[llvm] r174904 - Extend Hexagon hardware loop generation to handle various additional cases:

Hal Finkel hfinkel at anl.gov
Fri Apr 26 20:53:53 PDT 2013


----- Original Message -----
> From: "Krzysztof Parzyszek" <kparzysz at codeaurora.org>
> To: llvm-commits at cs.uiuc.edu
> Sent: Monday, February 11, 2013 3:37:56 PM
> Subject: [llvm] r174904 - Extend Hexagon hardware loop generation to handle	various additional cases:
> 
> Author: kparzysz
> Date: Mon Feb 11 15:37:55 2013
> New Revision: 174904
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=174904&view=rev
> Log:
> Extend Hexagon hardware loop generation to handle various additional
> cases:
> - variety of compare instructions,
> - loops with no preheader,
> - arbitrary lower and upper bounds.

Krzysztof, I'm finally getting around to adapting this version for PPC, and I have a few additional comments...

> 
> Added:
>     llvm/trunk/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-cleanup.ll
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-const.ll
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-dbg.ll
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-le.ll
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-lt.ll
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-lt1.ll
>     llvm/trunk/test/CodeGen/Hexagon/hwloop-ne.ll
> Modified:
>     llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
>     llvm/trunk/lib/Target/Hexagon/HexagonHardwareLoops.cpp
>     llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp
> 
> Modified: llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/CMakeLists.txt?rev=174904&r1=174903&r2=174904&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/Hexagon/CMakeLists.txt (original)
> +++ llvm/trunk/lib/Target/Hexagon/CMakeLists.txt Mon Feb 11 15:37:55
> 2013
> @@ -18,6 +18,7 @@ add_llvm_target(HexagonCodeGen
>    HexagonExpandPredSpillCode.cpp
>    HexagonFrameLowering.cpp
>    HexagonHardwareLoops.cpp
> +  HexagonFixupHwLoops.cpp
>    HexagonMachineScheduler.cpp
>    HexagonMCInstLower.cpp
>    HexagonInstrInfo.cpp
> 
> Added: llvm/trunk/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonFixupHwLoops.cpp?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/Hexagon/HexagonFixupHwLoops.cpp (added)
> +++ llvm/trunk/lib/Target/Hexagon/HexagonFixupHwLoops.cpp Mon Feb 11
> 15:37:55 2013
> @@ -0,0 +1,183 @@
> +//===---- HexagonFixupHwLoops.cpp - Fixup HW loops too far from
> LOOPn. ----===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open
> Source
> +// License. See LICENSE.TXT for details.
> +//
> +// The loop start address in the LOOPn instruction is encoded as a
> distance
> +// from the LOOPn instruction itself.  If the start address is too
> far from
> +// the LOOPn instruction, the loop needs to be set up manually, i.e.
> via
> +// direct transfers to SAn and LCn.
> +// This pass will identify and convert such LOOPn instructions to a
> proper
> +// form.
> +//===----------------------------------------------------------------------===//
> +
> +
> +#include "llvm/ADT/DenseMap.h"
> +#include "llvm/CodeGen/MachineFunction.h"
> +#include "llvm/CodeGen/MachineFunctionPass.h"
> +#include "llvm/CodeGen/MachineInstrBuilder.h"
> +#include "llvm/CodeGen/Passes.h"
> +#include "llvm/CodeGen/RegisterScavenging.h"
> +#include "llvm/PassSupport.h"
> +#include "llvm/Target/TargetInstrInfo.h"
> +#include "Hexagon.h"
> +#include "HexagonTargetMachine.h"
> +
> +using namespace llvm;
> +
> +namespace llvm {
> +  void initializeHexagonFixupHwLoopsPass(PassRegistry&);
> +}
> +
> +namespace {
> +  struct HexagonFixupHwLoops : public MachineFunctionPass {
> +  public:
> +    static char ID;
> +
> +    HexagonFixupHwLoops() : MachineFunctionPass(ID) {
> +
>      initializeHexagonFixupHwLoopsPass(*PassRegistry::getPassRegistry());
> +    }
> +
> +    virtual bool runOnMachineFunction(MachineFunction &MF);
> +
> +    const char *getPassName() const { return "Hexagon Hardware Loop
> Fixup"; }
> +
> +    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
> +      AU.setPreservesCFG();
> +      MachineFunctionPass::getAnalysisUsage(AU);
> +    }
> +
> +  private:
> +    /// \brief Maximum distance between the loop instr and the basic
> block.
> +    /// Just an estimate.
> +    static const unsigned MAX_LOOP_DISTANCE = 200;
> +
> +    /// \brief Check the offset between each loop instruction and
> +    /// the loop basic block to determine if we can use the LOOP
> instruction
> +    /// or if we need to set the LC/SA registers explicitly.
> +    bool fixupLoopInstrs(MachineFunction &MF);
> +
> +    /// \brief Add the instruction to set the LC and SA registers
> explicitly.
> +    void convertLoopInstr(MachineFunction &MF,
> +                          MachineBasicBlock::iterator &MII,
> +                          RegScavenger &RS);
> +
> +  };
> +
> +  char HexagonFixupHwLoops::ID = 0;
> +}
> +
> +INITIALIZE_PASS(HexagonFixupHwLoops, "hwloopsfixup",
> +                "Hexagon Hardware Loops Fixup", false, false)
> +
> +FunctionPass *llvm::createHexagonFixupHwLoops() {
> +  return new HexagonFixupHwLoops();
> +}
> +
> +
> +/// \brief Returns true if the instruction is a hardware loop
> instruction.
> +static bool isHardwareLoop(const MachineInstr *MI) {
> +  return MI->getOpcode() == Hexagon::LOOP0_r ||
> +         MI->getOpcode() == Hexagon::LOOP0_i;
> +}
> +
> +
> +bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF)
> {
> +  bool Changed = fixupLoopInstrs(MF);
> +  return Changed;
> +}
> +
> +
> +/// \brief For Hexagon, if the loop label is to far from the
> +/// loop instruction then we need to set the LC0 and SA0 registers
> +/// explicitly instead of using LOOP(start,count).  This function
> +/// checks the distance, and generates register assignments if
> needed.
> +///
> +/// This function makes two passes over the basic blocks.  The first
> +/// pass computes the offset of the basic block from the start.
> +/// The second pass checks all the loop instructions.
> +bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
> +
> +  // Offset of the current instruction from the start.
> +  unsigned InstOffset = 0;
> +  // Map for each basic block to it's first instruction.
> +  DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
> +
> +  // First pass - compute the offset of each basic block.
> +  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
> +       MBB != MBBe; ++MBB) {
> +    BlockToInstOffset[MBB] = InstOffset;
> +    InstOffset += (MBB->size() * 4);
> +  }
> +
> +  // Second pass - check each loop instruction to see if it needs to
> +  // be converted.
> +  InstOffset = 0;
> +  bool Changed = false;
> +  RegScavenger RS;
> +
> +  // Loop over all the basic blocks.
> +  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
> +       MBB != MBBe; ++MBB) {
> +    InstOffset = BlockToInstOffset[MBB];
> +    RS.enterBasicBlock(MBB);
> +
> +    // Loop over all the instructions.
> +    MachineBasicBlock::iterator MIE = MBB->end();
> +    MachineBasicBlock::iterator MII = MBB->begin();
> +    while (MII != MIE) {
> +      if (isHardwareLoop(MII)) {
> +        RS.forward(MII);
> +        assert(MII->getOperand(0).isMBB() &&
> +               "Expect a basic block as loop operand");
> +        int Sub = InstOffset -
> BlockToInstOffset[MII->getOperand(0).getMBB()];
> +        unsigned Dist = Sub > 0 ? Sub : -Sub;
> +        if (Dist > MAX_LOOP_DISTANCE) {
> +          // Convert to explicity setting LC0 and SA0.
> +          convertLoopInstr(MF, MII, RS);
> +          MII = MBB->erase(MII);
> +          Changed = true;
> +        } else {
> +          ++MII;
> +        }
> +      } else {
> +        ++MII;
> +      }
> +      InstOffset += 4;
> +    }
> +  }
> +
> +  return Changed;
> +}
> +
> +
> +/// \brief convert a loop instruction to a sequence of instructions
> that
> +/// set the LC0 and SA0 register explicitly.
> +void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
> +
>                                           MachineBasicBlock::iterator
> &MII,
> +                                           RegScavenger &RS) {
> +  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
> +  MachineBasicBlock *MBB = MII->getParent();
> +  DebugLoc DL = MII->getDebugLoc();
> +  unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass,
> MII, 0);
> +
> +  // First, set the LC0 with the trip count.
> +  if (MII->getOperand(1).isReg()) {
> +    // Trip count is a register
> +    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
> +      .addReg(MII->getOperand(1).getReg());
> +  } else {
> +    // Trip count is an immediate.
> +    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
> +      .addImm(MII->getOperand(1).getImm());
> +    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
> +      .addReg(Scratch);
> +  }
> +  // Then, set the SA0 with the loop start address.
> +  BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
> +    .addMBB(MII->getOperand(0).getMBB());
> +  BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0)
> +    .addReg(Scratch);
> +}
> 
> Modified: llvm/trunk/lib/Target/Hexagon/HexagonHardwareLoops.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonHardwareLoops.cpp?rev=174904&r1=174903&r2=174904&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/Hexagon/HexagonHardwareLoops.cpp (original)
> +++ llvm/trunk/lib/Target/Hexagon/HexagonHardwareLoops.cpp Mon Feb 11
> 15:37:55 2013
> @@ -27,9 +27,7 @@
>  //===----------------------------------------------------------------------===//
>  
>  #define DEBUG_TYPE "hwloops"
> -#include "Hexagon.h"
> -#include "HexagonTargetMachine.h"
> -#include "llvm/ADT/DenseMap.h"
> +#include "llvm/ADT/SmallSet.h"
>  #include "llvm/ADT/Statistic.h"
>  #include "llvm/CodeGen/MachineDominators.h"
>  #include "llvm/CodeGen/MachineFunction.h"
> @@ -37,79 +35,194 @@
>  #include "llvm/CodeGen/MachineInstrBuilder.h"
>  #include "llvm/CodeGen/MachineLoopInfo.h"
>  #include "llvm/CodeGen/MachineRegisterInfo.h"
> -#include "llvm/CodeGen/Passes.h"
> -#include "llvm/CodeGen/RegisterScavenging.h"
> -#include "llvm/IR/Constants.h"
>  #include "llvm/PassSupport.h"
> +#include "llvm/Support/CommandLine.h"
>  #include "llvm/Support/Debug.h"
>  #include "llvm/Support/raw_ostream.h"
>  #include "llvm/Target/TargetInstrInfo.h"
> +#include "Hexagon.h"
> +#include "HexagonTargetMachine.h"
> +
>  #include <algorithm>
> +#include <vector>
>  
>  using namespace llvm;
>  
> +#ifndef NDEBUG
> +static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden,
> cl::init(-1));
> +#endif
> +
>  STATISTIC(NumHWLoops, "Number of loops converted to hardware
>  loops");
>  
> +namespace llvm {
> +  void initializeHexagonHardwareLoopsPass(PassRegistry&);
> +}
> +
>  namespace {
>    class CountValue;
>    struct HexagonHardwareLoops : public MachineFunctionPass {
> -    MachineLoopInfo       *MLI;
> -    MachineRegisterInfo   *MRI;
> -    const TargetInstrInfo *TII;
> +    MachineLoopInfo            *MLI;
> +    MachineRegisterInfo        *MRI;
> +    MachineDominatorTree       *MDT;
> +    const HexagonTargetMachine *TM;
> +    const HexagonInstrInfo     *TII;
> +    const HexagonRegisterInfo  *TRI;
> +#ifndef NDEBUG
> +    static int Counter;
> +#endif
>  
>    public:
> -    static char ID;   // Pass identification, replacement for typeid
> +    static char ID;
>  
> -    HexagonHardwareLoops() : MachineFunctionPass(ID) {}
> +    HexagonHardwareLoops() : MachineFunctionPass(ID) {
> +
>      initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
> +    }
>  
>      virtual bool runOnMachineFunction(MachineFunction &MF);
>  
>      const char *getPassName() const { return "Hexagon Hardware
>      Loops"; }
>  
>      virtual void getAnalysisUsage(AnalysisUsage &AU) const {
> -      AU.setPreservesCFG();
>        AU.addRequired<MachineDominatorTree>();
> -      AU.addPreserved<MachineDominatorTree>();
>        AU.addRequired<MachineLoopInfo>();
> -      AU.addPreserved<MachineLoopInfo>();
>        MachineFunctionPass::getAnalysisUsage(AU);
>      }
>  
>    private:
> -    /// getCanonicalInductionVariable - Check to see if the loop has
> a canonical
> -    /// induction variable.
> -    /// Should be defined in MachineLoop. Based upon version in
> class Loop.
> -    const MachineInstr *getCanonicalInductionVariable(MachineLoop
> *L) const;
> +    /// Kinds of comparisons in the compare instructions.
> +    struct Comparison {
> +      enum Kind {
> +        EQ  = 0x01,
> +        NE  = 0x02,
> +        L   = 0x04, // Less-than property.
> +        G   = 0x08, // Greater-than property.
> +        U   = 0x40, // Unsigned property.
> +        LTs = L,
> +        LEs = L | EQ,
> +        GTs = G,
> +        GEs = G | EQ,
> +        LTu = L      | U,
> +        LEu = L | EQ | U,
> +        GTu = G      | U,
> +        GEu = G | EQ | U
> +      };
> +
> +      static Kind getSwappedComparison(Kind Cmp) {
> +        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison
> operator");
> +        if ((Cmp & L) || (Cmp & G))
> +          return (Kind)(Cmp ^ (L|G));
> +        return Cmp;
> +      }
> +    };
>  
> -    /// getTripCount - Return a loop-invariant LLVM register
> indicating the
> -    /// number of times the loop will be executed.  If the
> trip-count cannot
> -    /// be determined, this return null.
> -    CountValue *getTripCount(MachineLoop *L) const;
> -
> -    /// isInductionOperation - Return true if the instruction
> matches the
> -    /// pattern for an opertion that defines an induction variable.
