[llvm] r217982 - Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.

Chris Bieneman beanz at apple.com
Wed Sep 17 15:27:55 PDT 2014


I put in a change in r217988 that should have resolved it. I think your change will fail to build because now there are two destructors declared.

-Chris

> On Sep 17, 2014, at 3:25 PM, David Blaikie <dblaikie at gmail.com> wrote:
> 
> This introduced a -Wnon-virtual-dtor warning which I've fixed in r217988. Let me know if that's not the right fix, etc.
> 
> - David
> 
> On Wed, Sep 17, 2014 at 1:55 PM, Chris Bieneman <beanz at apple.com <mailto:beanz at apple.com>> wrote:
> Author: cbieneman
> Date: Wed Sep 17 15:55:46 2014
> New Revision: 217982
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=217982&view=rev <http://llvm.org/viewvc/llvm-project?rev=217982&view=rev>
> Log:
> Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
> 
> Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.
> 
> Reviewers: chandlerc, resistor
> 
> Reviewed By: resistor
> 
> Subscribers: morisset, resistor, llvm-commits
> 
> Differential Revision: http://reviews.llvm.org/D5364 <http://reviews.llvm.org/D5364>
> 
> Modified:
>     llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
>     llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
>     llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
> 
> Modified: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff>
> ==============================================================================
> --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h (original)
> +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h Wed Sep 17 15:55:46 2014
> @@ -15,40 +15,114 @@
>  #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>  #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
> 
> +#include "llvm/ADT/StringRef.h"
> +#include "llvm/IR/IRBuilder.h"
> +
>  namespace llvm {
> -  class Value;
> -  class CallInst;
> -  class DataLayout;
> -  class Instruction;
> -  class TargetLibraryInfo;
> -  class LibCallSimplifierImpl;
> -
> -  /// LibCallSimplifier - This class implements a collection of optimizations
> -  /// that replace well formed calls to library functions with a more optimal
> -  /// form.  For example, replacing 'printf("Hello!")' with 'puts("Hello!")'.
> -  class LibCallSimplifier {
> -    /// Impl - A pointer to the actual implementation of the library call
> -    /// simplifier.
> -    LibCallSimplifierImpl *Impl;
> -
> -  public:
> -    LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
> -                      bool UnsafeFPShrink);
> -    virtual ~LibCallSimplifier();
> -
> -    /// optimizeCall - Take the given call instruction and return a more
> -    /// optimal value to replace the instruction with or 0 if a more
> -    /// optimal form can't be found.  Note that the returned value may
> -    /// be equal to the instruction being optimized.  In this case all
> -    /// other instructions that use the given instruction were modified
> -    /// and the given instruction is dead.
> -    Value *optimizeCall(CallInst *CI);
> -
> -    /// replaceAllUsesWith - This method is used when the library call
> -    /// simplifier needs to replace instructions other than the library
> -    /// call being modified.
> -    virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
> -  };
> +class Value;
> +class CallInst;
> +class DataLayout;
> +class Instruction;
> +class TargetLibraryInfo;
> +class BasicBlock;
> +class Function;
> +
> +/// LibCallSimplifier - This class implements a collection of optimizations
> +/// that replace well formed calls to library functions with a more optimal
> +/// form.  For example, replacing 'printf("Hello!")' with 'puts("Hello!")'.
> +class LibCallSimplifier {
> +private:
> +  const DataLayout *DL;
> +  const TargetLibraryInfo *TLI;
> +  bool UnsafeFPShrink;
> +
> +public:
> +  LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
> +                    bool UnsafeFPShrink);
> +
> +  /// optimizeCall - Take the given call instruction and return a more
> +  /// optimal value to replace the instruction with or 0 if a more
> +  /// optimal form can't be found.  Note that the returned value may
> +  /// be equal to the instruction being optimized.  In this case all
> +  /// other instructions that use the given instruction were modified
> +  /// and the given instruction is dead.
> +  Value *optimizeCall(CallInst *CI);
> +
> +  /// replaceAllUsesWith - This method is used when the library call
> +  /// simplifier needs to replace instructions other than the library
> +  /// call being modified.
> +  virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
> +
> +private:
> +  // Fortified Library Call Optimizations
> +  Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B);
> +
> +  // String and Memory Library Call Optimizations
> +  Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
> +
> +  // Math Library Optimizations
> +  Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType);
> +  Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizePow(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
> +
> +  // Integer Library Call Optimizations
> +  Value *optimizeFFS(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeAbs(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B);
> +
> +  // Formatting and IO Library Call Optimizations
> +  Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
> +                                int StreamArg = -1);
> +  Value *optimizePrintF(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizePuts(CallInst *CI, IRBuilder<> &B);
> +
> +  // Helper methods
> +  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B);
> +  void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
> +                      SmallVectorImpl<CallInst *> &SinCalls,
> +                      SmallVectorImpl<CallInst *> &CosCalls,
> +                      SmallVectorImpl<CallInst *> &SinCosCalls);
> +  void replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, Value *Res);
> +  Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B);
> +  Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B);
> +
> +  /// hasFloatVersion - Checks if there is a float version of the specified
> +  /// function by checking for an existing function with name FuncName + f
> +  bool hasFloatVersion(StringRef FuncName);
> +};
>  } // End llvm namespace
> 
>  #endif
> 
> Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff>
> ==============================================================================
> --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp (original)
> +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Wed Sep 17 15:55:46 2014
> @@ -70,10 +70,11 @@ STATISTIC(NumExpand,    "Number of expan
>  STATISTIC(NumFactor   , "Number of factorizations");
>  STATISTIC(NumReassoc  , "Number of reassociations");
> 
> -static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
> -                                   cl::init(false),
> -                                   cl::desc("Enable unsafe double to float "
> -                                            "shrinking for math lib calls"));
> +static cl::opt<bool>
> +    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
> +                         cl::init(false),
> +                         cl::desc("Enable unsafe double to float "
> +                                  "shrinking for math lib calls"));
> 
>  // Initialization Routines
>  void llvm::initializeInstCombine(PassRegistry &Registry) {
> @@ -2913,7 +2914,7 @@ public:
>    InstCombinerLibCallSimplifier(const DataLayout *DL,
>                                  const TargetLibraryInfo *TLI,
>                                  InstCombiner *IC)
> -    : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
> +    : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) {
>      this->IC = IC;
>    }
> 
> 
> Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff <http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff>
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
> +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Sep 17 15:55:46 2014
> @@ -35,57 +35,26 @@
>  using namespace llvm;
> 
>  static cl::opt<bool>
> -ColdErrorCalls("error-reporting-is-cold",  cl::init(true),
> -  cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
> -
> -/// This class is the abstract base class for the set of optimizations that
> -/// corresponds to one library call.
> -namespace {
> -class LibCallOptimization {
> -protected:
> -  Function *Caller;
> -  const DataLayout *DL;
> -  const TargetLibraryInfo *TLI;
> -  const LibCallSimplifier *LCS;
> -  LLVMContext* Context;
> -public:
> -  LibCallOptimization() { }
> -  virtual ~LibCallOptimization() {}
> -
> -  /// callOptimizer - This pure virtual method is implemented by base classes to
> -  /// do various optimizations.  If this returns null then no transformation was
> -  /// performed.  If it returns CI, then it transformed the call and CI is to be
> -  /// deleted.  If it returns something else, replace CI with the new value and
> -  /// delete CI.
> -  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
> -    =0;
> -
> -  /// ignoreCallingConv - Returns false if this transformation could possibly
> -  /// change the calling convention.
> -  virtual bool ignoreCallingConv() { return false; }
> -
> -  Value *optimizeCall(CallInst *CI, const DataLayout *DL,
> -                      const TargetLibraryInfo *TLI,
> -                      const LibCallSimplifier *LCS, IRBuilder<> &B) {
> -    Caller = CI->getParent()->getParent();
> -    this->DL = DL;
> -    this->TLI = TLI;
> -    this->LCS = LCS;
> -    if (CI->getCalledFunction())
> -      Context = &CI->getCalledFunction()->getContext();
> -
> -    // We never change the calling convention.
> -    if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
> -      return nullptr;
> -
> -    return callOptimizer(CI->getCalledFunction(), CI, B);
> -  }
> -};
> +    ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
> +                   cl::desc("Treat error-reporting calls as cold"));
> 
>  //===----------------------------------------------------------------------===//
>  // Helper Functions
>  //===----------------------------------------------------------------------===//
> 
> +static bool ignoreCallingConv(LibFunc::Func Func) {
> +  switch (Func) {
> +  case LibFunc::abs:
> +  case LibFunc::labs:
> +  case LibFunc::llabs:
> +  case LibFunc::strlen:
> +    return true;
> +  default:
> +    return false;
> +  }
> +  llvm_unreachable();
> +}
> +
>  /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
>  /// value is equal or not-equal to zero.
>  static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
> @@ -142,967 +111,912 @@ static bool hasUnaryFloatFn(const Target
>  // Fortified Library Call Optimizations
>  //===----------------------------------------------------------------------===//
> 
> -struct FortifiedLibCallOptimization : public LibCallOptimization {
> -protected:
> -  virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
> -                         bool isString) const = 0;
> -};
> -
> -struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
> -  CallInst *CI;
> -
> -  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
> -                  bool isString) const override {
> -    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
> +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp, unsigned SizeArgOp,
> +                       bool isString) {
> +  if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
> +    return true;
> +  if (ConstantInt *SizeCI =
> +          dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
> +    if (SizeCI->isAllOnesValue())
>        return true;
> -    if (ConstantInt *SizeCI =
> -                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
> -      if (SizeCI->isAllOnesValue())
> -        return true;
> -      if (isString) {
> -        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
> -        // If the length is 0 we don't know how long it is and so we can't
> -        // remove the check.
> -        if (Len == 0) return false;
> -        return SizeCI->getZExtValue() >= Len;
> -      }
> -      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
> -                                                  CI->getArgOperand(SizeArgOp)))
> -        return SizeCI->getZExtValue() >= Arg->getZExtValue();
> +    if (isString) {
> +      uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
> +      // If the length is 0 we don't know how long it is and so we can't
> +      // remove the check.
> +      if (Len == 0)
> +        return false;
> +      return SizeCI->getZExtValue() >= Len;
>      }
> -    return false;
> +    if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp)))
> +      return SizeCI->getZExtValue() >= Arg->getZExtValue();
>    }
> -};
> +  return false;
> +}
> 
> -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    this->CI = CI;
> -    FunctionType *FT = Callee->getFunctionType();
> -    LLVMContext &Context = CI->getParent()->getContext();
> -
> -    // Check if this has the right signature.
> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
> -        FT->getParamType(3) != DL->getIntPtrType(Context))
> -      return nullptr;
> -
> -    if (isFoldable(3, 2, false)) {
> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> -                     CI->getArgOperand(2), 1);
> -      return CI->getArgOperand(0);
> -    }
> -    return nullptr;
> -  }
> -};
> +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  LLVMContext &Context = CI->getContext();
> 
> -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    this->CI = CI;
> -    FunctionType *FT = Callee->getFunctionType();
> -    LLVMContext &Context = CI->getParent()->getContext();
> -
> -    // Check if this has the right signature.
> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
> -        FT->getParamType(3) != DL->getIntPtrType(Context))
> -      return nullptr;
> -
> -    if (isFoldable(3, 2, false)) {
> -      B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> -                      CI->getArgOperand(2), 1);
> -      return CI->getArgOperand(0);
> -    }
> +  // Check if this has the right signature.
> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>      return nullptr;
> -  }
> -};
> 
> -struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    this->CI = CI;
> -    FunctionType *FT = Callee->getFunctionType();
> -    LLVMContext &Context = CI->getParent()->getContext();
> -
> -    // Check if this has the right signature.
> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isIntegerTy() ||
> -        FT->getParamType(2) != DL->getIntPtrType(Context) ||
> -        FT->getParamType(3) != DL->getIntPtrType(Context))
> -      return nullptr;
> -
> -    if (isFoldable(3, 2, false)) {
> -      Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
> -                                   false);
> -      B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> -      return CI->getArgOperand(0);
> -    }
> -    return nullptr;
> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> +    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> +                   CI->getArgOperand(2), 1);
> +    return CI->getArgOperand(0);
>    }
> -};
> +  return nullptr;
> +}
> 
> -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    this->CI = CI;
> -    StringRef Name = Callee->getName();
> -    FunctionType *FT = Callee->getFunctionType();
> -    LLVMContext &Context = CI->getParent()->getContext();
> -
> -    // Check if this has the right signature.
> -    if (FT->getNumParams() != 3 ||
> -        FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> -        FT->getParamType(2) != DL->getIntPtrType(Context))
> -      return nullptr;
> -
> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> -    if (Dst == Src)      // __strcpy_chk(x,x)  -> x
> -      return Src;
> -
> -    // If a) we don't have any length information, or b) we know this will
> -    // fit then just lower to a plain strcpy. Otherwise we'll keep our
> -    // strcpy_chk call which may fail at runtime if the size is too long.
> -    // TODO: It might be nice to get a maximum length out of the possible
> -    // string lengths for varying.
> -    if (isFoldable(2, 1, true)) {
> -      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> -      return Ret;
> -    } else {
> -      // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
> -      uint64_t Len = GetStringLength(Src);
> -      if (Len == 0) return nullptr;
> -
> -      // This optimization require DataLayout.
> -      if (!DL) return nullptr;
> -
> -      Value *Ret =
> -       EmitMemCpyChk(Dst, Src,
> -                      ConstantInt::get(DL->getIntPtrType(Context), Len),
> -                      CI->getArgOperand(2), B, DL, TLI);
> -      return Ret;
> -    }
> +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  LLVMContext &Context = CI->getContext();
> +
> +  // Check if this has the right signature.
> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>      return nullptr;
> +
> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> +    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> +                    CI->getArgOperand(2), 1);
> +    return CI->getArgOperand(0);
>    }
> -};
> +  return nullptr;
> +}
> 
> -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    this->CI = CI;
> -    StringRef Name = Callee->getName();
> -    FunctionType *FT = Callee->getFunctionType();
> -    LLVMContext &Context = CI->getParent()->getContext();
> -
> -    // Check if this has the right signature.
> -    if (FT->getNumParams() != 3 ||
> -        FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> -        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> -      return nullptr;
> -
> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> -    if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
> -      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> -      return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> -    }
> +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  LLVMContext &Context = CI->getContext();
> 
> -    // If a) we don't have any length information, or b) we know this will
> -    // fit then just lower to a plain stpcpy. Otherwise we'll keep our
> -    // stpcpy_chk call which may fail at runtime if the size is too long.
> -    // TODO: It might be nice to get a maximum length out of the possible
> -    // string lengths for varying.
> -    if (isFoldable(2, 1, true)) {
> -      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> -      return Ret;
> -    } else {
> -      // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
> -      uint64_t Len = GetStringLength(Src);
> -      if (Len == 0) return nullptr;
> -
> -      // This optimization require DataLayout.
> -      if (!DL) return nullptr;
> -
> -      Type *PT = FT->getParamType(0);
> -      Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> -      Value *DstEnd = B.CreateGEP(Dst,
> -                                  ConstantInt::get(DL->getIntPtrType(PT),
> -                                                   Len - 1));
> -      if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
> -        return nullptr;
> -      return DstEnd;
> -    }
> +  // Check if this has the right signature.
> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isIntegerTy() ||
> +      FT->getParamType(2) != DL->getIntPtrType(Context) ||
> +      FT->getParamType(3) != DL->getIntPtrType(Context))
>      return nullptr;
> -  }
> -};
> 
> -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    this->CI = CI;
> -    StringRef Name = Callee->getName();
> -    FunctionType *FT = Callee->getFunctionType();
> -    LLVMContext &Context = CI->getParent()->getContext();
> -
> -    // Check if this has the right signature.
> -    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> -        !FT->getParamType(2)->isIntegerTy() ||
> -        FT->getParamType(3) != DL->getIntPtrType(Context))
> -      return nullptr;
> -
> -    if (isFoldable(3, 2, false)) {
> -      Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> -                               CI->getArgOperand(2), B, DL, TLI,
> -                               Name.substr(2, 7));
> -      return Ret;
> -    }
> -    return nullptr;
> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> +    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
> +    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> +    return CI->getArgOperand(0);
>    }
> -};
> -
> -//===----------------------------------------------------------------------===//
> -// String and Memory Library Call Optimizations
> -//===----------------------------------------------------------------------===//
> -
> -struct StrCatOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strcat" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getReturnType() != B.getInt8PtrTy() ||
> -        FT->getParamType(0) != FT->getReturnType() ||
> -        FT->getParamType(1) != FT->getReturnType())
> -      return nullptr;
> -
> -    // Extract some information from the instruction
> -    Value *Dst = CI->getArgOperand(0);
> -    Value *Src = CI->getArgOperand(1);
> +  return nullptr;
> +}
> 
> -    // See if we can get the length of the input string.
> +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  StringRef Name = Callee->getName();
> +  FunctionType *FT = Callee->getFunctionType();
> +  LLVMContext &Context = CI->getContext();
> +
> +  // Check if this has the right signature.
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> +      FT->getParamType(2) != DL->getIntPtrType(Context))
> +    return nullptr;
> +
> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> +  if (Dst == Src) // __strcpy_chk(x,x)  -> x
> +    return Src;
> +
> +  // If a) we don't have any length information, or b) we know this will
> +  // fit then just lower to a plain strcpy. Otherwise we'll keep our
> +  // strcpy_chk call which may fail at runtime if the size is too long.
> +  // TODO: It might be nice to get a maximum length out of the possible
> +  // string lengths for varying.
> +  if (isFortifiedCallFoldable(CI, 2, 1, true)) {
> +    Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> +    return Ret;
> +  } else {
> +    // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
>      uint64_t Len = GetStringLength(Src);
> -    if (Len == 0) return nullptr;
> -    --Len;  // Unbias length.
> -
> -    // Handle the simple, do-nothing case: strcat(x, "") -> x
>      if (Len == 0)
> -      return Dst;
> +      return nullptr;
> 
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +    // This optimization require DataLayout.
> +    if (!DL)
> +      return nullptr;
> 
> -    return emitStrLenMemCpy(Src, Dst, Len, B);
> +    Value *Ret = EmitMemCpyChk(
> +        Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len),
> +        CI->getArgOperand(2), B, DL, TLI);
> +    return Ret;
>    }
> +  return nullptr;
> +}
> 
> -  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
> -                          IRBuilder<> &B) {
> -    // We need to find the end of the destination string.  That's where the
> -    // memory is to be moved to. We just generate a call to strlen.
> -    Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
> -    if (!DstLen)
> +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  StringRef Name = Callee->getName();
> +  FunctionType *FT = Callee->getFunctionType();
> +  LLVMContext &Context = CI->getContext();
> +
> +  // Check if this has the right signature.
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> +      FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> +    return nullptr;
> +
> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> +  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
> +    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> +    return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> +  }
> +
> +  // If a) we don't have any length information, or b) we know this will
> +  // fit then just lower to a plain stpcpy. Otherwise we'll keep our
> +  // stpcpy_chk call which may fail at runtime if the size is too long.
> +  // TODO: It might be nice to get a maximum length out of the possible
> +  // string lengths for varying.
> +  if (isFortifiedCallFoldable(CI, 2, 1, true)) {
> +    Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> +    return Ret;
> +  } else {
> +    // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
> +    uint64_t Len = GetStringLength(Src);
> +    if (Len == 0)
>        return nullptr;
> 
> -    // Now that we have the destination's length, we must index into the
> -    // destination's pointer to get the actual memcpy destination (end of
> -    // the string .. we're concatenating).
> -    Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
> +    // This optimization require DataLayout.
> +    if (!DL)
> +      return nullptr;
> 
> -    // We have enough information to now generate the memcpy call to do the
> -    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
> -    B.CreateMemCpy(CpyDst, Src,
> -                   ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
> -    return Dst;
> +    Type *PT = FT->getParamType(0);
> +    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> +    Value *DstEnd =
> +        B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
> +    if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
> +      return nullptr;
> +    return DstEnd;
>    }
> -};
> +  return nullptr;
> +}
> 
> -struct StrNCatOpt : public StrCatOpt {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strncat" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 ||
> -        FT->getReturnType() != B.getInt8PtrTy() ||
> -        FT->getParamType(0) != FT->getReturnType() ||
> -        FT->getParamType(1) != FT->getReturnType() ||
> -        !FT->getParamType(2)->isIntegerTy())
> -      return nullptr;
> -
> -    // Extract some information from the instruction
> -    Value *Dst = CI->getArgOperand(0);
> -    Value *Src = CI->getArgOperand(1);
> -    uint64_t Len;
> -
> -    // We don't do anything if length is not constant
> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> -      Len = LengthArg->getZExtValue();
> -    else
> -      return nullptr;
> -
> -    // See if we can get the length of the input string.
> -    uint64_t SrcLen = GetStringLength(Src);
> -    if (SrcLen == 0) return nullptr;
> -    --SrcLen;  // Unbias length.
> -
> -    // Handle the simple, do-nothing cases:
> -    // strncat(x, "", c) -> x
> -    // strncat(x,  c, 0) -> x
> -    if (SrcLen == 0 || Len == 0) return Dst;
> +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  StringRef Name = Callee->getName();
> +  FunctionType *FT = Callee->getFunctionType();
> +  LLVMContext &Context = CI->getContext();
> +
> +  // Check if this has the right signature.
> +  if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> +      !FT->getParamType(2)->isIntegerTy() ||
> +      FT->getParamType(3) != DL->getIntPtrType(Context))
> +    return nullptr;
> +
> +  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> +    Value *Ret =
> +        EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> +                    CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
> +    return Ret;
> +  }
> +  return nullptr;
> +}
> 
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +//===----------------------------------------------------------------------===//
> +// String and Memory Library Call Optimizations
> +//===----------------------------------------------------------------------===//
> 
> -    // We don't optimize this case
> -    if (Len < SrcLen) return nullptr;
> +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strcat" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2||
> +      FT->getReturnType() != B.getInt8PtrTy() ||
> +      FT->getParamType(0) != FT->getReturnType() ||
> +      FT->getParamType(1) != FT->getReturnType())
> +    return nullptr;
> +
> +  // Extract some information from the instruction
> +  Value *Dst = CI->getArgOperand(0);
> +  Value *Src = CI->getArgOperand(1);
> +
> +  // See if we can get the length of the input string.
> +  uint64_t Len = GetStringLength(Src);
> +  if (Len == 0)
> +    return nullptr;
> +  --Len; // Unbias length.
> 
> -    // strncat(x, s, c) -> strcat(x, s)
> -    // s is constant so the strcat can be optimized further
> -    return emitStrLenMemCpy(Src, Dst, SrcLen, B);
> -  }
> -};
> -
> -struct StrChrOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strchr" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getReturnType() != B.getInt8PtrTy() ||
> -        FT->getParamType(0) != FT->getReturnType() ||
> -        !FT->getParamType(1)->isIntegerTy(32))
> -      return nullptr;
> -
> -    Value *SrcStr = CI->getArgOperand(0);
> -
> -    // If the second operand is non-constant, see if we can compute the length
> -    // of the input string and turn this into memchr.
> -    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> -    if (!CharC) {
> -      // These optimizations require DataLayout.
> -      if (!DL) return nullptr;
> +  // Handle the simple, do-nothing case: strcat(x, "") -> x
> +  if (Len == 0)
> +    return Dst;
> 
> -      uint64_t Len = GetStringLength(SrcStr);
> -      if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
> -        return nullptr;
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> 
> -      return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
> -                        ConstantInt::get(DL->getIntPtrType(*Context), Len),
> -                        B, DL, TLI);
> -    }
> +  return emitStrLenMemCpy(Src, Dst, Len, B);
> +}
> 
> -    // Otherwise, the character is a constant, see if the first argument is
> -    // a string literal.  If so, we can constant fold.
> -    StringRef Str;
> -    if (!getConstantStringInfo(SrcStr, Str)) {
> -      if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
> -        return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
> -      return nullptr;
> -    }
> +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
> +                                           IRBuilder<> &B) {
> +  // We need to find the end of the destination string.  That's where the
> +  // memory is to be moved to. We just generate a call to strlen.
> +  Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
> +  if (!DstLen)
> +    return nullptr;
> +
> +  // Now that we have the destination's length, we must index into the
> +  // destination's pointer to get the actual memcpy destination (end of
> +  // the string .. we're concatenating).
> +  Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
> +
> +  // We have enough information to now generate the memcpy call to do the
> +  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
> +  B.CreateMemCpy(
> +      CpyDst, Src,
> +      ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
> +  return Dst;
> +}
> 
> -    // Compute the offset, make sure to handle the case when we're searching for
> -    // zero (a weird way to spell strlen).
> -    size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
> -        Str.size() : Str.find(CharC->getSExtValue());
> -    if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
> -      return Constant::getNullValue(CI->getType());
> +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strncat" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
> +      FT->getParamType(0) != FT->getReturnType() ||
> +      FT->getParamType(1) != FT->getReturnType() ||
> +      !FT->getParamType(2)->isIntegerTy())
> +    return nullptr;
> +
> +  // Extract some information from the instruction
> +  Value *Dst = CI->getArgOperand(0);
> +  Value *Src = CI->getArgOperand(1);
> +  uint64_t Len;
> +
> +  // We don't do anything if length is not constant
> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> +    Len = LengthArg->getZExtValue();
> +  else
> +    return nullptr;
> +
> +  // See if we can get the length of the input string.
> +  uint64_t SrcLen = GetStringLength(Src);
> +  if (SrcLen == 0)
> +    return nullptr;
> +  --SrcLen; // Unbias length.
> +
> +  // Handle the simple, do-nothing cases:
> +  // strncat(x, "", c) -> x
> +  // strncat(x,  c, 0) -> x
> +  if (SrcLen == 0 || Len == 0)
> +    return Dst;
> 
> -    // strchr(s+n,c)  -> gep(s+n+i,c)
> -    return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
> -  }
> -};
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> +
> +  // We don't optimize this case
> +  if (Len < SrcLen)
> +    return nullptr;
> 
> -struct StrRChrOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strrchr" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getReturnType() != B.getInt8PtrTy() ||
> -        FT->getParamType(0) != FT->getReturnType() ||
> -        !FT->getParamType(1)->isIntegerTy(32))
> -      return nullptr;
> -
> -    Value *SrcStr = CI->getArgOperand(0);
> -    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> -
> -    // Cannot fold anything if we're not looking for a constant.
> -    if (!CharC)
> -      return nullptr;
> -
> -    StringRef Str;
> -    if (!getConstantStringInfo(SrcStr, Str)) {
> -      // strrchr(s, 0) -> strchr(s, 0)
> -      if (DL && CharC->isZero())
> -        return EmitStrChr(SrcStr, '\0', B, DL, TLI);
> +  // strncat(x, s, c) -> strcat(x, s)
> +  // s is constant so the strcat can be optimized further
> +  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
> +}
> +
> +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strchr" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
> +      FT->getParamType(0) != FT->getReturnType() ||
> +      !FT->getParamType(1)->isIntegerTy(32))
> +    return nullptr;
> +
> +  Value *SrcStr = CI->getArgOperand(0);
> +
> +  // If the second operand is non-constant, see if we can compute the length
> +  // of the input string and turn this into memchr.
> +  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> +  if (!CharC) {
> +    // These optimizations require DataLayout.
> +    if (!DL)
>        return nullptr;
> -    }
> 
> -    // Compute the offset.
> -    size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
> -        Str.size() : Str.rfind(CharC->getSExtValue());
> -    if (I == StringRef::npos) // Didn't find the char. Return null.
> -      return Constant::getNullValue(CI->getType());
> +    uint64_t Len = GetStringLength(SrcStr);
> +    if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
> +      return nullptr;
> 
> -    // strrchr(s+n,c) -> gep(s+n+i,c)
> -    return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
> +    return EmitMemChr(
> +        SrcStr, CI->getArgOperand(1), // include nul.
> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI);
>    }
> -};
> -
> -struct StrCmpOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strcmp" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        !FT->getReturnType()->isIntegerTy(32) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != B.getInt8PtrTy())
> -      return nullptr;
> -
> -    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> -    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
> -      return ConstantInt::get(CI->getType(), 0);
> -
> -    StringRef Str1, Str2;
> -    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> -    bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> -
> -    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
> -    if (HasStr1 && HasStr2)
> -      return ConstantInt::get(CI->getType(), Str1.compare(Str2));
> -
> -    if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
> -      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
> -                                      CI->getType()));
> -
> -    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
> -      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
> -
> -    // strcmp(P, "x") -> memcmp(P, "x", 2)
> -    uint64_t Len1 = GetStringLength(Str1P);
> -    uint64_t Len2 = GetStringLength(Str2P);
> -    if (Len1 && Len2) {
> -      // These optimizations require DataLayout.
> -      if (!DL) return nullptr;
> -
> -      return EmitMemCmp(Str1P, Str2P,
> -                        ConstantInt::get(DL->getIntPtrType(*Context),
> -                        std::min(Len1, Len2)), B, DL, TLI);
> -    }
> 
> +  // Otherwise, the character is a constant, see if the first argument is
> +  // a string literal.  If so, we can constant fold.
> +  StringRef Str;
> +  if (!getConstantStringInfo(SrcStr, Str)) {
> +    if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
> +      return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
>      return nullptr;
>    }
> -};
> 
> -struct StrNCmpOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strncmp" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 ||
> -        !FT->getReturnType()->isIntegerTy(32) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != B.getInt8PtrTy() ||
> -        !FT->getParamType(2)->isIntegerTy())
> -      return nullptr;
> -
> -    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> -    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
> -      return ConstantInt::get(CI->getType(), 0);
> -
> -    // Get the length argument if it is constant.
> -    uint64_t Length;
> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> -      Length = LengthArg->getZExtValue();
> -    else
> -      return nullptr;
> -
> -    if (Length == 0) // strncmp(x,y,0)   -> 0
> -      return ConstantInt::get(CI->getType(), 0);
> -
> -    if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
> -      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
> -
> -    StringRef Str1, Str2;
> -    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> -    bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> -
> -    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
> -    if (HasStr1 && HasStr2) {
> -      StringRef SubStr1 = Str1.substr(0, Length);
> -      StringRef SubStr2 = Str2.substr(0, Length);
> -      return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
> -    }
> +  // Compute the offset, make sure to handle the case when we're searching for
> +  // zero (a weird way to spell strlen).
