[llvm-commits] [llvm] r59999 - in /llvm/trunk: include/llvm/CodeGen/ScheduleDAG.h lib/CodeGen/PostRASchedulerList.cpp lib/CodeGen/ScheduleDAG.cpp lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp test/CodeGen/X86/break-anti-dependencies.ll

Dan Gohman gohman at apple.com
Mon Nov 24 16:52:40 PST 2008


Author: djg
Date: Mon Nov 24 18:52:40 2008
New Revision: 59999

URL: http://llvm.org/viewvc/llvm-project?rev=59999&view=rev
Log:
Initial support for anti-dependence breaking. Currently this code does not
introduce any new spilling; it just uses unused registers.

Refactor the SUnit topological sort code out of the RRList scheduler and
make use of it to help with the post-pass scheduler.

Added:
    llvm/trunk/test/CodeGen/X86/break-anti-dependencies.ll
Modified:
    llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h
    llvm/trunk/lib/CodeGen/PostRASchedulerList.cpp
    llvm/trunk/lib/CodeGen/ScheduleDAG.cpp
    llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp

Modified: llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h?rev=59999&r1=59998&r2=59999&view=diff

==============================================================================
--- llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h (original)
+++ llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h Mon Nov 24 18:52:40 2008
@@ -17,6 +17,7 @@
 
 #include "llvm/CodeGen/MachineBasicBlock.h"
 #include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/BitVector.h"
 #include "llvm/ADT/GraphTraits.h"
 #include "llvm/ADT/SmallVector.h"
 
@@ -148,7 +149,9 @@
                  unsigned PhyReg = 0, int Cost = 1, bool isAntiDep = false) {
       for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
         if (Preds[i].Dep == N &&
-            Preds[i].isCtrl == isCtrl && Preds[i].isArtificial == isArtificial)
+            Preds[i].isCtrl == isCtrl &&
+            Preds[i].isArtificial == isArtificial &&
+            Preds[i].isAntiDep == isAntiDep)
           return false;
       Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isArtificial, isAntiDep));
       N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl,
@@ -167,7 +170,10 @@
     bool removePred(SUnit *N, bool isCtrl, bool isArtificial, bool isAntiDep) {
       for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
            I != E; ++I)
-        if (I->Dep == N && I->isCtrl == isCtrl && I->isArtificial == isArtificial) {
+        if (I->Dep == N &&
+            I->isCtrl == isCtrl &&
+            I->isArtificial == isArtificial &&
+            I->isAntiDep == isAntiDep) {
           bool FoundSucc = false;
           for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
                  EE = N->Succs.end(); II != EE; ++II)
@@ -404,6 +410,73 @@
       return G->SUnits.end();
     }
   };
+
+  /// ScheduleDAGTopologicalSort is a class that computes a topological
+  /// ordering for SUnits and provides methods for dynamically updating
+  /// the ordering as new edges are added.
+  ///
+  /// This allows a very fast implementation of IsReachable, for example.
+  ///
+  class ScheduleDAGTopologicalSort {
+    /// SUnits - A reference to the ScheduleDAG's SUnits.
+    std::vector<SUnit> &SUnits;
+
+    /// Index2Node - Maps topological index to the node number.
+    std::vector<int> Index2Node;
+    /// Node2Index - Maps the node number to its topological index.
+    std::vector<int> Node2Index;
+    /// Visited - a set of nodes visited during a DFS traversal.
+    BitVector Visited;
+
+    /// DFS - make a DFS traversal and mark all nodes affected by the 
+    /// edge insertion. These nodes will later get new topological indexes
+    /// by means of the Shift method.
+    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
+
+    /// Shift - reassign topological indexes for the nodes in the DAG
+    /// to preserve the topological ordering.
+    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
+
+    /// Allocate - assign the topological index to the node n.
+    void Allocate(int n, int index);
+
+  public:
+    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
+
+    /// InitDAGTopologicalSorting - create the initial topological 
+    /// ordering from the DAG to be scheduled.
+    void InitDAGTopologicalSorting();
+
+    /// IsReachable - Checks if SU is reachable from TargetSU.
+    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
+
+    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
+    /// will create a cycle.
+    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
+
+    /// AddPred - Updates the topological ordering to accomodate an edge
+    /// to be added from SUnit X to SUnit Y.
+    void AddPred(SUnit *Y, SUnit *X);
+
+    /// RemovePred - Updates the topological ordering to accomodate an
+    /// an edge to be removed from the specified node N from the predecessors
+    /// of the current node M.
+    void RemovePred(SUnit *M, SUnit *N);
+
+    typedef std::vector<int>::iterator iterator;
+    typedef std::vector<int>::const_iterator const_iterator;
+    iterator begin() { return Index2Node.begin(); }
+    const_iterator begin() const { return Index2Node.begin(); }
+    iterator end() { return Index2Node.end(); }
+    const_iterator end() const { return Index2Node.end(); }
+
+    typedef std::vector<int>::reverse_iterator reverse_iterator;
+    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
+    reverse_iterator rbegin() { return Index2Node.rbegin(); }
+    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
+    reverse_iterator rend() { return Index2Node.rend(); }
+    const_reverse_iterator rend() const { return Index2Node.rend(); }
+  };
 }
 
