[llvm-commits] [llvm] r98637 - in /llvm/trunk: ./ lib/Target/ARM/ lib/Target/ARM/AsmPrinter/ lib/Target/ARM/Disassembler/ test/CodeGen/ARM/ test/CodeGen/Thumb2/ utils/TableGen/

Bob Wilson bob.wilson at apple.com
Tue Mar 16 10:01:13 PDT 2010


I've reverted this since it broke the buildbots.  I'd like a chance to review this before you re-commit with fixes.

On Mar 16, 2010, at 9:36 AM, Johnny Chen wrote:

> Author: johnny
> Date: Tue Mar 16 11:36:54 2010
> New Revision: 98637
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=98637&view=rev
> Log:
> Initial ARM/Thumb disassembler check-in.  It consists of a tablgen backend
> (RISCDisassemblerEmitter) which emits the decoder functions for ARM and Thumb,
> and the disassembler core which invokes the decoder function and builds up the
> MCInst based on the decoded Opcode.
> 
> Added sub-formats to the NeonI/NeonXI instructions to further refine the NEONFrm
> instructions to help disassembly.
> 
> We also changed the output of the addressing modes to omit the '+' from the
> assembler syntax #+/-<imm> or +/-<Rm>.  See, for example, A8.6.57/58/60.
> 
> And modified test cases to not expect '+' in +reg or #+num.  For example,
> 
> ; CHECK:       ldr.w	r9, [r7, #28]
> 
> Added:
>    llvm/trunk/lib/Target/ARM/Disassembler/
>    llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
>    llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.h
>    llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
>    llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h
>    llvm/trunk/lib/Target/ARM/Disassembler/Makefile
>    llvm/trunk/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc
>    llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.cpp
>    llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.h
> Modified:
>    llvm/trunk/Makefile.rules
>    llvm/trunk/lib/Target/ARM/ARMAddressingModes.h
>    llvm/trunk/lib/Target/ARM/ARMInstrFormats.td
>    llvm/trunk/lib/Target/ARM/ARMInstrNEON.td
>    llvm/trunk/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
>    llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
>    llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
>    llvm/trunk/lib/Target/ARM/Makefile
>    llvm/trunk/lib/Target/ARM/Thumb2ITBlockPass.cpp
>    llvm/trunk/test/CodeGen/ARM/2009-10-27-double-align.ll
>    llvm/trunk/test/CodeGen/ARM/2009-10-30.ll
>    llvm/trunk/test/CodeGen/ARM/arm-negative-stride.ll
>    llvm/trunk/test/CodeGen/ARM/globals.ll
>    llvm/trunk/test/CodeGen/ARM/ldrd.ll
>    llvm/trunk/test/CodeGen/ARM/str_pre-2.ll
>    llvm/trunk/test/CodeGen/ARM/tls2.ll
>    llvm/trunk/test/CodeGen/Thumb2/ldr-str-imm12.ll
>    llvm/trunk/test/CodeGen/Thumb2/thumb2-ldr.ll
>    llvm/trunk/test/CodeGen/Thumb2/thumb2-ldrh.ll
>    llvm/trunk/test/CodeGen/Thumb2/thumb2-str.ll
>    llvm/trunk/test/CodeGen/Thumb2/thumb2-str_pre.ll
>    llvm/trunk/test/CodeGen/Thumb2/thumb2-strb.ll
>    llvm/trunk/test/CodeGen/Thumb2/thumb2-strh.ll
>    llvm/trunk/utils/TableGen/DisassemblerEmitter.cpp
>    llvm/trunk/utils/TableGen/TableGen.cpp
> 
> Modified: llvm/trunk/Makefile.rules
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/Makefile.rules?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/Makefile.rules (original)
> +++ llvm/trunk/Makefile.rules Tue Mar 16 11:36:54 2010
> @@ -1614,6 +1614,11 @@
> 	$(Echo) "Building $(<F) intrinsics information with tblgen"
> 	$(Verb) $(TableGen) -gen-tgt-intrinsic -o $(call SYSPATH, $@) $<
> 
> +$(ObjDir)/ARMDisassemblerTables.inc.tmp : ARM.td $(ObjDir)/.dir
> +	$(Echo) "Building ARM disassembly tables with tblgen"
> +	$(Verb) $(TableGen) -gen-risc-disassembler -o $(call SYSPATH, $@) $<
> +
> +
> clean-local::
> 	-$(Verb) $(RM) -f $(INCFiles)
> 
> 
> Modified: llvm/trunk/lib/Target/ARM/ARMAddressingModes.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/ARMAddressingModes.h?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/ARMAddressingModes.h (original)
> +++ llvm/trunk/lib/Target/ARM/ARMAddressingModes.h Tue Mar 16 11:36:54 2010
> @@ -35,6 +35,10 @@
>     add = '+', sub = '-'
>   };
> 
> +  static inline const char *getAddrOpcStr(AddrOpc Op) {
> +    return Op == sub ? "-" : "";
> +  }
> +
>   static inline const char *getShiftOpcStr(ShiftOpc Op) {
>     switch (Op) {
>     default: assert(0 && "Unknown shift opc!");
> @@ -127,6 +131,20 @@
>     return (Imm >> 8) * 2;
>   }
> 
> +  /// getSOImmValOneRotate - Try to handle Imm with an immediate shifter
> +  /// operand, computing the rotate amount to use.  If this immediate value
> +  /// cannot be handled with a single shifter-op, return 0.
> +  static inline unsigned getSOImmValOneRotate(unsigned Imm) {
> +    // A5.2.4 Constants with multiple encodings
> +    // The lowest unsigned value of rotation wins!
> +    for (unsigned R = 1; R <= 15; ++R)
> +      if ((Imm & rotr32(~255U, 2*R)) == 0)
> +        return 2*R;
> +
> +    // Failed to find a suitable rotate amount.
> +    return 0;
> +  }
> +
>   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
>   /// computing the rotate amount to use.  If this immediate value cannot be
>   /// handled with a single shifter-op, determine a good rotate amount that will
> @@ -179,7 +197,7 @@
>     // of zero.
>     if ((Arg & ~255U) == 0) return Arg;
> 
> -    unsigned RotAmt = getSOImmValRotate(Arg);
> +    unsigned RotAmt = getSOImmValOneRotate(Arg);
> 
>     // If this cannot be handled with a single shifter_op, bail out.
>     if (rotr32(~255U, RotAmt) & Arg)
> 
> Modified: llvm/trunk/lib/Target/ARM/ARMInstrFormats.td
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/ARMInstrFormats.td?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/ARMInstrFormats.td (original)
> +++ llvm/trunk/lib/Target/ARM/ARMInstrFormats.td Tue Mar 16 11:36:54 2010
> @@ -1464,6 +1464,29 @@
> // ARM NEON Instruction templates.
> //
> 
> +// NSFormat specifies further details of a NEON instruction.  This is used by
> +// the disassembler to classify NEONFrm instructions for disassembly purpose.
> +class NSFormat<bits<5> val> {
> +  bits<5> Value = val;
> +}
> +def NSFormatNone               : NSFormat<0>;
> +def VLDSTLaneFrm               : NSFormat<1>;
> +def VLDSTLaneDblFrm            : NSFormat<2>;
> +def VLDSTRQFrm                 : NSFormat<3>;
> +def NVdImmFrm                  : NSFormat<4>;
> +def NVdVmImmFrm                : NSFormat<5>;
> +def NVdVmImmVCVTFrm            : NSFormat<6>;
> +def NVdVmImmVDupLaneFrm        : NSFormat<7>;
> +def NVdVmImmVSHLLFrm           : NSFormat<8>;
> +def NVectorShuffleFrm          : NSFormat<9>;
> +def NVectorShiftFrm            : NSFormat<10>;
> +def NVectorShift2Frm           : NSFormat<11>;
> +def NVdVnVmImmFrm              : NSFormat<12>;
> +def NVdVnVmImmVectorShiftFrm   : NSFormat<13>;
> +def NVdVnVmImmVectorExtractFrm : NSFormat<14>;
> +def NVdVnVmImmMulScalarFrm     : NSFormat<15>;
> +def VTBLFrm                    : NSFormat<16>;
> +
> class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
>             string opc, string dt, string asm, string cstr, list<dag> pattern>
>   : InstARM<am, Size4Bytes, im, NEONFrm, NeonDomain, cstr, itin> {
> @@ -1474,6 +1497,8 @@
>                      !strconcat("\t", asm));
>   let Pattern = pattern;
>   list<Predicate> Predicates = [HasNEON];
> +  NSFormat NSF = NSFormatNone;         // For disassembly.
> +  bits<5> NSForm = NSFormatNone.Value; // For disassembly.
> }
> 
> // Same as NeonI except it does not have a "data type" specifier.
> @@ -1485,6 +1510,8 @@
>   let AsmString = !strconcat(!strconcat(opc, "${p}"), !strconcat("\t", asm));
>   let Pattern = pattern;
>   list<Predicate> Predicates = [HasNEON];
> +  NSFormat NSF = NSFormatNone;         // For disassembly.
> +  bits<5> NSForm = NSFormatNone.Value; // For disassembly.
> }
> 
> class NI<dag oops, dag iops, InstrItinClass itin, string opc, string asm,
> @@ -1497,6 +1524,8 @@
>           string asm, list<dag> pattern>
>   : NeonXI<oops, iops, AddrMode4, IndexModeNone, itin, opc, asm, "",
>           pattern> {
> +  let NSF    = VLDSTRQFrm;       // For disassembly.
> +  let NSForm = VLDSTRQFrm.Value; // For disassembly.
> }
> 
> class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
> @@ -1509,6 +1538,8 @@
>   let Inst{21-20} = op21_20;
>   let Inst{11-8} = op11_8;
>   let Inst{7-4} = op7_4;
> +  let NSF    = VLDSTLaneFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneFrm.Value; // For disassembly.
> }
> 
> class NDataI<dag oops, dag iops, InstrItinClass itin,
> @@ -1538,6 +1569,8 @@
>   let Inst{6} = op6;
>   let Inst{5} = op5;
>   let Inst{4} = op4;
> +  let NSF    = NVdImmFrm;       // For disassembly.
> +  let NSForm = NVdImmFrm.Value; // For disassembly.
> }
> 
> // NEON 2 vector register format.
> @@ -1553,6 +1586,8 @@
>   let Inst{11-7} = op11_7;
>   let Inst{6} = op6;
>   let Inst{4} = op4;
> +  let NSF    = NVdVmImmFrm;       // For disassembly.
> +  let NSForm = NVdVmImmFrm.Value; // For disassembly.
> }
> 
> // Same as N2V except it doesn't have a datatype suffix.
> @@ -1568,6 +1603,8 @@
>   let Inst{11-7} = op11_7;
>   let Inst{6} = op6;
>   let Inst{4} = op4;
> +  let NSF    = NVdVmImmFrm;       // For disassembly.
> +  let NSForm = NVdVmImmFrm.Value; // For disassembly.
> }
> 
> // NEON 2 vector register with immediate.
> @@ -1581,6 +1618,8 @@
>   let Inst{7} = op7;
>   let Inst{6} = op6;
>   let Inst{4} = op4;
> +  let NSF    = NVdVmImmFrm;       // For disassembly.
> +  let NSForm = NVdVmImmFrm.Value; // For disassembly.
> }
> 
> // NEON 3 vector register format.
> @@ -1594,6 +1633,8 @@
>   let Inst{11-8} = op11_8;
>   let Inst{6} = op6;
>   let Inst{4} = op4;
> +  let NSF    = NVdVnVmImmFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmFrm.Value; // For disassembly.
> }
> 
> // Same as N3VX except it doesn't have a data type suffix.
> @@ -1607,6 +1648,8 @@
>   let Inst{11-8} = op11_8;
>   let Inst{6} = op6;
>   let Inst{4} = op4;
> +  let NSF    = NVdVnVmImmFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmFrm.Value; // For disassembly.
> }
> 
> // NEON VMOVs between scalar and core registers.
> 
> Modified: llvm/trunk/lib/Target/ARM/ARMInstrNEON.td
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/ARMInstrNEON.td?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/ARMInstrNEON.td (original)
> +++ llvm/trunk/lib/Target/ARM/ARMInstrNEON.td Tue Mar 16 11:36:54 2010
> @@ -213,7 +213,10 @@
> class VLD2Ddbl<bits<4> op7_4, string OpcodeStr, string Dt>
>   : NLdSt<0,0b10,0b1001,op7_4, (outs DPR:$dst1, DPR:$dst2),
>           (ins addrmode6:$addr), IIC_VLD2,
> -          OpcodeStr, Dt, "\\{$dst1, $dst2\\}, $addr", "", []>;
> +          OpcodeStr, Dt, "\\{$dst1, $dst2\\}, $addr", "", []> {
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> def  VLD2d8D  : VLD2Ddbl<0b0000, "vld2", "8">;
> def  VLD2d16D : VLD2Ddbl<0b0100, "vld2", "16">;
> @@ -228,7 +231,10 @@
>   : NLdSt<0,0b10,0b0101,op7_4, (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, GPR:$wb),
>           (ins addrmode6:$addr), IIC_VLD3,
>           OpcodeStr, Dt, "\\{$dst1, $dst2, $dst3\\}, $addr",
> -          "$addr.addr = $wb", []>;
> +          "$addr.addr = $wb", []> {
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> def  VLD3d8   : VLD3D<0b0000, "vld3", "8">;
> def  VLD3d16  : VLD3D<0b0100, "vld3", "16">;
> @@ -260,7 +266,10 @@
>           (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
>           (ins addrmode6:$addr), IIC_VLD4,
>           OpcodeStr, Dt, "\\{$dst1, $dst2, $dst3, $dst4\\}, $addr",
> -          "$addr.addr = $wb", []>;
> +          "$addr.addr = $wb", []> {
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> def  VLD4d8   : VLD4D<0b0000, "vld4", "8">;
> def  VLD4d16  : VLD4D<0b0100, "vld4", "16">;
> @@ -297,12 +306,28 @@
> def VLD2LNd32 : VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 0; }
> 
> // vld2 to double-spaced even registers.
> -def VLD2LNq16a: VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 1; }
> -def VLD2LNq32a: VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 1; }
> +def VLD2LNq16a: VLD2LN<0b0101, "vld2", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VLD2LNq32a: VLD2LN<0b1001, "vld2", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> // vld2 to double-spaced odd registers.
> -def VLD2LNq16b: VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 1; }
> -def VLD2LNq32b: VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 1; }
> +def VLD2LNq16b: VLD2LN<0b0101, "vld2", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VLD2LNq32b: VLD2LN<0b1001, "vld2", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> //   VLD3LN   : Vector Load (single 3-element structure to one lane)
> class VLD3LN<bits<4> op11_8, string OpcodeStr, string Dt>
> @@ -318,7 +343,11 @@
> def VLD3LNd32 : VLD3LN<0b1010, "vld3", "32"> { let Inst{6-4} = 0b000; }
> 
> // vld3 to double-spaced even registers.
> -def VLD3LNq16a: VLD3LN<0b0110, "vld3", "16"> { let Inst{5-4} = 0b10; }
> +def VLD3LNq16a: VLD3LN<0b0110, "vld3", "16"> {
> +  let Inst{5-4} = 0b10;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> def VLD3LNq32a: VLD3LN<0b1010, "vld3", "32"> { let Inst{6-4} = 0b100; }
> 
> // vld3 to double-spaced odd registers.
> @@ -340,12 +369,28 @@
> def VLD4LNd32 : VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 0; }
> 
> // vld4 to double-spaced even registers.
> -def VLD4LNq16a: VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 1; }
> -def VLD4LNq32a: VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 1; }
> +def VLD4LNq16a: VLD4LN<0b0111, "vld4", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VLD4LNq32a: VLD4LN<0b1011, "vld4", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> // vld4 to double-spaced odd registers.
> -def VLD4LNq16b: VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 1; }
> -def VLD4LNq32b: VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 1; }
> +def VLD4LNq16b: VLD4LN<0b0111, "vld4", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VLD4LNq32b: VLD4LN<0b1011, "vld4", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> //   VLD1DUP  : Vector Load (single element to all lanes)
> //   VLD2DUP  : Vector Load (single 2-element structure to all lanes)
> @@ -433,7 +478,10 @@
> class VST2Ddbl<bits<4> op7_4, string OpcodeStr, string Dt>
>   : NLdSt<0, 0b00, 0b1001, op7_4, (outs),
>           (ins addrmode6:$addr, DPR:$src1, DPR:$src2), IIC_VST,
> -          OpcodeStr, Dt, "\\{$src1, $src2\\}, $addr", "", []>;
> +          OpcodeStr, Dt, "\\{$src1, $src2\\}, $addr", "", []> {
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> def  VST2d8D  : VST2Ddbl<0b0000, "vst2", "8">;
> def  VST2d16D : VST2Ddbl<0b0100, "vst2", "16">;
> @@ -448,7 +496,10 @@
>   : NLdSt<0,0b00,0b0101,op7_4, (outs GPR:$wb),
>           (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3), IIC_VST,
>           OpcodeStr, Dt, "\\{$src1, $src2, $src3\\}, $addr",
> -          "$addr.addr = $wb", []>;
> +          "$addr.addr = $wb", []> {
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> def  VST3d8   : VST3D<0b0000, "vst3", "8">;
> def  VST3d16  : VST3D<0b0100, "vst3", "16">;
> @@ -478,7 +529,10 @@
>   : NLdSt<0,0b00,0b0001,op7_4, (outs GPR:$wb),
>           (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4),
>           IIC_VST, OpcodeStr, Dt, "\\{$src1, $src2, $src3, $src4\\}, $addr",
> -          "$addr.addr = $wb", []>;
> +          "$addr.addr = $wb", []> {
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> def  VST4d8   : VST4D<0b0000, "vst4", "8">;
> def  VST4d16  : VST4D<0b0100, "vst4", "16">;
> @@ -515,12 +569,28 @@
> def VST2LNd32 : VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 0; }
> 
> // vst2 to double-spaced even registers.
> -def VST2LNq16a: VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 1; }
> -def VST2LNq32a: VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 1; }
> +def VST2LNq16a: VST2LN<0b0101, "vst2", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VST2LNq32a: VST2LN<0b1001, "vst2", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> // vst2 to double-spaced odd registers.
> -def VST2LNq16b: VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 1; }
> -def VST2LNq32b: VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 1; }
> +def VST2LNq16b: VST2LN<0b0101, "vst2", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VST2LNq32b: VST2LN<0b1001, "vst2", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> //   VST3LN   : Vector Store (single 3-element structure from one lane)
> class VST3LN<bits<4> op11_8, string OpcodeStr, string Dt>
> @@ -535,12 +605,28 @@
> def VST3LNd32 : VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b000; }
> 
> // vst3 to double-spaced even registers.
> -def VST3LNq16a: VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b10; }
> -def VST3LNq32a: VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b100; }
> +def VST3LNq16a: VST3LN<0b0110, "vst3", "16"> {
> +  let Inst{5-4} = 0b10;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VST3LNq32a: VST3LN<0b1010, "vst3", "32"> {
> +  let Inst{6-4} = 0b100;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> // vst3 to double-spaced odd registers.
> -def VST3LNq16b: VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b10; }
> -def VST3LNq32b: VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b100; }
> +def VST3LNq16b: VST3LN<0b0110, "vst3", "16"> {
> +  let Inst{5-4} = 0b10;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VST3LNq32b: VST3LN<0b1010, "vst3", "32"> {
> +  let Inst{6-4} = 0b100;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> //   VST4LN   : Vector Store (single 4-element structure from one lane)
> class VST4LN<bits<4> op11_8, string OpcodeStr, string Dt>
> @@ -556,12 +642,28 @@
> def VST4LNd32 : VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 0; }
> 
> // vst4 to double-spaced even registers.
> -def VST4LNq16a: VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 1; }
> -def VST4LNq32a: VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 1; }
> +def VST4LNq16a: VST4LN<0b0111, "vst4", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VST4LNq32a: VST4LN<0b1011, "vst4", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> // vst4 to double-spaced odd registers.
> -def VST4LNq16b: VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 1; }
> -def VST4LNq32b: VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 1; }
> +def VST4LNq16b: VST4LN<0b0111, "vst4", "16"> {
> +  let Inst{5} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> +def VST4LNq32b: VST4LN<0b1011, "vst4", "32"> {
> +  let Inst{6} = 1;
> +  let NSF    = VLDSTLaneDblFrm;       // For disassembly.
> +  let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
> +}
> 
> } // mayStore = 1, hasExtraSrcRegAllocReq = 1
> 
> @@ -668,12 +770,18 @@
>   : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$dst1, DPR:$dst2),
>         (ins DPR:$src1, DPR:$src2), IIC_VPERMD, 
>         OpcodeStr, Dt, "$dst1, $dst2",
> -        "$src1 = $dst1, $src2 = $dst2", []>;
> +        "$src1 = $dst1, $src2 = $dst2", []> {
> +  let NSF    = NVectorShuffleFrm;       // For disassembly.
> +  let NSForm = NVectorShuffleFrm.Value; // For disassembly.
> +}
> class N2VQShuffle<bits<2> op19_18, bits<5> op11_7,
>                   InstrItinClass itin, string OpcodeStr, string Dt>
>   : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$dst1, QPR:$dst2),
>         (ins QPR:$src1, QPR:$src2), itin, OpcodeStr, Dt, "$dst1, $dst2",
> -        "$src1 = $dst1, $src2 = $dst2", []>;
> +        "$src1 = $dst1, $src2 = $dst2", []> {
> +  let NSF    = NVectorShuffleFrm;       // For disassembly.
> +  let NSForm = NVectorShuffleFrm.Value; // For disassembly.
> +}
> 
> // Basic 3-register operations: single-, double- and quad-register.
> class N3VS<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
> @@ -715,6 +823,8 @@
>               (Ty (ShOp (Ty DPR:$src1),
>                         (Ty (NEONvduplane (Ty DPR_VFP2:$src2), imm:$lane)))))]>{
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> class N3VDSL16<bits<2> op21_20, bits<4> op11_8, 
>                string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp>
> @@ -725,6 +835,8 @@
>               (Ty (ShOp (Ty DPR:$src1),
>                         (Ty (NEONvduplane (Ty DPR_8:$src2), imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> 
> class N3VQ<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
> @@ -756,6 +868,8 @@
>                            (ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
>                                                 imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
>                ValueType ResTy, ValueType OpTy, SDNode ShOp>
> @@ -767,6 +881,8 @@
>                            (ResTy (NEONvduplane (OpTy DPR_8:$src2),
>                                                 imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> 
> // Basic 3-register intrinsics, both double- and quad-register.
> @@ -789,6 +905,8 @@
>                          (Ty (NEONvduplane (Ty DPR_VFP2:$src2),
>                                            imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
>                   string OpcodeStr, string Dt, ValueType Ty, Intrinsic IntOp>
> @@ -800,6 +918,8 @@
>                          (Ty (NEONvduplane (Ty DPR_8:$src2),
>                                            imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> 
> class N3VQInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
> @@ -822,6 +942,8 @@
>                             (ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
>                                                  imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
>                   string OpcodeStr, string Dt,
> @@ -834,6 +956,8 @@
>                             (ResTy (NEONvduplane (OpTy DPR_8:$src2),
>                                                  imm:$lane)))))]> {
>   let isCommutable = 0;
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> }
> 
> // Multiply-Add/Sub operations: single-, double- and quad-register.
> @@ -864,7 +988,10 @@
>               (Ty (ShOp (Ty DPR:$src1),
>                         (Ty (MulOp DPR:$src2,
>                                    (Ty (NEONvduplane (Ty DPR_VFP2:$src3),
> -                                                     imm:$lane)))))))]>;
> +                                                     imm:$lane)))))))]> {
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> +}
> class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
>                     string OpcodeStr, string Dt,
>                     ValueType Ty, SDNode MulOp, SDNode ShOp>
> @@ -876,7 +1003,10 @@
>               (Ty (ShOp (Ty DPR:$src1),
>                         (Ty (MulOp DPR:$src2,
>                                    (Ty (NEONvduplane (Ty DPR_8:$src3),
> -                                                     imm:$lane)))))))]>;
> +                                                     imm:$lane)))))))]> {
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> +}
> 
> class N3VQMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
>                 InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty,
> @@ -897,7 +1027,10 @@
>               (ResTy (ShOp (ResTy QPR:$src1),
>                            (ResTy (MulOp QPR:$src2,
>                                    (ResTy (NEONvduplane (OpTy DPR_VFP2:$src3),
> -                                                        imm:$lane)))))))]>;
> +                                                        imm:$lane)))))))]> {
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> +}
> class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
>                     string OpcodeStr, string Dt,
>                     ValueType ResTy, ValueType OpTy,
> @@ -910,7 +1043,10 @@
>               (ResTy (ShOp (ResTy QPR:$src1),
>                            (ResTy (MulOp QPR:$src2,
>                                    (ResTy (NEONvduplane (OpTy DPR_8:$src3),
> -                                                        imm:$lane)))))))]>;
> +                                                        imm:$lane)))))))]> {
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> +}
> 
> // Neon 3-argument intrinsics, both double- and quad-register.
> // The destination register is also used as the first source operand register.
> @@ -996,7 +1132,10 @@
>         [(set (ResTy QPR:$dst),
>               (ResTy (IntOp (OpTy DPR:$src1),
>                             (OpTy (NEONvduplane (OpTy DPR_VFP2:$src2),
> -                                                imm:$lane)))))]>;
> +                                                imm:$lane)))))]> {
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> +}
> class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
>                   InstrItinClass itin, string OpcodeStr, string Dt,
>                   ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
> @@ -1006,7 +1145,10 @@
>         [(set (ResTy QPR:$dst),
>               (ResTy (IntOp (OpTy DPR:$src1),
>                             (OpTy (NEONvduplane (OpTy DPR_8:$src2),
> -                                                imm:$lane)))))]>;
> +                                                imm:$lane)))))]> {
> +  let NSF    = NVdVnVmImmMulScalarFrm;       // For disassembly.
> +  let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
> +}
> 
> // Wide 3-register intrinsics.
> class N3VWInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
> @@ -1055,6 +1197,10 @@
>         OpcodeStr, Dt, "$dst, $src2", "$src1 = $dst",
>         [(set QPR:$dst, (ResTy (IntOp (ResTy QPR:$src1), (OpTy QPR:$src2))))]>;
> 
> +// This is a big let * in block to mark these instructions NVectorShiftFrm to
> +// help the disassembler.
> +let NSF = NVectorShiftFrm, NSForm = NVectorShiftFrm.Value in {
> +
> // Shift by immediate,
> // both double- and quad-register.
> class N2VDSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
> @@ -1072,16 +1218,6 @@
>            OpcodeStr, Dt, "$dst, $src, $SIMM", "",
>            [(set QPR:$dst, (Ty (OpNode (Ty QPR:$src), (i32 imm:$SIMM))))]>;
> 
> -// Long shift by immediate.
> -class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
> -             string OpcodeStr, string Dt,
> -             ValueType ResTy, ValueType OpTy, SDNode OpNode>
> -  : N2VImm<op24, op23, op11_8, op7, op6, op4,
> -           (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
> -           OpcodeStr, Dt, "$dst, $src, $SIMM", "",
> -           [(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
> -                                          (i32 imm:$SIMM))))]>;
> -
> // Narrow shift by immediate.
> class N2VNSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
>              InstrItinClass itin, string OpcodeStr, string Dt,
> @@ -1124,8 +1260,26 @@
>            OpcodeStr, Dt, "$dst, $src2, $SIMM", "$src1 = $dst",
>            [(set QPR:$dst, (Ty (ShOp QPR:$src1, QPR:$src2, (i32 imm:$SIMM))))]>;
> 
> +} // End of "let NSF = NVectorShiftFrm, ..."
> +
> +// Long shift by immediate.
> +class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
> +             string OpcodeStr, string Dt,
> +             ValueType ResTy, ValueType OpTy, SDNode OpNode>
> +  : N2VImm<op24, op23, op11_8, op7, op6, op4,
> +           (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
> +           OpcodeStr, Dt, "$dst, $src, $SIMM", "",
> +           [(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
> +                                          (i32 imm:$SIMM))))]> {
> +  // This has a different interpretation of the shift amount encoding than
> +  // NVectorShiftFrm.
> +  let NSF    = NVectorShift2Frm;       // For disassembly.
> +  let NSForm = NVectorShift2Frm.Value; // For disassembly.
> +}
> +
> // Convert, with fractional bits immediate,
> // both double- and quad-register.
> +let NSF = NVdVmImmVCVTFrm, NSForm = NVdVmImmVCVTFrm.Value in {
> class N2VCvtD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
>               string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
>               Intrinsic IntOp>
> @@ -1140,6 +1294,7 @@
>            (outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM), IIC_VUNAQ, 
>            OpcodeStr, Dt, "$dst, $src, $SIMM", "",
>            [(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src), (i32 imm:$SIMM))))]>;
> +}
> 
> //===----------------------------------------------------------------------===//
> // Multiclasses
> @@ -1350,6 +1505,60 @@
>                       v2i64, v2i64, IntOp, Commutable>;
> }
> 
> +// Same as N3VInt_QHSD, except they're for Vector Shift (Register) Instructions.
> +// D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
> +// This helps the disassembler.
> +let NSF = NVdVnVmImmVectorShiftFrm, NSForm = NVdVnVmImmVectorShiftFrm.Value in {
> +multiclass N3VInt_HS2<bit op24, bit op23, bits<4> op11_8, bit op4,
> +                     InstrItinClass itinD16, InstrItinClass itinD32,
> +                     InstrItinClass itinQ16, InstrItinClass itinQ32,
> +                     string OpcodeStr, string Dt,
> +                     Intrinsic IntOp, bit Commutable = 0> {
> +  // 64-bit vector types.
> +  def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, itinD16,
> +                      OpcodeStr, !strconcat(Dt, "16"),
> +                      v4i16, v4i16, IntOp, Commutable>;
> +  def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, itinD32,
> +                      OpcodeStr, !strconcat(Dt, "32"),
> +                      v2i32, v2i32, IntOp, Commutable>;
> +
> +  // 128-bit vector types.
> +  def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, itinQ16,
> +                      OpcodeStr, !strconcat(Dt, "16"),
> +                      v8i16, v8i16, IntOp, Commutable>;
> +  def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, itinQ32,
> +                      OpcodeStr, !strconcat(Dt, "32"),
> +                      v4i32, v4i32, IntOp, Commutable>;
> +}
> +multiclass N3VInt_QHS2<bit op24, bit op23, bits<4> op11_8, bit op4,
> +                      InstrItinClass itinD16, InstrItinClass itinD32,
> +                      InstrItinClass itinQ16, InstrItinClass itinQ32,
> +                      string OpcodeStr, string Dt,
> +                      Intrinsic IntOp, bit Commutable = 0>
> +  : N3VInt_HS2<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
> +              OpcodeStr, Dt, IntOp, Commutable> {
> +  def v8i8  : N3VDInt<op24, op23, 0b00, op11_8, op4, itinD16,
> +                      OpcodeStr, !strconcat(Dt, "8"),
> +                      v8i8, v8i8, IntOp, Commutable>;
> +  def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, itinQ16,
> +                      OpcodeStr, !strconcat(Dt, "8"),
> +                      v16i8, v16i8, IntOp, Commutable>;
> +}
> +multiclass N3VInt_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
> +                       InstrItinClass itinD16, InstrItinClass itinD32,
> +                       InstrItinClass itinQ16, InstrItinClass itinQ32,
> +                       string OpcodeStr, string Dt,
> +                       Intrinsic IntOp, bit Commutable = 0>
> +  : N3VInt_QHS2<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
> +               OpcodeStr, Dt, IntOp, Commutable> {
> +  def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, itinD32,
> +                      OpcodeStr, !strconcat(Dt, "64"),
> +                      v1i64, v1i64, IntOp, Commutable>;
> +  def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, itinQ32,
> +                      OpcodeStr, !strconcat(Dt, "64"),
> +                      v2i64, v2i64, IntOp, Commutable>;
> +}
> +}
> 
> // Neon Narrowing 3-register vector intrinsics,
> //   source operand element sizes of 16, 32 and 64 bits:
> @@ -1619,6 +1828,47 @@
>                              // imm6 = xxxxxx
> }
> 
> +// Same as N2VSh_QHSD, except the instructions have a differnt interpretation of
> +// the shift amount.  This helps the disassembler.
> +let NSF = NVectorShift2Frm, NSForm = NVectorShift2Frm.Value in {
> +multiclass N2VSh_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
> +                      InstrItinClass itin, string OpcodeStr, string Dt,
> +                      SDNode OpNode> {
> +  // 64-bit vector types.
> +  def v8i8  : N2VDSh<op24, op23, op11_8, 0, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
> +    let Inst{21-19} = 0b001; // imm6 = 001xxx
> +  }
> +  def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
> +    let Inst{21-20} = 0b01;  // imm6 = 01xxxx
> +  }
> +  def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
> +    let Inst{21} = 0b1;      // imm6 = 1xxxxx
> +  }
> +  def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
> +                             // imm6 = xxxxxx
> +
> +  // 128-bit vector types.
> +  def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
> +    let Inst{21-19} = 0b001; // imm6 = 001xxx
> +  }
> +  def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
> +    let Inst{21-20} = 0b01;  // imm6 = 01xxxx
> +  }
> +  def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
> +    let Inst{21} = 0b1;      // imm6 = 1xxxxx
> +  }
> +  def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, itin,
> +                     OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
> +                             // imm6 = xxxxxx
> +}
> +}
> 
> // Neon Shift-Accumulate vector operations,
> //   element sizes of 8, 16, 32 and 64 bits:
> @@ -1699,6 +1949,47 @@
>                              // imm6 = xxxxxx
> }
> 
> +// Same as N2VShIns_QHSD, except the instructions have a differnt interpretation
> +// of the shift amount.  This helps the disassembler.
> +let NSF = NVectorShift2Frm, NSForm = NVectorShift2Frm.Value in {
> +multiclass N2VShIns_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
> +                         string OpcodeStr, SDNode ShOp> {
> +  // 64-bit vector types.
> +  def v8i8  : N2VDShIns<op24, op23, op11_8, 0, op4,
> +                        OpcodeStr, "8", v8i8, ShOp> {
> +    let Inst{21-19} = 0b001; // imm6 = 001xxx
> +  }
> +  def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4,
> +                        OpcodeStr, "16", v4i16, ShOp> {
> +    let Inst{21-20} = 0b01;  // imm6 = 01xxxx
> +  }
> +  def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4,
> +                        OpcodeStr, "32", v2i32, ShOp> {
> +    let Inst{21} = 0b1;      // imm6 = 1xxxxx
> +  }
> +  def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4,
> +                        OpcodeStr, "64", v1i64, ShOp>;
> +                             // imm6 = xxxxxx
> +
> +  // 128-bit vector types.
> +  def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4,
> +                        OpcodeStr, "8", v16i8, ShOp> {
> +    let Inst{21-19} = 0b001; // imm6 = 001xxx
> +  }
> +  def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4,
> +                        OpcodeStr, "16", v8i16, ShOp> {
> +    let Inst{21-20} = 0b01;  // imm6 = 01xxxx
> +  }
> +  def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4,
> +                        OpcodeStr, "32", v4i32, ShOp> {
> +    let Inst{21} = 0b1;      // imm6 = 1xxxxx
> +  }
> +  def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4,
> +                        OpcodeStr, "64", v2i64, ShOp>;
> +                             // imm6 = xxxxxx
> +}
> +}
> +
> // Neon Shift Long operations,
> //   element sizes of 8, 16, 32 bits:
> multiclass N2VLSh_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
> @@ -2329,18 +2620,21 @@
> // Vector Shifts.
> 
> //   VSHL     : Vector Shift
> -defm VSHLs    : N3VInt_QHSD<0, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
> -                            IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts, 0>;
> -defm VSHLu    : N3VInt_QHSD<1, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
> -                            IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu, 0>;
> +defm VSHLs    : N3VInt_QHSD2<0,0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
> +                             IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts, 0>;
> +defm VSHLu    : N3VInt_QHSD2<1,0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
> +                             IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu, 0>;
> //   VSHL     : Vector Shift Left (Immediate)
> -defm VSHLi    : N2VSh_QHSD<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
> +//   (disassembly note: this has a different interpretation of the shift amont)
> +defm VSHLi    : N2VSh_QHSD2<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
> //   VSHR     : Vector Shift Right (Immediate)
> defm VSHRs    : N2VSh_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "s", NEONvshrs>;
> defm VSHRu    : N2VSh_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "u", NEONvshru>;
> 
> //   VSHLL    : Vector Shift Left Long
> +//   (disassembly note: this has a different interpretation of the shift amont)
> defm VSHLLs   : N2VLSh_QHS<0, 1, 0b1010, 0, 0, 1, "vshll", "s", NEONvshlls>;
> +//   (disassembly note: this has a different interpretation of the shift amont)
> defm VSHLLu   : N2VLSh_QHS<1, 1, 0b1010, 0, 0, 1, "vshll", "u", NEONvshllu>;
> 
> //   VSHLL    : Vector Shift Left Long (with maximum shift count)
> @@ -2350,6 +2644,8 @@
>   : N2VLSh<op24, op23, op11_8, op7, op6, op4, OpcodeStr, Dt,
>            ResTy, OpTy, OpNode> {
>   let Inst{21-16} = op21_16;
> +  let NSF    = NVdVmImmVSHLLFrm;       // For disassembly.
> +  let NSForm = NVdVmImmVSHLLFrm.Value; // For disassembly.
> }
> def  VSHLLi8  : N2VLShMax<1, 1, 0b110010, 0b0011, 0, 0, 0, "vshll", "i8",
>                           v8i16, v8i8, NEONvshlli>;
> @@ -2363,10 +2659,10 @@
>                            NEONvshrn>;
> 
> //   VRSHL    : Vector Rounding Shift
> -defm VRSHLs   : N3VInt_QHSD<0,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> -                            IIC_VSHLi4Q, "vrshl", "s", int_arm_neon_vrshifts,0>;
> -defm VRSHLu   : N3VInt_QHSD<1,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> -                            IIC_VSHLi4Q, "vrshl", "u", int_arm_neon_vrshiftu,0>;
> +defm VRSHLs   : N3VInt_QHSD2<0,0,0b0101,0,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> +                             IIC_VSHLi4Q,"vrshl", "s", int_arm_neon_vrshifts,0>;
> +defm VRSHLu   : N3VInt_QHSD2<1,0,0b0101,0,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> +                             IIC_VSHLi4Q,"vrshl", "u", int_arm_neon_vrshiftu,0>;
> //   VRSHR    : Vector Rounding Shift Right
> defm VRSHRs   : N2VSh_QHSD<0,1,0b0010,1, IIC_VSHLi4D, "vrshr", "s", NEONvrshrs>;
> defm VRSHRu   : N2VSh_QHSD<1,1,0b0010,1, IIC_VSHLi4D, "vrshr", "u", NEONvrshru>;
> @@ -2376,15 +2672,18 @@
>                            NEONvrshrn>;
> 
> //   VQSHL    : Vector Saturating Shift
> -defm VQSHLs   : N3VInt_QHSD<0,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> -                            IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts,0>;
> -defm VQSHLu   : N3VInt_QHSD<1,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> -                            IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu,0>;
> +defm VQSHLs   : N3VInt_QHSD2<0,0,0b0100,1,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> +                             IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts,0>;
> +defm VQSHLu   : N3VInt_QHSD2<1,0,0b0100,1,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> +                             IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu,0>;
> //   VQSHL    : Vector Saturating Shift Left (Immediate)
> -defm VQSHLsi  : N2VSh_QHSD<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s", NEONvqshls>;
> -defm VQSHLui  : N2VSh_QHSD<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u", NEONvqshlu>;
> +//   (disassembly note: this has a different interpretation of the shift amont)
> +defm VQSHLsi  : N2VSh_QHSD2<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s", NEONvqshls>;
> +//   (disassembly note: this has a different interpretation of the shift amont)
> +defm VQSHLui  : N2VSh_QHSD2<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u", NEONvqshlu>;
> //   VQSHLU   : Vector Saturating Shift Left (Immediate, Unsigned)
> -defm VQSHLsu  : N2VSh_QHSD<1,1,0b0110,1, IIC_VSHLi4D, "vqshlu","s",NEONvqshlsu>;
> +//   (disassembly note: this has a different interpretation of the shift amont)
> +defm VQSHLsu  : N2VSh_QHSD2<1,1,0b0110,1, IIC_VSHLi4D, "vqshlu","s",NEONvqshlsu>;
> 
> //   VQSHRN   : Vector Saturating Shift Right and Narrow
> defm VQSHRNs  : N2VNSh_HSD<0, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "s",
> @@ -2397,12 +2696,12 @@
>                            NEONvqshrnsu>;
> 
> //   VQRSHL   : Vector Saturating Rounding Shift
> -defm VQRSHLs  : N3VInt_QHSD<0,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> -                            IIC_VSHLi4Q, "vqrshl", "s",
> -                            int_arm_neon_vqrshifts, 0>;
> -defm VQRSHLu  : N3VInt_QHSD<1,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> -                            IIC_VSHLi4Q, "vqrshl", "u",
> -                            int_arm_neon_vqrshiftu, 0>;
> +defm VQRSHLs  : N3VInt_QHSD2<0,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> +                             IIC_VSHLi4Q, "vqrshl", "s",
> +                             int_arm_neon_vqrshifts, 0>;
> +defm VQRSHLu  : N3VInt_QHSD2<1,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
> +                             IIC_VSHLi4Q, "vqrshl", "u",
> +                             int_arm_neon_vqrshiftu, 0>;
> 
> //   VQRSHRN  : Vector Saturating Rounding Shift Right and Narrow
> defm VQRSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "s",
> @@ -2422,7 +2721,8 @@
> defm VRSRAu   : N2VShAdd_QHSD<1, 1, 0b0011, 1, "vrsra", "u", NEONvrshru>;
> 
> //   VSLI     : Vector Shift Left and Insert
> -defm VSLI     : N2VShIns_QHSD<1, 1, 0b0101, 1, "vsli", NEONvsli>;
> +//   (disassembly note: this has a different interpretation of the shift amont)
> +defm VSLI     : N2VShIns_QHSD2<1, 1, 0b0101, 1, "vsli", NEONvsli>;
> //   VSRI     : Vector Shift Right and Insert
> defm VSRI     : N2VShIns_QHSD<1, 1, 0b0100, 1, "vsri", NEONvsri>;
> 
> @@ -2518,10 +2818,13 @@
> 
> //   VMOV     : Vector Move (Register)
> 
> +// Mark these instructions as 2-register instructions to help the disassembler.
> +let NSF = NVdVmImmFrm, NSForm = NVdVmImmFrm.Value in {
> def  VMOVDneon: N3VX<0, 0, 0b10, 0b0001, 0, 1, (outs DPR:$dst), (ins DPR:$src),
>                     IIC_VMOVD, "vmov", "$dst, $src", "", []>;
> def  VMOVQ    : N3VX<0, 0, 0b10, 0b0001, 1, 1, (outs QPR:$dst), (ins QPR:$src),
>                     IIC_VMOVD, "vmov", "$dst, $src", "", []>;
> +}
> 
> //   VMOV     : Vector Move (Immediate)
> 
> @@ -2762,6 +3065,7 @@
> 
> //   VDUP     : Vector Duplicate Lane (from scalar to all elements)
> 
> +let NSF = NVdVmImmVDupLaneFrm, NSForm = NVdVmImmVDupLaneFrm.Value in {
> class VDUPLND<bits<2> op19_18, bits<2> op17_16,
>               string OpcodeStr, string Dt, ValueType Ty>
>   : N2V<0b11, 0b11, op19_18, op17_16, 0b11000, 0, 0,
> @@ -2775,6 +3079,7 @@
>         (outs QPR:$dst), (ins DPR:$src, nohash_imm:$lane), IIC_VMOVD,
>         OpcodeStr, Dt, "$dst, $src[$lane]", "",
>         [(set QPR:$dst, (ResTy (NEONvduplane (OpTy DPR:$src), imm:$lane)))]>;
> +}
> 
> // Inst{19-16} is partially specified depending on the element size.
> 
> @@ -2843,24 +3148,37 @@
> 
> // Vector Conversions.
