[llvm] r217982 - Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
David Blaikie
dblaikie at gmail.com
Wed Sep 17 15:25:57 PDT 2014
This introduced a -Wnon-virtual-dtor warning which I've fixed in r217988.
Let me know if that's not the right fix, etc.
- David
On Wed, Sep 17, 2014 at 1:55 PM, Chris Bieneman <beanz at apple.com> wrote:
> Author: cbieneman
> Date: Wed Sep 17 15:55:46 2014
> New Revision: 217982
>
> URL: http://llvm.org/viewvc/llvm-project?rev=217982&view=rev
> Log:
> Refactoring SimplifyLibCalls to remove static initializers and generally
> cleaning up the code.
>
> Summary: This eliminates ~200 lines of code mostly file scoped struct
> definitions that were unnecessary.
>
> Reviewers: chandlerc, resistor
>
> Reviewed By: resistor
>
> Subscribers: morisset, resistor, llvm-commits
>
> Differential Revision: http://reviews.llvm.org/D5364
>
> Modified:
> llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
> llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
> llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
>
> Modified: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h?rev=217982&r1=217981&r2=217982&view=diff
>
> ==============================================================================
> --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h (original)
> +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h Wed Sep 17
> 15:55:46 2014
> @@ -15,40 +15,114 @@
> #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
> #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H
>
> +#include "llvm/ADT/StringRef.h"
> +#include "llvm/IR/IRBuilder.h"
> +
> namespace llvm {
> - class Value;
> - class CallInst;
> - class DataLayout;
> - class Instruction;
> - class TargetLibraryInfo;
> - class LibCallSimplifierImpl;
> -
> - /// LibCallSimplifier - This class implements a collection of
> optimizations
> - /// that replace well formed calls to library functions with a more
> optimal
> - /// form. For example, replacing 'printf("Hello!")' with
> 'puts("Hello!")'.
> - class LibCallSimplifier {
> - /// Impl - A pointer to the actual implementation of the library call
> - /// simplifier.
> - LibCallSimplifierImpl *Impl;
> -
> - public:
> - LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
> - bool UnsafeFPShrink);
> - virtual ~LibCallSimplifier();
> -
> - /// optimizeCall - Take the given call instruction and return a more
> - /// optimal value to replace the instruction with or 0 if a more
> - /// optimal form can't be found. Note that the returned value may
> - /// be equal to the instruction being optimized. In this case all
> - /// other instructions that use the given instruction were modified
> - /// and the given instruction is dead.
> - Value *optimizeCall(CallInst *CI);
> -
> - /// replaceAllUsesWith - This method is used when the library call
> - /// simplifier needs to replace instructions other than the library
> - /// call being modified.
> - virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
> - };
> +class Value;
> +class CallInst;
> +class DataLayout;
> +class Instruction;
> +class TargetLibraryInfo;
> +class BasicBlock;
> +class Function;
> +
> +/// LibCallSimplifier - This class implements a collection of
> optimizations
> +/// that replace well formed calls to library functions with a more
> optimal
> +/// form. For example, replacing 'printf("Hello!")' with
> 'puts("Hello!")'.
> +class LibCallSimplifier {
> +private:
> + const DataLayout *DL;
> + const TargetLibraryInfo *TLI;
> + bool UnsafeFPShrink;
> +
> +public:
> + LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI,
> + bool UnsafeFPShrink);
> +
> + /// optimizeCall - Take the given call instruction and return a more
> + /// optimal value to replace the instruction with or 0 if a more
> + /// optimal form can't be found. Note that the returned value may
> + /// be equal to the instruction being optimized. In this case all
> + /// other instructions that use the given instruction were modified
> + /// and the given instruction is dead.
> + Value *optimizeCall(CallInst *CI);
> +
> + /// replaceAllUsesWith - This method is used when the library call
> + /// simplifier needs to replace instructions other than the library
> + /// call being modified.
> + virtual void replaceAllUsesWith(Instruction *I, Value *With) const;
> +
> +private:
> + // Fortified Library Call Optimizations
> + Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B);
> +
> + // String and Memory Library Call Optimizations
> + Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
> +
> + // Math Library Optimizations
> + Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool
> CheckRetType);
> + Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
> + Value *optimizePow(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
> +
> + // Integer Library Call Optimizations
> + Value *optimizeFFS(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeAbs(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B);
> +
> + // Formatting and IO Library Call Optimizations
> + Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
> + int StreamArg = -1);
> + Value *optimizePrintF(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B);
> + Value *optimizePuts(CallInst *CI, IRBuilder<> &B);
> +
> + // Helper methods
> + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
> IRBuilder<> &B);
> + void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
> + SmallVectorImpl<CallInst *> &SinCalls,
> + SmallVectorImpl<CallInst *> &CosCalls,
> + SmallVectorImpl<CallInst *> &SinCosCalls);
> + void replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, Value *Res);
> + Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B);
> + Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B);
> +
> + /// hasFloatVersion - Checks if there is a float version of the
> specified
> + /// function by checking for an existing function with name FuncName + f
> + bool hasFloatVersion(StringRef FuncName);
> +};
> } // End llvm namespace
>
> #endif
>
> Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=217982&r1=217981&r2=217982&view=diff
>
> ==============================================================================
> --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
> (original)
> +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Wed Sep
> 17 15:55:46 2014
> @@ -70,10 +70,11 @@ STATISTIC(NumExpand, "Number of expan
> STATISTIC(NumFactor , "Number of factorizations");
> STATISTIC(NumReassoc , "Number of reassociations");
>
> -static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink",
> cl::Hidden,
> - cl::init(false),
> - cl::desc("Enable unsafe double to
> float "
> - "shrinking for math lib
> calls"));
> +static cl::opt<bool>
> + EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
> + cl::init(false),
> + cl::desc("Enable unsafe double to float "
> + "shrinking for math lib calls"));
>
> // Initialization Routines
> void llvm::initializeInstCombine(PassRegistry &Registry) {
> @@ -2913,7 +2914,7 @@ public:
> InstCombinerLibCallSimplifier(const DataLayout *DL,
> const TargetLibraryInfo *TLI,
> InstCombiner *IC)
> - : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
> + : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) {
> this->IC = IC;
> }
>
>
> Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=217982&r1=217981&r2=217982&view=diff
>
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
> +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Sep 17
> 15:55:46 2014
> @@ -35,57 +35,26 @@
> using namespace llvm;
>
> static cl::opt<bool>
> -ColdErrorCalls("error-reporting-is-cold", cl::init(true),
> - cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
> -
> -/// This class is the abstract base class for the set of optimizations
> that
> -/// corresponds to one library call.
> -namespace {
> -class LibCallOptimization {
> -protected:
> - Function *Caller;
> - const DataLayout *DL;
> - const TargetLibraryInfo *TLI;
> - const LibCallSimplifier *LCS;
> - LLVMContext* Context;
> -public:
> - LibCallOptimization() { }
> - virtual ~LibCallOptimization() {}
> -
> - /// callOptimizer - This pure virtual method is implemented by base
> classes to
> - /// do various optimizations. If this returns null then no
> transformation was
> - /// performed. If it returns CI, then it transformed the call and CI
> is to be
> - /// deleted. If it returns something else, replace CI with the new
> value and
> - /// delete CI.
> - virtual Value *callOptimizer(Function *Callee, CallInst *CI,
> IRBuilder<> &B)
> - =0;
> -
> - /// ignoreCallingConv - Returns false if this transformation could
> possibly
> - /// change the calling convention.
> - virtual bool ignoreCallingConv() { return false; }
> -
> - Value *optimizeCall(CallInst *CI, const DataLayout *DL,
> - const TargetLibraryInfo *TLI,
> - const LibCallSimplifier *LCS, IRBuilder<> &B) {
> - Caller = CI->getParent()->getParent();
> - this->DL = DL;
> - this->TLI = TLI;
> - this->LCS = LCS;
> - if (CI->getCalledFunction())
> - Context = &CI->getCalledFunction()->getContext();
> -
> - // We never change the calling convention.
> - if (!ignoreCallingConv() && CI->getCallingConv() !=
> llvm::CallingConv::C)
> - return nullptr;
> -
> - return callOptimizer(CI->getCalledFunction(), CI, B);
> - }
> -};
> + ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
> + cl::desc("Treat error-reporting calls as cold"));
>
>
> //===----------------------------------------------------------------------===//
> // Helper Functions
>
> //===----------------------------------------------------------------------===//
>
> +static bool ignoreCallingConv(LibFunc::Func Func) {
> + switch (Func) {
> + case LibFunc::abs:
> + case LibFunc::labs:
> + case LibFunc::llabs:
> + case LibFunc::strlen:
> + return true;
> + default:
> + return false;
> + }
> + llvm_unreachable();
> +}
> +
> /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters
> that the
> /// value is equal or not-equal to zero.
> static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
> @@ -142,967 +111,912 @@ static bool hasUnaryFloatFn(const Target
> // Fortified Library Call Optimizations
>
> //===----------------------------------------------------------------------===//
>
> -struct FortifiedLibCallOptimization : public LibCallOptimization {
> -protected:
> - virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
> - bool isString) const = 0;
> -};
> -
> -struct InstFortifiedLibCallOptimization : public
> FortifiedLibCallOptimization {
> - CallInst *CI;
> -
> - bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
> - bool isString) const override {
> - if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
> +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp,
> unsigned SizeArgOp,
> + bool isString) {
> + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
> + return true;
> + if (ConstantInt *SizeCI =
> + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
> + if (SizeCI->isAllOnesValue())
> return true;
> - if (ConstantInt *SizeCI =
> -
> dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
> - if (SizeCI->isAllOnesValue())
> - return true;
> - if (isString) {
> - uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
> - // If the length is 0 we don't know how long it is and so we can't
> - // remove the check.
> - if (Len == 0) return false;
> - return SizeCI->getZExtValue() >= Len;
> - }
> - if (ConstantInt *Arg = dyn_cast<ConstantInt>(
> -
> CI->getArgOperand(SizeArgOp)))
> - return SizeCI->getZExtValue() >= Arg->getZExtValue();
> + if (isString) {
> + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
> + // If the length is 0 we don't know how long it is and so we can't
> + // remove the check.
> + if (Len == 0)
> + return false;
> + return SizeCI->getZExtValue() >= Len;
> }
> - return false;
> + if (ConstantInt *Arg =
> dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp)))
> + return SizeCI->getZExtValue() >= Arg->getZExtValue();
> }
> -};
> + return false;
> +}
>
> -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - this->CI = CI;
> - FunctionType *FT = Callee->getFunctionType();
> - LLVMContext &Context = CI->getParent()->getContext();
> -
> - // Check if this has the right signature.
> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
> - FT->getParamType(3) != DL->getIntPtrType(Context))
> - return nullptr;
> -
> - if (isFoldable(3, 2, false)) {
> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> - CI->getArgOperand(2), 1);
> - return CI->getArgOperand(0);
> - }
> - return nullptr;
> - }
> -};
> +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B)
> {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + LLVMContext &Context = CI->getContext();
>
> -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - this->CI = CI;
> - FunctionType *FT = Callee->getFunctionType();
> - LLVMContext &Context = CI->getParent()->getContext();
> -
> - // Check if this has the right signature.
> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
> - FT->getParamType(3) != DL->getIntPtrType(Context))
> - return nullptr;
> -
> - if (isFoldable(3, 2, false)) {
> - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> - CI->getArgOperand(2), 1);
> - return CI->getArgOperand(0);
> - }
> + // Check if this has the right signature.
> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
> + FT->getParamType(3) != DL->getIntPtrType(Context))
> return nullptr;
> - }
> -};
>
> -struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - this->CI = CI;
> - FunctionType *FT = Callee->getFunctionType();
> - LLVMContext &Context = CI->getParent()->getContext();
> -
> - // Check if this has the right signature.
> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isIntegerTy() ||
> - FT->getParamType(2) != DL->getIntPtrType(Context) ||
> - FT->getParamType(3) != DL->getIntPtrType(Context))
> - return nullptr;
> -
> - if (isFoldable(3, 2, false)) {
> - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
> - false);
> - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> - return CI->getArgOperand(0);
> - }
> - return nullptr;
> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> + CI->getArgOperand(2), 1);
> + return CI->getArgOperand(0);
> }
> -};
> + return nullptr;
> +}
>
> -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - this->CI = CI;
> - StringRef Name = Callee->getName();
> - FunctionType *FT = Callee->getFunctionType();
> - LLVMContext &Context = CI->getParent()->getContext();
> -
> - // Check if this has the right signature.
> - if (FT->getNumParams() != 3 ||
> - FT->getReturnType() != FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> - FT->getParamType(2) != DL->getIntPtrType(Context))
> - return nullptr;
> -
> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> - if (Dst == Src) // __strcpy_chk(x,x) -> x
> - return Src;
> -
> - // If a) we don't have any length information, or b) we know this will
> - // fit then just lower to a plain strcpy. Otherwise we'll keep our
> - // strcpy_chk call which may fail at runtime if the size is too long.
> - // TODO: It might be nice to get a maximum length out of the possible
> - // string lengths for varying.
> - if (isFoldable(2, 1, true)) {
> - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> - return Ret;
> - } else {
> - // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
> - uint64_t Len = GetStringLength(Src);
> - if (Len == 0) return nullptr;
> -
> - // This optimization require DataLayout.
> - if (!DL) return nullptr;
> -
> - Value *Ret =
> - EmitMemCpyChk(Dst, Src,
> - ConstantInt::get(DL->getIntPtrType(Context), Len),
> - CI->getArgOperand(2), B, DL, TLI);
> - return Ret;
> - }
> +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<>
> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + LLVMContext &Context = CI->getContext();
> +
> + // Check if this has the right signature.
> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
> + FT->getParamType(3) != DL->getIntPtrType(Context))
> return nullptr;
> +
> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> + CI->getArgOperand(2), 1);
> + return CI->getArgOperand(0);
> }
> -};
> + return nullptr;
> +}
>
> -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - this->CI = CI;
> - StringRef Name = Callee->getName();
> - FunctionType *FT = Callee->getFunctionType();
> - LLVMContext &Context = CI->getParent()->getContext();
> -
> - // Check if this has the right signature.
> - if (FT->getNumParams() != 3 ||
> - FT->getReturnType() != FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> - return nullptr;
> -
> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
> - Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> - }
> +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B)
> {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + LLVMContext &Context = CI->getContext();
>
> - // If a) we don't have any length information, or b) we know this will
> - // fit then just lower to a plain stpcpy. Otherwise we'll keep our
> - // stpcpy_chk call which may fail at runtime if the size is too long.
> - // TODO: It might be nice to get a maximum length out of the possible
> - // string lengths for varying.
> - if (isFoldable(2, 1, true)) {
> - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> - return Ret;
> - } else {
> - // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
> - uint64_t Len = GetStringLength(Src);
> - if (Len == 0) return nullptr;
> -
> - // This optimization require DataLayout.
> - if (!DL) return nullptr;
> -
> - Type *PT = FT->getParamType(0);
> - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> - Value *DstEnd = B.CreateGEP(Dst,
> - ConstantInt::get(DL->getIntPtrType(PT),
> - Len - 1));
> - if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL,
> TLI))
> - return nullptr;
> - return DstEnd;
> - }
> + // Check if this has the right signature.
> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isIntegerTy() ||
> + FT->getParamType(2) != DL->getIntPtrType(Context) ||
> + FT->getParamType(3) != DL->getIntPtrType(Context))
> return nullptr;
> - }
> -};
>
> -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - this->CI = CI;
> - StringRef Name = Callee->getName();
> - FunctionType *FT = Callee->getFunctionType();
> - LLVMContext &Context = CI->getParent()->getContext();
> -
> - // Check if this has the right signature.
> - if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> - !FT->getParamType(2)->isIntegerTy() ||
> - FT->getParamType(3) != DL->getIntPtrType(Context))
> - return nullptr;
> -
> - if (isFoldable(3, 2, false)) {
> - Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> - CI->getArgOperand(2), B, DL, TLI,
> - Name.substr(2, 7));
> - return Ret;
> - }
> - return nullptr;
> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
> false);
> + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> + return CI->getArgOperand(0);
> }
> -};
> -
>
> -//===----------------------------------------------------------------------===//
> -// String and Memory Library Call Optimizations
>
> -//===----------------------------------------------------------------------===//
> -
> -struct StrCatOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strcat" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getReturnType() != B.getInt8PtrTy() ||
> - FT->getParamType(0) != FT->getReturnType() ||
> - FT->getParamType(1) != FT->getReturnType())
> - return nullptr;
> -
> - // Extract some information from the instruction
> - Value *Dst = CI->getArgOperand(0);
> - Value *Src = CI->getArgOperand(1);
> + return nullptr;
> +}
>
> - // See if we can get the length of the input string.
> +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B)
> {
> + Function *Callee = CI->getCalledFunction();
> + StringRef Name = Callee->getName();
> + FunctionType *FT = Callee->getFunctionType();
> + LLVMContext &Context = CI->getContext();
> +
> + // Check if this has the right signature.
> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> + FT->getParamType(2) != DL->getIntPtrType(Context))
> + return nullptr;
> +
> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> + if (Dst == Src) // __strcpy_chk(x,x) -> x
> + return Src;
> +
> + // If a) we don't have any length information, or b) we know this will
> + // fit then just lower to a plain strcpy. Otherwise we'll keep our
> + // strcpy_chk call which may fail at runtime if the size is too long.
> + // TODO: It might be nice to get a maximum length out of the possible
> + // string lengths for varying.
> + if (isFortifiedCallFoldable(CI, 2, 1, true)) {
> + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> + return Ret;
> + } else {
> + // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
> uint64_t Len = GetStringLength(Src);
> - if (Len == 0) return nullptr;
> - --Len; // Unbias length.
> -
> - // Handle the simple, do-nothing case: strcat(x, "") -> x
> if (Len == 0)
> - return Dst;
> + return nullptr;
>
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + // This optimization require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - return emitStrLenMemCpy(Src, Dst, Len, B);
> + Value *Ret = EmitMemCpyChk(
> + Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len),
> + CI->getArgOperand(2), B, DL, TLI);
> + return Ret;
> }
> + return nullptr;
> +}
>
> - Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
> - IRBuilder<> &B) {
> - // We need to find the end of the destination string. That's where
> the
> - // memory is to be moved to. We just generate a call to strlen.
> - Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
> - if (!DstLen)
> +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B)
> {
> + Function *Callee = CI->getCalledFunction();
> + StringRef Name = Callee->getName();
> + FunctionType *FT = Callee->getFunctionType();
> + LLVMContext &Context = CI->getContext();
> +
> + // Check if this has the right signature.
> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> + return nullptr;
> +
> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
> + Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> + }
> +
> + // If a) we don't have any length information, or b) we know this will
> + // fit then just lower to a plain stpcpy. Otherwise we'll keep our
> + // stpcpy_chk call which may fail at runtime if the size is too long.
> + // TODO: It might be nice to get a maximum length out of the possible
> + // string lengths for varying.
> + if (isFortifiedCallFoldable(CI, 2, 1, true)) {
> + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
> + return Ret;
> + } else {
> + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
> + uint64_t Len = GetStringLength(Src);
> + if (Len == 0)
> return nullptr;
>
> - // Now that we have the destination's length, we must index into the
> - // destination's pointer to get the actual memcpy destination (end of
> - // the string .. we're concatenating).
> - Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
> + // This optimization require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - // We have enough information to now generate the memcpy call to do
> the
> - // concatenation for us. Make a memcpy to copy the nul byte with
> align = 1.
> - B.CreateMemCpy(CpyDst, Src,
> - ConstantInt::get(DL->getIntPtrType(*Context), Len +
> 1), 1);
> - return Dst;
> + Type *PT = FT->getParamType(0);
> + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> + Value *DstEnd =
> + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len -
> 1));
> + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
> + return nullptr;
> + return DstEnd;
> }
> -};
> + return nullptr;
> +}
>
> -struct StrNCatOpt : public StrCatOpt {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strncat" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 ||
> - FT->getReturnType() != B.getInt8PtrTy() ||
> - FT->getParamType(0) != FT->getReturnType() ||
> - FT->getParamType(1) != FT->getReturnType() ||
> - !FT->getParamType(2)->isIntegerTy())
> - return nullptr;
> -
> - // Extract some information from the instruction
> - Value *Dst = CI->getArgOperand(0);
> - Value *Src = CI->getArgOperand(1);
> - uint64_t Len;
> -
> - // We don't do anything if length is not constant
> - if (ConstantInt *LengthArg =
> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> - Len = LengthArg->getZExtValue();
> - else
> - return nullptr;
> -
> - // See if we can get the length of the input string.
> - uint64_t SrcLen = GetStringLength(Src);
> - if (SrcLen == 0) return nullptr;
> - --SrcLen; // Unbias length.
> -
> - // Handle the simple, do-nothing cases:
> - // strncat(x, "", c) -> x
> - // strncat(x, c, 0) -> x
> - if (SrcLen == 0 || Len == 0) return Dst;
> +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<>
> &B) {
> + Function *Callee = CI->getCalledFunction();
> + StringRef Name = Callee->getName();
> + FunctionType *FT = Callee->getFunctionType();
> + LLVMContext &Context = CI->getContext();
> +
> + // Check if this has the right signature.
> + if (FT->getNumParams() != 4 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
> + !FT->getParamType(2)->isIntegerTy() ||
> + FT->getParamType(3) != DL->getIntPtrType(Context))
> + return nullptr;
> +
> + if (isFortifiedCallFoldable(CI, 3, 2, false)) {
> + Value *Ret =
> + EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> + CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
> + return Ret;
> + }
> + return nullptr;
> +}
>
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
>
> +//===----------------------------------------------------------------------===//
> +// String and Memory Library Call Optimizations
>
> +//===----------------------------------------------------------------------===//
>
> - // We don't optimize this case
> - if (Len < SrcLen) return nullptr;
> +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strcat" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2||
> + FT->getReturnType() != B.getInt8PtrTy() ||
> + FT->getParamType(0) != FT->getReturnType() ||
> + FT->getParamType(1) != FT->getReturnType())
> + return nullptr;
> +
> + // Extract some information from the instruction
> + Value *Dst = CI->getArgOperand(0);
> + Value *Src = CI->getArgOperand(1);
> +
> + // See if we can get the length of the input string.
> + uint64_t Len = GetStringLength(Src);
> + if (Len == 0)
> + return nullptr;
> + --Len; // Unbias length.
>
> - // strncat(x, s, c) -> strcat(x, s)
> - // s is constant so the strcat can be optimized further
> - return emitStrLenMemCpy(Src, Dst, SrcLen, B);
> - }
> -};
> -
> -struct StrChrOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strchr" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getReturnType() != B.getInt8PtrTy() ||
> - FT->getParamType(0) != FT->getReturnType() ||
> - !FT->getParamType(1)->isIntegerTy(32))
> - return nullptr;
> -
> - Value *SrcStr = CI->getArgOperand(0);
> -
> - // If the second operand is non-constant, see if we can compute the
> length
> - // of the input string and turn this into memchr.
> - ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> - if (!CharC) {
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + // Handle the simple, do-nothing case: strcat(x, "") -> x
> + if (Len == 0)
> + return Dst;
>
> - uint64_t Len = GetStringLength(SrcStr);
> - if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr
> needs i32.
> - return nullptr;
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
> - ConstantInt::get(DL->getIntPtrType(*Context),
> Len),
> - B, DL, TLI);
> - }
> + return emitStrLenMemCpy(Src, Dst, Len, B);
> +}
>
> - // Otherwise, the character is a constant, see if the first argument
> is
> - // a string literal. If so, we can constant fold.
> - StringRef Str;
> - if (!getConstantStringInfo(SrcStr, Str)) {
> - if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
> - return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
> "strchr");
> - return nullptr;
> - }
> +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst,
> uint64_t Len,
> + IRBuilder<> &B) {
> + // We need to find the end of the destination string. That's where the
> + // memory is to be moved to. We just generate a call to strlen.
> + Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
> + if (!DstLen)
> + return nullptr;
> +
> + // Now that we have the destination's length, we must index into the
> + // destination's pointer to get the actual memcpy destination (end of
> + // the string .. we're concatenating).
> + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
> +
> + // We have enough information to now generate the memcpy call to do the
> + // concatenation for us. Make a memcpy to copy the nul byte with align
> = 1.
> + B.CreateMemCpy(
> + CpyDst, Src,
> + ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
> + return Dst;
> +}
>
> - // Compute the offset, make sure to handle the case when we're
> searching for
> - // zero (a weird way to spell strlen).
> - size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
> - Str.size() : Str.find(CharC->getSExtValue());
> - if (I == StringRef::npos) // Didn't find the char. strchr returns
> null.
> - return Constant::getNullValue(CI->getType());
> +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strncat" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy()
> ||
> + FT->getParamType(0) != FT->getReturnType() ||
> + FT->getParamType(1) != FT->getReturnType() ||
> + !FT->getParamType(2)->isIntegerTy())
> + return nullptr;
> +
> + // Extract some information from the instruction
> + Value *Dst = CI->getArgOperand(0);
> + Value *Src = CI->getArgOperand(1);
> + uint64_t Len;
> +
> + // We don't do anything if length is not constant
> + if (ConstantInt *LengthArg =
> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> + Len = LengthArg->getZExtValue();
> + else
> + return nullptr;
> +
> + // See if we can get the length of the input string.
> + uint64_t SrcLen = GetStringLength(Src);
> + if (SrcLen == 0)
> + return nullptr;
> + --SrcLen; // Unbias length.
> +
> + // Handle the simple, do-nothing cases:
> + // strncat(x, "", c) -> x
> + // strncat(x, c, 0) -> x
> + if (SrcLen == 0 || Len == 0)
> + return Dst;
>
> - // strchr(s+n,c) -> gep(s+n+i,c)
> - return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
> - }
> -};
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
> +
> + // We don't optimize this case
> + if (Len < SrcLen)
> + return nullptr;
>
> -struct StrRChrOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strrchr" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getReturnType() != B.getInt8PtrTy() ||
> - FT->getParamType(0) != FT->getReturnType() ||
> - !FT->getParamType(1)->isIntegerTy(32))
> - return nullptr;
> -
> - Value *SrcStr = CI->getArgOperand(0);
> - ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> -
> - // Cannot fold anything if we're not looking for a constant.
> - if (!CharC)
> - return nullptr;
> -
> - StringRef Str;
> - if (!getConstantStringInfo(SrcStr, Str)) {
> - // strrchr(s, 0) -> strchr(s, 0)
> - if (DL && CharC->isZero())
> - return EmitStrChr(SrcStr, '\0', B, DL, TLI);
> + // strncat(x, s, c) -> strcat(x, s)
> + // s is constant so the strcat can be optimized further
> + return emitStrLenMemCpy(Src, Dst, SrcLen, B);
> +}
> +
> +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strchr" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy()
> ||
> + FT->getParamType(0) != FT->getReturnType() ||
> + !FT->getParamType(1)->isIntegerTy(32))
> + return nullptr;
> +
> + Value *SrcStr = CI->getArgOperand(0);
> +
> + // If the second operand is non-constant, see if we can compute the
> length
> + // of the input string and turn this into memchr.
> + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> + if (!CharC) {
> + // These optimizations require DataLayout.
> + if (!DL)
> return nullptr;
> - }
>
> - // Compute the offset.
> - size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
> - Str.size() : Str.rfind(CharC->getSExtValue());
> - if (I == StringRef::npos) // Didn't find the char. Return null.
> - return Constant::getNullValue(CI->getType());
> + uint64_t Len = GetStringLength(SrcStr);
> + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr
> needs i32.
> + return nullptr;
>
> - // strrchr(s+n,c) -> gep(s+n+i,c)
> - return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
> + return EmitMemChr(
> + SrcStr, CI->getArgOperand(1), // include nul.
> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B,
> DL, TLI);
> }
> -};
> -
> -struct StrCmpOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strcmp" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - !FT->getReturnType()->isIntegerTy(32) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != B.getInt8PtrTy())
> - return nullptr;
> -
> - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> - if (Str1P == Str2P) // strcmp(x,x) -> 0
> - return ConstantInt::get(CI->getType(), 0);
> -
> - StringRef Str1, Str2;
> - bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> - bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> -
> - // strcmp(x, y) -> cnst (if both x and y are constant strings)
> - if (HasStr1 && HasStr2)
> - return ConstantInt::get(CI->getType(), Str1.compare(Str2));
> -
> - if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
> - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
> - CI->getType()));
> -
> - if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
> - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
> CI->getType());
> -
> - // strcmp(P, "x") -> memcmp(P, "x", 2)
> - uint64_t Len1 = GetStringLength(Str1P);
> - uint64_t Len2 = GetStringLength(Str2P);
> - if (Len1 && Len2) {
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> -
> - return EmitMemCmp(Str1P, Str2P,
> - ConstantInt::get(DL->getIntPtrType(*Context),
> - std::min(Len1, Len2)), B, DL, TLI);
> - }
>
> + // Otherwise, the character is a constant, see if the first argument is
> + // a string literal. If so, we can constant fold.
> + StringRef Str;
> + if (!getConstantStringInfo(SrcStr, Str)) {
> + if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
> + return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
> "strchr");
> return nullptr;
> }
> -};
>
> -struct StrNCmpOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strncmp" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 ||
> - !FT->getReturnType()->isIntegerTy(32) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != B.getInt8PtrTy() ||
> - !FT->getParamType(2)->isIntegerTy())
> - return nullptr;
> -
> - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> - if (Str1P == Str2P) // strncmp(x,x,n) -> 0
> - return ConstantInt::get(CI->getType(), 0);
> -
> - // Get the length argument if it is constant.
> - uint64_t Length;
> - if (ConstantInt *LengthArg =
> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> - Length = LengthArg->getZExtValue();
> - else
> - return nullptr;
> -
> - if (Length == 0) // strncmp(x,y,0) -> 0
> - return ConstantInt::get(CI->getType(), 0);
> -
> - if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
> - return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
> -
> - StringRef Str1, Str2;
> - bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> - bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> -
> - // strncmp(x, y) -> cnst (if both x and y are constant strings)
> - if (HasStr1 && HasStr2) {
> - StringRef SubStr1 = Str1.substr(0, Length);
> - StringRef SubStr2 = Str2.substr(0, Length);
> - return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
> - }
> + // Compute the offset, make sure to handle the case when we're
> searching for
> + // zero (a weird way to spell strlen).
> + size_t I = (0xFF & CharC->getSExtValue()) == 0
> + ? Str.size()
> + : Str.find(CharC->getSExtValue());
> + if (I == StringRef::npos) // Didn't find the char. strchr returns null.