> +  size_t I = (0xFF & CharC->getSExtValue()) == 0
> +                 ? Str.size()
> +                 : Str.find(CharC->getSExtValue());
> +  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
> +    return Constant::getNullValue(CI->getType());
> 
> -    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> -*x
> -      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
> -                                      CI->getType()));
> +  // strchr(s+n,c)  -> gep(s+n+i,c)
> +  return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
> +}
> 
> -    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
> -      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
> +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strrchr" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
> +      FT->getParamType(0) != FT->getReturnType() ||
> +      !FT->getParamType(1)->isIntegerTy(32))
> +    return nullptr;
> +
> +  Value *SrcStr = CI->getArgOperand(0);
> +  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> +
> +  // Cannot fold anything if we're not looking for a constant.
> +  if (!CharC)
> +    return nullptr;
> 
> +  StringRef Str;
> +  if (!getConstantStringInfo(SrcStr, Str)) {
> +    // strrchr(s, 0) -> strchr(s, 0)
> +    if (DL && CharC->isZero())
> +      return EmitStrChr(SrcStr, '\0', B, DL, TLI);
>      return nullptr;
>    }
> -};
> 
> -struct StrCpyOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "strcpy" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != B.getInt8PtrTy())
> -      return nullptr;
> +  // Compute the offset.
> +  size_t I = (0xFF & CharC->getSExtValue()) == 0
> +                 ? Str.size()
> +                 : Str.rfind(CharC->getSExtValue());
> +  if (I == StringRef::npos) // Didn't find the char. Return null.
> +    return Constant::getNullValue(CI->getType());
> 
> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> -    if (Dst == Src)      // strcpy(x,x)  -> x
> -      return Src;
> +  // strrchr(s+n,c) -> gep(s+n+i,c)
> +  return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
> +}
> 
> +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strcmp" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != B.getInt8PtrTy())
> +    return nullptr;
> +
> +  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> +  if (Str1P == Str2P) // strcmp(x,x)  -> 0
> +    return ConstantInt::get(CI->getType(), 0);
> +
> +  StringRef Str1, Str2;
> +  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> +  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> +
> +  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
> +  if (HasStr1 && HasStr2)
> +    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
> +
> +  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
> +    return B.CreateNeg(
> +        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
> +
> +  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
> +    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
> +
> +  // strcmp(P, "x") -> memcmp(P, "x", 2)
> +  uint64_t Len1 = GetStringLength(Str1P);
> +  uint64_t Len2 = GetStringLength(Str2P);
> +  if (Len1 && Len2) {
>      // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> -
> -    // See if we can get the length of the input string.
> -    uint64_t Len = GetStringLength(Src);
> -    if (Len == 0) return nullptr;
> +    if (!DL)
> +      return nullptr;
> 
> -    // We have enough information to now generate the memcpy call to do the
> -    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
> -    B.CreateMemCpy(Dst, Src,
> -                  ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
> -    return Dst;
> +    return EmitMemCmp(Str1P, Str2P,
> +                      ConstantInt::get(DL->getIntPtrType(CI->getContext()),
> +                                       std::min(Len1, Len2)),
> +                      B, DL, TLI);
>    }
> -};
> 
> -struct StpCpyOpt: public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Verify the "stpcpy" function prototype.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != B.getInt8PtrTy())
> -      return nullptr;
> +  return nullptr;
> +}
> 
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strncmp" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != B.getInt8PtrTy() ||
> +      !FT->getParamType(2)->isIntegerTy())
> +    return nullptr;
> 
> -    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> -    if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
> -      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> -      return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> -    }
> +  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> +  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
> +    return ConstantInt::get(CI->getType(), 0);
> 
> -    // See if we can get the length of the input string.
> -    uint64_t Len = GetStringLength(Src);
> -    if (Len == 0) return nullptr;
> +  // Get the length argument if it is constant.
> +  uint64_t Length;
> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> +    Length = LengthArg->getZExtValue();
> +  else
> +    return nullptr;
> 
> -    Type *PT = FT->getParamType(0);
> -    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> -    Value *DstEnd = B.CreateGEP(Dst,
> -                                ConstantInt::get(DL->getIntPtrType(PT),
> -                                                 Len - 1));
> -
> -    // We have enough information to now generate the memcpy call to do the
> -    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
> -    B.CreateMemCpy(Dst, Src, LenV, 1);
> -    return DstEnd;
> -  }
> -};
> +  if (Length == 0) // strncmp(x,y,0)   -> 0
> +    return ConstantInt::get(CI->getType(), 0);
> 
> -struct StrNCpyOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        FT->getParamType(0) != B.getInt8PtrTy() ||
> -        !FT->getParamType(2)->isIntegerTy())
> -      return nullptr;
> -
> -    Value *Dst = CI->getArgOperand(0);
> -    Value *Src = CI->getArgOperand(1);
> -    Value *LenOp = CI->getArgOperand(2);
> -
> -    // See if we can get the length of the input string.
> -    uint64_t SrcLen = GetStringLength(Src);
> -    if (SrcLen == 0) return nullptr;
> -    --SrcLen;
> -
> -    if (SrcLen == 0) {
> -      // strncpy(x, "", y) -> memset(x, '\0', y, 1)
> -      B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
> -      return Dst;
> -    }
> +  if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
> +    return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
> 
> -    uint64_t Len;
> -    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
> -      Len = LengthArg->getZExtValue();
> -    else
> -      return nullptr;
> +  StringRef Str1, Str2;
> +  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> +  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> 
> -    if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
> +  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
> +  if (HasStr1 && HasStr2) {
> +    StringRef SubStr1 = Str1.substr(0, Length);
> +    StringRef SubStr2 = Str2.substr(0, Length);
> +    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
> +  }
> 
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
> +    return B.CreateNeg(
> +        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
> 
> -    // Let strncpy handle the zero padding
> -    if (Len > SrcLen+1) return nullptr;
> +  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
> +    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
> 
> -    Type *PT = FT->getParamType(0);
> -    // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
> -    B.CreateMemCpy(Dst, Src,
> -                   ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
> +  return nullptr;
> +}
> 
> -    return Dst;
> -  }
> -};
> +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "strcpy" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != B.getInt8PtrTy())
> +    return nullptr;
> 
> -struct StrLenOpt : public LibCallOptimization {
> -  bool ignoreCallingConv() override { return true; }
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 1 ||
> -        FT->getParamType(0) != B.getInt8PtrTy() ||
> -        !FT->getReturnType()->isIntegerTy())
> -      return nullptr;
> -
> -    Value *Src = CI->getArgOperand(0);
> -
> -    // Constant folding: strlen("xyz") -> 3
> -    if (uint64_t Len = GetStringLength(Src))
> -      return ConstantInt::get(CI->getType(), Len-1);
> -
> -    // strlen(x?"foo":"bars") --> x ? 3 : 4
> -    if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
> -      uint64_t LenTrue = GetStringLength(SI->getTrueValue());
> -      uint64_t LenFalse = GetStringLength(SI->getFalseValue());
> -      if (LenTrue && LenFalse) {
> -        emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
> -                               SI->getDebugLoc(),
> -                               "folded strlen(select) to select of constants");
> -        return B.CreateSelect(SI->getCondition(),
> -                              ConstantInt::get(CI->getType(), LenTrue-1),
> -                              ConstantInt::get(CI->getType(), LenFalse-1));
> -      }
> -    }
> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> +  if (Dst == Src) // strcpy(x,x)  -> x
> +    return Src;
> 
> -    // strlen(x) != 0 --> *x != 0
> -    // strlen(x) == 0 --> *x == 0
> -    if (isOnlyUsedInZeroEqualityComparison(CI))
> -      return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> 
> +  // See if we can get the length of the input string.
> +  uint64_t Len = GetStringLength(Src);
> +  if (Len == 0)
>      return nullptr;
> -  }
> -};
> 
> -struct StrPBrkOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getParamType(0) != B.getInt8PtrTy() ||
> -        FT->getParamType(1) != FT->getParamType(0) ||
> -        FT->getReturnType() != FT->getParamType(0))
> -      return nullptr;
> +  // We have enough information to now generate the memcpy call to do the
> +  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
> +  B.CreateMemCpy(Dst, Src,
> +                 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1);
> +  return Dst;
> +}
> 
> -    StringRef S1, S2;
> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Verify the "stpcpy" function prototype.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != B.getInt8PtrTy())
> +    return nullptr;
> 
> -    // strpbrk(s, "") -> NULL
> -    // strpbrk("", s) -> NULL
> -    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> -      return Constant::getNullValue(CI->getType());
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> 
> -    // Constant folding.
> -    if (HasS1 && HasS2) {
> -      size_t I = S1.find_first_of(S2);
> -      if (I == StringRef::npos) // No match.
> -        return Constant::getNullValue(CI->getType());
> +  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> +  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
> +    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> +    return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> +  }
> 
> -      return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
> -    }
> +  // See if we can get the length of the input string.
> +  uint64_t Len = GetStringLength(Src);
> +  if (Len == 0)
> +    return nullptr;
> 
> -    // strpbrk(s, "a") -> strchr(s, 'a')
> -    if (DL && HasS2 && S2.size() == 1)
> -      return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
> +  Type *PT = FT->getParamType(0);
> +  Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> +  Value *DstEnd =
> +      B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
> 
> -    return nullptr;
> +  // We have enough information to now generate the memcpy call to do the
> +  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
> +  B.CreateMemCpy(Dst, Src, LenV, 1);
> +  return DstEnd;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      FT->getParamType(0) != B.getInt8PtrTy() ||
> +      !FT->getParamType(2)->isIntegerTy())
> +    return nullptr;
> +
> +  Value *Dst = CI->getArgOperand(0);
> +  Value *Src = CI->getArgOperand(1);
> +  Value *LenOp = CI->getArgOperand(2);
> +
> +  // See if we can get the length of the input string.
> +  uint64_t SrcLen = GetStringLength(Src);
> +  if (SrcLen == 0)
> +    return nullptr;
> +  --SrcLen;
> +
> +  if (SrcLen == 0) {
> +    // strncpy(x, "", y) -> memset(x, '\0', y, 1)
> +    B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
> +    return Dst;
>    }
> -};
> 
> -struct StrToOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy())
> -      return nullptr;
> +  uint64_t Len;
> +  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
> +    Len = LengthArg->getZExtValue();
> +  else
> +    return nullptr;
> 
> -    Value *EndPtr = CI->getArgOperand(1);
> -    if (isa<ConstantPointerNull>(EndPtr)) {
> -      // With a null EndPtr, this function won't capture the main argument.
> -      // It would be readonly too, except that it still may write to errno.
> -      CI->addAttribute(1, Attribute::NoCapture);
> -    }
> +  if (Len == 0)
> +    return Dst; // strncpy(x, y, 0) -> x
> 
> +  // These optimizations require DataLayout.
> +  if (!DL)
>      return nullptr;
> -  }
> -};
> 
> -struct StrSpnOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getParamType(0) != B.getInt8PtrTy() ||
> -        FT->getParamType(1) != FT->getParamType(0) ||
> -        !FT->getReturnType()->isIntegerTy())
> -      return nullptr;
> -
> -    StringRef S1, S2;
> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> -
> -    // strspn(s, "") -> 0
> -    // strspn("", s) -> 0
> -    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> -      return Constant::getNullValue(CI->getType());
> +  // Let strncpy handle the zero padding
> +  if (Len > SrcLen + 1)
> +    return nullptr;
> 
> -    // Constant folding.
> -    if (HasS1 && HasS2) {
> -      size_t Pos = S1.find_first_not_of(S2);
> -      if (Pos == StringRef::npos) Pos = S1.size();
> -      return ConstantInt::get(CI->getType(), Pos);
> -    }
> +  Type *PT = FT->getParamType(0);
> +  // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
> +  B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
> 
> -    return nullptr;
> +  return Dst;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
> +      !FT->getReturnType()->isIntegerTy())
> +    return nullptr;
> +
> +  Value *Src = CI->getArgOperand(0);
> +
> +  // Constant folding: strlen("xyz") -> 3
> +  if (uint64_t Len = GetStringLength(Src))
> +    return ConstantInt::get(CI->getType(), Len - 1);
> +
> +  // strlen(x?"foo":"bars") --> x ? 3 : 4
> +  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
> +    uint64_t LenTrue = GetStringLength(SI->getTrueValue());
> +    uint64_t LenFalse = GetStringLength(SI->getFalseValue());
> +    if (LenTrue && LenFalse) {
> +      Function *Caller = CI->getParent()->getParent();
> +      emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
> +                             SI->getDebugLoc(),
> +                             "folded strlen(select) to select of constants");
> +      return B.CreateSelect(SI->getCondition(),
> +                            ConstantInt::get(CI->getType(), LenTrue - 1),
> +                            ConstantInt::get(CI->getType(), LenFalse - 1));
> +    }
>    }
> -};
> 
> -struct StrCSpnOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        FT->getParamType(0) != B.getInt8PtrTy() ||
> -        FT->getParamType(1) != FT->getParamType(0) ||
> -        !FT->getReturnType()->isIntegerTy())
> -      return nullptr;
> -
> -    StringRef S1, S2;
> -    bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> -    bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +  // strlen(x) != 0 --> *x != 0
> +  // strlen(x) == 0 --> *x == 0
> +  if (isOnlyUsedInZeroEqualityComparison(CI))
> +    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
> +
> +  return nullptr;
> +}
> 
> -    // strcspn("", s) -> 0
> -    if (HasS1 && S1.empty())
> +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
> +      FT->getParamType(1) != FT->getParamType(0) ||
> +      FT->getReturnType() != FT->getParamType(0))
> +    return nullptr;
> +
> +  StringRef S1, S2;
> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +
> +  // strpbrk(s, "") -> NULL
> +  // strpbrk("", s) -> NULL
> +  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> +    return Constant::getNullValue(CI->getType());
> +
> +  // Constant folding.
> +  if (HasS1 && HasS2) {
> +    size_t I = S1.find_first_of(S2);
> +    if (I == StringRef::npos) // No match.
>        return Constant::getNullValue(CI->getType());
> 
> -    // Constant folding.
> -    if (HasS1 && HasS2) {
> -      size_t Pos = S1.find_first_of(S2);
> -      if (Pos == StringRef::npos) Pos = S1.size();
> -      return ConstantInt::get(CI->getType(), Pos);
> -    }
> +    return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
> +  }
> 
> -    // strcspn(s, "") -> strlen(s)
> -    if (DL && HasS2 && S2.empty())
> -      return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
> +  // strpbrk(s, "a") -> strchr(s, 'a')
> +  if (DL && HasS2 && S2.size() == 1)
> +    return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
> 
> +  return nullptr;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy())
>      return nullptr;
> +
> +  Value *EndPtr = CI->getArgOperand(1);
> +  if (isa<ConstantPointerNull>(EndPtr)) {
> +    // With a null EndPtr, this function won't capture the main argument.
> +    // It would be readonly too, except that it still may write to errno.
> +    CI->addAttribute(1, Attribute::NoCapture);
>    }
> -};
> 
> -struct StrStrOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        !FT->getReturnType()->isPointerTy())
> -      return nullptr;
> +  return nullptr;
> +}
> 
> -    // fold strstr(x, x) -> x.