> 
> +let NSF = NVdVmImmVCVTFrm, NSForm = NVdVmImmVCVTFrm.Value in {
> +class N2VDX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
> +           bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
> +           string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
> +  : N2VD<op24_23, op21_20, op19_18, op17_16, op11_7, op4, OpcodeStr, Dt,
> +         ResTy, OpTy, OpNode>;
> +class N2VQX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
> +           bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
> +           string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
> +  : N2VQ<op24_23, op21_20, op19_18, op17_16, op11_7, op4, OpcodeStr, Dt,
> +         ResTy, OpTy, OpNode>;
> +}
> +
> //   VCVT     : Vector Convert Between Floating-Point and Integers
> -def  VCVTf2sd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
> -                     v2i32, v2f32, fp_to_sint>;
> -def  VCVTf2ud : N2VD<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
> -                     v2i32, v2f32, fp_to_uint>;
> -def  VCVTs2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
> -                     v2f32, v2i32, sint_to_fp>;
> -def  VCVTu2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
> -                     v2f32, v2i32, uint_to_fp>;
> -
> -def  VCVTf2sq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
> -                     v4i32, v4f32, fp_to_sint>;
> -def  VCVTf2uq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
> -                     v4i32, v4f32, fp_to_uint>;
> -def  VCVTs2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
> -                     v4f32, v4i32, sint_to_fp>;
> -def  VCVTu2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
> -                     v4f32, v4i32, uint_to_fp>;
> +def  VCVTf2sd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
> +                      v2i32, v2f32, fp_to_sint>;
> +def  VCVTf2ud : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
> +                      v2i32, v2f32, fp_to_uint>;
> +def  VCVTs2fd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
> +                      v2f32, v2i32, sint_to_fp>;
> +def  VCVTu2fd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
> +                      v2f32, v2i32, uint_to_fp>;
> +
> +def  VCVTf2sq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
> +                      v4i32, v4f32, fp_to_sint>;
> +def  VCVTf2uq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
> +                      v4i32, v4f32, fp_to_uint>;
> +def  VCVTs2fq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
> +                      v4f32, v4i32, sint_to_fp>;
> +def  VCVTu2fq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
> +                      v4f32, v4i32, uint_to_fp>;
> 
> //   VCVT     : Vector Convert Between Floating-Point and Fixed-Point.
> def VCVTf2xsd : N2VCvtD<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
> @@ -2945,6 +3263,8 @@
> 
> //   VEXT     : Vector Extract
> 
> +let NSF    = NVdVnVmImmVectorExtractFrm,
> +    NSForm = NVdVnVmImmVectorExtractFrm.Value in {
> class VEXTd<string OpcodeStr, string Dt, ValueType Ty>
>   : N3V<0,1,0b11,{?,?,?,?},0,0, (outs DPR:$dst),
>         (ins DPR:$lhs, DPR:$rhs, i32imm:$index), IIC_VEXTD,
> @@ -2958,6 +3278,7 @@
>         OpcodeStr, Dt, "$dst, $lhs, $rhs, $index", "",
>         [(set QPR:$dst, (Ty (NEONvext (Ty QPR:$lhs),
>                                       (Ty QPR:$rhs), imm:$index)))]>;
> +}
> 
> def VEXTd8  : VEXTd<"vext", "8",  v8i8>;
> def VEXTd16 : VEXTd<"vext", "16", v4i16>;
> @@ -3001,6 +3322,8 @@
> 
> // Vector Table Lookup and Table Extension.
> 
> +let NSF = VTBLFrm, NSForm = VTBLFrm.Value in {
> +
> //   VTBL     : Vector Table Lookup
> def  VTBL1
>   : N3V<1,1,0b11,0b1000,0,0, (outs DPR:$dst),
> @@ -3057,6 +3380,8 @@
>                                DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$src)))]>;
> } // hasExtraSrcRegAllocReq = 1
> 
> +} // End of "let NSF = VTBLFrm, ..."
> +
> //===----------------------------------------------------------------------===//
> // NEON instructions for single-precision FP math
> //===----------------------------------------------------------------------===//
> 
> Modified: llvm/trunk/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp (original)
> +++ llvm/trunk/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp Tue Mar 16 11:36:54 2010
> @@ -120,7 +120,7 @@
>     void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum);
>     void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum);
>     void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum);
> -    void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum) {}
> +    void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum);
>     void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum);
> 
>     void printCPSOptionOperand(const MachineInstr *MI, int OpNum) {}
> @@ -431,16 +431,16 @@
>   O << "[" << getRegisterName(MO1.getReg());
> 
>   if (!MO2.getReg()) {
> -    if (ARM_AM::getAM2Offset(MO3.getImm()))  // Don't print +0.
> +    if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
>       O << ", #"
> -        << (char)ARM_AM::getAM2Op(MO3.getImm())
> +        << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
>         << ARM_AM::getAM2Offset(MO3.getImm());
>     O << "]";
>     return;
>   }
> 
>   O << ", "
> -    << (char)ARM_AM::getAM2Op(MO3.getImm())
> +    << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
>     << getRegisterName(MO2.getReg());
> 
>   if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
> @@ -458,12 +458,12 @@
>     unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
>     assert(ImmOffs && "Malformed indexed load / store!");
>     O << "#"
> -      << (char)ARM_AM::getAM2Op(MO2.getImm())
> +      << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
>       << ImmOffs;
>     return;
>   }
> 
> -  O << (char)ARM_AM::getAM2Op(MO2.getImm())
> +  O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
>     << getRegisterName(MO1.getReg());
> 
>   if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
> @@ -490,7 +490,7 @@
> 
>   if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
>     O << ", #"
> -      << (char)ARM_AM::getAM3Op(MO3.getImm())
> +      << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
>       << ImmOffs;
>   O << "]";
> }
> @@ -508,7 +508,7 @@
>   unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
>   assert(ImmOffs && "Malformed indexed load / store!");
>   O << "#"
> -    << (char)ARM_AM::getAM3Op(MO2.getImm())
> +    << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
>     << ImmOffs;
> }
> 
> @@ -558,7 +558,7 @@
> 
>   if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
>     O << ", #"
> -      << (char)ARM_AM::getAM5Op(MO2.getImm())
> +      << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
>       << ImmOffs*4;
>   }
>   O << "]";
> @@ -594,7 +594,7 @@
> 
>   const MachineOperand &MO1 = MI->getOperand(Op);
>   assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
> -  O << "[pc, +" << getRegisterName(MO1.getReg()) << "]";
> +  O << "[pc, " << getRegisterName(MO1.getReg()) << "]";
> }
> 
> void
> @@ -617,10 +617,11 @@
> ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) {
>   // (3 - the number of trailing zeros) is the number of then / else.
>   unsigned Mask = MI->getOperand(Op).getImm();
> +  unsigned CondBit0 = Mask >> 4 & 1;
>   unsigned NumTZ = CountTrailingZeros_32(Mask);
>   assert(NumTZ <= 3 && "Invalid IT mask!");
>   for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
> -    bool T = (Mask & (1 << Pos)) == 0;
> +    bool T = ((Mask >> Pos) & 1) == CondBit0;
>     if (T)
>       O << 't';
>     else
> @@ -652,7 +653,7 @@
>   if (MO3.getReg())
>     O << ", " << getRegisterName(MO3.getReg());
>   else if (unsigned ImmOffs = MO2.getImm())
> -    O << ", #+" << ImmOffs * Scale;
> +    O << ", #" << ImmOffs * Scale;
>   O << "]";
> }
> 
> @@ -674,7 +675,7 @@
>   const MachineOperand &MO2 = MI->getOperand(Op+1);
>   O << "[" << getRegisterName(MO1.getReg());
>   if (unsigned ImmOffs = MO2.getImm())
> -    O << ", #+" << ImmOffs*4;
> +    O << ", #" << ImmOffs*4;
>   O << "]";
> }
> 
> @@ -710,7 +711,7 @@
> 
>   unsigned OffImm = MO2.getImm();
>   if (OffImm)  // Don't print +0.
> -    O << ", #+" << OffImm;
> +    O << ", #" << OffImm;
>   O << "]";
> }
> 
> @@ -726,7 +727,7 @@
>   if (OffImm < 0)
>     O << ", #-" << -OffImm;
>   else if (OffImm > 0)
> -    O << ", #+" << OffImm;
> +    O << ", #" << OffImm;
>   O << "]";
> }
> 
> @@ -742,7 +743,7 @@
>   if (OffImm < 0)
>     O << ", #-" << -OffImm * 4;
>   else if (OffImm > 0)
> -    O << ", #+" << OffImm * 4;
> +    O << ", #" << OffImm * 4;
>   O << "]";
> }
> 
> @@ -754,7 +755,18 @@
>   if (OffImm < 0)
>     O << "#-" << -OffImm;
>   else if (OffImm > 0)
> -    O << "#+" << OffImm;
> +    O << "#" << OffImm;
> +}
> +
> +void ARMAsmPrinter::printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI,
> +                                                     int OpNum) {
> +  const MachineOperand &MO1 = MI->getOperand(OpNum);
> +  int32_t OffImm = (int32_t)MO1.getImm() / 4;
> +  // Don't print +0.
> +  if (OffImm < 0)
> +    O << "#-" << -OffImm * 4;
> +  else if (OffImm > 0)
> +    O << "#" << OffImm * 4;
> }
> 
> void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
> 
> Modified: llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp (original)
> +++ llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp Tue Mar 16 11:36:54 2010
> @@ -28,7 +28,165 @@
> #undef MachineInstr
> #undef ARMAsmPrinter
> 
> -void ARMInstPrinter::printInst(const MCInst *MI) { printInstruction(MI); }
> +static unsigned NextReg(unsigned Reg) {
> +  switch (Reg) {
> +  case ARM::D0:
> +    return ARM::D1;
> +  case ARM::D1:
> +    return ARM::D2;
> +  case ARM::D2:
> +    return ARM::D3;
> +  case ARM::D3:
> +    return ARM::D4;
> +  case ARM::D4:
> +    return ARM::D5;
> +  case ARM::D5:
> +    return ARM::D6;
> +  case ARM::D6:
> +    return ARM::D7;
> +  case ARM::D7:
> +    return ARM::D8;
> +  case ARM::D8:
> +    return ARM::D9;
> +  case ARM::D9:
> +    return ARM::D10;
> +  case ARM::D10:
> +    return ARM::D11;
> +  case ARM::D11:
> +    return ARM::D12;
> +  case ARM::D12:
> +    return ARM::D13;
> +  case ARM::D13:
> +    return ARM::D14;
> +  case ARM::D14:
> +    return ARM::D15;
> +  case ARM::D15:
> +    return ARM::D16;
> +  case ARM::D16:
> +    return ARM::D17;
> +  case ARM::D17:
> +    return ARM::D18;
> +  case ARM::D18:
> +    return ARM::D19;
> +  case ARM::D19:
> +    return ARM::D20;
> +  case ARM::D20:
> +    return ARM::D21;
> +  case ARM::D21:
> +    return ARM::D22;
> +  case ARM::D22:
> +    return ARM::D23;
> +  case ARM::D23:
> +    return ARM::D24;
> +  case ARM::D24:
> +    return ARM::D25;
> +  case ARM::D25:
> +    return ARM::D26;
> +  case ARM::D26:
> +    return ARM::D27;
> +  case ARM::D27:
> +    return ARM::D28;
> +  case ARM::D28:
> +    return ARM::D29;
> +  case ARM::D29:
> +    return ARM::D30;
> +  case ARM::D30:
> +    return ARM::D31;
> +
> +  default:
> +    assert(0 && "Unexpected register enum");
> +  }
> +}
> +
> +void ARMInstPrinter::printInst(const MCInst *MI) {
> +  // Check for MOVs and print canonical forms, instead.
> +  if (MI->getOpcode() == ARM::MOVs) {
> +    const MCOperand &Dst = MI->getOperand(0);
> +    const MCOperand &MO1 = MI->getOperand(1);
> +    const MCOperand &MO2 = MI->getOperand(2);
> +    const MCOperand &MO3 = MI->getOperand(3);
> +
> +    O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
> +    printSBitModifierOperand(MI, 6);
> +    printPredicateOperand(MI, 4);
> +
> +    O << '\t' << getRegisterName(Dst.getReg())
> +      << ", " << getRegisterName(MO1.getReg());
> +
> +    if (ARM_AM::getSORegShOp(MO3.getImm()) == ARM_AM::rrx)
> +      return;
> +
> +    O << ", ";
> +
> +    if (MO2.getReg()) {
> +      O << getRegisterName(MO2.getReg());
> +      assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
> +    } else {
> +      O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
> +    }
> +    return;
> +  }
> +
> +  // A8.6.123 PUSH
> +  if ((MI->getOpcode() == ARM::STM || MI->getOpcode() == ARM::t2STM_UPD) &&
> +      MI->getOperand(0).getReg() == ARM::SP) {
> +    const unsigned IdxOffset = MI->getOpcode() == ARM::STM ? 0 : 1;
> +    const MCOperand &MO1 = MI->getOperand(IdxOffset + 1);
> +    if (ARM_AM::getAM4WBFlag(MO1.getImm()) &&
> +        ARM_AM::getAM4SubMode(MO1.getImm()) == ARM_AM::db) {
> +      O << '\t' << "push";
> +      printPredicateOperand(MI, IdxOffset + 2);
> +      O << '\t';
> +      printRegisterList(MI, IdxOffset + 4);
> +      return;
> +    }
> +  }
> +
> +  // A8.6.122 POP
> +  if ((MI->getOpcode() == ARM::LDM || MI->getOpcode() == ARM::t2LDM_UPD) &&
> +      MI->getOperand(0).getReg() == ARM::SP) {
> +    const unsigned IdxOffset = MI->getOpcode() == ARM::LDM ? 0 : 1;
> +    const MCOperand &MO1 = MI->getOperand(IdxOffset + 1);
> +    if (ARM_AM::getAM4WBFlag(MO1.getImm()) &&
> +        ARM_AM::getAM4SubMode(MO1.getImm()) == ARM_AM::ia) {
> +      O << '\t' << "pop";
> +      printPredicateOperand(MI, IdxOffset + 2);
> +      O << '\t';
> +      printRegisterList(MI, IdxOffset + 4);
> +      return;
> +    }
> +  }
> +
> +  // A8.6.355 VPUSH
> +  if ((MI->getOpcode() == ARM::VSTMS || MI->getOpcode() == ARM::VSTMD) &&
> +      MI->getOperand(0).getReg() == ARM::SP) {
> +    const MCOperand &MO1 = MI->getOperand(1);
> +    if (ARM_AM::getAM5WBFlag(MO1.getImm()) &&
> +        ARM_AM::getAM5SubMode(MO1.getImm()) == ARM_AM::db) {
> +      O << '\t' << "vpush";
> +      printPredicateOperand(MI, 2);
> +      O << '\t';
> +      printRegisterList(MI, 4);
> +      return;
> +    }
> +  }
> +
> +  // A8.6.354 VPOP
> +  if ((MI->getOpcode() == ARM::VLDMS || MI->getOpcode() == ARM::VLDMD) &&
> +      MI->getOperand(0).getReg() == ARM::SP) {
> +    const MCOperand &MO1 = MI->getOperand(1);
> +    if (ARM_AM::getAM5WBFlag(MO1.getImm()) &&
> +        ARM_AM::getAM5SubMode(MO1.getImm()) == ARM_AM::ia) {
> +      O << '\t' << "vpop";
> +      printPredicateOperand(MI, 2);
> +      O << '\t';
> +      printRegisterList(MI, 4);
> +      return;
> +    }
> +  }
> +
> +  printInstruction(MI);
> + }
> 
> void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
>                                   const char *Modifier) {
> @@ -36,6 +194,9 @@
>   if (Op.isReg()) {
>     unsigned Reg = Op.getReg();
>     if (Modifier && strcmp(Modifier, "dregpair") == 0) {
> +      O << '{' << getRegisterName(Reg) << ", "
> +               << getRegisterName(NextReg(Reg)) << '}';
> +#if 0
>       // FIXME: Breaks e.g. ARM/vmul.ll.
>       assert(0);
>       /*
> @@ -44,6 +205,7 @@
>       O << '{'
>       << getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi)
>       << '}';*/
> +#endif
>     } else if (Modifier && strcmp(Modifier, "lane") == 0) {
>       assert(0);
>       /*
> @@ -56,7 +218,9 @@
>       O << getRegisterName(Reg);
>     }
>   } else if (Op.isImm()) {
> -    assert((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported");
> +    bool isCallOp = Modifier && !strcmp(Modifier, "call");
> +    assert(isCallOp ||
> +           ((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported"));
>     O << '#' << Op.getImm();
>   } else {
>     assert((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported");
> @@ -142,17 +306,17 @@
>   O << "[" << getRegisterName(MO1.getReg());
> 
>   if (!MO2.getReg()) {
> -    if (ARM_AM::getAM2Offset(MO3.getImm()))  // Don't print +0.
> +    if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
>       O << ", #"
> -      << (char)ARM_AM::getAM2Op(MO3.getImm())
> -      << ARM_AM::getAM2Offset(MO3.getImm());
> +        << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
> +        << ARM_AM::getAM2Offset(MO3.getImm());
>     O << "]";
>     return;
>   }
> 
>   O << ", "
> -  << (char)ARM_AM::getAM2Op(MO3.getImm())
> -  << getRegisterName(MO2.getReg());
> +    << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
> +    << getRegisterName(MO2.getReg());
> 
>   if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
>     O << ", "
> @@ -169,11 +333,14 @@
>   if (!MO1.getReg()) {
>     unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
>     assert(ImmOffs && "Malformed indexed load / store!");
> -    O << '#' << (char)ARM_AM::getAM2Op(MO2.getImm()) << ImmOffs;
> +    O << '#'
> +      << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
> +      << ImmOffs;
>     return;
>   }
> 
> -  O << (char)ARM_AM::getAM2Op(MO2.getImm()) << getRegisterName(MO1.getReg());
> +  O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
> +    << getRegisterName(MO1.getReg());
> 
>   if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
>     O << ", "
> @@ -196,8 +363,8 @@
> 
>   if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
>     O << ", #"
> -    << (char)ARM_AM::getAM3Op(MO3.getImm())
> -    << ImmOffs;
> +      << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
> +      << ImmOffs;
>   O << ']';
> }
> 
> @@ -214,9 +381,9 @@
> 
>   unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
>   assert(ImmOffs && "Malformed indexed load / store!");
> -  O << "#"
> -  << (char)ARM_AM::getAM3Op(MO2.getImm())
> -  << ImmOffs;
> +  O << '#'
> +    << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
> +    << ImmOffs;
> }
> 
> 
> @@ -264,7 +431,7 @@
> 
>   if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
>     O << ", #"
> -      << (char)ARM_AM::getAM5Op(MO2.getImm())
> +      << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
>       << ImmOffs*4;
>   }
>   O << "]";
> @@ -303,14 +470,56 @@
> 
> void ARMInstPrinter::printRegisterList(const MCInst *MI, unsigned OpNum) {
>   O << "{";
> -  // Always skip the first operand, it's the optional (and implicit writeback).
> -  for (unsigned i = OpNum+1, e = MI->getNumOperands(); i != e; ++i) {
> -    if (i != OpNum+1) O << ", ";
> +  for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
> +    if (i != OpNum) O << ", ";
>     O << getRegisterName(MI->getOperand(i).getReg());
>   }
>   O << "}";
> }
> 
> +void ARMInstPrinter::printCPSOptionOperand(const MCInst *MI, unsigned OpNum) {
> +  const MCOperand &Op = MI->getOperand(OpNum);
> +  unsigned option = Op.getImm();
> +  unsigned mode = option & 31;
> +  bool changemode = option >> 5 & 1;
> +  unsigned AIF = option >> 6 & 7;
> +  unsigned imod = option >> 9 & 3;
> +  if (imod == 2)
> +    O << "ie";
> +  else if (imod == 3)
> +    O << "id";
> +  O << '\t';
> +  if (imod > 1) {
> +    if (AIF & 4) O << 'a';
> +    if (AIF & 2) O << 'i';
> +    if (AIF & 1) O << 'f';
> +    if (AIF > 0 && changemode) O << ", ";
> +  }
> +  if (changemode)
> +    O << '#' << mode;
> +}
> +
> +void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum) {
> +  const MCOperand &Op = MI->getOperand(OpNum);
> +  unsigned Mask = Op.getImm();
> +  if (Mask) {
> +    O << '_';
> +    if (Mask & 8) O << 'f';
> +    if (Mask & 4) O << 's';
> +    if (Mask & 2) O << 'x';
> +    if (Mask & 1) O << 'c';
> +  }
> +}
> +
> +void ARMInstPrinter::printNegZeroOperand(const MCInst *MI, unsigned OpNum){
> +  const MCOperand &Op = MI->getOperand(OpNum);
> +  O << '#';
> +  if (Op.getImm() < 0)
> +    O << '-' << (-Op.getImm() - 1);
> +  else
> +    O << Op.getImm();
> +}
> +
> void ARMInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNum) {
>   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
>   if (CC != ARMCC::AL)
> @@ -352,3 +561,191 @@
> void ARMInstPrinter::printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum) {
>   O << "#" <<  MI->getOperand(OpNum).getImm() * 4;
> }
> +
> +void ARMInstPrinter::printThumbITMask(const MCInst *MI, unsigned OpNum) {
> +  // (3 - the number of trailing zeros) is the number of then / else.
> +  unsigned Mask = MI->getOperand(OpNum).getImm();
> +  unsigned CondBit0 = Mask >> 4 & 1;
> +  unsigned NumTZ = CountTrailingZeros_32(Mask);
> +  assert(NumTZ <= 3 && "Invalid IT mask!");
> +  for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
> +    bool T = ((Mask >> Pos) & 1) == CondBit0;
> +    if (T)
> +      O << 't';
> +    else
> +      O << 'e';
> +  }
> +}
> +
> +void ARMInstPrinter::printThumbAddrModeRROperand(const MCInst *MI, unsigned Op)
> +{
> +  const MCOperand &MO1 = MI->getOperand(Op);
> +  const MCOperand &MO2 = MI->getOperand(Op+1);
> +  O << "[" << getRegisterName(MO1.getReg());
> +  O << ", " << getRegisterName(MO2.getReg()) << "]";
> +}
> +
> +void ARMInstPrinter::printThumbAddrModeRI5Operand(const MCInst *MI, unsigned Op,
> +                                                  unsigned Scale) {
> +  const MCOperand &MO1 = MI->getOperand(Op);
> +  const MCOperand &MO2 = MI->getOperand(Op+1);
> +  const MCOperand &MO3 = MI->getOperand(Op+2);
> +
> +  if (!MO1.isReg()) {   // FIXME: This is for CP entries, but isn't right.
> +    printOperand(MI, Op);
> +    return;
> +  }
> +
> +  O << "[" << getRegisterName(MO1.getReg());
> +  if (MO3.getReg())
> +    O << ", " << getRegisterName(MO3.getReg());
> +  else if (unsigned ImmOffs = MO2.getImm())
> +    O << ", #" << ImmOffs * Scale;
> +  O << "]";
> +}
> +
> +void ARMInstPrinter::printThumbAddrModeS1Operand(const MCInst *MI, unsigned Op)
> +{
> +  printThumbAddrModeRI5Operand(MI, Op, 1);
> +}
> +
> +void ARMInstPrinter::printThumbAddrModeS2Operand(const MCInst *MI, unsigned Op)
> +{
> +  printThumbAddrModeRI5Operand(MI, Op, 2);
> +}
> +
> +void ARMInstPrinter::printThumbAddrModeS4Operand(const MCInst *MI, unsigned Op)
> +{
> +  printThumbAddrModeRI5Operand(MI, Op, 4);
> +}
> +
> +void ARMInstPrinter::printThumbAddrModeSPOperand(const MCInst *MI,unsigned Op) {
> +  const MCOperand &MO1 = MI->getOperand(Op);
> +  const MCOperand &MO2 = MI->getOperand(Op+1);
> +  O << "[" << getRegisterName(MO1.getReg());
> +  if (unsigned ImmOffs = MO2.getImm())
> +    O << ", #" << ImmOffs*4;
> +  O << "]";
> +}
> +
> +void ARMInstPrinter::printTBAddrMode(const MCInst *MI, unsigned OpNum) {
> +  O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
> +  if (MI->getOpcode() == ARM::t2TBH)
> +    O << ", lsl #1";
> +  O << ']';
> +}
> +
> +// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
> +// register with shift forms.
> +// REG 0   0           - e.g. R5
> +// REG IMM, SH_OPC     - e.g. R5, LSL #3
> +void ARMInstPrinter::printT2SOOperand(const MCInst *MI, unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  const MCOperand &MO2 = MI->getOperand(OpNum+1);
> +
> +  unsigned Reg = MO1.getReg();
> +  O << getRegisterName(Reg);
> +
> +  // Print the shift opc.
> +  O << ", "
> +    << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()))
> +    << " ";
> +
> +  assert(MO2.isImm() && "Not a valid t2_so_reg value!");
> +  O << "#" << ARM_AM::getSORegOffset(MO2.getImm());
> +}
> +
> +void ARMInstPrinter::printT2AddrModeImm12Operand(const MCInst *MI,
> +                                                 unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  const MCOperand &MO2 = MI->getOperand(OpNum+1);
> +
> +  O << "[" << getRegisterName(MO1.getReg());
> +
> +  unsigned OffImm = MO2.getImm();
> +  if (OffImm)  // Don't print +0.
> +    O << ", #" << OffImm;
> +  O << "]";
> +}
> +
> +void ARMInstPrinter::printT2AddrModeImm8Operand(const MCInst *MI,
> +                                                unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  const MCOperand &MO2 = MI->getOperand(OpNum+1);
> +
> +  O << "[" << getRegisterName(MO1.getReg());
> +
> +  int32_t OffImm = (int32_t)MO2.getImm();
> +  // Don't print +0.
> +  if (OffImm < 0)
> +    O << ", #-" << -OffImm;
> +  else if (OffImm > 0)
> +    O << ", #" << OffImm;
> +  O << "]";
> +}
> +
> +void ARMInstPrinter::printT2AddrModeImm8s4Operand(const MCInst *MI,
> +                                                 unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  const MCOperand &MO2 = MI->getOperand(OpNum+1);
> +
> +  O << "[" << getRegisterName(MO1.getReg());
> +
> +  int32_t OffImm = (int32_t)MO2.getImm() / 4;
> +  // Don't print +0.
> +  if (OffImm < 0)
> +    O << ", #-" << -OffImm * 4;
> +  else if (OffImm > 0)
> +    O << ", #" << OffImm * 4;
> +  O << "]";
> +}
> +
> +void ARMInstPrinter::printT2AddrModeImm8OffsetOperand(const MCInst *MI,
> +                                                     unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  int32_t OffImm = (int32_t)MO1.getImm();
> +  // Don't print +0.
> +  if (OffImm < 0)
> +    O << "#-" << -OffImm;
> +  else if (OffImm > 0)
> +    O << "#" << OffImm;
> +}
> +
> +void ARMInstPrinter::printT2AddrModeImm8s4OffsetOperand(const MCInst *MI,
> +                                                        unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  int32_t OffImm = (int32_t)MO1.getImm() / 4;
> +  // Don't print +0.
> +  if (OffImm < 0)
> +    O << "#-" << -OffImm * 4;
> +  else if (OffImm > 0)
> +    O << "#" << OffImm * 4;
> +}
> +
> +void ARMInstPrinter::printT2AddrModeSoRegOperand(const MCInst *MI,
> +                                                 unsigned OpNum) {
> +  const MCOperand &MO1 = MI->getOperand(OpNum);
> +  const MCOperand &MO2 = MI->getOperand(OpNum+1);
> +  const MCOperand &MO3 = MI->getOperand(OpNum+2);
> +
> +  O << "[" << getRegisterName(MO1.getReg());
> +
> +  assert(MO2.getReg() && "Invalid so_reg load / store address!");
> +  O << ", " << getRegisterName(MO2.getReg());
> +
> +  unsigned ShAmt = MO3.getImm();
> +  if (ShAmt) {
> +    assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
> +    O << ", lsl #" << ShAmt;
> +  }
> +  O << "]";
> +}
> +
> +void ARMInstPrinter::printVFPf32ImmOperand(const MCInst *MI, unsigned OpNum) {
> +  O << '#' << MI->getOperand(OpNum).getImm();
> +}
> +
> +void ARMInstPrinter::printVFPf64ImmOperand(const MCInst *MI, unsigned OpNum) {
> +  O << '#' << MI->getOperand(OpNum).getImm();
> +}
> +
> 
> Modified: llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h (original)
> +++ llvm/trunk/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h Tue Mar 16 11:36:54 2010
> @@ -54,26 +54,26 @@
>   void printBitfieldInvMaskImmOperand(const MCInst *MI, unsigned OpNum);
> 
>   void printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum);
> -  void printThumbITMask(const MCInst *MI, unsigned OpNum) {}
> -  void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum) {}
> +  void printThumbITMask(const MCInst *MI, unsigned OpNum);
> +  void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum);
>   void printThumbAddrModeRI5Operand(const MCInst *MI, unsigned OpNum,
> -                                    unsigned Scale) {}
> -  void printThumbAddrModeS1Operand(const MCInst *MI, unsigned OpNum) {}
> -  void printThumbAddrModeS2Operand(const MCInst *MI, unsigned OpNum) {}
> -  void printThumbAddrModeS4Operand(const MCInst *MI, unsigned OpNum) {}
> -  void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum) {}
> +                                    unsigned Scale);
> +  void printThumbAddrModeS1Operand(const MCInst *MI, unsigned OpNum);
> +  void printThumbAddrModeS2Operand(const MCInst *MI, unsigned OpNum);
> +  void printThumbAddrModeS4Operand(const MCInst *MI, unsigned OpNum);
> +  void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum);
> 
> -  void printT2SOOperand(const MCInst *MI, unsigned OpNum) {}
> -  void printT2AddrModeImm12Operand(const MCInst *MI, unsigned OpNum) {}
> -  void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum) {}
> -  void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum) {}
> -  void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum) {}
> -  void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum) {}
> -  void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum) {}
> +  void printT2SOOperand(const MCInst *MI, unsigned OpNum);
> +  void printT2AddrModeImm12Operand(const MCInst *MI, unsigned OpNum);
> +  void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum);
> +  void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum);
> +  void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum);
> +  void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum);
> +  void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum);
> 
> -  void printCPSOptionOperand(const MCInst *MI, unsigned OpNum) {}
> -  void printMSRMaskOperand(const MCInst *MI, unsigned OpNum) {}
> -  void printNegZeroOperand(const MCInst *MI, unsigned OpNum) {}
> +  void printCPSOptionOperand(const MCInst *MI, unsigned OpNum);
> +  void printMSRMaskOperand(const MCInst *MI, unsigned OpNum);
> +  void printNegZeroOperand(const MCInst *MI, unsigned OpNum);
>   void printPredicateOperand(const MCInst *MI, unsigned OpNum);
>   void printMandatoryPredicateOperand(const MCInst *MI, unsigned OpNum);
>   void printSBitModifierOperand(const MCInst *MI, unsigned OpNum);
> @@ -82,10 +82,10 @@
>                           const char *Modifier);
>   void printJTBlockOperand(const MCInst *MI, unsigned OpNum) {}
>   void printJT2BlockOperand(const MCInst *MI, unsigned OpNum) {}
> -  void printTBAddrMode(const MCInst *MI, unsigned OpNum) {}
> +  void printTBAddrMode(const MCInst *MI, unsigned OpNum);
>   void printNoHashImmediate(const MCInst *MI, unsigned OpNum);
> -  void printVFPf32ImmOperand(const MCInst *MI, int OpNum) {}
> -  void printVFPf64ImmOperand(const MCInst *MI, int OpNum) {}
> +  void printVFPf32ImmOperand(const MCInst *MI, unsigned OpNum);
> +  void printVFPf64ImmOperand(const MCInst *MI, unsigned OpNum);
>   void printHex8ImmOperand(const MCInst *MI, int OpNum) {}
>   void printHex16ImmOperand(const MCInst *MI, int OpNum) {}
>   void printHex32ImmOperand(const MCInst *MI, int OpNum) {}
> 
> Added: llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.cpp?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.cpp (added)
> +++ llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.cpp Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,513 @@
> +//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA ----*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +// This file is part of the ARM Disassembler.
> +// It contains code to translate the data produced by the decoder into MCInsts.
> +// Documentation for the disassembler can be found in ARMDisassembler.h.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#define DEBUG_TYPE "arm-disassembler"
> +
> +#include "ARMDisassembler.h"
> +#include "ARMDisassemblerCore.h"
> +
> +#include "llvm/MC/MCInst.h"
> +#include "llvm/Target/TargetRegistry.h"
> +#include "llvm/Support/Debug.h"
> +#include "llvm/Support/MemoryObject.h"
> +#include "llvm/Support/ErrorHandling.h"
> +#include "llvm/Support/raw_ostream.h"
> +
> +/// ARMDisassemblerTables.inc - ARMDisassemblerTables.inc is tblgen'ed from
> +/// RISCDisassemblerEmitter.cpp TableGen backend.  It contains:
> +///
> +/// o Mappings from opcode to ARM/Thumb instruction format
> +///
> +/// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function
> +/// for an ARM instruction.
> +///
> +/// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding
> +/// function for a Thumb instruction.
> +///
> +#include "../ARMGenDisassemblerTables.inc"
> +
> +namespace llvm {
> +
> +namespace ARMDisassembler {
> +
> +/// showBitVector - Use the raw_ostream to log a diagnostic message describing
> +/// the inidividual bits of the instruction.  This is a sample output:
> +///
> +///  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
> +/// -------------------------------------------------------------------------------------------------
> +/// | 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0|
> +/// -------------------------------------------------------------------------------------------------
> +///
> +static inline void showBitVector(raw_ostream &os, const uint32_t &insn) {
> +  os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 \n";
> +  os << "-------------------------------------------------------------------------------------------------\n";
> +  os << '|';
> +  for (unsigned i = 32; i != 0; --i) {
> +    if (insn >> (i - 1) & 0x01)
> +      os << " 1";
> +    else
> +      os << " 0";
> +    os << (i%4 == 1 ? '|' : ':');
> +  }
> +  os << '\n';
> +  os << "-------------------------------------------------------------------------------------------------\n";
> +  os << '\n';
> +}
> +
> +/// decodeARMInstruction is a decorator function which tries special cases of
> +/// instruction matching before calling the auto-generated decoder function.
> +static unsigned decodeARMInstruction(uint32_t &insn) {
> +  if (slice(insn, 31, 28) == 15)
> +    goto AutoGenedDecoder;
> +
> +  // Special case processing, if any, goes here....
> +
> +  // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB.
> +  // The insufficient encoding information of the combined instruction confuses
> +  // the decoder wrt BFC/BFI.  Therefore, we try to recover here.
> +  // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111.
> +  // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111.
> +  if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) {
> +    if (slice(insn, 3, 0) == 15)
> +      return ARM::BFC;
> +    else
> +      return ARM::BFI;
> +  }
> +
> +  // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8.
> +  // As a result, the decoder fails to decode UMULL properly.
> +  if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) {
> +    return ARM::UMULL;
> +  }
> +
> +  // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195.
> +  // As a result, the decoder fails to decode SBFX properly.
> +  if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5)
> +    return ARM::SBFX;
> +
> +  // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198.
> +  // As a result, the decoder fails to decode UBFX properly.
> +  if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5)
> +    return ARM::UBFX;
> +
> +  // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2.
> +  // As a result, the decoder fails to deocode SSAT properly.
> +  if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1)
> +    return slice(insn, 6, 6) == 0 ? ARM::SSATlsl : ARM::SSATasr;
> +
> +  // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147.
> +  // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT.
> +  if (slice(insn, 27, 24) == 0) {
> +    switch (slice(insn, 21, 20)) {
> +    case 2:
> +      switch (slice(insn, 7, 4)) {
> +      case 11:
> +        return ARM::STRHT;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    case 3:
> +      switch (slice(insn, 7, 4)) {
> +      case 11:
> +        return ARM::LDRHT;
> +      case 13:
> +        return ARM::LDRSBT;
> +      case 15:
> +        return ARM::LDRSHT;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    default:
> +      break;   // fallthrough
> +    }
> +  }
> +
> +  // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153.
> +  // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST
> +  // properly.
> +  if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) {
> +    unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
> +    switch (slice(insn, 7, 4)) {
> +    case 11:
> +      switch (PW) {
> +      case 2: // Offset
> +        return ARM::STRH;
> +      case 3: // Pre-indexed
> +        return ARM::STRH_PRE;
> +      case 0: // Post-indexed
> +        return ARM::STRH_POST;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    case 13:
> +      switch (PW) {
> +      case 2: // Offset
> +        return ARM::LDRD;
> +      case 3: // Pre-indexed
> +        return ARM::LDRD_PRE;
> +      case 0: // Post-indexed
> +        return ARM::LDRD_POST;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    case 15:
> +      switch (PW) {
> +      case 2: // Offset
> +        return ARM::STRD;
> +      case 3: // Pre-indexed
> +        return ARM::STRD_PRE;
> +      case 0: // Post-indexed
> +        return ARM::STRD_POST;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    default:
> +      break; // fallthrough
> +    }
> +  }
> +
> +  // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153.
> +  // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST
> +  // properly.
> +  if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) {
> +    unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
> +    switch (slice(insn, 7, 4)) {
> +    case 11:
> +      switch (PW) {
> +      case 2: // Offset
> +        return ARM::LDRH;
> +      case 3: // Pre-indexed
> +        return ARM::LDRH_PRE;
> +      case 0: // Post-indexed
> +        return ARM::LDRH_POST;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    case 13:
> +      switch (PW) {
> +      case 2: // Offset
> +        return ARM::LDRSB;
> +      case 3: // Pre-indexed
> +        return ARM::LDRSB_PRE;
> +      case 0: // Post-indexed
> +        return ARM::LDRSB_POST;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    case 15:
> +      switch (PW) {
> +      case 2: // Offset
> +        return ARM::LDRSH;
> +      case 3: // Pre-indexed
> +        return ARM::LDRSH_PRE;
> +      case 0: // Post-indexed
> +        return ARM::LDRSH_POST;
> +      default:
> +        break; // fallthrough
> +      }
> +      break;
> +    default:
> +      break; // fallthrough
> +    }
> +  }
> +
> +AutoGenedDecoder:
> +  // Calling the auto-generated decoder function.
> +  return decodeInstruction(insn);
> +}
> +
> +// Helper function for special case handling of LDR (literal) and friends.
> +// See, for example, A6.3.7 Load word: Table A6-18 Load word.
> +// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
> +// before passing it on.
> +static unsigned T2Morph2LoadLiteral(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return Opcode; // Return unmorphed opcode.
> +
> +  case ARM::t2LDRDi8:
> +    return ARM::t2LDRDpci;
> +
> +  case ARM::t2LDR_POST:   case ARM::t2LDR_PRE:
> +  case ARM::t2LDRi12:     case ARM::t2LDRi8:
> +  case ARM::t2LDRs:
> +    return ARM::t2LDRpci;
> +
> +  case ARM::t2LDRB_POST:  case ARM::t2LDRB_PRE:
> +  case ARM::t2LDRBi12:    case ARM::t2LDRBi8:
> +  case ARM::t2LDRBs:
> +    return ARM::t2LDRBpci;
> +
> +  case ARM::t2LDRH_POST:  case ARM::t2LDRH_PRE:
> +  case ARM::t2LDRHi12:    case ARM::t2LDRHi8:
> +  case ARM::t2LDRHs:
> +    return ARM::t2LDRHpci;
> +
> +  case ARM::t2LDRSB_POST:  case ARM::t2LDRSB_PRE:
> +  case ARM::t2LDRSBi12:    case ARM::t2LDRSBi8:
> +  case ARM::t2LDRSBs:
> +    return ARM::t2LDRSBpci;
> +
> +  case ARM::t2LDRSH_POST:  case ARM::t2LDRSH_PRE:
> +  case ARM::t2LDRSHi12:    case ARM::t2LDRSHi8:
> +  case ARM::t2LDRSHs:
> +    return ARM::t2LDRSHpci;
> +  }
> +}
> +
> +/// decodeThumbSideEffect is a decorator function which can potentially twiddle
> +/// the instruction or morph the returned opcode under Thumb2.
> +///
> +/// First it checks whether the insn is a NEON or VFP instr; if true, bit
> +/// twiddling could be performed on insn to turn it into an ARM NEON/VFP
> +/// equivalent instruction and decodeInstruction is called with the transformed
> +/// insn.
> +///
> +/// Next, there is special handling for Load byte/halfword/word instruction by
> +/// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded
> +/// Thumb2 instruction.  See comments below for further details.
> +///
> +/// Finally, one last check is made to see whether the insn is a NEON/VFP and
> +/// decodeInstruction(insn) is invoked on the original insn.
> +///
> +/// Otherwise, decodeThumbInstruction is called with the original insn.
> +static unsigned decodeThumbSideEffect(bool IsThumb2, uint32_t &insn) {
> +  if (IsThumb2) {
> +    uint16_t op1 = slice(insn, 28, 27);
> +    uint16_t op2 = slice(insn, 26, 20);
> +
> +    // A6.3 32-bit Thumb instruction encoding
> +    // Table A6-9 32-bit Thumb instruction encoding
> +
> +    // The coprocessor instructions of interest are transformed to their ARM
> +    // equivalents.
> +
> +    // --------- Transform Begin Marker ---------
> +    if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) {
> +      // A7.4 Advanced SIMD data-processing instructions
> +      // U bit of Thumb corresponds to Inst{24} of ARM.
> +      uint16_t U = slice(op1, 1, 1);
> +
> +      // Inst{28-24} of ARM = {1,0,0,1,U};
> +      uint16_t bits28_24 = 9 << 1 | U;
> +      DEBUG(showBitVector(errs(), insn));
> +      setSlice(insn, 28, 24, bits28_24);
> +      return decodeInstruction(insn);
> +    }
> +
> +    if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) {
> +      // A7.7 Advanced SIMD element or structure load/store instructions
> +      // Inst{27-24} of Thumb = 0b1001
> +      // Inst{27-24} of ARM   = 0b0100
> +      DEBUG(showBitVector(errs(), insn));
> +      setSlice(insn, 27, 24, 4);
> +      return decodeInstruction(insn);
> +    }
> +    // --------- Transform End Marker ---------
> +
> +    // See, for example, A6.3.7 Load word: Table A6-18 Load word.
> +    // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
> +    // before passing it on to our delegate.
> +    if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1
> +        && slice(insn, 19, 16) == 15)
> +      return T2Morph2LoadLiteral(decodeThumbInstruction(insn));
> +
> +    // One last check for NEON/VFP instructions.
> +    if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1)
> +      return decodeInstruction(insn);
> +
> +    // Fall through.
> +  }
> +
> +  return decodeThumbInstruction(insn);
> +}
> +
> +static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::t2PLDi12:   case ARM::t2PLDi8:
> +  case ARM::t2PLDr:     case ARM::t2PLDs:
> +  case ARM::t2PLDWi12:  case ARM::t2PLDWi8:
> +  case ARM::t2PLDWr:    case ARM::t2PLDWs:
> +  case ARM::t2PLIi12:   case ARM::t2PLIi8:
> +  case ARM::t2PLIr:     case ARM::t2PLIs:
> +    return true;
> +  }
> +}
> +
> +static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return 0;
> +  case ARM::t2PLDi12:   case ARM::t2PLDi8:
> +  case ARM::t2PLDr:     case ARM::t2PLDs:
> +    return ARM::t2PLDpci;
> +  case ARM::t2PLDWi12:  case ARM::t2PLDWi8:
> +  case ARM::t2PLDWr:    case ARM::t2PLDWs:
> +    return ARM::t2PLDWpci;
> +  case ARM::t2PLIi12:   case ARM::t2PLIi8:
> +  case ARM::t2PLIr:     case ARM::t2PLIs:
> +    return ARM::t2PLIpci;
> +  }
> +}
> +
> +//
> +// Public interface for the disassembler
> +//
> +
> +bool ARMDisassembler::getInstruction(MCInst &MI,
> +                                     uint64_t &Size,
> +                                     const MemoryObject &Region,
> +                                     uint64_t Address,
> +                                     raw_ostream &os) const {
> +  // The machine instruction.
> +  uint32_t insn;
> +
> +  // We want to read exactly 4 bytes of data.
> +  if (Region.readBytes(Address, 4, (uint8_t*)&insn, NULL) == -1)
> +    return false;
> +
> +  unsigned Opcode = decodeARMInstruction(insn);
> +  ARMFormat Format = ARMFormats[Opcode];
> +  NSFormat NSF = NSFormats[Opcode];
> +  Size = 4;
> +
> +  DEBUG({
> +      errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
> +             << " Format=" << stringForARMFormat(Format) << " NSFormat="
> +             << stringForNSFormat(NSF) << '\n';
> +      showBitVector(errs(), insn);
> +    });
> +
> +  AbstractARMMCBuilder *Builder =
> +    ARMMCBuilderFactory::CreateMCBuilder(Opcode, Format, NSF);
> +
> +  if (!Builder)
> +    return false;
> +
> +  if (!Builder->Build(MI, insn))
> +    return false;
> +
> +  delete Builder;
> +
> +  return true;
> +}
> +
> +bool ThumbDisassembler::getInstruction(MCInst &MI,
> +                                       uint64_t &Size,
> +                                       const MemoryObject &Region,
> +                                       uint64_t Address,
> +                                       raw_ostream &os) const {
> +  // The machine instruction.
> +  uint32_t insn = 0;
> +  uint32_t insn1 = 0;
> +
> +  // A6.1 Thumb instruction set encoding
> +  //
> +  // If bits [15:11] of the halfword being decoded take any of the following
> +  // values, the halfword is the first halfword of a 32-bit instruction:
> +  // o 0b11101
> +  // o 0b11110
> +  // o 0b11111.