> + return Constant::getNullValue(CI->getType());
>
> - if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
> - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
> - CI->getType()));
> + // strchr(s+n,c) -> gep(s+n+i,c)
> + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
> +}
>
> - if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
> - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"),
> CI->getType());
> +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strrchr" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy()
> ||
> + FT->getParamType(0) != FT->getReturnType() ||
> + !FT->getParamType(1)->isIntegerTy(32))
> + return nullptr;
> +
> + Value *SrcStr = CI->getArgOperand(0);
> + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> +
> + // Cannot fold anything if we're not looking for a constant.
> + if (!CharC)
> + return nullptr;
>
> + StringRef Str;
> + if (!getConstantStringInfo(SrcStr, Str)) {
> + // strrchr(s, 0) -> strchr(s, 0)
> + if (DL && CharC->isZero())
> + return EmitStrChr(SrcStr, '\0', B, DL, TLI);
> return nullptr;
> }
> -};
>
> -struct StrCpyOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "strcpy" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getReturnType() != FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != B.getInt8PtrTy())
> - return nullptr;
> + // Compute the offset.
> + size_t I = (0xFF & CharC->getSExtValue()) == 0
> + ? Str.size()
> + : Str.rfind(CharC->getSExtValue());
> + if (I == StringRef::npos) // Didn't find the char. Return null.
> + return Constant::getNullValue(CI->getType());
>
> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> - if (Dst == Src) // strcpy(x,x) -> x
> - return Src;
> + // strrchr(s+n,c) -> gep(s+n+i,c)
> + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
> +}
>
> +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strcmp" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != B.getInt8PtrTy())
> + return nullptr;
> +
> + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> + if (Str1P == Str2P) // strcmp(x,x) -> 0
> + return ConstantInt::get(CI->getType(), 0);
> +
> + StringRef Str1, Str2;
> + bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> + bool HasStr2 = getConstantStringInfo(Str2P, Str2);
> +
> + // strcmp(x, y) -> cnst (if both x and y are constant strings)
> + if (HasStr1 && HasStr2)
> + return ConstantInt::get(CI->getType(), Str1.compare(Str2));
> +
> + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
> + return B.CreateNeg(
> + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
> +
> + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
> + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
> +
> + // strcmp(P, "x") -> memcmp(P, "x", 2)
> + uint64_t Len1 = GetStringLength(Str1P);
> + uint64_t Len2 = GetStringLength(Str2P);
> + if (Len1 && Len2) {
> // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> -
> - // See if we can get the length of the input string.
> - uint64_t Len = GetStringLength(Src);
> - if (Len == 0) return nullptr;
> + if (!DL)
> + return nullptr;
>
> - // We have enough information to now generate the memcpy call to do
> the
> - // copy for us. Make a memcpy to copy the nul byte with align = 1.
> - B.CreateMemCpy(Dst, Src,
> - ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
> - return Dst;
> + return EmitMemCmp(Str1P, Str2P,
> +
> ConstantInt::get(DL->getIntPtrType(CI->getContext()),
> + std::min(Len1, Len2)),
> + B, DL, TLI);
> }
> -};
>
> -struct StpCpyOpt: public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Verify the "stpcpy" function prototype.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getReturnType() != FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != B.getInt8PtrTy())
> - return nullptr;
> + return nullptr;
> +}
>
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strncmp" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != B.getInt8PtrTy() ||
> + !FT->getParamType(2)->isIntegerTy())
> + return nullptr;
>
> - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
> - Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> - }
> + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
> + if (Str1P == Str2P) // strncmp(x,x,n) -> 0
> + return ConstantInt::get(CI->getType(), 0);
>
> - // See if we can get the length of the input string.
> - uint64_t Len = GetStringLength(Src);
> - if (Len == 0) return nullptr;
> + // Get the length argument if it is constant.
> + uint64_t Length;
> + if (ConstantInt *LengthArg =
> dyn_cast<ConstantInt>(CI->getArgOperand(2)))
> + Length = LengthArg->getZExtValue();
> + else
> + return nullptr;
>
> - Type *PT = FT->getParamType(0);
> - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> - Value *DstEnd = B.CreateGEP(Dst,
> - ConstantInt::get(DL->getIntPtrType(PT),
> - Len - 1));
> -
> - // We have enough information to now generate the memcpy call to do
> the
> - // copy for us. Make a memcpy to copy the nul byte with align = 1.
> - B.CreateMemCpy(Dst, Src, LenV, 1);
> - return DstEnd;
> - }
> -};
> + if (Length == 0) // strncmp(x,y,0) -> 0
> + return ConstantInt::get(CI->getType(), 0);
>
> -struct StrNCpyOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - FT->getParamType(0) != B.getInt8PtrTy() ||
> - !FT->getParamType(2)->isIntegerTy())
> - return nullptr;
> -
> - Value *Dst = CI->getArgOperand(0);
> - Value *Src = CI->getArgOperand(1);
> - Value *LenOp = CI->getArgOperand(2);
> -
> - // See if we can get the length of the input string.
> - uint64_t SrcLen = GetStringLength(Src);
> - if (SrcLen == 0) return nullptr;
> - --SrcLen;
> -
> - if (SrcLen == 0) {
> - // strncpy(x, "", y) -> memset(x, '\0', y, 1)
> - B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
> - return Dst;
> - }
> + if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
> + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
>
> - uint64_t Len;
> - if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
> - Len = LengthArg->getZExtValue();
> - else
> - return nullptr;
> + StringRef Str1, Str2;
> + bool HasStr1 = getConstantStringInfo(Str1P, Str1);
> + bool HasStr2 = getConstantStringInfo(Str2P, Str2);
>
> - if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
> + // strncmp(x, y) -> cnst (if both x and y are constant strings)
> + if (HasStr1 && HasStr2) {
> + StringRef SubStr1 = Str1.substr(0, Length);
> + StringRef SubStr2 = Str2.substr(0, Length);
> + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
> + }
>
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
> + return B.CreateNeg(
> + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
>
> - // Let strncpy handle the zero padding
> - if (Len > SrcLen+1) return nullptr;
> + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
> + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
>
> - Type *PT = FT->getParamType(0);
> - // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
> - B.CreateMemCpy(Dst, Src,
> - ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
> + return nullptr;
> +}
>
> - return Dst;
> - }
> -};
> +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "strcpy" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != B.getInt8PtrTy())
> + return nullptr;
>
> -struct StrLenOpt : public LibCallOptimization {
> - bool ignoreCallingConv() override { return true; }
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 1 ||
> - FT->getParamType(0) != B.getInt8PtrTy() ||
> - !FT->getReturnType()->isIntegerTy())
> - return nullptr;
> -
> - Value *Src = CI->getArgOperand(0);
> -
> - // Constant folding: strlen("xyz") -> 3
> - if (uint64_t Len = GetStringLength(Src))
> - return ConstantInt::get(CI->getType(), Len-1);
> -
> - // strlen(x?"foo":"bars") --> x ? 3 : 4
> - if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
> - uint64_t LenTrue = GetStringLength(SI->getTrueValue());
> - uint64_t LenFalse = GetStringLength(SI->getFalseValue());
> - if (LenTrue && LenFalse) {
> - emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
> - SI->getDebugLoc(),
> - "folded strlen(select) to select of
> constants");
> - return B.CreateSelect(SI->getCondition(),
> - ConstantInt::get(CI->getType(), LenTrue-1),
> - ConstantInt::get(CI->getType(),
> LenFalse-1));
> - }
> - }
> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> + if (Dst == Src) // strcpy(x,x) -> x
> + return Src;
>
> - // strlen(x) != 0 --> *x != 0
> - // strlen(x) == 0 --> *x == 0
> - if (isOnlyUsedInZeroEqualityComparison(CI))
> - return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"),
> CI->getType());
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> + // See if we can get the length of the input string.
> + uint64_t Len = GetStringLength(Src);
> + if (Len == 0)
> return nullptr;
> - }
> -};
>
> -struct StrPBrkOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getParamType(0) != B.getInt8PtrTy() ||
> - FT->getParamType(1) != FT->getParamType(0) ||
> - FT->getReturnType() != FT->getParamType(0))
> - return nullptr;
> + // We have enough information to now generate the memcpy call to do the
> + // copy for us. Make a memcpy to copy the nul byte with align = 1.
> + B.CreateMemCpy(Dst, Src,
> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
> Len), 1);
> + return Dst;
> +}
>
> - StringRef S1, S2;
> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Verify the "stpcpy" function prototype.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != B.getInt8PtrTy())
> + return nullptr;
>
> - // strpbrk(s, "") -> NULL
> - // strpbrk("", s) -> NULL
> - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> - return Constant::getNullValue(CI->getType());
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - // Constant folding.
> - if (HasS1 && HasS2) {
> - size_t I = S1.find_first_of(S2);
> - if (I == StringRef::npos) // No match.
> - return Constant::getNullValue(CI->getType());
> + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
> + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
> + Value *StrLen = EmitStrLen(Src, B, DL, TLI);
> + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
> + }
>
> - return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
> - }
> + // See if we can get the length of the input string.
> + uint64_t Len = GetStringLength(Src);
> + if (Len == 0)
> + return nullptr;
>
> - // strpbrk(s, "a") -> strchr(s, 'a')
> - if (DL && HasS2 && S2.size() == 1)
> - return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
> + Type *PT = FT->getParamType(0);
> + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
> + Value *DstEnd =
> + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
>
> - return nullptr;
> + // We have enough information to now generate the memcpy call to do the
> + // copy for us. Make a memcpy to copy the nul byte with align = 1.
> + B.CreateMemCpy(Dst, Src, LenV, 1);
> + return DstEnd;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + FT->getParamType(0) != B.getInt8PtrTy() ||
> + !FT->getParamType(2)->isIntegerTy())
> + return nullptr;
> +
> + Value *Dst = CI->getArgOperand(0);
> + Value *Src = CI->getArgOperand(1);
> + Value *LenOp = CI->getArgOperand(2);
> +
> + // See if we can get the length of the input string.
> + uint64_t SrcLen = GetStringLength(Src);
> + if (SrcLen == 0)
> + return nullptr;
> + --SrcLen;
> +
> + if (SrcLen == 0) {
> + // strncpy(x, "", y) -> memset(x, '\0', y, 1)
> + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
> + return Dst;
> }
> -};
>
> -struct StrToOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy())
> - return nullptr;
> + uint64_t Len;
> + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
> + Len = LengthArg->getZExtValue();
> + else
> + return nullptr;
>
> - Value *EndPtr = CI->getArgOperand(1);
> - if (isa<ConstantPointerNull>(EndPtr)) {
> - // With a null EndPtr, this function won't capture the main
> argument.
> - // It would be readonly too, except that it still may write to
> errno.
> - CI->addAttribute(1, Attribute::NoCapture);
> - }
> + if (Len == 0)
> + return Dst; // strncpy(x, y, 0) -> x
>
> + // These optimizations require DataLayout.
> + if (!DL)
> return nullptr;
> - }
> -};
>
> -struct StrSpnOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getParamType(0) != B.getInt8PtrTy() ||
> - FT->getParamType(1) != FT->getParamType(0) ||
> - !FT->getReturnType()->isIntegerTy())
> - return nullptr;
> -
> - StringRef S1, S2;
> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> -
> - // strspn(s, "") -> 0
> - // strspn("", s) -> 0
> - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> - return Constant::getNullValue(CI->getType());
> + // Let strncpy handle the zero padding
> + if (Len > SrcLen + 1)
> + return nullptr;
>
> - // Constant folding.
> - if (HasS1 && HasS2) {
> - size_t Pos = S1.find_first_not_of(S2);
> - if (Pos == StringRef::npos) Pos = S1.size();
> - return ConstantInt::get(CI->getType(), Pos);
> - }
> + Type *PT = FT->getParamType(0);
> + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
> + B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len),
> 1);
>
> - return nullptr;
> + return Dst;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy()
> ||
> + !FT->getReturnType()->isIntegerTy())
> + return nullptr;
> +
> + Value *Src = CI->getArgOperand(0);
> +
> + // Constant folding: strlen("xyz") -> 3
> + if (uint64_t Len = GetStringLength(Src))
> + return ConstantInt::get(CI->getType(), Len - 1);
> +
> + // strlen(x?"foo":"bars") --> x ? 3 : 4
> + if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
> + uint64_t LenTrue = GetStringLength(SI->getTrueValue());
> + uint64_t LenFalse = GetStringLength(SI->getFalseValue());
> + if (LenTrue && LenFalse) {
> + Function *Caller = CI->getParent()->getParent();
> + emitOptimizationRemark(CI->getContext(), "simplify-libcalls",
> *Caller,
> + SI->getDebugLoc(),
> + "folded strlen(select) to select of
> constants");
> + return B.CreateSelect(SI->getCondition(),
> + ConstantInt::get(CI->getType(), LenTrue - 1),
> + ConstantInt::get(CI->getType(), LenFalse -
> 1));
> + }
> }
> -};
>
> -struct StrCSpnOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - FT->getParamType(0) != B.getInt8PtrTy() ||
> - FT->getParamType(1) != FT->getParamType(0) ||
> - !FT->getReturnType()->isIntegerTy())
> - return nullptr;
> -
> - StringRef S1, S2;
> - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> + // strlen(x) != 0 --> *x != 0
> + // strlen(x) == 0 --> *x == 0
> + if (isOnlyUsedInZeroEqualityComparison(CI))
> + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
> +
> + return nullptr;
> +}
>
> - // strcspn("", s) -> 0
> - if (HasS1 && S1.empty())
> +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy()
> ||
> + FT->getParamType(1) != FT->getParamType(0) ||
> + FT->getReturnType() != FT->getParamType(0))
> + return nullptr;
> +
> + StringRef S1, S2;
> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +
> + // strpbrk(s, "") -> NULL
> + // strpbrk("", s) -> NULL
> + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> + return Constant::getNullValue(CI->getType());
> +
> + // Constant folding.
> + if (HasS1 && HasS2) {
> + size_t I = S1.find_first_of(S2);
> + if (I == StringRef::npos) // No match.
> return Constant::getNullValue(CI->getType());
>
> - // Constant folding.
> - if (HasS1 && HasS2) {
> - size_t Pos = S1.find_first_of(S2);
> - if (Pos == StringRef::npos) Pos = S1.size();
> - return ConstantInt::get(CI->getType(), Pos);
> - }
> + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
> + }
>
> - // strcspn(s, "") -> strlen(s)
> - if (DL && HasS2 && S2.empty())
> - return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
> + // strpbrk(s, "a") -> strchr(s, 'a')
> + if (DL && HasS2 && S2.size() == 1)
> + return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
>
> + return nullptr;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy())
> return nullptr;
> +
> + Value *EndPtr = CI->getArgOperand(1);
> + if (isa<ConstantPointerNull>(EndPtr)) {
> + // With a null EndPtr, this function won't capture the main argument.
> + // It would be readonly too, except that it still may write to errno.
> + CI->addAttribute(1, Attribute::NoCapture);
> }
> -};
>
> -struct StrStrOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - !FT->getReturnType()->isPointerTy())
> - return nullptr;
> + return nullptr;
> +}
>
> - // fold strstr(x, x) -> x.
