[llvm] r217982 - Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.

Chris Bieneman beanz at apple.com
Wed Sep 17 15:30:18 PDT 2014


Agreed. Yours is the better solution. If you’d like I can make the change.

-Chris

> On Sep 17, 2014, at 3:28 PM, David Blaikie <dblaikie at gmail.com> wrote:
> 
> 
> 
> On Wed, Sep 17, 2014 at 3:27 PM, Chris Bieneman <beanz at apple.com <mailto:beanz at apple.com>> wrote:
> I put in a change in r217988 that should have resolved it. I think your change will fail to build because now there are two destructors declared.
> 
> Yep - sorry, I seem to be a bit slow off the mark.
> 
> Reverted my fix in r217989. 
> 
> Though it might be worth considering my fix over yours as it doesn't look like objects of this type are polymorphically owned - so no virtual dtor is necessary.
> 
> - David
>  
> 
> -Chris
> 
>> On Sep 17, 2014, at 3:25 PM, David Blaikie <dblaikie at gmail.com <mailto:dblaikie at gmail.com>> wrote:
>> 
>> This introduced a -Wnon-virtual-dtor warning which I've fixed in r217988. Let me know if that's not the right fix, etc.
>> 
>> - David
>> 
>> On Wed, Sep 17, 2014 at 1:55 PM, Chris Bieneman <beanz at apple.com <mailto:beanz at apple.com>> wrote:
>> Author: cbieneman
>> Date: Wed Sep 17 15:55:46 2014
>> New Revision: 217982
>> 
>> URL: http://llvm.org/viewvc/llvm-project?rev=217982&view=rev <http://llvm.org/viewvc/llvm-project?rev=217982&view=rev>
>> Log:
>> Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
>> 
>> Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.
>> 
>> Reviewers: chandlerc, resistor
>> 
>> Reviewed By: resistor
>> 
>> Subscribers: morisset, resistor, llvm-commits
>> 
>> Differential Revision: http://reviews.llvm.org/D5364 <http://reviews.llvm.org/D5364>
>> 
>> Modified:
>>     llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>>     llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>>     llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>> 
>> Modified: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff>
>> ==============================================================================
>> --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h (original)
>> +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h Wed Sep 17 15:55:46 2014
>> @@ -15,40 +15,114 @@
>>  #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>>  #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>> 
>> +#include "llvm/ADT/StringRef.h"
>> +#include "llvm/IR/IRBuilder.h"
>> +
>>  namespace llvm {
>> -  class Value;
>> -  class CallInst;
>> -  class DataLayout;
>> -  class Instruction;
>> -  class TargetLibraryInfo;
>> -  class LibCallSimplifierImpl;
>> -
>> -  /// LibCallSimplifier - This class implements a collection of optimizations
>> -  /// that replace well formed calls to library functions with a more optimal
>> -  /// form.  For example, replacing 'printf("Hello!")' with 'puts("Hello!")'.
>> -  class LibCallSimplifier {
>> -    /// Impl - A pointer to the actual implementation of the library call
>> -    /// simplifier.
>> -    LibCallSimplifierImpl *Impl;
>> -
>> -  public:
>> -    LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
>> -                      bool UnsafeFPShrink);
>> -    virtual ~LibCallSimplifier();
>> -
>> -    /// optimizeCall - Take the given call instruction and return a more
>> -    /// optimal value to replace the instruction with or 0 if a more
>> -    /// optimal form can't be found.  Note that the returned value may
>> -    /// be equal to the instruction being optimized.  In this case all
>> -    /// other instructions that use the given instruction were modified
>> -    /// and the given instruction is dead.
>> -    Value *optimizeCall(CallInst *CI);
>> -
>> -    /// replaceAllUsesWith - This method is used when the library call
>> -    /// simplifier needs to replace instructions other than the library
>> -    /// call being modified.
>> -    virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>> -  };
>> +class Value;
>> +class CallInst;
>> +class DataLayout;
>> +class Instruction;
>> +class TargetLibraryInfo;
>> +class BasicBlock;
>> +class Function;
>> +
>> +/// LibCallSimplifier - This class implements a collection of optimizations
>> +/// that replace well formed calls to library functions with a more optimal
>> +/// form.  For example, replacing 'printf("Hello!")' with 'puts("Hello!")'.
>> +class LibCallSimplifier {
>> +private:
>> +  const DataLayout *DL;
>> +  const TargetLibraryInfo *TLI;
>> +  bool UnsafeFPShrink;
>> +
>> +public:
>> +  LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
>> +                    bool UnsafeFPShrink);
>> +
>> +  /// optimizeCall - Take the given call instruction and return a more
>> +  /// optimal value to replace the instruction with or 0 if a more
>> +  /// optimal form can't be found.  Note that the returned value may
>> +  /// be equal to the instruction being optimized.  In this case all
>> +  /// other instructions that use the given instruction were modified
>> +  /// and the given instruction is dead.
>> +  Value *optimizeCall(CallInst *CI);
>> +
>> +  /// replaceAllUsesWith - This method is used when the library call
>> +  /// simplifier needs to replace instructions other than the library
>> +  /// call being modified.
>> +  virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
>> +
>> +private:
>> +  // Fortified Library Call Optimizations
>> +  Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B);
>> +
>> +  // String and Memory Library Call Optimizations
>> +  Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
>> +
>> +  // Math Library Optimizations
>> +  Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType);
>> +  Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizePow(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
>> +
>> +  // Integer Library Call Optimizations
>> +  Value *optimizeFFS(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeAbs(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B);
>> +
>> +  // Formatting and IO Library Call Optimizations
>> +  Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
>> +                                int StreamArg = -1);
>> +  Value *optimizePrintF(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizePuts(CallInst *CI, IRBuilder<> &B);
>> +
>> +  // Helper methods
>> +  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B);
>> +  void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>> +                      SmallVectorImpl<CallInst *> &SinCalls,
>> +                      SmallVectorImpl<CallInst *> &CosCalls,
>> +                      SmallVectorImpl<CallInst *> &SinCosCalls);
>> +  void replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, Value *Res);
>> +  Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B);
>> +  Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B);
>> +
>> +  /// hasFloatVersion - Checks if there is a float version of the specified
>> +  /// function by checking for an existing function with name FuncName + f
>> +  bool hasFloatVersion(StringRef FuncName);
>> +};
>>  } // End llvm namespace
>> 
>>  #endif
>> 
>> Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff>
>> ==============================================================================
>> --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp (original)
>> +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Wed Sep 17 15:55:46 2014
>> @@ -70,10 +70,11 @@ STATISTIC(NumExpand,    "Number of expan
>>  STATISTIC(NumFactor   , "Number of factorizations");
>>  STATISTIC(NumReassoc  , "Number of reassociations");
>> 
>> -static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
>> -                                   cl::init(false),
>> -                                   cl::desc("Enable unsafe double to float "
>> -                                            "shrinking for math lib calls"));
>> +static cl::opt<bool>
>> +    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
>> +                         cl::init(false),
>> +                         cl::desc("Enable unsafe double to float "
>> +                                  "shrinking for math lib calls"));
>> 
>>  // Initialization Routines
>>  void llvm::initializeInstCombine(PassRegistry &Registry) {
>> @@ -2913,7 +2914,7 @@ public:
>>    InstCombinerLibCallSimplifier(const DataLayout *DL,
>>                                  const TargetLibraryInfo *TLI,
>>                                  InstCombiner *IC)
>> -    : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
>> +    : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) {
>>      this->IC = IC;
>>    }
>> 
>> 
>> Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff>
>> ==============================================================================
>> --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
>> +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Sep 17 15:55:46 2014
>> @@ -35,57 +35,26 @@
>>  using namespace llvm;
>> 
>>  static cl::opt<bool>
>> -ColdErrorCalls("error-reporting-is-cold",  cl::init(true),
>> -  cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
>> -
>> -/// This class is the abstract base class for the set of optimizations that
>> -/// corresponds to one library call.
>> -namespace {
>> -class LibCallOptimization {
>> -protected:
>> -  Function *Caller;
>> -  const DataLayout *DL;
>> -  const TargetLibraryInfo *TLI;
>> -  const LibCallSimplifier *LCS;
>> -  LLVMContext* Context;
>> -public:
>> -  LibCallOptimization() { }
>> -  virtual ~LibCallOptimization() {}
>> -
>> -  /// callOptimizer - This pure virtual method is implemented by base classes to
>> -  /// do various optimizations.  If this returns null then no transformation was
>> -  /// performed.  If it returns CI, then it transformed the call and CI is to be
>> -  /// deleted.  If it returns something else, replace CI with the new value and
>> -  /// delete CI.
>> -  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
>> -    =0;
>> -
>> -  /// ignoreCallingConv - Returns false if this transformation could possibly
>> -  /// change the calling convention.
>> -  virtual bool ignoreCallingConv() { return false; }
>> -
>> -  Value *optimizeCall(CallInst *CI, const DataLayout *DL,
>> -                      const TargetLibraryInfo *TLI,
>> -                      const LibCallSimplifier *LCS, IRBuilder<> &B) {
>> -    Caller = CI->getParent()->getParent();
>> -    this->DL = DL;
>> -    this->TLI = TLI;
>> -    this->LCS = LCS;
>> -    if (CI->getCalledFunction())
>> -      Context = &CI->getCalledFunction()->getContext();
>> -
>> -    // We never change the calling convention.
>> -    if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
>> -      return nullptr;
>> -
>> -    return callOptimizer(CI->getCalledFunction(), CI, B);
>> -  }
>> -};
>> +    ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
>> +                   cl::desc("Treat error-reporting calls as cold"));
>> 
>>  //===----------------------------------------------------------------------===//
>>  // Helper Functions
>>  //===----------------------------------------------------------------------===//
>> 
>> +static bool ignoreCallingConv(LibFunc::Func Func) {
>> +  switch (Func) {
>> +  case LibFunc::abs:
>> +  case LibFunc::labs:
>> +  case LibFunc::llabs:
>> +  case LibFunc::strlen:
>> +    return true;
>> +  default:
>> +    return false;
>> +  }
>> +  llvm_unreachable();
>> +}
>> +
>>  /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
>>  /// value is equal or not-equal to zero.
>>  static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
>> @@ -142,967 +111,912 @@ static bool hasUnaryFloatFn(const Target
>>  // Fortified Library Call Optimizations
>>  //===----------------------------------------------------------------------===//
>> 
>> -struct FortifiedLibCallOptimization : public LibCallOptimization {
>> -protected:
>> -  virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>> -                         bool isString) const = 0;
>> -};
>> -
>> -struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
>> -  CallInst *CI;
>> -
>> -  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
>> -                  bool isString) const override {
>> -    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>> +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp, unsigned SizeArgOp,
>> +                       bool isString) {
>> +  if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
>> +    return true;
>> +  if (ConstantInt *SizeCI =
>> +          dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>> +    if (SizeCI->isAllOnesValue())
>>        return true;
>> -    if (ConstantInt *SizeCI =
>> -                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
>> -      if (SizeCI->isAllOnesValue())
>> -        return true;
>> -      if (isString) {
>> -        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>> -        // If the length is 0 we don't know how long it is and so we can't
>> -        // remove the check.
>> -        if (Len == 0) return false;
>> -        return SizeCI->getZExtValue() >= Len;
>> -      }
>> -      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
>> -                                                  CI->getArgOperand(SizeArgOp)))
>> -        return SizeCI->getZExtValue() >= Arg->getZExtValue();
>> +    if (isString) {
>> +      uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
>> +      // If the length is 0 we don't know how long it is and so we can't
>> +      // remove the check.
>> +      if (Len == 0)
>> +        return false;
>> +      return SizeCI->getZExtValue() >= Len;
>>      }
>> -    return false;
>> +    if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp)))
>> +      return SizeCI->getZExtValue() >= Arg->getZExtValue();
>>    }
>> -};
>> +  return false;
>> +}
>> 
>> -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    this->CI = CI;
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    LLVMContext &Context = CI->getParent()->getContext();
>> -
>> -    // Check if this has the right signature.
>> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>> -      return nullptr;
>> -
>> -    if (isFoldable(3, 2, false)) {
>> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                     CI->getArgOperand(2), 1);
>> -      return CI->getArgOperand(0);
>> -    }
>> -    return nullptr;
>> -  }
>> -};
>> +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  LLVMContext &Context = CI->getContext();
>> 
>> -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    this->CI = CI;
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    LLVMContext &Context = CI->getParent()->getContext();
>> -
>> -    // Check if this has the right signature.
>> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>> -      return nullptr;
>> -
>> -    if (isFoldable(3, 2, false)) {
>> -      B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                      CI->getArgOperand(2), 1);
>> -      return CI->getArgOperand(0);
>> -    }
>> +  // Check if this has the right signature.
>> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>      return nullptr;
>> -  }
>> -};
>> 
>> -struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    this->CI = CI;
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    LLVMContext &Context = CI->getParent()->getContext();
>> -
>> -    // Check if this has the right signature.
>> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isIntegerTy() ||
>> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>> -      return nullptr;
>> -
>> -    if (isFoldable(3, 2, false)) {
>> -      Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
>> -                                   false);
>> -      B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> -      return CI->getArgOperand(0);
>> -    }
>> -    return nullptr;
>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> +    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> +                   CI->getArgOperand(2), 1);
>> +    return CI->getArgOperand(0);
>>    }
>> -};
>> +  return nullptr;
>> +}
>> 
>> -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    this->CI = CI;
>> -    StringRef Name = Callee->getName();
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    LLVMContext &Context = CI->getParent()->getContext();
>> -
>> -    // Check if this has the right signature.
>> -    if (FT->getNumParams() != 3 ||
>> -        FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> -        FT->getParamType(2) != DL->getIntPtrType(Context))
>> -      return nullptr;
>> -
>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> -    if (Dst == Src)      // __strcpy_chk(x,x)  -> x
>> -      return Src;
>> -
>> -    // If a) we don't have any length information, or b) we know this will
>> -    // fit then just lower to a plain strcpy. Otherwise we'll keep our
>> -    // strcpy_chk call which may fail at runtime if the size is too long.
>> -    // TODO: It might be nice to get a maximum length out of the possible
>> -    // string lengths for varying.
>> -    if (isFoldable(2, 1, true)) {
>> -      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> -      return Ret;
>> -    } else {
>> -      // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>> -      uint64_t Len = GetStringLength(Src);
>> -      if (Len == 0) return nullptr;
>> -
>> -      // This optimization require DataLayout.
>> -      if (!DL) return nullptr;
>> -
>> -      Value *Ret =
>> -       EmitMemCpyChk(Dst, Src,
>> -                      ConstantInt::get(DL->getIntPtrType(Context), Len),
>> -                      CI->getArgOperand(2), B, DL, TLI);
>> -      return Ret;
>> -    }
>> +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  LLVMContext &Context = CI->getContext();
>> +
>> +  // Check if this has the right signature.
>> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>      return nullptr;
>> +
>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> +    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> +                    CI->getArgOperand(2), 1);
>> +    return CI->getArgOperand(0);
>>    }
>> -};
>> +  return nullptr;
>> +}
>> 
>> -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    this->CI = CI;
>> -    StringRef Name = Callee->getName();
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    LLVMContext &Context = CI->getParent()->getContext();
>> -
>> -    // Check if this has the right signature.
>> -    if (FT->getNumParams() != 3 ||
>> -        FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> -        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> -      return nullptr;
>> -
>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> -    if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
>> -      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> -      return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> -    }
>> +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  LLVMContext &Context = CI->getContext();
>> 
>> -    // If a) we don't have any length information, or b) we know this will
>> -    // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>> -    // stpcpy_chk call which may fail at runtime if the size is too long.
>> -    // TODO: It might be nice to get a maximum length out of the possible
>> -    // string lengths for varying.
>> -    if (isFoldable(2, 1, true)) {
>> -      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> -      return Ret;
>> -    } else {
>> -      // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>> -      uint64_t Len = GetStringLength(Src);
>> -      if (Len == 0) return nullptr;
>> -
>> -      // This optimization require DataLayout.