> +  //
> +  // Otherwise, the halfword is a 16-bit instruction.
> +
> +  // Read 2 bytes of data first.
> +  if (Region.readBytes(Address, 2, (uint8_t*)&insn, NULL) == -1)
> +    return false;
> +
> +  unsigned bits15_11 = slice(insn, 15, 11);
> +  bool IsThumb2 = false;
> +
> +  // 32-bit instructions if the bits [15:11] of the halfword matches
> +  // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }.
> +  if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) {
> +    IsThumb2 = true;
> +    if (Region.readBytes(Address + 2, 2, (uint8_t*)&insn1, NULL) == -1)
> +      return false;
> +    insn = (insn << 16 | insn1);
> +  }
> +
> +  // The insn could potentially be bit-twiddled in order to be decoded as an ARM
> +  // NEON/VFP opcode.  In such case, the modified insn is later disassembled as
> +  // an ARM NEON/VFP instruction.
> +  //
> +  // This is a short term solution for lack of encoding bits specified for the
> +  // Thumb2 NEON/VFP instructions.  The long term solution could be adding some
> +  // infrastructure to have each instruction support more than one encodings.
> +  // Which encoding is used would be based on which subtarget the compiler/
> +  // disassembler is working with at the time.  This would allow the sharing of
> +  // the NEON patterns between ARM and Thumb2, as well as potential greater
> +  // sharing between the regular ARM instructions and the 32-bit wide Thumb2
> +  // instructions as well.
> +  unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn);
> +
> +  // A8.6.117/119/120/121.
> +  // PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant.
> +  if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15)
> +    Opcode = T2Morph2Preload2PCI(Opcode);
> +
> +  ARMFormat Format = ARMFormats[Opcode];
> +  NSFormat NSF = NSFormats[Opcode];
> +  Size = IsThumb2 ? 4 : 2;
> +
> +  DEBUG({
> +      errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
> +             << " Format=" << stringForARMFormat(Format) << " NSFormat="
> +             << stringForNSFormat(NSF) << '\n';
> +      showBitVector(errs(), insn);
> +    });
> +
> +  AbstractARMMCBuilder *Builder =
> +    ARMMCBuilderFactory::CreateMCBuilder(Opcode, Format, NSF);
> +
> +  if (!Builder)
> +    return false;
> +
> +  if (!Builder->Build(MI, insn))
> +    return false;
> +
> +  delete Builder;
> +
> +  return true;
> +}
> +
> +} // namespace ARM Disassembler
> +
> +static const MCDisassembler *createARMDisassembler(const Target &T) {
> +  return new ARMDisassembler::ARMDisassembler;
> +}
> +
> +static const MCDisassembler *createThumbDisassembler(const Target &T) {
> +  return new ARMDisassembler::ThumbDisassembler;
> +}
> +
> +extern "C" void LLVMInitializeARMDisassembler() { 
> +  // Register the disassembler.
> +  TargetRegistry::RegisterMCDisassembler(TheARMTarget, 
> +                                         createARMDisassembler);
> +  TargetRegistry::RegisterMCDisassembler(TheThumbTarget,
> +                                         createThumbDisassembler);
> +}
> +
> +} // namespace llvm
> 
> Added: llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.h?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.h (added)
> +++ llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassembler.h Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,71 @@
> +//===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#ifndef ARMDISASSEMBLER_H
> +#define ARMDISASSEMBLER_H
> +
> +#include "llvm/MC/MCDisassembler.h"
> +
> +namespace llvm {
> +  
> +class MCInst;
> +class MemoryObject;
> +class raw_ostream;
> +  
> +namespace ARMDisassembler {
> +
> +/// ARMDisassembler - ARM disassembler for all ARM platforms.
> +class ARMDisassembler : public MCDisassembler {
> +public:
> +  /// Constructor     - Initializes the disassembler.
> +  ///
> +  ARMDisassembler() :
> +    MCDisassembler() {
> +  }
> +
> +  ~ARMDisassembler() {
> +  }
> +
> +  /// getInstruction - See MCDisassembler.
> +  bool getInstruction(MCInst &instr,
> +                      uint64_t &size,
> +                      const MemoryObject &region,
> +                      uint64_t address,
> +                      raw_ostream &vStream) const;
> +private:
> +};
> +
> +/// ThumbDisassembler - Thumb disassembler for all ARM platforms.
> +class ThumbDisassembler : public MCDisassembler {
> +public:
> +  /// Constructor     - Initializes the disassembler.
> +  ///
> +  ThumbDisassembler() :
> +    MCDisassembler() {
> +  }
> +
> +  ~ThumbDisassembler() {
> +  }
> +
> +  /// getInstruction - See MCDisassembler.
> +  bool getInstruction(MCInst &instr,
> +                      uint64_t &size,
> +                      const MemoryObject &region,
> +                      uint64_t address,
> +                      raw_ostream &vStream) const;
> +private:
> +};
> +
> +} // namespace ARMDisassembler
> +  
> +} // namespace llvm
> +  
> +#endif
> 
> Added: llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp (added)
> +++ llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,3351 @@
> +//===- ARMDisassemblerCore.cpp - ARM disassembler helpers ----*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +// This file is part of the ARM Disassembler.
> +// It contains code to represent the core concepts of Builder, Builder Factory,
> +// as well as the Algorithm to solve the problem of disassembling an ARM instr.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#include "ARMAddressingModes.h"
> +#include "ARMDisassemblerCore.h"
> +#include <map>
> +
> +/// ARMGenInstrInfo.inc - ARMGenInstrInfo.inc contains the static const
> +/// TargetInstrDesc ARMInsts[] definition and the TargetOperandInfo[]'s
> +/// describing the operand info for each ARMInsts[i].
> +///
> +/// Together with an instruction's encoding format, we can take advantage of the
> +/// NumOperands and the OpInfo fields of the target instruction description in
> +/// the quest to build out the MCOperand list for an MCInst.
> +///
> +/// The general guideline is that with a known format, the number of dst and src
> +/// operands are well-known.  The dst is built first, followed by the src
> +/// operand(s).  The operands not yet used at this point are for the Implicit
> +/// Uses and Defs by this instr.  For the Uses part, the pred:$p operand is
> +/// defined with two components:
> +///
> +/// def pred {	// Operand PredicateOperand
> +///   ValueType Type = OtherVT;
> +///   string PrintMethod = "printPredicateOperand";
> +///   string AsmOperandLowerMethod = ?;
> +///   dag MIOperandInfo = (ops i32imm, CCR);
> +///   AsmOperandClass ParserMatchClass = ImmAsmOperand;
> +///   dag DefaultOps = (ops (i32 14), (i32 zero_reg));
> +/// }
> +///
> +/// which is manifested by the TargetOperandInfo[] of:
> +///
> +/// { 0, 0|(1<<TOI::Predicate), 0 },
> +/// { ARM::CCRRegClassID, 0|(1<<TOI::Predicate), 0 }
> +///
> +/// So the first predicate MCOperand corresponds to the immediate part of the
> +/// ARM condition field (Inst{31-28}), and the second predicate MCOperand
> +/// corresponds to a register kind of ARM::CPSR.
> +///
> +/// For the Defs part, in the simple case of only cc_out:$s, we have:
> +///
> +/// def cc_out {	// Operand OptionalDefOperand
> +///   ValueType Type = OtherVT;
> +///   string PrintMethod = "printSBitModifierOperand";
> +///   string AsmOperandLowerMethod = ?;
> +///   dag MIOperandInfo = (ops CCR);
> +///   AsmOperandClass ParserMatchClass = ImmAsmOperand;
> +///   dag DefaultOps = (ops (i32 zero_reg));
> +/// }
> +///
> +/// which is manifested by the one TargetOperandInfo of:
> +///
> +/// { ARM::CCRRegClassID, 0|(1<<TOI::OptionalDef), 0 }
> +///
> +/// And this maps to one MCOperand with the regsiter kind of ARM::CPSR.
> +#include "ARMGenInstrInfo.inc"
> +
> +using namespace llvm;
> +
> +const char *ARMUtils::OpcodeName(unsigned Opcode) {
> +  return ARMInsts[Opcode].Name;
> +}
> +
> +// There is a more efficient way than the following.  It is fragile, though.
> +// See the code snippet after this function.
> +static unsigned getRegisterEnum(unsigned RegClassID, unsigned RawRegister,
> +                                bool DRegPair = false) {
> +
> +  if (DRegPair && RegClassID == ARM::QPRRegClassID) {
> +    // LLVM expects { Dd, Dd+1 } to form a super register; this is not specified
> +    // in the ARM Architecture Manual as far as I understand it (A8.6.307).
> +    // Therefore, we morph the RegClassID to be the sub register class and don't
> +    // subsequently transform the RawRegister encoding when calculating RegNum.
> +    //
> +    // See also ARMinstPrinter::printOperand() wrt "dregpair" modifier part
> +    // where this workaround is meant for.
> +    RegClassID = ARM::DPRRegClassID;
> +  }
> +
> +  // See also decodeNEONRd(), decodeNEONRn(), decodeNEONRm().
> +  unsigned RegNum =
> +    RegClassID == ARM::QPRRegClassID ? RawRegister >> 1 : RawRegister;
> +
> +  switch (RegNum) {
> +  default:
> +    break;
> +  case 0:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R0;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D0;
> +    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
> +    case ARM::QPR_VFP2RegClassID:
> +      return ARM::Q0;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S0;
> +    }
> +    break;
> +  case 1:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R1;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D1;
> +    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
> +    case ARM::QPR_VFP2RegClassID:
> +      return ARM::Q1;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S1;
> +    }
> +    break;
> +  case 2:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R2;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D2;
> +    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
> +    case ARM::QPR_VFP2RegClassID:
> +      return ARM::Q2;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S2;
> +    }
> +    break;
> +  case 3:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R3;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D3;
> +    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
> +    case ARM::QPR_VFP2RegClassID:
> +      return ARM::Q3;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S3;
> +    }
> +    break;
> +  case 4:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R4;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D4;
> +    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q4;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S4;
> +    }
> +    break;
> +  case 5:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R5;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D5;
> +    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q5;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S5;
> +    }
> +    break;
> +  case 6:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R6;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D6;
> +    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q6;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S6;
> +    }
> +    break;
> +  case 7:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R7;
> +    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
> +    case ARM::DPR_VFP2RegClassID:
> +      return ARM::D7;
> +    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q7;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S7;
> +    }
> +    break;
> +  case 8:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::R8;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D8;
> +    case ARM::QPRRegClassID: return ARM::Q8;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S8;
> +    }
> +    break;
> +  case 9:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::R9;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D9;
> +    case ARM::QPRRegClassID: return ARM::Q9;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S9;
> +    }
> +    break;
> +  case 10:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::R10;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D10;
> +    case ARM::QPRRegClassID: return ARM::Q10;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S10;
> +    }
> +    break;
> +  case 11:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::R11;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D11;
> +    case ARM::QPRRegClassID: return ARM::Q11;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S11;
> +    }
> +    break;
> +  case 12:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::R12;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D12;
> +    case ARM::QPRRegClassID: return ARM::Q12;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S12;
> +    }
> +    break;
> +  case 13:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::SP;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D13;
> +    case ARM::QPRRegClassID: return ARM::Q13;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S13;
> +    }
> +    break;
> +  case 14:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::LR;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D14;
> +    case ARM::QPRRegClassID: return ARM::Q14;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S14;
> +    }
> +    break;
> +  case 15:
> +    switch (RegClassID) {
> +    case ARM::GPRRegClassID: return ARM::PC;
> +    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D15;
> +    case ARM::QPRRegClassID: return ARM::Q15;
> +    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S15;
> +    }
> +    break;
> +  case 16:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D16;
> +    case ARM::SPRRegClassID: return ARM::S16;
> +    }
> +    break;
> +  case 17:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D17;
> +    case ARM::SPRRegClassID: return ARM::S17;
> +    }
> +    break;
> +  case 18:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D18;
> +    case ARM::SPRRegClassID: return ARM::S18;
> +    }
> +    break;
> +  case 19:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D19;
> +    case ARM::SPRRegClassID: return ARM::S19;
> +    }
> +    break;
> +  case 20:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D20;
> +    case ARM::SPRRegClassID: return ARM::S20;
> +    }
> +    break;
> +  case 21:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D21;
> +    case ARM::SPRRegClassID: return ARM::S21;
> +    }
> +    break;
> +  case 22:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D22;
> +    case ARM::SPRRegClassID: return ARM::S22;
> +    }
> +    break;
> +  case 23:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D23;
> +    case ARM::SPRRegClassID: return ARM::S23;
> +    }
> +    break;
> +  case 24:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D24;
> +    case ARM::SPRRegClassID: return ARM::S24;
> +    }
> +    break;
> +  case 25:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D25;
> +    case ARM::SPRRegClassID: return ARM::S25;
> +    }
> +    break;
> +  case 26:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D26;
> +    case ARM::SPRRegClassID: return ARM::S26;
> +    }
> +    break;
> +  case 27:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D27;
> +    case ARM::SPRRegClassID: return ARM::S27;
> +    }
> +    break;
> +  case 28:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D28;
> +    case ARM::SPRRegClassID: return ARM::S28;
> +    }
> +    break;
> +  case 29:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D29;
> +    case ARM::SPRRegClassID: return ARM::S29;
> +    }
> +    break;
> +  case 30:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D30;
> +    case ARM::SPRRegClassID: return ARM::S30;
> +    }
> +    break;
> +  case 31:
> +    switch (RegClassID) {
> +    case ARM::DPRRegClassID: return ARM::D31;
> +    case ARM::SPRRegClassID: return ARM::S31;
> +    }
> +    break;
> +  }
> +  llvm_unreachable("Invalid (RegClassID, RawRegister) combination");
> +}
> +
> +// This is efficient but fragile.
> +/*
> +// See ARMGenRegisterInfo.h.inc for more info.
> +static const TargetRegisterClass* const ARMRegisterClasses[] = {
> +  NULL,
> +  &ARM::CCRRegClass,            // CCRRegClassID = 1,
> +  &ARM::DPRRegClass,            // DPRRegClassID = 2,
> +  &ARM::DPR_8RegClass,          // DPR_8RegClassID = 3,
> +  &ARM::DPR_VFP2RegClass,       // DPR_VFP2RegClassID = 4,
> +  &ARM::GPRRegClass,            // GPRRegClassID = 5,
> +  &ARM::QPRRegClass,            // QPRRegClassID = 6,
> +  &ARM::QPR_8RegClass,          // QPR_8RegClassID = 7,
> +  &ARM::QPR_VFP2RegClass,       // QPR_VFP2RegClassID = 8,
> +  &ARM::SPRRegClass,            // SPRRegClassID = 9,
> +  &ARM::SPR_8RegClass,          // SPR_8RegClassID = 10,
> +  &ARM::SPR_INVALIDRegClass,    // SPR_INVALIDRegClassID = 11,
> +  &ARM::tGPRRegClass,           // tGPRRegClassID = 12
> +};
> +
> +// Return the register enum given register class id and raw register value.
> +static unsigned getRegisterEnum(unsigned RegClassID, unsigned RawRegister) {
> +  assert(RegClassID < array_lengthof(ARMRegisterClasses) &&
> +         "Register Class ID out of range");
> +  return ARMRegisterClasses[RegClassID]->getRegister(RawRegister);
> +}
> +*/
> +
> +/// DisassembleFP - DisassembleFP points to a function that disassembles an insn
> +/// and builds the MCOperand list upon disassembly.  It returns false on failure
> +/// or true on success.  The number of operands added is updated upon success.
> +typedef bool (*DisassembleFP)(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded);
> +
> +///////////////////////////////
> +//                           //
> +//     Utility Functions     //
> +//                           //
> +///////////////////////////////
> +
> +// Extract/Decode Rd: Inst{15-12}.
> +static inline unsigned decodeRd(uint32_t insn) {
> +  return (insn >> ARMII::RegRdShift) & ARMII::GPRRegMask;
> +}
> +
> +// Extract/Decode Rn: Inst{19-16}.
> +static inline unsigned decodeRn(uint32_t insn) {
> +  return (insn >> ARMII::RegRnShift) & ARMII::GPRRegMask;
> +}
> +
> +// Extract/Decode Rm: Inst{3-0}.
> +static inline unsigned decodeRm(uint32_t insn) {
> +  return (insn & ARMII::GPRRegMask);
> +}
> +
> +// Extract/Decode Rs: Inst{11-8}.
> +static inline unsigned decodeRs(uint32_t insn) {
> +  return (insn >> ARMII::RegRsShift) & ARMII::GPRRegMask;
> +}
> +
> +static inline unsigned getCondField(uint32_t insn) {
> +  return (insn >> ARMII::CondShift);
> +}
> +
> +static inline unsigned getIBit(uint32_t insn) {
> +  return (insn >> ARMII::I_BitShift) & 1;
> +}
> +
> +static inline unsigned getAM3IBit(uint32_t insn) {
> +  return (insn >> ARMII::AM3_I_BitShift) & 1;
> +}
> +
> +static inline unsigned getPBit(uint32_t insn) {
> +  return (insn >> ARMII::P_BitShift) & 1;
> +}
> +
> +static inline unsigned getUBit(uint32_t insn) {
> +  return (insn >> ARMII::U_BitShift) & 1;
> +}
> +
> +static inline unsigned getPUBits(uint32_t insn) {
> +  return (insn >> ARMII::U_BitShift) & 3;
> +}
> +
> +static inline unsigned getSBit(uint32_t insn) {
> +  return (insn >> ARMII::S_BitShift) & 1;
> +}
> +
> +static inline unsigned getWBit(uint32_t insn) {
> +  return (insn >> ARMII::W_BitShift) & 1;
> +}
> +
> +static inline unsigned getDBit(uint32_t insn) {
> +  return (insn >> ARMII::D_BitShift) & 1;
> +}
> +
> +static inline unsigned getNBit(uint32_t insn) {
> +  return (insn >> ARMII::N_BitShift) & 1;
> +}
> +
> +static inline unsigned getMBit(uint32_t insn) {
> +  return (insn >> ARMII::M_BitShift) & 1;
> +}
> +
> +namespace {
> +// Sign extend 5 bit number x to r.
> +// Usage: int r = signextend<signed int, 5>(x);
> +template <typename T, unsigned B> inline T signextend(const T x) {
> +  struct {T x:B;} s;
> +  return s.x = x;
> +}
> +}
> +
> +// See A8.4 Shifts applied to a register.
> +//     A8.4.2 Register controlled shifts.
> +//
> +// getShiftOpcForBits - getShiftOpcForBits translates from the ARM encoding bits
> +// into llvm enums for shift opcode.
> +//
> +// A8-12: DecodeRegShift()
> +static inline ARM_AM::ShiftOpc getShiftOpcForBits(unsigned bits) {
> +  switch (bits) {
> +  default: assert(0 && "No such value");
> +  case 0:  return ARM_AM::lsl;
> +  case 1:  return ARM_AM::lsr;
> +  case 2:  return ARM_AM::asr;
> +  case 3:  return ARM_AM::ror;
> +  }
> +}
> +
> +// See A8.4 Shifts applied to a register.
> +//     A8.4.1 Constant shifts.
> +//
> +// getImmShiftSE - getImmShiftSE translates from the raw ShiftOpc and raw Imm5
> +// encodings into the intended ShiftOpc and shift amount.
> +//
> +// A8-11: DecodeImmShift()
> +static inline void getImmShiftSE(ARM_AM::ShiftOpc &ShOp, unsigned &ShImm) {
> +  // If type == 0b11 and imm5 == 0, we have an rrx, instead.
> +  if (ShOp == ARM_AM::ror && ShImm == 0)
> +    ShOp = ARM_AM::rrx;
> +  // If (lsr or asr) and imm5 == 0, shift amount is 32.
> +  if ((ShOp == ARM_AM::lsr || ShOp == ARM_AM::asr) && ShImm == 0)
> +    ShImm = 32;
> +}
> +
> +// getAMSubModeForBits - getAMSubModeForBits translates from the ARM encoding
> +// bits Inst{24-23} (P(24) and U(23)) into llvm enums for AMSubMode.
> +static inline ARM_AM::AMSubMode getAMSubModeForBits(unsigned bits) {
> +  switch (bits) {
> +  default: assert(0 && "No such value");
> +  case 1:  return ARM_AM::ia;   // P=0 U=1
> +  case 3:  return ARM_AM::ib;   // P=1 U=1
> +  case 0:  return ARM_AM::da;   // P=0 U=0
> +  case 2:  return ARM_AM::db;   // P=1 U=0
> +  }
> +}
> +
> +////////////////////////////////////////////
> +//                                        //
> +//    Disassemble function definitions    //
> +//                                        //
> +////////////////////////////////////////////
> +
> +/// There is a separate Disassemble*Frm function entry for disassembly of an ARM
> +/// instr into a list of MCOperands in the appropriate order, with possible dst,
> +/// followed by possible src(s).
> +///
> +/// The processing of the predicate, and the 'S' modifier bit, if MI modifies
> +/// the CPSR, is factored into ARMBasicMCBuilder's class method named
> +/// TryPredicateAndSBitModifier.
> +
> +static bool DisassemblePseudo(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (Opcode == ARM::Int_MemBarrierV7 || Opcode == ARM::Int_SyncBarrierV7)
> +    return true;
> +
> +  assert(0 && "Unexpected pseudo instruction!");
> +  return false;
> +}
> +
> +// Multiply Instructions.
> +// MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMMLA, SMMLS:
> +//     Rd{19-16} Rn{3-0} Rm{11-8} Ra{15-12}
> +//
> +// MUL, SMMUL, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT:
> +//     Rd{19-16} Rn{3-0} Rm{11-8}
> +//
> +// SMLAL, SMULL, UMAAL, UMLAL, UMULL, SMLALBB, SMLALBT, SMLALTB, SMLALTT:
> +//     RdLo{15-12} RdHi{19-16} Rn{3-0} Rm{11-8}
> +//
> +// The mapping of the multiply registers to the "regular" ARM registers, where
> +// there are convenience decoder functions, is:
> +//
> +// Inst{15-12} => Rd
> +// Inst{19-16} => Rn
> +// Inst{3-0} => Rm
> +// Inst{11-8} => Rs
> +static bool DisassembleMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumDefs > 0 && "NumDefs should be greater than 0 for MulFrm");
> +  assert(NumOps >= 3
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID
> +         && OpInfo[2].RegClass == ARM::GPRRegClassID);
> +
> +  // Instructions with two destination registers have RdLo{15-12} first.
> +  if (NumDefs == 2) {
> +    assert(NumOps >= 4 && OpInfo[3].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // The destination register: RdHi{19-16} or Rd{19-16}.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +
> +  // The two src regsiters: Rn{3-0}, then Rm{11-8}.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRs(insn))));
> +  OpIdx += 3;
> +
> +  // Many multiply instructions (e.g., MLA) have three src registers.
> +  // The third register operand is Ra{15-12}.
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// Helper routines for disassembly of coprocessor instructions.
> +
> +static bool LdStCopOpcode(unsigned Opcode) {
> +  if ((Opcode >= ARM::LDC2L_OFFSET && Opcode <= ARM::LDC_PRE) ||
> +      (Opcode >= ARM::STC2L_OFFSET && Opcode <= ARM::STC_PRE))
> +    return true;
> +  return false;
> +}
> +static bool CoprocessorOpcode(unsigned Opcode) {
> +  if (LdStCopOpcode(Opcode))
> +    return true;
> +
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::CDP:  case ARM::CDP2:
> +  case ARM::MCR:  case ARM::MCR2:  case ARM::MRC:  case ARM::MRC2:
> +  case ARM::MCRR: case ARM::MCRR2: case ARM::MRRC: case ARM::MRRC2:
> +    return true;
> +  }
> +}
> +static inline unsigned GetCoprocessor(uint32_t insn) {
> +  return slice(insn, 11, 8);
> +}
> +static inline unsigned GetCopOpc1(uint32_t insn, bool CDP) {
> +  return CDP ? slice(insn, 23, 20) : slice(insn, 23, 21);
> +}
> +static inline unsigned GetCopOpc2(uint32_t insn) {
> +  return slice(insn, 7, 5);
> +}
> +static inline unsigned GetCopOpc(uint32_t insn) {
> +  return slice(insn, 7, 4);
> +}
> +// Most of the operands are in immediate forms, except Rd and Rn, which are ARM
> +// core registers.
> +//
> +// CDP, CDP2:                cop opc1 CRd CRn CRm opc2
> +//
> +// MCR, MCR2, MRC, MRC2:     cop opc1 Rd CRn CRm opc2
> +//
> +// MCRR, MCRR2, MRRC, MRRc2: cop opc Rd Rn CRm
> +//
> +// LDC_OFFSET, LDC_PRE, LDC_POST: cop CRd Rn R0 [+/-]imm8:00
> +// and friends
> +// STC_OFFSET, STC_PRE, STC_POST: cop CRd Rn R0 [+/-]imm8:00
> +// and friends
> +//                                        <-- addrmode2 -->
> +//
> +// LDC_OPTION:                    cop CRd Rn imm8
> +// and friends
> +// STC_OPTION:                    cop CRd Rn imm8
> +// and friends
> +//
> +static bool DisassembleCoprocessor(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 5);
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +  bool OneCopOpc = (Opcode == ARM::MCRR || Opcode == ARM::MCRR2 ||
> +                    Opcode == ARM::MRRC || Opcode == ARM::MRRC2);
> +  // CDP/CDP2 has no GPR operand; the opc1 operand is also wider (Inst{23-20}).
> +  bool NoGPR = (Opcode == ARM::CDP || Opcode == ARM::CDP2);
> +  bool LdStCop = LdStCopOpcode(Opcode);
> +
> +  OpIdx = 0;
> +
> +  MI.addOperand(MCOperand::CreateImm(GetCoprocessor(insn)));
> +
> +  if (LdStCop) {
> +    // Unindex if P:W = 0b00 --> _OPTION variant
> +    unsigned PW = getPBit(insn) << 1 | getWBit(insn);
> +
> +    MI.addOperand(MCOperand::CreateImm(decodeRd(insn)));
> +
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +
> +    if (PW) {
> +      MI.addOperand(MCOperand::CreateReg(0));
> +      ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
> +      unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, slice(insn, 7, 0) << 2,
> +                                          ARM_AM::no_shift);
> +      MI.addOperand(MCOperand::CreateImm(Offset));
> +      OpIdx = 5;
> +    } else {
> +      MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 0)));
> +      OpIdx = 4;
> +    }
> +  } else {
> +    MI.addOperand(MCOperand::CreateImm(OneCopOpc ? GetCopOpc(insn)
> +                                                 : GetCopOpc1(insn, NoGPR)));
> +
> +    MI.addOperand(NoGPR ? MCOperand::CreateImm(decodeRd(insn))
> +                        : MCOperand::CreateReg(
> +                            getRegisterEnum(ARM::GPRRegClassID,
> +                                            decodeRd(insn))));
> +
> +    MI.addOperand(OneCopOpc ? MCOperand::CreateReg(
> +                                getRegisterEnum(ARM::GPRRegClassID,
> +                                                decodeRn(insn)))
> +                            : MCOperand::CreateImm(decodeRn(insn)));
> +
> +    MI.addOperand(MCOperand::CreateImm(decodeRm(insn)));
> +
> +    OpIdx = 5;
> +
> +    if (!OneCopOpc) {
> +      MI.addOperand(MCOperand::CreateImm(GetCopOpc2(insn)));
> +      ++OpIdx;
> +    }
> +  }
> +
> +  return true;
> +}
> +
> +// Branch Instructions.
> +// BLr9: SignExtend(Imm24:'00', 32)
> +// Bcc, BLr9_pred: SignExtend(Imm24:'00', 32) Pred0 Pred1
> +// SMC: ZeroExtend(imm4, 32)
> +// SVC: ZeroExtend(Imm24, 32)
> +//
> +// Various coprocessor instructions are assigned BrFrm arbitrarily.
> +// Delegates to DisassembleCoprocessor() helper function.
> +//
> +// MRS/MRSsys: Rd
> +// MSR/MSRsys: Rm mask=Inst{19-16}
> +// BXJ:        Rm
> +// MSRi/MSRsysi: so_imm
> +// SRSW/SRS: addrmode4:$addr mode_imm
> +// RFEW/RFE: addrmode4:$addr Rn
> +static bool DisassembleBrFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (CoprocessorOpcode(Opcode))
> +    return DisassembleCoprocessor(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  // MRS and MRSsys take one GPR reg Rd.
> +  if (Opcode == ARM::MRS || Opcode == ARM::MRSsys) {
> +    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +  // BXJ takes one GPR reg Rm.
> +  if (Opcode == ARM::BXJ) {
> +    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +  // MSR and MSRsys take one GPR reg Rm, followed by the mask.
> +  if (Opcode == ARM::MSR || Opcode == ARM::MSRsys) {
> +    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
> +    NumOpsAdded = 2;
> +    return true;
> +  }
> +  // MSRi and MSRsysi take one so_imm operand, followed by the mask.
> +  if (Opcode == ARM::MSRi || Opcode == ARM::MSRsysi) {
> +    // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
> +    // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
> +    // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
> +    unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
> +    unsigned Imm = insn & 0xFF;
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
> +    NumOpsAdded = 2;
> +    return true;
> +  }
> +  // SRSW and SRS requires addrmode4:$addr for ${addr:submode}, followed by the
> +  // mode immediate (Inst{4-0}).
> +  if (Opcode == ARM::SRSW || Opcode == ARM::SRS ||
> +      Opcode == ARM::RFEW || Opcode == ARM::RFE) {
> +    // ARMInstPrinter::printAddrMode4Operand() prints special mode string
> +    // if the base register is SP; so don't set ARM::SP.
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    bool WB = (Opcode == ARM::SRSW);
> +    ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
> +
> +    if (Opcode == ARM::SRSW || Opcode == ARM::SRS)
> +      MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
> +    else
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         decodeRn(insn))));
> +    NumOpsAdded = 3;
> +    return true;
> +  }
> +
> +  assert(Opcode == ARM::Bcc || Opcode == ARM::BLr9 || Opcode == ARM::BLr9_pred
> +         || Opcode == ARM::SMC || Opcode == ARM::SVC);
> +
> +  assert(NumOps >= 1 && OpInfo[0].RegClass == 0);
> +
> +  int Imm32 = 0;
> +  if (Opcode == ARM::SMC) {
> +    // ZeroExtend(imm4, 32) where imm24 = Inst{3-0}.
> +    Imm32 = slice(insn, 3, 0);
> +  } else if (Opcode == ARM::SVC) {
> +    // ZeroExtend(imm24, 32) where imm24 = Inst{23-0}.
> +    Imm32 = slice(insn, 23, 0);
> +  } else {
> +    // SignExtend(imm24:'00', 32) where imm24 = Inst{23-0}.
> +    unsigned Imm26 = slice(insn, 23, 0) << 2;
> +    Imm32 = signextend<signed int, 26>(Imm26);
> +
> +    // When executing an ARM instruction, PC reads as the address of the current
> +    // instruction plus 8.  The assembler subtracts 8 from the difference
> +    // between the branch instruction and the target address, disassembler has
> +    // to add 8 to compensate.
> +    Imm32 += 8;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateImm(Imm32));
> +  NumOpsAdded = 1;
> +
> +  return true;
> +}
> +
> +// Misc. Branch Instructions.
> +// BR_JTadd, BR_JTr, BR_JTm
> +// BLXr9, BXr9
> +// BRIND, BX_RET
> +static bool DisassembleBrMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // BX_RET has only two predicate operands, do an early return.
> +  if (Opcode == ARM::BX_RET)
> +    return true;
> +
> +  // BLXr9 and BRIND take one GPR reg.
> +  if (Opcode == ARM::BLXr9 || Opcode == ARM::BRIND) {
> +    assert(NumOps >= 1 && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    OpIdx = 1;
> +    return true;
> +  }
> +
> +  // BR_JTadd is an ADD with Rd = PC, (Rn, Rm) as the target and index regs.
> +  if (Opcode == ARM::BR_JTadd) {
> +    // InOperandList with GPR:$target and GPR:$idx regs.
> +
> +    assert(NumOps == 4);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +
> +    // Fill in the two remaining imm operands to signify build completion.
> +    MI.addOperand(MCOperand::CreateImm(0));
> +    MI.addOperand(MCOperand::CreateImm(0));
> +
> +    OpIdx = 4;
> +    return true;
> +  }
> +
> +  // BR_JTr is a MOV with Rd = PC, and Rm as the source register.
> +  if (Opcode == ARM::BR_JTr) {
> +    // InOperandList with GPR::$target reg.
> +
> +    assert(NumOps == 3);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +
> +    // Fill in the two remaining imm operands to signify build completion.
> +    MI.addOperand(MCOperand::CreateImm(0));
> +    MI.addOperand(MCOperand::CreateImm(0));
> +
> +    OpIdx = 3;
> +    return true;
> +  }
> +
> +  // BR_JTm is an LDR with Rt = PC.
> +  if (Opcode == ARM::BR_JTm) {
> +    // This is the reg/reg form, with base reg followed by +/- reg shop imm.
> +    // See also ARMAddressingModes.h (Addressing Mode #2).
> +
> +    assert(NumOps == 5 && getIBit(insn) == 1);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +
> +    ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
> +
> +    // Disassemble the offset reg (Rm), shift type, and immediate shift length.
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    // Inst{6-5} encodes the shift opcode.
> +    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
> +    // Inst{11-7} encodes the imm5 shift amount.
> +    unsigned ShImm = slice(insn, 11, 7);
> +
> +    // A8.4.1.  Possible rrx or shift amount of 32...
> +    getImmShiftSE(ShOp, ShImm);
> +    MI.addOperand(MCOperand::CreateImm(
> +                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
> +
> +    // Fill in the two remaining imm operands to signify build completion.
> +    MI.addOperand(MCOperand::CreateImm(0));
> +    MI.addOperand(MCOperand::CreateImm(0));
> +
> +    OpIdx = 5;
> +    return true;
> +  }
> +
> +  assert(0 && "Unexpected BrMiscFrm Opcode");
> +  return false;
> +}
> +
> +static inline uint32_t getBFCInvMask(uint32_t insn) {
> +  uint32_t lsb = slice(insn, 11, 7);
> +  uint32_t msb = slice(insn, 20, 16);
> +  uint32_t Val = 0;
> +  assert(lsb <= msb && "Encoding error: lsb > msb");
> +  for (uint32_t i = lsb; i <= msb; ++i)
> +    Val |= (1 << i);
> +  return ~Val;
> +}
> +
> +static inline bool SaturateOpcode(unsigned Opcode) {
> +  switch (Opcode) {
> +  case ARM::SSATlsl: case ARM::SSATasr: case ARM::SSAT16:
> +  case ARM::USATlsl: case ARM::USATasr: case ARM::USAT16:
> +    return true;
> +  default:
> +    return false;
> +  }
> +}
> +
> +static inline unsigned decodeSaturatePos(unsigned Opcode, uint32_t insn) {
> +  switch (Opcode) {
> +  case ARM::SSATlsl:
> +  case ARM::SSATasr:
> +    return slice(insn, 20, 16) + 1;
> +  case ARM::SSAT16:
> +    return slice(insn, 19, 16) + 1;
> +  case ARM::USATlsl:
> +  case ARM::USATasr:
> +    return slice(insn, 20, 16);
> +  case ARM::USAT16:
> +    return slice(insn, 19, 16);
> +  default:
> +    llvm_unreachable("Invalid opcode passed in");
> +    return 0;
> +  }
> +}
> +
> +// A major complication is the fact that some of the saturating add/subtract
> +// operations have Rd Rm Rn, instead of the "normal" Rd Rn Rm.
> +// They are QADD, QDADD, QDSUB, and QSUB.
> +static bool DisassembleDPFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  bool isUnary = isUnaryDP(TID.TSFlags);
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // Disassemble register def if there is one.
> +  if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Now disassemble the src operands.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  // SSAT/SSAT16/USAT/USAT16 has imm operand after Rd.
> +  if (SaturateOpcode(Opcode)) {
> +    MI.addOperand(MCOperand::CreateImm(decodeSaturatePos(Opcode, insn)));
> +
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +
> +    if (Opcode == ARM::SSAT16 || Opcode == ARM::USAT16) {
> +      OpIdx += 2;
> +      return true;
> +    }
> +
> +    // For SSAT operand reg (Rm) has been disassembled above.
> +    // Now disassemble the shift amount.
> +
> +    // Inst{11-7} encodes the imm5 shift amount.
> +    unsigned ShAmt = slice(insn, 11, 7);
> +
> +    // A8.6.183.  Possible ASR shift amount of 32...
> +    if (Opcode == ARM::SSATasr && ShAmt == 0)
> +      ShAmt = 32;
> +
> +    MI.addOperand(MCOperand::CreateImm(ShAmt));
> +
> +    OpIdx += 3;
> +    return true;
> +  }
> +
> +  // Special-case handling of BFC/BFI/SBFX/UBFX.
> +  if (Opcode == ARM::BFC || Opcode == ARM::BFI) {
> +    // TIED_TO operand skipped for BFC and Inst{3-0} (Reg) for BFI.
> +    MI.addOperand(MCOperand::CreateReg(Opcode == ARM::BFC ? 0
> +                                       : getRegisterEnum(ARM::GPRRegClassID,
> +                                                         decodeRm(insn))));
> +    MI.addOperand(MCOperand::CreateImm(getBFCInvMask(insn)));
> +    OpIdx += 2;
> +    return true;
> +  }
> +  if (Opcode == ARM::SBFX || Opcode == ARM::UBFX) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 7)));
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 20, 16) + 1));
> +    OpIdx += 3;
> +    return true;
> +  }
> +
> +  bool RmRn = (Opcode == ARM::QADD || Opcode == ARM::QDADD ||
> +               Opcode == ARM::QDSUB || Opcode == ARM::QSUB);
> +
> +  // BinaryDP has an Rn operand.
> +  if (!isUnary) {
> +    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(ARM::GPRRegClassID,
> +                                    RmRn ? decodeRm(insn) : decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // If this is a two-address operand, skip it, e.g., MOVCCr operand 1.
> +  if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    ++OpIdx;
> +  }
> +
> +  // Now disassemble operand 2.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
> +    // We have a reg/reg form.
> +    // Assert disabled because saturating operations, e.g., A8.6.127 QASX, are
> +    // routed here as well.
> +    // assert(getIBit(insn) == 0 && "I_Bit != '0' reg/reg form");
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(ARM::GPRRegClassID,
> +                                    RmRn? decodeRn(insn) : decodeRm(insn))));
> +    ++OpIdx;
> +  } else if (Opcode == ARM::MOVi16 || Opcode == ARM::MOVTi16) {
> +    // We have an imm16 = imm4:imm12 (imm4=Inst{19:16}, imm12 = Inst{11:0}).
> +    assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
> +    unsigned Imm16 = slice(insn, 19, 16) << 12 | slice(insn, 11, 0);
> +    MI.addOperand(MCOperand::CreateImm(Imm16));
> +    ++OpIdx;
> +  } else {
> +    // We have a reg/imm form.
> +    // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
> +    // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
> +    // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
> +    assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
> +    unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
> +    unsigned Imm = insn & 0xFF;
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +static bool DisassembleDPSoRegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  bool isUnary = isUnaryDP(TID.TSFlags);
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // Disassemble register def if there is one.
> +  if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Disassemble the src operands.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  // BinaryDP has an Rn operand.
> +  if (!isUnary) {
> +    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // If this is a two-address operand, skip it, e.g., MOVCCs operand 1.
> +  if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    ++OpIdx;
> +  }
> +
> +  // Disassemble operand 2, which consists of three components.
> +  if (OpIdx + 2 >= NumOps)
> +    return false;
> +
> +  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
> +         (OpInfo[OpIdx+1].RegClass == ARM::GPRRegClassID) &&
> +         (OpInfo[OpIdx+2].RegClass == 0));
> +
> +  // Register-controlled shifts have Inst{7} = 0 and Inst{4} = 1.
> +  unsigned Rs = slice(insn, 4, 4);
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  if (Rs) {
> +    // Register-controlled shifts: [Rm, Rs, shift].
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRs(insn))));
> +    // Inst{6-5} encodes the shift opcode.
> +    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, 0)));
> +  } else {
> +    // Constant shifts: [Rm, reg0, shift_imm].
> +    MI.addOperand(MCOperand::CreateReg(0)); // NoRegister
> +    // Inst{6-5} encodes the shift opcode.
> +    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
> +    // Inst{11-7} encodes the imm5 shift amount.
> +    unsigned ShImm = slice(insn, 11, 7);
> +
> +    // A8.4.1.  Possible rrx or shift amount of 32...
> +    getImmShiftSE(ShOp, ShImm);
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShImm)));
> +  }
> +  OpIdx += 3;
> +
> +  return true;
> +}
> +
> +static bool DisassembleLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded, bool isStore) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  bool isPrePost = isPrePostLdSt(TID.TSFlags);
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert((!isStore && NumDefs > 0) || (isStore && (NumDefs == 0 || isPrePost)));
> +
> +  // Operand 0 of a pre- and post-indexed store is the address base writeback.
> +  if (isPrePost && isStore) {
> +    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Disassemble the dst/src operand.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  ++OpIdx;
> +
> +  // After dst of a pre- and post-indexed load is the address base writeback.
> +  if (isPrePost && !isStore) {
> +    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Disassemble the base operand.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +  assert(!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  ++OpIdx;
> +
> +  // For reg/reg form, base reg is followed by +/- reg shop imm.
> +  // For immediate form, it is followed by +/- imm12.
> +  // See also ARMAddressingModes.h (Addressing Mode #2).
> +  if (OpIdx + 1 >= NumOps)
> +    return false;
> +
> +  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
> +         (OpInfo[OpIdx+1].RegClass == 0));
> +
> +  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
> +  if (getIBit(insn) == 0) {
> +    MI.addOperand(MCOperand::CreateReg(0));
> +
> +    // Disassemble the 12-bit immediate offset.
> +    unsigned Imm12 = slice(insn, 11, 0);
> +    unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, Imm12, ARM_AM::no_shift);
> +    MI.addOperand(MCOperand::CreateImm(Offset));
> +  } else {
> +    // Disassemble the offset reg (Rm), shift type, and immediate shift length.
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    // Inst{6-5} encodes the shift opcode.
> +    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
> +    // Inst{11-7} encodes the imm5 shift amount.
> +    unsigned ShImm = slice(insn, 11, 7);
> +
> +    // A8.4.1.  Possible rrx or shift amount of 32...
> +    getImmShiftSE(ShOp, ShImm);
> +    MI.addOperand(MCOperand::CreateImm(
> +                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
> +  }
> +  OpIdx += 2;
> +
> +  return true;
> +}
> +
> +static bool DisassembleLdFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false);
> +}
> +
> +static bool DisassembleStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true);
> +}
> +
> +static bool HasDualReg(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST:
> +  case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST:
> +    return true;
> +  }  
> +}
> +
> +static bool DisassembleLdStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded, bool isStore) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  bool isPrePost = isPrePostLdSt(TID.TSFlags);
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert((!isStore && NumDefs > 0) || (isStore && (NumDefs == 0 || isPrePost)));
> +
> +  // Operand 0 of a pre- and post-indexed store is the address base writeback.
> +  if (isPrePost && isStore) {
> +    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  bool DualReg = HasDualReg(Opcode);
> +
> +  // Disassemble the dst/src operand.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  ++OpIdx;
> +
> +  // Fill in LDRD and STRD's second operand.
> +  if (DualReg) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn) + 1)));
> +    ++OpIdx;
> +  }
> +
> +  // After dst of a pre- and post-indexed load is the address base writeback.
> +  if (isPrePost && !isStore) {
> +    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Disassemble the base operand.
> +  if (OpIdx >= NumOps)
> +    return false;
> +
> +  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +  assert(!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  ++OpIdx;
> +
> +  // For reg/reg form, base reg is followed by +/- reg.
> +  // For immediate form, it is followed by +/- imm8.
> +  // See also ARMAddressingModes.h (Addressing Mode #3).
> +  if (OpIdx + 1 >= NumOps)
> +    return false;
> +
> +  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
> +         (OpInfo[OpIdx+1].RegClass == 0));
> +
> +  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
> +  if (getAM3IBit(insn) == 1) {
> +    MI.addOperand(MCOperand::CreateReg(0));
> +
> +    // Disassemble the 8-bit immediate offset.
> +    unsigned Imm4H = (insn >> ARMII::ImmHiShift) & 0xF;
> +    unsigned Imm4L = insn & 0xF;
> +    unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, (Imm4H << 4) | Imm4L);
> +    MI.addOperand(MCOperand::CreateImm(Offset));
> +  } else {
> +    // Disassemble the offset reg (Rm).
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, 0);
> +    MI.addOperand(MCOperand::CreateImm(Offset));
> +  }
> +  OpIdx += 2;
> +
> +  return true;
> +}
> +
> +static bool DisassembleLdMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false);
> +}
> +
> +static bool DisassembleStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true);
> +}
> +
> +// The algorithm for disassembly of LdStMulFrm is different from others because
> +// it explicitly populates the two predicate operands after operand 0 (the base)
> +// and operand 1 (the AM4 mode imm).  After operand 3, we need to populate the
> +// reglist with each affected register encoded as an MCOperand.