> - if (CI->getArgOperand(0) == CI->getArgOperand(1))
> - return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy()
> ||
> + FT->getParamType(1) != FT->getParamType(0) ||
> + !FT->getReturnType()->isIntegerTy())
> + return nullptr;
> +
> + StringRef S1, S2;
> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +
> + // strspn(s, "") -> 0
> + // strspn("", s) -> 0
> + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
> + return Constant::getNullValue(CI->getType());
> +
> + // Constant folding.
> + if (HasS1 && HasS2) {
> + size_t Pos = S1.find_first_not_of(S2);
> + if (Pos == StringRef::npos)
> + Pos = S1.size();
> + return ConstantInt::get(CI->getType(), Pos);
> + }
>
> - // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
> - if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
> - Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
> - if (!StrLen)
> - return nullptr;
> - Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0),
> CI->getArgOperand(1),
> - StrLen, B, DL, TLI);
> - if (!StrNCmp)
> - return nullptr;
> - for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
> - ICmpInst *Old = cast<ICmpInst>(*UI++);
> - Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
> -
> ConstantInt::getNullValue(StrNCmp->getType()),
> - "cmp");
> - LCS->replaceAllUsesWith(Old, Cmp);
> - }
> - return CI;
> - }
> + return nullptr;
> +}
>
> - // See if either input string is a constant string.
> - StringRef SearchStr, ToFindStr;
> - bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
> - bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
> -
> - // fold strstr(x, "") -> x.
> - if (HasStr2 && ToFindStr.empty())
> - return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> -
> - // If both strings are known, constant fold it.
> - if (HasStr1 && HasStr2) {
> - size_t Offset = SearchStr.find(ToFindStr);
> -
> - if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
> - return Constant::getNullValue(CI->getType());
> -
> - // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
> - Value *Result = CastToCStr(CI->getArgOperand(0), B);
> - Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
> - return B.CreateBitCast(Result, CI->getType());
> - }
> +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy()
> ||
> + FT->getParamType(1) != FT->getParamType(0) ||
> + !FT->getReturnType()->isIntegerTy())
> + return nullptr;
> +
> + StringRef S1, S2;
> + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
> + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
> +
> + // strcspn("", s) -> 0
> + if (HasS1 && S1.empty())
> + return Constant::getNullValue(CI->getType());
> +
> + // Constant folding.
> + if (HasS1 && HasS2) {
> + size_t Pos = S1.find_first_of(S2);
> + if (Pos == StringRef::npos)
> + Pos = S1.size();
> + return ConstantInt::get(CI->getType(), Pos);
> + }
> +
> + // strcspn(s, "") -> strlen(s)
> + if (DL && HasS2 && S2.empty())
> + return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
>
> - // fold strstr(x, "y") -> strchr(x, 'y').
> - if (HasStr2 && ToFindStr.size() == 1) {
> - Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B,
> DL, TLI);
> - return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
> - }
> + return nullptr;
> +}
> +
> +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + !FT->getReturnType()->isPointerTy())
> return nullptr;
> - }
> -};
>
> -struct MemCmpOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - !FT->getReturnType()->isIntegerTy(32))
> + // fold strstr(x, x) -> x.
> + if (CI->getArgOperand(0) == CI->getArgOperand(1))
> + return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
> +
> + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
> + if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
> + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
> + if (!StrLen)
> return nullptr;
> + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0),
> CI->getArgOperand(1),
> + StrLen, B, DL, TLI);
> + if (!StrNCmp)
> + return nullptr;
> + for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
> + ICmpInst *Old = cast<ICmpInst>(*UI++);
> + Value *Cmp =
> + B.CreateICmp(Old->getPredicate(), StrNCmp,
> + ConstantInt::getNullValue(StrNCmp->getType()),
> "cmp");
> + replaceAllUsesWith(Old, Cmp);
> + }
> + return CI;
> + }
>
> - Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
> + // See if either input string is a constant string.
> + StringRef SearchStr, ToFindStr;
> + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
> + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
>
> - if (LHS == RHS) // memcmp(s,s,x) -> 0
> - return Constant::getNullValue(CI->getType());
> + // fold strstr(x, "") -> x.
> + if (HasStr2 && ToFindStr.empty())
> + return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
>
> - // Make sure we have a constant length.
> - ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> - if (!LenC) return nullptr;
> - uint64_t Len = LenC->getZExtValue();
> + // If both strings are known, constant fold it.
> + if (HasStr1 && HasStr2) {
> + size_t Offset = SearchStr.find(ToFindStr);
>
> - if (Len == 0) // memcmp(s1,s2,0) -> 0
> + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
> return Constant::getNullValue(CI->getType());
>
> - // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
> - if (Len == 1) {
> - Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
> - CI->getType(), "lhsv");
> - Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
> - CI->getType(), "rhsv");
> - return B.CreateSub(LHSV, RHSV, "chardiff");
> - }
> + // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
> + Value *Result = CastToCStr(CI->getArgOperand(0), B);
> + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
> + return B.CreateBitCast(Result, CI->getType());
> + }
>
> - // Constant folding: memcmp(x, y, l) -> cnst (all arguments are
> constant)
> - StringRef LHSStr, RHSStr;
> - if (getConstantStringInfo(LHS, LHSStr) &&
> - getConstantStringInfo(RHS, RHSStr)) {
> - // Make sure we're not reading out-of-bounds memory.
> - if (Len > LHSStr.size() || Len > RHSStr.size())
> - return nullptr;
> - // Fold the memcmp and normalize the result. This way we get
> consistent
> - // results across multiple platforms.
> - uint64_t Ret = 0;
> - int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
> - if (Cmp < 0)
> - Ret = -1;
> - else if (Cmp > 0)
> - Ret = 1;
> - return ConstantInt::get(CI->getType(), Ret);
> - }
> + // fold strstr(x, "y") -> strchr(x, 'y').
> + if (HasStr2 && ToFindStr.size() == 1) {
> + Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL,
> TLI);
> + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
> + }
> + return nullptr;
> +}
>
> - return nullptr;
> +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + !FT->getReturnType()->isIntegerTy(32))
> + return nullptr;
> +
> + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
> +
> + if (LHS == RHS) // memcmp(s,s,x) -> 0
> + return Constant::getNullValue(CI->getType());
> +
> + // Make sure we have a constant length.
> + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> + if (!LenC)
> + return nullptr;
> + uint64_t Len = LenC->getZExtValue();
> +
> + if (Len == 0) // memcmp(s1,s2,0) -> 0
> + return Constant::getNullValue(CI->getType());
> +
> + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
> + if (Len == 1) {
> + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
> + CI->getType(), "lhsv");
> + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
> + CI->getType(), "rhsv");
> + return B.CreateSub(LHSV, RHSV, "chardiff");
> + }
> +
> + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are
> constant)
> + StringRef LHSStr, RHSStr;
> + if (getConstantStringInfo(LHS, LHSStr) &&
> + getConstantStringInfo(RHS, RHSStr)) {
> + // Make sure we're not reading out-of-bounds memory.
> + if (Len > LHSStr.size() || Len > RHSStr.size())
> + return nullptr;
> + // Fold the memcmp and normalize the result. This way we get
> consistent
> + // results across multiple platforms.
> + uint64_t Ret = 0;
> + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
> + if (Cmp < 0)
> + Ret = -1;
> + else if (Cmp > 0)
> + Ret = 1;
> + return ConstantInt::get(CI->getType(), Ret);
> }
> -};
>
> -struct MemCpyOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + return nullptr;
> +}
>
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - FT->getParamType(2) != DL->getIntPtrType(*Context))
> - return nullptr;
> +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> - CI->getArgOperand(2), 1);
> - return CI->getArgOperand(0);
> - }
> -};
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
> + return nullptr;
>
> -struct MemMoveOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> + CI->getArgOperand(2), 1);
> + return CI->getArgOperand(0);
> +}
>
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - FT->getParamType(2) != DL->getIntPtrType(*Context))
> - return nullptr;
> +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
> - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> - CI->getArgOperand(2), 1);
> - return CI->getArgOperand(0);
> - }
> -};
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + FT->getParamType(2) != DL->getIntPtrType(CI->getContext()))
> + return nullptr;
>
> -struct MemSetOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
> + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
> + CI->getArgOperand(2), 1);
> + return CI->getArgOperand(0);
> +}
>
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isIntegerTy() ||
> - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> - return nullptr;
> +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - // memset(p, v, n) -> llvm.memset(p, v, n, 1)
> - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
> false);
> - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> - return CI->getArgOperand(0);
> - }
> -};
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 3 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isIntegerTy() ||
> + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
> + return nullptr;
> +
> + // memset(p, v, n) -> llvm.memset(p, v, n, 1)
> + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
> false);
> + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
> + return CI->getArgOperand(0);
> +}
>
>
> //===----------------------------------------------------------------------===//
> // Math Library Optimizations
> @@ -1111,935 +1025,847 @@ struct MemSetOpt : public LibCallOptimiz
>
> //===----------------------------------------------------------------------===//
> // Double -> Float Shrinking Optimizations for Unary Functions like
> 'floor'
>
> -struct UnaryDoubleFPOpt : public LibCallOptimization {
> - bool CheckRetType;
> - UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
> - !FT->getParamType(0)->isDoubleTy())
> - return nullptr;
> -
> - if (CheckRetType) {
> - // Check if all the uses for function like 'sin' are converted to
> float.
> - for (User *U : CI->users()) {
> - FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
> - if (!Cast || !Cast->getType()->isFloatTy())
> - return nullptr;
> - }
> +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<>
> &B,
> + bool CheckRetType) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
> + !FT->getParamType(0)->isDoubleTy())
> + return nullptr;
> +
> + if (CheckRetType) {
> + // Check if all the uses for function like 'sin' are converted to
> float.
> + for (User *U : CI->users()) {
> + FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
> + if (!Cast || !Cast->getType()->isFloatTy())
> + return nullptr;
> }
> + }
>
> - // If this is something like 'floor((double)floatval)', convert to
> floorf.
> - FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> - if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
> - return nullptr;
> + // If this is something like 'floor((double)floatval)', convert to
> floorf.
> + FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> + if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
> + return nullptr;
>
> - // floor((double)floatval) -> (double)floorf(floatval)
> - Value *V = Cast->getOperand(0);
> - V = EmitUnaryFloatFnCall(V, Callee->getName(), B,
> Callee->getAttributes());
> - return B.CreateFPExt(V, B.getDoubleTy());
> - }
> -};
> + // floor((double)floatval) -> (double)floorf(floatval)
> + Value *V = Cast->getOperand(0);
> + V = EmitUnaryFloatFnCall(V, Callee->getName(), B,
> Callee->getAttributes());
> + return B.CreateFPExt(V, B.getDoubleTy());
> +}
>
> // Double -> Float Shrinking Optimizations for Binary Functions like
> 'fmin/fmax'
> -struct BinaryDoubleFPOpt : public LibCallOptimization {
> - bool CheckRetType;
> - BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType)
> {}
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - // Just make sure this has 2 arguments of the same FP type, which
> match the
> - // result type.
> - if (FT->getNumParams() != 2 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - !FT->getParamType(0)->isFloatingPointTy())
> - return nullptr;
> -
> - if (CheckRetType) {
> - // Check if all the uses for function like 'fmin/fmax' are
> converted to
> - // float.
> - for (User *U : CI->users()) {
> - FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
> - if (!Cast || !Cast->getType()->isFloatTy())
> - return nullptr;
> - }
> - }
> +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI,
> IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + // Just make sure this has 2 arguments of the same FP type, which match
> the
> + // result type.
> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + !FT->getParamType(0)->isFloatingPointTy())
> + return nullptr;
> +
> + // If this is something like 'fmin((double)floatval1,
> (double)floatval2)',
> + // we convert it to fminf.
> + FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> + FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
> + if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 ||
> + !Cast2->getOperand(0)->getType()->isFloatTy())
> + return nullptr;
> +
> + // fmin((double)floatval1, (double)floatval2)
> + // -> (double)fmin(floatval1, floatval2)
> + Value *V = nullptr;
> + Value *V1 = Cast1->getOperand(0);
> + Value *V2 = Cast2->getOperand(0);
> + V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
> + Callee->getAttributes());
> + return B.CreateFPExt(V, B.getDoubleTy());
> +}
>
> - // If this is something like 'fmin((double)floatval1,
> (double)floatval2)',
> - // we convert it to fminf.
> - FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
> - FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
> - if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
> - !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
> - return nullptr;
> -
> - // fmin((double)floatval1, (double)floatval2)
> - // -> (double)fmin(floatval1, floatval2)
> - Value *V = nullptr;
> - Value *V1 = Cast1->getOperand(0);
> - Value *V2 = Cast2->getOperand(0);
> - V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
> - Callee->getAttributes());
> - return B.CreateFPExt(V, B.getDoubleTy());
> - }
> -};
> -
> -struct UnsafeFPLibCallOptimization : public LibCallOptimization {
> - bool UnsafeFPShrink;
> - UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
> - this->UnsafeFPShrink = UnsafeFPShrink;
> - }
> -};
> -
> -struct CosOpt : public UnsafeFPLibCallOptimization {
> - CosOpt(bool UnsafeFPShrink) :
> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - Value *Ret = nullptr;
> - if (UnsafeFPShrink && Callee->getName() == "cos" &&
> - TLI->has(LibFunc::cosf)) {
> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
> - }
> +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + Value *Ret = nullptr;
> + if (UnsafeFPShrink && Callee->getName() == "cos" &&
> TLI->has(LibFunc::cosf)) {
> + Ret = optimizeUnaryDoubleFP(CI, B, true);
> + }
>
> - FunctionType *FT = Callee->getFunctionType();
> - // Just make sure this has 1 argument of FP type, which matches the
> - // result type.
> - if (FT->getNumParams() != 1 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isFloatingPointTy())
> - return Ret;
> -
> - // cos(-x) -> cos(x)
> - Value *Op1 = CI->getArgOperand(0);
> - if (BinaryOperator::isFNeg(Op1)) {
> - BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
> - return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
> - }
> + FunctionType *FT = Callee->getFunctionType();
> + // Just make sure this has 1 argument of FP type, which matches the
> + // result type.
> + if (FT->getNumParams() != 1 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isFloatingPointTy())
> return Ret;
> +
> + // cos(-x) -> cos(x)
> + Value *Op1 = CI->getArgOperand(0);
> + if (BinaryOperator::isFNeg(Op1)) {
> + BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
> + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
> }
> -};
> + return Ret;
> +}
>
> -struct PowOpt : public UnsafeFPLibCallOptimization {
> - PowOpt(bool UnsafeFPShrink) :
> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - Value *Ret = nullptr;
> - if (UnsafeFPShrink && Callee->getName() == "pow" &&
> - TLI->has(LibFunc::powf)) {
> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
> - }
> +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
>
> - FunctionType *FT = Callee->getFunctionType();
> - // Just make sure this has 2 arguments of the same FP type, which
> match the
> - // result type.