>> -      if (!DL) return nullptr;
>> -
>> -      Type *PT = FT->getParamType(0);
>> -      Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> -      Value *DstEnd = B.CreateGEP(Dst,
>> -                                  ConstantInt::get(DL->getIntPtrType(PT),
>> -                                                   Len - 1));
>> -      if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
>> -        return nullptr;
>> -      return DstEnd;
>> -    }
>> +  // Check if this has the right signature.
>> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isIntegerTy() ||
>> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>>      return nullptr;
>> -  }
>> -};
>> 
>> -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    this->CI = CI;
>> -    StringRef Name = Callee->getName();
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    LLVMContext &Context = CI->getParent()->getContext();
>> -
>> -    // Check if this has the right signature.
>> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> -        !FT->getParamType(2)->isIntegerTy() ||
>> -        FT->getParamType(3) != DL->getIntPtrType(Context))
>> -      return nullptr;
>> -
>> -    if (isFoldable(3, 2, false)) {
>> -      Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                               CI->getArgOperand(2), B, DL, TLI,
>> -                               Name.substr(2, 7));
>> -      return Ret;
>> -    }
>> -    return nullptr;
>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> +    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
>> +    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> +    return CI->getArgOperand(0);
>>    }
>> -};
>> -
>> -//===----------------------------------------------------------------------===//
>> -// String and Memory Library Call Optimizations
>> -//===----------------------------------------------------------------------===//
>> -
>> -struct StrCatOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strcat" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>> -        FT->getParamType(0) != FT->getReturnType() ||
>> -        FT->getParamType(1) != FT->getReturnType())
>> -      return nullptr;
>> -
>> -    // Extract some information from the instruction
>> -    Value *Dst = CI->getArgOperand(0);
>> -    Value *Src = CI->getArgOperand(1);
>> +  return nullptr;
>> +}
>> 
>> -    // See if we can get the length of the input string.
>> +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  StringRef Name = Callee->getName();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  LLVMContext &Context = CI->getContext();
>> +
>> +  // Check if this has the right signature.
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> +      FT->getParamType(2) != DL->getIntPtrType(Context))
>> +    return nullptr;
>> +
>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> +  if (Dst == Src) // __strcpy_chk(x,x)  -> x
>> +    return Src;
>> +
>> +  // If a) we don't have any length information, or b) we know this will
>> +  // fit then just lower to a plain strcpy. Otherwise we'll keep our
>> +  // strcpy_chk call which may fail at runtime if the size is too long.
>> +  // TODO: It might be nice to get a maximum length out of the possible
>> +  // string lengths for varying.
>> +  if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>> +    Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> +    return Ret;
>> +  } else {
>> +    // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>>      uint64_t Len = GetStringLength(Src);
>> -    if (Len == 0) return nullptr;
>> -    --Len;  // Unbias length.
>> -
>> -    // Handle the simple, do-nothing case: strcat(x, "") -> x
>>      if (Len == 0)
>> -      return Dst;
>> +      return nullptr;
>> 
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +    // This optimization require DataLayout.
>> +    if (!DL)
>> +      return nullptr;
>> 
>> -    return emitStrLenMemCpy(Src, Dst, Len, B);
>> +    Value *Ret = EmitMemCpyChk(
>> +        Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len),
>> +        CI->getArgOperand(2), B, DL, TLI);
>> +    return Ret;
>>    }
>> +  return nullptr;
>> +}
>> 
>> -  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>> -                          IRBuilder<> &B) {
>> -    // We need to find the end of the destination string.  That's where the
>> -    // memory is to be moved to. We just generate a call to strlen.
>> -    Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>> -    if (!DstLen)
>> +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  StringRef Name = Callee->getName();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  LLVMContext &Context = CI->getContext();
>> +
>> +  // Check if this has the right signature.
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> +      FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> +    return nullptr;
>> +
>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> +  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
>> +    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> +    return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> +  }
>> +
>> +  // If a) we don't have any length information, or b) we know this will
>> +  // fit then just lower to a plain stpcpy. Otherwise we'll keep our
>> +  // stpcpy_chk call which may fail at runtime if the size is too long.
>> +  // TODO: It might be nice to get a maximum length out of the possible
>> +  // string lengths for varying.
>> +  if (isFortifiedCallFoldable(CI, 2, 1, true)) {
>> +    Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
>> +    return Ret;
>> +  } else {
>> +    // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
>> +    uint64_t Len = GetStringLength(Src);
>> +    if (Len == 0)
>>        return nullptr;
>> 
>> -    // Now that we have the destination's length, we must index into the
>> -    // destination's pointer to get the actual memcpy destination (end of
>> -    // the string .. we're concatenating).
>> -    Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>> +    // This optimization require DataLayout.
>> +    if (!DL)
>> +      return nullptr;
>> 
>> -    // We have enough information to now generate the memcpy call to do the
>> -    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
>> -    B.CreateMemCpy(CpyDst, Src,
>> -                   ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
>> -    return Dst;
>> +    Type *PT = FT->getParamType(0);
>> +    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> +    Value *DstEnd =
>> +        B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
>> +    if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
>> +      return nullptr;
>> +    return DstEnd;
>>    }
>> -};
>> +  return nullptr;
>> +}
>> 
>> -struct StrNCatOpt : public StrCatOpt {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strncat" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 ||
>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>> -        FT->getParamType(0) != FT->getReturnType() ||
>> -        FT->getParamType(1) != FT->getReturnType() ||
>> -        !FT->getParamType(2)->isIntegerTy())
>> -      return nullptr;
>> -
>> -    // Extract some information from the instruction
>> -    Value *Dst = CI->getArgOperand(0);
>> -    Value *Src = CI->getArgOperand(1);
>> -    uint64_t Len;
>> -
>> -    // We don't do anything if length is not constant
>> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> -      Len = LengthArg->getZExtValue();
>> -    else
>> -      return nullptr;
>> -
>> -    // See if we can get the length of the input string.
>> -    uint64_t SrcLen = GetStringLength(Src);
>> -    if (SrcLen == 0) return nullptr;
>> -    --SrcLen;  // Unbias length.
>> -
>> -    // Handle the simple, do-nothing cases:
>> -    // strncat(x, "", c) -> x
>> -    // strncat(x,  c, 0) -> x
>> -    if (SrcLen == 0 || Len == 0) return Dst;
>> +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  StringRef Name = Callee->getName();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  LLVMContext &Context = CI->getContext();
>> +
>> +  // Check if this has the right signature.
>> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
>> +      !FT->getParamType(2)->isIntegerTy() ||
>> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>> +    return nullptr;
>> +
>> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
>> +    Value *Ret =
>> +        EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> +                    CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
>> +    return Ret;
>> +  }
>> +  return nullptr;
>> +}
>> 
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +//===----------------------------------------------------------------------===//
>> +// String and Memory Library Call Optimizations
>> +//===----------------------------------------------------------------------===//
>> 
>> -    // We don't optimize this case
>> -    if (Len < SrcLen) return nullptr;
>> +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strcat" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2||
>> +      FT->getReturnType() != B.getInt8PtrTy() ||
>> +      FT->getParamType(0) != FT->getReturnType() ||
>> +      FT->getParamType(1) != FT->getReturnType())
>> +    return nullptr;
>> +
>> +  // Extract some information from the instruction
>> +  Value *Dst = CI->getArgOperand(0);
>> +  Value *Src = CI->getArgOperand(1);
>> +
>> +  // See if we can get the length of the input string.
>> +  uint64_t Len = GetStringLength(Src);
>> +  if (Len == 0)
>> +    return nullptr;
>> +  --Len; // Unbias length.
>> 
>> -    // strncat(x, s, c) -> strcat(x, s)
>> -    // s is constant so the strcat can be optimized further
>> -    return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>> -  }
>> -};
>> -
>> -struct StrChrOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strchr" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>> -        FT->getParamType(0) != FT->getReturnType() ||
>> -        !FT->getParamType(1)->isIntegerTy(32))
>> -      return nullptr;
>> -
>> -    Value *SrcStr = CI->getArgOperand(0);
>> -
>> -    // If the second operand is non-constant, see if we can compute the length
>> -    // of the input string and turn this into memchr.
>> -    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> -    if (!CharC) {
>> -      // These optimizations require DataLayout.
>> -      if (!DL) return nullptr;
>> +  // Handle the simple, do-nothing case: strcat(x, "") -> x
>> +  if (Len == 0)
>> +    return Dst;
>> 
>> -      uint64_t Len = GetStringLength(SrcStr);
>> -      if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
>> -        return nullptr;
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> 
>> -      return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
>> -                        ConstantInt::get(DL->getIntPtrType(*Context), Len),
>> -                        B, DL, TLI);
>> -    }
>> +  return emitStrLenMemCpy(Src, Dst, Len, B);
>> +}
>> 
>> -    // Otherwise, the character is a constant, see if the first argument is
>> -    // a string literal.  If so, we can constant fold.
>> -    StringRef Str;
>> -    if (!getConstantStringInfo(SrcStr, Str)) {
>> -      if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>> -        return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
>> -      return nullptr;
>> -    }
>> +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
>> +                                           IRBuilder<> &B) {
>> +  // We need to find the end of the destination string.  That's where the
>> +  // memory is to be moved to. We just generate a call to strlen.
>> +  Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
>> +  if (!DstLen)
>> +    return nullptr;
>> +
>> +  // Now that we have the destination's length, we must index into the
>> +  // destination's pointer to get the actual memcpy destination (end of
>> +  // the string .. we're concatenating).
>> +  Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
>> +
>> +  // We have enough information to now generate the memcpy call to do the
>> +  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
>> +  B.CreateMemCpy(
>> +      CpyDst, Src,
>> +      ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
>> +  return Dst;
>> +}
>> 
>> -    // Compute the offset, make sure to handle the case when we're searching for
>> -    // zero (a weird way to spell strlen).
>> -    size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>> -        Str.size() : Str.find(CharC->getSExtValue());
>> -    if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
>> -      return Constant::getNullValue(CI->getType());
>> +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strncat" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
>> +      FT->getParamType(0) != FT->getReturnType() ||
>> +      FT->getParamType(1) != FT->getReturnType() ||
>> +      !FT->getParamType(2)->isIntegerTy())
>> +    return nullptr;
>> +
>> +  // Extract some information from the instruction
>> +  Value *Dst = CI->getArgOperand(0);
>> +  Value *Src = CI->getArgOperand(1);
>> +  uint64_t Len;
>> +
>> +  // We don't do anything if length is not constant
>> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> +    Len = LengthArg->getZExtValue();
>> +  else
>> +    return nullptr;
>> +
>> +  // See if we can get the length of the input string.
>> +  uint64_t SrcLen = GetStringLength(Src);
>> +  if (SrcLen == 0)
>> +    return nullptr;
>> +  --SrcLen; // Unbias length.
>> +
>> +  // Handle the simple, do-nothing cases:
>> +  // strncat(x, "", c) -> x
>> +  // strncat(x,  c, 0) -> x
>> +  if (SrcLen == 0 || Len == 0)
>> +    return Dst;
>> 
>> -    // strchr(s+n,c)  -> gep(s+n+i,c)
>> -    return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>> -  }
>> -};
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> +
>> +  // We don't optimize this case
>> +  if (Len < SrcLen)
>> +    return nullptr;
>> 
>> -struct StrRChrOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strrchr" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getReturnType() != B.getInt8PtrTy() ||
>> -        FT->getParamType(0) != FT->getReturnType() ||
>> -        !FT->getParamType(1)->isIntegerTy(32))
>> -      return nullptr;
>> -
>> -    Value *SrcStr = CI->getArgOperand(0);
>> -    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> -
>> -    // Cannot fold anything if we're not looking for a constant.
>> -    if (!CharC)
>> -      return nullptr;
>> -
>> -    StringRef Str;
>> -    if (!getConstantStringInfo(SrcStr, Str)) {
>> -      // strrchr(s, 0) -> strchr(s, 0)
>> -      if (DL && CharC->isZero())
>> -        return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>> +  // strncat(x, s, c) -> strcat(x, s)
>> +  // s is constant so the strcat can be optimized further
>> +  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strchr" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
>> +      FT->getParamType(0) != FT->getReturnType() ||
>> +      !FT->getParamType(1)->isIntegerTy(32))
>> +    return nullptr;
>> +
>> +  Value *SrcStr = CI->getArgOperand(0);
>> +
>> +  // If the second operand is non-constant, see if we can compute the length
>> +  // of the input string and turn this into memchr.
>> +  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> +  if (!CharC) {
>> +    // These optimizations require DataLayout.
>> +    if (!DL)
>>        return nullptr;
>> -    }
>> 
>> -    // Compute the offset.
>> -    size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
>> -        Str.size() : Str.rfind(CharC->getSExtValue());
>> -    if (I == StringRef::npos) // Didn't find the char. Return null.
>> -      return Constant::getNullValue(CI->getType());
>> +    uint64_t Len = GetStringLength(SrcStr);
>> +    if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
>> +      return nullptr;
>> 
>> -    // strrchr(s+n,c) -> gep(s+n+i,c)
>> -    return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>> +    return EmitMemChr(
>> +        SrcStr, CI->getArgOperand(1), // include nul.
>> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI);
>>    }
>> -};
>> -
>> -struct StrCmpOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strcmp" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        !FT->getReturnType()->isIntegerTy(32) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != B.getInt8PtrTy())
>> -      return nullptr;
>> -
>> -    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> -    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
>> -      return ConstantInt::get(CI->getType(), 0);
>> -
>> -    StringRef Str1, Str2;
>> -    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> -    bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> -
>> -    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
>> -    if (HasStr1 && HasStr2)
>> -      return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>> -
>> -    if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>> -      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>> -                                      CI->getType()));
>> -
>> -    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>> -      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> -
>> -    // strcmp(P, "x") -> memcmp(P, "x", 2)
>> -    uint64_t Len1 = GetStringLength(Str1P);
>> -    uint64_t Len2 = GetStringLength(Str2P);
>> -    if (Len1 && Len2) {
>> -      // These optimizations require DataLayout.
>> -      if (!DL) return nullptr;
>> -
>> -      return EmitMemCmp(Str1P, Str2P,
>> -                        ConstantInt::get(DL->getIntPtrType(*Context),
>> -                        std::min(Len1, Len2)), B, DL, TLI);
>> -    }
>> 
>> +  // Otherwise, the character is a constant, see if the first argument is
>> +  // a string literal.  If so, we can constant fold.
>> +  StringRef Str;
>> +  if (!getConstantStringInfo(SrcStr, Str)) {
>> +    if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
>> +      return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
>>      return nullptr;
>>    }
>> -};
>> 
>> -struct StrNCmpOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strncmp" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 ||
>> -        !FT->getReturnType()->isIntegerTy(32) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>> -        !FT->getParamType(2)->isIntegerTy())
>> -      return nullptr;
>> -
>> -    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> -    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
>> -      return ConstantInt::get(CI->getType(), 0);
>> -
>> -    // Get the length argument if it is constant.
>> -    uint64_t Length;
>> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> -      Length = LengthArg->getZExtValue();
>> -    else
>> -      return nullptr;
>> -
>> -    if (Length == 0) // strncmp(x,y,0)   -> 0
>> -      return ConstantInt::get(CI->getType(), 0);
>> -
>> -    if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>> -      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>> -
>> -    StringRef Str1, Str2;
>> -    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> -    bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> -
>> -    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
>> -    if (HasStr1 && HasStr2) {
>> -      StringRef SubStr1 = Str1.substr(0, Length);
>> -      StringRef SubStr2 = Str2.substr(0, Length);
>> -      return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>> -    }
>> +  // Compute the offset, make sure to handle the case when we're searching for
>> +  // zero (a weird way to spell strlen).