> +static bool DisassembleLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps == 5 && "LdStMulFrm expects NumOps of 5");
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
> +  MI.addOperand(MCOperand::CreateReg(Base));
> +
> +  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
> +  bool WB = getWBit(insn) == 1;
> +  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
> +
> +  // Handling the two predicate operands before the reglist.
> +  int64_t CondVal = insn >> ARMII::CondShift;
> +  MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
> +  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
> +
> +  OpIdx = 4;
> +
> +  // Fill the variadic part of reglist.
> +  unsigned RegListBits = insn & ((1 << 16) - 1);
> +  for (unsigned i = 0; i < 16; ++i) {
> +    if ((RegListBits >> i) & 1) {
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         i)));
> +      ++OpIdx;
> +    }
> +  }
> +
> +  return true;
> +}
> +
> +// LDREX, LDREXB, LDREXH: Rd Rn
> +// LDREXD:                Rd Rd+1 Rn
> +// STREX, STREXB, STREXH: Rd Rm Rn
> +// STREXD:                Rd Rm Rm+1 Rn
> +//
> +// SWP, SWPB:             Rd Rm Rn
> +static bool DisassembleLdStExFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  bool isStore = slice(insn, 20, 20) == 0;
> +  bool isDW = (Opcode == ARM::LDREXD || Opcode == ARM::STREXD);
> +
> +  // Add the destination operand.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  ++OpIdx;
> +
> +  // Store register Exclusive needs a source operand.
> +  if (isStore) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    ++OpIdx;
> +
> +    if (isDW) {
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         decodeRm(insn)+1)));
> +      ++OpIdx;
> +    }
> +  } else if (isDW) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn)+1)));
> +    ++OpIdx;
> +  }
> +
> +  // Finally add the pointer operand.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// Misc. Arithmetic Instructions.
> +// CLZ: Rd Rm
> +// PKHBT, PKHTB: Rd Rn Rm , LSL/ASR #imm5
> +// RBIT, REV, REV16, REVSH: Rd Rm
> +static bool DisassembleArithMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  ++OpIdx;
> +
> +  if (ThreeReg) {
> +    assert(NumOps >= 4);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  ++OpIdx;
> +
> +  // If there is still an operand info left which is an immediate operand, add
> +  // an additional imm5 LSL/ASR operand.
> +  if (ThreeReg && OpInfo[OpIdx].RegClass == 0
> +      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +    // Extract the 5-bit immediate field Inst{11-7}.
> +    unsigned ShiftAmt = (insn >> ARMII::ShiftShift) & 0x1F;
> +    MI.addOperand(MCOperand::CreateImm(ShiftAmt));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// Extend instructions.
> +// SXT* and UXT*: Rd [Rn] Rm [rot_imm].
> +// The 2nd operand register is Rn and the 3rd operand regsiter is Rm for the
> +// three register operand form.  Otherwise, Rn=0b1111 and only Rm is used.
> +static bool DisassembleExtFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  ++OpIdx;
> +
> +  if (ThreeReg) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  ++OpIdx;
> +
> +  // If there is still an operand info left which is an immediate operand, add
> +  // an additional rotate immediate operand.
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +    // Extract the 2-bit rotate field Inst{11-10}.
> +    unsigned rot = (insn >> ARMII::ExtRotImmShift) & 3;
> +    // Rotation by 8, 16, or 24 bits.
> +    MI.addOperand(MCOperand::CreateImm(rot << 3));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +/////////////////////////////////////
> +//                                 //
> +//    Utility Functions For VFP    //
> +//                                 //
> +/////////////////////////////////////
> +
> +// Extract/Decode Dd/Sd:
> +//
> +// SP => d = UInt(Vd:D)
> +// DP => d = UInt(D:Vd)
> +static unsigned decodeVFPRd(uint32_t insn, bool isSPVFP) {
> +  return isSPVFP ? (decodeRd(insn) << 1 | getDBit(insn))
> +                 : (decodeRd(insn) | getDBit(insn) << 4);
> +}
> +
> +// Extract/Decode Dn/Sn:
> +//
> +// SP => n = UInt(Vn:N)
> +// DP => n = UInt(N:Vn)
> +static unsigned decodeVFPRn(uint32_t insn, bool isSPVFP) {
> +  return isSPVFP ? (decodeRn(insn) << 1 | getNBit(insn))
> +                 : (decodeRn(insn) | getNBit(insn) << 4);
> +}
> +
> +// Extract/Decode Dm/Sm:
> +//
> +// SP => m = UInt(Vm:M)
> +// DP => m = UInt(M:Vm)
> +static unsigned decodeVFPRm(uint32_t insn, bool isSPVFP) {
> +  return isSPVFP ? (decodeRm(insn) << 1 | getMBit(insn))
> +                 : (decodeRm(insn) | getMBit(insn) << 4);
> +}
> +
> +// A7.5.1
> +#if 0
> +static uint64_t VFPExpandImm(unsigned char byte, unsigned N) {
> +  assert(N == 32 || N == 64);
> +
> +  uint64_t Result;
> +  unsigned bit6 = slice(byte, 6, 6);
> +  if (N == 32) {
> +    Result = slice(byte, 7, 7) << 31 | slice(byte, 5, 0) << 19;
> +    if (bit6)
> +      Result |= 0x1f << 25;
> +    else
> +      Result |= 0x1 << 30;
> +  } else {
> +    Result = (uint64_t)slice(byte, 7, 7) << 63 |
> +             (uint64_t)slice(byte, 5, 0) << 48;
> +    if (bit6)
> +      Result |= 0xffL << 54;
> +    else
> +      Result |= 0x1L << 62;
> +  }
> +  return Result;
> +}
> +#endif
> +
> +// VFP Unary Format Instructions:
> +//
> +// VCMP[E]ZD, VCMP[E]ZS: compares one floating-point register with zero
> +// VCVTDS, VCVTSD: converts between double-precision and single-precision
> +// The rest of the instructions have homogeneous [VFP]Rd and [VFP]Rm registers.
> +static bool DisassembleVFPUnaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 1 && "VFPUnaryFrm expects NumOps >= 1");
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  unsigned RegClass = OpInfo[OpIdx].RegClass;
> +  assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
> +  bool isSP = (RegClass == ARM::SPRRegClassID);
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass, decodeVFPRd(insn, isSP))));
> +  ++OpIdx;
> +
> +  // Early return for compare with zero instructions.
> +  if (Opcode == ARM::VCMPEZD || Opcode == ARM::VCMPEZS
> +      || Opcode == ARM::VCMPZD || Opcode == ARM::VCMPZS)
> +    return true;
> +
> +  RegClass = OpInfo[OpIdx].RegClass;
> +  assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
> +  isSP = (RegClass == ARM::SPRRegClassID);
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass, decodeVFPRm(insn, isSP))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// All the instructions have homogeneous [VFP]Rd, [VFP]Rn, and [VFP]Rm regs.
> +// Some of them have operand constraints which tie the first operand in the
> +// InOperandList to that of the dst.  As far as asm printing is concerned, this
> +// tied_to operand is simply skipped.
> +static bool DisassembleVFPBinaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 3 && "VFPBinaryFrm expects NumOps >= 3");
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  unsigned RegClass = OpInfo[OpIdx].RegClass;
> +  assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
> +  bool isSP = (RegClass == ARM::SPRRegClassID);
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass, decodeVFPRd(insn, isSP))));
> +  ++OpIdx;
> +
> +  // Skip tied_to operand constraint.
> +  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
> +    assert(NumOps >= 4);
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass, decodeVFPRn(insn, isSP))));
> +  ++OpIdx;
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass, decodeVFPRm(insn, isSP))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// A8.6.295 vcvt (floating-point <-> integer)
> +// Int to FP: VSITOD, VSITOS, VUITOD, VUITOS
> +// FP to Int: VTOSI[Z|R]D, VTOSI[Z|R]S, VTOUI[Z|R]D, VTOUI[Z|R]S
> +// 
> +// A8.6.297 vcvt (floating-point and fixed-point)
> +// Dd|Sd Dd|Sd(TIED_TO) #fbits(= 16|32 - UInt(imm4:i))
> +static bool DisassembleVFPConv1Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 2 && "VFPConv1Frm expects NumOps >= 2");
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  bool SP = slice(insn, 8, 8) == 0; // A8.6.295 & A8.6.297
> +  bool fixed_point = slice(insn, 17, 17) == 1; // A8.6.297
> +  unsigned RegClassID = SP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
> +
> +  if (fixed_point) {
> +    // A8.6.297
> +    assert(NumOps >= 3);
> +    int size = slice(insn, 7, 7) == 0 ? 16 : 32;
> +    int fbits = size - (slice(insn,3,0) << 1 | slice(insn,5,5));
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(RegClassID,
> +                                    decodeVFPRd(insn, SP))));
> +
> +    assert(TID.getOperandConstraint(1, TOI::TIED_TO) != -1);
> +    MI.addOperand(MI.getOperand(0));
> +
> +    assert(OpInfo[2].RegClass == 0 && !OpInfo[2].isPredicate() &&
> +           !OpInfo[2].isOptionalDef());
> +    MI.addOperand(MCOperand::CreateImm(fbits));
> +
> +    NumOpsAdded = 3;
> +  } else {
> +    // A8.6.295
> +    // The Rd (destination) and Rm (source) bits have different interpretations
> +    // depending on their single-precisonness.
> +    unsigned d, m;
> +    if (slice(insn, 18, 18) == 1) { // to_integer operation
> +      d = decodeVFPRd(insn, true /* Is Single Precision */);
> +      MI.addOperand(MCOperand::CreateReg(
> +                      getRegisterEnum(ARM::SPRRegClassID, d)));
> +      m = decodeVFPRm(insn, SP);
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, m)));
> +    } else {
> +      d = decodeVFPRd(insn, SP);
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, d)));
> +      m = decodeVFPRm(insn, true /* Is Single Precision */);
> +      MI.addOperand(MCOperand::CreateReg(
> +                      getRegisterEnum(ARM::SPRRegClassID, m)));
> +    }
> +    NumOpsAdded = 2;
> +  }
> +
> +  return true;
> +}
> +
> +// VMOVRS - A8.6.330
> +// Rt => Rd; Sn => UInt(Vn:N)
> +static bool DisassembleVFPConv2Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 2 && "VFPConv2Frm expects NumOps >= 2");
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
> +                                                     decodeVFPRn(insn, true))));
> +  NumOpsAdded = 2;
> +  return true;
> +}
> +
> +// VMOVRRD - A8.6.332
> +// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
> +//
> +// VMOVRRS - A8.6.331
> +// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
> +static bool DisassembleVFPConv3Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 3 && "VFPConv3Frm expects NumOps >= 3");
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  OpIdx = 2;
> +
> +  if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
> +    unsigned Sm = decodeVFPRm(insn, true);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
> +                                                       Sm)));
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
> +                                                       Sm+1)));
> +    OpIdx += 2;
> +  } else {
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(ARM::DPRRegClassID,
> +                                    decodeVFPRm(insn, false))));
> +    ++OpIdx;
> +  }
> +  return true;
> +}
> +
> +// VMOVSR - A8.6.330
> +// Rt => Rd; Sn => UInt(Vn:N)
> +static bool DisassembleVFPConv4Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 2 && "VFPConv4Frm expects NumOps >= 2");
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
> +                                                     decodeVFPRn(insn, true))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  NumOpsAdded = 2;
> +  return true;
> +}
> +
> +// VMOVDRR - A8.6.332
> +// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
> +//
> +// VMOVRRS - A8.6.331
> +// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
> +static bool DisassembleVFPConv5Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 3 && "VFPConv5Frm expects NumOps >= 3");
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
> +    unsigned Sm = decodeVFPRm(insn, true);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
> +                                                       Sm)));
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
> +                                                       Sm+1)));
> +    OpIdx += 2;
> +  } else {
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(ARM::DPRRegClassID,
> +                                    decodeVFPRm(insn, false))));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  OpIdx += 2;
> +  return true;
> +}
> +
> +// VFP Load/Store Instructions.
> +// VLDRD, VLDRS, VSTRD, VSTRS
> +static bool DisassembleVFPLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 3 && "VFPLdStFrm expects NumOps >= 3");
> +
> +  bool isSPVFP = (Opcode == ARM::VLDRS || Opcode == ARM::VSTRS) ? true : false;
> +  unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
> +
> +  // Extract Dd/Sd for operand 0.
> +  unsigned RegD = decodeVFPRd(insn, isSPVFP);
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, RegD)));
> +
> +  unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
> +  MI.addOperand(MCOperand::CreateReg(Base));
> +
> +  // Next comes the AM5 Opcode.
> +  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
> +  unsigned char Imm8 = insn & 0xFF;
> +  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(AddrOpcode, Imm8)));
> +
> +  NumOpsAdded = 3;
> +
> +  return true;
> +}
> +
> +// VFP Load/Store Multiple Instructions.
> +// This is similar to the algorithm for LDM/STM in that operand 0 (the base) and
> +// operand 1 (the AM5 mode imm) is followed by two predicate operands.  It is
> +// followed by a reglist of either DPR(s) or SPR(s).
> +//
> +// VLDMD, VLDMS, VSTMD, VSTMS
> +static bool DisassembleVFPLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps == 5 && "VFPLdStMulFrm expects NumOps of 5");
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
> +  MI.addOperand(MCOperand::CreateReg(Base));
> +
> +  // Next comes the AM5 Opcode.
> +  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
> +  bool WB = getWBit(insn) == 1;
> +  unsigned char Imm8 = insn & 0xFF;
> +  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(SubMode, WB, Imm8)));
> +
> +  // Handling the two predicate operands before the reglist.
> +  int64_t CondVal = insn >> ARMII::CondShift;
> +  MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
> +  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
> +
> +  OpIdx = 4;
> +
> +  bool isSPVFP = (Opcode == ARM::VLDMS || Opcode == ARM::VSTMS) ? true : false;
> +  unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
> +
> +  // Extract Dd/Sd.
> +  unsigned RegD = decodeVFPRd(insn, isSPVFP);
> +
> +  // Fill the variadic part of reglist.
> +  unsigned Regs = isSPVFP ? Imm8 : Imm8/2;
> +  for (unsigned i = 0; i < Regs; ++i) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID,
> +                                                       RegD + i)));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// Misc. VFP Instructions.
> +// FMSTAT (vmrs with Rt=0b1111, i.e., to apsr_nzcv and no register operand)
> +// FCONSTD (DPR and a VFPf64Imm operand)
> +// FCONSTS (SPR and a VFPf32Imm operand)
> +// VMRS/VMSR (GPR operand)
> +static bool DisassembleVFPMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  if (Opcode == ARM::FMSTAT)
> +    return true;
> +
> +  assert(NumOps >= 2);
> +
> +  unsigned RegEnum = 0;
> +  switch (OpInfo[0].RegClass) {
> +  case ARM::DPRRegClassID:
> +    RegEnum = getRegisterEnum(ARM::DPRRegClassID, decodeVFPRd(insn, false));
> +    break;
> +  case ARM::SPRRegClassID:
> +    RegEnum = getRegisterEnum(ARM::SPRRegClassID, decodeVFPRd(insn, true));
> +    break;
> +  case ARM::GPRRegClassID:
> +    RegEnum = getRegisterEnum(ARM::GPRRegClassID, decodeRd(insn));
> +    break;
> +  default:
> +    llvm_unreachable("Invalid reg class id");
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(RegEnum));
> +  ++OpIdx;
> +
> +  // Extract/decode the f64/f32 immediate.
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +    // The asm syntax specifies the before-expanded <imm>.
> +    // Not VFPExpandImm(slice(insn,19,16) << 4 | slice(insn, 3, 0),
> +    //                  Opcode == ARM::FCONSTD ? 64 : 32)
> +    MI.addOperand(MCOperand::CreateImm(slice(insn,19,16)<<4 | slice(insn,3,0)));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// DisassembleThumbFrm() is defined in ThumbDisassemblerCore.cpp.inc file.
> +#include "ThumbDisassemblerCore.cpp.inc"
> +
> +/////////////////////////////////////////////////////
> +//                                                 //
> +//     Utility Functions For ARM Advanced SIMD     //
> +//                                                 //
> +/////////////////////////////////////////////////////
> +
> +// The following NEON namings are based on A8.6.266 VABA, VABAL.  Notice that
> +// A8.6.303 VDUP (ARM core register)'s D/Vd pair is the N/Vn pair of VABA/VABAL.
> +
> +// A7.3 Register encoding
> +
> +// Extract/Decode NEON D/Vd:
> +//
> +// Note that for quadword, Qd = UInt(D:Vd<3:1>) = Inst{22:15-13}, whereas for
> +// doubleword, Dd = UInt(D:Vd).  We compensate for this difference by
> +// handling it in the getRegisterEnum() utility function.
> +// D = Inst{22}, Vd = Inst{15-12}
> +static unsigned decodeNEONRd(uint32_t insn) {
> +  return ((insn >> ARMII::NEON_D_BitShift) & 1) << 4
> +    | (insn >> ARMII::NEON_RegRdShift) & ARMII::NEONRegMask;
> +}
> +
> +// Extract/Decode NEON N/Vn:
> +//
> +// Note that for quadword, Qn = UInt(N:Vn<3:1>) = Inst{7:19-17}, whereas for
> +// doubleword, Dn = UInt(N:Vn).  We compensate for this difference by
> +// handling it in the getRegisterEnum() utility function.
> +// N = Inst{7}, Vn = Inst{19-16}
> +static unsigned decodeNEONRn(uint32_t insn) {
> +  return ((insn >> ARMII::NEON_N_BitShift) & 1) << 4
> +    | (insn >> ARMII::NEON_RegRnShift) & ARMII::NEONRegMask;
> +}
> +
> +// Extract/Decode NEON M/Vm:
> +//
> +// Note that for quadword, Qm = UInt(M:Vm<3:1>) = Inst{5:3-1}, whereas for
> +// doubleword, Dm = UInt(M:Vm).  We compensate for this difference by
> +// handling it in the getRegisterEnum() utility function.
> +// M = Inst{5}, Vm = Inst{3-0}
> +static unsigned decodeNEONRm(uint32_t insn) {
> +  return ((insn >> ARMII::NEON_M_BitShift) & 1) << 4
> +    | (insn >> ARMII::NEON_RegRmShift) & ARMII::NEONRegMask;
> +}
> +
> +namespace {
> +enum ElemSize {
> +  ESizeNA = 0,
> +  ESize8 = 8,
> +  ESize16 = 16,
> +  ESize32 = 32,
> +  ESize64 = 64
> +};
> +} // End of unnamed namespace
> +
> +// size        field -> Inst{11-10}
> +// index_align field -> Inst{7-4}
> +//
> +// The Lane Index interpretation depends on the Data Size:
> +//   8  (encoded as size = 0b00) -> Index = index_align[3:1]
> +//   16 (encoded as size = 0b01) -> Index = index_align[3:2]
> +//   32 (encoded as size = 0b10) -> Index = index_align[3]
> +//
> +// Ref: A8.6.317 VLD4 (single 4-element structure to one lane).
> +static unsigned decodeLaneIndex(uint32_t insn) {
> +  unsigned size = insn >> 10 & 3;
> +  assert(size == 0 || size == 1 || size == 2);
> +
> +  unsigned index_align = insn >> 4 & 0xF;
> +  return (index_align >> 1) >> size;
> +}
> +
> +// imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4)
> +// op = Inst{5}, cmode = Inst{11-8}
> +// i = Inst{24} (ARM architecture)
> +// imm3 = Inst{18-16}, imm4 = Inst{3-0}
> +// Ref: Table A7-15 Modified immediate values for Advanced SIMD instructions.
> +static uint64_t decodeN1VImm(uint32_t insn, ElemSize esize) {
> +  unsigned char cmode = (insn >> 8) & 0xF;
> +  unsigned char Imm8 = ((insn >> 24) & 1) << 7 |
> +                       ((insn >> 16) & 7) << 4 |
> +                       (insn & 0xF);
> +  uint64_t Imm64 = 0;
> +
> +  switch (esize) {
> +  case ESize8:
> +    Imm64 = Imm8;
> +    break;
> +  case ESize16:
> +    Imm64 = Imm8 << 8*(cmode >> 1 & 1);
> +    break;
> +  case ESize32: {
> +    if (cmode == 12)
> +      Imm64 = (Imm8 << 8) | 0xFF;
> +    else if (cmode == 13)
> +      Imm64 = (Imm8 << 16) | 0xFFFF;
> +    else {
> +      // Imm8 to be shifted left by how many bytes...
> +      Imm64 = Imm8 << 8*(cmode >> 1 & 3);
> +    }
> +    break;
> +  }
> +  case ESize64: {
> +    for (unsigned i = 0; i < 8; ++i)
> +      if ((Imm8 >> i) & 1)
> +        Imm64 |= 0xFF << 8*i;
> +    break;
> +  }
> +  default:
> +    assert(0 && "Unreachable code!");
> +    return 0;
> +  }
> +
> +  return Imm64;
> +}
> +
> +// A8.6.339 VMUL, VMULL (by scalar)
> +// ESize16 => m = Inst{2-0} (Vm<2:0>) D0-D7
> +// ESize32 => m = Inst{3-0} (Vm<3:0>) D0-D15
> +static unsigned decodeRestrictedDm(uint32_t insn, ElemSize esize) {
> +  switch (esize) {
> +  case ESize16:
> +    return insn & 7;
> +  case ESize32:
> +    return insn & 0xF;
> +  default:
> +    assert(0 && "Unreachable code!");
> +    return 0;
> +  }
> +}
> +
> +// A8.6.339 VMUL, VMULL (by scalar)
> +// ESize16 => index = Inst{5:3} (M:Vm<3>) D0-D7
> +// ESize32 => index = Inst{5}   (M)       D0-D15
> +static unsigned decodeRestrictedDmIndex(uint32_t insn, ElemSize esize) {
> +  switch (esize) {
> +  case ESize16:
> +    return (((insn >> 5) & 1) << 1) | ((insn >> 3) & 1);
> +  case ESize32:
> +    return (insn >> 5) & 1;
> +  default:
> +    assert(0 && "Unreachable code!");
> +    return 0;
> +  }
> +}
> +
> +// A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)
> +// (64 - <fbits>) is encoded as imm6, i.e., Inst{21-16}.
> +static unsigned decodeVCVTFractionBits(uint32_t insn) {
> +  return 64 - ((insn >> 16) & 0x3F);
> +}
> +
> +// A8.6.302 VDUP (scalar)
> +// ESize8  => index = Inst{19-17}
> +// ESize16 => index = Inst{19-18}
> +// ESize32 => index = Inst{19}
> +static unsigned decodeNVLaneDupIndex(uint32_t insn, ElemSize esize) {
> +  switch (esize) {
> +  case ESize8:
> +    return (insn >> 17) & 7;
> +  case ESize16:
> +    return (insn >> 18) & 3;
> +  case ESize32:
> +    return (insn >> 19) & 1;
> +  default:
> +    assert(0 && "Unspecified element size!");
> +    return 0;
> +  }
> +}
> +
> +// A8.6.328 VMOV (ARM core register to scalar)
> +// A8.6.329 VMOV (scalar to ARM core register)
> +// ESize8  => index = Inst{21:6-5}
> +// ESize16 => index = Inst{21:6}
> +// ESize32 => index = Inst{21}
> +static unsigned decodeNVLaneOpIndex(uint32_t insn, ElemSize esize) {
> +  switch (esize) {
> +  case ESize8:
> +    return ((insn >> 21) & 1) << 2 | ((insn >> 5) & 3);
> +  case ESize16:
> +    return ((insn >> 21) & 1) << 1 | ((insn >> 6) & 1);
> +  case ESize32:
> +    return ((insn >> 21) & 1);
> +  default:
> +    assert(0 && "Unspecified element size!");
> +    return 0;
> +  }
> +}
> +
> +// Imm6 = Inst{21-16}, L = Inst{7}
> +//
> +// NormalShift == true (A8.6.376 VRSHR, A8.6.368 VQSHRN):
> +// case L:imm6 of
> +//   '0001xxx' => esize = 8; shift_amount = 16 - imm6
> +//   '001xxxx' => esize = 16; shift_amount = 32 - imm6
> +//   '01xxxxx' => esize = 32; shift_amount = 64 - imm6
> +//   '1xxxxxx' => esize = 64; shift_amount = 64 - imm6
> +//
> +// NormalShift == false (A8.6.367 VQSHL, A8.6.387 VSLI):
> +// case L:imm6 of
> +//   '0001xxx' => esize = 8; shift_amount = imm6 - 8
> +//   '001xxxx' => esize = 16; shift_amount = imm6 - 16
> +//   '01xxxxx' => esize = 32; shift_amount = imm6 - 32
> +//   '1xxxxxx' => esize = 64; shift_amount = imm6
> +//
> +static unsigned decodeNVSAmt(uint32_t insn, bool NormalShift) {
> +  ElemSize esize = ESizeNA;
> +  unsigned L = (insn >> 7) & 1;
> +  unsigned imm6 = (insn >> 16) & 0x3F;
> +  if (L == 0) {
> +    if (imm6 >> 3 == 1)
> +      esize = ESize8;
> +    else if (imm6 >> 4 == 1)
> +      esize = ESize16;
> +    else if (imm6 >> 5 == 1)
> +      esize = ESize32;
> +    else
> +      assert(0 && "Wrong encoding of Inst{7:21-16}!");
> +  } else
> +    esize = ESize64;
> +
> +  if (NormalShift)
> +    return esize == ESize64 ? (esize - imm6) : (2*esize - imm6);
> +  else
> +    return esize == ESize64 ? imm6 : (imm6 - esize);
> +}
> +
> +// A8.6.305 VEXT
> +// Imm4 = Inst{11-8}
> +static unsigned decodeN3VImm(uint32_t insn) {
> +  return (insn >> 8) & 0xF;
> +}
> +
> +static bool DisassembleNSFormatNone(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  assert(0 && "Unexpected NEON Sub-Format of NSFormatNone");
> +  return false;
> +}
> +
> +// VLD*
> +//   D[d] D[d2] ... R[addr] [TIED_TO] R[update] AM6 align(ignored)
> +// VLD*LN*
> +//   D[d] D[d2] ... R[addr] R[update] AM6 align(ignored) TIED_TO ... imm(idx)
> +// VST*
> +//   R[addr] [TIED_TO] R[update] AM6 align(ignored) D[d] D[d2] ...
> +// VST*LN*
> +//   R[addr] R[update] AM6 align(ignored) D[d] D[d2] ... [imm(idx)]
> +//
> +// Correctly set VLD*/VST*'s TIED_TO GPR, as the asm printer needs it.
> +static bool DisassembleVLDSTLane0(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded, bool Store, bool DblSpaced) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  // At least one DPR register plus addressing mode #6.
> +  assert(NumOps >= 5);
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // We have homogeneous NEON registers for Load/Store.
> +  unsigned RegClass = 0;
> +
> +  // Double-spaced registers have increments of 2.
> +  unsigned Inc = DblSpaced ? 2 : 1;
> +
> +  unsigned Rn = decodeRn(insn);
> +  unsigned Rm = decodeRm(insn);
> +  unsigned Rd = decodeNEONRd(insn);
> +
> +  // A7.7.1 Advanced SIMD addressing mode.
> +  bool WB = Rm != 15;
> +
> +  // LLVM Addressing Mode #6.
> +  unsigned RmEnum = 0;
> +  if (WB && Rm != 13)
> +    RmEnum = getRegisterEnum(ARM::GPRRegClassID, Rm);
> +
> +  if (Store) {
> +    // Consume AddrMode6 (possible TIED_TO Rn), the DPR/QPR's, then possible
> +    // lane index.
> +    assert(OpIdx < NumOps && OpInfo[0].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       Rn)));
> +    ++OpIdx;
> +    if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
> +      // TIED_TO operand.
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         Rn)));
> +      ++OpIdx;
> +    }
> +
> +    assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(RmEnum));
> +    ++OpIdx;
> +    assert(OpIdx < NumOps &&
> +           OpInfo[OpIdx].RegClass == 0 && OpInfo[OpIdx+1].RegClass == 0);
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM6Opc(WB)));
> +    MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
> +    OpIdx += 2;
> +
> +    assert(OpIdx < NumOps &&
> +           (OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
> +            OpInfo[OpIdx].RegClass == ARM::QPRRegClassID));
> +
> +    RegClass = OpInfo[OpIdx].RegClass;
> +    while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
> +      if (Opcode >= ARM::VST1q16 && Opcode <= ARM::VST1q8)
> +        MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd,true)));
> +      else
> +        MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd)));
> +      Rd += Inc;
> +      ++OpIdx;
> +    }
> +
> +    // Handle possible lane index.
> +    if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +      MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
> +      ++OpIdx;
> +    }
> +
> +  } else {
> +    // Consume the DPR/QPR's, AddrMode6 (possible TIED_TO Rn), possible TIED_TO
> +    // DPR/QPR's (ignored), then possible lane index.
> +    RegClass = OpInfo[0].RegClass;
> +
> +    while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
> +      if (Opcode >= ARM::VLD1q16 && Opcode <= ARM::VLD1q8)
> +        MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd,true)));
> +      else
> +        MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd)));
> +      Rd += Inc;
> +      ++OpIdx;
> +    }
> +
> +    assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       Rn)));
> +    ++OpIdx;
> +    if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
> +      // TIED_TO operand.
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         Rn)));
> +      ++OpIdx;
> +    }
> +
> +    assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(RmEnum));
> +    ++OpIdx;
> +    assert(OpIdx < NumOps &&
> +           OpInfo[OpIdx].RegClass == 0 && OpInfo[OpIdx+1].RegClass == 0);
> +    MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM6Opc(WB)));
> +    MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
> +    OpIdx += 2;
> +
> +    while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
> +      assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1);
> +      MI.addOperand(MCOperand::CreateReg(0));
> +      ++OpIdx;
> +    }
> +
> +    // Handle possible lane index.
> +    if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +      MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
> +      ++OpIdx;
> +    }
> +  }
> +
> +  return true;
> +}
> +
> +// A7.7
> +// If L (Inst{21}) == 0, store instructions.
> +// DblSpaced = false.
> +static bool DisassembleVLDSTLane(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleVLDSTLane0(MI, Opcode, insn, NumOps, NumOpsAdded,
> +                               slice(insn, 21, 21) == 0, false);
> +}
> +// A7.7
> +// If L (Inst{21}) == 0, store instructions.
> +// DblSpaced = true.
> +static bool DisassembleVLDSTLaneDbl(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleVLDSTLane0(MI, Opcode, insn, NumOps, NumOpsAdded,
> +                               slice(insn, 21, 21) == 0, true);
> +}
> +
> +// VLDRQ (vldmia), VSTRQ (vstmia)
> +//   Qd Rn imm (AM4)
> +static bool DisassembleVLDSTRQ(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::QPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[2].RegClass == 0);
> +
> +  // Qd = Inst{22:15-12} => NEON Rd
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(ARM::QPRRegClassID,
> +                                  decodeNEONRd(insn), true)));
> +
> +  // Rn = Inst{19-16} => ARM Rn
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +
> +  // Next comes the AM4 Opcode.
> +  assert(Opcode == ARM::VLDRQ || Opcode == ARM::VSTRQ);
> +  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
> +  bool WB = getWBit(insn) == 1;
> +  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
> +
> +  NumOpsAdded = 3;
> +  return true;
> +}
> +
> +// VMOV (immediate)
> +//   Qd/Dd imm
> +static bool DisassembleNVdImm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumOps >= 2 &&
> +         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[1].RegClass == 0));
> +
> +  // Qd/Dd = Inst{22:15-12} => NEON Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[0].RegClass,
> +                                                     decodeNEONRd(insn))));
> +
> +  ElemSize esize = ESizeNA;
> +  switch (Opcode) {
> +  case ARM::VMOVv8i8:
> +  case ARM::VMOVv16i8:
> +    esize = ESize8;
> +    break;
> +  case ARM::VMOVv4i16:
> +  case ARM::VMOVv8i16:
> +    esize = ESize16;
> +    break;
> +  case ARM::VMOVv2i32:
> +  case ARM::VMOVv4i32:
> +    esize = ESize32;
> +    break;
> +  case ARM::VMOVv1i64:
> +  case ARM::VMOVv2i64:
> +    esize = ESize64;
> +  default:
> +    assert(0 && "Unreachable code!");
> +    return false;
> +  }
> +
> +  // One register and a modified immediate value.
> +  // Add the imm operand.
> +  MI.addOperand(MCOperand::CreateImm(decodeN1VImm(insn, esize)));
> +
> +  NumOpsAdded = 2;
> +  return true;
> +}
> +
> +namespace {
> +enum N2VFlag {
> +  N2V_None,
> +  N2V_VectorDupLane,
> +  N2V_VectorShiftLeftLong,
> +  N2V_VectorConvert_Between_Float_Fixed
> +};
> +} // End of unnamed namespace
> +
> +// Vector Convert [between floating-point and fixed-point]
> +//   Qd/Dd Qm/Dm [fbits]
> +//
> +// Vector Duplicate Lane (from scalar to all elements) Instructions.
> +// VDUPLN16d, VDUPLN16q, VDUPLN32d, VDUPLN32q, VDUPLN8d, VDUPLN8q:
> +//   Qd/Dd Dm index
> +//
> +// Vector Shift Left Long (with maximum shift count) Instructions.
> +// VSHLLi16, VSHLLi32, VSHLLi8: Qd Dm imm (== size)
> +//
> +// Vector Move Long:
> +//   Qd Dm
> +// 
> +// Vector Move Narrow:
> +//   Dd Qm
> +//
> +// Others
> +static bool DisassembleNVdVmImm0(MCInst &MI, unsigned Opc, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded, N2VFlag Flag = N2V_None) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opc];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumOps >= 2 &&
> +         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[1].RegClass == ARM::QPRRegClassID));
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  ElemSize esize = ESizeNA;
> +  if (Flag == N2V_VectorShiftLeftLong) {
> +    // VSHLL has maximum shift count as the imm, inferred from its size.
> +    assert(Opc == ARM::VSHLLi16 || Opc == ARM::VSHLLi32 || Opc == ARM::VSHLLi8);
> +    esize = Opc == ARM::VSHLLi8 ? ESize8
> +                                : (Opc == ARM::VSHLLi16 ? ESize16
> +                                                        : ESize32);
> +  }
> +  if (Flag == N2V_VectorDupLane) {
> +    // VDUPLN has its index embedded.  Its size can be inferred from the Opcode.
> +    assert(Opc >= ARM::VDUPLN16d && Opc <= ARM::VDUPLN8q);
> +    esize = (Opc == ARM::VDUPLN8d || Opc == ARM::VDUPLN8q) ? ESize8
> +       : ((Opc == ARM::VDUPLN16d || Opc == ARM::VDUPLN16q) ? ESize16
> +                                                           : ESize32);
> +  }
> +
> +  // Qd/Dd = Inst{22:15-12} => NEON Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRd(insn))));
> +  ++OpIdx;
> +
> +  // VPADAL...
> +  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
> +    // TIED_TO operand.
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    ++OpIdx;
> +  }
> +
> +  // Dm = Inst{5:3-0} => NEON Rm
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRm(insn))));
> +  ++OpIdx;
> +
> +  // Add the imm operand, if required.
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +
> +    unsigned imm = 0xFFFFFFFF;
> +
> +    if (Flag == N2V_VectorShiftLeftLong)
> +      imm = static_cast<unsigned>(esize);
> +    if (Flag == N2V_VectorDupLane)
> +      imm = decodeNVLaneDupIndex(insn, esize);
> +    if (Flag == N2V_VectorConvert_Between_Float_Fixed)
> +      imm = decodeVCVTFractionBits(insn);
> +
> +    assert(imm != 0xFFFFFFFF);
> +    MI.addOperand(MCOperand::CreateImm(imm));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +static bool DisassembleNVdVmImm(MCInst &MI, unsigned Opc, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded);
> +}
> +static bool DisassembleNVdVmImmVCVT(MCInst &MI, unsigned Opc, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
> +                              N2V_VectorConvert_Between_Float_Fixed);
> +}
> +static bool DisassembleNVdVmImmVDupLane(MCInst &MI, unsigned Opc, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
> +                              N2V_VectorDupLane);
> +}
> +static bool DisassembleNVdVmImmVSHLL(MCInst &MI, unsigned Opc, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
> +                              N2V_VectorShiftLeftLong);
> +}
> +
> +// Vector Transpose/Unzip/Zip Instructions
> +//   Qd/Dd Qm/Dm [Qd/Dd (TIED_TO)] [Qm/Dm (TIED_TO)]
> +static bool DisassembleNVectorShuffle(MCInst &MI,unsigned Opcode,uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumOps >= 4 &&
> +         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[2].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[2].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[3].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[3].RegClass == ARM::QPRRegClassID));
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // Qd/Dd = Inst{22:15-12} => NEON Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRd(insn))));
> +  ++OpIdx;
> +
> +  // Dm = Inst{5:3-0} => NEON Rm
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRm(insn))));
> +  ++OpIdx;
> +
> +  assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1 &&
> +         TID.getOperandConstraint(OpIdx+1, TOI::TIED_TO) != -1);
> +
> +  MI.addOperand(MCOperand::CreateReg(0)); ++OpIdx;
> +  MI.addOperand(MCOperand::CreateReg(0)); ++OpIdx;
> +
> +  return true;
> +}
> +
> +// Vector Shift [Accumulate] Instructions.
> +// Qd/Dd [Qd/Dd (TIED_TO)] Qm/Dm ShiftAmt
> +static bool DisassembleNVectorShift0(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded, bool NormalShift = true) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[1].RegClass == ARM::QPRRegClassID));
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // Qd/Dd = Inst{22:15-12} => NEON Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRd(insn))));
> +  ++OpIdx;
> +
> +  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
> +    // TIED_TO operand.
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    ++OpIdx;
> +  }
> +
> +  assert(OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
> +         OpInfo[OpIdx].RegClass == ARM::QPRRegClassID);
> +
> +  // Qm/Dm = Inst{5:3-0} => NEON Rm
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRm(insn))));
> +  ++OpIdx;
> +
> +  assert(OpInfo[OpIdx].RegClass == 0);
> +
> +  // Add the imm operand.
> +  MI.addOperand(MCOperand::CreateImm(decodeNVSAmt(insn, NormalShift)));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// Normal shift amount interpretation.
> +static bool DisassembleNVectorShift(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVectorShift0(MI, Opcode, insn, NumOps, NumOpsAdded, true);
> +}
> +// Different shift amount interpretation.
> +static bool DisassembleNVectorShift2(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVectorShift0(MI, Opcode, insn, NumOps, NumOpsAdded, false);
> +}
> +
> +namespace {
> +enum N3VFlag {
> +  N3V_None,
> +  N3V_VectorExtract,
> +  N3V_VectorShift,
> +  N3V_Multiply_By_Scalar
> +};
> +} // End of unnamed namespace
> +
> +// NEON Three Register Instructions with Optional Immediate Operand
> +//
> +// Vector Extract Instructions.
> +// Qd/Dd Qn/Dn Qm/Dm imm4
> +//
> +// Vector Shift (Register) Instructions.
> +// Qd/Dd Qm/Dm Qn/Dn (notice the order of m, n)
> +//
> +// Vector Multiply [Accumulate/Subtract] [Long] By Scalar Instructions.
> +// Qd/Dd Qn/Dn RestrictedDm index
> +//
> +// Others
> +static bool DisassembleNVdVnVmImm0(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded, N3VFlag Flag = N3V_None) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
> +         (OpInfo[2].RegClass != 0));
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  bool VdVnVm = Flag == N3V_VectorShift ? false : true;
> +  bool IsImm4 = Flag == N3V_VectorExtract ? true : false;
> +  bool IsDmRestricted = Flag == N3V_Multiply_By_Scalar ? true : false;
> +  ElemSize esize = ESizeNA;
> +  if (Flag == N3V_Multiply_By_Scalar) {
> +    unsigned size = (insn >> 20) & 3;
> +    if (size == 1) esize = ESize16;
> +    if (size == 2) esize = ESize32;
> +    assert (esize == ESize16 || esize == ESize32);
> +  }
> +
> +  // Qd/Dd = Inst{22:15-12} => NEON Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                                     decodeNEONRd(insn))));
> +  ++OpIdx;
> +
> +  // VABA, VABAL, VBSLd, VBSLq, ...
> +  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
> +    // TIED_TO operand.
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    ++OpIdx;
> +  }
> +
> +  // Dn = Inst{7:19-16} => NEON Rn
> +  // or
> +  // Dm = Inst{5:3-0} => NEON Rm
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(OpInfo[OpIdx].RegClass,
> +                                  VdVnVm ? decodeNEONRn(insn)
> +                                         : decodeNEONRm(insn))));
> +  ++OpIdx;
> +
> +  // Dm = Inst{5:3-0} => NEON Rm
> +  // or
> +  // Dm is restricted to D0-D7 if size is 16, D0-D15 otherwise
> +  // or
> +  // Dn = Inst{7:19-16} => NEON Rn
> +  unsigned m = VdVnVm ? (IsDmRestricted ? decodeRestrictedDm(insn, esize)
> +                                        : decodeNEONRm(insn))
> +                      : decodeNEONRn(insn);
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(OpInfo[OpIdx].RegClass, m)));
> +  ++OpIdx;
> +
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +    // Add the imm operand.
> +    unsigned Imm = 0;
> +    if (IsImm4)
> +      Imm = decodeN3VImm(insn);
> +    else if (IsDmRestricted)
> +      Imm = decodeRestrictedDmIndex(insn, esize);
> +    else
> +      assert(0 && "Internal error: unreachable code!");
> +
> +    MI.addOperand(MCOperand::CreateImm(Imm));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +static bool DisassembleNVdVnVmImm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded);
> +}
> +static bool DisassembleNVdVnVmImmVectorShift(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
> +                                N3V_VectorShift);
> +}
> +static bool DisassembleNVdVnVmImmVectorExtract(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
> +                                N3V_VectorExtract);
> +}
> +static bool DisassembleNVdVnVmImmMulScalar(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
> +                                N3V_Multiply_By_Scalar);
> +}
> +
> +// Vector Table Lookup
> +//
> +// VTBL1, VTBX1: Dd [Dd(TIED_TO)] Dn Dm
> +// VTBL2, VTBX2: Dd [Dd(TIED_TO)] Dn Dn+1 Dm
> +// VTBL3, VTBX3: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dm
> +// VTBL4, VTBX4: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dn+3 Dm
> +static bool DisassembleVTBL(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::DPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::DPRRegClassID &&
> +         OpInfo[2].RegClass == ARM::DPRRegClassID);
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  unsigned Rn = decodeNEONRn(insn);
> +
> +  // {Dn} encoded as len = 0b00
> +  // {Dn Dn+1} encoded as len = 0b01
> +  // {Dn Dn+1 Dn+2 } encoded as len = 0b10
> +  // {Dn Dn+1 Dn+2 Dn+3} encoded as len = 0b11
> +  unsigned Len = slice(insn, 9, 8) + 1;
> +
> +  // Dd (the destination vector)
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
> +                                                     decodeNEONRd(insn))));
> +  ++OpIdx;
> +
> +  // Process tied_to operand constraint.
> +  int Idx;
> +  if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
> +    MI.addOperand(MI.getOperand(Idx));
> +    ++OpIdx;
> +  }
> +
> +  // Do the <list> now.
> +  for (unsigned i = 0; i < Len; ++i) {
> +    assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
> +                                                       Rn + i)));
> +    ++OpIdx;
> +  }
> +
> +  // Dm (the index vector)
> +  assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID);
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
> +                                                     decodeNEONRm(insn))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +/// NEONFuncPtrs - NEONFuncPtrs maps NSFormat to corresponding DisassembleFP.
> +/// We divide the disassembly task into different categories, with each one
> +/// corresponding to a specific instruction encoding format.  There could be
> +/// exceptions when handling a specific format, and that is why the Opcode is
> +/// also present in the function prototype.
> +static const DisassembleFP NEONFuncPtrs[] = {
> +  // This will assert().
> +  &DisassembleNSFormatNone,
> +
> +  // VLD and VST (including one lane) Instructions.
> +  &DisassembleVLDSTLane,
> +
> +  // VLD and VST (including one lane) Double-Spaced Instructions.
> +  &DisassembleVLDSTLaneDbl,
> +
> +  // A8.6.319 VLDM & A8.6.399 VSTM
> +  // LLVM defines VLDRQ/VSTRQ to load/store a Q register as a D register pair.
> +  &DisassembleVLDSTRQ,
> +
> +  // A7.4.6 One register and a modified immediate value
> +  // 1-Register Instructions with imm.
> +  // LLVM only defines VMOVv instructions.
> +  &DisassembleNVdImm,
> +
> +  // 2-Register Instructions with no imm.
> +  &DisassembleNVdVmImm,
> +
> +  // 2-Register Instructions with imm (vector convert float/fixed point).