> - if (FT->getNumParams() != 2 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - FT->getParamType(0) != FT->getParamType(1) ||
> - !FT->getParamType(0)->isFloatingPointTy())
> - return Ret;
> -
> - Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
> - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
> - // pow(1.0, x) -> 1.0
> - if (Op1C->isExactlyValue(1.0))
> - return Op1C;
> - // pow(2.0, x) -> exp2(x)
> - if (Op1C->isExactlyValue(2.0) &&
> - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2,
> LibFunc::exp2f,
> - LibFunc::exp2l))
> - return EmitUnaryFloatFnCall(Op2, "exp2", B,
> Callee->getAttributes());
> - // pow(10.0, x) -> exp10(x)
> - if (Op1C->isExactlyValue(10.0) &&
> - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10,
> LibFunc::exp10f,
> - LibFunc::exp10l))
> - return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
> - Callee->getAttributes());
> - }
> + Value *Ret = nullptr;
> + if (UnsafeFPShrink && Callee->getName() == "pow" &&
> TLI->has(LibFunc::powf)) {
> + Ret = optimizeUnaryDoubleFP(CI, B, true);
> + }
>
> - ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
> - if (!Op2C) return Ret;
> + FunctionType *FT = Callee->getFunctionType();
> + // Just make sure this has 2 arguments of the same FP type, which match
> the
> + // result type.
> + if (FT->getNumParams() != 2 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + FT->getParamType(0) != FT->getParamType(1) ||
> + !FT->getParamType(0)->isFloatingPointTy())
> + return Ret;
>
> - if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
> - return ConstantFP::get(CI->getType(), 1.0);
> + Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
> + if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
> + // pow(1.0, x) -> 1.0
> + if (Op1C->isExactlyValue(1.0))
> + return Op1C;
> + // pow(2.0, x) -> exp2(x)
> + if (Op1C->isExactlyValue(2.0) &&
> + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2,
> LibFunc::exp2f,
> + LibFunc::exp2l))
> + return EmitUnaryFloatFnCall(Op2, "exp2", B,
> Callee->getAttributes());
> + // pow(10.0, x) -> exp10(x)
> + if (Op1C->isExactlyValue(10.0) &&
> + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10,
> LibFunc::exp10f,
> + LibFunc::exp10l))
> + return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
> + Callee->getAttributes());
> + }
>
> - if (Op2C->isExactlyValue(0.5) &&
> - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt,
> LibFunc::sqrtf,
> - LibFunc::sqrtl) &&
> - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs,
> LibFunc::fabsf,
> - LibFunc::fabsl)) {
> - // Expand pow(x, 0.5) to (x == -infinity ? +infinity :
> fabs(sqrt(x))).
> - // This is faster than calling pow, and still handles negative zero
> - // and negative infinity correctly.
> - // TODO: In fast-math mode, this could be just sqrt(x).
> - // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
> - Value *Inf = ConstantFP::getInfinity(CI->getType());
> - Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
> - Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
> - Callee->getAttributes());
> - Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
> - Callee->getAttributes());
> - Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
> - Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
> - return Sel;
> - }
> + ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
> + if (!Op2C)
> + return Ret;
>
> - if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
> - return Op1;
> - if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
> - return B.CreateFMul(Op1, Op1, "pow2");
> - if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
> - return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
> - Op1, "powrecip");
> - return nullptr;
> - }
> -};
> -
> -struct Exp2Opt : public UnsafeFPLibCallOptimization {
> - Exp2Opt(bool UnsafeFPShrink) :
> UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - Value *Ret = nullptr;
> - if (UnsafeFPShrink && Callee->getName() == "exp2" &&
> - TLI->has(LibFunc::exp2f)) {
> - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
> - }
> + if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
> + return ConstantFP::get(CI->getType(), 1.0);
>
> - FunctionType *FT = Callee->getFunctionType();
> - // Just make sure this has 1 argument of FP type, which matches the
> - // result type.
> - if (FT->getNumParams() != 1 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isFloatingPointTy())
> - return Ret;
> -
> - Value *Op = CI->getArgOperand(0);
> - // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
> - // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
> - LibFunc::Func LdExp = LibFunc::ldexpl;
> - if (Op->getType()->isFloatTy())
> - LdExp = LibFunc::ldexpf;
> - else if (Op->getType()->isDoubleTy())
> - LdExp = LibFunc::ldexp;
> -
> - if (TLI->has(LdExp)) {
> - Value *LdExpArg = nullptr;
> - if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
> - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
> - LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
> - } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
> - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
> - LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
> - }
> -
> - if (LdExpArg) {
> - Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
> - if (!Op->getType()->isFloatTy())
> - One = ConstantExpr::getFPExtend(One, Op->getType());
> -
> - Module *M = Caller->getParent();
> - Value *Callee =
> - M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
> - Op->getType(), B.getInt32Ty(), NULL);
> - CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
> - if (const Function *F =
> dyn_cast<Function>(Callee->stripPointerCasts()))
> - CI->setCallingConv(F->getCallingConv());
> + if (Op2C->isExactlyValue(0.5) &&
> + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
> + LibFunc::sqrtl) &&
> + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
> + LibFunc::fabsl)) {
> + // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
> + // This is faster than calling pow, and still handles negative zero
> + // and negative infinity correctly.
> + // TODO: In fast-math mode, this could be just sqrt(x).
> + // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
> + Value *Inf = ConstantFP::getInfinity(CI->getType());
> + Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
> + Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
> Callee->getAttributes());
> + Value *FAbs =
> + EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
> + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
> + Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
> + return Sel;
> + }
> +
> + if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
> + return Op1;
> + if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
> + return B.CreateFMul(Op1, Op1, "pow2");
> + if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
> + return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1,
> "powrecip");
> + return nullptr;
> +}
>
> - return CI;
> - }
> - }
> - return Ret;
> +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + Function *Caller = CI->getParent()->getParent();
> +
> + Value *Ret = nullptr;
> + if (UnsafeFPShrink && Callee->getName() == "exp2" &&
> + TLI->has(LibFunc::exp2f)) {
> + Ret = optimizeUnaryDoubleFP(CI, B, true);
> }
> -};
>
> -struct SinCosPiOpt : public LibCallOptimization {
> - SinCosPiOpt() {}
> + FunctionType *FT = Callee->getFunctionType();
> + // Just make sure this has 1 argument of FP type, which matches the
> + // result type.
> + if (FT->getNumParams() != 1 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isFloatingPointTy())
> + return Ret;
>
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Make sure the prototype is as expected, otherwise the rest of the
> - // function is probably invalid and likely to abort.
> - if (!isTrigLibCall(CI))
> - return nullptr;
> -
> - Value *Arg = CI->getArgOperand(0);
> - SmallVector<CallInst *, 1> SinCalls;
> - SmallVector<CallInst *, 1> CosCalls;
> - SmallVector<CallInst *, 1> SinCosCalls;
> -
> - bool IsFloat = Arg->getType()->isFloatTy();
> -
> - // Look for all compatible sinpi, cospi and sincospi calls with the
> same
> - // argument. If there are enough (in some sense) we can make the
> - // substitution.
> - for (User *U : Arg->users())
> - classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
> - SinCosCalls);
> -
> - // It's only worthwhile if both sinpi and cospi are actually used.
> - if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
> - return nullptr;
> -
> - Value *Sin, *Cos, *SinCos;
> - insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
> - SinCos);
> -
> - replaceTrigInsts(SinCalls, Sin);
> - replaceTrigInsts(CosCalls, Cos);
> - replaceTrigInsts(SinCosCalls, SinCos);
> -
> - return nullptr;
> - }
> -
> - bool isTrigLibCall(CallInst *CI) {
> - Function *Callee = CI->getCalledFunction();
> - FunctionType *FT = Callee->getFunctionType();
> -
> - // We can only hope to do anything useful if we can ignore things
> like errno
> - // and floating-point exceptions.
> - bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
> - CI->hasFnAttr(Attribute::ReadNone);
> -
> - // Other than that we need float(float) or double(double)
> - return AttributesSafe && FT->getNumParams() == 1 &&
> - FT->getReturnType() == FT->getParamType(0) &&
> - (FT->getParamType(0)->isFloatTy() ||
> - FT->getParamType(0)->isDoubleTy());
> - }
> -
> - void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
> - SmallVectorImpl<CallInst *> &SinCalls,
> - SmallVectorImpl<CallInst *> &CosCalls,
> - SmallVectorImpl<CallInst *> &SinCosCalls) {
> - CallInst *CI = dyn_cast<CallInst>(Val);
> -
> - if (!CI)
> - return;
> -
> - Function *Callee = CI->getCalledFunction();
> - StringRef FuncName = Callee->getName();
> - LibFunc::Func Func;
> - if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
> - !isTrigLibCall(CI))
> - return;
> -
> - if (IsFloat) {
> - if (Func == LibFunc::sinpif)
> - SinCalls.push_back(CI);
> - else if (Func == LibFunc::cospif)
> - CosCalls.push_back(CI);
> - else if (Func == LibFunc::sincospif_stret)
> - SinCosCalls.push_back(CI);
> - } else {
> - if (Func == LibFunc::sinpi)
> - SinCalls.push_back(CI);
> - else if (Func == LibFunc::cospi)
> - CosCalls.push_back(CI);
> - else if (Func == LibFunc::sincospi_stret)
> - SinCosCalls.push_back(CI);
> - }
> - }
> + Value *Op = CI->getArgOperand(0);
> + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
> + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
> + LibFunc::Func LdExp = LibFunc::ldexpl;
> + if (Op->getType()->isFloatTy())
> + LdExp = LibFunc::ldexpf;
> + else if (Op->getType()->isDoubleTy())
> + LdExp = LibFunc::ldexp;
> +
> + if (TLI->has(LdExp)) {
> + Value *LdExpArg = nullptr;
> + if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
> + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
> + LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
> + } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
> + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
> + LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
> + }
> +
> + if (LdExpArg) {
> + Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
> + if (!Op->getType()->isFloatTy())
> + One = ConstantExpr::getFPExtend(One, Op->getType());
> +
> + Module *M = Caller->getParent();
> + Value *Callee =
> + M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
> + Op->getType(), B.getInt32Ty(), NULL);
> + CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
> + if (const Function *F =
> dyn_cast<Function>(Callee->stripPointerCasts()))
> + CI->setCallingConv(F->getCallingConv());
>
> - void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
> - for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
> - E = Calls.end();
> - I != E; ++I) {
> - LCS->replaceAllUsesWith(*I, Res);
> + return CI;
> }
> }
> + return Ret;
> +}
>
> - void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
> - bool UseFloat, Value *&Sin, Value *&Cos,
> - Value *&SinCos) {
> - Type *ArgTy = Arg->getType();
> - Type *ResTy;
> - StringRef Name;
> -
> - Triple T(OrigCallee->getParent()->getTargetTriple());
> - if (UseFloat) {
> - Name = "__sincospif_stret";
> -
> - assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for
> now");
> - // x86_64 can't use {float, float} since that would be returned in
> both
> - // xmm0 and xmm1, which isn't what a real struct would do.
> - ResTy = T.getArch() == Triple::x86_64
> - ? static_cast<Type *>(VectorType::get(ArgTy, 2))
> - : static_cast<Type *>(StructType::get(ArgTy, ArgTy,
> NULL));
> - } else {
> - Name = "__sincospi_stret";
> - ResTy = StructType::get(ArgTy, ArgTy, NULL);
> - }
> +static bool isTrigLibCall(CallInst *CI);
> +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value
> *Arg,
> + bool UseFloat, Value *&Sin, Value *&Cos,
> + Value *&SinCos);
>
> - Module *M = OrigCallee->getParent();
> - Value *Callee = M->getOrInsertFunction(Name,
> OrigCallee->getAttributes(),
> - ResTy, ArgTy, NULL);
> -
> - if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
> - // If the argument is an instruction, it must dominate all uses so
> put our
> - // sincos call there.
> - BasicBlock::iterator Loc = ArgInst;
> - B.SetInsertPoint(ArgInst->getParent(), ++Loc);
> - } else {
> - // Otherwise (e.g. for a constant) the beginning of the function is
> as
> - // good a place as any.
> - BasicBlock &EntryBB =
> B.GetInsertBlock()->getParent()->getEntryBlock();
> - B.SetInsertPoint(&EntryBB, EntryBB.begin());
> - }
> +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
>
> - SinCos = B.CreateCall(Callee, Arg, "sincospi");
> + // Make sure the prototype is as expected, otherwise the rest of the
> + // function is probably invalid and likely to abort.
> + if (!isTrigLibCall(CI))
> + return nullptr;
>
> - if (SinCos->getType()->isStructTy()) {
> - Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
> - Cos = B.CreateExtractValue(SinCos, 1, "cospi");
> - } else {
> - Sin = B.CreateExtractElement(SinCos,
> ConstantInt::get(B.getInt32Ty(), 0),
> - "sinpi");
> - Cos = B.CreateExtractElement(SinCos,
> ConstantInt::get(B.getInt32Ty(), 1),
> - "cospi");
> - }
> + Value *Arg = CI->getArgOperand(0);
> + SmallVector<CallInst *, 1> SinCalls;
> + SmallVector<CallInst *, 1> CosCalls;
> + SmallVector<CallInst *, 1> SinCosCalls;
> +
> + bool IsFloat = Arg->getType()->isFloatTy();
> +
> + // Look for all compatible sinpi, cospi and sincospi calls with the same
> + // argument. If there are enough (in some sense) we can make the
> + // substitution.
> + for (User *U : Arg->users())
> + classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
> + SinCosCalls);
> +
> + // It's only worthwhile if both sinpi and cospi are actually used.
> + if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
> + return nullptr;
> +
> + Value *Sin, *Cos, *SinCos;
> + insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
> SinCos);
> +
> + replaceTrigInsts(SinCalls, Sin);
> + replaceTrigInsts(CosCalls, Cos);
> + replaceTrigInsts(SinCosCalls, SinCos);
> +
> + return nullptr;
> +}
> +
> +static bool isTrigLibCall(CallInst *CI) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> +
> + // We can only hope to do anything useful if we can ignore things like
> errno
> + // and floating-point exceptions.
> + bool AttributesSafe =
> + CI->hasFnAttr(Attribute::NoUnwind) &&
> CI->hasFnAttr(Attribute::ReadNone);
> +
> + // Other than that we need float(float) or double(double)
> + return AttributesSafe && FT->getNumParams() == 1 &&
> + FT->getReturnType() == FT->getParamType(0) &&
> + (FT->getParamType(0)->isFloatTy() ||
> + FT->getParamType(0)->isDoubleTy());
> +}
> +
> +void
> +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool
> IsFloat,
> + SmallVectorImpl<CallInst *> &SinCalls,
> + SmallVectorImpl<CallInst *> &CosCalls,
> + SmallVectorImpl<CallInst *>
> &SinCosCalls) {
> + CallInst *CI = dyn_cast<CallInst>(Val);
> +
> + if (!CI)
> + return;
> +
> + Function *Callee = CI->getCalledFunction();
> + StringRef FuncName = Callee->getName();
> + LibFunc::Func Func;
> + if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
> !isTrigLibCall(CI))
> + return;
> +
> + if (IsFloat) {
> + if (Func == LibFunc::sinpif)
> + SinCalls.push_back(CI);
> + else if (Func == LibFunc::cospif)
> + CosCalls.push_back(CI);
> + else if (Func == LibFunc::sincospif_stret)
> + SinCosCalls.push_back(CI);
> + } else {
> + if (Func == LibFunc::sinpi)
> + SinCalls.push_back(CI);
> + else if (Func == LibFunc::cospi)
> + CosCalls.push_back(CI);
> + else if (Func == LibFunc::sincospi_stret)
> + SinCosCalls.push_back(CI);
> }
> +}
>
> -};
> +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *>
> &Calls,
> + Value *Res) {
> + for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E =
> Calls.end();
> + I != E; ++I) {
> + replaceAllUsesWith(*I, Res);
> + }
> +}
> +
> +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
> + bool UseFloat, Value *&Sin, Value *&Cos, Value
> *&SinCos) {
> + Type *ArgTy = Arg->getType();
> + Type *ResTy;
> + StringRef Name;
> +
> + Triple T(OrigCallee->getParent()->getTargetTriple());
> + if (UseFloat) {
> + Name = "__sincospif_stret";
> +
> + assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for
> now");
> + // x86_64 can't use {float, float} since that would be returned in
> both
> + // xmm0 and xmm1, which isn't what a real struct would do.