> -    bool isInductionOperation(const MachineInstr *MI, unsigned
> IVReg) const;
> +    /// \brief Find the register that contains the loop controlling
> +    /// induction variable.
> +    /// If successful, it will return true and set the \p Reg, \p
> IVBump
> +    /// and \p IVOp arguments.  Otherwise it will return false.
> +    /// The returned induction register is the register R that
> follows the
> +    /// following induction pattern:
> +    /// loop:
> +    ///   R = phi ..., [ R.next, LatchBlock ]
> +    ///   R.next = R + #bump
> +    ///   if (R.next < #N) goto loop
> +    /// IVBump is the immediate value added to R, and IVOp is the
> instruction
> +    /// "R.next = R + #bump".
> +    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
> +                               int64_t &IVBump, MachineInstr *&IVOp)
> const;
> +
> +    /// \brief Analyze the statements in a loop to determine if the
> loop
> +    /// has a computable trip count and, if so, return a value that
> represents
> +    /// the trip count expression.
> +    CountValue *getLoopTripCount(MachineLoop *L,
> +                                 SmallVector<MachineInstr*, 2>
> &OldInsts);
> +
> +    /// \brief Return the expression that represents the number of
> times
> +    /// a loop iterates.  The function takes the operands that
> represent the
> +    /// loop start value, loop end value, and induction value.
>  Based upon
> +    /// these operands, the function attempts to compute the trip
> count.
> +    /// If the trip count is not directly available (as an immediate
> value,
> +    /// or a register), the function will attempt to insert
> computation of it
> +    /// to the loop's preheader.
> +    CountValue *computeCount(MachineLoop *Loop,
> +                             const MachineOperand *Start,
> +                             const MachineOperand *End,
> +                             unsigned IVReg,
> +                             int64_t IVBump,
> +                             Comparison::Kind Cmp) const;
>  
> -    /// isInvalidOperation - Return true if the instruction is not
> valid within
> -    /// a hardware loop.
> +    /// \brief Return true if the instruction is not valid within a
> hardware
> +    /// loop.
>      bool isInvalidLoopOperation(const MachineInstr *MI) const;
>  
> -    /// containsInavlidInstruction - Return true if the loop
> contains an
> -    /// instruction that inhibits using the hardware loop.
> +    /// \brief Return true if the loop contains an instruction that
> inhibits
> +    /// using the hardware loop.
>      bool containsInvalidInstruction(MachineLoop *L) const;
>  
> -    /// converToHardwareLoop - Given a loop, check if we can convert
> it to a
> -    /// hardware loop.  If so, then perform the conversion and
> return true.
> +    /// \brief Given a loop, check if we can convert it to a
> hardware loop.
> +    /// If so, then perform the conversion and return true.
>      bool convertToHardwareLoop(MachineLoop *L);
>  
> +    /// \brief Return true if the instruction is now dead.
> +    bool isDead(const MachineInstr *MI,
> +                SmallVector<MachineInstr*, 1> &DeadPhis) const;
> +
> +    /// \brief Remove the instruction if it is now dead.
> +    void removeIfDead(MachineInstr *MI);
> +
> +    /// \brief Make sure that the "bump" instruction executes before
> the
> +    /// compare.  We need that for the IV fixup, so that the compare
> +    /// instruction would not use a bumped value that has not yet
> been
> +    /// defined.  If the instructions are out of order, try to
> reorder them.
> +    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
> +
> +    /// \brief Get the instruction that loads an immediate value
> into \p R,
> +    /// or 0 if such an instruction does not exist.
> +    MachineInstr *defWithImmediate(unsigned R);
> +
> +    /// \brief Get the immediate value referenced to by \p MO,
> either for
> +    /// immediate operands, or for register operands, where the
> register
> +    /// was defined with an immediate value.
> +    int64_t getImmediate(MachineOperand &MO);
> +
> +    /// \brief Reset the given machine operand to now refer to a new
> immediate
> +    /// value.  Assumes that the operand was already referencing an
> immediate
> +    /// value, either directly, or via a register.
> +    void setImmediate(MachineOperand &MO, int64_t Val);
> +
> +    /// \brief Fix the data flow of the induction varible.
> +    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
> +    ///                                     |
> +    ///                                     +-> back to phi
> +    /// where "bump" is the increment of the induction variable:
> +    ///   iv = iv + #const.
> +    /// Due to some prior code transformations, the actual flow may
> look
> +    /// like this:
> +    ///   phi -+-> bump ---> back to phi
> +    ///        |
> +    ///        +-> comparison-in-latch (against upper_bound-bump),
> +    /// i.e. the comparison that controls the loop execution may be
> using
> +    /// the value of the induction variable from before the
> increment.
> +    ///
> +    /// Return true if the loop's flow is the desired one (i.e. it's
> +    /// either been fixed, or no fixing was necessary).
> +    /// Otherwise, return false.  This can happen if the induction
> variable
> +    /// couldn't be identified, or if the value in the latch's
> comparison
> +    /// cannot be adjusted to reflect the post-bump value.
> +    bool fixupInductionVariable(MachineLoop *L);
> +
> +    /// \brief Given a loop, if it does not have a preheader, create
> one.
> +    /// Return the block that is the preheader.
> +    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
>    };
>  
>    char HexagonHardwareLoops::ID = 0;
> -
> -
> -  // CountValue class - Abstraction for a trip count of a loop. A
> -  // smaller vesrsion of the MachineOperand class without the
> concerns
> -  // of changing the operand representation.
> +#ifndef NDEBUG
> +  int HexagonHardwareLoops::Counter = 0;
> +#endif
> +
> +  /// \brief Abstraction for a trip count of a loop. A smaller
> vesrsion
> +  /// of the MachineOperand class without the concerns of changing
> the
> +  /// operand representation.
>    class CountValue {
>    public:
>      enum CountValueType {
> @@ -119,101 +232,62 @@ namespace {
>    private:
>      CountValueType Kind;
>      union Values {
> -      unsigned RegNum;
> -      int64_t ImmVal;
> -      Values(unsigned r) : RegNum(r) {}
> -      Values(int64_t i) : ImmVal(i) {}
> +      struct {
> +        unsigned Reg;
> +        unsigned Sub;
> +      } R;
> +      unsigned ImmVal;
>      } Contents;
> -    bool isNegative;
>  
>    public:
> -    CountValue(unsigned r, bool neg) : Kind(CV_Register),
> Contents(r),
> -                                       isNegative(neg) {}
> -    explicit CountValue(int64_t i) : Kind(CV_Immediate),
> Contents(i),
> -                                     isNegative(i < 0) {}
> -    CountValueType getType() const { return Kind; }
> +    explicit CountValue(CountValueType t, unsigned v, unsigned u =
> 0) {
> +      Kind = t;
> +      if (Kind == CV_Register) {
> +        Contents.R.Reg = v;
> +        Contents.R.Sub = u;
> +      } else {
> +        Contents.ImmVal = v;
> +      }
> +    }
>      bool isReg() const { return Kind == CV_Register; }
>      bool isImm() const { return Kind == CV_Immediate; }
> -    bool isNeg() const { return isNegative; }
>  
>      unsigned getReg() const {
>        assert(isReg() && "Wrong CountValue accessor");
> -      return Contents.RegNum;
> +      return Contents.R.Reg;
>      }
> -    void setReg(unsigned Val) {
> -      Contents.RegNum = Val;
> +    unsigned getSubReg() const {
> +      assert(isReg() && "Wrong CountValue accessor");
> +      return Contents.R.Sub;
>      }
> -    int64_t getImm() const {
> +    unsigned getImm() const {
>        assert(isImm() && "Wrong CountValue accessor");
> -      if (isNegative) {
> -        return -Contents.ImmVal;
> -      }
>        return Contents.ImmVal;
>      }
> -    void setImm(int64_t Val) {
> -      Contents.ImmVal = Val;
> -    }
>  
>      void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
> -      if (isReg()) { OS << PrintReg(getReg()); }
> -      if (isImm()) { OS << getImm(); }
> -    }
> -  };
> -
> -  struct HexagonFixupHwLoops : public MachineFunctionPass {
> -  public:
> -    static char ID;     // Pass identification, replacement for
> typeid.
> -
> -    HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
> -
> -    virtual bool runOnMachineFunction(MachineFunction &MF);
> -
> -    const char *getPassName() const { return "Hexagon Hardware Loop
> Fixup"; }
> -
> -    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
> -      AU.setPreservesCFG();
> -      MachineFunctionPass::getAnalysisUsage(AU);
> +      const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() :
> 0;
> +      if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI,
> Contents.R.Sub); }
> +      if (isImm()) { OS << Contents.ImmVal; }
>      }
> -
> -  private:
> -    /// Maximum distance between the loop instr and the basic block.
> -    /// Just an estimate.
> -    static const unsigned MAX_LOOP_DISTANCE = 200;
> -
> -    /// fixupLoopInstrs - Check the offset between each loop
> instruction and
> -    /// the loop basic block to determine if we can use the LOOP
> instruction
> -    /// or if we need to set the LC/SA registers explicitly.
> -    bool fixupLoopInstrs(MachineFunction &MF);
> -
> -    /// convertLoopInstr - Add the instruction to set the LC and SA
> registers
> -    /// explicitly.
> -    void convertLoopInstr(MachineFunction &MF,
> -                          MachineBasicBlock::iterator &MII,
> -                          RegScavenger &RS);
> -
>    };
> +} // end anonymous namespace
>  
> -  char HexagonFixupHwLoops::ID = 0;
>  
> -} // end anonymous namespace
> +INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
> +                      "Hexagon Hardware Loops", false, false)
> +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
> +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
> +INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
> +                    "Hexagon Hardware Loops", false, false)
>  
>  
> -/// isHardwareLoop - Returns true if the instruction is a hardware
> loop
> -/// instruction.
> +/// \brief Returns true if the instruction is a hardware loop
> instruction.
>  static bool isHardwareLoop(const MachineInstr *MI) {
>    return MI->getOpcode() == Hexagon::LOOP0_r ||
>      MI->getOpcode() == Hexagon::LOOP0_i;
>  }
>  
> -/// isCompareEquals - Returns true if the instruction is a compare
> equals
> -/// instruction with an immediate operand.
> -static bool isCompareEqualsImm(const MachineInstr *MI) {
> -  return MI->getOpcode() == Hexagon::CMPEQri;
> -}
> -
> -
> -/// createHexagonHardwareLoops - Factory for creating
> -/// the hardware loop phase.
>  FunctionPass *llvm::createHexagonHardwareLoops() {
>    return new HexagonHardwareLoops();
>  }
> @@ -224,45 +298,149 @@ bool HexagonHardwareLoops::runOnMachineF
>  
>    bool Changed = false;
>  
> -  // get the loop information
>    MLI = &getAnalysis<MachineLoopInfo>();
> -  // get the register information
>    MRI = &MF.getRegInfo();
> -  // the target specific instructio info.
> -  TII = MF.getTarget().getInstrInfo();
> +  MDT = &getAnalysis<MachineDominatorTree>();
> +  TM  = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
> +  TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo());
> +  TRI = static_cast<const
> HexagonRegisterInfo*>(TM->getRegisterInfo());
>  
>    for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
>         I != E; ++I) {
>      MachineLoop *L = *I;
> -    if (!L->getParentLoop()) {
> +    if (!L->getParentLoop())
>        Changed |= convertToHardwareLoop(L);
> -    }
>    }
>  
>    return Changed;
>  }
>  
> -/// getCanonicalInductionVariable - Check to see if the loop has a
> canonical
> -/// induction variable. We check for a simple recurrence pattern -
> an
> -/// integer recurrence that decrements by one each time through the
> loop and
> -/// ends at zero.  If so, return the phi node that corresponds to
> it.
> -///
> -/// Based upon the similar code in LoopInfo except this code is
> specific to
> -/// the machine.
> -/// This method assumes that the IndVarSimplify pass has been run by
> 'opt'.
> +
> +bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
> +                                                 unsigned &Reg,
> +                                                 int64_t &IVBump,
> +                                                 MachineInstr *&IVOp
> +                                                 ) const {
> +  MachineBasicBlock *Header = L->getHeader();
> +  MachineBasicBlock *Preheader = L->getLoopPreheader();
> +  MachineBasicBlock *Latch = L->getLoopLatch();
> +  if (!Header || !Preheader || !Latch)
> +    return false;
> +
> +  // This pair represents an induction register together with an
> immediate
> +  // value that will be added to it in each loop iteration.
> +  typedef std::pair<unsigned,int64_t> RegisterBump;
> +
> +  // Mapping:  R.next -> (R, bump), where R, R.next and bump are
> derived
> +  // from an induction operation
> +  //   R.next = R + bump
> +  // where bump is an immediate value.
> +  typedef std::map<unsigned,RegisterBump> InductionMap;

It does not look like you iterate over this map; use a DenseMap.