 #endif

Modified: llvm/trunk/lib/CodeGen/PostRASchedulerList.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PostRASchedulerList.cpp?rev=59999&r1=59998&r2=59999&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/PostRASchedulerList.cpp (original)
+++ llvm/trunk/lib/CodeGen/PostRASchedulerList.cpp Mon Nov 24 18:52:40 2008
@@ -24,24 +24,32 @@
 #include "llvm/CodeGen/LatencyPriorityQueue.h"
 #include "llvm/CodeGen/SchedulerRegistry.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/DenseSet.h"
+#include <map>
+#include <climits>
 using namespace llvm;
 
 STATISTIC(NumStalls, "Number of pipeline stalls");
 
+static cl::opt<bool>
+EnableAntiDepBreaking("break-anti-dependencies",
+                      cl::desc("Break scheduling anti-dependencies"),
+                      cl::init(false));
+
 namespace {
   class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
   public:
     static char ID;
     PostRAScheduler() : MachineFunctionPass(&ID) {}
-  private:
-    MachineFunction *MF;
-    const TargetMachine *TM;
-  public:
+
     const char *getPassName() const {
-      return "Post RA top-down list latency scheduler (STUB)";
+      return "Post RA top-down list latency scheduler";
     }
 
     bool runOnMachineFunction(MachineFunction &Fn);
@@ -49,13 +57,6 @@
   char PostRAScheduler::ID = 0;
 
   class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
-  public:
-    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
-      : ScheduleDAGInstrs(mbb, tm) {}
-  private:
-    MachineFunction *MF;
-    const TargetMachine *TM;
-
     /// AvailableQueue - The priority queue to use for the available SUnits.
     ///
     LatencyPriorityQueue AvailableQueue;
@@ -66,12 +67,12 @@
     /// added to the AvailableQueue.
     std::vector<SUnit*> PendingQueue;
 
-  public:
-    const char *getPassName() const {
-      return "Post RA top-down list latency scheduler (STUB)";
-    }
+    /// Topo - A topological ordering for SUnits.
+    ScheduleDAGTopologicalSort Topo;
 
-    bool runOnMachineFunction(MachineFunction &Fn);
+  public:
+    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
+      : ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}
 
     void Schedule();
 
@@ -79,19 +80,18 @@
     void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
     void ListScheduleTopDown();
+    bool BreakAntiDependencies();
   };
 }
 
 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
   DOUT << "PostRAScheduler\n";
-  MF = &Fn;
-  TM = &MF->getTarget();
 
   // Loop over all of the basic blocks
   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
        MBB != MBBe; ++MBB) {
 
-    SchedulePostRATDList Scheduler(MBB, *TM);
+    SchedulePostRATDList Scheduler(MBB, Fn.getTarget());
 
     Scheduler.Run();
 
@@ -108,13 +108,407 @@
   // Build scheduling units.
   BuildSchedUnits();
 