> + ResTy = T.getArch() == Triple::x86_64
> + ? static_cast<Type *>(VectorType::get(ArgTy, 2))
> + : static_cast<Type *>(StructType::get(ArgTy, ArgTy,
> NULL));
> + } else {
> + Name = "__sincospi_stret";
> + ResTy = StructType::get(ArgTy, ArgTy, NULL);
> + }
> +
> + Module *M = OrigCallee->getParent();
> + Value *Callee = M->getOrInsertFunction(Name,
> OrigCallee->getAttributes(),
> + ResTy, ArgTy, NULL);
> +
> + if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
> + // If the argument is an instruction, it must dominate all uses so
> put our
> + // sincos call there.
> + BasicBlock::iterator Loc = ArgInst;
> + B.SetInsertPoint(ArgInst->getParent(), ++Loc);
> + } else {
> + // Otherwise (e.g. for a constant) the beginning of the function is as
> + // good a place as any.
> + BasicBlock &EntryBB =
> B.GetInsertBlock()->getParent()->getEntryBlock();
> + B.SetInsertPoint(&EntryBB, EntryBB.begin());
> + }
> +
> + SinCos = B.CreateCall(Callee, Arg, "sincospi");
> +
> + if (SinCos->getType()->isStructTy()) {
> + Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
> + Cos = B.CreateExtractValue(SinCos, 1, "cospi");
> + } else {
> + Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(),
> 0),
> + "sinpi");
> + Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(),
> 1),
> + "cospi");
> + }
> +}
>
>
> //===----------------------------------------------------------------------===//
> // Integer Library Call Optimizations
>
> //===----------------------------------------------------------------------===//
>
> -struct FFSOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - // Just make sure this has 2 arguments of the same FP type, which
> match the
> - // result type.
> - if (FT->getNumParams() != 1 ||
> - !FT->getReturnType()->isIntegerTy(32) ||
> - !FT->getParamType(0)->isIntegerTy())
> - return nullptr;
> -
> - Value *Op = CI->getArgOperand(0);
> -
> - // Constant fold.
> - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
> - if (CI->isZero()) // ffs(0) -> 0.
> - return B.getInt32(0);
> - // ffs(c) -> cttz(c)+1
> - return B.getInt32(CI->getValue().countTrailingZeros() + 1);
> - }
> +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + // Just make sure this has 2 arguments of the same FP type, which match
> the
> + // result type.
> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
> + !FT->getParamType(0)->isIntegerTy())
> + return nullptr;
> +
> + Value *Op = CI->getArgOperand(0);
> +
> + // Constant fold.
> + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
> + if (CI->isZero()) // ffs(0) -> 0.
> + return B.getInt32(0);
> + // ffs(c) -> cttz(c)+1
> + return B.getInt32(CI->getValue().countTrailingZeros() + 1);
> + }
> +
> + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
> + Type *ArgType = Op->getType();
> + Value *F =
> + Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz,
> ArgType);
> + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
> + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
> + V = B.CreateIntCast(V, B.getInt32Ty(), false);
>
> - // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
> - Type *ArgType = Op->getType();
> - Value *F = Intrinsic::getDeclaration(Callee->getParent(),
> - Intrinsic::cttz, ArgType);
> - Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
> - V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
> - V = B.CreateIntCast(V, B.getInt32Ty(), false);
> -
> - Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
> - return B.CreateSelect(Cond, V, B.getInt32(0));
> - }
> -};
> -
> -struct AbsOpt : public LibCallOptimization {
> - bool ignoreCallingConv() override { return true; }
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - // We require integer(integer) where the types agree.
> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> - FT->getParamType(0) != FT->getReturnType())
> - return nullptr;
> -
> - // abs(x) -> x >s -1 ? x : -x
> - Value *Op = CI->getArgOperand(0);
> - Value *Pos = B.CreateICmpSGT(Op,
> Constant::getAllOnesValue(Op->getType()),
> - "ispos");
> - Value *Neg = B.CreateNeg(Op, "neg");
> - return B.CreateSelect(Pos, Op, Neg);
> - }
> -};
> -
> -struct IsDigitOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - // We require integer(i32)
> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> - !FT->getParamType(0)->isIntegerTy(32))
> - return nullptr;
> -
> - // isdigit(c) -> (c-'0') <u 10
> - Value *Op = CI->getArgOperand(0);
> - Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
> - Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
> - return B.CreateZExt(Op, CI->getType());
> - }
> -};
> -
> -struct IsAsciiOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - // We require integer(i32)
> - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> - !FT->getParamType(0)->isIntegerTy(32))
> - return nullptr;
> -
> - // isascii(c) -> c <u 128
> - Value *Op = CI->getArgOperand(0);
> - Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
> - return B.CreateZExt(Op, CI->getType());
> - }
> -};
> -
> -struct ToAsciiOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - FunctionType *FT = Callee->getFunctionType();
> - // We require i32(i32)
> - if (FT->getNumParams() != 1 || FT->getReturnType() !=
> FT->getParamType(0) ||
> - !FT->getParamType(0)->isIntegerTy(32))
> - return nullptr;
> -
> - // toascii(c) -> c & 0x7f
> - return B.CreateAnd(CI->getArgOperand(0),
> - ConstantInt::get(CI->getType(),0x7F));
> - }
> -};
> + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
> + return B.CreateSelect(Cond, V, B.getInt32(0));
> +}
> +
> +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + // We require integer(integer) where the types agree.
> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> + FT->getParamType(0) != FT->getReturnType())
> + return nullptr;
> +
> + // abs(x) -> x >s -1 ? x : -x
> + Value *Op = CI->getArgOperand(0);
> + Value *Pos =
> + B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
> "ispos");
> + Value *Neg = B.CreateNeg(Op, "neg");
> + return B.CreateSelect(Pos, Op, Neg);
> +}
> +
> +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + // We require integer(i32)
> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> + !FT->getParamType(0)->isIntegerTy(32))
> + return nullptr;
> +
> + // isdigit(c) -> (c-'0') <u 10
> + Value *Op = CI->getArgOperand(0);
> + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
> + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
> + return B.CreateZExt(Op, CI->getType());
> +}
> +
> +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + // We require integer(i32)
> + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
> + !FT->getParamType(0)->isIntegerTy(32))
> + return nullptr;
> +
> + // isascii(c) -> c <u 128
> + Value *Op = CI->getArgOperand(0);
> + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
> + return B.CreateZExt(Op, CI->getType());
> +}
> +
> +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + FunctionType *FT = Callee->getFunctionType();
> + // We require i32(i32)
> + if (FT->getNumParams() != 1 || FT->getReturnType() !=
> FT->getParamType(0) ||
> + !FT->getParamType(0)->isIntegerTy(32))
> + return nullptr;
> +
> + // toascii(c) -> c & 0x7f
> + return B.CreateAnd(CI->getArgOperand(0),
> + ConstantInt::get(CI->getType(), 0x7F));
> +}
>
>
> //===----------------------------------------------------------------------===//
> // Formatting and IO Library Call Optimizations
>
> //===----------------------------------------------------------------------===//
>
> -struct ErrorReportingOpt : public LibCallOptimization {
> - ErrorReportingOpt(int S = -1) : StreamArg(S) {}
> +static bool isReportingError(Function *Callee, CallInst *CI, int
> StreamArg);
>
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &) override {
> - // Error reporting calls should be cold, mark them as such.
> - // This applies even to non-builtin calls: it is only a hint and
> applies to
> - // functions that the frontend might not understand as builtins.
> -
> - // This heuristic was suggested in:
> - // Improving Static Branch Prediction in a Compiler
> - // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
> - // Proceedings of PACT'98, Oct. 1998, IEEE
> -
> - if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
> - CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
> - }
> +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI,
> IRBuilder<> &B,
> + int StreamArg) {
> + // Error reporting calls should be cold, mark them as such.
> + // This applies even to non-builtin calls: it is only a hint and
> applies to
> + // functions that the frontend might not understand as builtins.
> +
> + // This heuristic was suggested in:
> + // Improving Static Branch Prediction in a Compiler
> + // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
> + // Proceedings of PACT'98, Oct. 1998, IEEE
> + Function *Callee = CI->getCalledFunction();
>
> - return nullptr;
> + if (!CI->hasFnAttr(Attribute::Cold) &&
> + isReportingError(Callee, CI, StreamArg)) {
> + CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
> }
>
> -protected:
> - bool isReportingError(Function *Callee, CallInst *CI) {
> - if (!ColdErrorCalls)
> - return false;
> -
> - if (!Callee || !Callee->isDeclaration())
> - return false;
> -
> - if (StreamArg < 0)
> - return true;
> + return nullptr;
> +}
>
> - // These functions might be considered cold, but only if their stream
> - // argument is stderr.
> +static bool isReportingError(Function *Callee, CallInst *CI, int
> StreamArg) {
> + if (!ColdErrorCalls)
> + return false;
>
> - if (StreamArg >= (int) CI->getNumArgOperands())
> - return false;
> - LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
> - if (!LI)
> - return false;
> - GlobalVariable *GV =
> dyn_cast<GlobalVariable>(LI->getPointerOperand());
> - if (!GV || !GV->isDeclaration())
> - return false;
> - return GV->getName() == "stderr";
> - }
> -
> - int StreamArg;
> -};
> -
> -struct PrintFOpt : public LibCallOptimization {
> - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) {
> - // Check for a fixed format string.
> - StringRef FormatStr;
> - if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
> - return nullptr;
> -
> - // Empty format string -> noop.
> - if (FormatStr.empty()) // Tolerate printf's declared void.
> - return CI->use_empty() ? (Value*)CI :
> - ConstantInt::get(CI->getType(), 0);
> -
> - // Do not do any of the following transformations if the printf
> return value
> - // is used, in general the printf return value is not compatible with
> either
> - // putchar() or puts().
> - if (!CI->use_empty())
> - return nullptr;
> -
> - // printf("x") -> putchar('x'), even for '%'.
> - if (FormatStr.size() == 1) {
> - Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
> - if (CI->use_empty() || !Res) return Res;
> - return B.CreateIntCast(Res, CI->getType(), true);
> - }
> + if (!Callee || !Callee->isDeclaration())
> + return false;
>
> - // printf("foo\n") --> puts("foo")
> - if (FormatStr[FormatStr.size()-1] == '\n' &&
> - FormatStr.find('%') == StringRef::npos) { // No format characters.
> - // Create a string literal with no \n on it. We expect the
> constant merge
> - // pass to be run after this pass, to merge duplicate strings.
> - FormatStr = FormatStr.drop_back();
> - Value *GV = B.CreateGlobalString(FormatStr, "str");
> - Value *NewCI = EmitPutS(GV, B, DL, TLI);
> - return (CI->use_empty() || !NewCI) ?
> - NewCI :
> - ConstantInt::get(CI->getType(), FormatStr.size()+1);
> - }
> + if (StreamArg < 0)
> + return true;
>
> - // Optimize specific format strings.
> - // printf("%c", chr) --> putchar(chr)
> - if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
> - CI->getArgOperand(1)->getType()->isIntegerTy()) {
> - Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
> + // These functions might be considered cold, but only if their stream
> + // argument is stderr.
>
> - if (CI->use_empty() || !Res) return Res;
> - return B.CreateIntCast(Res, CI->getType(), true);
> - }
> + if (StreamArg >= (int)CI->getNumArgOperands())
> + return false;
> + LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
> + if (!LI)
> + return false;
> + GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
> + if (!GV || !GV->isDeclaration())
> + return false;
> + return GV->getName() == "stderr";
> +}
>
> - // printf("%s\n", str) --> puts(str)
> - if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
> - CI->getArgOperand(1)->getType()->isPointerTy()) {
> - return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
> - }
> - return nullptr;
> +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<>
> &B) {
> + // Check for a fixed format string.
> + StringRef FormatStr;
> + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
> + return nullptr;
> +
> + // Empty format string -> noop.
> + if (FormatStr.empty()) // Tolerate printf's declared void.
> + return CI->use_empty() ? (Value *)CI :
> ConstantInt::get(CI->getType(), 0);
> +
> + // Do not do any of the following transformations if the printf return
> value
> + // is used, in general the printf return value is not compatible with
> either
> + // putchar() or puts().
> + if (!CI->use_empty())
> + return nullptr;
> +
> + // printf("x") -> putchar('x'), even for '%'.
> + if (FormatStr.size() == 1) {
> + Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
> + if (CI->use_empty() || !Res)
> + return Res;
> + return B.CreateIntCast(Res, CI->getType(), true);
> + }
> +
> + // printf("foo\n") --> puts("foo")
> + if (FormatStr[FormatStr.size() - 1] == '\n' &&
> + FormatStr.find('%') == StringRef::npos) { // No format characters.
> + // Create a string literal with no \n on it. We expect the constant
> merge
> + // pass to be run after this pass, to merge duplicate strings.
> + FormatStr = FormatStr.drop_back();
> + Value *GV = B.CreateGlobalString(FormatStr, "str");
> + Value *NewCI = EmitPutS(GV, B, DL, TLI);
> + return (CI->use_empty() || !NewCI)
> + ? NewCI
> + : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
> + }
> +
> + // Optimize specific format strings.
> + // printf("%c", chr) --> putchar(chr)
> + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
> + CI->getArgOperand(1)->getType()->isIntegerTy()) {
> + Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
> +
> + if (CI->use_empty() || !Res)
> + return Res;
> + return B.CreateIntCast(Res, CI->getType(), true);
> + }
> +
> + // printf("%s\n", str) --> puts(str)
> + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
> + CI->getArgOperand(1)->getType()->isPointerTy()) {
> + return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
> }
> + return nullptr;
> +}
>
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Require one fixed pointer argument and an integer/void result.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> - !(FT->getReturnType()->isIntegerTy() ||
> - FT->getReturnType()->isVoidTy()))
> - return nullptr;
> +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
>
> - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
> - return V;
> - }
> + Function *Callee = CI->getCalledFunction();
> + // Require one fixed pointer argument and an integer/void result.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> + !(FT->getReturnType()->isIntegerTy() ||
> FT->getReturnType()->isVoidTy()))
> + return nullptr;
> +
> + if (Value *V = optimizePrintFString(CI, B)) {
> + return V;
> + }
>
> - // printf(format, ...) -> iprintf(format, ...) if no floating point
> - // arguments.
> - if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
> - Module *M = B.GetInsertBlock()->getParent()->getParent();
> - Constant *IPrintFFn =
> + // printf(format, ...) -> iprintf(format, ...) if no floating point
> + // arguments.
> + if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
> + Module *M = B.GetInsertBlock()->getParent()->getParent();
> + Constant *IPrintFFn =
> M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
> - CallInst *New = cast<CallInst>(CI->clone());
> - New->setCalledFunction(IPrintFFn);
> - B.Insert(New);
> - return New;
> - }
> - return nullptr;
> + CallInst *New = cast<CallInst>(CI->clone());
> + New->setCalledFunction(IPrintFFn);
> + B.Insert(New);
> + return New;
> }
> -};
> + return nullptr;
> +}
>
> -struct SPrintFOpt : public LibCallOptimization {
> - Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) {
> - // Check for a fixed format string.