> +
> +  InductionMap IndMap;
> +
> +  typedef MachineBasicBlock::instr_iterator instr_iterator;
> +  for (instr_iterator I = Header->instr_begin(), E =
> Header->instr_end();
> +       I != E && I->isPHI(); ++I) {
> +    MachineInstr *Phi = &*I;
> +
> +    // Have a PHI instruction.  Get the operand that corresponds to
> the
> +    // latch block, and see if is a result of an addition of form
> "reg+imm",
> +    // where the "reg" is defined by the PHI node we are looking at.
> +    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
> +      if (Phi->getOperand(i+1).getMBB() != Latch)
> +        continue;
> +
> +      unsigned PhiOpReg = Phi->getOperand(i).getReg();
> +      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
> +      unsigned UpdOpc = DI->getOpcode();
> +      bool isAdd = (UpdOpc == Hexagon::ADD_ri);
> +
> +      if (isAdd) {
> +        // If the register operand to the add is the PHI we're
> +        // looking at, this meets the induction pattern.
> +        unsigned IndReg = DI->getOperand(1).getReg();
> +        if (MRI->getVRegDef(IndReg) == Phi) {
> +          unsigned UpdReg = DI->getOperand(0).getReg();
> +          int64_t V = DI->getOperand(2).getImm();
> +          IndMap.insert(std::make_pair(UpdReg,
> std::make_pair(IndReg, V)));
> +        }
> +      }
> +    }  // for (i)
> +  }  // for (instr)
> +
> +  SmallVector<MachineOperand,2> Cond;
> +  MachineBasicBlock *TB = 0, *FB = 0;
> +  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond,
> false);
> +  if (NotAnalyzed)
> +    return false;
> +
> +  unsigned CSz = Cond.size();
> +  assert (CSz == 1 || CSz == 2);
> +  unsigned PredR = Cond[CSz-1].getReg();
> +
> +  MachineInstr *PredI = MRI->getVRegDef(PredR);
> +  if (!PredI->isCompare())
> +    return false;
> +
> +  unsigned CmpReg1 = 0, CmpReg2 = 0;
> +  int CmpImm = 0, CmpMask = 0;
> +  bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
> +                                         CmpMask, CmpImm);
> +  // Fail if the compare was not analyzed, or it's not comparing a
> register
> +  // with an immediate value.  Not checking the mask here, since we
> handle
> +  // the individual compare opcodes (including CMPb) later on.
> +  if (!CmpAnalyzed)
> +    return false;
> +
> +  // Exactly one of the input registers to the comparison should be
> among
> +  // the induction registers.
> +  InductionMap::iterator IndMapEnd = IndMap.end();
> +  InductionMap::iterator F = IndMapEnd;
> +  if (CmpReg1 != 0) {
> +    InductionMap::iterator F1 = IndMap.find(CmpReg1);
> +    if (F1 != IndMapEnd)
> +      F = F1;
> +  }
> +  if (CmpReg2 != 0) {
> +    InductionMap::iterator F2 = IndMap.find(CmpReg2);
> +    if (F2 != IndMapEnd) {
> +      if (F != IndMapEnd)
> +        return false;
> +      F = F2;
> +    }
> +  }
> +  if (F == IndMapEnd)
> +    return false;
> +
> +  Reg = F->second.first;
> +  IVBump = F->second.second;
> +  IVOp = MRI->getVRegDef(F->first);
> +  return true;
> +}
> +
> +
> +/// \brief Analyze the statements in a loop to determine if the loop
> has
> +/// a computable trip count and, if so, return a value that
> represents
> +/// the trip count expression.
>  ///
> -const MachineInstr
> -*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L)
> const {
> +/// This function iterates over the phi nodes in the loop to check
> for
> +/// induction variable patterns that are used in the calculation for
> +/// the number of time the loop is executed.
> +CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
> +                                SmallVector<MachineInstr*, 2>
> &OldInsts) {
>    MachineBasicBlock *TopMBB = L->getTopBlock();
>    MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
>    assert(PI != TopMBB->pred_end() &&
>           "Loop must have more than one incoming edge!");
>    MachineBasicBlock *Backedge = *PI++;
> -  if (PI == TopMBB->pred_end()) return 0;  // dead loop
> +  if (PI == TopMBB->pred_end())  // dead loop?
> +    return 0;
>    MachineBasicBlock *Incoming = *PI++;
> -  if (PI != TopMBB->pred_end()) return 0;  // multiple backedges?
> +  if (PI != TopMBB->pred_end())  // multiple backedges?
> +    return 0;
>  
> -  // make sure there is one incoming and one backedge and determine
> which
> +  // Make sure there is one incoming and one backedge and determine
> which
>    // is which.
>    if (L->contains(Incoming)) {
>      if (L->contains(Backedge))
> @@ -271,139 +449,433 @@ const MachineInstr
>    } else if (!L->contains(Backedge))
>      return 0;
>  
> -  // Loop over all of the PHI nodes, looking for a canonical
> induction variable:
> -  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
> -  //   - The recurrence comes from the backedge.
> -  //   - the definition is an induction operatio.n
> -  for (MachineBasicBlock::iterator I = TopMBB->begin(), E =
> TopMBB->end();
> -       I != E && I->isPHI(); ++I) {
> -    const MachineInstr *MPhi = &*I;
> -    unsigned DefReg = MPhi->getOperand(0).getReg();
> -    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
> -      // Check each operand for the value from the backedge.
> -      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
> -      if (L->contains(MBB)) { // operands comes from the backedge
> -        // Check if the definition is an induction operation.
> -        const MachineInstr *DI =
> MRI->getVRegDef(MPhi->getOperand(i).getReg());
> -        if (isInductionOperation(DI, DefReg)) {
> -          return MPhi;
> -        }
> -      }
> -    }
> +  // Look for the cmp instruction to determine if we can get a
> useful trip
> +  // count.  The trip count can be either a register or an
> immediate.  The
> +  // location of the value depends upon the type (reg or imm).
> +  MachineBasicBlock *Latch = L->getLoopLatch();
> +  if (!Latch)
> +    return 0;
> +
> +  unsigned IVReg = 0;
> +  int64_t IVBump = 0;
> +  MachineInstr *IVOp;
> +  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
> +  if (!FoundIV)
> +    return 0;
> +
> +  MachineBasicBlock *Preheader = L->getLoopPreheader();
> +
> +  MachineOperand *InitialValue = 0;
> +  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
> +  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2)
> {
> +    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
> +    if (MBB == Preheader)
> +      InitialValue = &IV_Phi->getOperand(i);
> +    else if (MBB == Latch)
> +      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after
> bump.
>    }
> -  return 0;
> -}
> +  if (!InitialValue)
> +    return 0;
>  
> -/// getTripCount - Return a loop-invariant LLVM value indicating the
> -/// number of times the loop will be executed.  The trip count can
> -/// be either a register or a constant value.  If the trip-count
> -/// cannot be determined, this returns null.
> -///
> -/// We find the trip count from the phi instruction that defines the
> -/// induction variable.  We follow the links to the CMP instruction
> -/// to get the trip count.
> -///
> -/// Based upon getTripCount in LoopInfo.
> -///
> -CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const
> {
> -  // Check that the loop has a induction variable.
> -  const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
> -  if (IV_Inst == 0) return 0;
> -
> -  // Canonical loops will end with a 'cmpeq_ri IV, Imm',
> -  //  if Imm is 0, get the count from the PHI opnd
> -  //  if Imm is -M, than M is the count
> -  //  Otherwise, Imm is the count
> -  const MachineOperand *IV_Opnd;
> -  const MachineOperand *InitialValue;
> -  if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
> -    InitialValue = &IV_Inst->getOperand(1);
> -    IV_Opnd = &IV_Inst->getOperand(3);
> -  } else {
> -    InitialValue = &IV_Inst->getOperand(3);
> -    IV_Opnd = &IV_Inst->getOperand(1);
> +  SmallVector<MachineOperand,2> Cond;
> +  MachineBasicBlock *TB = 0, *FB = 0;
> +  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond,
> false);
> +  if (NotAnalyzed)
> +    return 0;
> +
> +  MachineBasicBlock *Header = L->getHeader();
> +  // TB must be non-null.  If FB is also non-null, one of them must
> be
> +  // the header.  Otherwise, branch to TB could be exiting the loop,
> and
> +  // the fall through can go to the header.
> +  assert (TB && "Latch block without a branch?");
> +  assert ((!FB || TB == Header || FB == Header) && "Branches not to
> header?");
> +  if (!TB || (FB && TB != Header && FB != Header))
> +    return 0;
> +
> +  // Branches of form "if (!P) ..." cause
> HexagonInstrInfo::AnalyzeBranch
> +  // to put imm(0), followed by P in the vector Cond.
> +  // If TB is not the header, it means that the "not-taken" path
> must lead
> +  // to the header.
> +  bool Negated = (Cond.size() > 1) ^ (TB != Header);
> +  unsigned PredReg = Cond[Cond.size()-1].getReg();
> +  MachineInstr *CondI = MRI->getVRegDef(PredReg);
> +  unsigned CondOpc = CondI->getOpcode();
> +
> +  unsigned CmpReg1 = 0, CmpReg2 = 0;
> +  int Mask = 0, ImmValue = 0;
> +  bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
> +                                         Mask, ImmValue);
> +  if (!AnalyzedCmp)
> +    return 0;
> +
> +  // The comparison operator type determines how we compute the loop
> +  // trip count.
> +  OldInsts.push_back(CondI);
> +  OldInsts.push_back(IVOp);
> +
> +  // Sadly, the following code gets information based on the
> position
> +  // of the operands in the compare instruction.  This has to be
> done
> +  // this way, because the comparisons check for a specific
> relationship
> +  // between the operands (e.g. is-less-than), rather than to find
> out
> +  // what relationship the operands are in (as on PPC).
> +  Comparison::Kind Cmp;
> +  bool isSwapped = false;
> +  const MachineOperand &Op1 = CondI->getOperand(1);
> +  const MachineOperand &Op2 = CondI->getOperand(2);
> +  const MachineOperand *EndValue = 0;
> +
> +  if (Op1.isReg()) {
> +    if (Op2.isImm() || Op1.getReg() == IVReg)
> +      EndValue = &Op2;
> +    else {
> +      EndValue = &Op1;
> +      isSwapped = true;
> +    }
>    }
>  
> -  // Look for the cmp instruction to determine if we
> -  // can get a useful trip count.  The trip count can
> -  // be either a register or an immediate.  The location
> -  // of the value depends upon the type (reg or imm).
> -  for (MachineRegisterInfo::reg_iterator
> -       RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
> -       RI != RE; ++RI) {
> -    IV_Opnd = &RI.getOperand();
> -    const MachineInstr *MI = IV_Opnd->getParent();
> -    if (L->contains(MI) && isCompareEqualsImm(MI)) {
> -      const MachineOperand &MO = MI->getOperand(2);
> -      assert(MO.isImm() && "IV Cmp Operand should be 0");
> -      int64_t ImmVal = MO.getImm();
> -
> -      const MachineInstr *IV_DefInstr =
> MRI->getVRegDef(IV_Opnd->getReg());
> -      assert(L->contains(IV_DefInstr->getParent()) &&
> -             "IV definition should occurs in loop");
> -      int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
> -
> -      if (ImmVal == 0) {
> -        // Make sure the induction variable changes by one on each
> iteration.
> -        if (iv_value != 1 && iv_value != -1) {
> +  if (!EndValue)
> +    return 0;
> +
> +  switch (CondOpc) {
> +    case Hexagon::CMPEQri:
> +    case Hexagon::CMPEQrr:
> +      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
> +      break;
> +    case Hexagon::CMPLTrr:
> +      Cmp = !Negated ? Comparison::LTs : Comparison::GEs;
> +      break;
> +    case Hexagon::CMPLTUrr:
> +      Cmp = !Negated ? Comparison::LTu : Comparison::GEu;
> +      break;
> +    case Hexagon::CMPGTUri:
> +    case Hexagon::CMPGTUrr:
> +      Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
> +      break;
> +    case Hexagon::CMPGTri:
> +    case Hexagon::CMPGTrr:
> +      Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
> +      break;
> +    // Very limited support for byte/halfword compares.
> +    case Hexagon::CMPbEQri_V4:
> +    case Hexagon::CMPhEQri_V4: {
> +      if (IVBump != 1)
> +        return 0;
> +
> +      int64_t InitV, EndV;
> +      // Since the comparisons are "ri", the EndValue should be an
> +      // immediate.  Check it just in case.
> +      assert(EndValue->isImm() && "Unrecognized latch comparison");
> +      EndV = EndValue->getImm();
> +      // Allow InitialValue to be a register defined with an
> immediate.
> +      if (InitialValue->isReg()) {
> +        if (!defWithImmediate(InitialValue->getReg()))
>            return 0;
> -        }
> -        return new CountValue(InitialValue->getReg(), iv_value > 0);
> +        InitV = getImmediate(*InitialValue);
>        } else {
> -        assert(InitialValue->isReg() && "Expecting register for init
> value");
> -        const MachineInstr *DefInstr =
> MRI->getVRegDef(InitialValue->getReg());
> -        if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) {
> -          int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
> -          if ((count % iv_value) != 0) {
> -            return 0;
> -          }
> -          return new CountValue(count/iv_value);
> -        }
> +        assert(InitialValue->isImm());
> +        InitV = InitialValue->getImm();
> +      }
> +      if (InitV >= EndV)
> +        return 0;
> +      if (CondOpc == Hexagon::CMPbEQri_V4) {
> +        if (!isInt<8>(InitV) || !isInt<8>(EndV))
> +          return 0;
> +      } else {  // Hexagon::CMPhEQri_V4
> +        if (!isInt<16>(InitV) || !isInt<16>(EndV))
> +          return 0;
>        }
> +      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
> +      break;
>      }
> +    default:
> +      return 0;
>    }
> -  return 0;
> +
> +  if (isSwapped)
> +   Cmp = Comparison::getSwappedComparison(Cmp);
> +
> +  if (InitialValue->isReg()) {
> +    unsigned R = InitialValue->getReg();
> +    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
> +    if (!MDT->properlyDominates(DefBB, Header))
> +      return 0;
> +    OldInsts.push_back(MRI->getVRegDef(R));
> +  }
> +  if (EndValue->isReg()) {
> +    unsigned R = EndValue->getReg();
> +    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
> +    if (!MDT->properlyDominates(DefBB, Header))
> +      return 0;