> +  &DisassembleNVdVmImmVCVT,
> +
> +  // 2-Register Instructions with imm (vector dup lane).
> +  &DisassembleNVdVmImmVDupLane,
> +
> +  // 2-Register Instructions with imm (vector shift left long).
> +  &DisassembleNVdVmImmVSHLL,
> +
> +  // Vector Transpose/Unzip/Zip Instructions.
> +  &DisassembleNVectorShuffle,
> +
> +  // Vector Shift [Narrow Accumulate] Instructions.
> +  &DisassembleNVectorShift,
> +
> +  // Vector Shift Instructions with different interpretation of shift amount.
> +  &DisassembleNVectorShift2,
> +
> +  // 3-Register Data-Processing Instructions.
> +  &DisassembleNVdVnVmImm,
> +
> +  // Vector Shift (Register) Instructions.
> +  // D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
> +  &DisassembleNVdVnVmImmVectorShift,
> +
> +  // Vector Extract Instructions.
> +  &DisassembleNVdVnVmImmVectorExtract,
> +
> +  // Vector [Saturating Rounding Doubling] Multiply [Accumulate/Subtract] [Long]
> +  // By Scalar Instructions.
> +  &DisassembleNVdVnVmImmMulScalar,
> +
> +  // Vector Table Lookup uses byte indexes in a control vector to look up byte
> +  // values in a table and generate a new vector.
> +  &DisassembleVTBL,
> +  NULL,
> +};
> +
> +static bool DisassembleNEONFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  assert(0 && "Code is not reachable");
> +  return false;
> +}
> +
> +// Vector Get Lane (move scalar to ARM core register) Instructions.
> +// VGETLNi32, VGETLNs16, VGETLNs8, VGETLNu16, VGETLNu8: Rt Dn index
> +static bool DisassembleNEONGetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumDefs == 1 && NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::DPRRegClassID &&
> +         OpInfo[2].RegClass == 0);
> +
> +  ElemSize esize =
> +    Opcode == ARM::VGETLNi32 ? ESize32
> +      : ((Opcode == ARM::VGETLNs16 || Opcode == ARM::VGETLNu16) ? ESize16
> +                                                                : ESize32);
> +
> +  // Rt = Inst{15-12} => ARM Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +
> +  // Dn = Inst{7:19-16} => NEON Rn
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
> +                                                     decodeNEONRn(insn))));
> +
> +  MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
> +
> +  NumOpsAdded = 3;
> +  return true;
> +}
> +
> +// Vector Set Lane (move ARM core register to scalar) Instructions.
> +// VSETLNi16, VSETLNi32, VSETLNi8: Dd Dd (TIED_TO) Rt index
> +static bool DisassembleNEONSetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  unsigned short NumDefs = TID.getNumDefs();
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +
> +  assert(NumDefs == 1 && NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::DPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::DPRRegClassID &&
> +         TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
> +         OpInfo[2].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[3].RegClass == 0);
> +
> +  ElemSize esize =
> +    Opcode == ARM::VSETLNi8 ? ESize8
> +                            : (Opcode == ARM::VSETLNi16 ? ESize16
> +                                                        : ESize32);
> +
> +  // Dd = Inst{7:19-16} => NEON Rn
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
> +                                                     decodeNEONRn(insn))));
> +
> +  // TIED_TO operand.
> +  MI.addOperand(MCOperand::CreateReg(0));
> +
> +  // Rt = Inst{15-12} => ARM Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +
> +  MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
> +
> +  NumOpsAdded = 4;
> +  return true;
> +}
> +
> +// Vector Duplicate Instructions (from ARM core register to all elements).
> +// VDUP8d, VDUP16d, VDUP32d, VDUP8q, VDUP16q, VDUP32q: Qd/Dd Rt
> +static bool DisassembleNEONDupFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 2 &&
> +         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
> +          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  unsigned RegClass = OpInfo[0].RegClass;
> +
> +  // Qd/Dd = Inst{7:19-16} => NEON Rn
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,
> +                                                     decodeNEONRn(insn))));
> +
> +  // Rt = Inst{15-12} => ARM Rd
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +
> +  NumOpsAdded = 2;
> +  return true;
> +}
> +
> +// A8.6.41 DMB
> +// A8.6.42 DSB
> +// A8.6.49 ISB
> +static inline bool MemBarrierInstr(uint32_t insn) {
> +  unsigned op7_4 = slice(insn, 7, 4);
> +  if (slice(insn, 31, 20) == 0xf57 && (op7_4 >= 4 && op7_4 <= 6))
> +    return true;
> +
> +  return false;
> +}
> +
> +static inline bool PreLoadOpcode(unsigned Opcode) {
> +  switch(Opcode) {
> +  case ARM::PLDi:  case ARM::PLDr:
> +  case ARM::PLDWi: case ARM::PLDWr:
> +  case ARM::PLIi:  case ARM::PLIr:
> +    return true;
> +  default:
> +    return false;
> +  }
> +}
> +
> +static bool DisassemblePreLoadFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  // Preload Data/Instruction requires either 2 or 4 operands.
> +  // PLDi, PLDWi, PLIi:                Rn [+/-]imm12 add = (U == '1')
> +  // PLDr[a|m], PLDWr[a|m], PLIr[a|m]: Rn Rm addrmode2_opc
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +
> +  if (Opcode == ARM::PLDi || Opcode == ARM::PLDWi || Opcode == ARM::PLIi) {
> +    unsigned Imm12 = slice(insn, 11, 0);
> +    bool Negative = getUBit(insn) == 0;
> +    int Offset = Negative ? -1 - Imm12 : 1 * Imm12;
> +    MI.addOperand(MCOperand::CreateImm(Offset));
> +    NumOpsAdded = 2;
> +  } else {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +
> +    ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
> +
> +    // Inst{6-5} encodes the shift opcode.
> +    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
> +    // Inst{11-7} encodes the imm5 shift amount.
> +    unsigned ShImm = slice(insn, 11, 7);
> +
> +    // A8.4.1.  Possible rrx or shift amount of 32...
> +    getImmShiftSE(ShOp, ShImm);
> +    MI.addOperand(MCOperand::CreateImm(
> +                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
> +    NumOpsAdded = 3;
> +  }
> +
> +  return true;
> +}
> +
> +static bool DisassembleMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (MemBarrierInstr(insn))
> +    return true;
> +
> +  switch (Opcode) {
> +  case ARM::CLREX:
> +  case ARM::NOP:
> +  case ARM::TRAP:
> +  case ARM::YIELD:
> +  case ARM::WFE:
> +  case ARM::WFI:
> +  case ARM::SEV:
> +  case ARM::SETENDBE:
> +  case ARM::SETENDLE:
> +    return true;
> +  default:
> +    break;
> +  }
> +
> +  // CPS has a singleton $opt operand that contains the following information:
> +  // opt{4-0} = mode from Inst{4-0}
> +  // opt{5} = changemode from Inst{17}
> +  // opt{8-6} = AIF from Inst{8-6}
> +  // opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable
> +  if (Opcode == ARM::CPS) {
> +    unsigned Option = slice(insn, 4, 0) | slice(insn, 17, 17) << 5 |
> +      slice(insn, 8, 6) << 6 | slice(insn, 19, 18) << 9;
> +    MI.addOperand(MCOperand::CreateImm(Option));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  // DBG has its option specified in Inst{3-0}.
> +  if (Opcode == ARM::DBG) {
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  // BKPT takes an imm32 val equal to ZeroExtend(Inst{19-8:3-0}).
> +  if (Opcode == ARM::BKPT) {
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 8) << 4 |
> +                                       slice(insn, 3, 0)));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  if (PreLoadOpcode(Opcode))
> +    return DisassemblePreLoadFrm(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  assert(0 && "Unexpected misc instruction!");
> +  return false;
> +}
> +
> +static bool DisassembleThumbMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(0 && "Unexpected thumb misc. instruction!");
> +  return false;
> +}
> +
> +/// FuncPtrs - FuncPtrs maps ARMFormat to its corresponding DisassembleFP.
> +/// We divide the disassembly task into different categories, with each one
> +/// corresponding to a specific instruction encoding format.  There could be
> +/// exceptions when handling a specific format, and that is why the Opcode is
> +/// also present in the function prototype.
> +static const DisassembleFP FuncPtrs[] = {
> +  &DisassemblePseudo,
> +  &DisassembleMulFrm,
> +  &DisassembleBrFrm,
> +  &DisassembleBrMiscFrm,
> +  &DisassembleDPFrm,
> +  &DisassembleDPSoRegFrm,
> +  &DisassembleLdFrm,
> +  &DisassembleStFrm,
> +  &DisassembleLdMiscFrm,
> +  &DisassembleStMiscFrm,
> +  &DisassembleLdStMulFrm,
> +  &DisassembleArithMiscFrm,
> +  &DisassembleExtFrm,
> +  &DisassembleVFPUnaryFrm,
> +  &DisassembleVFPBinaryFrm,
> +  &DisassembleVFPConv1Frm,
> +  &DisassembleVFPConv2Frm,
> +  &DisassembleVFPConv3Frm,
> +  &DisassembleVFPConv4Frm,
> +  &DisassembleVFPConv5Frm,
> +  &DisassembleVFPLdStFrm,
> +  &DisassembleVFPLdStMulFrm,
> +  &DisassembleVFPMiscFrm,
> +  &DisassembleThumbFrm,
> +  &DisassembleNEONFrm,
> +  &DisassembleNEONGetLnFrm,
> +  &DisassembleNEONSetLnFrm,
> +  &DisassembleNEONDupFrm,
> +  &DisassembleLdStExFrm,
> +  &DisassembleMiscFrm,
> +  &DisassembleThumbMiscFrm,
> +  NULL,
> +};
> +
> +/// ARMAlgorithm - ARMAlgorithm implements ARMDisassemblyAlgorithm for solving
> +/// the problem of building the MCOperands of an MCInst.  Construction of
> +/// ARMAlgorithm requires passing in a function pointer with the DisassembleFP
> +/// data type.
> +class ARMAlgorithm : public ARMDisassemblyAlgorithm {
> +  /// Algorithms - Algorithms stores a map from Format to ARMAlgorithm*.
> +  static std::vector<ARMAlgorithm*> Algorithms;
> +  /// NSAlgorithms - NSAlgorithms stores a map from NSFormat to ARMAlgorithm*.
> +  static std::vector<ARMAlgorithm*> NSAlgorithms;
> +
> +  DisassembleFP Disassemble;
> +
> +public:
> +  /// GetInstance - GetInstance returns an instance of ARMAlgorithm given the
> +  /// encoding Format.  API clients should not free up the returned instance.
> +  static ARMAlgorithm *GetInstance(ARMFormat Format, NSFormat NSF) {
> +    /// Init the first time.
> +    if (Algorithms.size() == 0) {
> +      Algorithms.resize(array_lengthof(FuncPtrs));
> +      for (unsigned i = 0, num = array_lengthof(FuncPtrs); i < num; ++i)
> +        if (FuncPtrs[i])
> +          Algorithms[i] = new ARMAlgorithm(FuncPtrs[i]);
> +        else
> +          Algorithms[i] = NULL;
> +    }
> +    if (NSAlgorithms.size() == 0) {
> +      NSAlgorithms.resize(array_lengthof(NEONFuncPtrs));
> +      for (unsigned i = 0, num = array_lengthof(NEONFuncPtrs); i < num; ++i)
> +        if (NEONFuncPtrs[i])
> +          NSAlgorithms[i] = new ARMAlgorithm(NEONFuncPtrs[i]);
> +        else
> +          NSAlgorithms[i] = NULL;
> +    }
> +    
> +    if (Format != ARM_FORMAT_NEONFRM)
> +      return Algorithms[Format];
> +    else
> +      return NSAlgorithms[NSF];
> +  }
> +
> +  virtual bool Solve(MCInst &MI, unsigned Opcode, uint32_t insn,
> +      unsigned short NumOps, unsigned &NumOpsAdded) const {
> +    if (Disassemble == NULL)
> +      return false;
> +
> +    return (*Disassemble)(MI, Opcode, insn, NumOps, NumOpsAdded);
> +  }
> +
> +private:
> +  ARMAlgorithm(DisassembleFP fp) :
> +    ARMDisassemblyAlgorithm(), Disassemble(fp) {}
> +
> +  ARMAlgorithm(ARMAlgorithm &AA) :
> +    ARMDisassemblyAlgorithm(), Disassemble(AA.Disassemble) {}
> +
> +  virtual ~ARMAlgorithm() {}
> +};
> +
> +// Define the symbol here.
> +std::vector<ARMAlgorithm*> ARMAlgorithm::Algorithms;
> +
> +// Define the symbol here.
> +std::vector<ARMAlgorithm*> ARMAlgorithm::NSAlgorithms;
> +
> +// Define the symbol here.
> +unsigned ARMBasicMCBuilder::ITCounter = 0;
> +
> +// Define the symbol here.
> +unsigned ARMBasicMCBuilder::ITState = 0;
> +
> +// A8.6.50
> +static unsigned short CountITSize(unsigned ITMask) {
> +  // First count the trailing zeros of the IT mask.
> +  unsigned TZ = CountTrailingZeros_32(ITMask);
> +  assert(TZ <= 3);
> +  return (4 - TZ);
> +}
> +
> +/// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
> +/// The general idea is to set the Opcode for the MCInst, followed by adding
> +/// the appropriate MCOperands to the MCInst.  ARM Basic MC Builder delegates
> +/// to the Algo (ARM Disassemble Algorithm) object to perform Format-specific
> +/// disassembly, followed by class method TryPredicateAndSBitModifier() to do
> +/// PredicateOperand and OptionalDefOperand which follow the Dst/Src Operands.
> +bool ARMBasicMCBuilder::BuildIt(MCInst &MI, uint32_t insn) {
> +  // Stage 1 sets the Opcode.
> +  MI.setOpcode(Opcode);
> +  // If the number of operands is zero, we're done!
> +  if (NumOps == 0)
> +    return true;
> +
> +  // Stage 2 calls the ARM Disassembly Algorithm to build the operand list.
> +  unsigned NumOpsAdded = 0;
> +  bool OK = Algo.Solve(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  if (!OK) return false;
> +  if (NumOpsAdded >= NumOps)
> +    return true;
> +
> +  // Stage 3 deals with operands unaccounted for after stage 2 is finished.
> +  // FIXME: Should this be done selectively?
> +  return TryPredicateAndSBitModifier(MI, Opcode, insn, NumOps - NumOpsAdded);
> +}
> +
> +bool ARMBasicMCBuilder::TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOpsRemaining) {
> +
> +  assert(NumOpsRemaining > 0);
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  const std::string &Name = ARMInsts[Opcode].Name;
> +  unsigned Idx = MI.getNumOperands();
> +
> +  // First, we check whether this instr specifies the PredicateOperand through
> +  // a pair of TargetOperandInfos with isPredicate() property.
> +  if (NumOpsRemaining >= 2 &&
> +      OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
> +      OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
> +  {
> +    // If we are inside an IT block, get the IT condition bits maintained via
> +    // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
> +    // See also A2.5.2.
> +    if (InITBlock())
> +      MI.addOperand(MCOperand::CreateImm(GetITCond()));
> +    else {
> +      if (Name.length() > 1 && Name[0] == 't') {
> +        // Thumb conditional branch instructions have their cond field embedded,
> +        // like ARM.
> +        //
> +        // A8.6.16 B
> +        if (Name == "t2Bcc")
> +          MI.addOperand(MCOperand::CreateImm(slice(insn, 25, 22)));
> +        else if (Name == "tBcc")
> +          MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8)));
> +        else
> +          MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
> +      } else {
> +        // ARM Instructions.  Check condition field.
> +        int64_t CondVal = getCondField(insn);
> +        if (CondVal == 0xF)
> +          MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
> +        else
> +          MI.addOperand(MCOperand::CreateImm(CondVal));
> +      }
> +    }
> +    MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
> +    Idx += 2;
> +    NumOpsRemaining -= 2;
> +    if (NumOpsRemaining == 0)
> +      return true;
> +  }
> +
> +  assert(NumOpsRemaining > 0);
> +
> +  // Next, if OptionalDefOperand exists, we check whether the 'S' bit is set.
> +  if (OpInfo[Idx].isOptionalDef() && OpInfo[Idx].RegClass==ARM::CCRRegClassID) {
> +    MI.addOperand(MCOperand::CreateReg(getSBit(insn) == 1 ? ARM::CPSR : 0));
> +    --NumOpsRemaining;
> +  }
> +
> +  if (NumOpsRemaining == 0)
> +    return true;
> +  else
> +    return false;
> +}
> +
> +/// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
> +/// after BuildIt is finished.
> +bool ARMBasicMCBuilder::RunBuildAfterHook(bool Status, MCInst &MI,
> +    uint32_t insn) {
> +
> +  if (Opcode == ARM::t2IT) {
> +    ARMBasicMCBuilder::ITCounter = CountITSize(slice(insn, 3, 0));
> +    ARMBasicMCBuilder::InitITState(slice(insn, 7, 0));
> +  } else if (InITBlock())
> +    ARMBasicMCBuilder::UpdateITState();
> +
> +  return Status;
> +}
> +
> +AbstractARMMCBuilder *ARMMCBuilderFactory::CreateMCBuilder(unsigned Opcode,
> +    ARMFormat Format, NSFormat NSF) {
> +
> +  ARMAlgorithm *Algo = ARMAlgorithm::GetInstance(Format, NSF);
> +  if (!Algo)
> +    return NULL;
> +
> +  return new ARMBasicMCBuilder(Opcode, Format, NSF,
> +                               ARMInsts[Opcode].getNumOperands(), *Algo);
> +}
> 
> Added: llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h (added)
> +++ llvm/trunk/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,301 @@
> +//===- ARMDisassemblerCore.h - ARM disassembler helpers ----*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +// This file is part of the ARM Disassembler.
> +//
> +// The first part defines the enumeration type of ARM instruction format, which
> +// specifies the encoding used by the instruction, as well as a helper function
> +// to convert the enums to printable char strings.
> +//
> +// It also contains code to represent the concepts of Builder, Builder Factory,
> +// as well as the Algorithm to solve the problem of disassembling an ARM instr.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#ifndef ARMDISASSEMBLERCORE_H
> +#define ARMDISASSEMBLERCORE_H
> +
> +#include "llvm/MC/MCInst.h"
> +#include "llvm/Target/TargetInstrInfo.h"
> +#include "ARMInstrInfo.h"
> +
> +namespace llvm {
> +
> +class ARMUtils {
> +public:
> +  static const char *OpcodeName(unsigned Opcode);
> +};
> +
> +#define ARM_FORMATS                   \
> +  ENTRY(ARM_FORMAT_PSEUDO,         0) \
> +  ENTRY(ARM_FORMAT_MULFRM,         1) \
> +  ENTRY(ARM_FORMAT_BRFRM,          2) \
> +  ENTRY(ARM_FORMAT_BRMISCFRM,      3) \
> +  ENTRY(ARM_FORMAT_DPFRM,          4) \
> +  ENTRY(ARM_FORMAT_DPSOREGFRM,     5) \
> +  ENTRY(ARM_FORMAT_LDFRM,          6) \
> +  ENTRY(ARM_FORMAT_STFRM,          7) \
> +  ENTRY(ARM_FORMAT_LDMISCFRM,      8) \
> +  ENTRY(ARM_FORMAT_STMISCFRM,      9) \
> +  ENTRY(ARM_FORMAT_LDSTMULFRM,    10) \
> +  ENTRY(ARM_FORMAT_ARITHMISCFRM,  11) \
> +  ENTRY(ARM_FORMAT_EXTFRM,        12) \
> +  ENTRY(ARM_FORMAT_VFPUNARYFRM,   13) \
> +  ENTRY(ARM_FORMAT_VFPBINARYFRM,  14) \
> +  ENTRY(ARM_FORMAT_VFPCONV1FRM,   15) \
> +  ENTRY(ARM_FORMAT_VFPCONV2FRM,   16) \
> +  ENTRY(ARM_FORMAT_VFPCONV3FRM,   17) \
> +  ENTRY(ARM_FORMAT_VFPCONV4FRM,   18) \
> +  ENTRY(ARM_FORMAT_VFPCONV5FRM,   19) \
> +  ENTRY(ARM_FORMAT_VFPLDSTFRM,    20) \
> +  ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \
> +  ENTRY(ARM_FORMAT_VFPMISCFRM,    22) \
> +  ENTRY(ARM_FORMAT_THUMBFRM,      23) \
> +  ENTRY(ARM_FORMAT_NEONFRM,       24) \
> +  ENTRY(ARM_FORMAT_NEONGETLNFRM,  25) \
> +  ENTRY(ARM_FORMAT_NEONSETLNFRM,  26) \
> +  ENTRY(ARM_FORMAT_NEONDUPFRM,    27) \
> +  ENTRY(ARM_FORMAT_LDSTEXFRM,     28) \
> +  ENTRY(ARM_FORMAT_MISCFRM,       29) \
> +  ENTRY(ARM_FORMAT_THUMBMISCFRM,  30)
> +
> +// ARM instruction format specifies the encoding used by the instruction.
> +#define ENTRY(n, v) n = v,
> +typedef enum {
> +  ARM_FORMATS
> +  ARM_FORMAT_NA
> +} ARMFormat;
> +#undef ENTRY
> +
> +// Converts enum to const char*.
> +static const inline char *stringForARMFormat(ARMFormat form) {
> +#define ENTRY(n, v) case n: return #n;
> +  switch(form) {
> +    ARM_FORMATS
> +  case ARM_FORMAT_NA:
> +  default:
> +    return "";
> +  }
> +#undef ENTRY
> +}
> +
> +#define NS_FORMATS                              \
> +  ENTRY(NS_FORMAT_NONE,                     0)  \
> +  ENTRY(NS_FORMAT_VLDSTLane,                1)  \
> +  ENTRY(NS_FORMAT_VLDSTLaneDbl,             2)  \
> +  ENTRY(NS_FORMAT_VLDSTRQ,                  3)  \
> +  ENTRY(NS_FORMAT_NVdImm,                   4)  \
> +  ENTRY(NS_FORMAT_NVdVmImm,                 5)  \
> +  ENTRY(NS_FORMAT_NVdVmImmVCVT,             6)  \
> +  ENTRY(NS_FORMAT_NVdVmImmVDupLane,         7)  \
> +  ENTRY(NS_FORMAT_NVdVmImmVSHLL,            8)  \
> +  ENTRY(NS_FORMAT_NVectorShuffle,           9)  \
> +  ENTRY(NS_FORMAT_NVectorShift,             10) \
> +  ENTRY(NS_FORMAT_NVectorShift2,            11) \
> +  ENTRY(NS_FORMAT_NVdVnVmImm,               12) \
> +  ENTRY(NS_FORMAT_NVdVnVmImmVectorShift,    13) \
> +  ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract,  14) \
> +  ENTRY(NS_FORMAT_NVdVnVmImmMulScalar,      15) \
> +  ENTRY(NS_FORMAT_VTBL,                     16)
> +
> +// NEON instruction sub-format further classify the NEONFrm instruction.
> +#define ENTRY(n, v) n = v,
> +typedef enum {
> +  NS_FORMATS
> +  NS_FORMAT_NA
> +} NSFormat;
> +#undef ENTRY
> +
> +// Converts enum to const char*.
> +static const inline char *stringForNSFormat(NSFormat form) {
> +#define ENTRY(n, v) case n: return #n;
> +  switch(form) {
> +    NS_FORMATS
> +  case NS_FORMAT_NA:
> +    return "NA";
> +  default:
> +    return "";
> +  }
> +#undef ENTRY
> +}
> +
> +/// Expands on the enum definitions from ARMBaseInstrInfo.h.
> +/// They are being used by the disassembler implementation.
> +namespace ARMII {
> +  enum {
> +    NEONRegMask = 15,
> +    GPRRegMask = 15,
> +    NEON_RegRdShift = 12,
> +    NEON_D_BitShift = 22,
> +    NEON_RegRnShift = 16,
> +    NEON_N_BitShift = 7,
> +    NEON_RegRmShift = 0,
> +    NEON_M_BitShift = 5
> +  };
> +}
> +
> +/// Utility function for extracting [From, To] bits from a uint32_t.
> +static inline unsigned slice(uint32_t Bits, unsigned From, unsigned To) {
> +  assert(From < 32 && To < 32 && From >= To);
> +  return (Bits >> To) & ((1 << (From - To + 1)) - 1);
> +}
> +
> +/// Utility function for setting [From, To] bits to Val for a uint32_t.
> +static inline void setSlice(uint32_t &Bits, unsigned From, unsigned To,
> +                            uint32_t Val) {
> +  assert(From < 32 && To < 32 && From >= To);
> +  uint32_t Mask = ((1 << (From - To + 1)) - 1);
> +  Bits &= ~(Mask << To);
> +  Bits |= (Val & Mask) << To;
> +}
> +
> +/// Various utilities for checking the target specific flags.
> +
> +/// A unary data processing instruction doesn't have an Rn operand.
> +static inline bool isUnaryDP(unsigned TSFlags) {
> +  return (TSFlags & ARMII::UnaryDP);
> +}
> +
> +/// This four-bit field describes the addressing mode used.
> +/// See also ARMBaseInstrInfo.h.
> +static inline unsigned getAddrMode(unsigned TSFlags) {
> +  return (TSFlags & ARMII::AddrModeMask);
> +}
> +
> +/// {IndexModePre, IndexModePost}
> +/// Only valid for load and store ops.
> +/// See also ARMBaseInstrInfo.h.
> +static inline unsigned getIndexMode(unsigned TSFlags) {
> +  return (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
> +}
> +
> +/// Pre-/post-indexed operations define an extra $base_wb in the OutOperandList.
> +static inline bool isPrePostLdSt(unsigned TSFlags) {
> +  return (TSFlags & ARMII::IndexModeMask) != 0;
> +}
> +
> +/// AbstractARMMCBuilder - AbstractARMMCBuilder represents an interface of ARM
> +/// MCInst builder that knows how to build up the MCOperand list.
> +class AbstractARMMCBuilder {
> +public:
> +  /// Build - Build the MCInst fully and return true.  Return false if any
> +  /// failure occurs.
> +  virtual bool Build(MCInst &MI, uint32_t insn) { return false; }
> +};
> +
> +/// ARMDisassemblyAlgorithm - ARMDisassemblyAlgorithm represents an interface of
> +/// ARM disassembly algorithm that relies on the entries of target operand info,
> +/// among other things, to solve the problem of disassembling an ARM machine
> +/// instruction.
> +class ARMDisassemblyAlgorithm {
> +public:
> +  /// Return true if this algorithm successfully disassembles the instruction.
> +  /// NumOpsAdded is updated to reflect the number of operands added by the
> +  /// algorithm.  NumOpsAdded may be less than NumOps, in which case, there are
> +  /// operands unaccounted for which need to be dealt with by the API client.
> +  virtual bool Solve(MCInst& MI, unsigned Opcode, uint32_t insn,
> +      unsigned short NumOps, unsigned &NumOpsAdded) const
> +    = 0;
> +};
> +
> +/// ARMBasicMCBuilder - ARMBasicMCBuilder represents a concrete subclass of
> +/// ARMAbstractMCBuilder.
> +class ARMBasicMCBuilder : public AbstractARMMCBuilder {
> +  unsigned Opcode;
> +  ARMFormat Format;
> +  NSFormat NSF;
> +  unsigned short NumOps;
> +  const ARMDisassemblyAlgorithm &Algo;
> +  static unsigned ITCounter; // Possible values: 0, 1, 2, 3, 4.
> +  static unsigned ITState; // A2.5.2 Consists of IT[7:5] and IT[4:0] initially.
> +
> +public:
> +  ARMBasicMCBuilder(ARMBasicMCBuilder &MCB) : AbstractARMMCBuilder(),
> +    Opcode(MCB.Opcode), Format(MCB.Format), NSF(MCB.NSF), NumOps(MCB.NumOps),
> +    Algo(MCB.Algo) {}
> +
> +  /// Opcode, Format, NSF, NumOperands, and Algo make an ARM Basic MCBuilder.
> +  ARMBasicMCBuilder(unsigned opc, ARMFormat format, NSFormat NSF,
> +      unsigned short num, const ARMDisassemblyAlgorithm &algo)
> +    : AbstractARMMCBuilder(), Opcode(opc), Format(format), NumOps(num),
> +      Algo(algo) {}
> +
> +  /// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process
> +  /// the possible Predicate and SBitModifier, to build the remaining MCOperand
> +  /// constituents.
> +  static bool TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
> +      uint32_t insn, unsigned short NumOpsRemaning);
> +
> +  /// InITBlock - InITBlock returns true if we are inside an IT block.
> +  static bool InITBlock() {
> +    return ITCounter > 0;
> +  }
> +
> +  /// Build - Build delegates to BuildIt to perform the heavy liftling.  After
> +  /// that, it invokes RunBuildAfterHook where some housekeepings can be done.
> +  virtual bool Build(MCInst &MI, uint32_t insn) {
> +    bool Status = BuildIt(MI, insn);
> +    return RunBuildAfterHook(Status, MI, insn);
> +  }
> +
> +  /// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
> +  /// The general idea is to set the Opcode for the MCInst, followed by adding
> +  /// the appropriate MCOperands to the MCInst.  ARM Basic MC Builder delegates
> +  /// to the Algo (ARM Disassemble Algorithm) object to perform Format-specific
> +  /// disassembly, followed by class method TryPredicateAndSBitModifier() to do
> +  /// PredicateOperand and OptionalDefOperand which follow the Dst/Src Operands.
> +  virtual bool BuildIt(MCInst &MI, uint32_t insn);
> +
> +  /// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
> +  /// after BuildIt is finished.
> +  virtual bool RunBuildAfterHook(bool Status, MCInst &MI, uint32_t insn);
> +
> +private:
> +  /// Get condition of the current IT instruction.
> +  static unsigned GetITCond() {
> +    return slice(ITState, 7, 4);
> +  }
> +
> +  /// Init ITState.
> +  static void InitITState(unsigned short bits7_0) {
> +    ITState = bits7_0;
> +  }
> +
> +  /// Update ITState if necessary.
> +  static void UpdateITState() {
> +    assert(ITCounter);
> +    --ITCounter;
> +    if (ITCounter == 0)
> +      ITState = 0;
> +    else {
> +      unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1;
> +      setSlice(ITState, 4, 0, NewITState4_0);
> +    }
> +  }
> +};
> +
> +/// ARMMCBuilderFactory - ARMMCBuilderFactory represents the factory class that
> +/// vends out ARMAbstractMCBuilder instances through its class method.
> +class ARMMCBuilderFactory {
> +private:
> +  ARMMCBuilderFactory(); // DO NOT IMPLEMENT.
> +
> +public:
> +  /// CreateMCBuilder - Return an AbstractARMMCBuilder that can build up the MC
> +  /// infrastructure of an MCInst given the Opcode and Format of the instr.
> +  /// Return NULL if it fails to create/return a proper builder.  API clients
> +  /// are responsible for freeing up of the allocated memory.  Cacheing can be
> +  /// performed by the API clients to improve performance.
> +  static AbstractARMMCBuilder *CreateMCBuilder(unsigned Opcode,
> +      ARMFormat Format, NSFormat NSF);
> +};
> +
> +} // namespace llvm
> +
> +#endif
> 
> Added: llvm/trunk/lib/Target/ARM/Disassembler/Makefile
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Disassembler/Makefile?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Disassembler/Makefile (added)
> +++ llvm/trunk/lib/Target/ARM/Disassembler/Makefile Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,17 @@
> +##===- lib/Target/ARM/Disassembler/Makefile ----------------*- Makefile -*-===##
> +#
> +#                     The LLVM Compiler Infrastructure
> +#
> +# This file is distributed under the University of Illinois Open Source
> +# License. See LICENSE.TXT for details.
> +#
> +##===----------------------------------------------------------------------===##
> +
> +LEVEL = ../../../..
> +LIBRARYNAME = LLVMARMDisassembler
> +CXXFLAGS = -fno-rtti
> +
> +# Hack: we need to include 'main' arm target directory to grab private headers
> +CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
> +
> +include $(LEVEL)/Makefile.common
> 
> Added: llvm/trunk/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc (added)
> +++ llvm/trunk/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,2158 @@
> +//===- ThumbDisassemblerCore.cpp - ARM disassembler helpers ----*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +// This file is part of the ARM Disassembler.
> +// It contains code for disassembling a Thumb instr.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +///////////////////////////////
> +//                           //
> +//     Utility Functions     //
> +//                           //
> +///////////////////////////////
> +
> +// Utilities for 16-bit Thumb instructions.
> +/*
> +15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
> +               [  tRt ]
> +                      [ tRm ]  [ tRn ]  [ tRd ]
> +                         D  [   Rm   ]  [  Rd ]
> +
> +                      [ imm3]
> +               [    imm5    ]
> +                   i     [    imm5   ]
> +                            [       imm7      ]
> +                         [       imm8         ]
> +               [             imm11            ]
> +
> +            [   cond  ]
> +*/
> +
> +static bool InITBlock() {
> +  return ARMBasicMCBuilder::InITBlock();
> +}
> +
> +// Extract tRt: Inst{10-8}.
> +static inline unsigned getT1tRt(uint32_t insn) {
> +  return slice(insn, 10, 8);
> +}
> +
> +// Extract tRm: Inst{8-6}.
> +static inline unsigned getT1tRm(uint32_t insn) {
> +  return slice(insn, 8, 6);
> +}
> +
> +// Extract tRn: Inst{5-3}.
> +static inline unsigned getT1tRn(uint32_t insn) {
> +  return slice(insn, 5, 3);
> +}
> +
> +// Extract tRd: Inst{2-0}.
> +static inline unsigned getT1tRd(uint32_t insn) {
> +  return slice(insn, 2, 0);
> +}
> +
> +// Extract [D:Rd]: Inst{7:2-0}.
> +static inline unsigned getT1Rd(uint32_t insn) {
> +  return slice(insn, 7, 7) << 3 | slice(insn, 2, 0);
> +}
> +
> +// Extract Rm: Inst{6-3}.
> +static inline unsigned getT1Rm(uint32_t insn) {
> +  return slice(insn, 6, 3);
> +}
> +
> +// Extract imm3: Inst{8-6}.
> +static inline unsigned getT1Imm3(uint32_t insn) {
> +  return slice(insn, 8, 6);
> +}
> +
> +// Extract imm5: Inst{10-6}.
> +static inline unsigned getT1Imm5(uint32_t insn) {
> +  return slice(insn, 10, 6);
> +}
> +
> +// Extract i:imm5: Inst{9:7-3}.
> +static inline unsigned getT1Imm6(uint32_t insn) {
> +  return slice(insn, 9, 9) << 5 | slice(insn, 7, 3);
> +}
> +
> +// Extract imm7: Inst{6-0}.
> +static inline unsigned getT1Imm7(uint32_t insn) {
> +  return slice(insn, 6, 0);
> +}
> +
> +// Extract imm8: Inst{7-0}.
> +static inline unsigned getT1Imm8(uint32_t insn) {
> +  return slice(insn, 7, 0);
> +}
> +
> +// Extract imm11: Inst{10-0}.
> +static inline unsigned getT1Imm11(uint32_t insn) {
> +  return slice(insn, 10, 0);
> +}
> +
> +// Extract cond: Inst{11-8}.
> +static inline unsigned getT1Cond(uint32_t insn) {
> +  return slice(insn, 11, 8);
> +}
> +
> +static inline bool IsGPR(unsigned RegClass) {
> +  return RegClass == ARM::GPRRegClassID;
> +}
> +
> +// Utilities for 32-bit Thumb instructions.
> +
> +// Extract imm4: Inst{19-16}.
> +static inline unsigned getImm4(uint32_t insn) {
> +  return slice(insn, 19, 16);
> +}
> +
> +// Extract imm3: Inst{14-12}.
> +static inline unsigned getImm3(uint32_t insn) {
> +  return slice(insn, 14, 12);
> +}
> +
> +// Extract imm8: Inst{7-0}.
> +static inline unsigned getImm8(uint32_t insn) {
> +  return slice(insn, 7, 0);
> +}
> +
> +// A8.6.61 LDRB (immediate, Thumb) and friends
> +// +/-: Inst{9}
> +// imm8: Inst{7-0}
> +static inline int decodeImm8(uint32_t insn) {
> +  int Offset = getImm8(insn);
> +  return slice(insn, 9, 9) ? Offset : -Offset;
> +}
> +
> +// Extract imm12: Inst{11-0}.
> +static inline unsigned getImm12(uint32_t insn) {
> +  return slice(insn, 11, 0);
> +}
> +
> +// A8.6.63 LDRB (literal) and friends
> +// +/-: Inst{23}
> +// imm12: Inst{11-0}
> +static inline int decodeImm12(uint32_t insn) {
> +  int Offset = getImm12(insn);
> +  return slice(insn, 23, 23) ? Offset : -Offset;
> +}
> +
> +// Extract imm2: Inst{7-6}.
> +static inline unsigned getImm2(uint32_t insn) {
> +  return slice(insn, 7, 6);
> +}
> +
> +// For BFI, BFC, t2SBFX, and t2UBFX.
> +// Extract lsb: Inst{14-12:7-6}.
> +static inline unsigned getLsb(uint32_t insn) {
> +  return getImm3(insn) << 2 | getImm2(insn);
> +}
> +
> +// For BFI and BFC.
> +// Extract msb: Inst{4-0}.
> +static inline unsigned getMsb(uint32_t insn) {
> +  return slice(insn, 4, 0);
> +}
> +
> +// For t2SBFX and t2UBFX.
> +// Extract widthminus1: Inst{4-0}.
> +static inline unsigned getWidthMinus1(uint32_t insn) {
> +  return slice(insn, 4, 0);
> +}
> +
> +// For t2ADDri12 and t2SUBri12.
> +// imm12 = i:imm3:imm8;
> +static inline unsigned getIImm3Imm8(uint32_t insn) {
> +  return slice(insn, 26, 26) << 11 | getImm3(insn) << 8 | getImm8(insn);
> +}
> +
> +// For t2MOVi16 and t2MOVTi16.
> +// imm16 = imm4:i:imm3:imm8;
> +static inline unsigned getImm16(uint32_t insn) {
> +  return getImm4(insn) << 12 | slice(insn, 26, 26) << 11 |
> +    getImm3(insn) << 8 | getImm8(insn);
> +}
> +
> +// Inst{5-4} encodes the shift type.
> +static inline unsigned getShiftTypeBits(uint32_t insn) {
> +  return slice(insn, 5, 4);
> +}
> +
> +// Inst{14-12}:Inst{7-6} encodes the imm5 shift amount.
> +static inline unsigned getShiftAmtBits(uint32_t insn) {
> +  return getImm3(insn) << 2 | getImm2(insn);
> +}
> +
> +// A8.6.17 BFC
> +// Encoding T1 ARMv6T2, ARMv7
> +// LLVM-specific encoding for #<lsb> and #<width>
> +static inline uint32_t getBitfieldInvMask(uint32_t insn) {
> +  uint32_t lsb = getImm3(insn) << 2 | getImm2(insn);
> +  uint32_t msb = getMsb(insn);
> +  uint32_t Val = 0;
> +  assert(lsb <= msb && "Encoding error: lsb > msb");
> +  for (uint32_t i = lsb; i <= msb; ++i)
> +    Val |= (1 << i);
> +  return ~Val;
> +}
> +
> +// A8.4 Shifts applied to a register
> +// A8.4.1 Constant shifts
> +// A8.4.3 Pseudocode details of instruction-specified shifts and rotates
> +//
> +// decodeImmShift() returns the shift amount and the the shift opcode.
> +// Note that, as of Jan-06-2010, LLVM does not support rrx shifted operands yet.
> +static inline unsigned decodeImmShift(unsigned bits2, unsigned imm5,
> +                                      ARM_AM::ShiftOpc &ShOp) {
> +
> +  assert(imm5 < 32);
> +  switch (bits2) {
> +  default: assert(0 && "No such value");
> +  case 0:
> +    ShOp = ARM_AM::lsl;
> +    return imm5;
> +  case 1:
> +    ShOp = ARM_AM::lsr;
> +    return (imm5 == 0 ? 32 : imm5);
> +  case 2:
> +    ShOp = ARM_AM::asr;
> +    return (imm5 == 0 ? 32 : imm5);
> +  case 3:
> +    ShOp = (imm5 == 0 ? ARM_AM::rrx : ARM_AM::ror);
> +    return (imm5 == 0 ? 1 : imm5);
> +  }
> +}
> +
> +// A6.3.2 Modified immediate constants in Thumb instructions
> +//
> +// ThumbExpandImm() returns the modified immediate constant given an imm12 for
> +// Thumb data-processing instructions with modified immediate.
> +// See also A6.3.1 Data-processing (modified immediate).
> +static inline unsigned ThumbExpandImm(unsigned imm12) {
> +  assert(imm12 <= 0xFFF);
> +
> +  // If the leading two bits is 0b00, the modified immediate constant is
> +  // obtained by splatting the low 8 bits into the first byte, every other byte,
> +  // or every byte of a 32-bit value.
> +  //
> +  // Otherwise, a rotate right of '1':imm12<6:0> by the amount imm12<11:7> is
> +  // performed.
> +
> +  if (slice(imm12, 11, 10) == 0) {
> +    unsigned short control = slice(imm12, 9, 8);
> +    unsigned imm8 = slice(imm12, 7, 0);
> +    switch (control) {
> +    default:
> +      assert(0 && "No such value");
> +      return 0;
> +    case 0:
> +      return imm8;
> +    case 1:
> +      return imm8 << 16 | imm8;
> +    case 2:
> +      return imm8 << 24 | imm8 << 8;
> +    case 3:
> +      return imm8 << 24 | imm8 << 16 | imm8 << 8 | imm8;
> +    }
> +  } else {
> +    // A rotate is required.
> +    unsigned Val = 1 << 7 | slice(imm12, 6, 0);
> +    unsigned Amt = slice(imm12, 11, 7);
> +    return ARM_AM::rotr32(Val, Amt);
> +  }
> +}
> +
> +static inline int decodeImm32_B_EncodingT3(uint32_t insn) {
> +  bool S = slice(insn, 26, 26);
> +  bool J1 = slice(insn, 13, 13);
> +  bool J2 = slice(insn, 11, 11);
> +  unsigned Imm21 = slice(insn, 21, 16) << 12 | slice(insn, 10, 0) << 1;
> +  if (S) Imm21 |= 1 << 20;
> +  if (J2) Imm21 |= 1 << 19;
> +  if (J1) Imm21 |= 1 << 18;
> +
> +  return signextend<signed int, 21>(Imm21);
> +}
> +
> +static inline int decodeImm32_B_EncodingT4(uint32_t insn) {
> +  unsigned S = slice(insn, 26, 26);
> +  bool I1 = slice(insn, 13, 13) == S;
> +  bool I2 = slice(insn, 11, 11) == S;
> +  unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1;
> +  if (S) Imm25 |= 1 << 24;
> +  if (I1) Imm25 |= 1 << 23;
> +  if (I2) Imm25 |= 1 << 22;
> +
> +  return signextend<signed int, 25>(Imm25);
> +}
> +
> +static inline int decodeImm32_BL(uint32_t insn) {
> +  unsigned S = slice(insn, 26, 26);
> +  bool I1 = slice(insn, 13, 13) == S;
> +  bool I2 = slice(insn, 11, 11) == S;
> +  unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1;
> +  if (S) Imm25 |= 1 << 24;
> +  if (I1) Imm25 |= 1 << 23;
> +  if (I2) Imm25 |= 1 << 22;
> +
> +  return signextend<signed int, 25>(Imm25);
> +}
> +
> +static inline int decodeImm32_BLX(uint32_t insn) {
> +  unsigned S = slice(insn, 26, 26);
> +  bool I1 = slice(insn, 13, 13) == S;
> +  bool I2 = slice(insn, 11, 11) == S;
> +  unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 1) << 2;
> +  if (S) Imm25 |= 1 << 24;
> +  if (I1) Imm25 |= 1 << 23;
> +  if (I2) Imm25 |= 1 << 22;
> +
> +  return signextend<signed int, 25>(Imm25);
> +}
> +
> +// See, for example, A8.6.221 SXTAB16.
> +static inline unsigned decodeRotate(uint32_t insn) {
> +  unsigned rotate = slice(insn, 5, 4);
> +  return rotate << 3;
> +}
> +
> +///////////////////////////////////////////////
> +//                                           //
> +// Thumb1 instruction disassembly functions. //
> +//                                           //
> +///////////////////////////////////////////////
> +
> +// See "Utilities for 16-bit Thumb instructions" for register naming convention.
> +
> +// A6.2.1 Shift (immediate), add, subtract, move, and compare
> +//
> +// shift immediate:         tRd CPSR tRn imm5
> +// add/sub register:        tRd CPSR tRn tRm
> +// add/sub 3-bit immediate: tRd CPSR tRn imm3
> +// add/sub 8-bit immediate: tRt CPSR tRt(TIED_TO) imm8
> +// mov/cmp immediate:       tRt [CPSR] imm8 (CPSR present for mov)
> +//
> +// Special case:
> +// tMOVSr:                  tRd tRn
> +static bool DisassembleThumb1General(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID);
> +
> +  bool Imm3 = (Opcode == ARM::tADDi3 || Opcode == ARM::tSUBi3);
> +
> +  // Use Rt implies use imm8.