> - StringRef FormatStr;
> - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> - return nullptr;
> -
> - // If we just have a format string (nothing else crazy) transform it.
> - if (CI->getNumArgOperands() == 2) {
> - // Make sure there's no % in the constant array. We could try to
> handle
> - // %% -> % in the future if we cared.
> - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> - if (FormatStr[i] == '%')
> - return nullptr; // we found a format specifier, bail out.
> -
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> -
> - // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
> - ConstantInt::get(DL->getIntPtrType(*Context), //
> Copy the
> - FormatStr.size() + 1), 1); // nul
> byte.
> - return ConstantInt::get(CI->getType(), FormatStr.size());
> - }
> +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<>
> &B) {
> + // Check for a fixed format string.
> + StringRef FormatStr;
> + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> + return nullptr;
>
> - // The remaining optimizations require the format string to be "%s"
> or "%c"
> - // and have an extra operand.
> - if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> - CI->getNumArgOperands() < 3)
> - return nullptr;
> -
> - // Decode the second character of the format string.
> - if (FormatStr[1] == 'c') {
> - // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
> - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
> - Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(),
> "char");
> - Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
> - B.CreateStore(V, Ptr);
> - Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
> - B.CreateStore(B.getInt8(0), Ptr);
> + // If we just have a format string (nothing else crazy) transform it.
> + if (CI->getNumArgOperands() == 2) {
> + // Make sure there's no % in the constant array. We could try to
> handle
> + // %% -> % in the future if we cared.
> + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> + if (FormatStr[i] == '%')
> + return nullptr; // we found a format specifier, bail out.
>
> - return ConstantInt::get(CI->getType(), 1);
> - }
> + // These optimizations require DataLayout.
> + if (!DL)
> + return nullptr;
>
> - if (FormatStr[1] == 's') {
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> + // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
> + B.CreateMemCpy(
> + CI->getArgOperand(0), CI->getArgOperand(1),
> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
> + FormatStr.size() + 1),
> + 1); // Copy the null byte.
> + return ConstantInt::get(CI->getType(), FormatStr.size());
> + }
>
> - // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str,
> strlen(str)+1, 1)
> - if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
> + // The remaining optimizations require the format string to be "%s" or
> "%c"
> + // and have an extra operand.
> + if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> + CI->getNumArgOperands() < 3)
> + return nullptr;
>
> - Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
> - if (!Len)
> - return nullptr;
> - Value *IncLen = B.CreateAdd(Len,
> - ConstantInt::get(Len->getType(), 1),
> - "leninc");
> - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen,
> 1);
> + // Decode the second character of the format string.
> + if (FormatStr[1] == 'c') {
> + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
> + if (!CI->getArgOperand(2)->getType()->isIntegerTy())
> + return nullptr;
> + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
> + Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
> + B.CreateStore(V, Ptr);
> + Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
> + B.CreateStore(B.getInt8(0), Ptr);
>
> - // The sprintf result is the unincremented number of bytes in the
> string.
> - return B.CreateIntCast(Len, CI->getType(), false);
> - }
> - return nullptr;
> + return ConstantInt::get(CI->getType(), 1);
> }
>
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Require two fixed pointer arguments and an integer result.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - !FT->getReturnType()->isIntegerTy())
> + if (FormatStr[1] == 's') {
> + // These optimizations require DataLayout.
> + if (!DL)
> return nullptr;
>
> - if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
> - return V;
> - }
> + // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1,
> 1)
> + if (!CI->getArgOperand(2)->getType()->isPointerTy())
> + return nullptr;
>
> - // sprintf(str, format, ...) -> siprintf(str, format, ...) if no
> floating
> - // point arguments.
> - if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI))
> {
> - Module *M = B.GetInsertBlock()->getParent()->getParent();
> - Constant *SIPrintFFn =
> + Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
> + if (!Len)
> + return nullptr;
> + Value *IncLen =
> + B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
> + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
> +
> + // The sprintf result is the unincremented number of bytes in the
> string.
> + return B.CreateIntCast(Len, CI->getType(), false);
> + }
> + return nullptr;
> +}
> +
> +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Require two fixed pointer arguments and an integer result.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + !FT->getReturnType()->isIntegerTy())
> + return nullptr;
> +
> + if (Value *V = optimizeSPrintFString(CI, B)) {
> + return V;
> + }
> +
> + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no
> floating
> + // point arguments.
> + if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
> + Module *M = B.GetInsertBlock()->getParent()->getParent();
> + Constant *SIPrintFFn =
> M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
> - CallInst *New = cast<CallInst>(CI->clone());
> - New->setCalledFunction(SIPrintFFn);
> - B.Insert(New);
> - return New;
> - }
> - return nullptr;
> + CallInst *New = cast<CallInst>(CI->clone());
> + New->setCalledFunction(SIPrintFFn);
> + B.Insert(New);
> + return New;
> }
> -};
> + return nullptr;
> +}
>
> -struct FPrintFOpt : public LibCallOptimization {
> - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) {
> - ErrorReportingOpt ER(/* StreamArg = */ 0);
> - (void) ER.callOptimizer(Callee, CI, B);
> -
> - // All the optimizations depend on the format string.
> - StringRef FormatStr;
> - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> - return nullptr;
> -
> - // Do not do any of the following transformations if the fprintf
> return
> - // value is used, in general the fprintf return value is not
> compatible
> - // with fwrite(), fputc() or fputs().
> - if (!CI->use_empty())
> - return nullptr;
> -
> - // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
> - if (CI->getNumArgOperands() == 2) {
> - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> - if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
> - return nullptr; // We found a format specifier.
> -
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> -
> - return EmitFWrite(CI->getArgOperand(1),
> - ConstantInt::get(DL->getIntPtrType(*Context),
> - FormatStr.size()),
> - CI->getArgOperand(0), B, DL, TLI);
> - }
> +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<>
> &B) {
> + optimizeErrorReporting(CI, B, 0);
> +
> + // All the optimizations depend on the format string.
> + StringRef FormatStr;
> + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
> + return nullptr;
>
> - // The remaining optimizations require the format string to be "%s"
> or "%c"
> - // and have an extra operand.
> - if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> - CI->getNumArgOperands() < 3)
> + // Do not do any of the following transformations if the fprintf return
> + // value is used, in general the fprintf return value is not compatible
> + // with fwrite(), fputc() or fputs().
> + if (!CI->use_empty())
> + return nullptr;
> +
> + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
> + if (CI->getNumArgOperands() == 2) {
> + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
> + if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
> + return nullptr; // We found a format specifier.
> +
> + // These optimizations require DataLayout.
> + if (!DL)
> return nullptr;
>
> - // Decode the second character of the format string.
> - if (FormatStr[1] == 'c') {
> - // fprintf(F, "%c", chr) --> fputc(chr, F)
> - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
> - return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
> TLI);
> - }
> + return EmitFWrite(
> + CI->getArgOperand(1),
> + ConstantInt::get(DL->getIntPtrType(CI->getContext()),
> FormatStr.size()),
> + CI->getArgOperand(0), B, DL, TLI);
> + }
>
> - if (FormatStr[1] == 's') {
> - // fprintf(F, "%s", str) --> fputs(str, F)
> - if (!CI->getArgOperand(2)->getType()->isPointerTy())
> - return nullptr;
> - return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
> TLI);
> - }
> + // The remaining optimizations require the format string to be "%s" or
> "%c"
> + // and have an extra operand.
> + if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
> + CI->getNumArgOperands() < 3)
> return nullptr;
> - }
>
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Require two fixed paramters as pointers and integer result.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - !FT->getReturnType()->isIntegerTy())
> + // Decode the second character of the format string.
> + if (FormatStr[1] == 'c') {
> + // fprintf(F, "%c", chr) --> fputc(chr, F)
> + if (!CI->getArgOperand(2)->getType()->isIntegerTy())
> return nullptr;
> + return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
> TLI);
> + }
>
> - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
> - return V;
> - }
> + if (FormatStr[1] == 's') {
> + // fprintf(F, "%s", str) --> fputs(str, F)
> + if (!CI->getArgOperand(2)->getType()->isPointerTy())
> + return nullptr;
> + return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL,
> TLI);
> + }
> + return nullptr;
> +}
>
> - // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
> - // floating point arguments.
> - if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI))
> {
> - Module *M = B.GetInsertBlock()->getParent()->getParent();
> - Constant *FIPrintFFn =
> +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Require two fixed paramters as pointers and integer result.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() ||
> + !FT->getReturnType()->isIntegerTy())
> + return nullptr;
> +
> + if (Value *V = optimizeFPrintFString(CI, B)) {
> + return V;
> + }
> +
> + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
> + // floating point arguments.
> + if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
> + Module *M = B.GetInsertBlock()->getParent()->getParent();
> + Constant *FIPrintFFn =
> M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
> - CallInst *New = cast<CallInst>(CI->clone());
> - New->setCalledFunction(FIPrintFFn);
> - B.Insert(New);
> - return New;
> - }
> - return nullptr;
> + CallInst *New = cast<CallInst>(CI->clone());
> + New->setCalledFunction(FIPrintFFn);
> + B.Insert(New);
> + return New;
> }
> -};
> + return nullptr;
> +}
>
> -struct FWriteOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - ErrorReportingOpt ER(/* StreamArg = */ 3);
> - (void) ER.callOptimizer(Callee, CI, B);
> -
> - // Require a pointer, an integer, an integer, a pointer, returning
> integer.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isIntegerTy() ||
> - !FT->getParamType(2)->isIntegerTy() ||
> - !FT->getParamType(3)->isPointerTy() ||
> - !FT->getReturnType()->isIntegerTy())
> - return nullptr;
> -
> - // Get the element size and count.
> - ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> - ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> - if (!SizeC || !CountC) return nullptr;
> - uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
> -
> - // If this is writing zero records, remove the call (it's a noop).
> - if (Bytes == 0)
> - return ConstantInt::get(CI->getType(), 0);
> -
> - // If this is writing one byte, turn it into fputc.
> - // This optimisation is only valid, if the return value is unused.
> - if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) ->
> fputc(S[0],F)
> - Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B),
> "char");
> - Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
> - return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
> - }
> +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
> + optimizeErrorReporting(CI, B, 3);
>
> - return nullptr;
> + Function *Callee = CI->getCalledFunction();
> + // Require a pointer, an integer, an integer, a pointer, returning
> integer.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isIntegerTy() ||
> + !FT->getParamType(2)->isIntegerTy() ||
> + !FT->getParamType(3)->isPointerTy() ||
> + !FT->getReturnType()->isIntegerTy())
> + return nullptr;
> +
> + // Get the element size and count.
> + ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
> + ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
> + if (!SizeC || !CountC)
> + return nullptr;
> + uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
> +
> + // If this is writing zero records, remove the call (it's a noop).
> + if (Bytes == 0)
> + return ConstantInt::get(CI->getType(), 0);
> +
> + // If this is writing one byte, turn it into fputc.
> + // This optimisation is only valid, if the return value is unused.
> + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
> + Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B),
> "char");
> + Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
> + return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
> }
> -};
>
> -struct FPutsOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - ErrorReportingOpt ER(/* StreamArg = */ 1);
> - (void) ER.callOptimizer(Callee, CI, B);
> + return nullptr;
> +}
>
> - // These optimizations require DataLayout.
> - if (!DL) return nullptr;
> +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
> + optimizeErrorReporting(CI, B, 1);
>
> - // Require two pointers. Also, we can't optimize if return value is
> used.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> - !FT->getParamType(1)->isPointerTy() ||
> - !CI->use_empty())
> - return nullptr;
> -
> - // fputs(s,F) --> fwrite(s,1,strlen(s),F)
> - uint64_t Len = GetStringLength(CI->getArgOperand(0));
> - if (!Len) return nullptr;
> - // Known to have no uses (see above).
> - return EmitFWrite(CI->getArgOperand(0),
> - ConstantInt::get(DL->getIntPtrType(*Context),
> Len-1),
> - CI->getArgOperand(1), B, DL, TLI);
> - }
> -};
> -
> -struct PutsOpt : public LibCallOptimization {
> - Value *callOptimizer(Function *Callee, CallInst *CI,
> - IRBuilder<> &B) override {
> - // Require one fixed pointer argument and an integer/void result.
> - FunctionType *FT = Callee->getFunctionType();
> - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> - !(FT->getReturnType()->isIntegerTy() ||
> - FT->getReturnType()->isVoidTy()))
> - return nullptr;
> -
> - // Check for a constant string.
> - StringRef Str;
> - if (!getConstantStringInfo(CI->getArgOperand(0), Str))
> - return nullptr;
> -
> - if (Str.empty() && CI->use_empty()) {
> - // puts("") -> putchar('\n')
> - Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
> - if (CI->use_empty() || !Res) return Res;
> - return B.CreateIntCast(Res, CI->getType(), true);
> - }
> + Function *Callee = CI->getCalledFunction();
>
> + // These optimizations require DataLayout.
> + if (!DL)
> return nullptr;
> - }
> -};
>
> -} // End anonymous namespace.
> + // Require two pointers. Also, we can't optimize if return value is
> used.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
> + !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
> + return nullptr;
>
> -namespace llvm {
> + // fputs(s,F) --> fwrite(s,1,strlen(s),F)
> + uint64_t Len = GetStringLength(CI->getArgOperand(0));
> + if (!Len)
> + return nullptr;
>
> -class LibCallSimplifierImpl {
> - const DataLayout *DL;
> - const TargetLibraryInfo *TLI;
> - const LibCallSimplifier *LCS;
> - bool UnsafeFPShrink;
> -
> - // Math library call optimizations.
> - CosOpt Cos;
> - PowOpt Pow;
> - Exp2Opt Exp2;
> -public:
> - LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo
> *TLI,
> - const LibCallSimplifier *LCS,
> - bool UnsafeFPShrink = false)
> - : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
> - this->DL = DL;
> - this->TLI = TLI;
> - this->LCS = LCS;
> - this->UnsafeFPShrink = UnsafeFPShrink;
> - }
> -
> - Value *optimizeCall(CallInst *CI);
> - LibCallOptimization *lookupOptimization(CallInst *CI);
> - bool hasFloatVersion(StringRef FuncName);
> -};
> + // Known to have no uses (see above).
> + return EmitFWrite(
> + CI->getArgOperand(0),
> + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
> + CI->getArgOperand(1), B, DL, TLI);
> +}
>
> -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
> +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
> + Function *Callee = CI->getCalledFunction();
> + // Require one fixed pointer argument and an integer/void result.
> + FunctionType *FT = Callee->getFunctionType();
> + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
> + !(FT->getReturnType()->isIntegerTy() ||
> FT->getReturnType()->isVoidTy()))
> + return nullptr;
> +
> + // Check for a constant string.
> + StringRef Str;
> + if (!getConstantStringInfo(CI->getArgOperand(0), Str))
> + return nullptr;
> +
> + if (Str.empty() && CI->use_empty()) {
> + // puts("") -> putchar('\n')
> + Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
> + if (CI->use_empty() || !Res)
> + return Res;
> + return B.CreateIntCast(Res, CI->getType(), true);
> + }
> +
> + return nullptr;
> +}
> +
> +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
> LibFunc::Func Func;
> SmallString<20> FloatFuncName = FuncName;
> FloatFuncName += 'f';
> @@ -2048,263 +1874,204 @@ bool LibCallSimplifierImpl::hasFloatVers
> return false;
> }
>
> -// Fortified library call optimizations.