>> +  size_t I = (0xFF & CharC->getSExtValue()) == 0
>> +                 ? Str.size()
>> +                 : Str.find(CharC->getSExtValue());
>> +  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
>> +    return Constant::getNullValue(CI->getType());
>> 
>> -    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> -*x
>> -      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
>> -                                      CI->getType()));
>> +  // strchr(s+n,c)  -> gep(s+n+i,c)
>> +  return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
>> +}
>> 
>> -    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
>> -      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strrchr" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
>> +      FT->getParamType(0) != FT->getReturnType() ||
>> +      !FT->getParamType(1)->isIntegerTy(32))
>> +    return nullptr;
>> +
>> +  Value *SrcStr = CI->getArgOperand(0);
>> +  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> +
>> +  // Cannot fold anything if we're not looking for a constant.
>> +  if (!CharC)
>> +    return nullptr;
>> 
>> +  StringRef Str;
>> +  if (!getConstantStringInfo(SrcStr, Str)) {
>> +    // strrchr(s, 0) -> strchr(s, 0)
>> +    if (DL && CharC->isZero())
>> +      return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>>      return nullptr;
>>    }
>> -};
>> 
>> -struct StrCpyOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "strcpy" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != B.getInt8PtrTy())
>> -      return nullptr;
>> +  // Compute the offset.
>> +  size_t I = (0xFF & CharC->getSExtValue()) == 0
>> +                 ? Str.size()
>> +                 : Str.rfind(CharC->getSExtValue());
>> +  if (I == StringRef::npos) // Didn't find the char. Return null.
>> +    return Constant::getNullValue(CI->getType());
>> 
>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> -    if (Dst == Src)      // strcpy(x,x)  -> x
>> -      return Src;
>> +  // strrchr(s+n,c) -> gep(s+n+i,c)
>> +  return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
>> +}
>> 
>> +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strcmp" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != B.getInt8PtrTy())
>> +    return nullptr;
>> +
>> +  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> +  if (Str1P == Str2P) // strcmp(x,x)  -> 0
>> +    return ConstantInt::get(CI->getType(), 0);
>> +
>> +  StringRef Str1, Str2;
>> +  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> +  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> +
>> +  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
>> +  if (HasStr1 && HasStr2)
>> +    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
>> +
>> +  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
>> +    return B.CreateNeg(
>> +        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>> +
>> +  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
>> +    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> +
>> +  // strcmp(P, "x") -> memcmp(P, "x", 2)
>> +  uint64_t Len1 = GetStringLength(Str1P);
>> +  uint64_t Len2 = GetStringLength(Str2P);
>> +  if (Len1 && Len2) {
>>      // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> -
>> -    // See if we can get the length of the input string.
>> -    uint64_t Len = GetStringLength(Src);
>> -    if (Len == 0) return nullptr;
>> +    if (!DL)
>> +      return nullptr;
>> 
>> -    // We have enough information to now generate the memcpy call to do the
>> -    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>> -    B.CreateMemCpy(Dst, Src,
>> -                  ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
>> -    return Dst;
>> +    return EmitMemCmp(Str1P, Str2P,
>> +                      ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>> +                                       std::min(Len1, Len2)),
>> +                      B, DL, TLI);
>>    }
>> -};
>> 
>> -struct StpCpyOpt: public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Verify the "stpcpy" function prototype.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != B.getInt8PtrTy())
>> -      return nullptr;
>> +  return nullptr;
>> +}
>> 
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strncmp" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != B.getInt8PtrTy() ||
>> +      !FT->getParamType(2)->isIntegerTy())
>> +    return nullptr;
>> 
>> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> -    if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
>> -      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> -      return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> -    }
>> +  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
>> +  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
>> +    return ConstantInt::get(CI->getType(), 0);
>> 
>> -    // See if we can get the length of the input string.
>> -    uint64_t Len = GetStringLength(Src);
>> -    if (Len == 0) return nullptr;
>> +  // Get the length argument if it is constant.
>> +  uint64_t Length;
>> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
>> +    Length = LengthArg->getZExtValue();
>> +  else
>> +    return nullptr;
>> 
>> -    Type *PT = FT->getParamType(0);
>> -    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> -    Value *DstEnd = B.CreateGEP(Dst,
>> -                                ConstantInt::get(DL->getIntPtrType(PT),
>> -                                                 Len - 1));
>> -
>> -    // We have enough information to now generate the memcpy call to do the
>> -    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>> -    B.CreateMemCpy(Dst, Src, LenV, 1);
>> -    return DstEnd;
>> -  }
>> -};
>> +  if (Length == 0) // strncmp(x,y,0)   -> 0
>> +    return ConstantInt::get(CI->getType(), 0);
>> 
>> -struct StrNCpyOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>> -        !FT->getParamType(2)->isIntegerTy())
>> -      return nullptr;
>> -
>> -    Value *Dst = CI->getArgOperand(0);
>> -    Value *Src = CI->getArgOperand(1);
>> -    Value *LenOp = CI->getArgOperand(2);
>> -
>> -    // See if we can get the length of the input string.
>> -    uint64_t SrcLen = GetStringLength(Src);
>> -    if (SrcLen == 0) return nullptr;
>> -    --SrcLen;
>> -
>> -    if (SrcLen == 0) {
>> -      // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>> -      B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>> -      return Dst;
>> -    }
>> +  if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
>> +    return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>> 
>> -    uint64_t Len;
>> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>> -      Len = LengthArg->getZExtValue();
>> -    else
>> -      return nullptr;
>> +  StringRef Str1, Str2;
>> +  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
>> +  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>> 
>> -    if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
>> +  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
>> +  if (HasStr1 && HasStr2) {
>> +    StringRef SubStr1 = Str1.substr(0, Length);
>> +    StringRef SubStr2 = Str2.substr(0, Length);
>> +    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
>> +  }
>> 
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
>> +    return B.CreateNeg(
>> +        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>> 
>> -    // Let strncpy handle the zero padding
>> -    if (Len > SrcLen+1) return nullptr;
>> +  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
>> +    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>> 
>> -    Type *PT = FT->getParamType(0);
>> -    // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>> -    B.CreateMemCpy(Dst, Src,
>> -                   ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
>> +  return nullptr;
>> +}
>> 
>> -    return Dst;
>> -  }
>> -};
>> +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "strcpy" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != B.getInt8PtrTy())
>> +    return nullptr;
>> 
>> -struct StrLenOpt : public LibCallOptimization {
>> -  bool ignoreCallingConv() override { return true; }
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 1 ||
>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>> -        !FT->getReturnType()->isIntegerTy())
>> -      return nullptr;
>> -
>> -    Value *Src = CI->getArgOperand(0);
>> -
>> -    // Constant folding: strlen("xyz") -> 3
>> -    if (uint64_t Len = GetStringLength(Src))
>> -      return ConstantInt::get(CI->getType(), Len-1);
>> -
>> -    // strlen(x?"foo":"bars") --> x ? 3 : 4
>> -    if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>> -      uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>> -      uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>> -      if (LenTrue && LenFalse) {
>> -        emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
>> -                               SI->getDebugLoc(),
>> -                               "folded strlen(select) to select of constants");
>> -        return B.CreateSelect(SI->getCondition(),
>> -                              ConstantInt::get(CI->getType(), LenTrue-1),
>> -                              ConstantInt::get(CI->getType(), LenFalse-1));
>> -      }
>> -    }
>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> +  if (Dst == Src) // strcpy(x,x)  -> x
>> +    return Src;
>> 
>> -    // strlen(x) != 0 --> *x != 0
>> -    // strlen(x) == 0 --> *x == 0
>> -    if (isOnlyUsedInZeroEqualityComparison(CI))
>> -      return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> 
>> +  // See if we can get the length of the input string.
>> +  uint64_t Len = GetStringLength(Src);
>> +  if (Len == 0)
>>      return nullptr;
>> -  }
>> -};
>> 
>> -struct StrPBrkOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>> -        FT->getParamType(1) != FT->getParamType(0) ||
>> -        FT->getReturnType() != FT->getParamType(0))
>> -      return nullptr;
>> +  // We have enough information to now generate the memcpy call to do the
>> +  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>> +  B.CreateMemCpy(Dst, Src,
>> +                 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1);
>> +  return Dst;
>> +}
>> 
>> -    StringRef S1, S2;
>> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Verify the "stpcpy" function prototype.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != B.getInt8PtrTy())
>> +    return nullptr;
>> 
>> -    // strpbrk(s, "") -> NULL
>> -    // strpbrk("", s) -> NULL
>> -    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> -      return Constant::getNullValue(CI->getType());
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> 
>> -    // Constant folding.
>> -    if (HasS1 && HasS2) {
>> -      size_t I = S1.find_first_of(S2);
>> -      if (I == StringRef::npos) // No match.
>> -        return Constant::getNullValue(CI->getType());
>> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
>> +  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
>> +    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
>> +    return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
>> +  }
>> 
>> -      return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
>> -    }
>> +  // See if we can get the length of the input string.
>> +  uint64_t Len = GetStringLength(Src);
>> +  if (Len == 0)
>> +    return nullptr;
>> 
>> -    // strpbrk(s, "a") -> strchr(s, 'a')
>> -    if (DL && HasS2 && S2.size() == 1)
>> -      return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>> +  Type *PT = FT->getParamType(0);
>> +  Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
>> +  Value *DstEnd =
>> +      B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
>> 
>> -    return nullptr;
>> +  // We have enough information to now generate the memcpy call to do the
>> +  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
>> +  B.CreateMemCpy(Dst, Src, LenV, 1);
>> +  return DstEnd;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      FT->getParamType(0) != B.getInt8PtrTy() ||
>> +      !FT->getParamType(2)->isIntegerTy())
>> +    return nullptr;
>> +
>> +  Value *Dst = CI->getArgOperand(0);
>> +  Value *Src = CI->getArgOperand(1);
>> +  Value *LenOp = CI->getArgOperand(2);
>> +
>> +  // See if we can get the length of the input string.
>> +  uint64_t SrcLen = GetStringLength(Src);
>> +  if (SrcLen == 0)
>> +    return nullptr;
>> +  --SrcLen;
>> +
>> +  if (SrcLen == 0) {
>> +    // strncpy(x, "", y) -> memset(x, '\0', y, 1)
>> +    B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
>> +    return Dst;
>>    }
>> -};
>> 
>> -struct StrToOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy())
>> -      return nullptr;
>> +  uint64_t Len;
>> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
>> +    Len = LengthArg->getZExtValue();
>> +  else
>> +    return nullptr;
>> 
>> -    Value *EndPtr = CI->getArgOperand(1);
>> -    if (isa<ConstantPointerNull>(EndPtr)) {
>> -      // With a null EndPtr, this function won't capture the main argument.
>> -      // It would be readonly too, except that it still may write to errno.
>> -      CI->addAttribute(1, Attribute::NoCapture);
>> -    }
>> +  if (Len == 0)
>> +    return Dst; // strncpy(x, y, 0) -> x
>> 
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>>      return nullptr;
>> -  }
>> -};
>> 
>> -struct StrSpnOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>> -        FT->getParamType(1) != FT->getParamType(0) ||
>> -        !FT->getReturnType()->isIntegerTy())
>> -      return nullptr;
>> -
>> -    StringRef S1, S2;
>> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> -
>> -    // strspn(s, "") -> 0
>> -    // strspn("", s) -> 0
>> -    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> -      return Constant::getNullValue(CI->getType());
>> +  // Let strncpy handle the zero padding
>> +  if (Len > SrcLen + 1)
>> +    return nullptr;
>> 
>> -    // Constant folding.
>> -    if (HasS1 && HasS2) {
>> -      size_t Pos = S1.find_first_not_of(S2);
>> -      if (Pos == StringRef::npos) Pos = S1.size();
>> -      return ConstantInt::get(CI->getType(), Pos);
>> -    }
>> +  Type *PT = FT->getParamType(0);
>> +  // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
>> +  B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
>> 
>> -    return nullptr;
>> +  return Dst;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> +      !FT->getReturnType()->isIntegerTy())
>> +    return nullptr;
>> +
>> +  Value *Src = CI->getArgOperand(0);
>> +
>> +  // Constant folding: strlen("xyz") -> 3
>> +  if (uint64_t Len = GetStringLength(Src))
>> +    return ConstantInt::get(CI->getType(), Len - 1);
>> +
>> +  // strlen(x?"foo":"bars") --> x ? 3 : 4
>> +  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
>> +    uint64_t LenTrue = GetStringLength(SI->getTrueValue());
>> +    uint64_t LenFalse = GetStringLength(SI->getFalseValue());
>> +    if (LenTrue && LenFalse) {
>> +      Function *Caller = CI->getParent()->getParent();
>> +      emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
>> +                             SI->getDebugLoc(),
>> +                             "folded strlen(select) to select of constants");
>> +      return B.CreateSelect(SI->getCondition(),
>> +                            ConstantInt::get(CI->getType(), LenTrue - 1),
>> +                            ConstantInt::get(CI->getType(), LenFalse - 1));
>> +    }
>>    }
>> -};
>> 
>> -struct StrCSpnOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        FT->getParamType(0) != B.getInt8PtrTy() ||
>> -        FT->getParamType(1) != FT->getParamType(0) ||
>> -        !FT->getReturnType()->isIntegerTy())
>> -      return nullptr;
>> -
>> -    StringRef S1, S2;
>> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +  // strlen(x) != 0 --> *x != 0
>> +  // strlen(x) == 0 --> *x == 0
>> +  if (isOnlyUsedInZeroEqualityComparison(CI))
>> +    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
>> +
>> +  return nullptr;
>> +}
>> 
>> -    // strcspn("", s) -> 0
>> -    if (HasS1 && S1.empty())
>> +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> +      FT->getParamType(1) != FT->getParamType(0) ||
>> +      FT->getReturnType() != FT->getParamType(0))
>> +    return nullptr;
>> +
>> +  StringRef S1, S2;
>> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +
>> +  // strpbrk(s, "") -> NULL
>> +  // strpbrk("", s) -> NULL
>> +  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> +    return Constant::getNullValue(CI->getType());
>> +
>> +  // Constant folding.
>> +  if (HasS1 && HasS2) {
>> +    size_t I = S1.find_first_of(S2);
>> +    if (I == StringRef::npos) // No match.
>>        return Constant::getNullValue(CI->getType());
>> 
>> -    // Constant folding.
>> -    if (HasS1 && HasS2) {
>> -      size_t Pos = S1.find_first_of(S2);
>> -      if (Pos == StringRef::npos) Pos = S1.size();
>> -      return ConstantInt::get(CI->getType(), Pos);
>> -    }
>> +    return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
>> +  }
>> 
>> -    // strcspn(s, "") -> strlen(s)
>> -    if (DL && HasS2 && S2.empty())
>> -      return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>> +  // strpbrk(s, "a") -> strchr(s, 'a')
>> +  if (DL && HasS2 && S2.size() == 1)
>> +    return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>> 
>> +  return nullptr;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy())
>>      return nullptr;
>> +
>> +  Value *EndPtr = CI->getArgOperand(1);
>> +  if (isa<ConstantPointerNull>(EndPtr)) {
>> +    // With a null EndPtr, this function won't capture the main argument.
>> +    // It would be readonly too, except that it still may write to errno.
>> +    CI->addAttribute(1, Attribute::NoCapture);
>>    }
>> -};
>> 
>> -struct StrStrOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        !FT->getReturnType()->isPointerTy())
>> -      return nullptr;
>> +  return nullptr;
>> +}
>> 
>> -    // fold strstr(x, x) -> x.
>> -    if (CI->getArgOperand(0) == CI->getArgOperand(1))
>> -      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> +      FT->getParamType(1) != FT->getParamType(0) ||
>> +      !FT->getReturnType()->isIntegerTy())
>> +    return nullptr;
>> +
>> +  StringRef S1, S2;
>> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +
>> +  // strspn(s, "") -> 0
>> +  // strspn("", s) -> 0
>> +  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
>> +    return Constant::getNullValue(CI->getType());
>> +
>> +  // Constant folding.