> +  bool UseRt = (Opcode == ARM::tADDi8 || Opcode == ARM::tSUBi8 ||
> +                Opcode == ARM::tMOVi8 || Opcode == ARM::tCMPi8);
> +
> +  // Add the destination operand.
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(ARM::tGPRRegClassID,
> +                                  UseRt ? getT1tRt(insn) : getT1tRd(insn))));
> +  ++OpIdx;
> +
> +  // Check whether the next operand to be added is a CCR Register.
> +  if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) {
> +    assert(OpInfo[OpIdx].isOptionalDef());
> +    MI.addOperand(MCOperand::CreateReg(InITBlock() ? 0 : ARM::CPSR));
> +    ++OpIdx;
> +  }
> +
> +  // Check whether the next operand to be added is a Thumb1 Register.
> +  assert(OpIdx < NumOps);
> +  if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
> +    // For UseRt, the reg operand is tied to the first reg operand.
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(ARM::tGPRRegClassID,
> +                                    UseRt ? getT1tRt(insn) : getT1tRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Special case for tMOVSr.
> +  if (OpIdx == NumOps)
> +    return true;
> +
> +  // The next available operand is either a reg operand or an imm operand.
> +  if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
> +    // Three register operand instructions.
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                       getT1tRm(insn))));
> +  } else {
> +    assert(OpInfo[OpIdx].RegClass == 0 &&
> +           !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef());
> +    MI.addOperand(MCOperand::CreateImm(UseRt ? getT1Imm8(insn)
> +                                             : (Imm3 ? getT1Imm3(insn)
> +                                                     : getT1Imm5(insn))));
> +  }
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// A6.2.2 Data-processing
> +//
> +// tCMPr, tTST, tCMN: tRd tRn
> +// tMVN, tRSB:        tRd CPSR tRn
> +// Others:            tRd CPSR tRd(TIED_TO) tRn
> +static bool DisassembleThumb1DP(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
> +         (OpInfo[1].RegClass == ARM::CCRRegClassID
> +          || OpInfo[1].RegClass == ARM::tGPRRegClassID));
> +
> +  // Add the destination operand.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRd(insn))));
> +  ++OpIdx;
> +
> +  // Check whether the next operand to be added is a CCR Register.
> +  if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) {
> +    assert(OpInfo[OpIdx].isOptionalDef());
> +    MI.addOperand(MCOperand::CreateReg(InITBlock() ? 0 : ARM::CPSR));
> +    ++OpIdx;
> +  }
> +
> +  // We have either { tRd(TIED_TO), tRn } or { tRn } remaining.
> +  // Process the TIED_TO operand first.
> +
> +  assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID);
> +  int Idx;
> +  if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
> +    // The reg operand is tied to the first reg operand.
> +    MI.addOperand(MI.getOperand(Idx));
> +    ++OpIdx;
> +  }
> +
> +  // Process possible next reg operand.
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
> +    // Add tRn operand.
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                       getT1tRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// A6.2.3 Special data instructions and branch and exchange
> +//
> +// tADDhirr: Rd Rd(TIED_TO) Rm
> +// tCMPhir:  Rd Rm
> +// tMOVr, tMOVgpr2gpr, tMOVgpr2tgpr, tMOVtgpr2gpr: Rd|tRd Rm|tRn
> +// tBX_RET: 0 operand
> +// tBX_RET_vararg: Rm
> +// tBLXr_r9: Rm
> +static bool DisassembleThumb1Special(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  // tBX_RET has 0 operand.
> +  if (NumOps == 0)
> +    return true;
> +
> +  // BX/BLX has 1 reg operand: Rm.
> +  if (NumOps == 1) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       getT1Rm(insn))));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  // Add the destination operand.
> +  unsigned RegClass = OpInfo[OpIdx].RegClass;
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass,
> +                                  IsGPR(RegClass) ? getT1Rd(insn)
> +                                                  : getT1tRd(insn))));
> +  ++OpIdx;
> +
> +  // We have either { Rd(TIED_TO), Rm } or { Rm|tRn } remaining.
> +  // Process the TIED_TO operand first.
> +
> +  assert(OpIdx < NumOps);
> +  int Idx;
> +  if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
> +    // The reg operand is tied to the first reg operand.
> +    MI.addOperand(MI.getOperand(Idx));
> +    ++OpIdx;
> +  }
> +
> +  // The next reg operand is either Rm or tRn.
> +  assert(OpIdx < NumOps);
> +  RegClass = OpInfo[OpIdx].RegClass;
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(RegClass,
> +                                  IsGPR(RegClass) ? getT1Rm(insn)
> +                                                  : getT1tRn(insn))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// A8.6.59 LDR (literal)
> +//
> +// tLDRpci: tRt imm8*4
> +static bool DisassembleThumb1LdPC(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
> +         (OpInfo[1].RegClass == 0 &&
> +          !OpInfo[1].isPredicate() &&
> +          !OpInfo[1].isOptionalDef()));
> +
> +  // Add the destination operand.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRt(insn))));
> +
> +  // And the (imm8 << 2) operand.
> +  MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn) << 2));
> +
> +  NumOpsAdded = 2;
> +
> +  return true;
> +}
> +
> +// Thumb specific addressing modes (see ARMInstrThumb.td):
> +//
> +// t_addrmode_rr := reg + reg
> +//
> +// t_addrmode_s4 := reg + reg
> +//                  reg + imm5 * 4
> +//
> +// t_addrmode_s2 := reg + reg
> +//                  reg + imm5 * 2
> +//
> +// t_addrmode_s1 := reg + reg
> +//                  reg + imm5
> +//
> +// t_addrmode_sp := sp + imm8 * 4
> +//
> +
> +// A6.2.4 Load/store single data item
> +//
> +// Load/Store Register (reg|imm):      tRd tRn imm5 tRm
> +// Load Register Signed Byte|Halfword: tRd tRn tRm
> +static bool DisassembleThumb1LdSt(unsigned opA, MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  // Table A6-5 16-bit Thumb Load/store instructions
> +  // opA = 0b0101 for STR/LDR (register) and friends.
> +  // Otherwise, we have STR/LDR (immediate) and friends.
> +  bool Imm5 = (opA != 5);
> +
> +  assert(NumOps >= 2
> +         && OpInfo[0].RegClass == ARM::tGPRRegClassID
> +         && OpInfo[1].RegClass == ARM::tGPRRegClassID);
> +
> +  // Add the destination reg and the base reg.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRd(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRn(insn))));
> +  OpIdx = 2;
> +
> +  // We have either { imm5, tRm } or { tRm } remaining.
> +  // Process the imm5 first.  Note that STR/LDR (register) should skip the imm5
> +  // offset operand for t_addrmode_s[1|2|4].
> +
> +  assert(OpIdx < NumOps);
> +
> +  if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() &&
> +      !OpInfo[OpIdx].isOptionalDef()) {
> +
> +    MI.addOperand(MCOperand::CreateImm(Imm5 ? getT1Imm5(insn) : 0));
> +    ++OpIdx;
> +  }
> +
> +  // The next reg operand is tRm, the offset.
> +  assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID);
> +  MI.addOperand(MCOperand::CreateReg(Imm5 ? 0
> +                                          : getRegisterEnum(ARM::tGPRRegClassID,
> +                                                            getT1tRm(insn))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// A6.2.4 Load/store single data item
> +//
> +// Load/Store Register SP relative: tRt ARM::SP imm8
> +static bool DisassembleThumb1LdStSP(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi);
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::tGPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID &&
> +         (OpInfo[2].RegClass == 0 &&
> +          !OpInfo[2].isPredicate() &&
> +          !OpInfo[2].isOptionalDef()));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRt(insn))));
> +  MI.addOperand(MCOperand::CreateReg(ARM::SP));
> +  MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
> +  NumOpsAdded = 3;
> +  return true;
> +}
> +
> +// Table A6-1 16-bit Thumb instruction encoding
> +// A8.6.10 ADR
> +//
> +// tADDrPCi: tRt imm8
> +static bool DisassembleThumb1AddPCi(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(Opcode == ARM::tADDrPCi);
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
> +         (OpInfo[1].RegClass == 0 &&
> +          !OpInfo[1].isPredicate() &&
> +          !OpInfo[1].isOptionalDef()));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRt(insn))));
> +  MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
> +  NumOpsAdded = 2;
> +  return true;
> +}
> +
> +// Table A6-1 16-bit Thumb instruction encoding
> +// A8.6.8 ADD (SP plus immediate)
> +//
> +// tADDrSPi: tRt ARM::SP imm8
> +static bool DisassembleThumb1AddSPi(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(Opcode == ARM::tADDrSPi);
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::tGPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID &&
> +         (OpInfo[2].RegClass == 0 &&
> +          !OpInfo[2].isPredicate() &&
> +          !OpInfo[2].isOptionalDef()));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRt(insn))));
> +  MI.addOperand(MCOperand::CreateReg(ARM::SP));
> +  MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
> +  NumOpsAdded = 3;
> +  return true;
> +}
> +
> +// tPUSH, tPOP: Pred-Imm Pred-CCR register_list
> +//
> +// where register_list = low registers + [lr] for PUSH or
> +//                       low registers + [pc] for POP
> +//
> +// "low registers" is specified by Inst{7-0}
> +// lr|pc is specified by Inst{8}
> +static bool DisassembleThumb1PushPop(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(Opcode == ARM::tPUSH || Opcode == ARM::tPOP);
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  // Handling the two predicate operands before the reglist.
> +  MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
> +  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
> +  OpIdx = 2;
> +
> +  // Fill the variadic part of reglist.
> +  unsigned RegListBits = slice(insn, 8, 8) << (Opcode == ARM::tPUSH ? 14 : 15)
> +    | slice(insn, 7, 0);
> +  for (unsigned i = 0; i < 16; ++i) {
> +    if ((RegListBits >> i) & 1) {
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         i)));
> +      ++OpIdx;
> +    }
> +  }
> +
> +  return true;
> +}
> +
> +// A6.2.5 Miscellaneous 16-bit instructions
> +// Delegate to DisassembleThumb1PushPop() for tPUSH & tPOP.
> +//
> +// tADDspi, tSUBspi: ARM::SP ARM::SP(TIED_TO) imm7
> +// t2IT:             firstcond=Inst{7-4} mask=Inst{3-0}
> +// tCBNZ, tCBZ:      tRd imm6*2
> +// tBKPT:            imm8
> +// tNOP, tSEV, tYIELD, tWFE, tWFI:
> +//   no operand (except predicate pair)
> +// tSETENDBE, tSETENDLE, :
> +//   no operand
> +// Others:           tRd tRn
> +static bool DisassembleThumb1Misc(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (NumOps == 0)
> +    return true;
> +
> +  if (Opcode == ARM::tPUSH || Opcode == ARM::tPOP)
> +    return DisassembleThumb1PushPop(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  // Predicate operands are handled elsewhere.
> +  if (NumOps == 2 &&
> +      OpInfo[0].isPredicate() && OpInfo[1].isPredicate() &&
> +      OpInfo[0].RegClass == 0 && OpInfo[1].RegClass == ARM::CCRRegClassID) {
> +    return true;
> +  }
> +
> +  if (Opcode == ARM::tADDspi || Opcode == ARM::tSUBspi) {
> +    // Special case handling for tADDspi and tSUBspi.
> +    // A8.6.8 ADD (SP plus immediate) & A8.6.215 SUB (SP minus immediate)
> +    MI.addOperand(MCOperand::CreateReg(ARM::SP));
> +    MI.addOperand(MCOperand::CreateReg(ARM::SP));
> +    MI.addOperand(MCOperand::CreateImm(getT1Imm7(insn)));
> +    NumOpsAdded = 3;
> +    return true;
> +  }
> +
> +  if (Opcode == ARM::t2IT) {
> +    // Special case handling for If-Then.
> +    // A8.6.50 IT
> +    // Tag the (firstcond[0] bit << 4) along with mask.
> +
> +    // firstcond
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 4)));
> +
> +    // firstcond[0] and mask
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
> +    NumOpsAdded = 2;
> +    return true;
> +  }
> +
> +  if (Opcode == ARM::tBKPT) {
> +    MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); // breakpoint value
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  // CPS has a singleton $opt operand that contains the following information:
> +  // opt{4-0} = don't care
> +  // opt{5} = 0 (false)
> +  // opt{8-6} = AIF from Inst{2-0}
> +  // opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable
> +  if (Opcode == ARM::tCPS) {
> +    unsigned Option = slice(insn, 2, 0) << 6 | slice(insn, 4, 4) << 9 | 1 << 10;
> +    MI.addOperand(MCOperand::CreateImm(Option));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
> +         (OpInfo[1].RegClass==0 || OpInfo[1].RegClass==ARM::tGPRRegClassID));
> +
> +  // Add the destination operand.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                     getT1tRd(insn))));
> +
> +  if (OpInfo[1].RegClass == ARM::tGPRRegClassID) {
> +    // Two register instructions.
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                       getT1tRn(insn))));
> +  } else {
> +    // CBNZ, CBZ
> +    assert(Opcode == ARM::tCBNZ || Opcode == ARM::tCBZ);
> +    MI.addOperand(MCOperand::CreateImm(getT1Imm6(insn) * 2));
> +  }
> +
> +  NumOpsAdded = 2;
> +
> +  return true;
> +}
> +
> +// A8.6.53  LDM / LDMIA
> +// A8.6.189 STM / STMIA
> +//
> +// tRt AM4ModeImm Pred-Imm Pred-CCR register_list
> +static bool DisassembleThumb1LdStMul(bool Ld, MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(Opcode == ARM::tLDM || Opcode == ARM::tSTM_UPD);
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  unsigned tRt = getT1tRt(insn);
> +  unsigned RegListBits = slice(insn, 7, 0);
> +
> +  OpIdx = 0;
> +
> +  // For STM, WB is always true.
> +  if (Opcode == ARM::tSTM_UPD) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       tRt)));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     tRt)));
> +  ++OpIdx;
> +
> +  // A8.6.53 LDM / LDMIA / LDMFD - Encoding T1
> +  // WB is true if tRt is not specified as a member of the register list.
> +  // For STM, WB is always true.
> +  bool WB = Ld ? ((RegListBits >> tRt) & 1) == 0 : true;
> +  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(ARM_AM::ia, WB)));
> +  ++OpIdx;
> +
> +  // Handling the two predicate operands before the reglist.
> +  MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
> +  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
> +  OpIdx += 2;
> +
> +  // Fill the variadic part of reglist.
> +  for (unsigned i = 0; i < 8; ++i) {
> +    if ((RegListBits >> i) & 1) {
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
> +                                                         i)));
> +      ++OpIdx;
> +    }
> +  }
> +
> +  return true;
> +}
> +
> +static bool DisassembleThumb1LdMul(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  return DisassembleThumb1LdStMul(true, MI, Opcode, insn, NumOps, NumOpsAdded);
> +}
> +
> +static bool DisassembleThumb1StMul(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  return DisassembleThumb1LdStMul(false, MI, Opcode, insn, NumOps, NumOpsAdded);
> +}
> +
> +// A8.6.16 B Encoding T1
> +// cond = Inst{11-8} & imm8 = Inst{7-0}
> +// imm32 = SignExtend(imm8:'0', 32)
> +//
> +// tBcc: offset Pred-Imm Pred-CCR
> +// tSVC: imm8 Pred-Imm Pred-CCR
> +// tTRAP: 0 operand (early return)
> +static bool DisassembleThumb1CondBr(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (Opcode == ARM::tTRAP)
> +    return true;
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  assert(NumOps == 3 && OpInfo[0].RegClass == 0 &&
> +         OpInfo[1].isPredicate() && OpInfo[2].RegClass == ARM::CCRRegClassID);
> +
> +  unsigned Imm8 = getT1Imm8(insn);
> +  MI.addOperand(MCOperand::CreateImm(
> +                  Opcode == ARM::tBcc ? signextend<signed int, 9>(Imm8 << 1) + 4
> +                                      : (int)Imm8));
> +
> +  // Predicate operands by ARMBasicMCBuilder::TryPredicateAndSBitModifier().
> +  NumOpsAdded = 1;
> +
> +  return true;
> +}
> +
> +// A8.6.16 B Encoding T2
> +// imm11 = Inst{10-0}
> +// imm32 = SignExtend(imm11:'0', 32)
> +//
> +// tB: offset
> +static bool DisassembleThumb1Br(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  assert(NumOps == 1 && OpInfo[0].RegClass == 0);
> +
> +  unsigned Imm11 = getT1Imm11(insn);
> +
> +  // When executing a Thumb instruction, PC reads as the address of the current
> +  // instruction plus 4.  The assembler subtracts 4 from the difference between
> +  // the branch instruction and the target address, disassembler has to add 4 to
> +  // to compensate.
> +  MI.addOperand(MCOperand::CreateImm(
> +                  signextend<signed int, 12>(Imm11 << 1) + 4));
> +
> +  NumOpsAdded = 1;
> +
> +  return true;
> +
> +}
> +
> +// See A6.2 16-bit Thumb instruction encoding for instruction classes
> +// corresponding to op.
> +//
> +// Table A6-1 16-bit Thumb instruction encoding (abridged)
> +// op		Instruction or instruction class
> +// ------	--------------------------------------------------------------------
> +// 00xxxx	Shift (immediate), add, subtract, move, and compare on page A6-7
> +// 010000	Data-processing on page A6-8
> +// 010001	Special data instructions and branch and exchange on page A6-9
> +// 01001x	Load from Literal Pool, see LDR (literal) on page A8-122
> +// 0101xx	Load/store single data item on page A6-10
> +// 011xxx
> +// 100xxx
> +// 10100x	Generate PC-relative address, see ADR on page A8-32
> +// 10101x	Generate SP-relative address, see ADD (SP plus immediate) on page A8-28
> +// 1011xx	Miscellaneous 16-bit instructions on page A6-11
> +// 11000x	Store multiple registers, see STM / STMIA / STMEA on page A8-374
> +// 11001x	Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 a
> +// 1101xx	Conditional branch, and Supervisor Call on page A6-13
> +// 11100x	Unconditional Branch, see B on page A8-44
> +//
> +static bool DisassembleThumb1(uint16_t op,
> +    MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  unsigned op1 = slice(op, 5, 4);
> +  unsigned op2 = slice(op, 3, 2);
> +  unsigned op3 = slice(op, 1, 0);
> +  unsigned opA = slice(op, 5, 2);
> +  switch (op1) {
> +  case 0:
> +    // A6.2.1 Shift (immediate), add, subtract, move, and compare
> +    return DisassembleThumb1General(MI, Opcode, insn, NumOps, NumOpsAdded);
> +  case 1:
> +    switch (op2) {
> +    case 0:
> +      switch (op3) {
> +      case 0:
> +        // A6.2.2 Data-processing
> +        return DisassembleThumb1DP(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      case 1:
> +        // A6.2.3 Special data instructions and branch and exchange
> +        return DisassembleThumb1Special(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      default:
> +        // A8.6.59 LDR (literal)
> +        return DisassembleThumb1LdPC(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +      break;
> +    default:
> +      // A6.2.4 Load/store single data item
> +      return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded);
> +      break;
> +    }
> +    break;
> +  case 2:
> +    switch (op2) {
> +    case 0:
> +      // A6.2.4 Load/store single data item
> +      return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded);
> +    case 1:
> +      // A6.2.4 Load/store single data item
> +      return DisassembleThumb1LdStSP(MI, Opcode, insn, NumOps, NumOpsAdded);
> +    case 2:
> +      if (op3 <= 1) {
> +        // A8.6.10 ADR
> +        return DisassembleThumb1AddPCi(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      } else {
> +        // A8.6.8 ADD (SP plus immediate)
> +        return DisassembleThumb1AddSPi(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +    default:
> +      // A6.2.5 Miscellaneous 16-bit instructions
> +      return DisassembleThumb1Misc(MI, Opcode, insn, NumOps, NumOpsAdded);
> +    }
> +    break;
> +  case 3:
> +    switch (op2) {
> +    case 0:
> +      if (op3 <= 1) {
> +        // A8.6.189 STM / STMIA / STMEA
> +        return DisassembleThumb1StMul(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      } else {
> +        // A8.6.53 LDM / LDMIA / LDMFD
> +        return DisassembleThumb1LdMul(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +    case 1:
> +      // A6.2.6 Conditional branch, and Supervisor Call
> +      return DisassembleThumb1CondBr(MI, Opcode, insn, NumOps, NumOpsAdded);
> +    case 2:
> +      // Unconditional Branch, see B on page A8-44
> +      return DisassembleThumb1Br(MI, Opcode, insn, NumOps, NumOpsAdded);
> +    default:
> +      assert(0 && "Unreachable code");
> +      break;
> +    }
> +    break;
> +  default:
> +    assert(0 && "Unreachable code");
> +    break;
> +  }
> +
> +  return false;
> +}
> +
> +///////////////////////////////////////////////
> +//                                           //
> +// Thumb2 instruction disassembly functions. //
> +//                                           //
> +///////////////////////////////////////////////
> +
> +///////////////////////////////////////////////////////////
> +//                                                       //
> +// Note: the register naming follows the ARM convention! //
> +//                                                       //
> +///////////////////////////////////////////////////////////
> +
> +static inline bool Thumb2SRSOpcode(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::t2SRSDBW: case ARM::t2SRSDB:
> +  case ARM::t2SRSIAW: case ARM::t2SRSIA:
> +    return true;
> +  }
> +}
> +
> +static inline bool Thumb2RFEOpcode(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::t2RFEDBW: case ARM::t2RFEDB:
> +  case ARM::t2RFEIAW: case ARM::t2RFEIA:
> +    return true;
> +  }
> +}
> +
> +// t2SRS[IA|DB]W/t2SRS[IA|DB]: mode_imm = Inst{4-0}
> +static bool DisassembleThumb2SRS(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
> +  NumOpsAdded = 1;
> +  return true;
> +}
> +
> +// t2RFE[IA|DB]W/t2RFE[IA|DB]: Rn
> +static bool DisassembleThumb2RFE(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  NumOpsAdded = 1;
> +  return true;
> +}
> +
> +static bool DisassembleThumb2LdStMul(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (Thumb2SRSOpcode(Opcode))
> +    return DisassembleThumb2SRS(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  if (Thumb2RFEOpcode(Opcode))
> +    return DisassembleThumb2RFE(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  assert(Opcode == ARM::t2LDM || Opcode == ARM::t2LDM_UPD ||
> +         Opcode == ARM::t2STM || Opcode == ARM::t2STM_UPD);
> +  assert(NumOps >= 5 && "Thumb2 LdStMul expects NumOps of 5");
> +
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
> +
> +  // Writeback to base.
> +  if (Opcode == ARM::t2LDM_UPD || Opcode == ARM::t2STM_UPD) {
> +    MI.addOperand(MCOperand::CreateReg(Base));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(Base));
> +  ++OpIdx;
> +
> +  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
> +  bool WB = getWBit(insn) == 1;
> +  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
> +  ++OpIdx;
> +
> +  // Handling the two predicate operands before the reglist.
> +  MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
> +  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
> +  OpIdx += 2;
> +
> +  // Fill the variadic part of reglist.
> +  unsigned RegListBits = insn & ((1 << 16) - 1);
> +  for (unsigned i = 0; i < 16; ++i) {
> +    if ((RegListBits >> i) & 1) {
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         i)));
> +      ++OpIdx;
> +    }
> +  }
> +
> +  return true;
> +}
> +
> +// t2LDREX: Rd Rn
> +// t2LDREXD: Rd Rs Rn
> +// t2LDREXB, t2LDREXH: Rd Rn
> +// t2STREX: Rs Rd Rn
> +// t2STREXD: Rm Rd Rs Rn
> +// t2STREXB, t2STREXH: Rm Rd Rn
> +static bool DisassembleThumb2LdStEx(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  bool isStore = (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH);
> +  bool isSW = (Opcode == ARM::t2LDREX || Opcode == ARM::t2STREX);
> +  bool isDW = (Opcode == ARM::t2LDREXD || Opcode == ARM::t2STREXD);
> +
> +  // Add the destination operand for store.
> +  if (isStore) {
> +    MI.addOperand(MCOperand::CreateReg(
> +                    getRegisterEnum(ARM::GPRRegClassID,
> +                                    isSW ? decodeRs(insn) : decodeRm(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Source operand for store and destination operand for load.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  ++OpIdx;
> +
> +  // Thumb2 doubleword complication: with an extra source/destination operand.
> +  if (isDW) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRs(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // Finally add the pointer operand.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// LLVM, as of Jan-05-2010, does not output <Rt2>, i.e., Rs, in the asm.
> +// Whereas the ARM Arch. Manual does not require that t2 = t+1 like in ARM ISA.
> +//
> +// t2LDRDi8: Rd Rs Rn imm8s4 (offset mode)
> +// t2LDRDpci: Rd Rs imm8s4 (Not decoded, prefer the generic t2LDRDi8 version)
> +// t2STRDi8: Rd Rs Rn imm8s4 (offset mode)
> +//
> +// Ditto for t2LDRD_PRE, t2LDRD_POST, t2STRD_PRE, t2STRD_POST, which are for
> +// disassembly only and do not have a tied_to writeback base register operand.
> +static bool DisassembleThumb2LdStDual(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 4
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID
> +         && OpInfo[2].RegClass == ARM::GPRRegClassID
> +         && OpInfo[3].RegClass == 0);
> +
> +  // Add the <Rt> <Rt2> operands.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRs(insn))));
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +
> +  // Finally add (+/-)imm8*4, depending on the U bit.
> +  int Offset = getImm8(insn) * 4;
> +  if (getUBit(insn) == 0)
> +    Offset = -Offset;
> +  MI.addOperand(MCOperand::CreateImm(Offset));
> +  NumOpsAdded = 4;
> +
> +  return true;
> +}
> +
> +// PC-based defined for Codegen, which do not get decoded by design:
> +//
> +// t2TBB, t2TBH: Rm immDontCare immDontCare
> +//
> +// Generic version defined for disassembly:
> +//
> +// t2TBBgen, t2TBHgen: Rn Rm Pred-Imm Pred-CCR
> +static bool DisassembleThumb2TB(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  assert(NumOps >= 2);
> +
> +  // The generic version of TBB/TBH needs a base register.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  // Add the index register.
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  NumOpsAdded = 2;
> +
> +  return true;
> +}
> +
> +static inline bool Thumb2ShiftOpcode(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::t2MOVCClsl: case ARM::t2MOVCClsr:
> +  case ARM::t2MOVCCasr: case ARM::t2MOVCCror:
> +  case ARM::t2LSLri:    case ARM::t2LSRri:
> +  case ARM::t2ASRri:    case ARM::t2RORri:
> +    return true;
> +  }
> +}
> +
> +// A6.3.11 Data-processing (shifted register)
> +//
> +// Two register operands (Rn=0b1111 no 1st operand reg): Rs Rm
> +// Two register operands (Rs=0b1111 no dst operand reg): Rn Rm
> +// Three register operands: Rs Rn Rm
> +// Three register operands: (Rn=0b1111 Conditional Move) Rs Ro(TIED_TO) Rm
> +//
> +// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
> +// register with shift forms: (Rm, ConstantShiftSpecifier).
> +// Constant shift specifier: Imm = (ShOp | ShAmt<<3).
> +//
> +// There are special instructions, like t2MOVsra_flag and t2MOVsrl_flag, which
> +// only require two register operands: Rd, Rm in ARM Reference Manual terms, and
> +// nothing else, because the shift amount is already specified.
> +// Similar case holds for t2MOVrx, t2ADDrr, ..., etc.
> +static bool DisassembleThumb2DPSoReg(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  // Special case handling.
> +  if (Opcode == ARM::t2BR_JT) {
> +    assert(NumOps == 4
> +           && OpInfo[0].RegClass == ARM::GPRRegClassID
> +           && OpInfo[1].RegClass == ARM::GPRRegClassID
> +           && OpInfo[2].RegClass == 0
> +           && OpInfo[3].RegClass == 0);
> +    // Only need to populate the src reg operand.
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +    MI.addOperand(MCOperand::CreateReg(0));
> +    MI.addOperand(MCOperand::CreateImm(0));
> +    MI.addOperand(MCOperand::CreateImm(0));
> +    NumOpsAdded = 4;
> +    return true;
> +  }
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2
> +         && OpInfo[0].RegClass == ARM::GPRRegClassID
> +         && OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  bool ThreeReg = (NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID);
> +  bool NoDstReg = (decodeRs(insn) == 0xF);
> +
> +  // Build the register operands, followed by the constant shift specifier.
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(ARM::GPRRegClassID,
> +                                  NoDstReg ? decodeRn(insn) : decodeRs(insn))));
> +  ++OpIdx;
> +
> +  if (ThreeReg) {
> +    int Idx;
> +    if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
> +      // Process tied_to operand constraint.
> +      MI.addOperand(MI.getOperand(Idx));
> +    } else {
> +      assert(!NoDstReg);
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         decodeRn(insn))));
> +    }
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  ++OpIdx;
> +
> +  if (NumOps == OpIdx)
> +    return true;
> +
> +  if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
> +      && !OpInfo[OpIdx].isOptionalDef()) {
> +
> +    if (Thumb2ShiftOpcode(Opcode))
> +      MI.addOperand(MCOperand::CreateImm(getShiftAmtBits(insn)));
> +    else {
> +      // Build the constant shift specifier operand.
> +      unsigned bits2 = getShiftTypeBits(insn);
> +      unsigned imm5 = getShiftAmtBits(insn);
> +      ARM_AM::ShiftOpc ShOp = ARM_AM::no_shift;
> +      unsigned ShAmt = decodeImmShift(bits2, imm5, ShOp);
> +
> +      // PKHBT/PKHTB are special in that we need the decodeImmShift() call to
> +      // decode the shift amount from raw imm5 and bits2, but we DO NOT need
> +      // to encode the ShOp, as it's in the asm string already.
> +      if (Opcode == ARM::t2PKHBT || Opcode == ARM::t2PKHTB)
> +        MI.addOperand(MCOperand::CreateImm(ShAmt));
> +      else
> +        MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShAmt)));
> +    }
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// A6.3.1 Data-processing (modified immediate)
> +//
> +// Two register operands: Rs Rn ModImm
> +// One register operands (Rs=0b1111 no explicit dest reg): Rn ModImm
> +// One register operands (Rn=0b1111 no explicit src reg): Rs ModImm - {t2MOVi, t2MVNi}
> +//
> +// ModImm = ThumbExpandImm(i:imm3:imm8)
> +static bool DisassembleThumb2DPModImm(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID);
> +
> +  bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID);
> +  bool NoDstReg = (decodeRs(insn) == 0xF);
> +
> +  // Build the register operands, followed by the modified immediate.
> +
> +  MI.addOperand(MCOperand::CreateReg(
> +                  getRegisterEnum(ARM::GPRRegClassID,
> +                                  NoDstReg ? decodeRn(insn) : decodeRs(insn))));
> +  ++OpIdx;
> +
> +  if (TwoReg) {
> +    assert(!NoDstReg);
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  // The modified immediate operand should come next.
> +  assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 &&
> +         !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef());
> +
> +  // i:imm3:imm8
> +  // A6.3.2 Modified immediate constants in Thumb instructions
> +  unsigned imm12 = getIImm3Imm8(insn);
> +  MI.addOperand(MCOperand::CreateImm(ThumbExpandImm(imm12)));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +static inline bool Thumb2SaturateOpcode(unsigned Opcode) {
> +  switch (Opcode) {
> +  case ARM::t2SSATlsl: case ARM::t2SSATasr: case ARM::t2SSAT16:
> +  case ARM::t2USATlsl: case ARM::t2USATasr: case ARM::t2USAT16:
> +    return true;
> +  default:
> +    return false;
> +  }
> +}
> +
> +static inline unsigned decodeThumb2SaturatePos(unsigned Opcode, uint32_t insn) {
> +  switch (Opcode) {
> +  case ARM::t2SSATlsl:
> +  case ARM::t2SSATasr:
> +    return slice(insn, 4, 0) + 1;
> +  case ARM::t2SSAT16:
> +    return slice(insn, 3, 0) + 1;
> +  case ARM::t2USATlsl:
> +  case ARM::t2USATasr:
> +    return slice(insn, 4, 0);
> +  case ARM::t2USAT16:
> +    return slice(insn, 3, 0);
> +  default:
> +    llvm_unreachable("Invalid opcode passed in");
> +    return 0;
> +  }
> +}
> +
> +// A6.3.3 Data-processing (plain binary immediate)
> +//
> +// o t2ADDri12, t2SUBri12: Rs Rn imm12
> +// o t2LEApcrel (ADR): Rs imm12
> +// o t2BFC (BFC): Rs Ro(TIED_TO) bf_inv_mask_imm
> +// o t2BFI (BFI) (Currently not defined in LLVM as of Jan-07-2010)
> +// o t2MOVi16: Rs imm16
> +// o t2MOVTi16: Rs imm16
> +// o t2SBFX (SBFX): Rs Rn lsb width
> +// o t2UBFX (UBFX): Rs Rn lsb width
> +// o t2BFI (BFI): Rs Rn lsb width
> +//
> +// [Signed|Unsigned] Saturate [16]
> +//
> +// o t2SSAT[lsl|asr], t2USAT[lsl|asr]: Rs sat_pos Rn shamt
> +// o t2SSAT16, t2USAT16: Rs sat_pos Rn
> +static bool DisassembleThumb2DPBinImm(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID);
> +
> +  bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  // Build the register operand(s), followed by the immediate(s).
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRs(insn))));
> +  ++OpIdx;
> +
> +  // t2SSAT/t2SSAT16/t2USAT/t2USAT16 has imm operand after Rd.
> +  if (Thumb2SaturateOpcode(Opcode)) {
> +    MI.addOperand(MCOperand::CreateImm(decodeThumb2SaturatePos(Opcode, insn)));
> +
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +
> +    if (Opcode == ARM::t2SSAT16 || Opcode == ARM::t2USAT16) {
> +      OpIdx += 2;
> +      return true;
> +    }
> +
> +    // For SSAT operand reg (Rn) has been disassembled above.
> +    // Now disassemble the shift amount.
> +
> +    // Inst{14-12:7-6} encodes the imm5 shift amount.
> +    unsigned ShAmt = slice(insn, 14, 12) << 2 | slice(insn, 7, 6);
> +
> +    MI.addOperand(MCOperand::CreateImm(ShAmt));
> +
> +    OpIdx += 3;
> +    return true;
> +  }
> +
> +  if (TwoReg) {
> +    assert(NumOps >= 3);
> +    int Idx;
> +    if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
> +      // Process tied_to operand constraint.
> +      MI.addOperand(MI.getOperand(Idx));
> +    } else {
> +      // Add src reg operand.
> +      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                         decodeRn(insn))));
> +    }
> +    ++OpIdx;
> +  }
> +
> +  assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
> +         && !OpInfo[OpIdx].isOptionalDef());
> +
> +  // Pre-increment OpIdx.
> +  ++OpIdx;
> +
> +  if (Opcode == ARM::t2ADDri12 || Opcode == ARM::t2SUBri12
> +      || Opcode == ARM::t2LEApcrel)
> +    MI.addOperand(MCOperand::CreateImm(getIImm3Imm8(insn)));
> +  else if (Opcode == ARM::t2MOVi16 || Opcode == ARM::t2MOVTi16)
> +    MI.addOperand(MCOperand::CreateImm(getImm16(insn)));
> +  else if (Opcode == ARM::t2BFC)
> +    MI.addOperand(MCOperand::CreateImm(getBitfieldInvMask(insn)));
> +  else {
> +    // Handle the case of: lsb width
> +    assert(Opcode == ARM::t2SBFX || Opcode == ARM::t2UBFX ||
> +           Opcode == ARM::t2BFI);
> +    MI.addOperand(MCOperand::CreateImm(getLsb(insn)));
> +    if (Opcode == ARM::t2BFI) {
> +      assert(getMsb(insn) >= getLsb(insn));
> +      MI.addOperand(MCOperand::CreateImm(getMsb(insn) - getLsb(insn) + 1));
> +    } else
> +      MI.addOperand(MCOperand::CreateImm(getWidthMinus1(insn) + 1));
> +
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// A6.3.4 Table A6-15 Miscellaneous control instructions
> +// A8.6.41 DMB
> +// A8.6.42 DSB
> +// A8.6.49 ISB
> +static inline bool t2MiscCtrlInstr(uint32_t insn) {
> +  if (slice(insn, 31, 20) == 0xf3b && slice(insn, 15, 14) == 2 &&
> +      slice(insn, 12, 12) == 0)
> +    return true;
> +
> +  return false;
> +}
> +
> +// A6.3.4 Branches and miscellaneous control
> +//
> +// A8.6.16 B
> +// Branches: t2B, t2Bcc -> imm operand
> +//
> +// Branches: t2TPsoft -> no operand
> +//
> +// A8.6.23 BL, BLX (immediate)
> +// Branches (defined in ARMInstrThumb.td): tBLr9, tBLXi_r9 -> imm operand
> +//
> +// A8.6.26
> +// t2BXJ -> Rn
> +//
> +// Miscellaneous control: t2Int_MemBarrierV7 (and its t2DMB variants),
> +// t2Int_SyncBarrierV7 (and its t2DSB varianst), t2ISBsy, t2CLREX
> +//   -> no operand (except pred-imm pred-ccr for CLREX, memory barrier variants)
> +//
> +// Hint: t2NOP, t2YIELD, t2WFE, t2WFI, t2SEV
> +//   -> no operand (except pred-imm pred-ccr)
> +//
> +// t2DBG -> imm4 = Inst{3-0}
> +//
> +// t2MRS/t2MRSsys -> Rs
> +// t2MSR/t2MSRsys -> Rn mask=Inst{11-8}
> +// t2SMC -> imm4 = Inst{19-16}
> +static bool DisassembleThumb2BrMiscCtrl(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  if (NumOps == 0)
> +    return true;
> +
> +  if (t2MiscCtrlInstr(insn))
> +    return true;
> +
> +  switch (Opcode) {
> +  case ARM::t2CLREX:
> +  case ARM::t2NOP:
> +  case ARM::t2YIELD:
> +  case ARM::t2WFE:
> +  case ARM::t2WFI:
> +  case ARM::t2SEV:
> +    return true;
> +  default:
> +    break;
> +  }
> +
> +  // CPS has a singleton $opt operand that contains the following information:
> +  // opt{4-0} = mode from Inst{4-0}
> +  // opt{5} = changemode from Inst{8}
> +  // opt{8-6} = AIF from Inst{7-5}
> +  // opt{10-9} = imod from Inst{10-9} with 0b10 as enable and 0b11 as disable
> +  if (Opcode == ARM::t2CPS) {
> +    unsigned Option = slice(insn, 4, 0) | slice(insn, 8, 8) << 5 |
> +      slice(insn, 7, 5) << 6 | slice(insn, 10, 9) << 9;
> +    MI.addOperand(MCOperand::CreateImm(Option));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  // DBG has its option specified in Inst{3-0}.
> +  if (Opcode == ARM::t2DBG) {
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  // MRS and MRSsys take one GPR reg Rs.
> +  if (Opcode == ARM::t2MRS || Opcode == ARM::t2MRSsys) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRs(insn))));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +  // BXJ takes one GPR reg Rn.
> +  if (Opcode == ARM::t2BXJ) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +  // MSR and MSRsys take one GPR reg Rn, followed by the mask.
> +  if (Opcode == ARM::t2MSR || Opcode == ARM::t2MSRsys || Opcode == ARM::t2BXJ) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8)));
> +    NumOpsAdded = 2;
> +    return true;
> +  }
> +  // SMC take imm4.
> +  if (Opcode == ARM::t2SMC) {
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
> +    NumOpsAdded = 1;
> +    return true;
> +  }
> +
> +  // Add the imm operand.
> +  int Offset = 0;
> +
> +  switch (Opcode) {
> +  default:
> +    assert(0 && "Unreachable code");
> +  case ARM::t2B:
> +    Offset = decodeImm32_B_EncodingT4(insn);
> +    break;
> +  case ARM::t2Bcc:
> +    Offset = decodeImm32_B_EncodingT3(insn);
> +    break;
> +  case ARM::tBLr9:
> +    Offset = decodeImm32_BL(insn);
> +    break;
> +  case ARM::tBLXi_r9:
> +    Offset = decodeImm32_BLX(insn);
> +    break;
> +  }
> +  // When executing a Thumb instruction, PC reads as the address of the current
> +  // instruction plus 4.  The assembler subtracts 4 from the difference between
> +  // the branch instruction and the target address, disassembler has to add 4 to
> +  // to compensate.
> +  MI.addOperand(MCOperand::CreateImm(Offset + 4));
> +
> +  NumOpsAdded = 1;
> +
> +  return true;
> +}
> +
> +static inline bool Thumb2PreloadOpcode(unsigned Opcode) {
> +  switch (Opcode) {
> +  default:
> +    return false;
> +  case ARM::t2PLDi12:   case ARM::t2PLDi8:   case ARM::t2PLDpci:
> +  case ARM::t2PLDr:     case ARM::t2PLDs:
> +  case ARM::t2PLDWi12:  case ARM::t2PLDWi8:  case ARM::t2PLDWpci:
> +  case ARM::t2PLDWr:    case ARM::t2PLDWs:
> +  case ARM::t2PLIi12:   case ARM::t2PLIi8:   case ARM::t2PLIpci:
> +  case ARM::t2PLIr:     case ARM::t2PLIs:
> +    return true;
> +  }
> +}
> +
> +static bool DisassembleThumb2PreLoad(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  // Preload Data/Instruction requires either 2 or 3 operands.
> +  // t2PLDi12, t2PLDi8, t2PLDpci: Rn [+/-]imm12/imm8
> +  // t2PLDr:                      Rn Rm
> +  // t2PLDs:                      Rn Rm imm2=Inst{5-4}
> +  // Same pattern applies for t2PLDW* and t2PLI*.
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID);
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +  ++OpIdx;
> +
> +  if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRm(insn))));
> +  } else {
> +    assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
> +           && !OpInfo[OpIdx].isOptionalDef());
> +    int Offset = 0;
> +    if (Opcode == ARM::t2PLDpci || Opcode == ARM::t2PLDWpci ||
> +             Opcode == ARM::t2PLIpci) {
> +      bool Negative = slice(insn, 23, 23) == 0;
> +      unsigned Imm12 = getImm12(insn);
> +      Offset = Negative ? -1 - Imm12 : 1 * Imm12;      
> +    } else if (Opcode == ARM::t2PLDi8 || Opcode == ARM::t2PLDWi8 ||
> +               Opcode == ARM::t2PLIi8) {
> +      // A8.6.117 Encoding T2: add = FALSE
> +      unsigned Imm8 = getImm8(insn);
> +      Offset = -1 - Imm8;
> +    } else // The i12 forms.  See, for example, A8.6.117 Encoding T1.
> +      Offset = decodeImm12(insn);
> +    MI.addOperand(MCOperand::CreateImm(Offset));
> +  }
> +  ++OpIdx;
> +
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 &&
> +      !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +    // Fills in the shift amount for t2PLDs, t2PLDWs, t2PLIs.
> +    MI.addOperand(MCOperand::CreateImm(slice(insn, 5, 4)));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// A8.6.63 LDRB (literal)
> +// A8.6.79 LDRSB (literal)
> +// A8.6.75 LDRH (literal)
> +// A8.6.83 LDRSH (literal)
> +// A8.6.59 LDR (literal)
> +//
> +// These instrs calculate an address from the PC value and an immediate offset.
> +// Rd Rn=PC (+/-)imm12 (+ if Inst{23} == 0b1)
> +static bool DisassembleThumb2Ldpci(MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 2 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[1].RegClass == 0);
> +
> +  // Build the register operand, followed by the (+/-)imm12 immediate.
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRd(insn))));
> +
> +  MI.addOperand(MCOperand::CreateImm(decodeImm12(insn)));
> +
> +  NumOpsAdded = 2;
> +
> +  return true;
> +}
> +
> +// A6.3.10 Store single data item
> +// A6.3.9 Load byte, memory hints
> +// A6.3.8 Load halfword, memory hints
> +// A6.3.7 Load word
> +//
> +// For example,
> +//
> +// t2LDRi12:   Rd Rn (+)imm12
> +// t2LDRi8:    Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1)
> +// t2LDRs:     Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg)
> +// t2LDR_POST: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
> +// t2LDR_PRE:  Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
> +//
> +// t2STRi12:   Rd Rn (+)imm12
> +// t2STRi8:    Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1)
> +// t2STRs:     Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg)
> +// t2STR_POST: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
> +// t2STR_PRE:  Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
> +//
> +// Note that for indexed modes, the Rn(TIED_TO) operand needs to be populated
> +// correctly, as LLVM AsmPrinter depends on it.  For indexed stores, the first
> +// operand is Rn; for all the other instructions, Rd is the first operand.
> +//
> +// Delegates to DisassembleThumb2PreLoad() for preload data/instruction.