> -static MemCpyChkOpt MemCpyChk;
> -static MemMoveChkOpt MemMoveChk;
> -static MemSetChkOpt MemSetChk;
> -static StrCpyChkOpt StrCpyChk;
> -static StpCpyChkOpt StpCpyChk;
> -static StrNCpyChkOpt StrNCpyChk;
> -
> -// String library call optimizations.
> -static StrCatOpt StrCat;
> -static StrNCatOpt StrNCat;
> -static StrChrOpt StrChr;
> -static StrRChrOpt StrRChr;
> -static StrCmpOpt StrCmp;
> -static StrNCmpOpt StrNCmp;
> -static StrCpyOpt StrCpy;
> -static StpCpyOpt StpCpy;
> -static StrNCpyOpt StrNCpy;
> -static StrLenOpt StrLen;
> -static StrPBrkOpt StrPBrk;
> -static StrToOpt StrTo;
> -static StrSpnOpt StrSpn;
> -static StrCSpnOpt StrCSpn;
> -static StrStrOpt StrStr;
> -
> -// Memory library call optimizations.
> -static MemCmpOpt MemCmp;
> -static MemCpyOpt MemCpy;
> -static MemMoveOpt MemMove;
> -static MemSetOpt MemSet;
> -
> -// Math library call optimizations.
> -static UnaryDoubleFPOpt UnaryDoubleFP(false);
> -static BinaryDoubleFPOpt BinaryDoubleFP(false);
> -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
> -static SinCosPiOpt SinCosPi;
> -
> - // Integer library call optimizations.
> -static FFSOpt FFS;
> -static AbsOpt Abs;
> -static IsDigitOpt IsDigit;
> -static IsAsciiOpt IsAscii;
> -static ToAsciiOpt ToAscii;
> -
> -// Formatting and IO library call optimizations.
> -static ErrorReportingOpt ErrorReporting;
> -static ErrorReportingOpt ErrorReporting0(0);
> -static ErrorReportingOpt ErrorReporting1(1);
> -static PrintFOpt PrintF;
> -static SPrintFOpt SPrintF;
> -static FPrintFOpt FPrintF;
> -static FWriteOpt FWrite;
> -static FPutsOpt FPuts;
> -static PutsOpt Puts;
> +Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
> + if (CI->isNoBuiltin())
> + return nullptr;
>
> -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst
> *CI) {
> LibFunc::Func Func;
> Function *Callee = CI->getCalledFunction();
> StringRef FuncName = Callee->getName();
> + IRBuilder<> Builder(CI);
> + bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
>
> // Next check for intrinsics.
> if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
> + if (!isCallingConvC)
> + return nullptr;
> switch (II->getIntrinsicID()) {
> case Intrinsic::pow:
> - return &Pow;
> + return optimizePow(CI, Builder);
> case Intrinsic::exp2:
> - return &Exp2;
> + return optimizeExp2(CI, Builder);
> default:
> - return nullptr;
> + return nullptr;
> }
> }
>
> // Then check for known library functions.
> if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
> + // We never change the calling convention.
> + if (!ignoreCallingConv(Func) && !isCallingConvC)
> + return nullptr;
> switch (Func) {
> - case LibFunc::strcat:
> - return &StrCat;
> - case LibFunc::strncat:
> - return &StrNCat;
> - case LibFunc::strchr:
> - return &StrChr;
> - case LibFunc::strrchr:
> - return &StrRChr;
> - case LibFunc::strcmp:
> - return &StrCmp;
> - case LibFunc::strncmp:
> - return &StrNCmp;
> - case LibFunc::strcpy:
> - return &StrCpy;
> - case LibFunc::stpcpy:
> - return &StpCpy;
> - case LibFunc::strncpy:
> - return &StrNCpy;
> - case LibFunc::strlen:
> - return &StrLen;
> - case LibFunc::strpbrk:
> - return &StrPBrk;
> - case LibFunc::strtol:
> - case LibFunc::strtod:
> - case LibFunc::strtof:
> - case LibFunc::strtoul:
> - case LibFunc::strtoll:
> - case LibFunc::strtold:
> - case LibFunc::strtoull:
> - return &StrTo;
> - case LibFunc::strspn:
> - return &StrSpn;
> - case LibFunc::strcspn:
> - return &StrCSpn;
> - case LibFunc::strstr:
> - return &StrStr;
> - case LibFunc::memcmp:
> - return &MemCmp;
> - case LibFunc::memcpy:
> - return &MemCpy;
> - case LibFunc::memmove:
> - return &MemMove;
> - case LibFunc::memset:
> - return &MemSet;
> - case LibFunc::cosf:
> - case LibFunc::cos:
> - case LibFunc::cosl:
> - return &Cos;
> - case LibFunc::sinpif:
> - case LibFunc::sinpi:
> - case LibFunc::cospif:
> - case LibFunc::cospi:
> - return &SinCosPi;
> - case LibFunc::powf:
> - case LibFunc::pow:
> - case LibFunc::powl:
> - return &Pow;
> - case LibFunc::exp2l:
> - case LibFunc::exp2:
> - case LibFunc::exp2f:
> - return &Exp2;
> - case LibFunc::ffs:
> - case LibFunc::ffsl:
> - case LibFunc::ffsll:
> - return &FFS;
> - case LibFunc::abs:
> - case LibFunc::labs:
> - case LibFunc::llabs:
> - return &Abs;
> - case LibFunc::isdigit:
> - return &IsDigit;
> - case LibFunc::isascii:
> - return &IsAscii;
> - case LibFunc::toascii:
> - return &ToAscii;
> - case LibFunc::printf:
> - return &PrintF;
> - case LibFunc::sprintf:
> - return &SPrintF;
> - case LibFunc::fprintf:
> - return &FPrintF;
> - case LibFunc::fwrite:
> - return &FWrite;
> - case LibFunc::fputs:
> - return &FPuts;
> - case LibFunc::puts:
> - return &Puts;
> - case LibFunc::perror:
> - return &ErrorReporting;
> - case LibFunc::vfprintf:
> - case LibFunc::fiprintf:
> - return &ErrorReporting0;
> - case LibFunc::fputc:
> - return &ErrorReporting1;
> - case LibFunc::ceil:
> - case LibFunc::fabs:
> - case LibFunc::floor:
> - case LibFunc::rint:
> - case LibFunc::round:
> - case LibFunc::nearbyint:
> - case LibFunc::trunc:
> - if (hasFloatVersion(FuncName))
> - return &UnaryDoubleFP;
> - return nullptr;
> - case LibFunc::acos:
> - case LibFunc::acosh:
> - case LibFunc::asin:
> - case LibFunc::asinh:
> - case LibFunc::atan:
> - case LibFunc::atanh:
> - case LibFunc::cbrt:
> - case LibFunc::cosh:
> - case LibFunc::exp:
> - case LibFunc::exp10:
> - case LibFunc::expm1:
> - case LibFunc::log:
> - case LibFunc::log10:
> - case LibFunc::log1p:
> - case LibFunc::log2:
> - case LibFunc::logb:
> - case LibFunc::sin:
> - case LibFunc::sinh:
> - case LibFunc::sqrt:
> - case LibFunc::tan:
> - case LibFunc::tanh:
> - if (UnsafeFPShrink && hasFloatVersion(FuncName))
> - return &UnsafeUnaryDoubleFP;
> - return nullptr;
> - case LibFunc::fmin:
> - case LibFunc::fmax:
> - if (hasFloatVersion(FuncName))
> - return &BinaryDoubleFP;
> - return nullptr;
> - case LibFunc::memcpy_chk:
> - return &MemCpyChk;
> - default:
> - return nullptr;
> - }
> + case LibFunc::strcat:
> + return optimizeStrCat(CI, Builder);
> + case LibFunc::strncat:
> + return optimizeStrNCat(CI, Builder);
> + case LibFunc::strchr:
> + return optimizeStrChr(CI, Builder);
> + case LibFunc::strrchr:
> + return optimizeStrRChr(CI, Builder);
> + case LibFunc::strcmp:
> + return optimizeStrCmp(CI, Builder);
> + case LibFunc::strncmp:
> + return optimizeStrNCmp(CI, Builder);
> + case LibFunc::strcpy:
> + return optimizeStrCpy(CI, Builder);
> + case LibFunc::stpcpy:
> + return optimizeStpCpy(CI, Builder);
> + case LibFunc::strncpy:
> + return optimizeStrNCpy(CI, Builder);
> + case LibFunc::strlen:
> + return optimizeStrLen(CI, Builder);
> + case LibFunc::strpbrk:
> + return optimizeStrPBrk(CI, Builder);
> + case LibFunc::strtol:
> + case LibFunc::strtod:
> + case LibFunc::strtof:
> + case LibFunc::strtoul:
> + case LibFunc::strtoll:
> + case LibFunc::strtold:
> + case LibFunc::strtoull:
> + return optimizeStrTo(CI, Builder);
> + case LibFunc::strspn:
> + return optimizeStrSpn(CI, Builder);
> + case LibFunc::strcspn:
> + return optimizeStrCSpn(CI, Builder);
> + case LibFunc::strstr:
> + return optimizeStrStr(CI, Builder);
> + case LibFunc::memcmp:
> + return optimizeMemCmp(CI, Builder);
> + case LibFunc::memcpy:
> + return optimizeMemCpy(CI, Builder);
> + case LibFunc::memmove:
> + return optimizeMemMove(CI, Builder);
> + case LibFunc::memset:
> + return optimizeMemSet(CI, Builder);
> + case LibFunc::cosf:
> + case LibFunc::cos:
> + case LibFunc::cosl:
> + return optimizeCos(CI, Builder);
> + case LibFunc::sinpif:
> + case LibFunc::sinpi:
> + case LibFunc::cospif:
> + case LibFunc::cospi:
> + return optimizeSinCosPi(CI, Builder);
> + case LibFunc::powf:
> + case LibFunc::pow:
> + case LibFunc::powl:
> + return optimizePow(CI, Builder);
> + case LibFunc::exp2l:
> + case LibFunc::exp2:
> + case LibFunc::exp2f:
> + return optimizeExp2(CI, Builder);
> + case LibFunc::ffs:
> + case LibFunc::ffsl:
> + case LibFunc::ffsll:
> + return optimizeFFS(CI, Builder);
> + case LibFunc::abs:
> + case LibFunc::labs:
> + case LibFunc::llabs:
> + return optimizeAbs(CI, Builder);
> + case LibFunc::isdigit:
> + return optimizeIsDigit(CI, Builder);
> + case LibFunc::isascii:
> + return optimizeIsAscii(CI, Builder);
> + case LibFunc::toascii:
> + return optimizeToAscii(CI, Builder);
> + case LibFunc::printf:
> + return optimizePrintF(CI, Builder);
> + case LibFunc::sprintf:
> + return optimizeSPrintF(CI, Builder);
> + case LibFunc::fprintf:
> + return optimizeFPrintF(CI, Builder);
> + case LibFunc::fwrite:
> + return optimizeFWrite(CI, Builder);
> + case LibFunc::fputs:
> + return optimizeFPuts(CI, Builder);
> + case LibFunc::puts:
> + return optimizePuts(CI, Builder);
> + case LibFunc::perror:
> + return optimizeErrorReporting(CI, Builder);
> + case LibFunc::vfprintf:
> + case LibFunc::fiprintf:
> + return optimizeErrorReporting(CI, Builder, 0);
> + case LibFunc::fputc:
> + return optimizeErrorReporting(CI, Builder, 1);
> + case LibFunc::ceil:
> + case LibFunc::fabs:
> + case LibFunc::floor:
> + case LibFunc::rint:
> + case LibFunc::round:
> + case LibFunc::nearbyint:
> + case LibFunc::trunc:
> + if (hasFloatVersion(FuncName))
> + return optimizeUnaryDoubleFP(CI, Builder, false);
> + return nullptr;
> + case LibFunc::acos:
> + case LibFunc::acosh:
> + case LibFunc::asin:
> + case LibFunc::asinh:
> + case LibFunc::atan:
> + case LibFunc::atanh:
> + case LibFunc::cbrt:
> + case LibFunc::cosh:
> + case LibFunc::exp:
> + case LibFunc::exp10:
> + case LibFunc::expm1:
> + case LibFunc::log:
> + case LibFunc::log10:
> + case LibFunc::log1p:
> + case LibFunc::log2:
> + case LibFunc::logb:
> + case LibFunc::sin:
> + case LibFunc::sinh:
> + case LibFunc::sqrt:
> + case LibFunc::tan:
> + case LibFunc::tanh:
> + if (UnsafeFPShrink && hasFloatVersion(FuncName))
> + return optimizeUnaryDoubleFP(CI, Builder, true);
> + return nullptr;
> + case LibFunc::fmin:
> + case LibFunc::fmax:
> + if (hasFloatVersion(FuncName))
> + return optimizeBinaryDoubleFP(CI, Builder);
> + return nullptr;
> + case LibFunc::memcpy_chk:
> + return optimizeMemCpyChk(CI, Builder);
> + default:
> + return nullptr;
> + }
> }
>
> + if (!isCallingConvC)
> + return nullptr;
> +
> // Finally check for fortified library calls.
> if (FuncName.endswith("_chk")) {
> if (FuncName == "__memmove_chk")
> - return &MemMoveChk;
> + return optimizeMemMoveChk(CI, Builder);
> else if (FuncName == "__memset_chk")
> - return &MemSetChk;
> + return optimizeMemSetChk(CI, Builder);
> else if (FuncName == "__strcpy_chk")
> - return &StrCpyChk;
> + return optimizeStrCpyChk(CI, Builder);
> else if (FuncName == "__stpcpy_chk")
> - return &StpCpyChk;
> + return optimizeStpCpyChk(CI, Builder);
> else if (FuncName == "__strncpy_chk")
> - return &StrNCpyChk;
> + return optimizeStrNCpyChk(CI, Builder);
> else if (FuncName == "__stpncpy_chk")
> - return &StrNCpyChk;
> + return optimizeStrNCpyChk(CI, Builder);
> }
>
> return nullptr;
> -
> -}
> -
> -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
> - LibCallOptimization *LCO = lookupOptimization(CI);
> - if (LCO) {
> - IRBuilder<> Builder(CI);
> - return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
> - }
> - return nullptr;
> }
>
> LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
> const TargetLibraryInfo *TLI,
> - bool UnsafeFPShrink) {
> - Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
> -}
> -
> -LibCallSimplifier::~LibCallSimplifier() {
> - delete Impl;
> -}
> -
> -Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
> - if (CI->isNoBuiltin()) return nullptr;
> - return Impl->optimizeCall(CI);
> + bool UnsafeFPShrink) :
> + DL(DL),
> + TLI(TLI),
> + UnsafeFPShrink(UnsafeFPShrink) {
> }
>
> void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With)
> const {
> @@ -2312,8 +2079,6 @@ void LibCallSimplifier::replaceAllUsesWi
> I->eraseFromParent();
> }
>
> -}
> -
> // TODO:
> // Additional cases that we need to add to this file:
> //
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20140917/baf66502/attachment.html>
More information about the llvm-commits
mailing list