> -    if (CI->getArgOperand(0) == CI->getArgOperand(1))
> -      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
> +      FT->getParamType(1) != FT->getParamType(0) ||
> +      !FT->getReturnType()->isIntegerTy())
> +    return nullptr;
> +
> +  StringRef S1, S2;
> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +
> +  // strspn(s, "") -> 0
> +  // strspn("", s) -> 0
> +  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> +    return Constant::getNullValue(CI->getType());
> +
> +  // Constant folding.
> +  if (HasS1 && HasS2) {
> +    size_t Pos = S1.find_first_not_of(S2);
> +    if (Pos == StringRef::npos)
> +      Pos = S1.size();
> +    return ConstantInt::get(CI->getType(), Pos);
> +  }
> 
> -    // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
> -    if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
> -      Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
> -      if (!StrLen)
> -        return nullptr;
> -      Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
> -                                   StrLen, B, DL, TLI);
> -      if (!StrNCmp)
> -        return nullptr;
> -      for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
> -        ICmpInst *Old = cast<ICmpInst>(*UI++);
> -        Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
> -                                  ConstantInt::getNullValue(StrNCmp->getType()),
> -                                  "cmp");
> -        LCS->replaceAllUsesWith(Old, Cmp);
> -      }
> -      return CI;
> -    }
> +  return nullptr;
> +}
> 
> -    // See if either input string is a constant string.
> -    StringRef SearchStr, ToFindStr;
> -    bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
> -    bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
> -
> -    // fold strstr(x, "") -> x.
> -    if (HasStr2 && ToFindStr.empty())
> -      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> -
> -    // If both strings are known, constant fold it.
> -    if (HasStr1 && HasStr2) {
> -      size_t Offset = SearchStr.find(ToFindStr);
> -
> -      if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
> -        return Constant::getNullValue(CI->getType());
> -
> -      // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
> -      Value *Result = CastToCStr(CI->getArgOperand(0), B);
> -      Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
> -      return B.CreateBitCast(Result, CI->getType());
> -    }
> +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
> +      FT->getParamType(1) != FT->getParamType(0) ||
> +      !FT->getReturnType()->isIntegerTy())
> +    return nullptr;
> +
> +  StringRef S1, S2;
> +  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> +  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +
> +  // strcspn("", s) -> 0
> +  if (HasS1 && S1.empty())
> +    return Constant::getNullValue(CI->getType());
> +
> +  // Constant folding.
> +  if (HasS1 && HasS2) {
> +    size_t Pos = S1.find_first_of(S2);
> +    if (Pos == StringRef::npos)
> +      Pos = S1.size();
> +    return ConstantInt::get(CI->getType(), Pos);
> +  }
> +
> +  // strcspn(s, "") -> strlen(s)
> +  if (DL && HasS2 && S2.empty())
> +    return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
> 
> -    // fold strstr(x, "y") -> strchr(x, 'y').
> -    if (HasStr2 && ToFindStr.size() == 1) {
> -      Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
> -      return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
> -    }
> +  return nullptr;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      !FT->getReturnType()->isPointerTy())
>      return nullptr;
> -  }
> -};
> 
> -struct MemCmpOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        !FT->getReturnType()->isIntegerTy(32))
> +  // fold strstr(x, x) -> x.
> +  if (CI->getArgOperand(0) == CI->getArgOperand(1))
> +    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> +
> +  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
> +  if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
> +    Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
> +    if (!StrLen)
>        return nullptr;
> +    Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
> +                                 StrLen, B, DL, TLI);
> +    if (!StrNCmp)
> +      return nullptr;
> +    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
> +      ICmpInst *Old = cast<ICmpInst>(*UI++);
> +      Value *Cmp =
> +          B.CreateICmp(Old->getPredicate(), StrNCmp,
> +                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
> +      replaceAllUsesWith(Old, Cmp);
> +    }
> +    return CI;
> +  }
> 
> -    Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
> +  // See if either input string is a constant string.
> +  StringRef SearchStr, ToFindStr;
> +  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
> +  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
> 
> -    if (LHS == RHS)  // memcmp(s,s,x) -> 0
> -      return Constant::getNullValue(CI->getType());
> +  // fold strstr(x, "") -> x.
> +  if (HasStr2 && ToFindStr.empty())
> +    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> 
> -    // Make sure we have a constant length.
> -    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> -    if (!LenC) return nullptr;
> -    uint64_t Len = LenC->getZExtValue();
> +  // If both strings are known, constant fold it.
> +  if (HasStr1 && HasStr2) {
> +    size_t Offset = SearchStr.find(ToFindStr);
> 
> -    if (Len == 0) // memcmp(s1,s2,0) -> 0
> +    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
>        return Constant::getNullValue(CI->getType());
> 
> -    // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
> -    if (Len == 1) {
> -      Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
> -                                 CI->getType(), "lhsv");
> -      Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
> -                                 CI->getType(), "rhsv");
> -      return B.CreateSub(LHSV, RHSV, "chardiff");
> -    }
> +    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
> +    Value *Result = CastToCStr(CI->getArgOperand(0), B);
> +    Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
> +    return B.CreateBitCast(Result, CI->getType());
> +  }
> 
> -    // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
> -    StringRef LHSStr, RHSStr;
> -    if (getConstantStringInfo(LHS, LHSStr) &&
> -        getConstantStringInfo(RHS, RHSStr)) {
> -      // Make sure we're not reading out-of-bounds memory.
> -      if (Len > LHSStr.size() || Len > RHSStr.size())
> -        return nullptr;
> -      // Fold the memcmp and normalize the result.  This way we get consistent
> -      // results across multiple platforms.
> -      uint64_t Ret = 0;
> -      int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
> -      if (Cmp < 0)
> -        Ret = -1;
> -      else if (Cmp > 0)
> -        Ret = 1;
> -      return ConstantInt::get(CI->getType(), Ret);
> -    }
> +  // fold strstr(x, "y") -> strchr(x, 'y').
> +  if (HasStr2 && ToFindStr.size() == 1) {
> +    Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
> +    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
> +  }
> +  return nullptr;
> +}
> 
> -    return nullptr;
> +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      !FT->getReturnType()->isIntegerTy(32))
> +    return nullptr;
> +
> +  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
> +
> +  if (LHS == RHS) // memcmp(s,s,x) -> 0
> +    return Constant::getNullValue(CI->getType());
> +
> +  // Make sure we have a constant length.
> +  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> +  if (!LenC)
> +    return nullptr;
> +  uint64_t Len = LenC->getZExtValue();
> +
> +  if (Len == 0) // memcmp(s1,s2,0) -> 0
> +    return Constant::getNullValue(CI->getType());
> +
> +  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
> +  if (Len == 1) {
> +    Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
> +                               CI->getType(), "lhsv");
> +    Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
> +                               CI->getType(), "rhsv");
> +    return B.CreateSub(LHSV, RHSV, "chardiff");
> +  }
> +
> +  // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
> +  StringRef LHSStr, RHSStr;
> +  if (getConstantStringInfo(LHS, LHSStr) &&
> +      getConstantStringInfo(RHS, RHSStr)) {
> +    // Make sure we're not reading out-of-bounds memory.
> +    if (Len > LHSStr.size() || Len > RHSStr.size())
> +      return nullptr;
> +    // Fold the memcmp and normalize the result.  This way we get consistent
> +    // results across multiple platforms.
> +    uint64_t Ret = 0;
> +    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
> +    if (Cmp < 0)
> +      Ret = -1;
> +    else if (Cmp > 0)
> +      Ret = 1;
> +    return ConstantInt::get(CI->getType(), Ret);
>    }
> -};
> 
> -struct MemCpyOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +  return nullptr;
> +}
> 
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        FT->getParamType(2) != DL->getIntPtrType(*Context))
> -      return nullptr;
> +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> 
> -    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
> -    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> -                   CI->getArgOperand(2), 1);
> -    return CI->getArgOperand(0);
> -  }
> -};
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
> +    return nullptr;
> 
> -struct MemMoveOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +  // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
> +  B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> +                 CI->getArgOperand(2), 1);
> +  return CI->getArgOperand(0);
> +}
> 
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        FT->getParamType(2) != DL->getIntPtrType(*Context))
> -      return nullptr;
> +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> 
> -    // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
> -    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> -                    CI->getArgOperand(2), 1);
> -    return CI->getArgOperand(0);
> -  }
> -};
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
> +    return nullptr;
> 
> -struct MemSetOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +  // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
> +  B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> +                  CI->getArgOperand(2), 1);
> +  return CI->getArgOperand(0);
> +}
> 
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isIntegerTy() ||
> -        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> -      return nullptr;
> +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // These optimizations require DataLayout.
> +  if (!DL)
> +    return nullptr;
> 
> -    // memset(p, v, n) -> llvm.memset(p, v, n, 1)
> -    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
> -    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> -    return CI->getArgOperand(0);
> -  }
> -};
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isIntegerTy() ||
> +      FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> +    return nullptr;
> +
> +  // memset(p, v, n) -> llvm.memset(p, v, n, 1)
> +  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
> +  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> +  return CI->getArgOperand(0);
> +}
> 
>  //===----------------------------------------------------------------------===//
>  // Math Library Optimizations
> @@ -1111,935 +1025,847 @@ struct MemSetOpt : public LibCallOptimiz
>  //===----------------------------------------------------------------------===//
>  // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
> 
> -struct UnaryDoubleFPOpt : public LibCallOptimization {
> -  bool CheckRetType;
> -  UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
> -        !FT->getParamType(0)->isDoubleTy())
> -      return nullptr;
> -
> -    if (CheckRetType) {
> -      // Check if all the uses for function like 'sin' are converted to float.
> -      for (User *U : CI->users()) {
> -        FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
> -        if (!Cast || !Cast->getType()->isFloatTy())
> -          return nullptr;
> -      }
> +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
> +                                                bool CheckRetType) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
> +      !FT->getParamType(0)->isDoubleTy())
> +    return nullptr;
> +
> +  if (CheckRetType) {
> +    // Check if all the uses for function like 'sin' are converted to float.
> +    for (User *U : CI->users()) {
> +      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
> +      if (!Cast || !Cast->getType()->isFloatTy())
> +        return nullptr;
>      }
> +  }
> 
> -    // If this is something like 'floor((double)floatval)', convert to floorf.
> -    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> -    if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
> -      return nullptr;
> +  // If this is something like 'floor((double)floatval)', convert to floorf.
> +  FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> +  if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
> +    return nullptr;
> 
> -    // floor((double)floatval) -> (double)floorf(floatval)
> -    Value *V = Cast->getOperand(0);
> -    V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
> -    return B.CreateFPExt(V, B.getDoubleTy());
> -  }
> -};
> +  // floor((double)floatval) -> (double)floorf(floatval)
> +  Value *V = Cast->getOperand(0);
> +  V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
> +  return B.CreateFPExt(V, B.getDoubleTy());
> +}
> 
>  // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
> -struct BinaryDoubleFPOpt : public LibCallOptimization {
> -  bool CheckRetType;
> -  BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    // Just make sure this has 2 arguments of the same FP type, which match the
> -    // result type.
> -    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        !FT->getParamType(0)->isFloatingPointTy())
> -      return nullptr;
> -
> -    if (CheckRetType) {
> -      // Check if all the uses for function like 'fmin/fmax' are converted to
> -      // float.
> -      for (User *U : CI->users()) {
> -        FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
> -        if (!Cast || !Cast->getType()->isFloatTy())
> -          return nullptr;
> -      }
> -    }
> +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  // Just make sure this has 2 arguments of the same FP type, which match the
> +  // result type.
> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      !FT->getParamType(0)->isFloatingPointTy())
> +    return nullptr;
> +
> +  // If this is something like 'fmin((double)floatval1, (double)floatval2)',
> +  // we convert it to fminf.
> +  FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> +  FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
> +  if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 ||
> +      !Cast2->getOperand(0)->getType()->isFloatTy())
> +    return nullptr;
> +
> +  // fmin((double)floatval1, (double)floatval2)
> +  //                      -> (double)fmin(floatval1, floatval2)
> +  Value *V = nullptr;
> +  Value *V1 = Cast1->getOperand(0);
> +  Value *V2 = Cast2->getOperand(0);
> +  V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
> +                            Callee->getAttributes());
> +  return B.CreateFPExt(V, B.getDoubleTy());
> +}
> 
> -    // If this is something like 'fmin((double)floatval1, (double)floatval2)',
> -    // we convert it to fminf.
> -    FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> -    FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
> -    if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
> -        !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
> -      return nullptr;
> -
> -    // fmin((double)floatval1, (double)floatval2)
> -    //                      -> (double)fmin(floatval1, floatval2)
> -    Value *V = nullptr;
> -    Value *V1 = Cast1->getOperand(0);
> -    Value *V2 = Cast2->getOperand(0);
> -    V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
> -                              Callee->getAttributes());
> -    return B.CreateFPExt(V, B.getDoubleTy());
> -  }
> -};
> -
> -struct UnsafeFPLibCallOptimization : public LibCallOptimization {
> -  bool UnsafeFPShrink;
> -  UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
> -    this->UnsafeFPShrink = UnsafeFPShrink;
> -  }
> -};
> -
> -struct CosOpt : public UnsafeFPLibCallOptimization {
> -  CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    Value *Ret = nullptr;
> -    if (UnsafeFPShrink && Callee->getName() == "cos" &&
> -        TLI->has(LibFunc::cosf)) {
> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
> -    }
> +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  Value *Ret = nullptr;
> +  if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
> +  }
> 
> -    FunctionType *FT = Callee->getFunctionType();
> -    // Just make sure this has 1 argument of FP type, which matches the
> -    // result type.
> -    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isFloatingPointTy())
> -      return Ret;
> -
> -    // cos(-x) -> cos(x)
> -    Value *Op1 = CI->getArgOperand(0);
> -    if (BinaryOperator::isFNeg(Op1)) {
> -      BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
> -      return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
> -    }
> +  FunctionType *FT = Callee->getFunctionType();
> +  // Just make sure this has 1 argument of FP type, which matches the
> +  // result type.
> +  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isFloatingPointTy())
>      return Ret;
> +
> +  // cos(-x) -> cos(x)
> +  Value *Op1 = CI->getArgOperand(0);
> +  if (BinaryOperator::isFNeg(Op1)) {
> +    BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
> +    return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
>    }
> -};
> +  return Ret;
> +}
> 
> -struct PowOpt : public UnsafeFPLibCallOptimization {
> -  PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    Value *Ret = nullptr;
> -    if (UnsafeFPShrink && Callee->getName() == "pow" &&
> -        TLI->has(LibFunc::powf)) {
> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
> -    }
> +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> 
> -    FunctionType *FT = Callee->getFunctionType();
> -    // Just make sure this has 2 arguments of the same FP type, which match the
> -    // result type.
> -    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
> -        FT->getParamType(0) != FT->getParamType(1) ||
> -        !FT->getParamType(0)->isFloatingPointTy())
> -      return Ret;
> -
> -    Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
> -    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
> -      // pow(1.0, x) -> 1.0
> -      if (Op1C->isExactlyValue(1.0))
> -        return Op1C;
> -      // pow(2.0, x) -> exp2(x)
> -      if (Op1C->isExactlyValue(2.0) &&
> -          hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
> -                          LibFunc::exp2l))
> -        return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
> -      // pow(10.0, x) -> exp10(x)
> -      if (Op1C->isExactlyValue(10.0) &&
> -          hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
> -                          LibFunc::exp10l))
> -        return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
> -                                    Callee->getAttributes());
> -    }
> +  Value *Ret = nullptr;
> +  if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
> +  }
> 
> -    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
> -    if (!Op2C) return Ret;
> +  FunctionType *FT = Callee->getFunctionType();
> +  // Just make sure this has 2 arguments of the same FP type, which match the
> +  // result type.
