr;
>> - case LibFunc::memcmp:
>> - return &MemCmp;
>> - case LibFunc::memcpy:
>> - return &MemCpy;
>> - case LibFunc::memmove:
>> - return &MemMove;
>> - case LibFunc::memset:
>> - return &MemSet;
>> - case LibFunc::cosf:
>> - case LibFunc::cos:
>> - case LibFunc::cosl:
>> - return &Cos;
>> - case LibFunc::sinpif:
>> - case LibFunc::sinpi:
>> - case LibFunc::cospif:
>> - case LibFunc::cospi:
>> - return &SinCosPi;
>> - case LibFunc::powf:
>> - case LibFunc::pow:
>> - case LibFunc::powl:
>> - return &Pow;
>> - case LibFunc::exp2l:
>> - case LibFunc::exp2:
>> - case LibFunc::exp2f:
>> - return &Exp2;
>> - case LibFunc::ffs:
>> - case LibFunc::ffsl:
>> - case LibFunc::ffsll:
>> - return &FFS;
>> - case LibFunc::abs:
>> - case LibFunc::labs:
>> - case LibFunc::llabs:
>> - return &Abs;
>> - case LibFunc::isdigit:
>> - return &IsDigit;
>> - case LibFunc::isascii:
>> - return &IsAscii;
>> - case LibFunc::toascii:
>> - return &ToAscii;
>> - case LibFunc::printf:
>> - return &PrintF;
>> - case LibFunc::sprintf:
>> - return &SPrintF;
>> - case LibFunc::fprintf:
>> - return &FPrintF;
>> - case LibFunc::fwrite:
>> - return &FWrite;
>> - case LibFunc::fputs:
>> - return &FPuts;
>> - case LibFunc::puts:
>> - return &Puts;
>> - case LibFunc::perror:
>> - return &ErrorReporting;
>> - case LibFunc::vfprintf:
>> - case LibFunc::fiprintf:
>> - return &ErrorReporting0;
>> - case LibFunc::fputc:
>> - return &ErrorReporting1;
>> - case LibFunc::ceil:
>> - case LibFunc::fabs:
>> - case LibFunc::floor:
>> - case LibFunc::rint:
>> - case LibFunc::round:
>> - case LibFunc::nearbyint:
>> - case LibFunc::trunc:
>> - if (hasFloatVersion(FuncName))
>> - return &UnaryDoubleFP;
>> - return nullptr;
>> - case LibFunc::acos:
>> - case LibFunc::acosh:
>> - case LibFunc::asin:
>> - case LibFunc::asinh:
>> - case LibFunc::atan:
>> - case LibFunc::atanh:
>> - case LibFunc::cbrt:
>> - case LibFunc::cosh:
>> - case LibFunc::exp:
>> - case LibFunc::exp10:
>> - case LibFunc::expm1:
>> - case LibFunc::log:
>> - case LibFunc::log10:
>> - case LibFunc::log1p:
>> - case LibFunc::log2:
>> - case LibFunc::logb:
>> - case LibFunc::sin:
>> - case LibFunc::sinh:
>> - case LibFunc::sqrt:
>> - case LibFunc::tan:
>> - case LibFunc::tanh:
>> - if (UnsafeFPShrink && hasFloatVersion(FuncName))
>> - return &UnsafeUnaryDoubleFP;
>> - return nullptr;
>> - case LibFunc::fmin:
>> - case LibFunc::fmax:
>> - if (hasFloatVersion(FuncName))
>> - return &BinaryDoubleFP;
>> - return nullptr;
>> - case LibFunc::memcpy_chk:
>> - return &MemCpyChk;
>> - default:
>> - return nullptr;
>> - }
>> + case LibFunc::strcat:
>> + return optimizeStrCat(CI, Builder);
>> + case LibFunc::strncat:
>> + return optimizeStrNCat(CI, Builder);
>> + case LibFunc::strchr:
>> + return optimizeStrChr(CI, Builder);
>> + case LibFunc::strrchr:
>> + return optimizeStrRChr(CI, Builder);
>> + case LibFunc::strcmp:
>> + return optimizeStrCmp(CI, Builder);
>> + case LibFunc::strncmp:
>> + return optimizeStrNCmp(CI, Builder);
>> + case LibFunc::strcpy:
>> + return optimizeStrCpy(CI, Builder);