Should we also have OldInsts.push_back(MRI->getVRegDef(R)); here, in case the ending value is really defined by a TFRI (you check for this below).

> +  }
> +
> +  return computeCount(L, InitialValue, EndValue, IVReg, IVBump,
> Cmp);
>  }
>  
> -/// isInductionOperation - return true if the operation is matches
> the
> -/// pattern that defines an induction variable:
> -///    add iv, c
> -///
> -bool
> -HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI,
> -                                           unsigned IVReg) const {
> -  return (MI->getOpcode() ==
> -          Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg);
> +/// \brief Helper function that returns the expression that
> represents the
> +/// number of times a loop iterates.  The function takes the
> operands that
> +/// represent the loop start value, loop end value, and induction
> value.
> +/// Based upon these operands, the function attempts to compute the
> trip count.
> +CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
> +                                               const MachineOperand
> *Start,
> +                                               const MachineOperand
> *End,
> +                                               unsigned IVReg,
> +                                               int64_t IVBump,
> +                                               Comparison::Kind Cmp)
> const {
> +  // Cannot handle comparison EQ, i.e. while (A == B).
> +  if (Cmp == Comparison::EQ)
> +    return 0;
> +
> +  // Check if either the start or end values are an assignment of an
> immediate.
> +  // If so, use the immediate value rather than the register.
> +  if (Start->isReg()) {

Can Start be anything else here? End can be an immediate from the comparison, but it looks like Start just comes from an MI-level PHI (input) and so must be a register.

> +    const MachineInstr *StartValInstr =
> MRI->getVRegDef(Start->getReg());
> +    if (StartValInstr && StartValInstr->getOpcode() ==
> Hexagon::TFRI)
> +      Start = &StartValInstr->getOperand(1);
> +  }
> +  if (End->isReg()) {
> +    const MachineInstr *EndValInstr =
> MRI->getVRegDef(End->getReg());
> +    if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI)
> +      End = &EndValInstr->getOperand(1);
> +  }
> +
> +  assert (Start->isReg() || Start->isImm());
> +  assert (End->isReg() || End->isImm());
> +
> +  bool CmpLess =     Cmp & Comparison::L;
> +  bool CmpGreater =  Cmp & Comparison::G;
> +  bool CmpHasEqual = Cmp & Comparison::EQ;
> +
> +  // Avoid certain wrap-arounds.  This doesn't detect all
> wrap-arounds.
> +  // If loop executes while iv is "less" with the iv value going
> down, then
> +  // the iv must wrap.
> +  if (CmpLess && IVBump < 0)
> +    return 0;
> +  // If loop executes while iv is "greater" with the iv value going
> up, then
> +  // the iv must wrap.
> +  if (CmpGreater && IVBump > 0)
> +    return 0;
> +
> +  if (Start->isImm() && End->isImm()) {
> +    // Both, start and end are immediates.
> +    int64_t StartV = Start->getImm();
> +    int64_t EndV = End->getImm();
> +    int64_t Dist = EndV - StartV;
> +    if (Dist == 0)
> +      return 0;
> +
> +    bool Exact = (Dist % IVBump) == 0;
> +
> +    if (Cmp == Comparison::NE) {
> +      if (!Exact)
> +        return 0;
> +      if ((Dist < 0) ^ (IVBump < 0))
> +        return 0;
> +    }
> +
> +    // For comparisons that include the final value (i.e. include
> equality
> +    // with the final value), we need to increase the distance by 1.
> +    if (CmpHasEqual)
> +      Dist = Dist > 0 ? Dist+1 : Dist-1;
> +
> +    // assert (CmpLess => Dist > 0);
> +    assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
> +    // assert (CmpGreater => Dist < 0);
> +    assert ((!CmpGreater || Dist < 0) && "Loop should never
> iterate!");
> +
> +    // "Normalized" distance, i.e. with the bump set to +-1.
> +    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump-1)) /   IVBump
> +                               :  (-Dist + (-IVBump-1)) / (-IVBump);
> +    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same
> sign.");
> +
> +    uint64_t Count = Dist1;
> +
> +    if (Count > 0xFFFFFFFFULL)
> +      return 0;

This can be if (!isUInt<32>(Count)).

> +
> +    return new CountValue(CountValue::CV_Immediate, Count);
> +  }
> +
> +  // A general case: Start and End are some values, but the actual
> +  // iteration count may not be available.  If it is not, insert
> +  // a computation of it into the preheader.
> +
> +  // If the induction variable bump is not a power of 2, quit.
> +  // Othwerise we'd need a general integer division.
> +  if (!isPowerOf2_64(abs(IVBump)))
> +    return 0;
> +
> +  MachineBasicBlock *PH = Loop->getLoopPreheader();
> +  assert (PH && "Should have a preheader by now");
> +  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
> +  DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
> +                                         : DebugLoc();
> +
> +  // If Start is an immediate and End is a register, the trip count
> +  // will be "reg - imm".  Hexagon's "subtract immediate"
> instruction
> +  // is actually "reg + -imm".
> +
> +  // If the loop IV is going downwards, i.e. if the bump is
> negative,
> +  // then the iteration count (computed as End-Start) will need to
> be
> +  // negated.  To avoid the negation, just swap Start and End.
> +  if (IVBump < 0) {
> +    std::swap(Start, End);
> +    IVBump = -IVBump;
> +  }
> +  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
> +  // Signedness, and "including equality" are preserved.
> +
> +  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
> +  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
> +
> +  int64_t StartV = 0, EndV = 0;
> +  if (Start->isImm())
> +    StartV = Start->getImm();
> +  if (End->isImm())
> +    EndV = End->getImm();
> +
> +  int64_t AdjV = 0;
> +  // To compute the iteration count, we would need this computation:
> +  //   Count = (End - Start + (IVBump-1)) / IVBump
> +  // or, when CmpHasEqual:
> +  //   Count = (End - Start + (IVBump-1)+1) / IVBump
> +  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
> +  // generating an instruction specifically to add it if we can
> adjust
> +  // the immediate values for Start or End.
> +
> +  if (CmpHasEqual) {
> +    // Need to add 1 to the total iteration count.
> +    if (Start->isImm())
> +      StartV--;
> +    else if (End->isImm())
> +      EndV++;
> +    else
> +      AdjV += 1;
> +  }
> +
> +  if (Cmp != Comparison::NE) {
> +    if (Start->isImm())
> +      StartV -= (IVBump-1);
> +    else if (End->isImm())
> +      EndV += (IVBump-1);
> +    else
> +      AdjV += (IVBump-1);
> +  }
> +
> +  unsigned R = 0, SR = 0;
> +  if (Start->isReg()) {
> +    R = Start->getReg();
> +    SR = Start->getSubReg();
> +  } else {
> +    R = End->getReg();
> +    SR = End->getSubReg();
> +  }
> +  const TargetRegisterClass *RC = MRI->getRegClass(R);
> +  // Hardware loops cannot handle 64-bit registers.  If it's a
> double
> +  // register, it has to have a subregister.
> +  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
> +    return 0;
> +  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
> +
> +  // Compute DistR (register with the distance between Start and
> End).
> +  unsigned DistR, DistSR;
> +
> +  // Avoid special case, where the start value is an imm(0).
> +  if (Start->isImm() && StartV == 0) {
> +    DistR = End->getReg();
> +    DistSR = End->getSubReg();
> +  } else {
> +    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) :
> +                              (RegToImm ? TII->get(Hexagon::SUB_ri)
> :
> +
>                                          TII->get(Hexagon::ADD_ri));
> +    unsigned SubR = MRI->createVirtualRegister(IntRC);
> +    MachineInstrBuilder SubIB =
> +      BuildMI(*PH, InsertPos, DL, SubD, SubR);
> +
> +    if (RegToReg) {
> +      SubIB.addReg(End->getReg(), 0, End->getSubReg())
> +           .addReg(Start->getReg(), 0, Start->getSubReg());
> +    } else if (RegToImm) {
> +      SubIB.addImm(EndV)
> +           .addReg(Start->getReg(), 0, Start->getSubReg());
> +    } else { // ImmToReg
> +      SubIB.addReg(End->getReg(), 0, End->getSubReg())
> +           .addImm(-StartV);
> +    }
> +    DistR = SubR;
> +    DistSR = 0;
> +  }
> +
> +  // From DistR, compute AdjR (register with the adjusted distance).
> +  unsigned AdjR, AdjSR;
> +
> +  if (AdjV == 0) {
> +    AdjR = DistR;
> +    AdjSR = DistSR;
> +  } else {
> +    // Generate CountR = ADD DistR, AdjVal
> +    unsigned AddR = MRI->createVirtualRegister(IntRC);
> +    const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri);
> +    BuildMI(*PH, InsertPos, DL, AddD, AddR)
> +      .addReg(DistR, 0, DistSR)
> +      .addImm(AdjV);
> +
> +    AdjR = AddR;
> +    AdjSR = 0;
> +  }
> +
> +  // From AdjR, compute CountR (register with the final count).
> +  unsigned CountR, CountSR;
> +
> +  if (IVBump == 1) {
> +    CountR = AdjR;
> +    CountSR = AdjSR;
> +  } else {
> +    // The IV bump is a power of two. Log_2(IV bump) is the shift
> amount.
> +    unsigned Shift = Log2_32(IVBump);
> +
> +    // Generate NormR = LSR DistR, Shift.

This comment should say LSR AdjR, Shift.