> +  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
> +      FT->getParamType(0) != FT->getParamType(1) ||
> +      !FT->getParamType(0)->isFloatingPointTy())
> +    return Ret;
> 
> -    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
> -      return ConstantFP::get(CI->getType(), 1.0);
> +  Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
> +  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
> +    // pow(1.0, x) -> 1.0
> +    if (Op1C->isExactlyValue(1.0))
> +      return Op1C;
> +    // pow(2.0, x) -> exp2(x)
> +    if (Op1C->isExactlyValue(2.0) &&
> +        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
> +                        LibFunc::exp2l))
> +      return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
> +    // pow(10.0, x) -> exp10(x)
> +    if (Op1C->isExactlyValue(10.0) &&
> +        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
> +                        LibFunc::exp10l))
> +      return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
> +                                  Callee->getAttributes());
> +  }
> 
> -    if (Op2C->isExactlyValue(0.5) &&
> -        hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
> -                        LibFunc::sqrtl) &&
> -        hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
> -                        LibFunc::fabsl)) {
> -      // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
> -      // This is faster than calling pow, and still handles negative zero
> -      // and negative infinity correctly.
> -      // TODO: In fast-math mode, this could be just sqrt(x).
> -      // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
> -      Value *Inf = ConstantFP::getInfinity(CI->getType());
> -      Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
> -      Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
> -                                         Callee->getAttributes());
> -      Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
> -                                         Callee->getAttributes());
> -      Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
> -      Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
> -      return Sel;
> -    }
> +  ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
> +  if (!Op2C)
> +    return Ret;
> 
> -    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
> -      return Op1;
> -    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
> -      return B.CreateFMul(Op1, Op1, "pow2");
> -    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
> -      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
> -                          Op1, "powrecip");
> -    return nullptr;
> -  }
> -};
> -
> -struct Exp2Opt : public UnsafeFPLibCallOptimization {
> -  Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    Value *Ret = nullptr;
> -    if (UnsafeFPShrink && Callee->getName() == "exp2" &&
> -        TLI->has(LibFunc::exp2f)) {
> -      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> -      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
> -    }
> +  if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
> +    return ConstantFP::get(CI->getType(), 1.0);
> 
> -    FunctionType *FT = Callee->getFunctionType();
> -    // Just make sure this has 1 argument of FP type, which matches the
> -    // result type.
> -    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isFloatingPointTy())
> -      return Ret;
> -
> -    Value *Op = CI->getArgOperand(0);
> -    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
> -    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
> -    LibFunc::Func LdExp = LibFunc::ldexpl;
> -    if (Op->getType()->isFloatTy())
> -      LdExp = LibFunc::ldexpf;
> -    else if (Op->getType()->isDoubleTy())
> -      LdExp = LibFunc::ldexp;
> -
> -    if (TLI->has(LdExp)) {
> -      Value *LdExpArg = nullptr;
> -      if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
> -        if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
> -          LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
> -      } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
> -        if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
> -          LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
> -      }
> -
> -      if (LdExpArg) {
> -        Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
> -        if (!Op->getType()->isFloatTy())
> -          One = ConstantExpr::getFPExtend(One, Op->getType());
> -
> -        Module *M = Caller->getParent();
> -        Value *Callee =
> -            M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
> -                                   Op->getType(), B.getInt32Ty(), NULL);
> -        CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
> -        if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
> -          CI->setCallingConv(F->getCallingConv());
> +  if (Op2C->isExactlyValue(0.5) &&
> +      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
> +                      LibFunc::sqrtl) &&
> +      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
> +                      LibFunc::fabsl)) {
> +    // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
> +    // This is faster than calling pow, and still handles negative zero
> +    // and negative infinity correctly.
> +    // TODO: In fast-math mode, this could be just sqrt(x).
> +    // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
> +    Value *Inf = ConstantFP::getInfinity(CI->getType());
> +    Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
> +    Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
> +    Value *FAbs =
> +        EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
> +    Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
> +    Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
> +    return Sel;
> +  }
> +
> +  if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
> +    return Op1;
> +  if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
> +    return B.CreateFMul(Op1, Op1, "pow2");
> +  if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
> +    return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
> +  return nullptr;
> +}
> 
> -        return CI;
> -      }
> -    }
> -    return Ret;
> +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  Function *Caller = CI->getParent()->getParent();
> +
> +  Value *Ret = nullptr;
> +  if (UnsafeFPShrink && Callee->getName() == "exp2" &&
> +      TLI->has(LibFunc::exp2f)) {
> +    Ret = optimizeUnaryDoubleFP(CI, B, true);
>    }
> -};
> 
> -struct SinCosPiOpt : public LibCallOptimization {
> -  SinCosPiOpt() {}
> +  FunctionType *FT = Callee->getFunctionType();
> +  // Just make sure this has 1 argument of FP type, which matches the
> +  // result type.
> +  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isFloatingPointTy())
> +    return Ret;
> 
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Make sure the prototype is as expected, otherwise the rest of the
> -    // function is probably invalid and likely to abort.
> -    if (!isTrigLibCall(CI))
> -      return nullptr;
> -
> -    Value *Arg = CI->getArgOperand(0);
> -    SmallVector<CallInst *, 1> SinCalls;
> -    SmallVector<CallInst *, 1> CosCalls;
> -    SmallVector<CallInst *, 1> SinCosCalls;
> -
> -    bool IsFloat = Arg->getType()->isFloatTy();
> -
> -    // Look for all compatible sinpi, cospi and sincospi calls with the same
> -    // argument. If there are enough (in some sense) we can make the
> -    // substitution.
> -    for (User *U : Arg->users())
> -      classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
> -                     SinCosCalls);
> -
> -    // It's only worthwhile if both sinpi and cospi are actually used.
> -    if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
> -      return nullptr;
> -
> -    Value *Sin, *Cos, *SinCos;
> -    insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
> -                     SinCos);
> -
> -    replaceTrigInsts(SinCalls, Sin);
> -    replaceTrigInsts(CosCalls, Cos);
> -    replaceTrigInsts(SinCosCalls, SinCos);
> -
> -    return nullptr;
> -  }
> -
> -  bool isTrigLibCall(CallInst *CI) {
> -    Function *Callee = CI->getCalledFunction();
> -    FunctionType *FT = Callee->getFunctionType();
> -
> -    // We can only hope to do anything useful if we can ignore things like errno
> -    // and floating-point exceptions.
> -    bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
> -                          CI->hasFnAttr(Attribute::ReadNone);
> -
> -    // Other than that we need float(float) or double(double)
> -    return AttributesSafe && FT->getNumParams() == 1 &&
> -           FT->getReturnType() == FT->getParamType(0) &&
> -           (FT->getParamType(0)->isFloatTy() ||
> -            FT->getParamType(0)->isDoubleTy());
> -  }
> -
> -  void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
> -                      SmallVectorImpl<CallInst *> &SinCalls,
> -                      SmallVectorImpl<CallInst *> &CosCalls,
> -                      SmallVectorImpl<CallInst *> &SinCosCalls) {
> -    CallInst *CI = dyn_cast<CallInst>(Val);
> -
> -    if (!CI)
> -      return;
> -
> -    Function *Callee = CI->getCalledFunction();
> -    StringRef FuncName = Callee->getName();
> -    LibFunc::Func Func;
> -    if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
> -        !isTrigLibCall(CI))
> -      return;
> -
> -    if (IsFloat) {
> -      if (Func == LibFunc::sinpif)
> -        SinCalls.push_back(CI);
> -      else if (Func == LibFunc::cospif)
> -        CosCalls.push_back(CI);
> -      else if (Func == LibFunc::sincospif_stret)
> -        SinCosCalls.push_back(CI);
> -    } else {
> -      if (Func == LibFunc::sinpi)
> -        SinCalls.push_back(CI);
> -      else if (Func == LibFunc::cospi)
> -        CosCalls.push_back(CI);
> -      else if (Func == LibFunc::sincospi_stret)
> -        SinCosCalls.push_back(CI);
> -    }
> -  }
> +  Value *Op = CI->getArgOperand(0);
> +  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
> +  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
> +  LibFunc::Func LdExp = LibFunc::ldexpl;
> +  if (Op->getType()->isFloatTy())
> +    LdExp = LibFunc::ldexpf;
> +  else if (Op->getType()->isDoubleTy())
> +    LdExp = LibFunc::ldexp;
> +
> +  if (TLI->has(LdExp)) {
> +    Value *LdExpArg = nullptr;
> +    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
> +      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
> +        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
> +    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
> +      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
> +        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
> +    }
> +
> +    if (LdExpArg) {
> +      Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
> +      if (!Op->getType()->isFloatTy())
> +        One = ConstantExpr::getFPExtend(One, Op->getType());
> +
> +      Module *M = Caller->getParent();
> +      Value *Callee =
> +          M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
> +                                 Op->getType(), B.getInt32Ty(), NULL);
> +      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
> +      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
> +        CI->setCallingConv(F->getCallingConv());
> 
> -  void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
> -    for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
> -           E = Calls.end();
> -         I != E; ++I) {
> -      LCS->replaceAllUsesWith(*I, Res);
> +      return CI;
>      }
>    }
> +  return Ret;
> +}
> 
> -  void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
> -                        bool UseFloat, Value *&Sin, Value *&Cos,
> -                        Value *&SinCos) {
> -    Type *ArgTy = Arg->getType();
> -    Type *ResTy;
> -    StringRef Name;
> -
> -    Triple T(OrigCallee->getParent()->getTargetTriple());
> -    if (UseFloat) {
> -      Name = "__sincospif_stret";
> -
> -      assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
> -      // x86_64 can't use {float, float} since that would be returned in both
> -      // xmm0 and xmm1, which isn't what a real struct would do.
> -      ResTy = T.getArch() == Triple::x86_64
> -                  ? static_cast<Type *>(VectorType::get(ArgTy, 2))
> -                  : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
> -    } else {
> -      Name = "__sincospi_stret";
> -      ResTy = StructType::get(ArgTy, ArgTy, NULL);
> -    }
> +static bool isTrigLibCall(CallInst *CI);
> +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
> +                             bool UseFloat, Value *&Sin, Value *&Cos,
> +                             Value *&SinCos);
> 
> -    Module *M = OrigCallee->getParent();
> -    Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
> -                                           ResTy, ArgTy, NULL);
> -
> -    if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
> -      // If the argument is an instruction, it must dominate all uses so put our
> -      // sincos call there.
> -      BasicBlock::iterator Loc = ArgInst;
> -      B.SetInsertPoint(ArgInst->getParent(), ++Loc);
> -    } else {
> -      // Otherwise (e.g. for a constant) the beginning of the function is as
> -      // good a place as any.
> -      BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
> -      B.SetInsertPoint(&EntryBB, EntryBB.begin());
> -    }
> +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
> 
> -    SinCos = B.CreateCall(Callee, Arg, "sincospi");
> +  // Make sure the prototype is as expected, otherwise the rest of the
> +  // function is probably invalid and likely to abort.
> +  if (!isTrigLibCall(CI))
> +    return nullptr;
> 
> -    if (SinCos->getType()->isStructTy()) {
> -      Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
> -      Cos = B.CreateExtractValue(SinCos, 1, "cospi");
> -    } else {
> -      Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
> -                                   "sinpi");
> -      Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
> -                                   "cospi");
> -    }
> +  Value *Arg = CI->getArgOperand(0);
> +  SmallVector<CallInst *, 1> SinCalls;
> +  SmallVector<CallInst *, 1> CosCalls;
> +  SmallVector<CallInst *, 1> SinCosCalls;
> +
> +  bool IsFloat = Arg->getType()->isFloatTy();
> +
> +  // Look for all compatible sinpi, cospi and sincospi calls with the same
> +  // argument. If there are enough (in some sense) we can make the
> +  // substitution.
> +  for (User *U : Arg->users())
> +    classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
> +                   SinCosCalls);
> +
> +  // It's only worthwhile if both sinpi and cospi are actually used.
> +  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
> +    return nullptr;
> +
> +  Value *Sin, *Cos, *SinCos;
> +  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
> +
> +  replaceTrigInsts(SinCalls, Sin);
> +  replaceTrigInsts(CosCalls, Cos);
> +  replaceTrigInsts(SinCosCalls, SinCos);
> +
> +  return nullptr;
> +}
> +
> +static bool isTrigLibCall(CallInst *CI) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +
> +  // We can only hope to do anything useful if we can ignore things like errno
> +  // and floating-point exceptions.
> +  bool AttributesSafe =
> +      CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
> +
> +  // Other than that we need float(float) or double(double)
> +  return AttributesSafe && FT->getNumParams() == 1 &&
> +         FT->getReturnType() == FT->getParamType(0) &&
> +         (FT->getParamType(0)->isFloatTy() ||
> +          FT->getParamType(0)->isDoubleTy());
> +}
> +
> +void
> +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
> +                                  SmallVectorImpl<CallInst *> &SinCalls,
> +                                  SmallVectorImpl<CallInst *> &CosCalls,
> +                                  SmallVectorImpl<CallInst *> &SinCosCalls) {
> +  CallInst *CI = dyn_cast<CallInst>(Val);
> +
> +  if (!CI)
> +    return;
> +
> +  Function *Callee = CI->getCalledFunction();
> +  StringRef FuncName = Callee->getName();
> +  LibFunc::Func Func;
> +  if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
> +    return;
> +
> +  if (IsFloat) {
> +    if (Func == LibFunc::sinpif)
> +      SinCalls.push_back(CI);
> +    else if (Func == LibFunc::cospif)
> +      CosCalls.push_back(CI);
> +    else if (Func == LibFunc::sincospif_stret)
> +      SinCosCalls.push_back(CI);
> +  } else {
> +    if (Func == LibFunc::sinpi)
> +      SinCalls.push_back(CI);
> +    else if (Func == LibFunc::cospi)
> +      CosCalls.push_back(CI);
> +    else if (Func == LibFunc::sincospi_stret)
> +      SinCosCalls.push_back(CI);
>    }
> +}
> 
> -};
> +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
> +                                         Value *Res) {
> +  for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
> +       I != E; ++I) {
> +    replaceAllUsesWith(*I, Res);
> +  }
> +}
> +
> +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
> +                      bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
> +  Type *ArgTy = Arg->getType();
> +  Type *ResTy;
> +  StringRef Name;
> +
> +  Triple T(OrigCallee->getParent()->getTargetTriple());
> +  if (UseFloat) {
> +    Name = "__sincospif_stret";
> +
> +    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
> +    // x86_64 can't use {float, float} since that would be returned in both
> +    // xmm0 and xmm1, which isn't what a real struct would do.
> +    ResTy = T.getArch() == Triple::x86_64
> +                ? static_cast<Type *>(VectorType::get(ArgTy, 2))
> +                : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
> +  } else {
> +    Name = "__sincospi_stret";
> +    ResTy = StructType::get(ArgTy, ArgTy, NULL);
> +  }
> +
> +  Module *M = OrigCallee->getParent();
> +  Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
> +                                         ResTy, ArgTy, NULL);
> +
> +  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
> +    // If the argument is an instruction, it must dominate all uses so put our
> +    // sincos call there.