> +// Delegates to DisassembleThumb2Ldpci() for load * literal operations.
> +static bool DisassembleThumb2LdSt(bool Load, MCInst &MI, unsigned Opcode,
> +    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  unsigned Rn = decodeRn(insn);
> +
> +  if (Thumb2PreloadOpcode(Opcode))
> +    return DisassembleThumb2PreLoad(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  // See, for example, A6.3.7 Load word: Table A6-18 Load word.
> +  if (Load && Rn == 15)
> +    return DisassembleThumb2Ldpci(MI, Opcode, insn, NumOps, NumOpsAdded);
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  bool ThreeReg = (OpInfo[2].RegClass == ARM::GPRRegClassID);
> +  bool TIED_TO = ThreeReg && TID.getOperandConstraint(2, TOI::TIED_TO) != -1;
> +  bool Imm12 = !ThreeReg && slice(insn, 23, 23) == 1; // ARMInstrThumb2.td
> +
> +  // Build the register operands, followed by the immediate.
> +  unsigned R0, R1, R2 = 0;
> +  unsigned Rd = decodeRd(insn);
> +  int Imm = 0;
> +
> +  if (!Load && TIED_TO) {
> +    R0 = Rn;
> +    R1 = Rd;
> +  } else {
> +    R0 = Rd;
> +    R1 = Rn;
> +  }
> +  if (ThreeReg) {
> +    if (TIED_TO) {
> +      R2 = Rn;
> +      Imm = decodeImm8(insn);
> +    } else {
> +      R2 = decodeRm(insn);
> +      // See, for example, A8.6.64 LDRB (register).
> +      // And ARMAsmPrinter::printT2AddrModeSoRegOperand().
> +      // LSL is the default shift opc, and LLVM does not expect it to be encoded
> +      // as part of the immediate operand.
> +      // Imm = ARM_AM::getSORegOpc(ARM_AM::lsl, slice(insn, 5, 4));
> +      Imm = slice(insn, 5, 4);
> +    }
> +  } else {
> +    if (Imm12)
> +      Imm = getImm12(insn);
> +    else
> +      Imm = decodeImm8(insn);
> +  }
> +  
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID, R0)));
> +  ++OpIdx;
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID, R1)));
> +  ++OpIdx;
> +
> +  if (ThreeReg) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,R2)));
> +    ++OpIdx;
> +  }
> +
> +  assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
> +         && !OpInfo[OpIdx].isOptionalDef());
> +
> +  MI.addOperand(MCOperand::CreateImm(Imm));
> +  ++OpIdx;
> +
> +  return true;
> +}
> +
> +// A6.3.12 Data-processing (register)
> +//
> +// Two register operands [rotate]:   Rs Rm [rotation(= (rotate:'000'))]
> +// Three register operands only:     Rs Rn Rm
> +// Three register operands [rotate]: Rs Rn Rm [rotation(= (rotate:'000'))]
> +//
> +// Parallel addition and subtraction 32-bit Thumb instructions: Rs Rn Rm
> +//
> +// Miscellaneous operations: Rs [Rn] Rm
> +static bool DisassembleThumb2DPReg(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetInstrDesc &TID = ARMInsts[Opcode];
> +  const TargetOperandInfo *OpInfo = TID.OpInfo;
> +  unsigned &OpIdx = NumOpsAdded;
> +
> +  OpIdx = 0;
> +
> +  assert(NumOps >= 2 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID);
> +
> +  // Build the register operands, followed by the optional rotation amount.
> +
> +  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRs(insn))));
> +  ++OpIdx;
> +
> +  if (ThreeReg) {
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRn(insn))));
> +    ++OpIdx;
> +  }
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +  ++OpIdx;
> +
> +  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
> +      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
> +    // Add the rotation amount immediate.
> +    MI.addOperand(MCOperand::CreateImm(decodeRotate(insn)));
> +    ++OpIdx;
> +  }
> +
> +  return true;
> +}
> +
> +// A6.3.16 Multiply, multiply accumulate, and absolute difference
> +//
> +// t2MLA, t2MLS, t2SMMLA, t2SMMLS: Rs Rn Rm Ra=Inst{15-12}
> +// t2MUL, t2SMMUL:                 Rs Rn Rm
> +// t2SMLA[BB|BT|TB|TT|WB|WT]:      Rs Rn Rm Ra=Inst{15-12}
> +// t2SMUL[BB|BT|TB|TT|WB|WT]:      Rs Rn Rm
> +//
> +// Dual halfword multiply: t2SMUAD[X], t2SMUSD[X], t2SMLAD[X], t2SMLSD[X]:
> +//   Rs Rn Rm Ra=Inst{15-12}
> +//
> +// Unsigned Sum of Absolute Differences [and Accumulate]
> +//    Rs Rn Rm [Ra=Inst{15-12}]
> +static bool DisassembleThumb2Mul(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[2].RegClass == ARM::GPRRegClassID);
> +
> +  // Build the register operands.
> +
> +  bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID;
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRs(insn))));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +
> +  if (FourReg)
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +
> +  NumOpsAdded = FourReg ? 4 : 3;
> +
> +  return true;
> +}
> +
> +// A6.3.17 Long multiply, long multiply accumulate, and divide
> +//
> +// t2SMULL, t2UMULL, t2SMLAL, t2UMLAL, t2UMAAL: RdLo RdHi Rn Rm
> +// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
> +//
> +// Halfword multiple accumulate long: t2SMLAL<x><y>: RdLo RdHi Rn Rm
> +// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
> +//
> +// Dual halfword multiple: t2SMLALD[X], t2SMLSLD[X]: RdLo RdHi Rn Rm
> +// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
> +//
> +// Signed/Unsigned divide: t2SDIV, t2UDIV: Rs Rn Rm
> +static bool DisassembleThumb2LongMul(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
> +
> +  assert(NumOps >= 3 &&
> +         OpInfo[0].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[1].RegClass == ARM::GPRRegClassID &&
> +         OpInfo[2].RegClass == ARM::GPRRegClassID);
> +
> +  bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID;
> +
> +  // Build the register operands.
> +
> +  if (FourReg)
> +    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                       decodeRd(insn))));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRs(insn))));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRn(insn))));
> +
> +  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
> +                                                     decodeRm(insn))));
> +
> +  if (FourReg)
> +    NumOpsAdded = 4;
> +  else
> +    NumOpsAdded = 3;
> +
> +  return true;
> +}
> +
> +// See A6.3 32-bit Thumb instruction encoding for instruction classes
> +// corresponding to (op1, op2, op).
> +//
> +// Table A6-9 32-bit Thumb instruction encoding
> +// op1	op2		op	Instruction class, see
> +// ---	-------	--	------------------------------------------------------------
> +// 01	00xx0xx	-	Load/store multiple on page A6-23
> +// 		00xx1xx	-	Load/store dual, load/store exclusive, table branch on page A6-24
> +// 		01xxxxx	-	Data-processing (shifted register) on page A6-31
> +// 		1xxxxxx	-	Coprocessor instructions on page A6-40
> +// 10	x0xxxxx	0	Data-processing (modified immediate) on page A6-15
> +// 		x1xxxxx	0	Data-processing (plain binary immediate) on page A6-19
> +// 		-		1	Branches and miscellaneous control on page A6-20
> +// 11	000xxx0	-	Store single data item on page A6-30
> +// 		001xxx0	-	Advanced SIMD element or structure load/store instructions on page A7-27
> +// 		00xx001 -	Load byte, memory hints on page A6-28
> +// 		00xx011	-	Load halfword, memory hints on page A6-26
> +// 		00xx101	-	Load word on page A6-25
> +// 		00xx111	-	UNDEFINED
> +// 		010xxxx	-	Data-processing (register) on page A6-33
> +// 		0110xxx	-	Multiply, multiply accumulate, and absolute difference on page A6-38
> +// 		0111xxx	-	Long multiply, long multiply accumulate, and divide on page A6-39
> +// 		1xxxxxx	-	Coprocessor instructions on page A6-40
> +//
> +static bool DisassembleThumb2(uint16_t op1, uint16_t op2, uint16_t op,
> +    MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  switch (op1) {
> +  case 1:
> +    if (slice(op2, 6, 5) == 0) {
> +      if (slice(op2, 2, 2) == 0) {
> +        // Load/store multiple.
> +        return DisassembleThumb2LdStMul(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +
> +      // Load/store dual, load/store exclusive, table branch, otherwise.
> +      assert(slice(op2, 2, 2) == 1);
> +      if ((ARM::t2LDREX <= Opcode && Opcode <= ARM::t2LDREXH) ||
> +          (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH)) {
> +        // Load/store exclusive.
> +        return DisassembleThumb2LdStEx(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +      if (Opcode == ARM::t2LDRDi8 ||
> +          Opcode == ARM::t2LDRD_PRE || Opcode == ARM::t2LDRD_POST ||
> +          Opcode == ARM::t2STRDi8 ||
> +          Opcode == ARM::t2STRD_PRE || Opcode == ARM::t2STRD_POST) {
> +        // Load/store dual.
> +        return DisassembleThumb2LdStDual(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +      if (Opcode == ARM::t2TBBgen || Opcode == ARM::t2TBHgen) {
> +        // Table branch.
> +        return DisassembleThumb2TB(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +    } else if (slice(op2, 6, 5) == 1) {
> +      // Data-processing (shifted register).
> +      return DisassembleThumb2DPSoReg(MI, Opcode, insn, NumOps, NumOpsAdded);
> +    }
> +
> +    // FIXME: A6.3.18 Coprocessor instructions
> +    // But see ThumbDisassembler::getInstruction().
> +
> +    break;
> +  case 2:
> +    if (op == 0) {
> +      if (slice(op2, 5, 5) == 0) {
> +        // Data-processing (modified immediate)
> +        return DisassembleThumb2DPModImm(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      } else {
> +        // Data-processing (plain binary immediate)
> +        return DisassembleThumb2DPBinImm(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +    } else {
> +      // Branches and miscellaneous control on page A6-20.
> +      return DisassembleThumb2BrMiscCtrl(MI, Opcode, insn, NumOps, NumOpsAdded);
> +    }
> +
> +    break;
> +  case 3:
> +    switch (slice(op2, 6, 5)) {
> +    case 0:
> +      // Load/store instructions...
> +      if (slice(op2, 0, 0) == 0) {
> +        if (slice(op2, 4, 4) == 0) {
> +          // Store single data item on page A6-30
> +          return DisassembleThumb2LdSt(false, MI,Opcode,insn,NumOps,NumOpsAdded);
> +        } else {
> +          // FIXME: Advanced SIMD element or structure load/store instructions.
> +          // But see ThumbDisassembler::getInstruction().
> +          ;
> +        }
> +      } else {
> +        // Table A6-9 32-bit Thumb instruction encoding: Load byte|halfword|word
> +        return DisassembleThumb2LdSt(true, MI,Opcode,insn,NumOps,NumOpsAdded);
> +      }
> +      break;
> +    case 1:
> +      if (slice(op2, 4, 4) == 0) {
> +        // A6.3.12 Data-processing (register)
> +        return DisassembleThumb2DPReg(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      } else if (slice(op2, 3, 3) == 0) {
> +        // A6.3.16 Multiply, multiply accumulate, and absolute difference
> +        return DisassembleThumb2Mul(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      } else {
> +        // A6.3.17 Long multiply, long multiply accumulate, and divide
> +        return DisassembleThumb2LongMul(MI, Opcode, insn, NumOps, NumOpsAdded);
> +      }
> +      break;
> +    default:
> +      // FIXME: A6.3.18 Coprocessor instructions
> +      // But see ThumbDisassembler::getInstruction().
> +      ;
> +      break;
> +    }
> +
> +    break;
> +  default:
> +    assert(0 && "Encoding error for Thumb2 instruction!");
> +    break;
> +  }
> +
> +  return false;
> +}
> +
> +static bool DisassembleThumbFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
> +    unsigned short NumOps, unsigned &NumOpsAdded) {
> +
> +  uint16_t HalfWord = slice(insn, 31, 16);
> +
> +  if (HalfWord == 0) {
> +    // A6.2 16-bit Thumb instruction encoding
> +    // op = bits[15:10]
> +    uint16_t op = slice(insn, 15, 10);
> +    return DisassembleThumb1(op, MI, Opcode, insn, NumOps, NumOpsAdded);
> +  }
> +
> +  unsigned bits15_11 = slice(HalfWord, 15, 11);
> +
> +  // A6.1 Thumb instruction set encoding
> +  assert((bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) &&
> +         "Bits [15:11] of first halfword of a Thumb2 instruction out of range");
> +
> +  // A6.3 32-bit Thumb instruction encoding
> +  
> +  uint16_t op1 = slice(HalfWord, 12, 11);
> +  uint16_t op2 = slice(HalfWord, 10, 4);
> +  uint16_t op = slice(insn, 15, 15);
> +
> +  return DisassembleThumb2(op1, op2, op, MI, Opcode, insn, NumOps, NumOpsAdded);
> +}
> 
> Modified: llvm/trunk/lib/Target/ARM/Makefile
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Makefile?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Makefile (original)
> +++ llvm/trunk/lib/Target/ARM/Makefile Tue Mar 16 11:36:54 2010
> @@ -16,8 +16,9 @@
>                 ARMGenRegisterInfo.inc ARMGenInstrNames.inc \
>                 ARMGenInstrInfo.inc ARMGenAsmWriter.inc \
>                 ARMGenDAGISel.inc ARMGenSubtarget.inc \
> -                ARMGenCodeEmitter.inc ARMGenCallingConv.inc
> +                ARMGenCodeEmitter.inc ARMGenCallingConv.inc \
> +		ARMGenDisassemblerTables.inc
> 
> -DIRS = AsmPrinter AsmParser TargetInfo
> +DIRS = AsmPrinter AsmParser Disassembler TargetInfo
> 
> include $(LEVEL)/Makefile.common
> 
> Modified: llvm/trunk/lib/Target/ARM/Thumb2ITBlockPass.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/ARM/Thumb2ITBlockPass.cpp?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/ARM/Thumb2ITBlockPass.cpp (original)
> +++ llvm/trunk/lib/Target/ARM/Thumb2ITBlockPass.cpp Tue Mar 16 11:36:54 2010
> @@ -78,14 +78,16 @@
>       DebugLoc ndl = NMI->getDebugLoc();
>       unsigned NPredReg = 0;
>       ARMCC::CondCodes NCC = getPredicate(NMI, NPredReg);
> -      if (NCC == OCC) {
> -        Mask |= (1 << Pos);
> -      } else if (NCC != CC)
> +      if (NCC == CC || NCC == OCC)
> +        Mask |= (NCC & 1) << Pos;
> +      else
>         break;
>       --Pos;
>       ++MBBI;
>     }
>     Mask |= (1 << Pos);
> +    // Tag along (firstcond[0] << 4) with the mask.
> +    Mask |= (CC & 1) << 4;
>     MIB.addImm(Mask);
>     Modified = true;
>     ++NumITs;
> 
> Modified: llvm/trunk/test/CodeGen/ARM/2009-10-27-double-align.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/2009-10-27-double-align.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/2009-10-27-double-align.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/2009-10-27-double-align.ll Tue Mar 16 11:36:54 2010
> @@ -4,8 +4,8 @@
> 
> define arm_aapcscc void @g() {
> entry:
> -;CHECK: [sp, #+8]
> -;CHECK: [sp, #+12]
> +;CHECK: [sp, #8]
> +;CHECK: [sp, #12]
> ;CHECK: [sp]
>         tail call arm_aapcscc  void (i8*, ...)* @f(i8* getelementptr ([1 x i8]* @.str, i32 0, i32 0), i32 1, double 2.000000e+00, i32 3, double 4.000000e+00)
>         ret void
> 
> Modified: llvm/trunk/test/CodeGen/ARM/2009-10-30.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/2009-10-30.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/2009-10-30.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/2009-10-30.ll Tue Mar 16 11:36:54 2010
> @@ -6,7 +6,7 @@
> entry:
> ;CHECK: sub	sp, sp, #4
> ;CHECK: add	r{{[0-9]+}}, sp, #8
> -;CHECK: str	r{{[0-9]+}}, [sp], #+4
> +;CHECK: str	r{{[0-9]+}}, [sp], #4
> ;CHECK: bx	lr
> 	%ap = alloca i8*, align 4
> 	%ap1 = bitcast i8** %ap to i8*
> 
> Modified: llvm/trunk/test/CodeGen/ARM/arm-negative-stride.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/arm-negative-stride.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/arm-negative-stride.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/arm-negative-stride.ll Tue Mar 16 11:36:54 2010
> @@ -5,7 +5,7 @@
> 
> define void @test(i32* %P, i32 %A, i32 %i) nounwind {
> entry:
> -; CHECK: str r1, [{{r.*}}, +{{r.*}}, lsl #2]
> +; CHECK: str r1, [{{r.*}}, {{r.*}}, lsl #2]
>         icmp eq i32 %i, 0               ; <i1>:0 [#uses=1]
>         br i1 %0, label %return, label %bb
> 
> 
> Modified: llvm/trunk/test/CodeGen/ARM/globals.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/globals.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/globals.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/globals.ll Tue Mar 16 11:36:54 2010
> @@ -41,7 +41,7 @@
> ; DarwinPIC: _test1:
> ; DarwinPIC: 	ldr r0, LCPI1_0
> ; DarwinPIC: LPC1_0:
> -; DarwinPIC:    ldr r0, [pc, +r0]
> +; DarwinPIC:    ldr r0, [pc, r0]
> ; DarwinPIC:    ldr r0, [r0]
> ; DarwinPIC:    bx lr
> 
> @@ -63,7 +63,7 @@
> 	
> ; LinuxPIC: .LPC1_0:
> ; LinuxPIC: 	add r0, pc, r0
> -; LinuxPIC: 	ldr r0, [r1, +r0]
> +; LinuxPIC: 	ldr r0, [r1, r0]
> ; LinuxPIC: 	ldr r0, [r0]
> ; LinuxPIC: 	bx lr
> 
> 
> Modified: llvm/trunk/test/CodeGen/ARM/ldrd.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/ldrd.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/ldrd.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/ldrd.ll Tue Mar 16 11:36:54 2010
> @@ -10,10 +10,10 @@
> ;V6:   ldrd r2, [r2]
> 
> ;V5:   ldr r3, [r2]
> -;V5:   ldr r2, [r2, #+4]
> +;V5:   ldr r2, [r2, #4]
> 
> ;EABI: ldr r3, [r2]
> -;EABI: ldr r2, [r2, #+4]
> +;EABI: ldr r2, [r2, #4]
> 
> 	%0 = load i64** @b, align 4
> 	%1 = load i64* %0, align 4
> 
> Modified: llvm/trunk/test/CodeGen/ARM/str_pre-2.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/str_pre-2.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/str_pre-2.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/str_pre-2.ll Tue Mar 16 11:36:54 2010
> @@ -1,5 +1,5 @@
> ; RUN: llc < %s -mtriple=arm-linux-gnu | grep {str.*\\!}
> -; RUN: llc < %s -mtriple=arm-linux-gnu | grep {ldr.*\\\[.*\], #+4}
> +; RUN: llc < %s -mtriple=arm-linux-gnu | grep {ldr.*\\\[.*\], #4}
> 
> @b = external global i64*
> 
> 
> Modified: llvm/trunk/test/CodeGen/ARM/tls2.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/ARM/tls2.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/ARM/tls2.ll (original)
> +++ llvm/trunk/test/CodeGen/ARM/tls2.ll Tue Mar 16 11:36:54 2010
> @@ -7,7 +7,7 @@
> 
> define i32 @f() {
> ; CHECK-NONPIC: f:
> -; CHECK-NONPIC: ldr {{r.}}, [pc, +{{r.}}]
> +; CHECK-NONPIC: ldr {{r.}}, [pc, {{r.}}]
> ; CHECK-NONPIC: i(gottpoff)
> ; CHECK-PIC: f:
> ; CHECK-PIC: __tls_get_addr
> @@ -18,7 +18,7 @@
> 
> define i32* @g() {
> ; CHECK-NONPIC: g:
> -; CHECK-NONPIC: ldr {{r.}}, [pc, +{{r.}}]
> +; CHECK-NONPIC: ldr {{r.}}, [pc, {{r.}}]
> ; CHECK-NONPIC: i(gottpoff)
> ; CHECK-PIC: g:
> ; CHECK-PIC: __tls_get_addr
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/ldr-str-imm12.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/ldr-str-imm12.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/ldr-str-imm12.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/ldr-str-imm12.ll Tue Mar 16 11:36:54 2010
> @@ -22,7 +22,7 @@
> 
> define arm_apcscc %union.rec* @Manifest(%union.rec* %x, %union.rec* %env, %struct.STYLE* %style, %union.rec** %bthr, %union.rec** %fthr, %union.rec** %target, %union.rec** %crs, i32 %ok, i32 %need_expand, %union.rec** %enclose, i32 %fcr) nounwind {
> entry:
> -; CHECK:       ldr.w	r9, [r7, #+28]
> +; CHECK:       ldr.w	r9, [r7, #28]
>   %xgaps.i = alloca [32 x %union.rec*], align 4   ; <[32 x %union.rec*]*> [#uses=0]
>   %ycomp.i = alloca [32 x %union.rec*], align 4   ; <[32 x %union.rec*]*> [#uses=0]
>   br i1 false, label %bb, label %bb20
> @@ -50,9 +50,9 @@
> bb420:                                            ; preds = %bb20, %bb20
> ; CHECK: bb420
> ; CHECK: str r{{[0-7]}}, [sp]
> -; CHECK: str r{{[0-7]}}, [sp, #+4]
> -; CHECK: str r{{[0-7]}}, [sp, #+8]
> -; CHECK: str{{(.w)?}} r{{[0-9]+}}, [sp, #+24]
> +; CHECK: str r{{[0-7]}}, [sp, #4]
> +; CHECK: str r{{[0-7]}}, [sp, #8]
> +; CHECK: str{{(.w)?}} r{{[0-9]+}}, [sp, #24]
>   store %union.rec* null, %union.rec** @zz_hold, align 4
>   store %union.rec* null, %union.rec** @zz_res, align 4
>   store %union.rec* %x, %union.rec** @zz_hold, align 4
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/thumb2-ldr.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/thumb2-ldr.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/thumb2-ldr.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/thumb2-ldr.ll Tue Mar 16 11:36:54 2010
> @@ -11,7 +11,7 @@
> define i32 @f2(i32* %v) {
> entry:
> ; CHECK: f2:
> -; CHECK: ldr.w r0, [r0, #+4092]
> +; CHECK: ldr.w r0, [r0, #4092]
>         %tmp2 = getelementptr i32* %v, i32 1023
>         %tmp = load i32* %tmp2
>         ret i32 %tmp
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/thumb2-ldrh.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/thumb2-ldrh.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/thumb2-ldrh.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/thumb2-ldrh.ll Tue Mar 16 11:36:54 2010
> @@ -11,7 +11,7 @@
> define i16 @f2(i16* %v) {
> entry:
> ; CHECK: f2:
> -; CHECK: ldrh.w r0, [r0, #+2046]
> +; CHECK: ldrh.w r0, [r0, #2046]
>         %tmp2 = getelementptr i16* %v, i16 1023
>         %tmp = load i16* %tmp2
>         ret i16 %tmp
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/thumb2-str.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/thumb2-str.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/thumb2-str.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/thumb2-str.ll Tue Mar 16 11:36:54 2010
> @@ -9,7 +9,7 @@
> 
> define i32 @f2(i32 %a, i32* %v) {
> ; CHECK: f2:
> -; CHECK: str.w r0, [r1, #+4092]
> +; CHECK: str.w r0, [r1, #4092]
>         %tmp2 = getelementptr i32* %v, i32 1023
>         store i32 %a, i32* %tmp2
>         ret i32 %a
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/thumb2-str_pre.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/thumb2-str_pre.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/thumb2-str_pre.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/thumb2-str_pre.ll Tue Mar 16 11:36:54 2010
> @@ -2,7 +2,7 @@
> 
> define void @test1(i32* %X, i32* %A, i32** %dest) {
> ; CHECK: test1
> -; CHECK: str  r1, [r0, #+16]!
> +; CHECK: str  r1, [r0, #16]!
>         %B = load i32* %A               ; <i32> [#uses=1]
>         %Y = getelementptr i32* %X, i32 4               ; <i32*> [#uses=2]
>         store i32 %B, i32* %Y
> @@ -12,7 +12,7 @@
> 
> define i16* @test2(i16* %X, i32* %A) {
> ; CHECK: test2
> -; CHECK: strh r1, [r0, #+8]!
> +; CHECK: strh r1, [r0, #8]!
>         %B = load i32* %A               ; <i32> [#uses=1]
>         %Y = getelementptr i16* %X, i32 4               ; <i16*> [#uses=2]
>         %tmp = trunc i32 %B to i16              ; <i16> [#uses=1]
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/thumb2-strb.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/thumb2-strb.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/thumb2-strb.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/thumb2-strb.ll Tue Mar 16 11:36:54 2010
> @@ -9,7 +9,7 @@
> 
> define i8 @f2(i8 %a, i8* %v) {
> ; CHECK: f2:
> -; CHECK: strb.w r0, [r1, #+4092]
> +; CHECK: strb.w r0, [r1, #4092]
>         %tmp2 = getelementptr i8* %v, i32 4092
>         store i8 %a, i8* %tmp2
>         ret i8 %a
> 
> Modified: llvm/trunk/test/CodeGen/Thumb2/thumb2-strh.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Thumb2/thumb2-strh.ll?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/test/CodeGen/Thumb2/thumb2-strh.ll (original)
> +++ llvm/trunk/test/CodeGen/Thumb2/thumb2-strh.ll Tue Mar 16 11:36:54 2010
> @@ -9,7 +9,7 @@
> 
> define i16 @f2(i16 %a, i16* %v) {
> ; CHECK: f2:
> -; CHECK: strh.w r0, [r1, #+4092]
> +; CHECK: strh.w r0, [r1, #4092]
>         %tmp2 = getelementptr i16* %v, i32 2046
>         store i16 %a, i16* %tmp2
>         ret i16 %a
> 
> Modified: llvm/trunk/utils/TableGen/DisassemblerEmitter.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/DisassemblerEmitter.cpp?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/utils/TableGen/DisassemblerEmitter.cpp (original)
> +++ llvm/trunk/utils/TableGen/DisassemblerEmitter.cpp Tue Mar 16 11:36:54 2010
> @@ -12,6 +12,8 @@
> #include "Record.h"
> #include "X86DisassemblerTables.h"
> #include "X86RecognizableInstr.h"
> +#include "RISCDisassemblerEmitter.h"
> +
> using namespace llvm;
> using namespace llvm::X86Disassembler;
> 
> @@ -124,6 +126,12 @@
>     return;
>   }
> 
> +  // Fixed-instruction-length targets use a common disassembler.
> +  if (Target.getName() == "ARM") {
> +    RISCDisassemblerEmitter(Records).run(OS);
> +    return;
> +  }  
> +
>   throw TGError(Target.getTargetRecord()->getLoc(),
>                 "Unable to generate disassembler for this target");
> }
> 
> Added: llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.cpp?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.cpp (added)
> +++ llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.cpp Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,1743 @@
> +//===- RISCDisassemblerEmitter.cpp - Disassembler Generator ---------------===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +// FIXME: document
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#define DEBUG_TYPE "risc-disassembler-emitter"
> +
> +#include "RISCDisassemblerEmitter.h"
> +#include "CodeGenTarget.h"
> +#include "Record.h"
> +#include "llvm/ADT/StringExtras.h"
> +#include "llvm/Support/Debug.h"
> +#include "llvm/Support/raw_ostream.h"
> +
> +#include <iomanip>
> +#include <vector>
> +#include <cstdio>
> +#include <map>
> +#include <string>
> +#include <sstream>
> +
> +using namespace llvm;
> +
> +////////////////////////////////////
> +//  Utility classes / structures  //
> +////////////////////////////////////
> +
> +// LLVM coding style
> +#define INDENT_LEVEL 2
> +
> +/// Indenter - A little helper class to keep track of the indentation depth,
> +/// while the instance object is being passed around.
> +class Indenter {
> +public:
> +  Indenter() : depth(0) {}
> +
> +  void push() {
> +    depth += INDENT_LEVEL;
> +  }
> +
> +  void pop() {
> +    if (depth >= INDENT_LEVEL)
> +      depth -= INDENT_LEVEL;
> +  }
> +
> +  // Conversion operator.
> +  operator int () {
> +    return depth;
> +  }
> +private:
> +  uint8_t depth;
> +};
> +
> +/////////////////////////
> +//  Utility functions  //
> +/////////////////////////
> +
> +static uint8_t byteFromBitsInit(BitsInit &init) {
> +  int width = init.getNumBits();
> +
> +  assert(width <= 8 && "Field is too large for uint8_t!");
> +
> +  int index;
> +  uint8_t mask = 0x01;
> +
> +  uint8_t ret = 0;
> +
> +  for (index = 0; index < width; index++) {
> +    if (static_cast<BitInit*>(init.getBit(index))->getValue())
> +      ret |= mask;
> +
> +    mask <<= 1;
> +  }
> +
> +  return ret;
> +}
> +
> +static uint8_t getByteField(const Record &def, const char *str) {
> +  BitsInit *bits = def.getValueAsBitsInit(str);
> +  return byteFromBitsInit(*bits);
> +}
> +
> +static BitsInit &getBitsField(const Record &def, const char *str) {
> +  BitsInit *bits = def.getValueAsBitsInit(str);
> +  return *bits;
> +}
> +
> +/// sameStringExceptEndingChar - Return true if the two strings differ only in
> +/// the ending char.  ("VST4q8a", "VST4q8b", 'a', 'b') as input returns true.
> +static
> +bool sameStringExceptEndingChar(const std::string &LHS, const std::string &RHS,
> +                                char lhc, char rhc) {
> +
> +  if (LHS.length() > 1 && RHS.length() > 1 && LHS.length() == RHS.length()) {
> +    unsigned length = LHS.length();
> +    return LHS.substr(0, length - 1) == RHS.substr(0, length - 1)
> +      && LHS[length - 1] == lhc && RHS[length - 1] == rhc;
> +  }
> +
> +  return false;
> +}
> +
> +/// thumbInstruction - Determine whether we have a Thumb instruction.
> +/// See also ARMInstrFormats.td.
> +static bool thumbInstruction(uint8_t Form) {
> +  return Form == 23;
> +}
> +
> +// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
> +// for a bit value.
> +//
> +// BIT_UNFILTERED is used as the init value for a filter position.  It is used
> +// only for filter processings.
> +typedef enum {
> +  BIT_TRUE,      // '1'
> +  BIT_FALSE,     // '0'
> +  BIT_UNSET,     // '?'
> +  BIT_UNFILTERED // unfiltered
> +} bit_value_t;
> +
> +static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
> +  if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
> +    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
> +
> +  // The bit is uninitialized.
> +  return BIT_UNSET;
> +}
> +
> +static void dumpBits(raw_ostream &o, BitsInit &bits) {
> +  unsigned index;
> +
> +  for (index = bits.getNumBits(); index > 0; index--) {
> +    switch (bitFromBits(bits, index - 1)) {
> +    case BIT_TRUE:
> +      o << "1";
> +      break;
> +    case BIT_FALSE:
> +      o << "0";
> +      break;
> +    case BIT_UNSET:
> +      o << "_";
> +      break;
> +    default:
> +      assert(0 && "unexpected return value from bitFromBits");
> +    }
> +  }
> +}
> +
> +/////////////
> +//  Enums  //
> +/////////////
> +
> +#define ARM_FORMATS                   \
> +  ENTRY(ARM_FORMAT_PSEUDO,         0) \
> +  ENTRY(ARM_FORMAT_MULFRM,         1) \
> +  ENTRY(ARM_FORMAT_BRFRM,          2) \
> +  ENTRY(ARM_FORMAT_BRMISCFRM,      3) \
> +  ENTRY(ARM_FORMAT_DPFRM,          4) \
> +  ENTRY(ARM_FORMAT_DPSOREGFRM,     5) \
> +  ENTRY(ARM_FORMAT_LDFRM,          6) \
> +  ENTRY(ARM_FORMAT_STFRM,          7) \
> +  ENTRY(ARM_FORMAT_LDMISCFRM,      8) \
> +  ENTRY(ARM_FORMAT_STMISCFRM,      9) \
> +  ENTRY(ARM_FORMAT_LDSTMULFRM,    10) \
> +  ENTRY(ARM_FORMAT_ARITHMISCFRM,  11) \
> +  ENTRY(ARM_FORMAT_EXTFRM,        12) \
> +  ENTRY(ARM_FORMAT_VFPUNARYFRM,   13) \
> +  ENTRY(ARM_FORMAT_VFPBINARYFRM,  14) \
> +  ENTRY(ARM_FORMAT_VFPCONV1FRM,   15) \
> +  ENTRY(ARM_FORMAT_VFPCONV2FRM,   16) \
> +  ENTRY(ARM_FORMAT_VFPCONV3FRM,   17) \
> +  ENTRY(ARM_FORMAT_VFPCONV4FRM,   18) \
> +  ENTRY(ARM_FORMAT_VFPCONV5FRM,   19) \
> +  ENTRY(ARM_FORMAT_VFPLDSTFRM,    20) \
> +  ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \
> +  ENTRY(ARM_FORMAT_VFPMISCFRM,    22) \
> +  ENTRY(ARM_FORMAT_THUMBFRM,      23) \
> +  ENTRY(ARM_FORMAT_NEONFRM,       24) \
> +  ENTRY(ARM_FORMAT_NEONGETLNFRM,  25) \
> +  ENTRY(ARM_FORMAT_NEONSETLNFRM,  26) \
> +  ENTRY(ARM_FORMAT_NEONDUPFRM,    27) \
> +  ENTRY(ARM_FORMAT_LDSTEXFRM,     28) \
> +  ENTRY(ARM_FORMAT_MISCFRM,       29) \
> +  ENTRY(ARM_FORMAT_THUMBMISCFRM,  30)
> +
> +// ARM instruction format specifies the encoding used by the instruction.
> +#define ENTRY(n, v) n = v,
> +typedef enum {
> +  ARM_FORMATS
> +  ARM_FORMAT_NA
> +} ARMFormat;
> +#undef ENTRY
> +
> +// Converts enum to const char*.
> +static const char *stringForARMFormat(ARMFormat form) {
> +#define ENTRY(n, v) case n: return #n;
> +  switch(form) {
> +    ARM_FORMATS
> +  case ARM_FORMAT_NA:
> +  default:
> +    return "";
> +  }
> +#undef ENTRY
> +}
> +
> +#define NS_FORMATS                              \
> +  ENTRY(NS_FORMAT_NONE,                     0)  \
> +  ENTRY(NS_FORMAT_VLDSTLane,                1)  \
> +  ENTRY(NS_FORMAT_VLDSTLaneDbl,             2)  \
> +  ENTRY(NS_FORMAT_VLDSTRQ,                  3)  \
> +  ENTRY(NS_FORMAT_NVdImm,                   4)  \
> +  ENTRY(NS_FORMAT_NVdVmImm,                 5)  \
> +  ENTRY(NS_FORMAT_NVdVmImmVCVT,             6)  \
> +  ENTRY(NS_FORMAT_NVdVmImmVDupLane,         7)  \
> +  ENTRY(NS_FORMAT_NVdVmImmVSHLL,            8)  \
> +  ENTRY(NS_FORMAT_NVectorShuffle,           9)  \
> +  ENTRY(NS_FORMAT_NVectorShift,             10) \
> +  ENTRY(NS_FORMAT_NVectorShift2,            11) \
> +  ENTRY(NS_FORMAT_NVdVnVmImm,               12) \
> +  ENTRY(NS_FORMAT_NVdVnVmImmVectorShift,    13) \
> +  ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract,  14) \
> +  ENTRY(NS_FORMAT_NVdVnVmImmMulScalar,      15) \
> +  ENTRY(NS_FORMAT_VTBL,                     16)
> +
> +// NEON instruction sub-format further classify the NEONFrm instruction.
> +#define ENTRY(n, v) n = v,
> +typedef enum {
> +  NS_FORMATS
> +  NS_FORMAT_NA
> +} NSFormat;
> +#undef ENTRY
> +
> +// Converts enum to const char*.
> +static const char *stringForNSFormat(NSFormat form) {
> +#define ENTRY(n, v) case n: return #n;
> +  switch(form) {
> +    NS_FORMATS
> +  case NS_FORMAT_NA:
> +  default:
> +    return "";
> +  }
> +#undef ENTRY
> +}
> +
> +// Enums for the available target names.
> +typedef enum {
> +  TARGET_ARM = 0,
> +  TARGET_THUMB
> +} TARGET_NAME_t;
> +
> +class AbstractFilterChooser {
> +public:
> +  static TARGET_NAME_t TargetName;
> +  static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
> +  virtual ~AbstractFilterChooser() {}
> +  virtual void emitTop(raw_ostream &o, Indenter &i) = 0;
> +  virtual void emitBot(raw_ostream &o, Indenter &i) = 0;
> +};
> +
> +// Define the symbol here.
> +TARGET_NAME_t AbstractFilterChooser::TargetName;
> +
> +template <unsigned tBitWidth>
> +class FilterChooser : public AbstractFilterChooser {
> +protected:
> +  // Representation of the instruction to work on.
> +  typedef bit_value_t insn_t[tBitWidth];
> +
> +  class Filter {
> +  protected:
> +    FilterChooser *Owner; // pointer without ownership
> +    unsigned StartBit; // the starting bit position
> +    unsigned NumBits; // number of bits to filter
> +    bool Mixed; // a mixed region contains both set and unset bits
> +
> +    // Map of well-known segment value to the set of uid's with that value. 
> +    std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
> +
> +    // Set of uid's with non-constant segment values.
> +    std::vector<unsigned> VariableInstructions;
> +
> +    // Map of well-known segment value to its delegate.
> +    std::map<unsigned, FilterChooser> FilterChooserMap;
> +
> +    // Number of instructions which fall under FilteredInstructions category.
> +    unsigned NumFiltered;
> +
> +    // Keeps track of the last opcode in the filtered bucket.
> +    unsigned LastOpcFiltered;
> +
> +    // Number of instructions which fall under VariableInstructions category.
> +    unsigned NumVariable;
> +
> +  public:
> +    unsigned getNumFiltered() { return NumFiltered; }
> +    unsigned getNumVariable() { return NumVariable; }
> +    unsigned getSingletonOpc() {
> +      assert(NumFiltered == 1);
> +      return LastOpcFiltered;
> +    }
> +    FilterChooser &getVariableFC() {
> +      assert(NumFiltered == 1);
> +      assert(FilterChooserMap.size() == 1);
> +      return FilterChooserMap.find(-1)->second;
> +    }
> +
> +    Filter(const Filter &f) :
> +      Owner(f.Owner),
> +      StartBit(f.StartBit),
> +      NumBits(f.NumBits),
> +      Mixed(f.Mixed),
> +      FilteredInstructions(f.FilteredInstructions),
> +      VariableInstructions(f.VariableInstructions),
> +      FilterChooserMap(f.FilterChooserMap),
> +      NumFiltered(f.NumFiltered),
> +      LastOpcFiltered(f.LastOpcFiltered),
> +      NumVariable(f.NumVariable) { }
> +
> +    Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
> +           bool mixed) :
> +      Owner(&owner),
> +      StartBit(startBit),
> +      NumBits(numBits),
> +      Mixed(mixed)
> +    {
> +      assert(StartBit + NumBits - 1 < tBitWidth);
> +
> +      NumFiltered = 0;
> +      LastOpcFiltered = 0;
> +      NumVariable = 0;
> +
> +      for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
> +        insn_t Insn;
> +
> +        // Populates the insn given the uid.
> +        Owner->insnWithID(Insn, Owner->Opcodes[i]);
> +
> +        uint64_t Field;
> +        // Scans the segment for possibly well-specified encoding bits.
> +        bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
> +
> +        if (ok) {
> +          // The encoding bits are well-known.  Lets add the uid of the
> +          // instruction into the bucket keyed off the constant field value.
> +          LastOpcFiltered = Owner->Opcodes[i];
> +          FilteredInstructions[Field].push_back(LastOpcFiltered);
> +          ++NumFiltered;
> +        } else {
> +          // Some of the encoding bit(s) are unspecfied.  This contributes to
> +          // one additional member of "Variable" instructions.
> +          VariableInstructions.push_back(Owner->Opcodes[i]);
> +          ++NumVariable;
> +        }
> +      }
> +
> +      assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
> +             && "Filter returns no instruction categories");
> +    }
> +
> +    // Divides the decoding task into sub tasks and delegates them to the
> +    // inferior FilterChooser's.
> +    //
> +    // A special case arises when there's only one entry in the filtered
> +    // instructions.  In order to unambiguously decode the singleton, we need to
> +    // match the remaining undecoded encoding bits against the singleton.
> +    void recurse() {
> +      std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
> +
> +      bit_value_t BitValueArray[tBitWidth];
> +      // Starts by inheriting our parent filter chooser's filter bit values.
> +      memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
> +
> +      unsigned bitIndex;
> +
> +      if (VariableInstructions.size()) {
> +        // Conservatively marks each segment position as BIT_UNSET.
> +        for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
> +          BitValueArray[StartBit + bitIndex] = BIT_UNSET;
> +
> +        // Delegates to an inferior filter chooser for futher processing on this
> +        // group of instructions whose segment values are variable.
> +        FilterChooserMap.insert(std::pair<unsigned, FilterChooser>(
> +                                  (unsigned)-1,
> +                                  FilterChooser(Owner->AllInstructions,
> +                                                VariableInstructions,
> +                                                BitValueArray,
> +                                                *Owner)
> +                                  ));
> +      }
> +
> +      // No need to recurse for a singleton filtered instruction.
> +      // See also Filter::emit().
> +      if (getNumFiltered() == 1) {
> +        //Owner->SingletonExists(LastOpcFiltered);
> +        assert(FilterChooserMap.size() == 1);
> +        return;
> +      }
> +        
> +      // Otherwise, create sub choosers.
> +      for (mapIterator = FilteredInstructions.begin();
> +           mapIterator != FilteredInstructions.end();
> +           mapIterator++) {
> +
> +        // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
> +        for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
> +          if (mapIterator->first & (1 << bitIndex))
> +            BitValueArray[StartBit + bitIndex] = BIT_TRUE;
> +          else
> +            BitValueArray[StartBit + bitIndex] = BIT_FALSE;
> +        }
> +
> +        // Delegates to an inferior filter chooser for futher processing on this
> +        // category of instructions.
> +        FilterChooserMap.insert(std::pair<unsigned, FilterChooser>(
> +                                  mapIterator->first,
> +                                  FilterChooser(Owner->AllInstructions,
> +                                                mapIterator->second,
> +                                                BitValueArray,
> +                                                *Owner)
> +                                  ));
> +      }
> +    }
> +
> +    // Emit code to decode instructions given a segment or segments of bits.
> +    void emit(raw_ostream &o, Indenter &i) {
> +      o.indent(i) << "// Check Inst{";
> +
> +      if (NumBits > 1)
> +        o << (StartBit + NumBits - 1) << '-';
> +
> +      o << StartBit << "} ...\n";
> +
> +      o.indent(i) << "switch (fieldFromInstruction(insn, "
> +                  << StartBit << ", " << NumBits << ")) {\n";
> +
> +      typename std::map<unsigned, FilterChooser>::iterator filterIterator;
> +
> +      bool DefaultCase = false;
> +      for (filterIterator = FilterChooserMap.begin();
> +           filterIterator != FilterChooserMap.end();
> +           filterIterator++) {
> +
> +        // Field value -1 implies a non-empty set of variable instructions.
> +        // See also recurse().
> +        if (filterIterator->first == (unsigned)-1) {
> +          DefaultCase = true;
> +
> +          o.indent(i) << "default:\n";
> +          o.indent(i) << "  break; // fallthrough\n";
> +
> +          // Closing curly brace for the switch statement.
> +          // This is unconventional because we want the default processing to be
> +          // performed for the fallthrough cases as well, i.e., when the "cases"
> +          // did not prove a decoded instruction.
> +          o.indent(i) << "}\n";
> +
> +        } else {
> +          o.indent(i) << "case " << filterIterator->first << ":\n";
> +        }
> +
> +        // We arrive at a category of instructions with the same segment value.
> +        // Now delegate to the sub filter chooser for further decodings.
> +        // The case may fallthrough, which happens if the remaining well-known
> +        // encoding bits do not match exactly.
> +        if (!DefaultCase) i.push();
> +        {
> +          bool finished = filterIterator->second.emit(o, i);
> +          // For top level default case, there's no need for a break statement.
> +          if (Owner->isTopLevel() && DefaultCase)
> +            break;
> +          if (!finished)
> +            o.indent(i) << "break;\n";
> +        }
> +        if (!DefaultCase) i.pop();
> +      }
> +
> +      // If there is no default case, we still need to supply a closing brace.
> +      if (!DefaultCase) {
> +        // Closing curly brace for the switch statement.