> +    unsigned LsrR = MRI->createVirtualRegister(IntRC);
> +    const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri);
> +    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
> +      .addReg(AdjR, 0, AdjSR)
> +      .addImm(Shift);
> +
> +    CountR = LsrR;
> +    CountSR = 0;
> +  }
> +
> +  return new CountValue(CountValue::CV_Register, CountR, CountSR);
>  }
>  
> -/// isInvalidOperation - Return true if the operation is invalid
> within
> -/// hardware loop.
> -bool
> -HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI)
> const {
> +
> +/// \brief Return true if the operation is invalid within hardware
> loop.
> +bool HexagonHardwareLoops::isInvalidLoopOperation(
> +      const MachineInstr *MI) const {
>  
>    // call is not allowed because the callee may use a hardware loop
> -  if (MI->getDesc().isCall()) {
> +  if (MI->getDesc().isCall())
>      return true;
> -  }
> +
>    // do not allow nested hardware loops
> -  if (isHardwareLoop(MI)) {
> +  if (isHardwareLoop(MI))
>      return true;
> -  }
> +
>    // check if the instruction defines a hardware loop register
>    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>      const MachineOperand &MO = MI->getOperand(i);
> -    if (MO.isReg() && MO.isDef() &&
> -        (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1
> ||
> -         MO.getReg() == Hexagon::SA0 || MO.getReg() ==
> Hexagon::SA0)) {
> +    if (!MO.isReg() || !MO.isDef())
> +      continue;
> +    unsigned R = MO.getReg();
> +    if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
> +        R == Hexagon::SA0 || R == Hexagon::SA1)
>        return true;
> -    }
>    }
>    return false;
>  }
>  
> -/// containsInvalidInstruction - Return true if the loop contains
> -/// an instruction that inhibits the use of the hardware loop
> function.
> -///
> +
> +/// \brief - Return true if the loop contains an instruction that
> inhibits
> +/// the use of the hardware loop function.
>  bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop
>  *L) const {
>    const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
>    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
> @@ -411,58 +883,184 @@ bool HexagonHardwareLoops::containsInval
>      for (MachineBasicBlock::iterator
>             MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
>        const MachineInstr *MI = &*MII;
> -      if (isInvalidLoopOperation(MI)) {
> +      if (isInvalidLoopOperation(MI))
>          return true;
> -      }
>      }
>    }
>    return false;
>  }
>  
> -/// converToHardwareLoop - check if the loop is a candidate for
> -/// converting to a hardware loop.  If so, then perform the
> -/// transformation.
> +
> +/// \brief Returns true if the instruction is dead.  This was
> essentially
> +/// copied from DeadMachineInstructionElim::isDead, but with special
> cases
> +/// for inline asm, physical registers and instructions with side
> effects
> +/// removed.
> +bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
> +                             SmallVector<MachineInstr*, 1>
> &DeadPhis) const {
> +  // Examine each operand.
> +  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
> +    const MachineOperand &MO = MI->getOperand(i);
> +    if (!MO.isReg() || !MO.isDef())
> +      continue;
> +
> +    unsigned Reg = MO.getReg();
> +    if (MRI->use_nodbg_empty(Reg))
> +      continue;
> +
> +    typedef MachineRegisterInfo::use_nodbg_iterator
> use_nodbg_iterator;
> +
> +    // This instruction has users, but if the only user is the phi
> node for the
> +    // parent block, and the only use of that phi node is this
> instruction, then
> +    // this instruction is dead: both it (and the phi node) can be
> removed.
> +    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
> +    use_nodbg_iterator End = MRI->use_nodbg_end();
> +    if (llvm::next(I) != End ||
> !I.getOperand().getParent()->isPHI())
> +      return false;
> +
> +    MachineInstr *OnePhi = I.getOperand().getParent();
> +    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j)
> {
> +      const MachineOperand &OPO = OnePhi->getOperand(j);
> +      if (!OPO.isReg() || !OPO.isDef())
> +        continue;
> +
> +      unsigned OPReg = OPO.getReg();
> +      use_nodbg_iterator nextJ;
> +      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
> +           J != End; J = nextJ) {
> +        nextJ = llvm::next(J);
> +        MachineOperand &Use = J.getOperand();
> +        MachineInstr *UseMI = Use.getParent();
> +
> +        // If the phi node has a user that is not MI, bail...
> +        if (MI != UseMI)
> +          return false;
> +      }
> +    }
> +    DeadPhis.push_back(OnePhi);
> +  }
> +
> +  // If there are no defs with uses, the instruction is dead.
> +  return true;
> +}
> +
> +void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
> +  // This procedure was essentially copied from
> DeadMachineInstructionElim.
> +
> +  SmallVector<MachineInstr*, 1> DeadPhis;
> +  if (isDead(MI, DeadPhis)) {
> +    DEBUG(dbgs() << "HW looping will remove: " << *MI);
> +
> +    // It is possible that some DBG_VALUE instructions refer to this
> +    // instruction.  Examine each def operand for such references;
> +    // if found, mark the DBG_VALUE as undef (but don't delete it).
> +    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
> +      const MachineOperand &MO = MI->getOperand(i);
> +      if (!MO.isReg() || !MO.isDef())
> +        continue;
> +      unsigned Reg = MO.getReg();
> +      MachineRegisterInfo::use_iterator nextI;
> +      for (MachineRegisterInfo::use_iterator I =
> MRI->use_begin(Reg),
> +           E = MRI->use_end(); I != E; I = nextI) {
> +        nextI = llvm::next(I);  // I is invalidated by the setReg
> +        MachineOperand &Use = I.getOperand();
> +        MachineInstr *UseMI = Use.getParent();
> +        if (UseMI == MI)
> +          continue;
> +        if (Use.isDebug())
> +          UseMI->getOperand(0).setReg(0U);
> +        // This may also be a "instr -> phi -> instr" case which can
> +        // be removed too.
> +      }
> +    }
> +
> +    MI->eraseFromParent();
> +    for (unsigned i = 0; i < DeadPhis.size(); ++i)
> +      DeadPhis[i]->eraseFromParent();
> +  }
> +}
> +
> +/// \brief Check if the loop is a candidate for converting to a
> hardware
> +/// loop.  If so, then perform the transformation.
>  ///
> -/// This function works on innermost loops first.  A loop can
> -/// be converted if it is a counting loop; either a register
> -/// value or an immediate.
> +/// This function works on innermost loops first.  A loop can be
> converted
> +/// if it is a counting loop; either a register value or an
> immediate.
>  ///
> -/// The code makes several assumptions about the representation
> -/// of the loop in llvm.
> +/// The code makes several assumptions about the representation of
> the loop
> +/// in llvm.
>  bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
> +  // This is just for sanity.
> +  assert(L->getHeader() && "Loop without a header?");
> +
>    bool Changed = false;
>    // Process nested loops first.
> -  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E;
> ++I) {
> +  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E;
> ++I)
>      Changed |= convertToHardwareLoop(*I);
> -  }
> +
>    // If a nested loop has been converted, then we can't convert this
>    loop.
> -  if (Changed) {
> +  if (Changed)
>      return Changed;
> +
> +#ifndef NDEBUG
> +  // Stop trying after reaching the limit (if any).
> +  int Limit = HWLoopLimit;
> +  if (Limit >= 0) {
> +    if (Counter >= HWLoopLimit)
> +      return false;
> +    Counter++;
>    }
> -  // Are we able to determine the trip count for the loop?
> -  CountValue *TripCount = getTripCount(L);
> -  if (TripCount == 0) {
> -    return false;
> -  }
> +#endif
> +
>    // Does the loop contain any invalid instructions?
> -  if (containsInvalidInstruction(L)) {
> +  if (containsInvalidInstruction(L))
>      return false;
> -  }
> -  MachineBasicBlock *Preheader = L->getLoopPreheader();
> -  // No preheader means there's not place for the loop instr.
> -  if (Preheader == 0) {
> +
> +  // Is the induction variable bump feeding the latch condition?
> +  if (!fixupInductionVariable(L))
>      return false;
> -  }
> -  MachineBasicBlock::iterator InsertPos =
> Preheader->getFirstTerminator();
>  
>    MachineBasicBlock *LastMBB = L->getExitingBlock();
>    // Don't generate hw loop if the loop has more than one exit.
> -  if (LastMBB == 0) {
> +  if (LastMBB == 0)
>      return false;
> -  }
> +
>    MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
> -  if (LastI == LastMBB->end()) {
> +  if (LastI == LastMBB->end())
> +    return false;
> +
> +  // Ensure the loop has a preheader: the loop instruction will be
> +  // placed there.
> +  bool NewPreheader = false;
> +  MachineBasicBlock *Preheader = L->getLoopPreheader();
> +  if (!Preheader) {
> +    Preheader = createPreheaderForLoop(L);
> +    if (!Preheader)
> +      return false;
> +    NewPreheader = true;
> +  }
> +  MachineBasicBlock::iterator InsertPos =
> Preheader->getFirstTerminator();
> +
> +  SmallVector<MachineInstr*, 2> OldInsts;
> +  // Are we able to determine the trip count for the loop?
> +  CountValue *TripCount = getLoopTripCount(L, OldInsts);
> +  if (TripCount == 0)
>      return false;
> +
> +  // Is the trip count available in the preheader?
> +  if (TripCount->isReg()) {
> +    // There will be a use of the register inserted into the
> preheader,
> +    // so make sure that the register is actually defined at that
> point.
> +    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
> +    MachineBasicBlock *BBDef = TCDef->getParent();
> +    if (!NewPreheader) {
> +      if (!MDT->dominates(BBDef, Preheader))
> +        return false;
> +    } else {
> +      // If we have just created a preheader, the dominator tree
> won't be
> +      // aware of it.  Check if the definition of the register
> dominates
> +      // the header, but is not the header itself.
> +      if (!MDT->properlyDominates(BBDef, L->getHeader()))
> +        return false;
> +    }
>    }
>  
>    // Determine the loop start.
> @@ -470,53 +1068,53 @@ bool HexagonHardwareLoops::convertToHard
>    if (L->getLoopLatch() != LastMBB) {
>      // When the exit and latch are not the same, use the latch block
>      as the
>      // start.
> -    // The loop start address is used only after the 1st iteration,
> and the loop
> -    // latch may contains instrs. that need to be executed after the
> 1st iter.
> +    // The loop start address is used only after the 1st iteration,
> and the
> +    // loop latch may contains instrs. that need to be executed
> after the
> +    // first iteration.
>      LoopStart = L->getLoopLatch();
>      // Make sure the latch is a successor of the exit, otherwise it
>      won't work.
> -    if (!LastMBB->isSuccessor(LoopStart)) {
> +    if (!LastMBB->isSuccessor(LoopStart))
>        return false;
> -    }
>    }
>  
> -  // Convert the loop to a hardware loop
> +  // Convert the loop to a hardware loop.
>    DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
> -  DebugLoc InsertPosDL;
> +  DebugLoc DL;
>    if (InsertPos != Preheader->end())
> -    InsertPosDL = InsertPos->getDebugLoc();
> +    DL = InsertPos->getDebugLoc();
>  
>    if (TripCount->isReg()) {
>      // Create a copy of the loop count register.
> -    MachineFunction *MF = LastMBB->getParent();
> -    const TargetRegisterClass *RC =
> -      MF->getRegInfo().getRegClass(TripCount->getReg());
> -    unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC);
> -    BuildMI(*Preheader, InsertPos, InsertPosDL,
> -            TII->get(TargetOpcode::COPY),
> CountReg).addReg(TripCount->getReg());
> -    if (TripCount->isNeg()) {
> -      unsigned CountReg1 = CountReg;
> -      CountReg = MF->getRegInfo().createVirtualRegister(RC);
> -      BuildMI(*Preheader, InsertPos, InsertPosDL,
> -              TII->get(Hexagon::NEG), CountReg).addReg(CountReg1);
> -    }
> -
> +    unsigned CountReg =
> MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
> +    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY),
> CountReg)
> +      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
>      // Add the Loop instruction to the beginning of the loop.
> -    BuildMI(*Preheader, InsertPos, InsertPosDL,
> -
>            TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg);
> +    BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
> +      .addMBB(LoopStart)
> +      .addReg(CountReg);
>    } else {
> -    assert(TripCount->isImm() && "Expecting immedate vaule for trip
> count");
> -    // Add the Loop immediate instruction to the beginning of the
> loop.
> +    assert(TripCount->isImm() && "Expecting immediate value for trip
> count");
> +    // Add the Loop immediate instruction to the beginning of the
> loop,
> +    // if the immediate fits in the instructions.  Otherwise, we
> need to
> +    // create a new virtual register.
>      int64_t CountImm = TripCount->getImm();
> -    BuildMI(*Preheader, InsertPos, InsertPosDL,
> -
>            TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm);
> +    if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) {
> +      unsigned CountReg =
> MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
> +      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI),
> CountReg)
> +        .addImm(CountImm);
> +      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
> +        .addMBB(LoopStart).addReg(CountReg);
> +    } else
> +      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i))
> +        .addMBB(LoopStart).addImm(CountImm);
>    }
>  
> -  // Make sure the loop start always has a reference in the CFG.  We
> need to
> -  // create a BlockAddress operand to get this mechanism to work
> both the
> +  // Make sure the loop start always has a reference in the CFG.  We
> need
> +  // to create a BlockAddress operand to get this mechanism to work
> both the
>    // MachineBasicBlock and BasicBlock objects need the flag set.
>    LoopStart->setHasAddressTaken();
>    // This line is needed to set the hasAddressTaken flag on the
>    BasicBlock
> -  // object
> +  // object.
>    BlockAddress::get(const_cast<BasicBlock
>    *>(LoopStart->getBasicBlock()));

I'd found from working with the first version of this pass, ported to PPC, that I needed to add the counter register as live-in to all non-preheader loop blocks (or at least to LastMBB). Do you need to do something similar here? [for machine-code verification.]