> +    BasicBlock::iterator Loc = ArgInst;
> +    B.SetInsertPoint(ArgInst->getParent(), ++Loc);
> +  } else {
> +    // Otherwise (e.g. for a constant) the beginning of the function is as
> +    // good a place as any.
> +    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
> +    B.SetInsertPoint(&EntryBB, EntryBB.begin());
> +  }
> +
> +  SinCos = B.CreateCall(Callee, Arg, "sincospi");
> +
> +  if (SinCos->getType()->isStructTy()) {
> +    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
> +    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
> +  } else {
> +    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
> +                                 "sinpi");
> +    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
> +                                 "cospi");
> +  }
> +}
> 
>  //===----------------------------------------------------------------------===//
>  // Integer Library Call Optimizations
>  //===----------------------------------------------------------------------===//
> 
> -struct FFSOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    // Just make sure this has 2 arguments of the same FP type, which match the
> -    // result type.
> -    if (FT->getNumParams() != 1 ||
> -        !FT->getReturnType()->isIntegerTy(32) ||
> -        !FT->getParamType(0)->isIntegerTy())
> -      return nullptr;
> -
> -    Value *Op = CI->getArgOperand(0);
> -
> -    // Constant fold.
> -    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
> -      if (CI->isZero()) // ffs(0) -> 0.
> -        return B.getInt32(0);
> -      // ffs(c) -> cttz(c)+1
> -      return B.getInt32(CI->getValue().countTrailingZeros() + 1);
> -    }
> +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  // Just make sure this has 2 arguments of the same FP type, which match the
> +  // result type.
> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
> +      !FT->getParamType(0)->isIntegerTy())
> +    return nullptr;
> +
> +  Value *Op = CI->getArgOperand(0);
> +
> +  // Constant fold.
> +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
> +    if (CI->isZero()) // ffs(0) -> 0.
> +      return B.getInt32(0);
> +    // ffs(c) -> cttz(c)+1
> +    return B.getInt32(CI->getValue().countTrailingZeros() + 1);
> +  }
> +
> +  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
> +  Type *ArgType = Op->getType();
> +  Value *F =
> +      Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
> +  Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
> +  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
> +  V = B.CreateIntCast(V, B.getInt32Ty(), false);
> 
> -    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
> -    Type *ArgType = Op->getType();
> -    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
> -                                         Intrinsic::cttz, ArgType);
> -    Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
> -    V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
> -    V = B.CreateIntCast(V, B.getInt32Ty(), false);
> -
> -    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
> -    return B.CreateSelect(Cond, V, B.getInt32(0));
> -  }
> -};
> -
> -struct AbsOpt : public LibCallOptimization {
> -  bool ignoreCallingConv() override { return true; }
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    // We require integer(integer) where the types agree.
> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> -        FT->getParamType(0) != FT->getReturnType())
> -      return nullptr;
> -
> -    // abs(x) -> x >s -1 ? x : -x
> -    Value *Op = CI->getArgOperand(0);
> -    Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
> -                                 "ispos");
> -    Value *Neg = B.CreateNeg(Op, "neg");
> -    return B.CreateSelect(Pos, Op, Neg);
> -  }
> -};
> -
> -struct IsDigitOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    // We require integer(i32)
> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> -        !FT->getParamType(0)->isIntegerTy(32))
> -      return nullptr;
> -
> -    // isdigit(c) -> (c-'0') <u 10
> -    Value *Op = CI->getArgOperand(0);
> -    Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
> -    Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
> -    return B.CreateZExt(Op, CI->getType());
> -  }
> -};
> -
> -struct IsAsciiOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    // We require integer(i32)
> -    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> -        !FT->getParamType(0)->isIntegerTy(32))
> -      return nullptr;
> -
> -    // isascii(c) -> c <u 128
> -    Value *Op = CI->getArgOperand(0);
> -    Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
> -    return B.CreateZExt(Op, CI->getType());
> -  }
> -};
> -
> -struct ToAsciiOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    FunctionType *FT = Callee->getFunctionType();
> -    // We require i32(i32)
> -    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
> -        !FT->getParamType(0)->isIntegerTy(32))
> -      return nullptr;
> -
> -    // toascii(c) -> c & 0x7f
> -    return B.CreateAnd(CI->getArgOperand(0),
> -                       ConstantInt::get(CI->getType(),0x7F));
> -  }
> -};
> +  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
> +  return B.CreateSelect(Cond, V, B.getInt32(0));
> +}
> +
> +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  // We require integer(integer) where the types agree.
> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> +      FT->getParamType(0) != FT->getReturnType())
> +    return nullptr;
> +
> +  // abs(x) -> x >s -1 ? x : -x
> +  Value *Op = CI->getArgOperand(0);
> +  Value *Pos =
> +      B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
> +  Value *Neg = B.CreateNeg(Op, "neg");
> +  return B.CreateSelect(Pos, Op, Neg);
> +}
> +
> +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  // We require integer(i32)
> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> +      !FT->getParamType(0)->isIntegerTy(32))
> +    return nullptr;
> +
> +  // isdigit(c) -> (c-'0') <u 10
> +  Value *Op = CI->getArgOperand(0);
> +  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
> +  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
> +  return B.CreateZExt(Op, CI->getType());
> +}
> +
> +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  // We require integer(i32)
> +  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> +      !FT->getParamType(0)->isIntegerTy(32))
> +    return nullptr;
> +
> +  // isascii(c) -> c <u 128
> +  Value *Op = CI->getArgOperand(0);
> +  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
> +  return B.CreateZExt(Op, CI->getType());
> +}
> +
> +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  FunctionType *FT = Callee->getFunctionType();
> +  // We require i32(i32)
> +  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
> +      !FT->getParamType(0)->isIntegerTy(32))
> +    return nullptr;
> +
> +  // toascii(c) -> c & 0x7f
> +  return B.CreateAnd(CI->getArgOperand(0),
> +                     ConstantInt::get(CI->getType(), 0x7F));
> +}
> 
>  //===----------------------------------------------------------------------===//
>  // Formatting and IO Library Call Optimizations
>  //===----------------------------------------------------------------------===//
> 
> -struct ErrorReportingOpt : public LibCallOptimization {
> -  ErrorReportingOpt(int S = -1) : StreamArg(S) {}
> +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
> 
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &) override {
> -    // Error reporting calls should be cold, mark them as such.
> -    // This applies even to non-builtin calls: it is only a hint and applies to
> -    // functions that the frontend might not understand as builtins.
> -
> -    // This heuristic was suggested in:
> -    // Improving Static Branch Prediction in a Compiler
> -    // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
> -    // Proceedings of PACT'98, Oct. 1998, IEEE
> -
> -    if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
> -      CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
> -    }
> +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
> +                                                 int StreamArg) {
> +  // Error reporting calls should be cold, mark them as such.
> +  // This applies even to non-builtin calls: it is only a hint and applies to
> +  // functions that the frontend might not understand as builtins.
> +
> +  // This heuristic was suggested in:
> +  // Improving Static Branch Prediction in a Compiler
> +  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
> +  // Proceedings of PACT'98, Oct. 1998, IEEE
> +  Function *Callee = CI->getCalledFunction();
> 
> -    return nullptr;
> +  if (!CI->hasFnAttr(Attribute::Cold) &&
> +      isReportingError(Callee, CI, StreamArg)) {
> +    CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
>    }
> 
> -protected:
> -  bool isReportingError(Function *Callee, CallInst *CI) {
> -    if (!ColdErrorCalls)
> -      return false;
> -
> -    if (!Callee || !Callee->isDeclaration())
> -      return false;
> -
> -    if (StreamArg < 0)
> -      return true;
> +  return nullptr;
> +}
> 
> -    // These functions might be considered cold, but only if their stream
> -    // argument is stderr.
> +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
> +  if (!ColdErrorCalls)
> +    return false;
> 
> -    if (StreamArg >= (int) CI->getNumArgOperands())
> -      return false;
> -    LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
> -    if (!LI)
> -      return false;
> -    GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
> -    if (!GV || !GV->isDeclaration())
> -      return false;
> -    return GV->getName() == "stderr";
> -  }
> -
> -  int StreamArg;
> -};
> -
> -struct PrintFOpt : public LibCallOptimization {
> -  Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
> -                                   IRBuilder<> &B) {
> -    // Check for a fixed format string.
> -    StringRef FormatStr;
> -    if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
> -      return nullptr;
> -
> -    // Empty format string -> noop.
> -    if (FormatStr.empty())  // Tolerate printf's declared void.
> -      return CI->use_empty() ? (Value*)CI :
> -                               ConstantInt::get(CI->getType(), 0);
> -
> -    // Do not do any of the following transformations if the printf return value
> -    // is used, in general the printf return value is not compatible with either
> -    // putchar() or puts().
> -    if (!CI->use_empty())
> -      return nullptr;
> -
> -    // printf("x") -> putchar('x'), even for '%'.
> -    if (FormatStr.size() == 1) {
> -      Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
> -      if (CI->use_empty() || !Res) return Res;
> -      return B.CreateIntCast(Res, CI->getType(), true);
> -    }
> +  if (!Callee || !Callee->isDeclaration())
> +    return false;
> 
> -    // printf("foo\n") --> puts("foo")
> -    if (FormatStr[FormatStr.size()-1] == '\n' &&
> -        FormatStr.find('%') == StringRef::npos) { // No format characters.
> -      // Create a string literal with no \n on it.  We expect the constant merge
> -      // pass to be run after this pass, to merge duplicate strings.
> -      FormatStr = FormatStr.drop_back();
> -      Value *GV = B.CreateGlobalString(FormatStr, "str");
> -      Value *NewCI = EmitPutS(GV, B, DL, TLI);
> -      return (CI->use_empty() || !NewCI) ?
> -              NewCI :
> -              ConstantInt::get(CI->getType(), FormatStr.size()+1);
> -    }
> +  if (StreamArg < 0)
> +    return true;
> 
> -    // Optimize specific format strings.
> -    // printf("%c", chr) --> putchar(chr)
> -    if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
> -        CI->getArgOperand(1)->getType()->isIntegerTy()) {
> -      Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
> +  // These functions might be considered cold, but only if their stream
> +  // argument is stderr.
> 
> -      if (CI->use_empty() || !Res) return Res;
> -      return B.CreateIntCast(Res, CI->getType(), true);
> -    }
> +  if (StreamArg >= (int)CI->getNumArgOperands())
> +    return false;
> +  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
> +  if (!LI)
> +    return false;
> +  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
> +  if (!GV || !GV->isDeclaration())
> +    return false;
> +  return GV->getName() == "stderr";
> +}
> 
> -    // printf("%s\n", str) --> puts(str)
> -    if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
> -        CI->getArgOperand(1)->getType()->isPointerTy()) {
> -      return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
> -    }
> -    return nullptr;
> +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
> +  // Check for a fixed format string.
> +  StringRef FormatStr;
> +  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
> +    return nullptr;
> +
> +  // Empty format string -> noop.
> +  if (FormatStr.empty()) // Tolerate printf's declared void.
> +    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
> +
> +  // Do not do any of the following transformations if the printf return value
> +  // is used, in general the printf return value is not compatible with either
> +  // putchar() or puts().
> +  if (!CI->use_empty())
> +    return nullptr;
> +
> +  // printf("x") -> putchar('x'), even for '%'.
> +  if (FormatStr.size() == 1) {
> +    Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
> +    if (CI->use_empty() || !Res)
> +      return Res;
> +    return B.CreateIntCast(Res, CI->getType(), true);
> +  }
> +
> +  // printf("foo\n") --> puts("foo")
> +  if (FormatStr[FormatStr.size() - 1] == '\n' &&
> +      FormatStr.find('%') == StringRef::npos) { // No format characters.
> +    // Create a string literal with no \n on it.  We expect the constant merge
> +    // pass to be run after this pass, to merge duplicate strings.
> +    FormatStr = FormatStr.drop_back();
> +    Value *GV = B.CreateGlobalString(FormatStr, "str");
> +    Value *NewCI = EmitPutS(GV, B, DL, TLI);
> +    return (CI->use_empty() || !NewCI)
> +               ? NewCI
> +               : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
> +  }
> +
> +  // Optimize specific format strings.
> +  // printf("%c", chr) --> putchar(chr)
> +  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
> +      CI->getArgOperand(1)->getType()->isIntegerTy()) {
> +    Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
> +
> +    if (CI->use_empty() || !Res)
> +      return Res;
> +    return B.CreateIntCast(Res, CI->getType(), true);
> +  }
> +
> +  // printf("%s\n", str) --> puts(str)
> +  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
> +      CI->getArgOperand(1)->getType()->isPointerTy()) {
> +    return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
>    }
> +  return nullptr;
> +}
> 
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Require one fixed pointer argument and an integer/void result.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> -        !(FT->getReturnType()->isIntegerTy() ||
> -          FT->getReturnType()->isVoidTy()))
> -      return nullptr;
> +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
> 
> -    if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
> -      return V;
> -    }
> +  Function *Callee = CI->getCalledFunction();
> +  // Require one fixed pointer argument and an integer/void result.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> +      !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
> +    return nullptr;
> +
> +  if (Value *V = optimizePrintFString(CI, B)) {
> +    return V;
> +  }
> 
> -    // printf(format, ...) -> iprintf(format, ...) if no floating point
> -    // arguments.
> -    if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
> -      Constant *IPrintFFn =
> +  // printf(format, ...) -> iprintf(format, ...) if no floating point
> +  // arguments.
> +  if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
> +    Constant *IPrintFFn =
>          M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
> -      CallInst *New = cast<CallInst>(CI->clone());
> -      New->setCalledFunction(IPrintFFn);
> -      B.Insert(New);
> -      return New;
> -    }
> -    return nullptr;
> +    CallInst *New = cast<CallInst>(CI->clone());
> +    New->setCalledFunction(IPrintFFn);
> +    B.Insert(New);
> +    return New;
>    }
> -};
> +  return nullptr;
> +}
> 
> -struct SPrintFOpt : public LibCallOptimization {
> -  Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
> -                                   IRBuilder<> &B) {
> -    // Check for a fixed format string.
> -    StringRef FormatStr;
> -    if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> -      return nullptr;
> -
> -    // If we just have a format string (nothing else crazy) transform it.
> -    if (CI->getNumArgOperands() == 2) {
> -      // Make sure there's no % in the constant array.  We could try to handle
> -      // %% -> % in the future if we cared.
> -      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> -        if (FormatStr[i] == '%')
> -          return nullptr; // we found a format specifier, bail out.
> -
> -      // These optimizations require DataLayout.
> -      if (!DL) return nullptr;
> -
> -      // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> -                     ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
> -                                      FormatStr.size() + 1), 1);   // nul byte.
> -      return ConstantInt::get(CI->getType(), FormatStr.size());
> -    }
> +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
> +  // Check for a fixed format string.
> +  StringRef FormatStr;
> +  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> +    return nullptr;
> 
> -    // The remaining optimizations require the format string to be "%s" or "%c"
> -    // and have an extra operand.
> -    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> -        CI->getNumArgOperands() < 3)
> -      return nullptr;
> -
> -    // Decode the second character of the format string.