>> +  if (HasS1 && HasS2) {
>> +    size_t Pos = S1.find_first_not_of(S2);
>> +    if (Pos == StringRef::npos)
>> +      Pos = S1.size();
>> +    return ConstantInt::get(CI->getType(), Pos);
>> +  }
>> 
>> -    // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>> -    if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
>> -      Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>> -      if (!StrLen)
>> -        return nullptr;
>> -      Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                                   StrLen, B, DL, TLI);
>> -      if (!StrNCmp)
>> -        return nullptr;
>> -      for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>> -        ICmpInst *Old = cast<ICmpInst>(*UI++);
>> -        Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
>> -                                  ConstantInt::getNullValue(StrNCmp->getType()),
>> -                                  "cmp");
>> -        LCS->replaceAllUsesWith(Old, Cmp);
>> -      }
>> -      return CI;
>> -    }
>> +  return nullptr;
>> +}
>> 
>> -    // See if either input string is a constant string.
>> -    StringRef SearchStr, ToFindStr;
>> -    bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
>> -    bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>> -
>> -    // fold strstr(x, "") -> x.
>> -    if (HasStr2 && ToFindStr.empty())
>> -      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> -
>> -    // If both strings are known, constant fold it.
>> -    if (HasStr1 && HasStr2) {
>> -      size_t Offset = SearchStr.find(ToFindStr);
>> -
>> -      if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>> -        return Constant::getNullValue(CI->getType());
>> -
>> -      // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>> -      Value *Result = CastToCStr(CI->getArgOperand(0), B);
>> -      Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>> -      return B.CreateBitCast(Result, CI->getType());
>> -    }
>> +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
>> +      FT->getParamType(1) != FT->getParamType(0) ||
>> +      !FT->getReturnType()->isIntegerTy())
>> +    return nullptr;
>> +
>> +  StringRef S1, S2;
>> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
>> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
>> +
>> +  // strcspn("", s) -> 0
>> +  if (HasS1 && S1.empty())
>> +    return Constant::getNullValue(CI->getType());
>> +
>> +  // Constant folding.
>> +  if (HasS1 && HasS2) {
>> +    size_t Pos = S1.find_first_of(S2);
>> +    if (Pos == StringRef::npos)
>> +      Pos = S1.size();
>> +    return ConstantInt::get(CI->getType(), Pos);
>> +  }
>> +
>> +  // strcspn(s, "") -> strlen(s)
>> +  if (DL && HasS2 && S2.empty())
>> +    return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>> 
>> -    // fold strstr(x, "y") -> strchr(x, 'y').
>> -    if (HasStr2 && ToFindStr.size() == 1) {
>> -      Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
>> -      return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>> -    }
>> +  return nullptr;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      !FT->getReturnType()->isPointerTy())
>>      return nullptr;
>> -  }
>> -};
>> 
>> -struct MemCmpOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        !FT->getReturnType()->isIntegerTy(32))
>> +  // fold strstr(x, x) -> x.
>> +  if (CI->getArgOperand(0) == CI->getArgOperand(1))
>> +    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> +
>> +  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
>> +  if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
>> +    Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
>> +    if (!StrLen)
>>        return nullptr;
>> +    Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
>> +                                 StrLen, B, DL, TLI);
>> +    if (!StrNCmp)
>> +      return nullptr;
>> +    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
>> +      ICmpInst *Old = cast<ICmpInst>(*UI++);
>> +      Value *Cmp =
>> +          B.CreateICmp(Old->getPredicate(), StrNCmp,
>> +                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
>> +      replaceAllUsesWith(Old, Cmp);
>> +    }
>> +    return CI;
>> +  }
>> 
>> -    Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>> +  // See if either input string is a constant string.
>> +  StringRef SearchStr, ToFindStr;
>> +  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
>> +  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>> 
>> -    if (LHS == RHS)  // memcmp(s,s,x) -> 0
>> -      return Constant::getNullValue(CI->getType());
>> +  // fold strstr(x, "") -> x.
>> +  if (HasStr2 && ToFindStr.empty())
>> +    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>> 
>> -    // Make sure we have a constant length.
>> -    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> -    if (!LenC) return nullptr;
>> -    uint64_t Len = LenC->getZExtValue();
>> +  // If both strings are known, constant fold it.
>> +  if (HasStr1 && HasStr2) {
>> +    size_t Offset = SearchStr.find(ToFindStr);
>> 
>> -    if (Len == 0) // memcmp(s1,s2,0) -> 0
>> +    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>>        return Constant::getNullValue(CI->getType());
>> 
>> -    // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>> -    if (Len == 1) {
>> -      Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
>> -                                 CI->getType(), "lhsv");
>> -      Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
>> -                                 CI->getType(), "rhsv");
>> -      return B.CreateSub(LHSV, RHSV, "chardiff");
>> -    }
>> +    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
>> +    Value *Result = CastToCStr(CI->getArgOperand(0), B);
>> +    Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
>> +    return B.CreateBitCast(Result, CI->getType());
>> +  }
>> 
>> -    // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
>> -    StringRef LHSStr, RHSStr;
>> -    if (getConstantStringInfo(LHS, LHSStr) &&
>> -        getConstantStringInfo(RHS, RHSStr)) {
>> -      // Make sure we're not reading out-of-bounds memory.
>> -      if (Len > LHSStr.size() || Len > RHSStr.size())
>> -        return nullptr;
>> -      // Fold the memcmp and normalize the result.  This way we get consistent
>> -      // results across multiple platforms.
>> -      uint64_t Ret = 0;
>> -      int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>> -      if (Cmp < 0)
>> -        Ret = -1;
>> -      else if (Cmp > 0)
>> -        Ret = 1;
>> -      return ConstantInt::get(CI->getType(), Ret);
>> -    }
>> +  // fold strstr(x, "y") -> strchr(x, 'y').
>> +  if (HasStr2 && ToFindStr.size() == 1) {
>> +    Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
>> +    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
>> +  }
>> +  return nullptr;
>> +}
>> 
>> -    return nullptr;
>> +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      !FT->getReturnType()->isIntegerTy(32))
>> +    return nullptr;
>> +
>> +  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
>> +
>> +  if (LHS == RHS) // memcmp(s,s,x) -> 0
>> +    return Constant::getNullValue(CI->getType());
>> +
>> +  // Make sure we have a constant length.
>> +  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> +  if (!LenC)
>> +    return nullptr;
>> +  uint64_t Len = LenC->getZExtValue();
>> +
>> +  if (Len == 0) // memcmp(s1,s2,0) -> 0
>> +    return Constant::getNullValue(CI->getType());
>> +
>> +  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
>> +  if (Len == 1) {
>> +    Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
>> +                               CI->getType(), "lhsv");
>> +    Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
>> +                               CI->getType(), "rhsv");
>> +    return B.CreateSub(LHSV, RHSV, "chardiff");
>> +  }
>> +
>> +  // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
>> +  StringRef LHSStr, RHSStr;
>> +  if (getConstantStringInfo(LHS, LHSStr) &&
>> +      getConstantStringInfo(RHS, RHSStr)) {
>> +    // Make sure we're not reading out-of-bounds memory.
>> +    if (Len > LHSStr.size() || Len > RHSStr.size())
>> +      return nullptr;
>> +    // Fold the memcmp and normalize the result.  This way we get consistent
>> +    // results across multiple platforms.
>> +    uint64_t Ret = 0;
>> +    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
>> +    if (Cmp < 0)
>> +      Ret = -1;
>> +    else if (Cmp > 0)
>> +      Ret = 1;
>> +    return ConstantInt::get(CI->getType(), Ret);
>>    }
>> -};
>> 
>> -struct MemCpyOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +  return nullptr;
>> +}
>> 
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        FT->getParamType(2) != DL->getIntPtrType(*Context))
>> -      return nullptr;
>> +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> 
>> -    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>> -    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                   CI->getArgOperand(2), 1);
>> -    return CI->getArgOperand(0);
>> -  }
>> -};
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>> +    return nullptr;
>> 
>> -struct MemMoveOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +  // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
>> +  B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> +                 CI->getArgOperand(2), 1);
>> +  return CI->getArgOperand(0);
>> +}
>> 
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        FT->getParamType(2) != DL->getIntPtrType(*Context))
>> -      return nullptr;
>> +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> 
>> -    // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>> -    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                    CI->getArgOperand(2), 1);
>> -    return CI->getArgOperand(0);
>> -  }
>> -};
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
>> +    return nullptr;
>> 
>> -struct MemSetOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +  // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
>> +  B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
>> +                  CI->getArgOperand(2), 1);
>> +  return CI->getArgOperand(0);
>> +}
>> 
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isIntegerTy() ||
>> -        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> -      return nullptr;
>> +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>> +    return nullptr;
>> 
>> -    // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>> -    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
>> -    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> -    return CI->getArgOperand(0);
>> -  }
>> -};
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isIntegerTy() ||
>> +      FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
>> +    return nullptr;
>> +
>> +  // memset(p, v, n) -> llvm.memset(p, v, n, 1)
>> +  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
>> +  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
>> +  return CI->getArgOperand(0);
>> +}
>> 
>>  //===----------------------------------------------------------------------===//
>>  // Math Library Optimizations
>> @@ -1111,935 +1025,847 @@ struct MemSetOpt : public LibCallOptimiz
>>  //===----------------------------------------------------------------------===//
>>  // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
>> 
>> -struct UnaryDoubleFPOpt : public LibCallOptimization {
>> -  bool CheckRetType;
>> -  UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>> -        !FT->getParamType(0)->isDoubleTy())
>> -      return nullptr;
>> -
>> -    if (CheckRetType) {
>> -      // Check if all the uses for function like 'sin' are converted to float.
>> -      for (User *U : CI->users()) {
>> -        FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>> -        if (!Cast || !Cast->getType()->isFloatTy())
>> -          return nullptr;
>> -      }
>> +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
>> +                                                bool CheckRetType) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
>> +      !FT->getParamType(0)->isDoubleTy())
>> +    return nullptr;
>> +
>> +  if (CheckRetType) {
>> +    // Check if all the uses for function like 'sin' are converted to float.
>> +    for (User *U : CI->users()) {
>> +      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>> +      if (!Cast || !Cast->getType()->isFloatTy())
>> +        return nullptr;
>>      }
>> +  }
>> 
>> -    // If this is something like 'floor((double)floatval)', convert to floorf.
>> -    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> -    if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>> -      return nullptr;
>> +  // If this is something like 'floor((double)floatval)', convert to floorf.
>> +  FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> +  if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
>> +    return nullptr;
>> 
>> -    // floor((double)floatval) -> (double)floorf(floatval)
>> -    Value *V = Cast->getOperand(0);
>> -    V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
>> -    return B.CreateFPExt(V, B.getDoubleTy());
>> -  }
>> -};
>> +  // floor((double)floatval) -> (double)floorf(floatval)
>> +  Value *V = Cast->getOperand(0);
>> +  V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
>> +  return B.CreateFPExt(V, B.getDoubleTy());
>> +}
>> 
>>  // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
>> -struct BinaryDoubleFPOpt : public LibCallOptimization {
>> -  bool CheckRetType;
>> -  BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // Just make sure this has 2 arguments of the same FP type, which match the
>> -    // result type.
>> -    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        !FT->getParamType(0)->isFloatingPointTy())
>> -      return nullptr;
>> -
>> -    if (CheckRetType) {
>> -      // Check if all the uses for function like 'fmin/fmax' are converted to
>> -      // float.
>> -      for (User *U : CI->users()) {
>> -        FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
>> -        if (!Cast || !Cast->getType()->isFloatTy())
>> -          return nullptr;
>> -      }
>> -    }
>> +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // Just make sure this has 2 arguments of the same FP type, which match the
>> +  // result type.
>> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      !FT->getParamType(0)->isFloatingPointTy())
>> +    return nullptr;
>> +
>> +  // If this is something like 'fmin((double)floatval1, (double)floatval2)',
>> +  // we convert it to fminf.
>> +  FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> +  FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>> +  if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 ||
>> +      !Cast2->getOperand(0)->getType()->isFloatTy())
>> +    return nullptr;
>> +
>> +  // fmin((double)floatval1, (double)floatval2)
>> +  //                      -> (double)fmin(floatval1, floatval2)
>> +  Value *V = nullptr;
>> +  Value *V1 = Cast1->getOperand(0);
>> +  Value *V2 = Cast2->getOperand(0);
>> +  V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>> +                            Callee->getAttributes());
>> +  return B.CreateFPExt(V, B.getDoubleTy());
>> +}
>> 
>> -    // If this is something like 'fmin((double)floatval1, (double)floatval2)',
>> -    // we convert it to fminf.
>> -    FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
>> -    FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
>> -    if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
>> -        !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
>> -      return nullptr;
>> -
>> -    // fmin((double)floatval1, (double)floatval2)
>> -    //                      -> (double)fmin(floatval1, floatval2)
>> -    Value *V = nullptr;
>> -    Value *V1 = Cast1->getOperand(0);
>> -    Value *V2 = Cast2->getOperand(0);
>> -    V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
>> -                              Callee->getAttributes());
>> -    return B.CreateFPExt(V, B.getDoubleTy());
>> -  }
>> -};
>> -
>> -struct UnsafeFPLibCallOptimization : public LibCallOptimization {
>> -  bool UnsafeFPShrink;
>> -  UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
>> -    this->UnsafeFPShrink = UnsafeFPShrink;
>> -  }
>> -};
>> -
>> -struct CosOpt : public UnsafeFPLibCallOptimization {
>> -  CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    Value *Ret = nullptr;
>> -    if (UnsafeFPShrink && Callee->getName() == "cos" &&
>> -        TLI->has(LibFunc::cosf)) {
>> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>> -    }
>> +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  Value *Ret = nullptr;
>> +  if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
>> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>> +  }
>> 
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // Just make sure this has 1 argument of FP type, which matches the
>> -    // result type.
>> -    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isFloatingPointTy())
>> -      return Ret;
>> -
>> -    // cos(-x) -> cos(x)
>> -    Value *Op1 = CI->getArgOperand(0);
>> -    if (BinaryOperator::isFNeg(Op1)) {
>> -      BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>> -      return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>> -    }
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // Just make sure this has 1 argument of FP type, which matches the
>> +  // result type.
>> +  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isFloatingPointTy())
>>      return Ret;
>> +
>> +  // cos(-x) -> cos(x)
>> +  Value *Op1 = CI->getArgOperand(0);
>> +  if (BinaryOperator::isFNeg(Op1)) {
>> +    BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
>> +    return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>>    }
>> -};
>> +  return Ret;
>> +}
>> 
>> -struct PowOpt : public UnsafeFPLibCallOptimization {
>> -  PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    Value *Ret = nullptr;
>> -    if (UnsafeFPShrink && Callee->getName() == "pow" &&
>> -        TLI->has(LibFunc::powf)) {
>> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>> -    }
>> +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> 
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // Just make sure this has 2 arguments of the same FP type, which match the
>> -    // result type.
>> -    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> -        FT->getParamType(0) != FT->getParamType(1) ||
>> -        !FT->getParamType(0)->isFloatingPointTy())
>> -      return Ret;
>> -
>> -    Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>> -    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>> -      // pow(1.0, x) -> 1.0
>> -      if (Op1C->isExactlyValue(1.0))
>> -        return Op1C;
>> -      // pow(2.0, x) -> exp2(x)
>> -      if (Op1C->isExactlyValue(2.0) &&
>> -          hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
>> -                          LibFunc::exp2l))
>> -        return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
>> -      // pow(10.0, x) -> exp10(x)
>> -      if (Op1C->isExactlyValue(10.0) &&
>> -          hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
>> -                          LibFunc::exp10l))
>> -        return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
>> -                                    Callee->getAttributes());
>> -    }
>> +  Value *Ret = nullptr;
>> +  if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
>> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>> +  }
>> 
>> -    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>> -    if (!Op2C) return Ret;
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // Just make sure this has 2 arguments of the same FP type, which match the
>> +  // result type.
>> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
>> +      FT->getParamType(0) != FT->getParamType(1) ||
>> +      !FT->getParamType(0)->isFloatingPointTy())
>> +    return Ret;
>> 
>> -    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
>> -      return ConstantFP::get(CI->getType(), 1.0);
>> +  Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
>> +  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
>> +    // pow(1.0, x) -> 1.0
>> +    if (Op1C->isExactlyValue(1.0))
>> +      return Op1C;
>> +    // pow(2.0, x) -> exp2(x)
>> +    if (Op1C->isExactlyValue(2.0) &&
>> +        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
>> +                        LibFunc::exp2l))
>> +      return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
>> +    // pow(10.0, x) -> exp10(x)
>> +    if (Op1C->isExactlyValue(10.0) &&
>> +        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
>> +                        LibFunc::exp10l))
>> +      return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
>> +                                  Callee->getAttributes());
>> +  }
>> 
>> -    if (Op2C->isExactlyValue(0.5) &&
>> -        hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
>> -                        LibFunc::sqrtl) &&
>> -        hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
>> -                        LibFunc::fabsl)) {
>> -      // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
>> -      // This is faster than calling pow, and still handles negative zero
>> -      // and negative infinity correctly.
>> -      // TODO: In fast-math mode, this could be just sqrt(x).
>> -      // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>> -      Value *Inf = ConstantFP::getInfinity(CI->getType());
>> -      Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>> -      Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
>> -                                         Callee->getAttributes());
>> -      Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
>> -                                         Callee->getAttributes());
>> -      Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>> -      Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>> -      return Sel;
>> -    }
>> +  ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
>> +  if (!Op2C)
>> +    return Ret;
>> 
>> -    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
>> -      return Op1;
>> -    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
>> -      return B.CreateFMul(Op1, Op1, "pow2");
>> -    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>> -      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
>> -                          Op1, "powrecip");
>> -    return nullptr;
>> -  }
>> -};
>> -
>> -struct Exp2Opt : public UnsafeFPLibCallOptimization {
>> -  Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    Value *Ret = nullptr;
>> -    if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>> -        TLI->has(LibFunc::exp2f)) {
>> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
>> -    }
>> +  if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
>> +    return ConstantFP::get(CI->getType(), 1.0);
>> 
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // Just make sure this has 1 argument of FP type, which matches the
>> -    // result type.
>> -    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isFloatingPointTy())
>> -      return Ret;
>> -
>> -    Value *Op = CI->getArgOperand(0);
>> -    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
>> -    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
>> -    LibFunc::Func LdExp = LibFunc::ldexpl;
>> -    if (Op->getType()->isFloatTy())
>> -      LdExp = LibFunc::ldexpf;
>> -    else if (Op->getType()->isDoubleTy())
>> -      LdExp = LibFunc::ldexp;
>> -
>> -    if (TLI->has(LdExp)) {
>> -      Value *LdExpArg = nullptr;
>> -      if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>> -        if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
>> -          LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>> -      } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>> -        if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
>> -          LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>> -      }
>> -
>> -      if (LdExpArg) {
>> -        Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
>> -        if (!Op->getType()->isFloatTy())
>> -          One = ConstantExpr::getFPExtend(One, Op->getType());
>> -
>> -        Module *M = Caller->getParent();
>> -        Value *Callee =
>> -            M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>> -                                   Op->getType(), B.getInt32Ty(), NULL);
>> -        CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>> -        if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
>> -          CI->setCallingConv(F->getCallingConv());
>> +  if (Op2C->isExactlyValue(0.5) &&
>> +      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
>> +                      LibFunc::sqrtl) &&
>> +      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
>> +                      LibFunc::fabsl)) {
>> +    // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
>> +    // This is faster than calling pow, and still handles negative zero
>> +    // and negative infinity correctly.
>> +    // TODO: In fast-math mode, this could be just sqrt(x).
>> +    // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
>> +    Value *Inf = ConstantFP::getInfinity(CI->getType());
>> +    Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
>> +    Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
>> +    Value *FAbs =
>> +        EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
>> +    Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
>> +    Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
>> +    return Sel;
>> +  }
>> +
>> +  if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
>> +    return Op1;
>> +  if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
>> +    return B.CreateFMul(Op1, Op1, "pow2");
>> +  if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
>> +    return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
>> +  return nullptr;
>> +}
>> 
>> -        return CI;
>> -      }
>> -    }
>> -    return Ret;
>> +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  Function *Caller = CI->getParent()->getParent();
>> +
>> +  Value *Ret = nullptr;
>> +  if (UnsafeFPShrink && Callee->getName() == "exp2" &&
>> +      TLI->has(LibFunc::exp2f)) {
>> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>>    }
>> -};
>> 
>> -struct SinCosPiOpt : public LibCallOptimization {
>> -  SinCosPiOpt() {}
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // Just make sure this has 1 argument of FP type, which matches the
>> +  // result type.
>> +  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isFloatingPointTy())
>> +    return Ret;
>> 
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Make sure the prototype is as expected, otherwise the rest of the
>> -    // function is probably invalid and likely to abort.
>> -    if (!isTrigLibCall(CI))
>> -      return nullptr;
>> -
>> -    Value *Arg = CI->getArgOperand(0);
>> -    SmallVector<CallInst *, 1> SinCalls;
>> -    SmallVector<CallInst *, 1> CosCalls;
>> -    SmallVector<CallInst *, 1> SinCosCalls;
>> -
>> -    bool IsFloat = Arg->getType()->isFloatTy();
>> -
>> -    // Look for all compatible sinpi, cospi and sincospi calls with the same
>> -    // argument. If there are enough (in some sense) we can make the
>> -    // substitution.
>> -    for (User *U : Arg->users())
>> -      classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>> -                     SinCosCalls);
>> -
>> -    // It's only worthwhile if both sinpi and cospi are actually used.
>> -    if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>> -      return nullptr;
>> -
>> -    Value *Sin, *Cos, *SinCos;
>> -    insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
>> -                     SinCos);
>> -
>> -    replaceTrigInsts(SinCalls, Sin);
>> -    replaceTrigInsts(CosCalls, Cos);
>> -    replaceTrigInsts(SinCosCalls, SinCos);
>> -
>> -    return nullptr;
>> -  }
>> -
>> -  bool isTrigLibCall(CallInst *CI) {
>> -    Function *Callee = CI->getCalledFunction();
>> -    FunctionType *FT = Callee->getFunctionType();
>> -
>> -    // We can only hope to do anything useful if we can ignore things like errno
>> -    // and floating-point exceptions.
>> -    bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
>> -                          CI->hasFnAttr(Attribute::ReadNone);
>> -
>> -    // Other than that we need float(float) or double(double)
>> -    return AttributesSafe && FT->getNumParams() == 1 &&
>> -           FT->getReturnType() == FT->getParamType(0) &&
>> -           (FT->getParamType(0)->isFloatTy() ||
>> -            FT->getParamType(0)->isDoubleTy());
>> -  }
>> -
>> -  void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>> -                      SmallVectorImpl<CallInst *> &SinCalls,
>> -                      SmallVectorImpl<CallInst *> &CosCalls,
>> -                      SmallVectorImpl<CallInst *> &SinCosCalls) {
>> -    CallInst *CI = dyn_cast<CallInst>(Val);
>> -
>> -    if (!CI)
>> -      return;
>> -
>> -    Function *Callee = CI->getCalledFunction();
>> -    StringRef FuncName = Callee->getName();
>> -    LibFunc::Func Func;
>> -    if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
>> -        !isTrigLibCall(CI))
>> -      return;
>> -
>> -    if (IsFloat) {
>> -      if (Func == LibFunc::sinpif)
>> -        SinCalls.push_back(CI);
>> -      else if (Func == LibFunc::cospif)
>> -        CosCalls.push_back(CI);
>> -      else if (Func == LibFunc::sincospif_stret)
>> -        SinCosCalls.push_back(CI);
>> -    } else {
>> -      if (Func == LibFunc::sinpi)
>> -        SinCalls.push_back(CI);
>> -      else if (Func == LibFunc::cospi)
>> -        CosCalls.push_back(CI);
>> -      else if (Func == LibFunc::sincospi_stret)
>> -        SinCosCalls.push_back(CI);
>> -    }
>> -  }
>> +  Value *Op = CI->getArgOperand(0);
>> +  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
>> +  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
>> +  LibFunc::Func LdExp = LibFunc::ldexpl;
>> +  if (Op->getType()->isFloatTy())
>> +    LdExp = LibFunc::ldexpf;
>> +  else if (Op->getType()->isDoubleTy())
>> +    LdExp = LibFunc::ldexp;
>> +
>> +  if (TLI->has(LdExp)) {
>> +    Value *LdExpArg = nullptr;
>> +    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
>> +      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
>> +        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
>> +    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
>> +      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
>> +        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
>> +    }
>> +
>> +    if (LdExpArg) {
>> +      Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
>> +      if (!Op->getType()->isFloatTy())
>> +        One = ConstantExpr::getFPExtend(One, Op->getType());
>> +
>> +      Module *M = Caller->getParent();
>> +      Value *Callee =
>> +          M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
>> +                                 Op->getType(), B.getInt32Ty(), NULL);
>> +      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
>> +      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
>> +        CI->setCallingConv(F->getCallingConv());
>> 
>> -  void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
>> -    for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
>> -           E = Calls.end();
>> -         I != E; ++I) {
>> -      LCS->replaceAllUsesWith(*I, Res);
>> +      return CI;
>>      }
>>    }
>> +  return Ret;
>> +}
>> 
>> -  void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>> -                        bool UseFloat, Value *&Sin, Value *&Cos,
>> -                        Value *&SinCos) {
>> -    Type *ArgTy = Arg->getType();
>> -    Type *ResTy;
>> -    StringRef Name;
>> -
>> -    Triple T(OrigCallee->getParent()->getTargetTriple());
>> -    if (UseFloat) {
>> -      Name = "__sincospif_stret";
>> -
>> -      assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
>> -      // x86_64 can't use {float, float} since that would be returned in both
>> -      // xmm0 and xmm1, which isn't what a real struct would do.
>> -      ResTy = T.getArch() == Triple::x86_64
>> -                  ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>> -                  : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
>> -    } else {
>> -      Name = "__sincospi_stret";
>> -      ResTy = StructType::get(ArgTy, ArgTy, NULL);
>> -    }
>> +static bool isTrigLibCall(CallInst *CI);
>> +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>> +                             bool UseFloat, Value *&Sin, Value *&Cos,
>> +                             Value *&SinCos);
>> 
>> -    Module *M = OrigCallee->getParent();
>> -    Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
>> -                                           ResTy, ArgTy, NULL);
>> -
>> -    if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>> -      // If the argument is an instruction, it must dominate all uses so put our
>> -      // sincos call there.
>> -      BasicBlock::iterator Loc = ArgInst;
>> -      B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>> -    } else {
>> -      // Otherwise (e.g. for a constant) the beginning of the function is as
>> -      // good a place as any.
>> -      BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
>> -      B.SetInsertPoint(&EntryBB, EntryBB.begin());
>> -    }
>> +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
>> 
>> -    SinCos = B.CreateCall(Callee, Arg, "sincospi");
>> +  // Make sure the prototype is as expected, otherwise the rest of the
>> +  // function is probably invalid and likely to abort.
>> +  if (!isTrigLibCall(CI))
>> +    return nullptr;
>> 
>> -    if (SinCos->getType()->isStructTy()) {
>> -      Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>> -      Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>> -    } else {
>> -      Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
>> -                                   "sinpi");
>> -      Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
>> -                                   "cospi");
>> -    }
>> +  Value *Arg = CI->getArgOperand(0);
>> +  SmallVector<CallInst *, 1> SinCalls;
>> +  SmallVector<CallInst *, 1> CosCalls;
>> +  SmallVector<CallInst *, 1> SinCosCalls;
>> +
>> +  bool IsFloat = Arg->getType()->isFloatTy();
>> +
>> +  // Look for all compatible sinpi, cospi and sincospi calls with the same
>> +  // argument. If there are enough (in some sense) we can make the
>> +  // substitution.
>> +  for (User *U : Arg->users())
>> +    classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
>> +                   SinCosCalls);
>> +
>> +  // It's only worthwhile if both sinpi and cospi are actually used.
>> +  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
>> +    return nullptr;
>> +
>> +  Value *Sin, *Cos, *SinCos;
>> +  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
>> +
>> +  replaceTrigInsts(SinCalls, Sin);
>> +  replaceTrigInsts(CosCalls, Cos);
>> +  replaceTrigInsts(SinCosCalls, SinCos);
>> +
>> +  return nullptr;
>> +}
>> +
>> +static bool isTrigLibCall(CallInst *CI) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +
>> +  // We can only hope to do anything useful if we can ignore things like errno
>> +  // and floating-point exceptions.
>> +  bool AttributesSafe =
>> +      CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
>> +
>> +  // Other than that we need float(float) or double(double)
>> +  return AttributesSafe && FT->getNumParams() == 1 &&
>> +         FT->getReturnType() == FT->getParamType(0) &&
>> +         (FT->getParamType(0)->isFloatTy() ||
>> +          FT->getParamType(0)->isDoubleTy());
>> +}
>> +
>> +void
>> +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
>> +                                  SmallVectorImpl<CallInst *> &SinCalls,
>> +                                  SmallVectorImpl<CallInst *> &CosCalls,
>> +                                  SmallVectorImpl<CallInst *> &SinCosCalls) {
>> +  CallInst *CI = dyn_cast<CallInst>(Val);
>> +
>> +  if (!CI)
>> +    return;
>> +
>> +  Function *Callee = CI->getCalledFunction();
>> +  StringRef FuncName = Callee->getName();
>> +  LibFunc::Func Func;
>> +  if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
>> +    return;
>> +
>> +  if (IsFloat) {
>> +    if (Func == LibFunc::sinpif)
>> +      SinCalls.push_back(CI);
>> +    else if (Func == LibFunc::cospif)
>> +      CosCalls.push_back(CI);
>> +    else if (Func == LibFunc::sincospif_stret)
>> +      SinCosCalls.push_back(CI);
>> +  } else {
>> +    if (Func == LibFunc::sinpi)
>> +      SinCalls.push_back(CI);
>> +    else if (Func == LibFunc::cospi)
>> +      CosCalls.push_back(CI);
>> +    else if (Func == LibFunc::sincospi_stret)
>> +      SinCosCalls.push_back(CI);
>>    }
>> +}
>> 
>> -};
>> +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
>> +                                         Value *Res) {
>> +  for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
>> +       I != E; ++I) {
>> +    replaceAllUsesWith(*I, Res);
>> +  }
>> +}
>> +
>> +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
>> +                      bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
>> +  Type *ArgTy = Arg->getType();
>> +  Type *ResTy;
>> +  StringRef Name;
>> +
>> +  Triple T(OrigCallee->getParent()->getTargetTriple());
>> +  if (UseFloat) {
>> +    Name = "__sincospif_stret";
>> +
>> +    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
>> +    // x86_64 can't use {float, float} since that would be returned in both
>> +    // xmm0 and xmm1, which isn't what a real struct would do.
>> +    ResTy = T.getArch() == Triple::x86_64
>> +                ? static_cast<Type *>(VectorType::get(ArgTy, 2))
>> +                : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
>> +  } else {
>> +    Name = "__sincospi_stret";
>> +    ResTy = StructType::get(ArgTy, ArgTy, NULL);
>> +  }
>> +
>> +  Module *M = OrigCallee->getParent();
>> +  Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
>> +                                         ResTy, ArgTy, NULL);
>> +
>> +  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
>> +    // If the argument is an instruction, it must dominate all uses so put our
>> +    // sincos call there.
>> +    BasicBlock::iterator Loc = ArgInst;
>> +    B.SetInsertPoint(ArgInst->getParent(), ++Loc);
>> +  } else {
>> +    // Otherwise (e.g. for a constant) the beginning of the function is as
>> +    // good a place as any.