>  
>    // Replace the loop branch with an endloop instruction.
> @@ -529,13 +1127,12 @@ bool HexagonHardwareLoops::convertToHard
>    //  - a conditional branch to the loop start.
>    if (LastI->getOpcode() == Hexagon::JMP_c ||
>        LastI->getOpcode() == Hexagon::JMP_cNot) {
> -    // delete one and change/add an uncond. branch to out of the
> loop
> +    // Delete one and change/add an uncond. branch to out of the
> loop.
>      MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
>      LastI = LastMBB->erase(LastI);
>      if (!L->contains(BranchTarget)) {
> -      if (LastI != LastMBB->end()) {
> -        TII->RemoveBranch(*LastMBB);
> -      }
> +      if (LastI != LastMBB->end())
> +        LastI = LastMBB->erase(LastI);
>        SmallVector<MachineOperand, 0> Cond;
>        TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL);
>      }
> @@ -545,110 +1142,414 @@ bool HexagonHardwareLoops::convertToHard
>    }
>    delete TripCount;
>  
> +  // The induction operation and the comparison may now be
> +  // unneeded. If these are unneeded, then remove them.
> +  for (unsigned i = 0; i < OldInsts.size(); ++i)
> +    removeIfDead(OldInsts[i]);
> +
>    ++NumHWLoops;
>    return true;
>  }
>  
> -/// createHexagonFixupHwLoops - Factory for creating the hardware
> loop
> -/// phase.
> -FunctionPass *llvm::createHexagonFixupHwLoops() {
> -  return new HexagonFixupHwLoops();
> +
> +bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
> +                                            MachineInstr *CmpI) {
> +  assert (BumpI != CmpI && "Bump and compare in the same
> instruction?");
> +
> +  MachineBasicBlock *BB = BumpI->getParent();
> +  if (CmpI->getParent() != BB)
> +    return false;
> +
> +  typedef MachineBasicBlock::instr_iterator instr_iterator;
> +  // Check if things are in order to begin with.
> +  for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
> +    if (&*I == CmpI)
> +      return true;
> +
> +  // Out of order.
> +  unsigned PredR = CmpI->getOperand(0).getReg();
> +  bool FoundBump = false;
> +  instr_iterator CmpIt = CmpI, NextIt = llvm::next(CmpIt);
> +  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I)
> {
> +    MachineInstr *In = &*I;
> +    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
> +      MachineOperand &MO = In->getOperand(i);
> +      if (MO.isReg() && MO.isUse()) {
> +        if (MO.getReg() == PredR)  // Found an intervening use of
> PredR.
> +          return false;
> +      }
> +    }
> +
> +    if (In == BumpI) {
> +      instr_iterator After = BumpI;
> +      instr_iterator From = CmpI;
> +      BB->splice(llvm::next(After), BB, From);
> +      FoundBump = true;
> +      break;
> +    }
> +  }
> +  assert (FoundBump && "Cannot determine instruction order");
> +  return FoundBump;
>  }
>  
> -bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF)
> {
> -  DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n");
>  
> -  bool Changed = fixupLoopInstrs(MF);
> -  return Changed;
> +MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
> +  MachineInstr *DI = MRI->getVRegDef(R);
> +  unsigned DOpc = DI->getOpcode();
> +  switch (DOpc) {
> +    case Hexagon::TFRI:
> +    case Hexagon::TFRI64:
> +    case Hexagon::CONST32_Int_Real:
> +    case Hexagon::CONST64_Int_Real:
> +      return DI;
> +  }
> +  return 0;
> +}
> +
> +
> +int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
> +  if (MO.isImm())
> +    return MO.getImm();
> +  assert(MO.isReg());
> +  unsigned R = MO.getReg();
> +  MachineInstr *DI = defWithImmediate(R);
> +  assert(DI && "Need an immediate operand");
> +  // All currently supported "define-with-immediate" instructions
> have the
> +  // actual immediate value in the operand(1).
> +  int64_t v = DI->getOperand(1).getImm();
> +  return v;
> +}
> +
> +
> +void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t
> Val) {
> +  if (MO.isImm()) {
> +    MO.setImm(Val);
> +    return;
> +  }
> +
> +  assert(MO.isReg());
> +  unsigned R = MO.getReg();
> +  MachineInstr *DI = defWithImmediate(R);
> +  if (MRI->hasOneNonDBGUse(R)) {
> +    // If R has only one use, then just change its defining
> instruction to
> +    // the new immediate value.
> +    DI->getOperand(1).setImm(Val);
> +    return;
> +  }
> +
> +  const TargetRegisterClass *RC = MRI->getRegClass(R);
> +  unsigned NewR = MRI->createVirtualRegister(RC);
> +  MachineBasicBlock &B = *DI->getParent();
> +  DebugLoc DL = DI->getDebugLoc();
> +  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
> +    .addImm(Val);
> +  MO.setReg(NewR);
>  }
>  
> -/// fixupLoopInsts - For Hexagon, if the loop label is to far from
> the
> -/// loop instruction then we need to set the LC0 and SA0 registers
> -/// explicitly instead of using LOOP(start,count).  This function
> -/// checks the distance, and generates register assignments if
> needed.
> -///
> -/// This function makes two passes over the basic blocks.  The first
> -/// pass computes the offset of the basic block from the start.
> -/// The second pass checks all the loop instructions.
> -bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
> -
> -  // Offset of the current instruction from the start.
> -  unsigned InstOffset = 0;
> -  // Map for each basic block to it's first instruction.
> -  DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
> -
> -  // First pass - compute the offset of each basic block.
> -  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
> -       MBB != MBBe; ++MBB) {
> -    BlockToInstOffset[MBB] = InstOffset;
> -    InstOffset += (MBB->size() * 4);
> -  }
> -
> -  // Second pass - check each loop instruction to see if it needs to
> -  // be converted.
> -  InstOffset = 0;
> -  bool Changed = false;
> -  RegScavenger RS;
>  
> -  // Loop over all the basic blocks.
> -  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
> -       MBB != MBBe; ++MBB) {
> -    InstOffset = BlockToInstOffset[MBB];
> -    RS.enterBasicBlock(MBB);
> -
> -    // Loop over all the instructions.
> -    MachineBasicBlock::iterator MIE = MBB->end();
> -    MachineBasicBlock::iterator MII = MBB->begin();
> -    while (MII != MIE) {
> -      if (isHardwareLoop(MII)) {
> -        RS.forward(MII);
> -        assert(MII->getOperand(0).isMBB() &&
> -               "Expect a basic block as loop operand");
> -        int diff = InstOffset -
> BlockToInstOffset[MII->getOperand(0).getMBB()];
> -        diff = (diff > 0 ? diff : -diff);
> -        if ((unsigned)diff > MAX_LOOP_DISTANCE) {
> -          // Convert to explicity setting LC0 and SA0.
> -          convertLoopInstr(MF, MII, RS);
> -          MII = MBB->erase(MII);
> -          Changed = true;
> -        } else {
> -          ++MII;
> +bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
> +  MachineBasicBlock *Header = L->getHeader();
> +  MachineBasicBlock *Preheader = L->getLoopPreheader();
> +  MachineBasicBlock *Latch = L->getLoopLatch();
> +
> +  if (!Header || !Preheader || !Latch)
> +    return false;
> +
> +  // These data structures follow the same concept as the
> corresponding
> +  // ones in findInductionRegister (where some comments are).
> +  typedef std::pair<unsigned,int64_t> RegisterBump;
> +  typedef std::pair<unsigned,RegisterBump> RegisterInduction;
> +  typedef std::set<RegisterInduction> RegisterInductionSet;

Use a SetVector here?