> +        o.indent(i) << "}\n";
> +      }
> +    }
> +
> +    // Returns the number of fanout produced by the filter.  More fanout implies
> +    // the filter distinguishes more categories of instructions.
> +    unsigned usefulness() const {
> +      if (VariableInstructions.size())
> +        return FilteredInstructions.size();
> +      else
> +        return FilteredInstructions.size() + 1;
> +    }
> +  }; // End of inner class Filter
> +
> +  friend class Filter;
> +
> +  // Vector of codegen instructions to choose our filter.
> +  const std::vector<const CodeGenInstruction*> &AllInstructions;
> +
> +  // Vector of uid's for this filter chooser to work on.
> +  const std::vector<unsigned> Opcodes;
> +
> +  // Vector of candidate filters.
> +  std::vector<Filter> Filters;
> +
> +  // Array of bit values passed down from our parent.
> +  // Set to all BIT_UNFILTERED's for Parent == NULL.
> +  bit_value_t FilterBitValues[tBitWidth];
> +
> +  // Links to the FilterChooser above us in the decoding tree.
> +  FilterChooser *Parent;
> +  
> +  // Index of the best filter from Filters.
> +  int BestIndex;
> +
> +public:
> +  FilterChooser(const FilterChooser &FC) :
> +    AbstractFilterChooser(),
> +    AllInstructions(FC.AllInstructions),
> +    Opcodes(FC.Opcodes),
> +    Filters(FC.Filters),
> +    Parent(FC.Parent),
> +    BestIndex(FC.BestIndex)
> +  {
> +    memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
> +  }
> +
> +  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
> +                const std::vector<unsigned> &IDs) :
> +    AllInstructions(Insts),
> +    Opcodes(IDs),
> +    Filters(),
> +    Parent(NULL),
> +    BestIndex(-1)
> +  {
> +    for (unsigned i = 0; i < tBitWidth; ++i)
> +      FilterBitValues[i] = BIT_UNFILTERED;
> +
> +    doFilter();
> +  }
> +
> +  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
> +                const std::vector<unsigned> &IDs,
> +                bit_value_t (&ParentFilterBitValues)[tBitWidth],
> +                FilterChooser &parent) :
> +    AllInstructions(Insts),
> +    Opcodes(IDs),
> +    Filters(),
> +    Parent(&parent),
> +    BestIndex(-1)
> +  {
> +    for (unsigned i = 0; i < tBitWidth; ++i)
> +      FilterBitValues[i] = ParentFilterBitValues[i];
> +
> +    doFilter();
> +  }
> +
> +  // The top level filter chooser has NULL as its parent.
> +  bool isTopLevel() { return Parent == NULL; }
> +
> +  // This provides an opportunity for target specific code emission.
> +  void emitTopHook(raw_ostream &o, Indenter &i) {
> +    if (TargetName == TARGET_ARM) {
> +      // Emit code that references the ARMFormat data type.
> +      o << "static const ARMFormat ARMFormats[] = {\n";
> +      for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
> +        const Record &Def = *(AllInstructions[i]->TheDef);
> +        const std::string &Name = Def.getName();
> +        if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
> +          o.indent(2) << 
> +            stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
> +        else
> +          o << "  ARM_FORMAT_NA";
> +
> +        o << ",\t// Inst #" << i << " = " << Name << '\n';
> +      }
> +      o << "  ARM_FORMAT_NA\t// Unreachable.\n";
> +      o << "};\n\n";
> +
> +      // And emit code that references the NSFormat data type.
> +      // This is meaningful only for NEONFrm instructions.
> +      o << "static const NSFormat NSFormats[] = {\n";
> +      for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
> +        const Record &Def = *(AllInstructions[i]->TheDef);
> +        const std::string &Name = Def.getName();
> +        if (Def.isSubClassOf("NeonI") || Def.isSubClassOf("NeonXI"))
> +          o.indent(2) << 
> +            stringForNSFormat((NSFormat)getByteField(Def, "NSForm"));
> +        else
> +          o << "  NS_FORMAT_NA";
> +
> +        o << ",\t// Inst #" << i << " = " << Name << '\n';
> +      }
> +      o << "  NS_FORMAT_NA\t// Unreachable.\n";
> +      o << "};\n\n";
> +    }
> +  }
> +
> +  // Emit the top level typedef and decodeInstruction() function.
> +  void emitTop(raw_ostream &o, Indenter &i) {
> +
> +    // Run the target specific emit hook.
> +    emitTopHook(o, i);
> +
> +    switch(tBitWidth) {
> +    case 8:
> +      o.indent(i) << "typedef uint8_t field_t;\n";
> +      break;
> +    case 16:
> +      o.indent(i) << "typedef uint16_t field_t;\n";
> +      break;
> +    case 32:
> +      o.indent(i) << "typedef uint32_t field_t;\n";
> +      break;
> +    case 64:
> +      o.indent(i) << "typedef uint64_t field_t;\n";
> +      break;
> +    default:
> +      assert(0 && "Unexpected instruction size!");
> +    }
> +
> +    o << '\n';
> +
> +    o.indent(i) << "static field_t " <<
> +    "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
> +
> +    o.indent(i) << "{\n";
> +    i.push();
> +    {
> +      o.indent(i) << "assert(startBit + numBits <= " << tBitWidth
> +                  << " && \"Instruction field out of bounds!\");\n";
> +      o << '\n';
> +      o.indent(i) << "field_t fieldMask;\n";
> +      o << '\n';
> +      o.indent(i) << "if (numBits == " << tBitWidth << ")\n";
> +
> +      i.push();
> +      {
> +        o.indent(i) << "fieldMask = (field_t)-1;\n";
> +      }
> +      i.pop();
> +
> +      o.indent(i) << "else\n";
> +
> +      i.push();
> +      {
> +        o.indent(i) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
> +      }
> +      i.pop();
> +
> +      o << '\n';
> +      o.indent(i) << "return (insn & fieldMask) >> startBit;\n";
> +    }
> +    i.pop();
> +    o.indent(i) << "}\n";
> +
> +    o << '\n';
> +
> +    o.indent(i) << "static uint16_t decodeInstruction(field_t insn) {\n";
> +
> +    i.push();
> +    {
> +      // Emits code to decode the instructions.
> +      emit(o, i);
> +
> +      o << '\n';
> +      o.indent(i) << "return 0;\n";
> +    }
> +    i.pop();
> +
> +    o.indent(i) << "}\n";
> +
> +    o << '\n';
> +
> +  }
> +
> +  // This provides an opportunity for target specific code emission after
> +  // emitTop().
> +  void emitBot(raw_ostream &o, Indenter &i) {
> +    if (TargetName == TARGET_THUMB) {
> +      // Emit code that decodes the Thumb ISA.
> +      o.indent(i)
> +        << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
> +
> +      i.push();
> +      {
> +        // Emits code to decode the instructions.
> +        emit(o, i);
> +
> +        o << '\n';
> +        o.indent(i) << "return 0;\n";
> +      }
> +      i.pop();
> +
> +      o.indent(i) << "}\n";
> +    }
> +  }
> +
> +protected:
> +  // Populates the insn given the uid.
> +  void insnWithID(insn_t &Insn, unsigned Opcode) const {
> +    assert(Opcode > 10);
> +    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
> +
> +    for (unsigned i = 0; i < tBitWidth; ++i)
> +      Insn[i] = bitFromBits(Bits, i);
> +  }
> +
> +  // Returns the record name.
> +  const std::string &nameWithID(unsigned Opcode) const {
> +    return AllInstructions[Opcode]->TheDef->getName();
> +  }
> +
> +  // Populates the field of the insn given the start position and the number of
> +  // consecutive bits to scan for.
> +  //
> +  // Returns false if and on the first uninitialized bit value encountered.
> +  // Returns true, otherwise.
> +  const bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
> +                           unsigned NumBits) const {
> +    Field = 0;
> +
> +    for (unsigned i = 0; i < NumBits; ++i) {
> +      if (Insn[StartBit + i] == BIT_UNSET)
> +        return false;
> +
> +      if (Insn[StartBit + i] == BIT_TRUE)
> +        Field = Field | (1 << i);
> +    }
> +
> +    return true;
> +  }
> +
> +  void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[tBitWidth]) {
> +    unsigned bitIndex;
> +
> +    for (bitIndex = tBitWidth; bitIndex > 0; bitIndex--) {
> +      switch (filter[bitIndex - 1]) {
> +      case BIT_UNFILTERED:
> +        o << ".";
> +        break;
> +      case BIT_UNSET:
> +        o << "_";
> +        break;
> +      case BIT_TRUE:
> +        o << "1";
> +        break;
> +      case BIT_FALSE:
> +        o << "0";
> +        break;
> +      }
> +    }
> +  }
> +
> +  void dumpStack(raw_ostream &o, const char *prefix) {
> +    FilterChooser *current = this;
> +
> +    while (current) {
> +      o << prefix;
> +
> +      dumpFilterArray(o, current->FilterBitValues);
> +
> +      o << '\n';
> +
> +      current = current->Parent;
> +    }
> +  }
> +
> +  Filter &bestFilter() {
> +    assert(BestIndex != -1 && "BestIndex not set");
> +    return Filters[BestIndex];
> +  }
> +
> +  // States of our finite state machines.
> +  typedef enum {
> +    ATTR_NONE,
> +    ATTR_FILTERED,
> +    ATTR_ALL_SET,
> +    ATTR_ALL_UNSET,
> +    ATTR_MIXED
> +  } bitAttr_t;
> +
> +  // Called from Filter::recurse() when singleton exists.  For debug purpose.
> +  void SingletonExists(unsigned Opc) {
> +
> +    insn_t Insn0;
> +    insnWithID(Insn0, Opc);
> +
> +    errs() << "Singleton exists: " << nameWithID(Opc)
> +           << " with its decoding dominating ";
> +    for (unsigned i = 0; i < Opcodes.size(); ++i) {
> +      if (Opcodes[i] == Opc) continue;
> +      errs() << nameWithID(Opcodes[i]) << ' ';
> +    }
> +    errs() << '\n';
> +
> +    dumpStack(errs(), "\t\t");
> +    for (unsigned i = 0; i < Opcodes.size(); i++) {
> +      const std::string &Name = nameWithID(Opcodes[i]);
> +
> +      errs() << '\t' << Name << " ";
> +      dumpBits(errs(),
> +               getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
> +      errs() << '\n';
> +    }
> +  }
> +
> +  bool ValueSet(bit_value_t V) {
> +    return (V == BIT_TRUE || V == BIT_FALSE);
> +  }
> +  bool ValueNotSet(bit_value_t V) {
> +    return (V == BIT_UNSET);
> +  }
> +  int Value(bit_value_t V) {
> +    return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
> +  }
> +  bool PositionFiltered(unsigned i) {
> +    return ValueSet(FilterBitValues[i]);
> +  }
> +
> +  // Calculates the island(s) needed to decode the instruction.
> +  unsigned getIslands(std::vector<unsigned> &StartBits,
> +                      std::vector<unsigned> &EndBits,
> +                      std::vector<uint64_t> &FieldVals, insn_t &Insn)
> +  {
> +    unsigned Num, BitNo;
> +    Num = BitNo = 0;
> +
> +    uint64_t FieldVal = 0;
> +
> +    // 0: Init
> +    // 1: Water
> +    // 2: Island
> +    int State = 0;
> +    int Val = -1;
> +
> +    for (unsigned i = 0; i < tBitWidth; ++i) {
> +      Val = Value(Insn[i]);
> +      bool Filtered = PositionFiltered(i);
> +      switch (State) {
> +      default:
> +        assert(0 && "Unreachable code!");
> +        break;
> +      case 0:
> +      case 1:
> +        if (Filtered || Val == -1)
> +          State = 1; // Still in Water
> +        else {
> +          State = 2; // Into the Island
> +          BitNo = 0;
> +          StartBits.push_back(i);
> +          FieldVal = Val;
> +        }
> +        break;
> +      case 2:
> +        if (Filtered || Val == -1) {
> +          State = 1; // Into the Water
> +          EndBits.push_back(i - 1);
> +          FieldVals.push_back(FieldVal);
> +          ++Num;
> +        } else {
> +          State = 2; // Still in Island
> +          ++BitNo;
> +          FieldVal = FieldVal | Val << BitNo;
> +        }
> +        break;
> +      }
> +    }
> +    // If we are still in Island after the loop, do some housekeeping.
> +    if (State == 2) {
> +      EndBits.push_back(tBitWidth - 1);
> +      FieldVals.push_back(FieldVal);
> +      ++Num;
> +    }
> +
> +    /*
> +    printf("StartBits.size()=%u,EndBits.size()=%u,FieldVals.size()=%u,Num=%u\n",
> +          (unsigned)StartBits.size(), (unsigned)EndBits.size(),
> +          (unsigned)FieldVals.size(), Num);
> +    */
> +
> +    assert(StartBits.size() == Num && EndBits.size() == Num &&
> +           FieldVals.size() == Num);
> +
> +    return Num;
> +  }
> +
> +  bool LdStCopEncoding1(unsigned Opc) {
> +    const std::string &Name = nameWithID(Opc);
> +    if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
> +        Name == "LDC_POST" || Name == "LDC_PRE" ||
> +        Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
> +        Name == "LDCL_POST" || Name == "LDCL_PRE" ||
> +        Name == "STC_OFFSET" || Name == "STC_OPTION" ||
> +        Name == "STC_POST" || Name == "STC_PRE" ||
> +        Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
> +        Name == "STCL_POST" || Name == "STCL_PRE")
> +      return true;
> +    else
> +      return false;
> +  }
> +
> +  // Emits code to decode the singleton.  Return true if we have matched all the
> +  // well-known bits.
> +  bool emitSingletonDecoder(raw_ostream &o, Indenter &i, unsigned Opc) {
> +
> +    std::vector<unsigned> StartBits;
> +    std::vector<unsigned> EndBits;
> +    std::vector<uint64_t> FieldVals;
> +    insn_t Insn;
> +    insnWithID(Insn, Opc);
> +
> +    if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
> +      o.indent(i);
> +      // A8.6.51 & A8.6.188
> +      // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
> +      o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
> +    }
> +
> +    // Look for islands of undecoded bits of the singleton.
> +    getIslands(StartBits, EndBits, FieldVals, Insn);
> +
> +    unsigned Size = StartBits.size();
> +    unsigned I, NumBits;
> +
> +    // If we have matched all the well-known bits, just issue a return.
> +    if (Size == 0) {
> +      o.indent(i) << "return " << Opc << "; // " << nameWithID(Opc) << '\n';
> +      return true;
> +    }
> +
> +    // Otherwise, there are more decodings to be done!
> +
> +    // Emit code to match the island(s) for the singleton.
> +    o.indent(i) << "// Check ";
> +
> +    for (I = Size; I != 0; --I) {
> +      o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
> +      if (I > 1)
> +        o << "&& ";
> +      else
> +        o << "for singleton decoding...\n";
> +    }
> +
> +    o.indent(i) << "if (";
> +
> +    for (I = Size; I != 0; --I) {
> +      NumBits = EndBits[I-1] - StartBits[I-1] + 1;
> +      o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
> +        << ") == " << FieldVals[I-1];
> +      if (I > 1)
> +        o << " && ";
> +      else
> +        o << ")\n";
> +    }
> +
> +    o.indent(i) << "  return " << Opc << "; // " << nameWithID(Opc) << '\n';
> +
> +    return false;
> +  }
> +
> +  // Emits code to decode the singleton, and then to decode the rest.
> +  void emitSingletonDecoder(raw_ostream &o, Indenter &i, Filter & Best) {
> +
> +    unsigned Opc = Best.getSingletonOpc();
> +
> +    emitSingletonDecoder(o, i, Opc);
> +
> +    // Emit code for the rest.
> +    o.indent(i) << "else\n";
> +    i.push();
> +    {
> +      Best.getVariableFC().emit(o, i);
> +    }
> +    i.pop();
> +  }
> +
> +  // Assign a single filter and run with it.
> +  void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
> +                       bool mixed) {
> +    Filters.clear();
> +    Filter F(*this, startBit, numBit, true);
> +    Filters.push_back(F);
> +    BestIndex = 0; // Sole Filter instance to choose from.
> +    bestFilter().recurse();
> +  }
> +
> +  bool filterProcessor(bool AllowMixed, bool Greedy = true) {
> +    Filters.clear();
> +    BestIndex = -1;
> +    unsigned numInstructions = Opcodes.size();
> +
> +    assert(numInstructions && "Filter created with no instructions");
> +
> +    // No further filtering is necessary.
> +    if (numInstructions == 1)
> +      return true;
> +
> +    // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
> +    // instructions is 3.
> +    if (AllowMixed && !Greedy) {
> +      assert(numInstructions == 3);
> +
> +      for (unsigned i = 0; i < Opcodes.size(); ++i) {
> +        std::vector<unsigned> StartBits;
> +        std::vector<unsigned> EndBits;
> +        std::vector<uint64_t> FieldVals;
> +        insn_t Insn;
> +
> +        insnWithID(Insn, Opcodes[i]);
> +
> +        // Look for islands of undecoded bits of any instruction.
> +        if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
> +          // Found an instruction with island(s).  Now just assign a filter.
> +          runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
> +                          true);
> +          return true;
> +        }
> +      }
> +    }
> +
> +    unsigned bitIndex, insnIndex;
> +
> +    // We maintain tBitWidth copies of the bitAttrs automaton.
> +    // The automaton consumes the corresponding bit from each
> +    // instruction.
> +    //
> +    //   Input symbols: 0, 1, and _ (unset).
> +    //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
> +    //   Initial state: NONE.
> +    //
> +    // (NONE) ------- [01] -> (ALL_SET)
> +    // (NONE) ------- _ ----> (ALL_UNSET)
> +    // (ALL_SET) ---- [01] -> (ALL_SET)
> +    // (ALL_SET) ---- _ ----> (MIXED)
> +    // (ALL_UNSET) -- [01] -> (MIXED)
> +    // (ALL_UNSET) -- _ ----> (ALL_UNSET)
> +    // (MIXED) ------ . ----> (MIXED)
> +    // (FILTERED)---- . ----> (FILTERED)
> +
> +    bitAttr_t bitAttrs[tBitWidth];
> +
> +    // FILTERED bit positions provide no entropy and are not worthy of pursuing.
> +    // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
> +    for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex)
> +      if (FilterBitValues[bitIndex] == BIT_TRUE ||
> +          FilterBitValues[bitIndex] == BIT_FALSE)
> +        bitAttrs[bitIndex] = ATTR_FILTERED;
> +      else
> +        bitAttrs[bitIndex] = ATTR_NONE;
> +
> +    for (insnIndex = 0; insnIndex < numInstructions; ++insnIndex) {
> +      insn_t insn;
> +
> +      insnWithID(insn, Opcodes[insnIndex]);
> +
> +      for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) {
> +        switch (bitAttrs[bitIndex]) {
> +        case ATTR_NONE:
> +          if (insn[bitIndex] == BIT_UNSET)
> +            bitAttrs[bitIndex] = ATTR_ALL_UNSET;
> +          else
> +            bitAttrs[bitIndex] = ATTR_ALL_SET;
> +          break;
> +        case ATTR_ALL_SET:
> +          if (insn[bitIndex] == BIT_UNSET)
> +            bitAttrs[bitIndex] = ATTR_MIXED;
> +          break;
> +        case ATTR_ALL_UNSET:
> +          if (insn[bitIndex] != BIT_UNSET)
> +            bitAttrs[bitIndex] = ATTR_MIXED;
> +          break;
> +        case ATTR_MIXED:
> +        case ATTR_FILTERED:
> +          break;
> +        }
> +      }
> +    }
> +
> +    // The regionAttr automaton consumes the bitAttrs automatons' state,
> +    // lowest-to-highest.
> +    //
> +    //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
> +    //   States:        NONE, ALL_SET, MIXED
> +    //   Initial state: NONE
> +    //
> +    // (NONE) ----- F --> (NONE)
> +    // (NONE) ----- S --> (ALL_SET)     ; and set region start
> +    // (NONE) ----- U --> (NONE)
> +    // (NONE) ----- M --> (MIXED)       ; and set region start
> +    // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
> +    // (ALL_SET) -- S --> (ALL_SET)
> +    // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
> +    // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
> +    // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
> +    // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
> +    // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
> +    // (MIXED) ---- M --> (MIXED)
> +
> +    bitAttr_t regionAttr = ATTR_NONE;
> +    unsigned startBit = 0;
> +
> +    for (bitIndex = 0; bitIndex < tBitWidth; bitIndex++) {
> +      bitAttr_t bitAttr = bitAttrs[bitIndex];
> +
> +      assert(bitAttr != ATTR_NONE && "Bit without attributes");
> +
> +#define SET_START                                                              \
> +      startBit = bitIndex;
> +
> +#define REPORT_REGION                                                          \
> +      if (regionAttr == ATTR_MIXED && AllowMixed)                              \
> +        Filters.push_back(Filter(*this, startBit, bitIndex - startBit, true)); \
> +      else if (regionAttr == ATTR_ALL_SET && !AllowMixed)                      \
> +        Filters.push_back(Filter(*this, startBit, bitIndex - startBit, false));
> +
> +      switch (regionAttr) {
> +      case ATTR_NONE:
> +        switch (bitAttr) {
> +        case ATTR_FILTERED:
> +          break;
> +        case ATTR_ALL_SET:
> +          SET_START
> +          regionAttr = ATTR_ALL_SET;
> +          break;
> +        case ATTR_ALL_UNSET:
> +          break;
> +        case ATTR_MIXED:
> +          SET_START
> +          regionAttr = ATTR_MIXED;
> +          break;
> +        default:
> +          assert(0 && "Unexpected bitAttr!");
> +        }
> +        break;
> +      case ATTR_ALL_SET:
> +        switch (bitAttr) {
> +        case ATTR_FILTERED:
> +          REPORT_REGION
> +          regionAttr = ATTR_NONE;
> +          break;
> +        case ATTR_ALL_SET:
> +          break;
> +        case ATTR_ALL_UNSET:
> +          REPORT_REGION
> +          regionAttr = ATTR_NONE;
> +          break;
> +        case ATTR_MIXED:
> +          REPORT_REGION
> +          SET_START
> +          regionAttr = ATTR_MIXED;
> +          break;
> +        default:
> +          assert(0 && "Unexpected bitAttr!");
> +        }
> +        break;
> +      case ATTR_MIXED:
> +        switch (bitAttr) {
> +        case ATTR_FILTERED:
> +          REPORT_REGION
> +          SET_START
> +          regionAttr = ATTR_NONE;
> +          break;
> +        case ATTR_ALL_SET:
> +          REPORT_REGION
> +          SET_START
> +          regionAttr = ATTR_ALL_SET;
> +          break;
> +        case ATTR_ALL_UNSET:
> +          REPORT_REGION
> +          regionAttr = ATTR_NONE;
> +          break;
> +        case ATTR_MIXED:
> +          break;
> +        default:
> +          assert(0 && "Unexpected bitAttr!");
> +        }
> +        break;
> +      case ATTR_ALL_UNSET:
> +        assert(0 && "regionAttr state machine has no ATTR_UNSET state");
> +      case ATTR_FILTERED:
> +        assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
> +      }
> +    }
> +
> +    // At the end, if we're still in ALL_SET or MIXED states, report a region
> +
> +    switch (regionAttr) {
> +    case ATTR_NONE:
> +      break;
> +    case ATTR_FILTERED:
> +      break;
> +    case ATTR_ALL_SET:
> +      REPORT_REGION
> +      break;
> +    case ATTR_ALL_UNSET:
> +      break;
> +    case ATTR_MIXED:
> +      REPORT_REGION
> +      break;
> +    }
> +
> +#undef SET_START
> +#undef REPORT_REGION
> +
> +    // We have finished with the filter processings.  Now it's time to choose
> +    // the best performing filter.
> +
> +    BestIndex = 0;
> +    bool AllUseless = true;
> +    unsigned BestScore = 0;
> +
> +    for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
> +      unsigned Usefulness = Filters[i].usefulness();
> +
> +      if (Usefulness)
> +        AllUseless = false;
> +
> +      if (Usefulness > BestScore) {
> +        BestIndex = i;
> +        BestScore = Usefulness;
> +      }
> +    }
> +
> +    if (!AllUseless) {
> +      bestFilter().recurse();
> +    }
> +
> +    return !AllUseless;
> +  } // end of filterProcessor(bool)
> +
> +  // Decides on the best configuration of filter(s) to use in order to decode
> +  // the instructions.  A conflict of instructions may occur, in which case we
> +  // dump the conflict set to the standard error.
> +  void doFilter() {
> +    unsigned Num = Opcodes.size();
> +    assert(Num && "FilterChooser created with no instructions");
> +
> +    // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
> +    if (TargetName == TARGET_ARM && Parent == NULL) {
> +      runSingleFilter(*this, 28, 4, false);
> +      return;
> +    }
> +
> +    if (filterProcessor(false))
> +      return;
> +
> +    if (filterProcessor(true))
> +      return;
> +
> +    // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
> +    // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
> +    // well-known encoding pattern.  In such case, we backtrack and scan for the
> +    // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
> +    if (Num == 3 && filterProcessor(true, false))
> +      return;
> +
> +    // If we come to here, the instruction decoding has failed.
> +    // Print out the instructions in the conflict set...
> +
> +    BestIndex = -1;
> +
> +    DEBUG({
> +        errs() << "Conflict:\n";
> +
> +        dumpStack(errs(), "\t\t");
> +
> +        for (unsigned i = 0; i < Num; i++) {
> +          const std::string &Name = nameWithID(Opcodes[i]);
> +
> +          errs() << '\t' << Name << " ";
> +          dumpBits(errs(),
> +                   getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
> +          errs() << '\n';
> +        }
> +      });
> +  }
> +
> +  // Emits code to decode our share of instructions.  Returns true if the
> +  // emitted code causes a return, which occurs if we know how to decode
> +  // the instruction at this level or the instruction is not decodeable.
> +  bool emit(raw_ostream &o, Indenter &i) {
> +    if (Opcodes.size() == 1) {
> +      // There is only one instruction in the set, which is great!
> +      // Call emitSingletonDecoder() to see whether there are any remaining
> +      // encodings bits.
> +      return emitSingletonDecoder(o, i, Opcodes[0]);
> +
> +    } else if (BestIndex == -1) {
> +      if (TargetName == TARGET_ARM && Opcodes.size() == 2) {
> +        // Resolve the known conflict sets:
> +        //
> +        // 1. source registers are identical => VMOVDneon; otherwise => VORRd
> +        // 2. source registers are identical => VMOVQ; otherwise => VORRq
> +        // 3. LDR, LDRcp => return LDR for now.
> +        // FIXME: How can we distinguish between LDR and LDRcp?  Do we need to?
> +        // 4. VLD[234]LN*a/VST[234]LN*a vs. VLD[234]LN*b/VST[234]LN*b conflicts
> +        //    are resolved returning the 'a' versions of the instructions.  Note
> +        //    that the difference between a/b is that the former is for double-
> +        //    spaced even registers while the latter is for double-spaced odd
> +        //    registers.  This is for codegen instruction selection purpose.
> +        //    For disassembly, it does not matter.
> +        const std::string &name1 = nameWithID(Opcodes[0]);
> +        const std::string &name2 = nameWithID(Opcodes[1]);
> +        if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
> +            (name1 == "VMOVQ" && name2 == "VORRq")) {
> +          // Inserting the opening curly brace for this case block.
> +          i.pop();
> +          o.indent(i) << "{\n";
> +          i.push();
> +
> +          o.indent(i) << "field_t N = fieldFromInstruction(insn, 7, 1), "
> +                      << "M = fieldFromInstruction(insn, 5, 1);\n";
> +          o.indent(i) << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
> +                      << "Vm = fieldFromInstruction(insn, 0, 4);\n";
> +          o.indent(i) << "return (N == M && Vn == Vm) ? "
> +                      << Opcodes[0] << " /* " << name1 << " */ : "
> +                      << Opcodes[1] << " /* " << name2 << " */ ;\n";
> +
> +          // Inserting the closing curly brace for this case block.
> +          i.pop();
> +          o.indent(i) << "}\n";
> +          i.push();
> +
> +          return true;
> +        }
> +        if (name1 == "LDR" && name2 == "LDRcp") {
> +          o.indent(i) << "return " << Opcodes[0]
> +                      << "; // Returning LDR for {LDR, LDRcp}\n";
> +          return true;
> +        }
> +        if (sameStringExceptEndingChar(name1, name2, 'a', 'b')) {
> +          o.indent(i) << "return " << Opcodes[0] << "; // Returning " << name1
> +                      << " for {" << name1 << ", " << name2 << "}\n";
> +          return true;
> +        }
> +
> +        // Otherwise, it does not belong to the known conflict sets.
> +      }
> +      // We don't know how to decode these instructions!  Dump the conflict set!
> +      o.indent(i) << "return 0;" << " // Conflict set: ";
> +      for (int i = 0, N = Opcodes.size(); i < N; ++i) {
> +        o << nameWithID(Opcodes[i]);
> +        if (i < (N - 1))
> +          o << ", ";
> +        else
> +          o << '\n';
> +      }
> +      return true;
> +    } else {
> +      // Choose the best filter to do the decodings!
> +      Filter &Best = bestFilter();
> +      if (Best.getNumFiltered() == 1)
> +        emitSingletonDecoder(o, i, Best);
> +      else
> +        bestFilter().emit(o, i);
> +      return false;
> +    }
> +  }
> +};
> +
> +///////////////
> +//  Backend  //
> +///////////////
> +
> +class RISCDisassemblerEmitter::RISCDEBackend {
> +public:
> +  RISCDEBackend(RISCDisassemblerEmitter &frontend) :
> +    NumberedInstructions(),
> +    Opcodes(),
> +    Frontend(frontend),
> +    Target(),
> +    AFC(NULL)
> +  {
> +    populateInstructions();
> +
> +    if (Target.getName() == "ARM") {
> +      TargetName = TARGET_ARM;
> +    } else {
> +      errs() << "Target name " << Target.getName() << " not recognized\n";
> +      assert(0 && "Unknown target");
> +    }
> +  }
> +
> +  ~RISCDEBackend() {
> +    if (AFC) {
> +      delete AFC;
> +      AFC = NULL;
> +    }
> +  }
> +
> +  void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
> +                                                &NumberedInstructions) {
> +    // Dig down to the proper namespace.  Code shamelessly stolen from
> +    // InstrEnumEmitter.cpp
> +    std::string Namespace;
> +    CodeGenTarget::inst_iterator II, E;
> +
> +    for (II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II)
> +      if (II->second.Namespace != "TargetInstrInfo") {
> +        Namespace = II->second.Namespace;
> +        break;
> +      }
> +
> +    assert(!Namespace.empty() && "No instructions defined.");
> +
> +    Target.getInstructionsByEnumValue(NumberedInstructions);
> +  }
> +
> +  bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN) {
> +    const Record &Def = *CGI.TheDef;
> +    const std::string &Name = Def.getName();
> +    uint8_t Form = getByteField(Def, "Form");
> +    BitsInit &Bits = getBitsField(Def, "Inst");
> +
> +    if (TN == TARGET_ARM) {
> +      // FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6?
> +      if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") &&
> +          Form == ARM_FORMAT_PSEUDO)
> +        return false;
> +      if (thumbInstruction(Form))
> +        return false;
> +      if (Name.find("CMPz") != std::string::npos /* ||
> +          Name.find("CMNz") != std::string::npos */)
> +        return false;
> +
> +      // Ignore pseudo instructions.
> +      if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9")
> +        return false;
> +
> +      // VLDRQ/VSTRQ can be hanlded with the more generic VLDMD/VSTMD.
> +      if (Name == "VLDRQ" || Name == "VSTRQ")
> +        return false;
> +
> +      //
> +      // The following special cases are for conflict resolutions.
> +      //
> +
> +      // RSCSri and RSCSrs set the 's' bit, but are not predicated.  We are
> +      // better off using the generic RSCri and RSCrs instructions.
> +      if (Name == "RSCSri" || Name == "RSCSrs") return false;
> +
> +      // MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used
> +      // in the compiler to implement conditional moves.  We can ignore them in
> +      // favor of their more generic versions of instructions.
> +      // See also SDNode *ARMDAGToDAGISel::Select(SDValue Op).
> +      if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" ||
> +          Name == "FCPYScc" || Name == "FCPYDcc" ||
> +          Name == "FNEGScc" || Name == "FNEGDcc")
> +        return false;
> +
> +      // Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc.
> +      if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" ||
> +          Name == "VNEGScc")
> +        return false;
> +
> +      // Ignore the *_sfp instructions when decoding.  They are used by the
> +      // compiler to implement scalar floating point operations using vector
> +      // operations in order to work around some performance issues.
> +      if (Name.find("_sfp") != std::string::npos) return false;
> +
> +      // LLVM added LDM/STM_UPD which conflicts with LDM/STM.
> +      // Ditto for VLDMS_UPD, VLDMD_UPD, VSTMS_UPD, VSTMD_UPD.
> +      if (Name == "LDM_UPD" || Name == "STM_UPD" || Name == "VLDMS_UPD" ||
> +          Name == "VLDMD_UPD" || Name == "VSTMS_UPD" || Name == "VSTMD_UPD")
> +        return false;
> +
> +      // LDM_RET is a special case of LDM (Load Multiple) where the registers
> +      // loaded include the PC, causing a branch to a loaded address.  Ignore
> +      // the LDM_RET instruction when decoding.
> +      if (Name == "LDM_RET") return false;
> +
> +      // Bcc is in a more generic form than B.  Ignore B when decoding.
> +      if (Name == "B") return false;
> +
> +      // Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction.
> +      if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" ||
> +          Name == "TPsoft")
> +        return false;
> +
> +      // Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for
> +      // decoding.  The instruction duplicates an element from an ARM core
> +      // register into every element of the destination vector.  There is no
> +      // distinction between data types.
> +      if (Name == "VDUPfd" || Name == "VDUPfq") return false;
> +
> +      // A8-598: VEXT
> +      // Vector Extract extracts elements from the bottom end of the second
> +      // operand vector and the top end of the first, concatenates them and
> +      // places the result in the destination vector.  The elements of the
> +      // vectors are treated as being 8-bit bitfields.  There is no distinction
> +      // between data types.  The size of the operation can be specified in
> +      // assembler as vext.size.  If the value is 16, 32, or 64, the syntax is
> +      // a pseudo-instruction for a VEXT instruction specifying the equivalent
> +      // number of bytes.
> +      //
> +      // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
> +      // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
> +      if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
> +          Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
> +        return false;
> +
> +      // Vector Reverse is similar to Vector Extract.  There is no distinction
> +      // between data types, other than size.
> +      //
> +      // VREV64df is equivalent to VREV64d32.
> +      // VREV64qf is equivalent to VREV64q32.
> +      if (Name == "VREV64df" || Name == "VREV64qf") return false;
> +
> +      // VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d.
> +      // VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q.
> +      // VLD1df is equivalent to VLD1d32.
> +      // VLD1qf is equivalent to VLD1q32.
> +      // VLD2d64 is equivalent to VLD1q64.
> +      // VST1df is equivalent to VST1d32.
> +      // VST1qf is equivalent to VST1q32.
> +      // VST2d64 is equivalent to VST1q64.
> +      if (Name == "VDUPLNfd" || Name == "VDUPfdf" ||
> +          Name == "VDUPLNfq" || Name == "VDUPfqf" ||
> +          Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" ||
> +          Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64")
> +        return false;
> +    } else if (TN == TARGET_THUMB) {
> +      if (!thumbInstruction(Form))
> +        return false;
> +
> +      // Ignore pseudo instructions.
> +      if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" ||
> +          Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9")
> +        return false;
> +
> +      // LLVM added tLDM_UPD which conflicts with tLDM.
> +      if (Name == "tLDM_UPD")
> +        return false;
> +
> +      // On Darwin R9 is call-clobbered.  Ignore the non-Darwin counterparts.
> +      if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
> +        return false;
> +
> +      // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
> +      if (Name == "tTPsoft" || Name == "t2TPsoft")
> +        return false;
> +
> +      // Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi.
> +      if (Name == "tLEApcrel" || Name == "tLEApcrelJT")
> +        return false;
> +
> +      // Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing.
> +      if (Name == "t2LEApcrel")
> +        return false;
> +
> +      // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
> +      // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
> +      // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
> +      if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
> +          Name == "t2SUBrSPs" || Name == "t2ADDrSPs")
> +        return false;
> +
> +      // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
> +      if (Name == "t2LDRDpci")
> +        return false;
> +
> +      // Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen.
> +      if (Name == "t2TBB" || Name == "t2TBH")
> +        return false;
> +
> +      // Resolve conflicts:
> +      //
> +      //   tBfar conflicts with tBLr9
> +      //   tCMNz conflicts with tCMN (with assembly format strings being equal)
> +      //   tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto)
> +      //   tMOVCCi conflicts with tMOVi8
> +      //   tMOVCCr conflicts with tMOVgpr2gpr
> +      //   tBR_JTr conflicts with tBRIND
> +      //   tSpill conflicts with tSTRspi
> +      //   tLDRcp conflicts with tLDRspi
> +      //   tRestore conflicts with tLDRspi
> +      //   t2LEApcrelJT conflicts with t2LEApcrel
> +      //   t2ADDrSPi/t2SUBrSPi have more generic couterparts
> +      if (Name == "tBfar" ||
> +          /* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" ||
> +          Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" ||
> +          Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" ||
> +          Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" ||
> +          Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" ||
> +          Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
> +          Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi")
> +        return false;
> +    }
> +
> +    // Dumps the instruction encoding format.
> +    switch (TargetName) {
> +    case TARGET_ARM:
> +    case TARGET_THUMB:
> +      DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form));
> +      break;
> +    }
> +
> +    DEBUG({
> +        errs() << " ";
> +
> +        // Dumps the instruction encoding bits.
> +        dumpBits(errs(), Bits);
> +
> +        errs() << '\n';
> +
> +        // Dumps the list of operand info.
> +        for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) {
> +          CodeGenInstruction::OperandInfo Info = CGI.OperandList[i];
> +          const std::string &OperandName = Info.Name;
> +          const Record &OperandDef = *Info.Rec;
> +
> +          errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
> +        }
> +      });
> +
> +    return true;
> +  }
> +
> +  void populateInstructions() {
> +    getInstructionsByEnumValue(NumberedInstructions);
> +
> +    uint16_t numUIDs = NumberedInstructions.size();
> +    uint16_t uid;
> +
> +    const char *instClass = NULL;
> +
> +    switch (TargetName) {
> +    case TARGET_ARM:
> +      instClass = "InstARM";
> +      break;
> +    default:
> +      assert(0 && "Unreachable code!");
> +    }
> +
> +    for (uid = 0; uid < numUIDs; uid++) {
> +      // filter out intrinsics
> +      if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass))
> +        continue;
> +
> +      if (populateInstruction(*NumberedInstructions[uid], TargetName))
> +        Opcodes.push_back(uid);
> +    }
> +
> +    // Special handling for the ARM chip, which supports two modes of execution.
> +    // This branch handles the Thumb opcodes.
> +    if (TargetName == TARGET_ARM) {
> +      for (uid = 0; uid < numUIDs; uid++) {
> +        // filter out intrinsics
> +        if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
> +            && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
> +          continue;
> +
> +          if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
> +            Opcodes2.push_back(uid);
> +      }
> +    }
> +  }
> +
> +  // Emits disassembler code for instruction decoding.  This delegates to the
> +  // FilterChooser instance to do the heavy lifting.
> +  void emit(raw_ostream &o) {
> +    Indenter i;
> +    std::string s;
> +    raw_string_ostream ro(s);
> +
> +    switch (TargetName) {
> +    case TARGET_ARM:
> +      Frontend.EmitSourceFileHeader("ARM Disassembler", ro);
> +      break;
> +    default:
> +      assert(0 && "Unreachable code!");
> +    }
> +
> +    ro.flush();
> +    o << s;
> +
> +    o.indent(i) << "#include <inttypes.h>\n";
> +    o.indent(i) << "#include <assert.h>\n";
> +    o << '\n';
> +    o << "namespace llvm {\n\n";
> +
> +    AbstractFilterChooser::setTargetName(TargetName);
> +
> +    switch (TargetName) {
> +    case TARGET_ARM: {
> +      // Emit common utility and ARM ISA decoder.
> +      AFC = new FilterChooser<32>(NumberedInstructions, Opcodes);
> +      AFC->emitTop(o, i);
> +      delete AFC;
> +
> +      // Emit Thumb ISA decoder as well.
> +      AbstractFilterChooser::setTargetName(TARGET_THUMB);
> +      AFC = new FilterChooser<32>(NumberedInstructions, Opcodes2);
> +      AFC->emitBot(o, i);
> +      break;
> +    }
> +    default:
> +      assert(0 && "Unreachable code!");
> +    }
> +
> +    o << "\n} // End llvm namespace \n";
> +  }
> +
> +protected:
> +  std::vector<const CodeGenInstruction*> NumberedInstructions;
> +  std::vector<unsigned> Opcodes;
> +  // Special case for the ARM chip, which supports ARM and Thumb ISAs.
> +  // Opcodes2 will be populated with the Thumb opcodes.
> +  std::vector<unsigned> Opcodes2;
> +  RISCDisassemblerEmitter &Frontend;
> +  CodeGenTarget Target;
> +  AbstractFilterChooser *AFC;
> +
> +  TARGET_NAME_t TargetName;
> +};
> +
> +/////////////////////////
> +//  Backend interface  //
> +/////////////////////////
> +
> +void RISCDisassemblerEmitter::initBackend()
> +{
> +    Backend = new RISCDEBackend(*this);
> +}
> +
> +void RISCDisassemblerEmitter::run(raw_ostream &o)
> +{
> +  Backend->emit(o);
> +}
> +
> +void RISCDisassemblerEmitter::shutdownBackend()
> +{
> +  delete Backend;
> +  Backend = NULL;
> +}
> 
> Added: llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.h?rev=98637&view=auto
> ==============================================================================
> --- llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.h (added)
> +++ llvm/trunk/utils/TableGen/RISCDisassemblerEmitter.h Tue Mar 16 11:36:54 2010
> @@ -0,0 +1,48 @@
> +//===- RISCDisassemblerEmitter.h - Disassembler Generator -------*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +//
> +// FIXME: document
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#ifndef RISCDISASSEMBLEREMITTER_H
> +#define RISCDISASSEMBLEREMITTER_H
> +
> +#include "TableGenBackend.h"
> +
> +#include <inttypes.h>
> +
> +namespace llvm {
> +    
> +class RISCDisassemblerEmitter : public TableGenBackend {
> +  RecordKeeper &Records;
> +public:
> +  RISCDisassemblerEmitter(RecordKeeper &R) : Records(R) {
> +    initBackend();
> +  }
> +    
> +  ~RISCDisassemblerEmitter() {
> +    shutdownBackend();
> +  }
> +	
> +  // run - Output the code emitter
> +  void run(raw_ostream &o);
> +    
> +private:
> +  class RISCDEBackend;
> +    
> +  RISCDEBackend *Backend;
> +    
> +  void initBackend();
> +  void shutdownBackend();
> +};
> +
> +} // end llvm namespace
> +
> +#endif
> 
> Modified: llvm/trunk/utils/TableGen/TableGen.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/TableGen.cpp?rev=98637&r1=98636&r2=98637&view=diff
> ==============================================================================
> --- llvm/trunk/utils/TableGen/TableGen.cpp (original)
> +++ llvm/trunk/utils/TableGen/TableGen.cpp Tue Mar 16 11:36:54 2010
> @@ -31,6 +31,7 @@
> #include "OptParserEmitter.h"
> #include "Record.h"
> #include "RegisterInfoEmitter.h"
> +#include "RISCDisassemblerEmitter.h"
> #include "SubtargetEmitter.h"
> #include "TGParser.h"
> #include "llvm/Support/CommandLine.h"
> @@ -48,6 +49,7 @@
>   GenEmitter,
>   GenRegisterEnums, GenRegister, GenRegisterHeader,
>   GenInstrEnums, GenInstrs, GenAsmWriter, GenAsmMatcher,
> +  GenRISCDisassembler,
>   GenDisassembler,
>   GenCallingConv,
>   GenClangDiagsDefs,
> @@ -84,6 +86,9 @@
>                                "Generate calling convention descriptions"),
>                     clEnumValN(GenAsmWriter, "gen-asm-writer",
>                                "Generate assembly writer"),
> +                    clEnumValN(GenRISCDisassembler, "gen-risc-disassembler",
> +                               "Generate disassembler for fixed instruction"
> +                               " length"),
>                     clEnumValN(GenDisassembler, "gen-disassembler",
>                                "Generate disassembler"),
>                     clEnumValN(GenAsmMatcher, "gen-asm-matcher",
> @@ -229,6 +234,9 @@
>     case GenAsmWriter:
>       AsmWriterEmitter(Records).run(*Out);
>       break;
> +    case GenRISCDisassembler:
> +      RISCDisassemblerEmitter(Records).run(*Out);
> +      break;
>     case GenAsmMatcher:
>       AsmMatcherEmitter(Records).run(*Out);
>       break;
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits





More information about the llvm-commits mailing list