> -    if (FormatStr[1] == 'c') {
> -      // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
> -      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
> -      Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
> -      Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
> -      B.CreateStore(V, Ptr);
> -      Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
> -      B.CreateStore(B.getInt8(0), Ptr);
> +  // If we just have a format string (nothing else crazy) transform it.
> +  if (CI->getNumArgOperands() == 2) {
> +    // Make sure there's no % in the constant array.  We could try to handle
> +    // %% -> % in the future if we cared.
> +    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> +      if (FormatStr[i] == '%')
> +        return nullptr; // we found a format specifier, bail out.
> 
> -      return ConstantInt::get(CI->getType(), 1);
> -    }
> +    // These optimizations require DataLayout.
> +    if (!DL)
> +      return nullptr;
> 
> -    if (FormatStr[1] == 's') {
> -      // These optimizations require DataLayout.
> -      if (!DL) return nullptr;
> +    // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
> +    B.CreateMemCpy(
> +        CI->getArgOperand(0), CI->getArgOperand(1),
> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()),
> +                         FormatStr.size() + 1),
> +        1); // Copy the null byte.
> +    return ConstantInt::get(CI->getType(), FormatStr.size());
> +  }
> 
> -      // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
> -      if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
> +  // The remaining optimizations require the format string to be "%s" or "%c"
> +  // and have an extra operand.
> +  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> +      CI->getNumArgOperands() < 3)
> +    return nullptr;
> 
> -      Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
> -      if (!Len)
> -        return nullptr;
> -      Value *IncLen = B.CreateAdd(Len,
> -                                  ConstantInt::get(Len->getType(), 1),
> -                                  "leninc");
> -      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
> +  // Decode the second character of the format string.
> +  if (FormatStr[1] == 'c') {
> +    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
> +    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
> +      return nullptr;
> +    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
> +    Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
> +    B.CreateStore(V, Ptr);
> +    Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
> +    B.CreateStore(B.getInt8(0), Ptr);
> 
> -      // The sprintf result is the unincremented number of bytes in the string.
> -      return B.CreateIntCast(Len, CI->getType(), false);
> -    }
> -    return nullptr;
> +    return ConstantInt::get(CI->getType(), 1);
>    }
> 
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Require two fixed pointer arguments and an integer result.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        !FT->getReturnType()->isIntegerTy())
> +  if (FormatStr[1] == 's') {
> +    // These optimizations require DataLayout.
> +    if (!DL)
>        return nullptr;
> 
> -    if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
> -      return V;
> -    }
> +    // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
> +    if (!CI->getArgOperand(2)->getType()->isPointerTy())
> +      return nullptr;
> 
> -    // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
> -    // point arguments.
> -    if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
> -      Constant *SIPrintFFn =
> +    Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
> +    if (!Len)
> +      return nullptr;
> +    Value *IncLen =
> +        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
> +    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
> +
> +    // The sprintf result is the unincremented number of bytes in the string.
> +    return B.CreateIntCast(Len, CI->getType(), false);
> +  }
> +  return nullptr;
> +}
> +
> +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Require two fixed pointer arguments and an integer result.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      !FT->getReturnType()->isIntegerTy())
> +    return nullptr;
> +
> +  if (Value *V = optimizeSPrintFString(CI, B)) {
> +    return V;
> +  }
> +
> +  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
> +  // point arguments.
> +  if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
> +    Constant *SIPrintFFn =
>          M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
> -      CallInst *New = cast<CallInst>(CI->clone());
> -      New->setCalledFunction(SIPrintFFn);
> -      B.Insert(New);
> -      return New;
> -    }
> -    return nullptr;
> +    CallInst *New = cast<CallInst>(CI->clone());
> +    New->setCalledFunction(SIPrintFFn);
> +    B.Insert(New);
> +    return New;
>    }
> -};
> +  return nullptr;
> +}
> 
> -struct FPrintFOpt : public LibCallOptimization {
> -  Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
> -                                   IRBuilder<> &B) {
> -    ErrorReportingOpt ER(/* StreamArg = */ 0);
> -    (void) ER.callOptimizer(Callee, CI, B);
> -
> -    // All the optimizations depend on the format string.
> -    StringRef FormatStr;
> -    if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> -      return nullptr;
> -
> -    // Do not do any of the following transformations if the fprintf return
> -    // value is used, in general the fprintf return value is not compatible
> -    // with fwrite(), fputc() or fputs().
> -    if (!CI->use_empty())
> -      return nullptr;
> -
> -    // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
> -    if (CI->getNumArgOperands() == 2) {
> -      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> -        if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
> -          return nullptr; // We found a format specifier.
> -
> -      // These optimizations require DataLayout.
> -      if (!DL) return nullptr;
> -
> -      return EmitFWrite(CI->getArgOperand(1),
> -                        ConstantInt::get(DL->getIntPtrType(*Context),
> -                                         FormatStr.size()),
> -                        CI->getArgOperand(0), B, DL, TLI);
> -    }
> +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
> +  optimizeErrorReporting(CI, B, 0);
> +
> +  // All the optimizations depend on the format string.
> +  StringRef FormatStr;
> +  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> +    return nullptr;
> 
> -    // The remaining optimizations require the format string to be "%s" or "%c"
> -    // and have an extra operand.
> -    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> -        CI->getNumArgOperands() < 3)
> +  // Do not do any of the following transformations if the fprintf return
> +  // value is used, in general the fprintf return value is not compatible
> +  // with fwrite(), fputc() or fputs().
> +  if (!CI->use_empty())
> +    return nullptr;
> +
> +  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
> +  if (CI->getNumArgOperands() == 2) {
> +    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> +      if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
> +        return nullptr;        // We found a format specifier.
> +
> +    // These optimizations require DataLayout.
> +    if (!DL)
>        return nullptr;
> 
> -    // Decode the second character of the format string.
> -    if (FormatStr[1] == 'c') {
> -      // fprintf(F, "%c", chr) --> fputc(chr, F)
> -      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
> -      return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
> -    }
> +    return EmitFWrite(
> +        CI->getArgOperand(1),
> +        ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()),
> +        CI->getArgOperand(0), B, DL, TLI);
> +  }
> 
> -    if (FormatStr[1] == 's') {
> -      // fprintf(F, "%s", str) --> fputs(str, F)
> -      if (!CI->getArgOperand(2)->getType()->isPointerTy())
> -        return nullptr;
> -      return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
> -    }
> +  // The remaining optimizations require the format string to be "%s" or "%c"
> +  // and have an extra operand.
> +  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> +      CI->getNumArgOperands() < 3)
>      return nullptr;
> -  }
> 
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Require two fixed paramters as pointers and integer result.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        !FT->getReturnType()->isIntegerTy())
> +  // Decode the second character of the format string.
> +  if (FormatStr[1] == 'c') {
> +    // fprintf(F, "%c", chr) --> fputc(chr, F)
> +    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
>        return nullptr;
> +    return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
> +  }
> 
> -    if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
> -      return V;
> -    }
> +  if (FormatStr[1] == 's') {
> +    // fprintf(F, "%s", str) --> fputs(str, F)
> +    if (!CI->getArgOperand(2)->getType()->isPointerTy())
> +      return nullptr;
> +    return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
> +  }
> +  return nullptr;
> +}
> 
> -    // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
> -    // floating point arguments.
> -    if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
> -      Module *M = B.GetInsertBlock()->getParent()->getParent();
> -      Constant *FIPrintFFn =
> +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Require two fixed paramters as pointers and integer result.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() ||
> +      !FT->getReturnType()->isIntegerTy())
> +    return nullptr;
> +
> +  if (Value *V = optimizeFPrintFString(CI, B)) {
> +    return V;
> +  }
> +
> +  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
> +  // floating point arguments.
> +  if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
> +    Module *M = B.GetInsertBlock()->getParent()->getParent();
> +    Constant *FIPrintFFn =
>          M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
> -      CallInst *New = cast<CallInst>(CI->clone());
> -      New->setCalledFunction(FIPrintFFn);
> -      B.Insert(New);
> -      return New;
> -    }
> -    return nullptr;
> +    CallInst *New = cast<CallInst>(CI->clone());
> +    New->setCalledFunction(FIPrintFFn);
> +    B.Insert(New);
> +    return New;
>    }
> -};
> +  return nullptr;
> +}
> 
> -struct FWriteOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    ErrorReportingOpt ER(/* StreamArg = */ 3);
> -    (void) ER.callOptimizer(Callee, CI, B);
> -
> -    // Require a pointer, an integer, an integer, a pointer, returning integer.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isIntegerTy() ||
> -        !FT->getParamType(2)->isIntegerTy() ||
> -        !FT->getParamType(3)->isPointerTy() ||
> -        !FT->getReturnType()->isIntegerTy())
> -      return nullptr;
> -
> -    // Get the element size and count.
> -    ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> -    ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> -    if (!SizeC || !CountC) return nullptr;
> -    uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
> -
> -    // If this is writing zero records, remove the call (it's a noop).
> -    if (Bytes == 0)
> -      return ConstantInt::get(CI->getType(), 0);
> -
> -    // If this is writing one byte, turn it into fputc.
> -    // This optimisation is only valid, if the return value is unused.
> -    if (Bytes == 1 && CI->use_empty()) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
> -      Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
> -      Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
> -      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
> -    }
> +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
> +  optimizeErrorReporting(CI, B, 3);
> 
> -    return nullptr;
> +  Function *Callee = CI->getCalledFunction();
> +  // Require a pointer, an integer, an integer, a pointer, returning integer.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isIntegerTy() ||
> +      !FT->getParamType(2)->isIntegerTy() ||
> +      !FT->getParamType(3)->isPointerTy() ||
> +      !FT->getReturnType()->isIntegerTy())
> +    return nullptr;
> +
> +  // Get the element size and count.
> +  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> +  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> +  if (!SizeC || !CountC)
> +    return nullptr;
> +  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
> +
> +  // If this is writing zero records, remove the call (it's a noop).
> +  if (Bytes == 0)
> +    return ConstantInt::get(CI->getType(), 0);
> +
> +  // If this is writing one byte, turn it into fputc.
> +  // This optimisation is only valid, if the return value is unused.
> +  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
> +    Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
> +    Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
> +    return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
>    }
> -};
> 
> -struct FPutsOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    ErrorReportingOpt ER(/* StreamArg = */ 1);
> -    (void) ER.callOptimizer(Callee, CI, B);
> +  return nullptr;
> +}
> 
> -    // These optimizations require DataLayout.
> -    if (!DL) return nullptr;
> +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
> +  optimizeErrorReporting(CI, B, 1);
> 
> -    // Require two pointers.  Also, we can't optimize if return value is used.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> -        !FT->getParamType(1)->isPointerTy() ||
> -        !CI->use_empty())
> -      return nullptr;
> -
> -    // fputs(s,F) --> fwrite(s,1,strlen(s),F)
> -    uint64_t Len = GetStringLength(CI->getArgOperand(0));
> -    if (!Len) return nullptr;
> -    // Known to have no uses (see above).
> -    return EmitFWrite(CI->getArgOperand(0),
> -                      ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
> -                      CI->getArgOperand(1), B, DL, TLI);
> -  }
> -};
> -
> -struct PutsOpt : public LibCallOptimization {
> -  Value *callOptimizer(Function *Callee, CallInst *CI,
> -                       IRBuilder<> &B) override {
> -    // Require one fixed pointer argument and an integer/void result.
> -    FunctionType *FT = Callee->getFunctionType();
> -    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> -        !(FT->getReturnType()->isIntegerTy() ||
> -          FT->getReturnType()->isVoidTy()))
> -      return nullptr;
> -
> -    // Check for a constant string.
> -    StringRef Str;
> -    if (!getConstantStringInfo(CI->getArgOperand(0), Str))
> -      return nullptr;
> -
> -    if (Str.empty() && CI->use_empty()) {
> -      // puts("") -> putchar('\n')
> -      Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
> -      if (CI->use_empty() || !Res) return Res;
> -      return B.CreateIntCast(Res, CI->getType(), true);
> -    }
> +  Function *Callee = CI->getCalledFunction();
> 
> +  // These optimizations require DataLayout.
> +  if (!DL)
>      return nullptr;
> -  }
> -};
> 
> -} // End anonymous namespace.
> +  // Require two pointers.  Also, we can't optimize if return value is used.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> +      !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
> +    return nullptr;
> 
> -namespace llvm {
> +  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
> +  uint64_t Len = GetStringLength(CI->getArgOperand(0));
> +  if (!Len)
> +    return nullptr;
> 
> -class LibCallSimplifierImpl {
> -  const DataLayout *DL;
> -  const TargetLibraryInfo *TLI;
> -  const LibCallSimplifier *LCS;
> -  bool UnsafeFPShrink;
> -
> -  // Math library call optimizations.
> -  CosOpt Cos;
> -  PowOpt Pow;
> -  Exp2Opt Exp2;
> -public:
> -  LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
> -                        const LibCallSimplifier *LCS,
> -                        bool UnsafeFPShrink = false)
> -    : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
> -    this->DL = DL;
> -    this->TLI = TLI;
> -    this->LCS = LCS;
> -    this->UnsafeFPShrink = UnsafeFPShrink;
> -  }
> -
> -  Value *optimizeCall(CallInst *CI);
> -  LibCallOptimization *lookupOptimization(CallInst *CI);
> -  bool hasFloatVersion(StringRef FuncName);
> -};
> +  // Known to have no uses (see above).
> +  return EmitFWrite(
> +      CI->getArgOperand(0),
> +      ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
> +      CI->getArgOperand(1), B, DL, TLI);
> +}
> 
> -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
> +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
> +  Function *Callee = CI->getCalledFunction();
> +  // Require one fixed pointer argument and an integer/void result.
> +  FunctionType *FT = Callee->getFunctionType();
> +  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> +      !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
> +    return nullptr;
> +
> +  // Check for a constant string.
> +  StringRef Str;
> +  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
> +    return nullptr;
> +
> +  if (Str.empty() && CI->use_empty()) {
> +    // puts("") -> putchar('\n')
> +    Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
> +    if (CI->use_empty() || !Res)
> +      return Res;
> +    return B.CreateIntCast(Res, CI->getType(), true);
> +  }
> +
> +  return nullptr;
> +}
> +
> +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
>    LibFunc::Func Func;
>    SmallString<20> FloatFuncName = FuncName;
>    FloatFuncName += 'f';
> @@ -2048,263 +1874,204 @@ bool LibCallSimplifierImpl::hasFloatVers
>    return false;
>  }
> 
> -// Fortified library call optimizations.
> -static MemCpyChkOpt MemCpyChk;
> -static MemMoveChkOpt MemMoveChk;
> -static MemSetChkOpt MemSetChk;
> -static StrCpyChkOpt StrCpyChk;
> -static StpCpyChkOpt StpCpyChk;
> -static StrNCpyChkOpt StrNCpyChk;
> -
> -// String library call optimizations.
> -static StrCatOpt StrCat;
> -static StrNCatOpt StrNCat;
> -static StrChrOpt StrChr;
> -static StrRChrOpt StrRChr;
> -static StrCmpOpt StrCmp;
> -static StrNCmpOpt StrNCmp;
> -static StrCpyOpt StrCpy;
> -static StpCpyOpt StpCpy;
> -static StrNCpyOpt StrNCpy;
> -static StrLenOpt StrLen;
> -static StrPBrkOpt StrPBrk;
> -static StrToOpt StrTo;
> -static StrSpnOpt StrSpn;
> -static StrCSpnOpt StrCSpn;
> -static StrStrOpt StrStr;
> -
> -// Memory library call optimizations.