Thanks again,
Hal

> +
> +  // Register candidates for induction variables, with their
> associated bumps.
> +  RegisterInductionSet IndRegs;
> +
> +  // Look for induction patterns:
> +  //   vreg1 = PHI ..., [ latch, vreg2 ]
> +  //   vreg2 = ADD vreg1, imm
> +  typedef MachineBasicBlock::instr_iterator instr_iterator;
> +  for (instr_iterator I = Header->instr_begin(), E =
> Header->instr_end();
> +       I != E && I->isPHI(); ++I) {
> +    MachineInstr *Phi = &*I;
> +
> +    // Have a PHI instruction.
> +    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
> +      if (Phi->getOperand(i+1).getMBB() != Latch)
> +        continue;
> +
> +      unsigned PhiReg = Phi->getOperand(i).getReg();
> +      MachineInstr *DI = MRI->getVRegDef(PhiReg);
> +      unsigned UpdOpc = DI->getOpcode();
> +      bool isAdd = (UpdOpc == Hexagon::ADD_ri);
> +
> +      if (isAdd) {
> +        // If the register operand to the add/sub is the PHI we are
> looking
> +        // at, this meets the induction pattern.
> +        unsigned IndReg = DI->getOperand(1).getReg();
> +        if (MRI->getVRegDef(IndReg) == Phi) {
> +          unsigned UpdReg = DI->getOperand(0).getReg();
> +          int64_t V = DI->getOperand(2).getImm();
> +          IndRegs.insert(std::make_pair(UpdReg,
> std::make_pair(IndReg, V)));
>          }
> -      } else {
> -        ++MII;
>        }
> -      InstOffset += 4;
> +    }  // for (i)
> +  }  // for (instr)
> +
> +  if (IndRegs.empty())
> +    return false;
> +
> +  MachineBasicBlock *TB = 0, *FB = 0;
> +  SmallVector<MachineOperand,2> Cond;
> +  // AnalyzeBranch returns true if it fails to analyze branch.
> +  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond,
> false);
> +  if (NotAnalyzed)
> +    return false;
> +
> +  // Check if the latch branch is unconditional.
> +  if (Cond.empty())
> +    return false;
> +
> +  if (TB != Header && FB != Header)
> +    // The latch does not go back to the header.  Not a latch we
> know and love.
> +    return false;
> +
> +  // Expecting a predicate register as a condition.  It won't be a
> hardware
> +  // predicate register at this point yet, just a vreg.
> +  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts
> imm(0)
> +  // into Cond, followed by the predicate register.  For non-negated
> branches
> +  // it's just the register.
> +  unsigned CSz = Cond.size();
> +  if (CSz != 1 && CSz != 2)
> +    return false;
> +
> +  unsigned P = Cond[CSz-1].getReg();
> +  MachineInstr *PredDef = MRI->getVRegDef(P);
> +
> +  if (!PredDef->isCompare())
> +    return false;
> +
> +  SmallSet<unsigned,2> CmpRegs;
> +  MachineOperand *CmpImmOp = 0;
> +
> +  // Go over all operands to the compare and look for immediate and
> register
> +  // operands.  Assume that if the compare has a single register use
> and a
> +  // single immediate operand, then the register is being compared
> with the
> +  // immediate value.
> +  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
> +    MachineOperand &MO = PredDef->getOperand(i);
> +    if (MO.isReg()) {
> +      // Skip all implicit references.  In one case there was:
> +      //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139,
> %USR<imp-use>
> +      if (MO.isImplicit())
> +        continue;
> +      if (MO.isUse()) {
> +        unsigned R = MO.getReg();
> +        if (!defWithImmediate(R)) {
> +          CmpRegs.insert(MO.getReg());
> +          continue;
> +        }
> +        // Consider the register to be the "immediate" operand.
> +        if (CmpImmOp)
> +          return false;
> +        CmpImmOp = &MO;
> +      }
> +    } else if (MO.isImm()) {
> +      if (CmpImmOp)    // A second immediate argument?  Confusing.
>  Bail out.
> +        return false;
> +      CmpImmOp = &MO;
>      }
>    }
>  
> -  return Changed;
> +  if (CmpRegs.empty())
> +    return false;
>  
> +  // Check if the compared register follows the order we want.  Fix
> if needed.
> +  for (RegisterInductionSet::iterator I = IndRegs.begin(), E =
> IndRegs.end();
> +       I != E; ++I) {
> +    // This is a success.  If the register used in the comparison is
> one that
> +    // we have identified as a bumped (updated) induction register,
> there is
> +    // nothing to do.
> +    if (CmpRegs.count(I->first))
> +      return true;
> +
> +    // Otherwise, if the register being compared comes out of a PHI
> node,
> +    // and has been recognized as following the induction pattern,
> and is
> +    // compared against an immediate, we can fix it.
> +    const RegisterBump &RB = I->second;
> +    if (CmpRegs.count(RB.first)) {
> +      if (!CmpImmOp)
> +        return false;
> +
> +      int64_t CmpImm = getImmediate(*CmpImmOp);
> +      int64_t V = RB.second;
> +      if (V > 0 && CmpImm+V < CmpImm)  // Overflow (64-bit).
> +        return false;
> +      if (V < 0 && CmpImm+V > CmpImm)  // Overflow (64-bit).
> +        return false;
> +      CmpImm += V;
> +      // Some forms of cmp-immediate allow u9 and s10.  Assume the
> worst case
> +      // scenario, i.e. an 8-bit value.
> +      if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
> +        return false;
> +
> +      // Make sure that the compare happens after the bump.
>  Otherwise,
> +      // after the fixup, the compare would use a yet-undefined
> register.
> +      MachineInstr *BumpI = MRI->getVRegDef(I->first);
> +      bool Order = orderBumpCompare(BumpI, PredDef);
> +      if (!Order)
> +        return false;
> +
> +      // Finally, fix the compare instruction.
> +      setImmediate(*CmpImmOp, CmpImm);
> +      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n;
> ++i) {
> +        MachineOperand &MO = PredDef->getOperand(i);
> +        if (MO.isReg() && MO.getReg() == RB.first) {
> +          MO.setReg(I->first);
> +          return true;
> +        }
> +      }
> +    }
> +  }
> +
> +  return false;
>  }
>  
> -/// convertLoopInstr - convert a loop instruction to a sequence of
> instructions
> -/// that set the lc and sa register explicitly.
> -void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
> -
>                                           MachineBasicBlock::iterator
> &MII,
> -                                           RegScavenger &RS) {
> -  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
> -  MachineBasicBlock *MBB = MII->getParent();
> -  DebugLoc DL = MII->getDebugLoc();
> -  unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass,
> MII, 0);
> -
> -  // First, set the LC0 with the trip count.
> -  if (MII->getOperand(1).isReg()) {
> -    // Trip count is a register
> -    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
> -      .addReg(MII->getOperand(1).getReg());
> +
> +/// \brief Create a preheader for a given loop.
> +MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
> +      MachineLoop *L) {
> +  if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
> +    return TmpPH;
> +
> +  MachineBasicBlock *Header = L->getHeader();
> +  MachineBasicBlock *Latch = L->getLoopLatch();
> +  MachineFunction *MF = Header->getParent();
> +  DebugLoc DL;
> +
> +  if (!Latch || Header->hasAddressTaken())
> +    return 0;
> +
> +  typedef MachineBasicBlock::instr_iterator instr_iterator;
> +  typedef MachineBasicBlock::pred_iterator pred_iterator;
> +
> +  // Verify that all existing predecessors have analyzable branches
> +  // (or no branches at all).
> +  typedef std::vector<MachineBasicBlock*> MBBVector;
> +  MBBVector Preds(Header->pred_begin(), Header->pred_end());
> +  SmallVector<MachineOperand,2> Tmp1;
> +  MachineBasicBlock *TB = 0, *FB = 0;
> +
> +  if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
> +    return 0;
> +
> +  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I !=
> E; ++I) {
> +    MachineBasicBlock *PB = *I;
> +    if (PB != Latch) {
> +      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1,
> false);
> +      if (NotAnalyzed)
> +        return 0;
> +    }
> +  }
> +
> +  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
> +  MF->insert(Header, NewPH);
> +
> +  if (Header->pred_size() > 2) {
> +    // Ensure that the header has only two predecessors: the
> preheader and
> +    // the loop latch.  Any additional predecessors of the header
> should
> +    // join at the newly created preheader.  Inspect all PHI nodes
> from the
> +    // header and create appropriate corresponding PHI nodes in the
> preheader.
> +
> +    for (instr_iterator I = Header->instr_begin(), E =
> Header->instr_end();
> +         I != E && I->isPHI(); ++I) {
> +      MachineInstr *PN = &*I;
> +
> +      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
> +      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
> +      NewPH->insert(NewPH->end(), NewPN);
> +
> +      unsigned PR = PN->getOperand(0).getReg();
> +      const TargetRegisterClass *RC = MRI->getRegClass(PR);
> +      unsigned NewPR = MRI->createVirtualRegister(RC);
> +      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
> +
> +      // Copy all non-latch operands of a header's PHI node to the
> newly
> +      // created PHI node in the preheader.
> +      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2)
> {
> +        unsigned PredR = PN->getOperand(i).getReg();
> +        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
> +        if (PredB == Latch)
> +          continue;
> +
> +        NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
> +        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
> +      }
> +
> +      // Remove copied operands from the old PHI node and add the
> value
> +      // coming from the preheader's PHI.
> +      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
> +        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
> +        if (PredB != Latch) {
> +          PN->RemoveOperand(i+1);
> +          PN->RemoveOperand(i);
> +        }
> +      }
> +      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
> +      PN->addOperand(MachineOperand::CreateMBB(NewPH));
> +    }
> +
>    } else {
> -    // Trip count is an immediate.
> -    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
> -      .addImm(MII->getOperand(1).getImm());
> -    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
> -      .addReg(Scratch);
> -  }
> -  // Then, set the SA0 with the loop start address.
> -  BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
> -    .addMBB(MII->getOperand(0).getMBB());
> -  BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR),
> Hexagon::SA0).addReg(Scratch);
> +    assert(Header->pred_size() == 2);
> +
> +    // The header has only two predecessors, but the non-latch
> predecessor
> +    // is not a preheader (e.g. it has other successors, etc.)
> +    // In such a case we don't need any extra PHI nodes in the new
> preheader,
> +    // all we need is to adjust existing PHIs in the header to now
> refer to
> +    // the new preheader.
> +    for (instr_iterator I = Header->instr_begin(), E =
> Header->instr_end();
> +         I != E && I->isPHI(); ++I) {
> +      MachineInstr *PN = &*I;
> +      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2)
> {
> +        MachineOperand &MO = PN->getOperand(i+1);
> +        if (MO.getMBB() != Latch)
> +          MO.setMBB(NewPH);
> +      }
> +    }
> +  }
> +
> +  // "Reroute" the CFG edges to link in the new preheader.
> +  // If any of the predecessors falls through to the header, insert
> a branch
> +  // to the new preheader in that place.
> +  SmallVector<MachineOperand,1> Tmp2;
> +  SmallVector<MachineOperand,1> EmptyCond;
> +
> +  TB = FB = 0;
> +
> +  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I !=
> E; ++I) {
> +    MachineBasicBlock *PB = *I;
> +    if (PB != Latch) {
> +      Tmp2.clear();
> +      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2,
> false);
> +      (void)NotAnalyzed; // supress compiler warning
> +      assert (!NotAnalyzed && "Should be analyzable!");
> +      if (TB != Header && (Tmp2.empty() || FB != Header))
> +        TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL);
> +      PB->ReplaceUsesOfBlockWith(Header, NewPH);
> +    }
> +  }
> +
> +  // It can happen that the latch block will fall through into the
> header.
> +  // Insert an unconditional branch to the header.
> +  TB = FB = 0;
> +  bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2,
> false);
> +  (void)LatchNotAnalyzed; // supress compiler warning
> +  assert (!LatchNotAnalyzed && "Should be analyzable!");
> +  if (!TB && !FB)
> +    TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL);
> +
> +  // Finally, the branch from the preheader to the header.
> +  TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL);
> +  NewPH->addSuccessor(Header);
> +
> +  return NewPH;
>  }
> 
> Modified: llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp?rev=174904&r1=174903&r2=174904&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp (original)
> +++ llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp Mon Feb 11
> 15:37:55 2013
> @@ -2461,6 +2461,9 @@ isValidOffset(const int Opcode, const in
>    case Hexagon::LDriw_pred:
>      return true;
>  
> +  case Hexagon::LOOP0_i:
> +    return isUInt<10>(Offset);
> +
>    // INLINEASM is very special.
>    case Hexagon::INLINEASM:
>      return true;
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-cleanup.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-cleanup.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-cleanup.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-cleanup.ll Mon Feb 11
> 15:37:55 2013
> @@ -0,0 +1,86 @@
> +; RUN: llc -march=hexagon -mcpu=hexagonv4 < %s | FileCheck %s
> +; Check that we remove the compare and induction variable
> instructions
> +; after generating hardware loops.
> +; Bug 6685.
> +
> +; CHECK: loop0
> +; CHECK-NOT: r{{[0-9]+}}{{.}}={{.}}add(r{{[0-9]+}},{{.}}#-1)
> +; CHECK-NOT: cmp.eq
> +; CHECK: endloop0
> +
> +define i32 @test1(i32* nocapture %b, i32 %n) nounwind readonly {
> +entry:
> +  %cmp1 = icmp sgt i32 %n, 0
> +  br i1 %cmp1, label %for.body.preheader, label %for.end
> +
> +for.body.preheader:
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.preheader, %for.body
> +  %sum.03 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ]
> +  %arrayidx.phi = phi i32* [ %arrayidx.inc, %for.body ], [ %b,
> %for.body.preheader ]
> +  %i.02 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
> +  %0 = load i32* %arrayidx.phi, align 4
> +  %add = add nsw i32 %0, %sum.03
> +  %inc = add nsw i32 %i.02, 1
> +  %exitcond = icmp eq i32 %inc, %n
> +  %arrayidx.inc = getelementptr i32* %arrayidx.phi, i32 1
> +  br i1 %exitcond, label %for.end.loopexit, label %for.body
> +
> +for.end.loopexit:
> +  br label %for.end
> +
> +for.end:
> +  %sum.0.lcssa = phi i32 [ 0, %entry ], [ %add, %for.end.loopexit ]
> +  ret i32 %sum.0.lcssa
> +}
> +
> +; This test checks that that initial loop count value is removed.
> +; CHECK-NOT: ={{.}}#40
> +; CHECK: loop0
> +; CHECK-NOT: r{{[0-9]+}}{{.}}={{.}}add(r{{[0-9]+}},{{.}}#-1)
> +; CHECK-NOT: cmp.eq
> +; CHECK: endloop0
> +
> +define i32 @test2(i32* nocapture %b) nounwind readonly {
> +entry:
> +  br label %for.body
> +
> +for.body:
> +  %sum.02 = phi i32 [ 0, %entry ], [ %add, %for.body ]
> +  %arrayidx.phi = phi i32* [ %b, %entry ], [ %arrayidx.inc,
> %for.body ]
> +  %i.01 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
> +  %0 = load i32* %arrayidx.phi, align 4
> +  %add = add nsw i32 %0, %sum.02
> +  %inc = add nsw i32 %i.01, 1
> +  %exitcond = icmp eq i32 %inc, 40
> +  %arrayidx.inc = getelementptr i32* %arrayidx.phi, i32 1
> +  br i1 %exitcond, label %for.end, label %for.body
> +
> +for.end:
> +  ret i32 %add
> +}
> +
> +; This test checks that we don't remove the induction variable since
> it's used.
> +; CHECK: loop0
> +; CHECK: r{{[0-9]+}}{{.}}={{.}}add(r{{[0-9]+}},{{.}}#1)
> +; CHECK-NOT: cmp.eq
> +; CHECK: endloop0
> +define i32 @test3(i32* nocapture %b) nounwind {
> +entry:
> +  br label %for.body
> +
> +for.body:
> +  %arrayidx.phi = phi i32* [ %b, %entry ], [ %arrayidx.inc,
> %for.body ]
> +  %i.01 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
> +  store i32 %i.01, i32* %arrayidx.phi, align 4
> +  %inc = add nsw i32 %i.01, 1
> +  %exitcond = icmp eq i32 %inc, 40
> +  %arrayidx.inc = getelementptr i32* %arrayidx.phi, i32 1
> +  br i1 %exitcond, label %for.end, label %for.body
> +
> +for.end:
> +  ret i32 0
> +}
> +
> +
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-const.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-const.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-const.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-const.ll Mon Feb 11
> 15:37:55 2013
> @@ -0,0 +1,31 @@
> +; RUN: llc -march=hexagon -mcpu=hexagonv4 -O2 < %s | FileCheck %s
> +; ModuleID = 'hwloop-const.c'
> +target datalayout =
> "e-p:32:32:32-i64:64:64-i32:32:32-i16:16:16-i1:32:32-f64:64:64-f32:32:32-v64:64:64-v32:32:32-a0:0-n16:32"
> +target triple = "hexagon-unknown-linux-gnu"
> +
> + at b = common global [25000 x i32] zeroinitializer, align 8
> + at a = common global [25000 x i32] zeroinitializer, align 8
> + at c = common global [25000 x i32] zeroinitializer, align 8
> +
> +define i32 @hwloop_bug() nounwind {
> +entry:
> +  br label %for.body
> +
> +; CHECK: endloop
> +for.body:                                         ; preds =
> %for.body, %entry
> +  %i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds [25000 x i32]* @b, i32 0, i32
> %i.02
> +  store i32 %i.02, i32* %arrayidx, align 4, !tbaa !0
> +  %arrayidx1 = getelementptr inbounds [25000 x i32]* @a, i32 0, i32
> %i.02
> +  store i32 %i.02, i32* %arrayidx1, align 4, !tbaa !0
> +  %inc = add nsw i32 %i.02, 1
> +  %exitcond = icmp eq i32 %inc, 25000
> +  br i1 %exitcond, label %for.end, label %for.body
> +
> +for.end:                                          ; preds =
> %for.body
> +  ret i32 0
> +}
> +
> +!0 = metadata !{metadata !"int", metadata !1}
> +!1 = metadata !{metadata !"omnipotent char", metadata !2}
> +!2 = metadata !{metadata !"Simple C/C++ TBAA"}
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-dbg.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-dbg.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-dbg.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-dbg.ll Mon Feb 11 15:37:55