>> + case LibFunc::stpcpy:
>> + return optimizeStpCpy(CI, Builder);
>> + case LibFunc::strncpy:
>> + return optimizeStrNCpy(CI, Builder);
>> + case LibFunc::strlen:
>> + return optimizeStrLen(CI, Builder);
>> + case LibFunc::strpbrk:
>> + return optimizeStrPBrk(CI, Builder);
>> + case LibFunc::strtol:
>> + case LibFunc::strtod:
>> + case LibFunc::strtof:
>> + case LibFunc::strtoul:
>> + case LibFunc::strtoll:
>> + case LibFunc::strtold:
>> + case LibFunc::strtoull:
>> + return optimizeStrTo(CI, Builder);
>> + case LibFunc::strspn:
>> + return optimizeStrSpn(CI, Builder);
>> + case LibFunc::strcspn:
>> + return optimizeStrCSpn(CI, Builder);
>> + case LibFunc::strstr:
>> + return optimizeStrStr(CI, Builder);
>> + case LibFunc::memcmp:
>> + return optimizeMemCmp(CI, Builder);
>> + case LibFunc::memcpy:
>> + return optimizeMemCpy(CI, Builder);
>> + case LibFunc::memmove:
>> + return optimizeMemMove(CI, Builder);
>> + case LibFunc::memset:
>> + return optimizeMemSet(CI, Builder);
>> + case LibFunc::cosf:
>> + case LibFunc::cos:
>> + case LibFunc::cosl:
>> + return optimizeCos(CI, Builder);
>> + case LibFunc::sinpif:
>> + case LibFunc::sinpi:
>> + case LibFunc::cospif:
>> + case LibFunc::cospi:
>> + return optimizeSinCosPi(CI, Builder);
>> + case LibFunc::powf:
>> + case LibFunc::pow:
>> + case LibFunc::powl:
>> + return optimizePow(CI, Builder);
>> + case LibFunc::exp2l:
>> + case LibFunc::exp2:
>> + case LibFunc::exp2f:
>> + return optimizeExp2(CI, Builder);
>> + case LibFunc::ffs:
>> + case LibFunc::ffsl:
>> + case LibFunc::ffsll:
>> + return optimizeFFS(CI, Builder);
>> + case LibFunc::abs:
>> + case LibFunc::labs:
>> + case LibFunc::llabs:
>> + return optimizeAbs(CI, Builder);
>> + case LibFunc::isdigit:
>> + return optimizeIsDigit(CI, Builder);
>> + case LibFunc::isascii:
>> + return optimizeIsAscii(CI, Builder);
>> + case LibFunc::toascii:
>> + return optimizeToAscii(CI, Builder);
>> + case LibFunc::printf:
>> + return optimizePrintF(CI, Builder);
>> + case LibFunc::sprintf:
>> + return optimizeSPrintF(CI, Builder);
>> + case LibFunc::fprintf:
>> + return optimizeFPrintF(CI, Builder);
>> + case LibFunc::fwrite:
>> + return optimizeFWrite(CI, Builder);
>> + case LibFunc::fputs:
>> + return optimizeFPuts(CI, Builder);
>> + case LibFunc::puts:
>> + return optimizePuts(CI, Builder);
>> + case LibFunc::perror:
>> + return optimizeErrorReporting(CI, Builder);
>> + case LibFunc::vfprintf:
>> + case LibFunc::fiprintf:
>> + return optimizeErrorReporting(CI, Builder, 0);
>> + case LibFunc::fputc:
>> + return optimizeErrorReporting(CI, Builder, 1);
>> + case LibFunc::ceil:
>> + case LibFunc::fabs:
>> + case LibFunc::floor:
>> + case LibFunc::rint:
>> + case LibFunc::round:
>> + case LibFunc::nearbyint:
>> + case LibFunc::trunc:
>> + if (hasFloatVersion(FuncName))
>> + return optimizeUnaryDoubleFP(CI, Builder, false);
>> + return nullptr;
>> + case LibFunc::acos:
>> + case LibFunc::acosh:
>> + case LibFunc::asin:
>> + case LibFunc::asinh:
>> + case LibFunc::atan:
>> + case LibFunc::atanh:
>> + case LibFunc::cbrt:
>> + case LibFunc::cosh:
>> + case LibFunc::exp:
>> + case LibFunc::exp10:
>> + case LibFunc::expm1:
>> + case LibFunc::log:
>> + case LibFunc::log10:
>> + case LibFunc::log1p:
>> + case LibFunc::log2:
>> + case LibFunc::logb:
>> + case LibFunc::sin:
>> + case LibFunc::sinh:
>> + case LibFunc::sqrt:
>> + case LibFunc::tan:
>> + case LibFunc::tanh:
>> + if (UnsafeFPShrink && hasFloatVersion(FuncName))
>> + return optimizeUnaryDoubleFP(CI, Builder, true);
>> + return nullptr;
>> + case LibFunc::fmin:
>> + case LibFunc::fmax:
>> + if (hasFloatVersion(FuncName))
>> + return optimizeBinaryDoubleFP(CI, Builder);
>> + return nullptr;
>> + case LibFunc::memcpy_chk:
>> + return optimizeMemCpyChk(CI, Builder);
>> + default:
>> + return nullptr;
>> + }
>> }
>>
>> + if (!isCallingConvC)
>> + return nullptr;
>> +
>> // Finally check for fortified library calls.
>> if (FuncName.endswith("_chk")) {
>> if (FuncName == "__memmove_chk")
>> - return &MemMoveChk;
>> + return optimizeMemMoveChk(CI, Builder);
>> else if (FuncName == "__memset_chk")
>> - return &MemSetChk;
>> + return optimizeMemSetChk(CI, Builder);
>> else if (FuncName == "__strcpy_chk")
>> - return &StrCpyChk;
>> + return optimizeStrCpyChk(CI, Builder);
>> else if (FuncName == "__stpcpy_chk")
>> - return &StpCpyChk;
>> + return optimizeStpCpyChk(CI, Builder);
>> else if (FuncName == "__strncpy_chk")
>> - return &StrNCpyChk;
>> + return optimizeStrNCpyChk(CI, Builder);
>> else if (FuncName == "__stpncpy_chk")
>> - return &StrNCpyChk;
>> + return optimizeStrNCpyChk(CI, Builder);
>> }
>>
>> return nullptr;
>> -
>> -}
>> -
>> -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
>> - LibCallOptimization *LCO = lookupOptimization(CI);
>> - if (LCO) {
>> - IRBuilder<> Builder(CI);
>> - return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
>> - }
>> - return nullptr;
>> }
>>
>> LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
>> const TargetLibraryInfo *TLI,
>> - bool UnsafeFPShrink) {
>> - Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
>> -}
>> -
>> -LibCallSimplifier::~LibCallSimplifier() {
>> - delete Impl;
>> -}
>> -
>> -Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>> - if (CI->isNoBuiltin()) return nullptr;
>> - return Impl->optimizeCall(CI);
>> + bool UnsafeFPShrink) :
>> + DL(DL),
>> + TLI(TLI),
>> + UnsafeFPShrink(UnsafeFPShrink) {
>> }
>>
>> void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
>> @@ -2312,8 +2079,6 @@ void LibCallSimplifier::replaceAllUsesWi
>> I->eraseFromParent();
>> }
>>
>> -}
>> -
>> // TODO:
>> // Additional cases that we need to add to this file:
>> //
>>
>>
>> _______________________________________________
>> llvm-commits mailing list
>> llvm-commits at cs.uiuc.edu <mailto:llvm-commits at cs.uiuc.edu>
>> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits <http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits>
>>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20140917/be84a698/attachment.html>
More information about the llvm-commits
mailing list