>> +    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
>> +    B.SetInsertPoint(&EntryBB, EntryBB.begin());
>> +  }
>> +
>> +  SinCos = B.CreateCall(Callee, Arg, "sincospi");
>> +
>> +  if (SinCos->getType()->isStructTy()) {
>> +    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
>> +    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
>> +  } else {
>> +    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
>> +                                 "sinpi");
>> +    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
>> +                                 "cospi");
>> +  }
>> +}
>> 
>>  //===----------------------------------------------------------------------===//
>>  // Integer Library Call Optimizations
>>  //===----------------------------------------------------------------------===//
>> 
>> -struct FFSOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // Just make sure this has 2 arguments of the same FP type, which match the
>> -    // result type.
>> -    if (FT->getNumParams() != 1 ||
>> -        !FT->getReturnType()->isIntegerTy(32) ||
>> -        !FT->getParamType(0)->isIntegerTy())
>> -      return nullptr;
>> -
>> -    Value *Op = CI->getArgOperand(0);
>> -
>> -    // Constant fold.
>> -    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>> -      if (CI->isZero()) // ffs(0) -> 0.
>> -        return B.getInt32(0);
>> -      // ffs(c) -> cttz(c)+1
>> -      return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>> -    }
>> +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // Just make sure this has 2 arguments of the same FP type, which match the
>> +  // result type.
>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
>> +      !FT->getParamType(0)->isIntegerTy())
>> +    return nullptr;
>> +
>> +  Value *Op = CI->getArgOperand(0);
>> +
>> +  // Constant fold.
>> +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
>> +    if (CI->isZero()) // ffs(0) -> 0.
>> +      return B.getInt32(0);
>> +    // ffs(c) -> cttz(c)+1
>> +    return B.getInt32(CI->getValue().countTrailingZeros() + 1);
>> +  }
>> +
>> +  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>> +  Type *ArgType = Op->getType();
>> +  Value *F =
>> +      Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
>> +  Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>> +  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>> +  V = B.CreateIntCast(V, B.getInt32Ty(), false);
>> 
>> -    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
>> -    Type *ArgType = Op->getType();
>> -    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
>> -                                         Intrinsic::cttz, ArgType);
>> -    Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
>> -    V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
>> -    V = B.CreateIntCast(V, B.getInt32Ty(), false);
>> -
>> -    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>> -    return B.CreateSelect(Cond, V, B.getInt32(0));
>> -  }
>> -};
>> -
>> -struct AbsOpt : public LibCallOptimization {
>> -  bool ignoreCallingConv() override { return true; }
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // We require integer(integer) where the types agree.
>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> -        FT->getParamType(0) != FT->getReturnType())
>> -      return nullptr;
>> -
>> -    // abs(x) -> x >s -1 ? x : -x
>> -    Value *Op = CI->getArgOperand(0);
>> -    Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
>> -                                 "ispos");
>> -    Value *Neg = B.CreateNeg(Op, "neg");
>> -    return B.CreateSelect(Pos, Op, Neg);
>> -  }
>> -};
>> -
>> -struct IsDigitOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // We require integer(i32)
>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> -        !FT->getParamType(0)->isIntegerTy(32))
>> -      return nullptr;
>> -
>> -    // isdigit(c) -> (c-'0') <u 10
>> -    Value *Op = CI->getArgOperand(0);
>> -    Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>> -    Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>> -    return B.CreateZExt(Op, CI->getType());
>> -  }
>> -};
>> -
>> -struct IsAsciiOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // We require integer(i32)
>> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> -        !FT->getParamType(0)->isIntegerTy(32))
>> -      return nullptr;
>> -
>> -    // isascii(c) -> c <u 128
>> -    Value *Op = CI->getArgOperand(0);
>> -    Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>> -    return B.CreateZExt(Op, CI->getType());
>> -  }
>> -};
>> -
>> -struct ToAsciiOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    // We require i32(i32)
>> -    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> -        !FT->getParamType(0)->isIntegerTy(32))
>> -      return nullptr;
>> -
>> -    // toascii(c) -> c & 0x7f
>> -    return B.CreateAnd(CI->getArgOperand(0),
>> -                       ConstantInt::get(CI->getType(),0x7F));
>> -  }
>> -};
>> +  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
>> +  return B.CreateSelect(Cond, V, B.getInt32(0));
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // We require integer(integer) where the types agree.
>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> +      FT->getParamType(0) != FT->getReturnType())
>> +    return nullptr;
>> +
>> +  // abs(x) -> x >s -1 ? x : -x
>> +  Value *Op = CI->getArgOperand(0);
>> +  Value *Pos =
>> +      B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
>> +  Value *Neg = B.CreateNeg(Op, "neg");
>> +  return B.CreateSelect(Pos, Op, Neg);
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // We require integer(i32)
>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> +      !FT->getParamType(0)->isIntegerTy(32))
>> +    return nullptr;
>> +
>> +  // isdigit(c) -> (c-'0') <u 10
>> +  Value *Op = CI->getArgOperand(0);
>> +  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
>> +  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
>> +  return B.CreateZExt(Op, CI->getType());
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // We require integer(i32)
>> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
>> +      !FT->getParamType(0)->isIntegerTy(32))
>> +    return nullptr;
>> +
>> +  // isascii(c) -> c <u 128
>> +  Value *Op = CI->getArgOperand(0);
>> +  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
>> +  return B.CreateZExt(Op, CI->getType());
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  // We require i32(i32)
>> +  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
>> +      !FT->getParamType(0)->isIntegerTy(32))
>> +    return nullptr;
>> +
>> +  // toascii(c) -> c & 0x7f
>> +  return B.CreateAnd(CI->getArgOperand(0),
>> +                     ConstantInt::get(CI->getType(), 0x7F));
>> +}
>> 
>>  //===----------------------------------------------------------------------===//
>>  // Formatting and IO Library Call Optimizations
>>  //===----------------------------------------------------------------------===//
>> 
>> -struct ErrorReportingOpt : public LibCallOptimization {
>> -  ErrorReportingOpt(int S = -1) : StreamArg(S) {}
>> +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
>> 
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &) override {
>> -    // Error reporting calls should be cold, mark them as such.
>> -    // This applies even to non-builtin calls: it is only a hint and applies to
>> -    // functions that the frontend might not understand as builtins.
>> -
>> -    // This heuristic was suggested in:
>> -    // Improving Static Branch Prediction in a Compiler
>> -    // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>> -    // Proceedings of PACT'98, Oct. 1998, IEEE
>> -
>> -    if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
>> -      CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>> -    }
>> +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
>> +                                                 int StreamArg) {
>> +  // Error reporting calls should be cold, mark them as such.
>> +  // This applies even to non-builtin calls: it is only a hint and applies to
>> +  // functions that the frontend might not understand as builtins.
>> +
>> +  // This heuristic was suggested in:
>> +  // Improving Static Branch Prediction in a Compiler
>> +  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
>> +  // Proceedings of PACT'98, Oct. 1998, IEEE
>> +  Function *Callee = CI->getCalledFunction();
>> 
>> -    return nullptr;
>> +  if (!CI->hasFnAttr(Attribute::Cold) &&
>> +      isReportingError(Callee, CI, StreamArg)) {
>> +    CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>>    }
>> 
>> -protected:
>> -  bool isReportingError(Function *Callee, CallInst *CI) {
>> -    if (!ColdErrorCalls)
>> -      return false;
>> -
>> -    if (!Callee || !Callee->isDeclaration())
>> -      return false;
>> -
>> -    if (StreamArg < 0)
>> -      return true;
>> +  return nullptr;
>> +}
>> 
>> -    // These functions might be considered cold, but only if their stream
>> -    // argument is stderr.
>> +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
>> +  if (!ColdErrorCalls)
>> +    return false;
>> 
>> -    if (StreamArg >= (int) CI->getNumArgOperands())
>> -      return false;
>> -    LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>> -    if (!LI)
>> -      return false;
>> -    GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
>> -    if (!GV || !GV->isDeclaration())
>> -      return false;
>> -    return GV->getName() == "stderr";
>> -  }
>> -
>> -  int StreamArg;
>> -};
>> -
>> -struct PrintFOpt : public LibCallOptimization {
>> -  Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>> -                                   IRBuilder<> &B) {
>> -    // Check for a fixed format string.
>> -    StringRef FormatStr;
>> -    if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>> -      return nullptr;
>> -
>> -    // Empty format string -> noop.
>> -    if (FormatStr.empty())  // Tolerate printf's declared void.
>> -      return CI->use_empty() ? (Value*)CI :
>> -                               ConstantInt::get(CI->getType(), 0);
>> -
>> -    // Do not do any of the following transformations if the printf return value
>> -    // is used, in general the printf return value is not compatible with either
>> -    // putchar() or puts().
>> -    if (!CI->use_empty())
>> -      return nullptr;
>> -
>> -    // printf("x") -> putchar('x'), even for '%'.
>> -    if (FormatStr.size() == 1) {
>> -      Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>> -      if (CI->use_empty() || !Res) return Res;
>> -      return B.CreateIntCast(Res, CI->getType(), true);
>> -    }
>> +  if (!Callee || !Callee->isDeclaration())
>> +    return false;
>> 
>> -    // printf("foo\n") --> puts("foo")
>> -    if (FormatStr[FormatStr.size()-1] == '\n' &&
>> -        FormatStr.find('%') == StringRef::npos) { // No format characters.
>> -      // Create a string literal with no \n on it.  We expect the constant merge
>> -      // pass to be run after this pass, to merge duplicate strings.
>> -      FormatStr = FormatStr.drop_back();
>> -      Value *GV = B.CreateGlobalString(FormatStr, "str");
>> -      Value *NewCI = EmitPutS(GV, B, DL, TLI);
>> -      return (CI->use_empty() || !NewCI) ?
>> -              NewCI :
>> -              ConstantInt::get(CI->getType(), FormatStr.size()+1);
>> -    }
>> +  if (StreamArg < 0)
>> +    return true;
>> 
>> -    // Optimize specific format strings.
>> -    // printf("%c", chr) --> putchar(chr)
>> -    if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>> -        CI->getArgOperand(1)->getType()->isIntegerTy()) {
>> -      Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>> +  // These functions might be considered cold, but only if their stream
>> +  // argument is stderr.
>> 
>> -      if (CI->use_empty() || !Res) return Res;
>> -      return B.CreateIntCast(Res, CI->getType(), true);
>> -    }
>> +  if (StreamArg >= (int)CI->getNumArgOperands())
>> +    return false;
>> +  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
>> +  if (!LI)
>> +    return false;
>> +  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
>> +  if (!GV || !GV->isDeclaration())
>> +    return false;
>> +  return GV->getName() == "stderr";
>> +}
>> 
>> -    // printf("%s\n", str) --> puts(str)
>> -    if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>> -        CI->getArgOperand(1)->getType()->isPointerTy()) {
>> -      return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>> -    }
>> -    return nullptr;
>> +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
>> +  // Check for a fixed format string.
>> +  StringRef FormatStr;
>> +  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
>> +    return nullptr;
>> +
>> +  // Empty format string -> noop.
>> +  if (FormatStr.empty()) // Tolerate printf's declared void.
>> +    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
>> +
>> +  // Do not do any of the following transformations if the printf return value
>> +  // is used, in general the printf return value is not compatible with either
>> +  // putchar() or puts().
>> +  if (!CI->use_empty())
>> +    return nullptr;
>> +
>> +  // printf("x") -> putchar('x'), even for '%'.
>> +  if (FormatStr.size() == 1) {
>> +    Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
>> +    if (CI->use_empty() || !Res)
>> +      return Res;
>> +    return B.CreateIntCast(Res, CI->getType(), true);
>> +  }
>> +
>> +  // printf("foo\n") --> puts("foo")
>> +  if (FormatStr[FormatStr.size() - 1] == '\n' &&
>> +      FormatStr.find('%') == StringRef::npos) { // No format characters.
>> +    // Create a string literal with no \n on it.  We expect the constant merge
>> +    // pass to be run after this pass, to merge duplicate strings.
>> +    FormatStr = FormatStr.drop_back();
>> +    Value *GV = B.CreateGlobalString(FormatStr, "str");
>> +    Value *NewCI = EmitPutS(GV, B, DL, TLI);
>> +    return (CI->use_empty() || !NewCI)
>> +               ? NewCI
>> +               : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
>> +  }
>> +
>> +  // Optimize specific format strings.
>> +  // printf("%c", chr) --> putchar(chr)
>> +  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
>> +      CI->getArgOperand(1)->getType()->isIntegerTy()) {
>> +    Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
>> +
>> +    if (CI->use_empty() || !Res)
>> +      return Res;
>> +    return B.CreateIntCast(Res, CI->getType(), true);
>> +  }
>> +
>> +  // printf("%s\n", str) --> puts(str)
>> +  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
>> +      CI->getArgOperand(1)->getType()->isPointerTy()) {
>> +    return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>>    }
>> +  return nullptr;
>> +}
>> 
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Require one fixed pointer argument and an integer/void result.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> -        !(FT->getReturnType()->isIntegerTy() ||
>> -          FT->getReturnType()->isVoidTy()))
>> -      return nullptr;
>> +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
>> 
>> -    if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>> -      return V;
>> -    }
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Require one fixed pointer argument and an integer/void result.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> +      !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
>> +    return nullptr;
>> +
>> +  if (Value *V = optimizePrintFString(CI, B)) {
>> +    return V;
>> +  }
>> 
>> -    // printf(format, ...) -> iprintf(format, ...) if no floating point
>> -    // arguments.
>> -    if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
>> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
>> -      Constant *IPrintFFn =
>> +  // printf(format, ...) -> iprintf(format, ...) if no floating point
>> +  // arguments.
>> +  if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
>> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
>> +    Constant *IPrintFFn =
>>          M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
>> -      CallInst *New = cast<CallInst>(CI->clone());
>> -      New->setCalledFunction(IPrintFFn);
>> -      B.Insert(New);
>> -      return New;
>> -    }
>> -    return nullptr;
>> +    CallInst *New = cast<CallInst>(CI->clone());
>> +    New->setCalledFunction(IPrintFFn);
>> +    B.Insert(New);
>> +    return New;
>>    }
>> -};
>> +  return nullptr;
>> +}
>> 
>> -struct SPrintFOpt : public LibCallOptimization {
>> -  Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
>> -                                   IRBuilder<> &B) {
>> -    // Check for a fixed format string.
>> -    StringRef FormatStr;
>> -    if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> -      return nullptr;
>> -
>> -    // If we just have a format string (nothing else crazy) transform it.
>> -    if (CI->getNumArgOperands() == 2) {
>> -      // Make sure there's no % in the constant array.  We could try to handle
>> -      // %% -> % in the future if we cared.
>> -      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> -        if (FormatStr[i] == '%')
>> -          return nullptr; // we found a format specifier, bail out.
>> -
>> -      // These optimizations require DataLayout.
>> -      if (!DL) return nullptr;
>> -
>> -      // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
>> -                     ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
>> -                                      FormatStr.size() + 1), 1);   // nul byte.
>> -      return ConstantInt::get(CI->getType(), FormatStr.size());
>> -    }
>> +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
>> +  // Check for a fixed format string.
>> +  StringRef FormatStr;
>> +  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> +    return nullptr;
>> 
>> -    // The remaining optimizations require the format string to be "%s" or "%c"
>> -    // and have an extra operand.
>> -    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> -        CI->getNumArgOperands() < 3)
>> -      return nullptr;
>> -
>> -    // Decode the second character of the format string.
>> -    if (FormatStr[1] == 'c') {
>> -      // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>> -      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
>> -      Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
>> -      Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>> -      B.CreateStore(V, Ptr);
>> -      Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>> -      B.CreateStore(B.getInt8(0), Ptr);
>> +  // If we just have a format string (nothing else crazy) transform it.
>> +  if (CI->getNumArgOperands() == 2) {
>> +    // Make sure there's no % in the constant array.  We could try to handle
>> +    // %% -> % in the future if we cared.
>> +    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> +      if (FormatStr[i] == '%')
>> +        return nullptr; // we found a format specifier, bail out.