> 2013
> @@ -0,0 +1,65 @@
> +; RUN: llc < %s -march=hexagon -mcpu=hexagonv4 -O2 -disable-lsr |
> FileCheck %s
> +; ModuleID = 'hwloop-dbg.o'
> +target datalayout =
> "e-p:32:32:32-i64:64:64-i32:32:32-i16:16:16-i1:32:32-f64:64:64-f32:32:32-v64:64:64-v32:32:32-a0:0-n16:32"
> +target triple = "hexagon"
> +
> +define void @foo(i32* nocapture %a, i32* nocapture %b) nounwind {
> +entry:
> +  tail call void @llvm.dbg.value(metadata !{i32* %a}, i64 0,
> metadata !13), !dbg !17
> +  tail call void @llvm.dbg.value(metadata !{i32* %b}, i64 0,
> metadata !14), !dbg !18
> +  tail call void @llvm.dbg.value(metadata !2, i64 0, metadata !15),
> !dbg !19
> +  br label %for.body, !dbg !19
> +
> +for.body:                                         ; preds =
> %for.body, %entry
> +; CHECK:     loop0(
> +; CHECK-NOT: add({{r[0-9]*}}, #
> +; CHECK:     endloop0
> +  %arrayidx.phi = phi i32* [ %a, %entry ], [ %arrayidx.inc,
> %for.body ]
> +  %i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
> +  %b.addr.01 = phi i32* [ %b, %entry ], [ %incdec.ptr, %for.body ]
> +  %incdec.ptr = getelementptr inbounds i32* %b.addr.01, i32 1, !dbg
> !21
> +  tail call void @llvm.dbg.value(metadata !{i32* %incdec.ptr}, i64
> 0, metadata !14), !dbg !21
> +  %0 = load i32* %b.addr.01, align 4, !dbg !21, !tbaa !23
> +  store i32 %0, i32* %arrayidx.phi, align 4, !dbg !21, !tbaa !23
> +  %inc = add nsw i32 %i.02, 1, !dbg !26
> +  tail call void @llvm.dbg.value(metadata !{i32 %inc}, i64 0,
> metadata !15), !dbg !26
> +  %exitcond = icmp eq i32 %inc, 10, !dbg !19
> +  %arrayidx.inc = getelementptr i32* %arrayidx.phi, i32 1
> +  br i1 %exitcond, label %for.end, label %for.body, !dbg !19
> +
> +for.end:                                          ; preds =
> %for.body
> +  ret void, !dbg !27
> +}
> +
> +declare void @llvm.dbg.value(metadata, i64, metadata) nounwind
> readnone
> +
> +!llvm.dbg.cu = !{!0}
> +
> +!0 = metadata !{i32 786449, i32 0, i32 12, metadata !"hwloop-dbg.c",
> metadata !"/usr2/kparzysz/s.hex/t", metadata !"QuIC LLVM Hexagon
> Clang version 6.1-pre-unknown,
> (git://git-hexagon-aus.quicinc.com/llvm/clang-mainline.git
> e9382867661454cdf44addb39430741578e9765c) (llvm/llvm-mainline.git
> 36412bb1fcf03ed426d4437b41198bae066675ac)", i1 true, i1 true,
> metadata !"", i32 0, metadata !1, metadata !1, metadata !3, metadata
> !1} ; [ DW_TAG_compile_unit ] [/usr2/kparzysz/s.hex/t/hwloop-dbg.c]
> [DW_LANG_C99]
> +!1 = metadata !{metadata !2}
> +!2 = metadata !{i32 0}
> +!3 = metadata !{metadata !4}
> +!4 = metadata !{metadata !5}
> +!5 = metadata !{i32 786478, i32 0, metadata !6, metadata !"foo",
> metadata !"foo", metadata !"", metadata !6, i32 1, metadata !7, i1
> false, i1 true, i32 0, i32 0, null, i32 256, i1 true, void (i32*,
> i32*)* @foo, null, null, metadata !11, i32 1} ; [ DW_TAG_subprogram
> ] [line 1] [def] [foo]
> +!6 = metadata !{i32 786473, metadata !"hwloop-dbg.c", metadata
> !"/usr2/kparzysz/s.hex/t", null} ; [ DW_TAG_file_type ]
> +!7 = metadata !{i32 786453, i32 0, metadata !"", i32 0, i32 0, i64
> 0, i64 0, i64 0, i32 0, null, metadata !8, i32 0, i32 0} ; [
> DW_TAG_subroutine_type ] [line 0, size 0, align 0, offset 0] [from ]
> +!8 = metadata !{null, metadata !9, metadata !9}
> +!9 = metadata !{i32 786447, null, metadata !"", null, i32 0, i64 32,
> i64 32, i64 0, i32 0, metadata !10} ; [ DW_TAG_pointer_type ] [line
> 0, size 32, align 32, offset 0] [from int]
> +!10 = metadata !{i32 786468, null, metadata !"int", null, i32 0, i64
> 32, i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] [line
> 0, size 32, align 32, offset 0, enc DW_ATE_signed]
> +!11 = metadata !{metadata !12}
> +!12 = metadata !{metadata !13, metadata !14, metadata !15}
> +!13 = metadata !{i32 786689, metadata !5, metadata !"a", metadata
> !6, i32 16777217, metadata !9, i32 0, i32 0} ; [ DW_TAG_arg_variable
> ] [a] [line 1]
> +!14 = metadata !{i32 786689, metadata !5, metadata !"b", metadata
> !6, i32 33554433, metadata !9, i32 0, i32 0} ; [ DW_TAG_arg_variable
> ] [b] [line 1]
> +!15 = metadata !{i32 786688, metadata !16, metadata !"i", metadata
> !6, i32 2, metadata !10, i32 0, i32 0} ; [ DW_TAG_auto_variable ]
> [i] [line 2]
> +!16 = metadata !{i32 786443, metadata !5, i32 1, i32 26, metadata
> !6, i32 0} ; [ DW_TAG_lexical_block ]
> [/usr2/kparzysz/s.hex/t/hwloop-dbg.c]
> +!17 = metadata !{i32 1, i32 15, metadata !5, null}
> +!18 = metadata !{i32 1, i32 23, metadata !5, null}
> +!19 = metadata !{i32 3, i32 8, metadata !20, null}
> +!20 = metadata !{i32 786443, metadata !16, i32 3, i32 3, metadata
> !6, i32 1} ; [ DW_TAG_lexical_block ]
> [/usr2/kparzysz/s.hex/t/hwloop-dbg.c]
> +!21 = metadata !{i32 4, i32 5, metadata !22, null}
> +!22 = metadata !{i32 786443, metadata !20, i32 3, i32 28, metadata
> !6, i32 2} ; [ DW_TAG_lexical_block ]
> [/usr2/kparzysz/s.hex/t/hwloop-dbg.c]
> +!23 = metadata !{metadata !"int", metadata !24}
> +!24 = metadata !{metadata !"omnipotent char", metadata !25}
> +!25 = metadata !{metadata !"Simple C/C++ TBAA"}
> +!26 = metadata !{i32 3, i32 23, metadata !20, null}
> +!27 = metadata !{i32 6, i32 1, metadata !16, null}
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-le.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-le.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-le.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-le.ll Mon Feb 11 15:37:55
> 2013
> @@ -0,0 +1,438 @@
> +; RUN: llc -march=hexagon -mcpu=hexagonv4 -O3 < %s | FileCheck %s
> +
> +
> +; CHECK: test_pos1_ir_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_ir_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 28395, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 28395, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_ir_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_ir_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 9073, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 9073, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_ir_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_ir_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 21956, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 21956, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_ir_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_ir_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 16782, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 16782, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_ir_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_ir_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 19097, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 19097, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos1_ri_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_ri_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, 14040
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp sle i32 %inc, 14040
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_ri_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_ri_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, 13710
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp sle i32 %inc, 13710
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_ri_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_ri_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, 9920
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp sle i32 %inc, 9920
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_ri_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_ri_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, 18924
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp sle i32 %inc, 18924
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_ri_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_ri_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, 11812
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp sle i32 %inc, 11812
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos1_rr_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_rr_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_rr_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_rr_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_rr_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_rr_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_rr_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_rr_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_rr_sle
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_rr_sle(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp sle i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp sle i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-lt.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-lt.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-lt.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-lt.ll Mon Feb 11 15:37:55
> 2013
> @@ -0,0 +1,438 @@
> +; RUN: llc -march=hexagon -mcpu=hexagonv4 -O3 < %s | FileCheck %s
> +
> +
> +; CHECK: test_pos1_ir_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_ir_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 8531, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 8531, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_ir_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_ir_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 9152, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 9152, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_ir_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_ir_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 18851, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 18851, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_ir_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_ir_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 25466, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 25466, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_ir_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_ir_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 9295, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 9295, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos1_ri_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_ri_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 31236
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp slt i32 %inc, 31236
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_ri_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_ri_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 22653
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp slt i32 %inc, 22653
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_ri_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_ri_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 1431
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp slt i32 %inc, 1431
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_ri_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_ri_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 22403
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp slt i32 %inc, 22403
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_ri_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_ri_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 21715
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp slt i32 %inc, 21715
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos1_rr_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_rr_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_rr_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_rr_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_rr_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_rr_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_rr_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_rr_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_rr_slt
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_rr_slt(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp slt i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-lt1.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-lt1.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-lt1.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-lt1.ll Mon Feb 11 15:37:55
> 2013
> @@ -0,0 +1,32 @@
> +; RUN: llc -march=hexagon -mcpu=hexagonv4 < %s | FileCheck %s
> +; Check that we generate a hardware loop instruction.
> +; CHECK: endloop0
> +
> + at A = common global [400 x i8] zeroinitializer, align 8
> + at B = common global [400 x i8] zeroinitializer, align 8
> + at C = common global [400 x i8] zeroinitializer, align 8
> +
> +define void @run() nounwind {
> +entry:
> +  br label %polly.loop_body
> +
> +polly.loop_after:                                 ; preds =
> %polly.loop_body
> +  ret void
> +
> +polly.loop_body:                                  ; preds = %entry,
> %polly.loop_body
> +  %polly.loopiv16 = phi i32 [ 0, %entry ], [ %polly.next_loopiv,
> %polly.loop_body ]
> +  %polly.next_loopiv = add i32 %polly.loopiv16, 4
> +  %p_vector_iv14 = or i32 %polly.loopiv16, 1
> +  %p_vector_iv3 = add i32 %p_vector_iv14, 1
> +  %p_vector_iv415 = or i32 %polly.loopiv16, 3
> +  %p_arrayidx = getelementptr [400 x i8]* @A, i32 0, i32
> %polly.loopiv16
> +  %p_arrayidx5 = getelementptr [400 x i8]* @A, i32 0, i32
> %p_vector_iv14
> +  %p_arrayidx6 = getelementptr [400 x i8]* @A, i32 0, i32
> %p_vector_iv3
> +  %p_arrayidx7 = getelementptr [400 x i8]* @A, i32 0, i32
> %p_vector_iv415
> +  store i8 123, i8* %p_arrayidx, align 1
> +  store i8 123, i8* %p_arrayidx5, align 1
> +  store i8 123, i8* %p_arrayidx6, align 1
> +  store i8 123, i8* %p_arrayidx7, align 1
> +  %0 = icmp slt i32 %polly.next_loopiv, 400
> +  br i1 %0, label %polly.loop_body, label %polly.loop_after
> +}
> 
> Added: llvm/trunk/test/CodeGen/Hexagon/hwloop-ne.ll
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/hwloop-ne.ll?rev=174904&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Hexagon/hwloop-ne.ll (added)
> +++ llvm/trunk/test/CodeGen/Hexagon/hwloop-ne.ll Mon Feb 11 15:37:55
> 2013
> @@ -0,0 +1,438 @@
> +; RUN: llc -march=hexagon -mcpu=hexagonv4 -O3 < %s | FileCheck %s
> +
> +
> +; CHECK: test_pos1_ir_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_ir_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 32623, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 32623, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_ir_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_ir_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 29554, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 29554, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_ir_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_ir_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 15692, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 15692, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_ir_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_ir_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 10449, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 10449, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_ir_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_ir_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 32087, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ 32087, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos1_ri_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_ri_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 3472
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp ne i32 %inc, 3472
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_ri_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_ri_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 8730
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp ne i32 %inc, 8730
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_ri_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_ri_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 1493
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp ne i32 %inc, 1493
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_ri_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_ri_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 1706
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp ne i32 %inc, 1706
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_ri_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_ri_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, 1886
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp ne i32 %inc, 1886
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos1_rr_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos1_rr_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 1
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos2_rr_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos2_rr_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 2
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos4_rr_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos4_rr_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 4
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos8_rr_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos8_rr_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 8
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> +; CHECK: test_pos16_rr_ne
> +; CHECK: loop0
> +; a < b
> +define void @test_pos16_rr_ne(i8* nocapture %p, i32 %a, i32 %b)
> nounwind {
> +entry:
> +  %cmp3 = icmp slt i32 %a, %b
> +  br i1 %cmp3, label %for.body.lr.ph, label %for.end
> +
> +for.body.lr.ph:                                   ; preds = %entry
> +  br label %for.body
> +
> +for.body:                                         ; preds =
> %for.body.lr.ph, %for.body
> +  %i.04 = phi i32 [ %a, %for.body.lr.ph ], [ %inc, %for.body ]
> +  %arrayidx = getelementptr inbounds i8* %p, i32 %i.04
> +  %0 = load i8* %arrayidx, align 1
> +  %conv = zext i8 %0 to i32
> +  %add = add nsw i32 %conv, 1
> +  %conv1 = trunc i32 %add to i8
> +  store i8 %conv1, i8* %arrayidx, align 1
> +  %inc = add nsw i32 %i.04, 16
> +  %cmp = icmp ne i32 %inc, %b
> +  br i1 %cmp, label %for.body, label %for.end
> +
> +for.end:                                          ; preds =
> %for.body, %entry
> +  ret void
> +}
> +
> +
> +
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
> 



More information about the llvm-commits mailing list