> -static MemCmpOpt MemCmp;
> -static MemCpyOpt MemCpy;
> -static MemMoveOpt MemMove;
> -static MemSetOpt MemSet;
> -
> -// Math library call optimizations.
> -static UnaryDoubleFPOpt UnaryDoubleFP(false);
> -static BinaryDoubleFPOpt BinaryDoubleFP(false);
> -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> -static SinCosPiOpt SinCosPi;
> -
> -  // Integer library call optimizations.
> -static FFSOpt FFS;
> -static AbsOpt Abs;
> -static IsDigitOpt IsDigit;
> -static IsAsciiOpt IsAscii;
> -static ToAsciiOpt ToAscii;
> -
> -// Formatting and IO library call optimizations.
> -static ErrorReportingOpt ErrorReporting;
> -static ErrorReportingOpt ErrorReporting0(0);
> -static ErrorReportingOpt ErrorReporting1(1);
> -static PrintFOpt PrintF;
> -static SPrintFOpt SPrintF;
> -static FPrintFOpt FPrintF;
> -static FWriteOpt FWrite;
> -static FPutsOpt FPuts;
> -static PutsOpt Puts;
> +Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
> +  if (CI->isNoBuiltin())
> +    return nullptr;
> 
> -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
>    LibFunc::Func Func;
>    Function *Callee = CI->getCalledFunction();
>    StringRef FuncName = Callee->getName();
> +  IRBuilder<> Builder(CI);
> +  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
> 
>    // Next check for intrinsics.
>    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
> +    if (!isCallingConvC)
> +      return nullptr;
>      switch (II->getIntrinsicID()) {
>      case Intrinsic::pow:
> -       return &Pow;
> +      return optimizePow(CI, Builder);
>      case Intrinsic::exp2:
> -       return &Exp2;
> +      return optimizeExp2(CI, Builder);
>      default:
> -       return nullptr;
> +      return nullptr;
>      }
>    }
> 
>    // Then check for known library functions.
>    if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
> +    // We never change the calling convention.
> +    if (!ignoreCallingConv(Func) && !isCallingConvC)
> +      return nullptr;
>      switch (Func) {
> -      case LibFunc::strcat:
> -        return &StrCat;
> -      case LibFunc::strncat:
> -        return &StrNCat;
> -      case LibFunc::strchr:
> -        return &StrChr;
> -      case LibFunc::strrchr:
> -        return &StrRChr;
> -      case LibFunc::strcmp:
> -        return &StrCmp;
> -      case LibFunc::strncmp:
> -        return &StrNCmp;
> -      case LibFunc::strcpy:
> -        return &StrCpy;
> -      case LibFunc::stpcpy:
> -        return &StpCpy;
> -      case LibFunc::strncpy:
> -        return &StrNCpy;
> -      case LibFunc::strlen:
> -        return &StrLen;
> -      case LibFunc::strpbrk:
> -        return &StrPBrk;
> -      case LibFunc::strtol:
> -      case LibFunc::strtod:
> -      case LibFunc::strtof:
> -      case LibFunc::strtoul:
> -      case LibFunc::strtoll:
> -      case LibFunc::strtold:
> -      case LibFunc::strtoull:
> -        return &StrTo;
> -      case LibFunc::strspn:
> -        return &StrSpn;
> -      case LibFunc::strcspn:
> -        return &StrCSpn;
> -      case LibFunc::strstr:
> -        return &StrStr;
> -      case LibFunc::memcmp:
> -        return &MemCmp;
> -      case LibFunc::memcpy:
> -        return &MemCpy;
> -      case LibFunc::memmove:
> -        return &MemMove;
> -      case LibFunc::memset:
> -        return &MemSet;
> -      case LibFunc::cosf:
> -      case LibFunc::cos:
> -      case LibFunc::cosl:
> -        return &Cos;
> -      case LibFunc::sinpif:
> -      case LibFunc::sinpi:
> -      case LibFunc::cospif:
> -      case LibFunc::cospi:
> -        return &SinCosPi;
> -      case LibFunc::powf:
> -      case LibFunc::pow:
> -      case LibFunc::powl:
> -        return &Pow;
> -      case LibFunc::exp2l:
> -      case LibFunc::exp2:
> -      case LibFunc::exp2f:
> -        return &Exp2;
> -      case LibFunc::ffs:
> -      case LibFunc::ffsl:
> -      case LibFunc::ffsll:
> -        return &FFS;
> -      case LibFunc::abs:
> -      case LibFunc::labs:
> -      case LibFunc::llabs:
> -        return &Abs;
> -      case LibFunc::isdigit:
> -        return &IsDigit;
> -      case LibFunc::isascii:
> -        return &IsAscii;
> -      case LibFunc::toascii:
> -        return &ToAscii;
> -      case LibFunc::printf:
> -        return &PrintF;
> -      case LibFunc::sprintf:
> -        return &SPrintF;
> -      case LibFunc::fprintf:
> -        return &FPrintF;
> -      case LibFunc::fwrite:
> -        return &FWrite;
> -      case LibFunc::fputs:
> -        return &FPuts;
> -      case LibFunc::puts:
> -        return &Puts;
> -      case LibFunc::perror:
> -        return &ErrorReporting;
> -      case LibFunc::vfprintf:
> -      case LibFunc::fiprintf:
> -        return &ErrorReporting0;
> -      case LibFunc::fputc:
> -        return &ErrorReporting1;
> -      case LibFunc::ceil:
> -      case LibFunc::fabs:
> -      case LibFunc::floor:
> -      case LibFunc::rint:
> -      case LibFunc::round:
> -      case LibFunc::nearbyint:
> -      case LibFunc::trunc:
> -        if (hasFloatVersion(FuncName))
> -          return &UnaryDoubleFP;
> -        return nullptr;
> -      case LibFunc::acos:
> -      case LibFunc::acosh:
> -      case LibFunc::asin:
> -      case LibFunc::asinh:
> -      case LibFunc::atan:
> -      case LibFunc::atanh:
> -      case LibFunc::cbrt:
> -      case LibFunc::cosh:
> -      case LibFunc::exp:
> -      case LibFunc::exp10:
> -      case LibFunc::expm1:
> -      case LibFunc::log:
> -      case LibFunc::log10:
> -      case LibFunc::log1p:
> -      case LibFunc::log2:
> -      case LibFunc::logb:
> -      case LibFunc::sin:
> -      case LibFunc::sinh:
> -      case LibFunc::sqrt:
> -      case LibFunc::tan:
> -      case LibFunc::tanh:
> -        if (UnsafeFPShrink && hasFloatVersion(FuncName))
> -         return &UnsafeUnaryDoubleFP;
> -        return nullptr;
> -      case LibFunc::fmin:
> -      case LibFunc::fmax:
> -        if (hasFloatVersion(FuncName))
> -          return &BinaryDoubleFP;
> -        return nullptr;
> -      case LibFunc::memcpy_chk:
> -        return &MemCpyChk;
> -      default:
> -        return nullptr;
> -      }
> +    case LibFunc::strcat:
> +      return optimizeStrCat(CI, Builder);
> +    case LibFunc::strncat:
> +      return optimizeStrNCat(CI, Builder);
> +    case LibFunc::strchr:
> +      return optimizeStrChr(CI, Builder);
> +    case LibFunc::strrchr:
> +      return optimizeStrRChr(CI, Builder);
> +    case LibFunc::strcmp:
> +      return optimizeStrCmp(CI, Builder);
> +    case LibFunc::strncmp:
> +      return optimizeStrNCmp(CI, Builder);
> +    case LibFunc::strcpy:
> +      return optimizeStrCpy(CI, Builder);
> +    case LibFunc::stpcpy:
> +      return optimizeStpCpy(CI, Builder);
> +    case LibFunc::strncpy:
> +      return optimizeStrNCpy(CI, Builder);
> +    case LibFunc::strlen:
> +      return optimizeStrLen(CI, Builder);
> +    case LibFunc::strpbrk:
> +      return optimizeStrPBrk(CI, Builder);
> +    case LibFunc::strtol:
> +    case LibFunc::strtod:
> +    case LibFunc::strtof:
> +    case LibFunc::strtoul:
> +    case LibFunc::strtoll:
> +    case LibFunc::strtold:
> +    case LibFunc::strtoull:
> +      return optimizeStrTo(CI, Builder);
> +    case LibFunc::strspn:
> +      return optimizeStrSpn(CI, Builder);
> +    case LibFunc::strcspn:
> +      return optimizeStrCSpn(CI, Builder);
> +    case LibFunc::strstr:
> +      return optimizeStrStr(CI, Builder);
> +    case LibFunc::memcmp:
> +      return optimizeMemCmp(CI, Builder);
> +    case LibFunc::memcpy:
> +      return optimizeMemCpy(CI, Builder);
> +    case LibFunc::memmove:
> +      return optimizeMemMove(CI, Builder);
> +    case LibFunc::memset:
> +      return optimizeMemSet(CI, Builder);
> +    case LibFunc::cosf:
> +    case LibFunc::cos:
> +    case LibFunc::cosl:
> +      return optimizeCos(CI, Builder);
> +    case LibFunc::sinpif:
> +    case LibFunc::sinpi:
> +    case LibFunc::cospif:
> +    case LibFunc::cospi:
> +      return optimizeSinCosPi(CI, Builder);
> +    case LibFunc::powf:
> +    case LibFunc::pow:
> +    case LibFunc::powl:
> +      return optimizePow(CI, Builder);
> +    case LibFunc::exp2l:
> +    case LibFunc::exp2:
> +    case LibFunc::exp2f:
> +      return optimizeExp2(CI, Builder);
> +    case LibFunc::ffs:
> +    case LibFunc::ffsl:
> +    case LibFunc::ffsll:
> +      return optimizeFFS(CI, Builder);
> +    case LibFunc::abs:
> +    case LibFunc::labs:
> +    case LibFunc::llabs:
> +      return optimizeAbs(CI, Builder);
> +    case LibFunc::isdigit:
> +      return optimizeIsDigit(CI, Builder);
> +    case LibFunc::isascii:
> +      return optimizeIsAscii(CI, Builder);
> +    case LibFunc::toascii:
> +      return optimizeToAscii(CI, Builder);
> +    case LibFunc::printf:
> +      return optimizePrintF(CI, Builder);
> +    case LibFunc::sprintf:
> +      return optimizeSPrintF(CI, Builder);
> +    case LibFunc::fprintf:
> +      return optimizeFPrintF(CI, Builder);
> +    case LibFunc::fwrite:
> +      return optimizeFWrite(CI, Builder);
> +    case LibFunc::fputs:
> +      return optimizeFPuts(CI, Builder);
> +    case LibFunc::puts:
> +      return optimizePuts(CI, Builder);
> +    case LibFunc::perror:
> +      return optimizeErrorReporting(CI, Builder);
> +    case LibFunc::vfprintf:
> +    case LibFunc::fiprintf:
> +      return optimizeErrorReporting(CI, Builder, 0);
> +    case LibFunc::fputc:
> +      return optimizeErrorReporting(CI, Builder, 1);
> +    case LibFunc::ceil:
> +    case LibFunc::fabs:
> +    case LibFunc::floor:
> +    case LibFunc::rint:
> +    case LibFunc::round:
> +    case LibFunc::nearbyint:
> +    case LibFunc::trunc:
> +      if (hasFloatVersion(FuncName))
> +        return optimizeUnaryDoubleFP(CI, Builder, false);
> +      return nullptr;
> +    case LibFunc::acos:
> +    case LibFunc::acosh:
> +    case LibFunc::asin:
> +    case LibFunc::asinh:
> +    case LibFunc::atan:
> +    case LibFunc::atanh:
> +    case LibFunc::cbrt:
> +    case LibFunc::cosh:
> +    case LibFunc::exp:
> +    case LibFunc::exp10:
> +    case LibFunc::expm1:
> +    case LibFunc::log:
> +    case LibFunc::log10:
> +    case LibFunc::log1p:
> +    case LibFunc::log2:
> +    case LibFunc::logb:
> +    case LibFunc::sin:
> +    case LibFunc::sinh:
> +    case LibFunc::sqrt:
> +    case LibFunc::tan:
> +    case LibFunc::tanh:
> +      if (UnsafeFPShrink && hasFloatVersion(FuncName))
> +        return optimizeUnaryDoubleFP(CI, Builder, true);
> +      return nullptr;
> +    case LibFunc::fmin:
> +    case LibFunc::fmax:
> +      if (hasFloatVersion(FuncName))
> +        return optimizeBinaryDoubleFP(CI, Builder);
> +      return nullptr;
> +    case LibFunc::memcpy_chk:
> +      return optimizeMemCpyChk(CI, Builder);
> +    default:
> +      return nullptr;
> +    }
>    }
> 
> +  if (!isCallingConvC)
> +    return nullptr;
> +
>    // Finally check for fortified library calls.
>    if (FuncName.endswith("_chk")) {
>      if (FuncName == "__memmove_chk")
> -      return &MemMoveChk;
> +      return optimizeMemMoveChk(CI, Builder);
>      else if (FuncName == "__memset_chk")
> -      return &MemSetChk;
> +      return optimizeMemSetChk(CI, Builder);
>      else if (FuncName == "__strcpy_chk")
> -      return &StrCpyChk;
> +      return optimizeStrCpyChk(CI, Builder);
>      else if (FuncName == "__stpcpy_chk")
> -      return &StpCpyChk;
> +      return optimizeStpCpyChk(CI, Builder);
>      else if (FuncName == "__strncpy_chk")
> -      return &StrNCpyChk;
> +      return optimizeStrNCpyChk(CI, Builder);
>      else if (FuncName == "__stpncpy_chk")
> -      return &StrNCpyChk;
> +      return optimizeStrNCpyChk(CI, Builder);
>    }
> 
>    return nullptr;
> -
> -}
> -
> -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
> -  LibCallOptimization *LCO = lookupOptimization(CI);
> -  if (LCO) {
> -    IRBuilder<> Builder(CI);
> -    return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
> -  }
> -  return nullptr;
>  }
> 
>  LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
>                                       const TargetLibraryInfo *TLI,
> -                                     bool UnsafeFPShrink) {
> -  Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
> -}
> -
> -LibCallSimplifier::~LibCallSimplifier() {
> -  delete Impl;
> -}
> -
> -Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
> -  if (CI->isNoBuiltin()) return nullptr;
> -  return Impl->optimizeCall(CI);
> +                                     bool UnsafeFPShrink) :
> +                                     DL(DL),
> +                                     TLI(TLI),
> +                                     UnsafeFPShrink(UnsafeFPShrink) {
>  }
> 
>  void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
> @@ -2312,8 +2079,6 @@ void LibCallSimplifier::replaceAllUsesWi
>    I->eraseFromParent();
>  }
> 
> -}
> -
>  // TODO:
>  //   Additional cases that we need to add to this file:
>  //
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu <mailto:llvm-commits at cs.uiuc.edu>
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits <http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits>
> 

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20140917/ec885c3d/attachment.html>


More information about the llvm-commits mailing list