>> 
>> -      return ConstantInt::get(CI->getType(), 1);
>> -    }
>> +    // These optimizations require DataLayout.
>> +    if (!DL)
>> +      return nullptr;
>> 
>> -    if (FormatStr[1] == 's') {
>> -      // These optimizations require DataLayout.
>> -      if (!DL) return nullptr;
>> +    // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
>> +    B.CreateMemCpy(
>> +        CI->getArgOperand(0), CI->getArgOperand(1),
>> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()),
>> +                         FormatStr.size() + 1),
>> +        1); // Copy the null byte.
>> +    return ConstantInt::get(CI->getType(), FormatStr.size());
>> +  }
>> 
>> -      // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
>> -      if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
>> +  // The remaining optimizations require the format string to be "%s" or "%c"
>> +  // and have an extra operand.
>> +  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> +      CI->getNumArgOperands() < 3)
>> +    return nullptr;
>> 
>> -      Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>> -      if (!Len)
>> -        return nullptr;
>> -      Value *IncLen = B.CreateAdd(Len,
>> -                                  ConstantInt::get(Len->getType(), 1),
>> -                                  "leninc");
>> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
>> +  // Decode the second character of the format string.
>> +  if (FormatStr[1] == 'c') {
>> +    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
>> +    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>> +      return nullptr;
>> +    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
>> +    Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
>> +    B.CreateStore(V, Ptr);
>> +    Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
>> +    B.CreateStore(B.getInt8(0), Ptr);
>> 
>> -      // The sprintf result is the unincremented number of bytes in the string.
>> -      return B.CreateIntCast(Len, CI->getType(), false);
>> -    }
>> -    return nullptr;
>> +    return ConstantInt::get(CI->getType(), 1);
>>    }
>> 
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Require two fixed pointer arguments and an integer result.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        !FT->getReturnType()->isIntegerTy())
>> +  if (FormatStr[1] == 's') {
>> +    // These optimizations require DataLayout.
>> +    if (!DL)
>>        return nullptr;
>> 
>> -    if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
>> -      return V;
>> -    }
>> +    // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
>> +    if (!CI->getArgOperand(2)->getType()->isPointerTy())
>> +      return nullptr;
>> 
>> -    // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
>> -    // point arguments.
>> -    if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
>> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
>> -      Constant *SIPrintFFn =
>> +    Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
>> +    if (!Len)
>> +      return nullptr;
>> +    Value *IncLen =
>> +        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
>> +    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
>> +
>> +    // The sprintf result is the unincremented number of bytes in the string.
>> +    return B.CreateIntCast(Len, CI->getType(), false);
>> +  }
>> +  return nullptr;
>> +}
>> +
>> +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Require two fixed pointer arguments and an integer result.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      !FT->getReturnType()->isIntegerTy())
>> +    return nullptr;
>> +
>> +  if (Value *V = optimizeSPrintFString(CI, B)) {
>> +    return V;
>> +  }
>> +
>> +  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
>> +  // point arguments.
>> +  if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
>> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
>> +    Constant *SIPrintFFn =
>>          M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
>> -      CallInst *New = cast<CallInst>(CI->clone());
>> -      New->setCalledFunction(SIPrintFFn);
>> -      B.Insert(New);
>> -      return New;
>> -    }
>> -    return nullptr;
>> +    CallInst *New = cast<CallInst>(CI->clone());
>> +    New->setCalledFunction(SIPrintFFn);
>> +    B.Insert(New);
>> +    return New;
>>    }
>> -};
>> +  return nullptr;
>> +}
>> 
>> -struct FPrintFOpt : public LibCallOptimization {
>> -  Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
>> -                                   IRBuilder<> &B) {
>> -    ErrorReportingOpt ER(/* StreamArg = */ 0);
>> -    (void) ER.callOptimizer(Callee, CI, B);
>> -
>> -    // All the optimizations depend on the format string.
>> -    StringRef FormatStr;
>> -    if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> -      return nullptr;
>> -
>> -    // Do not do any of the following transformations if the fprintf return
>> -    // value is used, in general the fprintf return value is not compatible
>> -    // with fwrite(), fputc() or fputs().
>> -    if (!CI->use_empty())
>> -      return nullptr;
>> -
>> -    // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>> -    if (CI->getNumArgOperands() == 2) {
>> -      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> -        if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
>> -          return nullptr; // We found a format specifier.
>> -
>> -      // These optimizations require DataLayout.
>> -      if (!DL) return nullptr;
>> -
>> -      return EmitFWrite(CI->getArgOperand(1),
>> -                        ConstantInt::get(DL->getIntPtrType(*Context),
>> -                                         FormatStr.size()),
>> -                        CI->getArgOperand(0), B, DL, TLI);
>> -    }
>> +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
>> +  optimizeErrorReporting(CI, B, 0);
>> +
>> +  // All the optimizations depend on the format string.
>> +  StringRef FormatStr;
>> +  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
>> +    return nullptr;
>> 
>> -    // The remaining optimizations require the format string to be "%s" or "%c"
>> -    // and have an extra operand.
>> -    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> -        CI->getNumArgOperands() < 3)
>> +  // Do not do any of the following transformations if the fprintf return
>> +  // value is used, in general the fprintf return value is not compatible
>> +  // with fwrite(), fputc() or fputs().
>> +  if (!CI->use_empty())
>> +    return nullptr;
>> +
>> +  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
>> +  if (CI->getNumArgOperands() == 2) {
>> +    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
>> +      if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
>> +        return nullptr;        // We found a format specifier.
>> +
>> +    // These optimizations require DataLayout.
>> +    if (!DL)
>>        return nullptr;
>> 
>> -    // Decode the second character of the format string.
>> -    if (FormatStr[1] == 'c') {
>> -      // fprintf(F, "%c", chr) --> fputc(chr, F)
>> -      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
>> -      return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> -    }
>> +    return EmitFWrite(
>> +        CI->getArgOperand(1),
>> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()),
>> +        CI->getArgOperand(0), B, DL, TLI);
>> +  }
>> 
>> -    if (FormatStr[1] == 's') {
>> -      // fprintf(F, "%s", str) --> fputs(str, F)
>> -      if (!CI->getArgOperand(2)->getType()->isPointerTy())
>> -        return nullptr;
>> -      return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> -    }
>> +  // The remaining optimizations require the format string to be "%s" or "%c"
>> +  // and have an extra operand.
>> +  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
>> +      CI->getNumArgOperands() < 3)
>>      return nullptr;
>> -  }
>> 
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Require two fixed paramters as pointers and integer result.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        !FT->getReturnType()->isIntegerTy())
>> +  // Decode the second character of the format string.
>> +  if (FormatStr[1] == 'c') {
>> +    // fprintf(F, "%c", chr) --> fputc(chr, F)
>> +    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>>        return nullptr;
>> +    return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> +  }
>> 
>> -    if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
>> -      return V;
>> -    }
>> +  if (FormatStr[1] == 's') {
>> +    // fprintf(F, "%s", str) --> fputs(str, F)
>> +    if (!CI->getArgOperand(2)->getType()->isPointerTy())
>> +      return nullptr;
>> +    return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
>> +  }
>> +  return nullptr;
>> +}
>> 
>> -    // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
>> -    // floating point arguments.
>> -    if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
>> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
>> -      Constant *FIPrintFFn =
>> +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Require two fixed paramters as pointers and integer result.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() ||
>> +      !FT->getReturnType()->isIntegerTy())
>> +    return nullptr;
>> +
>> +  if (Value *V = optimizeFPrintFString(CI, B)) {
>> +    return V;
>> +  }
>> +
>> +  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
>> +  // floating point arguments.
>> +  if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
>> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
>> +    Constant *FIPrintFFn =
>>          M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
>> -      CallInst *New = cast<CallInst>(CI->clone());
>> -      New->setCalledFunction(FIPrintFFn);
>> -      B.Insert(New);
>> -      return New;
>> -    }
>> -    return nullptr;
>> +    CallInst *New = cast<CallInst>(CI->clone());
>> +    New->setCalledFunction(FIPrintFFn);
>> +    B.Insert(New);
>> +    return New;
>>    }
>> -};
>> +  return nullptr;
>> +}
>> 
>> -struct FWriteOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    ErrorReportingOpt ER(/* StreamArg = */ 3);
>> -    (void) ER.callOptimizer(Callee, CI, B);
>> -
>> -    // Require a pointer, an integer, an integer, a pointer, returning integer.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isIntegerTy() ||
>> -        !FT->getParamType(2)->isIntegerTy() ||
>> -        !FT->getParamType(3)->isPointerTy() ||
>> -        !FT->getReturnType()->isIntegerTy())
>> -      return nullptr;
>> -
>> -    // Get the element size and count.
>> -    ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> -    ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> -    if (!SizeC || !CountC) return nullptr;
>> -    uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
>> -
>> -    // If this is writing zero records, remove the call (it's a noop).
>> -    if (Bytes == 0)
>> -      return ConstantInt::get(CI->getType(), 0);
>> -
>> -    // If this is writing one byte, turn it into fputc.
>> -    // This optimisation is only valid, if the return value is unused.
>> -    if (Bytes == 1 && CI->use_empty()) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
>> -      Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
>> -      Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>> -      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>> -    }
>> +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
>> +  optimizeErrorReporting(CI, B, 3);
>> 
>> -    return nullptr;
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Require a pointer, an integer, an integer, a pointer, returning integer.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isIntegerTy() ||
>> +      !FT->getParamType(2)->isIntegerTy() ||
>> +      !FT->getParamType(3)->isPointerTy() ||
>> +      !FT->getReturnType()->isIntegerTy())
>> +    return nullptr;
>> +
>> +  // Get the element size and count.
>> +  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
>> +  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
>> +  if (!SizeC || !CountC)
>> +    return nullptr;
>> +  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
>> +
>> +  // If this is writing zero records, remove the call (it's a noop).
>> +  if (Bytes == 0)
>> +    return ConstantInt::get(CI->getType(), 0);
>> +
>> +  // If this is writing one byte, turn it into fputc.
>> +  // This optimisation is only valid, if the return value is unused.
>> +  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
>> +    Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
>> +    Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
>> +    return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>>    }
>> -};
>> 
>> -struct FPutsOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    ErrorReportingOpt ER(/* StreamArg = */ 1);
>> -    (void) ER.callOptimizer(Callee, CI, B);
>> +  return nullptr;
>> +}
>> 
>> -    // These optimizations require DataLayout.
>> -    if (!DL) return nullptr;
>> +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
>> +  optimizeErrorReporting(CI, B, 1);
>> 
>> -    // Require two pointers.  Also, we can't optimize if return value is used.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> -        !FT->getParamType(1)->isPointerTy() ||
>> -        !CI->use_empty())
>> -      return nullptr;
>> -
>> -    // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>> -    uint64_t Len = GetStringLength(CI->getArgOperand(0));
>> -    if (!Len) return nullptr;
>> -    // Known to have no uses (see above).
>> -    return EmitFWrite(CI->getArgOperand(0),
>> -                      ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
>> -                      CI->getArgOperand(1), B, DL, TLI);
>> -  }
>> -};
>> -
>> -struct PutsOpt : public LibCallOptimization {
>> -  Value *callOptimizer(Function *Callee, CallInst *CI,
>> -                       IRBuilder<> &B) override {
>> -    // Require one fixed pointer argument and an integer/void result.
>> -    FunctionType *FT = Callee->getFunctionType();
>> -    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> -        !(FT->getReturnType()->isIntegerTy() ||
>> -          FT->getReturnType()->isVoidTy()))
>> -      return nullptr;
>> -
>> -    // Check for a constant string.
>> -    StringRef Str;
>> -    if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>> -      return nullptr;
>> -
>> -    if (Str.empty() && CI->use_empty()) {
>> -      // puts("") -> putchar('\n')
>> -      Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>> -      if (CI->use_empty() || !Res) return Res;
>> -      return B.CreateIntCast(Res, CI->getType(), true);
>> -    }
>> +  Function *Callee = CI->getCalledFunction();
>> 
>> +  // These optimizations require DataLayout.
>> +  if (!DL)
>>      return nullptr;
>> -  }
>> -};
>> 
>> -} // End anonymous namespace.
>> +  // Require two pointers.  Also, we can't optimize if return value is used.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
>> +      !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
>> +    return nullptr;
>> 
>> -namespace llvm {
>> +  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
>> +  uint64_t Len = GetStringLength(CI->getArgOperand(0));
>> +  if (!Len)
>> +    return nullptr;
>> 
>> -class LibCallSimplifierImpl {
>> -  const DataLayout *DL;
>> -  const TargetLibraryInfo *TLI;
>> -  const LibCallSimplifier *LCS;
>> -  bool UnsafeFPShrink;
>> -
>> -  // Math library call optimizations.
>> -  CosOpt Cos;
>> -  PowOpt Pow;
>> -  Exp2Opt Exp2;
>> -public:
>> -  LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
>> -                        const LibCallSimplifier *LCS,
>> -                        bool UnsafeFPShrink = false)
>> -    : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
>> -    this->DL = DL;
>> -    this->TLI = TLI;
>> -    this->LCS = LCS;
>> -    this->UnsafeFPShrink = UnsafeFPShrink;
>> -  }
>> -
>> -  Value *optimizeCall(CallInst *CI);
>> -  LibCallOptimization *lookupOptimization(CallInst *CI);
>> -  bool hasFloatVersion(StringRef FuncName);
>> -};
>> +  // Known to have no uses (see above).
>> +  return EmitFWrite(
>> +      CI->getArgOperand(0),
>> +      ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
>> +      CI->getArgOperand(1), B, DL, TLI);
>> +}
>> 
>> -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
>> +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
>> +  Function *Callee = CI->getCalledFunction();
>> +  // Require one fixed pointer argument and an integer/void result.
>> +  FunctionType *FT = Callee->getFunctionType();
>> +  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
>> +      !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
>> +    return nullptr;
>> +
>> +  // Check for a constant string.
>> +  StringRef Str;
>> +  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
>> +    return nullptr;
>> +
>> +  if (Str.empty() && CI->use_empty()) {
>> +    // puts("") -> putchar('\n')
>> +    Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
>> +    if (CI->use_empty() || !Res)
>> +      return Res;
>> +    return B.CreateIntCast(Res, CI->getType(), true);
>> +  }
>> +
>> +  return nullptr;
>> +}
>> +
>> +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
>>    LibFunc::Func Func;
>>    SmallString<20> FloatFuncName = FuncName;
>>    FloatFuncName += 'f';
>> @@ -2048,263 +1874,204 @@ bool LibCallSimplifierImpl::hasFloatVers
>>    return false;
>>  }
>> 
>> -// Fortified library call optimizations.
>> -static MemCpyChkOpt MemCpyChk;
>> -static MemMoveChkOpt MemMoveChk;
>> -static MemSetChkOpt MemSetChk;
>> -static StrCpyChkOpt StrCpyChk;
>> -static StpCpyChkOpt StpCpyChk;
>> -static StrNCpyChkOpt StrNCpyChk;
>> -
>> -// String library call optimizations.
>> -static StrCatOpt StrCat;
>> -static StrNCatOpt StrNCat;
>> -static StrChrOpt StrChr;
>> -static StrRChrOpt StrRChr;
>> -static StrCmpOpt StrCmp;
>> -static StrNCmpOpt StrNCmp;
>> -static StrCpyOpt StrCpy;
>> -static StpCpyOpt StpCpy;
>> -static StrNCpyOpt StrNCpy;
>> -static StrLenOpt StrLen;
>> -static StrPBrkOpt StrPBrk;
>> -static StrToOpt StrTo;
>> -static StrSpnOpt StrSpn;
>> -static StrCSpnOpt StrCSpn;
>> -static StrStrOpt StrStr;
>> -
>> -// Memory library call optimizations.
>> -static MemCmpOpt MemCmp;
>> -static MemCpyOpt MemCpy;
>> -static MemMoveOpt MemMove;
>> -static MemSetOpt MemSet;
>> -
>> -// Math library call optimizations.
>> -static UnaryDoubleFPOpt UnaryDoubleFP(false);
>> -static BinaryDoubleFPOpt BinaryDoubleFP(false);
>> -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
>> -static SinCosPiOpt SinCosPi;
>> -
>> -  // Integer library call optimizations.
>> -static FFSOpt FFS;
>> -static AbsOpt Abs;
>> -static IsDigitOpt IsDigit;
>> -static IsAsciiOpt IsAscii;
>> -static ToAsciiOpt ToAscii;
>> -
>> -// Formatting and IO library call optimizations.
>> -static ErrorReportingOpt ErrorReporting;
>> -static ErrorReportingOpt ErrorReporting0(0);
>> -static ErrorReportingOpt ErrorReporting1(1);
>> -static PrintFOpt PrintF;
>> -static SPrintFOpt SPrintF;
>> -static FPrintFOpt FPrintF;
>> -static FWriteOpt FWrite;
>> -static FPutsOpt FPuts;
>> -static PutsOpt Puts;
>> +Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>> +  if (CI->isNoBuiltin())
>> +    return nullptr;
>> 
>> -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
>>    LibFunc::Func Func;
>>    Function *Callee = CI->getCalledFunction();
>>    StringRef FuncName = Callee->getName();
>> +  IRBuilder<> Builder(CI);
>> +  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
>> 
>>    // Next check for intrinsics.
>>    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
>> +    if (!isCallingConvC)
>> +      return nullptr;
>>      switch (II->getIntrinsicID()) {
>>      case Intrinsic::pow:
>> -       return &Pow;
>> +      return optimizePow(CI, Builder);
>>      case Intrinsic::exp2:
>> -       return &Exp2;
>> +      return optimizeExp2(CI, Builder);
>>      default:
>> -       return nullptr;
>> +      return nullptr;
>>      }
>>    }
>> 
>>    // Then check for known library functions.
>>    if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
>> +    // We never change the calling convention.
>> +    if (!ignoreCallingConv(Func) && !isCallingConvC)
>> +      return nullptr;
>>      switch (Func) {
>> -      case LibFunc::strcat:
>> -        return &StrCat;
>> -      case LibFunc::strncat:
>> -        return &StrNCat;
>> -      case LibFunc::strchr:
>> -        return &StrChr;
>> -      case LibFunc::strrchr:
>> -        return &StrRChr;
>> -      case LibFunc::strcmp:
>> -        return &StrCmp;
>> -      case LibFunc::strncmp:
>> -        return &StrNCmp;
>> -      case LibFunc::strcpy:
>> -        return &StrCpy;
>> -      case LibFunc::stpcpy:
>> -        return &StpCpy;
>> -      case LibFunc::strncpy:
>> -        return &StrNCpy;
>> -      case LibFunc::strlen:
>> -        return &StrLen;
>> -      case LibFunc::strpbrk:
>> -        return &StrPBrk;
>> -      case LibFunc::strtol:
>> -      case LibFunc::strtod:
>> -      case LibFunc::strtof:
>> -      case LibFunc::strtoul:
>> -      case LibFunc::strtoll:
>> -      case LibFunc::strtold:
>> -      case LibFunc::strtoull:
>> -        return &StrTo;
>> -      case LibFunc::strspn:
>> -        return &StrSpn;
>> -      case LibFunc::strcspn:
>> -        return &StrCSpn;
>> -      case LibFunc::strstr:
>> -        return &StrStr;
>> -      case LibFunc::memcmp:
>> -        return &MemCmp;
>> -      case LibFunc::memcpy:
>> -        return &MemCpy;
>> -      case LibFunc::memmove:
>> -        return &MemMove;
>> -      case LibFunc::memset:
>> -        return &MemSet;
>> -      case LibFunc::cosf:
>> -      case LibFunc::cos:
>> -      case LibFunc::cosl:
>> -        return &Cos;
>> -      case LibFunc::sinpif:
>> -      case LibFunc::sinpi:
>> -      case LibFunc::cospif:
>> -      case LibFunc::cospi:
>> -        return &SinCosPi;
>> -      case LibFunc::powf:
>> -      case LibFunc::pow:
>> -      case LibFunc::powl:
>> -        return &Pow;
>> -      case LibFunc::exp2l:
>> -      case LibFunc::exp2:
>> -      case LibFunc::exp2f:
>> -        return &Exp2;
>> -      case LibFunc::ffs:
>> -      case LibFunc::ffsl:
>> -      case LibFunc::ffsll:
>> -        return &FFS;
>> -      case LibFunc::abs:
>> -      case LibFunc::labs:
>> -      case LibFunc::llabs:
>> -        return &Abs;
>> -      case LibFunc::isdigit:
>> -        return &IsDigit;
>> -      case LibFunc::isascii:
>> -        return &IsAscii;
>> -      case LibFunc::toascii:
>> -        return &ToAscii;
>> -      case LibFunc::printf:
>> -        return &PrintF;
>> -      case LibFunc::sprintf:
>> -        return &SPrintF;
>> -      case LibFunc::fprintf:
>> -        return &FPrintF;
>> -      case LibFunc::fwrite:
>> -        return &FWrite;
>> -      case LibFunc::fputs:
>> -        return &FPuts;
>> -      case LibFunc::puts:
>> -        return &Puts;
>> -      case LibFunc::perror:
>> -        return &ErrorReporting;
>> -      case LibFunc::vfprintf:
>> -      case LibFunc::fiprintf:
>> -        return &ErrorReporting0;
>> -      case LibFunc::fputc:
>> -        return &ErrorReporting1;
>> -      case LibFunc::ceil:
>> -      case LibFunc::fabs:
>> -      case LibFunc::floor:
>> -      case LibFunc::rint:
>> -      case LibFunc::round:
>> -      case LibFunc::nearbyint:
>> -      case LibFunc::trunc:
>> -        if (hasFloatVersion(FuncName))
>> -          return &UnaryDoubleFP;
>> -        return nullptr;
>> -      case LibFunc::acos:
>> -      case LibFunc::acosh:
>> -      case LibFunc::asin:
>> -      case LibFunc::asinh:
>> -      case LibFunc::atan:
>> -      case LibFunc::atanh:
>> -      case LibFunc::cbrt:
>> -      case LibFunc::cosh:
>> -      case LibFunc::exp:
>> -      case LibFunc::exp10:
>> -      case LibFunc::expm1:
>> -      case LibFunc::log:
>> -      case LibFunc::log10:
>> -      case LibFunc::log1p:
>> -      case LibFunc::log2:
>> -      case LibFunc::logb:
>> -      case LibFunc::sin:
>> -      case LibFunc::sinh:
>> -      case LibFunc::sqrt:
>> -      case LibFunc::tan:
>> -      case LibFunc::tanh:
>> -        if (UnsafeFPShrink && hasFloatVersion(FuncName))
>> -         return &UnsafeUnaryDoubleFP;
>> -        return nullptr;
>> -      case LibFunc::fmin:
>> -      case LibFunc::fmax:
>> -        if (hasFloatVersion(FuncName))
>> -          return &BinaryDoubleFP;
>> -        return nullptr;
>> -      case LibFunc::memcpy_chk:
>> -        return &MemCpyChk;
>> -      default:
>> -        return nullptr;
>> -      }
>> +    case LibFunc::strcat:
>> +      return optimizeStrCat(CI, Builder);
>> +    case LibFunc::strncat:
>> +      return optimizeStrNCat(CI, Builder);
>> +    case LibFunc::strchr:
>> +      return optimizeStrChr(CI, Builder);
>> +    case LibFunc::strrchr:
>> +      return optimizeStrRChr(CI, Builder);
>> +    case LibFunc::strcmp:
>> +      return optimizeStrCmp(CI, Builder);
>> +    case LibFunc::strncmp:
>> +      return optimizeStrNCmp(CI, Builder);
>> +    case LibFunc::strcpy:
>> +      return optimizeStrCpy(CI, Builder);
>> +    case LibFunc::stpcpy:
>> +      return optimizeStpCpy(CI, Builder);
>> +    case LibFunc::strncpy:
>> +      return optimizeStrNCpy(CI, Builder);
>> +    case LibFunc::strlen:
>> +      return optimizeStrLen(CI, Builder);
>> +    case LibFunc::strpbrk:
>> +      return optimizeStrPBrk(CI, Builder);
>> +    case LibFunc::strtol:
>> +    case LibFunc::strtod:
>> +    case LibFunc::strtof:
>> +    case LibFunc::strtoul:
>> +    case LibFunc::strtoll:
>> +    case LibFunc::strtold:
>> +    case LibFunc::strtoull:
>> +      return optimizeStrTo(CI, Builder);
>> +    case LibFunc::strspn:
>> +      return optimizeStrSpn(CI, Builder);
>> +    case LibFunc::strcspn:
>> +      return optimizeStrCSpn(CI, Builder);
>> +    case LibFunc::strstr:
>> +      return optimizeStrStr(CI, Builder);
>> +    case LibFunc::memcmp:
>> +      return optimizeMemCmp(CI, Builder);
>> +    case LibFunc::memcpy:
>> +      return optimizeMemCpy(CI, Builder);
>> +    case LibFunc::memmove:
>> +      return optimizeMemMove(CI, Builder);
>> +    case LibFunc::memset:
>> +      return optimizeMemSet(CI, Builder);
>> +    case LibFunc::cosf:
>> +    case LibFunc::cos:
>> +    case LibFunc::cosl:
>> +      return optimizeCos(CI, Builder);
>> +    case LibFunc::sinpif:
>> +    case LibFunc::sinpi:
>> +    case LibFunc::cospif:
>> +    case LibFunc::cospi:
>> +      return optimizeSinCosPi(CI, Builder);
>> +    case LibFunc::powf:
>> +    case LibFunc::pow:
>> +    case LibFunc::powl:
>> +      return optimizePow(CI, Builder);
>> +    case LibFunc::exp2l:
>> +    case LibFunc::exp2:
>> +    case LibFunc::exp2f:
>> +      return optimizeExp2(CI, Builder);
>> +    case LibFunc::ffs:
>> +    case LibFunc::ffsl:
>> +    case LibFunc::ffsll:
>> +      return optimizeFFS(CI, Builder);
>> +    case LibFunc::abs:
>> +    case LibFunc::labs:
>> +    case LibFunc::llabs:
>> +      return optimizeAbs(CI, Builder);
>> +    case LibFunc::isdigit:
>> +      return optimizeIsDigit(CI, Builder);
>> +    case LibFunc::isascii:
>> +      return optimizeIsAscii(CI, Builder);
>> +    case LibFunc::toascii:
>> +      return optimizeToAscii(CI, Builder);
>> +    case LibFunc::printf:
>> +      return optimizePrintF(CI, Builder);
>> +    case LibFunc::sprintf:
>> +      return optimizeSPrintF(CI, Builder);
>> +    case LibFunc::fprintf:
>> +      return optimizeFPrintF(CI, Builder);
>> +    case LibFunc::fwrite:
>> +      return optimizeFWrite(CI, Builder);
>> +    case LibFunc::fputs:
>> +      return optimizeFPuts(CI, Builder);
>> +    case LibFunc::puts:
>> +      return optimizePuts(CI, Builder);
>> +    case LibFunc::perror:
>> +      return optimizeErrorReporting(CI, Builder);
>> +    case LibFunc::vfprintf:
>> +    case LibFunc::fiprintf:
>> +      return optimizeErrorReporting(CI, Builder, 0);
>> +    case LibFunc::fputc:
>> +      return optimizeErrorReporting(CI, Builder, 1);
>> +    case LibFunc::ceil:
>> +    case LibFunc::fabs:
>> +    case LibFunc::floor:
>> +    case LibFunc::rint:
>> +    case LibFunc::round:
>> +    case LibFunc::nearbyint:
>> +    case LibFunc::trunc:
>> +      if (hasFloatVersion(FuncName))
>> +        return optimizeUnaryDoubleFP(CI, Builder, false);
>> +      return nullptr;
>> +    case LibFunc::acos:
>> +    case LibFunc::acosh:
>> +    case LibFunc::asin:
>> +    case LibFunc::asinh:
>> +    case LibFunc::atan:
>> +    case LibFunc::atanh:
>> +    case LibFunc::cbrt:
>> +    case LibFunc::cosh:
>> +    case LibFunc::exp:
>> +    case LibFunc::exp10:
>> +    case LibFunc::expm1:
>> +    case LibFunc::log:
>> +    case LibFunc::log10:
>> +    case LibFunc::log1p:
>> +    case LibFunc::log2:
>> +    case LibFunc::logb:
>> +    case LibFunc::sin:
>> +    case LibFunc::sinh:
>> +    case LibFunc::sqrt:
>> +    case LibFunc::tan:
>> +    case LibFunc::tanh:
>> +      if (UnsafeFPShrink && hasFloatVersion(FuncName))
>> +        return optimizeUnaryDoubleFP(CI, Builder, true);
>> +      return nullptr;
>> +    case LibFunc::fmin:
>> +    case LibFunc::fmax:
>> +      if (hasFloatVersion(FuncName))
>> +        return optimizeBinaryDoubleFP(CI, Builder);
>> +      return nullptr;
>> +    case LibFunc::memcpy_chk:
>> +      return optimizeMemCpyChk(CI, Builder);
>> +    default:
>> +      return nullptr;
>> +    }
>>    }
>> 
>> +  if (!isCallingConvC)
>> +    return nullptr;
>> +
>>    // Finally check for fortified library calls.
>>    if (FuncName.endswith("_chk")) {
>>      if (FuncName == "__memmove_chk")
>> -      return &MemMoveChk;
>> +      return optimizeMemMoveChk(CI, Builder);
>>      else if (FuncName == "__memset_chk")
>> -      return &MemSetChk;
>> +      return optimizeMemSetChk(CI, Builder);
>>      else if (FuncName == "__strcpy_chk")
>> -      return &StrCpyChk;
>> +      return optimizeStrCpyChk(CI, Builder);
>>      else if (FuncName == "__stpcpy_chk")
>> -      return &StpCpyChk;
>> +      return optimizeStpCpyChk(CI, Builder);
>>      else if (FuncName == "__strncpy_chk")
>> -      return &StrNCpyChk;
>> +      return optimizeStrNCpyChk(CI, Builder);
>>      else if (FuncName == "__stpncpy_chk")
>> -      return &StrNCpyChk;
>> +      return optimizeStrNCpyChk(CI, Builder);
>>    }
>> 
>>    return nullptr;
>> -
>> -}
>> -
>> -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
>> -  LibCallOptimization *LCO = lookupOptimization(CI);
>> -  if (LCO) {
>> -    IRBuilder<> Builder(CI);
>> -    return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
>> -  }
>> -  return nullptr;
>>  }
>> 
>>  LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
>>                                       const TargetLibraryInfo *TLI,
>> -                                     bool UnsafeFPShrink) {
>> -  Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
>> -}
>> -
>> -LibCallSimplifier::~LibCallSimplifier() {
>> -  delete Impl;
>> -}
>> -
>> -Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
>> -  if (CI->isNoBuiltin()) return nullptr;
>> -  return Impl->optimizeCall(CI);
>> +                                     bool UnsafeFPShrink) :
>> +                                     DL(DL),
>> +                                     TLI(TLI),
>> +                                     UnsafeFPShrink(UnsafeFPShrink) {
>>  }
>> 
>>  void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
>> @@ -2312,8 +2079,6 @@ void LibCallSimplifier::replaceAllUsesWi
>>    I->eraseFromParent();
>>  }
>> 
>> -}
>> -
>>  // TODO:
>>  //   Additional cases that we need to add to this file:
>>  //
>> 
>> 
>> _______________________________________________
>> llvm-commits mailing list
>> llvm-commits at cs.uiuc.edu <mailto:llvm-commits at cs.uiuc.edu>
>> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits <http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits>
>> 
> 
> 

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20140917/be84a698/attachment.html>


More information about the llvm-commits mailing list