+  if (EnableAntiDepBreaking) {
+    if (BreakAntiDependencies()) {
+      // We made changes. Update the dependency graph.
+      // Theoretically we could update the graph in place:
+      // When a live range is changed to use a different register, remove
+      // the def's anti-dependence *and* output-dependence edges due to
+      // that register, and add new anti-dependence and output-dependence
+      // edges based on the next live range of the register.
+      SUnits.clear();
+      BuildSchedUnits();
+    }
+  }
+
   AvailableQueue.initNodes(SUnits);
-  
+
   ListScheduleTopDown();
   
   AvailableQueue.releaseState();
 }
 
+/// getInstrOperandRegClass - Return register class of the operand of an
+/// instruction of the specified TargetInstrDesc.
+static const TargetRegisterClass*
+getInstrOperandRegClass(const TargetRegisterInfo *TRI,
+                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
+                        unsigned Op) {
+  if (Op >= II.getNumOperands())
+    return NULL;
+  if (II.OpInfo[Op].isLookupPtrRegClass())
+    return TII->getPointerRegClass();
+  return TRI->getRegClass(II.OpInfo[Op].RegClass);
+}
+
+/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
+/// of the ScheduleDAG and break them by renaming registers.
+///
+bool SchedulePostRATDList::BreakAntiDependencies() {
+  // The code below assumes that there is at least one instruction,
+  // so just duck out immediately if the block is empty.
+  if (BB->empty()) return false;
+
+  Topo.InitDAGTopologicalSorting();
+
+  // Compute a critical path for the DAG.
+  SUnit *Max = 0;
+  std::vector<SDep *> CriticalPath(SUnits.size());
+  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+       E = Topo.end(); I != E; ++I) {
+    SUnit *SU = &SUnits[*I];
+    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
+         P != PE; ++P) {
+      SUnit *PredSU = P->Dep;
+      unsigned PredLatency = PredSU->CycleBound + PredSU->Latency;
+      if (SU->CycleBound < PredLatency) {
+        SU->CycleBound = PredLatency;
+        CriticalPath[*I] = &*P;
+      }
+    }
+    // Keep track of the node at the end of the critical path.
+    if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
+      Max = SU;
+  }
+
+  DOUT << "Critical path has total latency "
+       << (Max ? Max->CycleBound + Max->Latency : 0) << "\n";
+
+  // Walk the critical path from the bottom up. Collect all anti-dependence
+  // edges on the critical path. Skip anti-dependencies between SUnits that
+  // are connected with other edges, since such units won't be able to be
+  // scheduled past each other anyway.
+  //
+  // The heuristic is that edges on the critical path are more important to
+  // break than other edges. And since there are a limited number of
+  // registers, we don't want to waste them breaking edges that aren't
+  // important.
+  // 
+  // TODO: Instructions with multiple defs could have multiple
+  // anti-dependencies. The current code here only knows how to break one
+  // edge per instruction. Note that we'd have to be able to break all of
+  // the anti-dependencies in an instruction in order to be effective.
+  BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
+  DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
+  for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
+       SU = CriticalPath[SU->NodeNum]->Dep) {
+    SDep *Edge = CriticalPath[SU->NodeNum];
+    SUnit *NextSU = Edge->Dep;
+    unsigned AntiDepReg = Edge->Reg;
+    // Don't break anti-dependencies on non-allocatable registers.
+    if (!AllocatableSet.test(AntiDepReg))
+      continue;
+    // If the SUnit has other dependencies on the SUnit that it
+    // anti-depends on, don't bother breaking the anti-dependency.
+    // Also, if there are dependencies on other SUnits with the
+    // same register as the anti-dependency, don't attempt to
+    // break it.
+    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
+         P != PE; ++P)
+      if (P->Dep == NextSU ?
+            (!P->isAntiDep || P->Reg != AntiDepReg) :
+            (!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) {
+        AntiDepReg = 0;
+        break;
+      }
+    if (AntiDepReg != 0)
+      CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
+  }
+
+  // For live regs that are only used in one register class in a live range,
+  // the register class. If the register is not live or is referenced in
+  // multiple register classes, the corresponding value is null. If the
+  // register is used in multiple register classes, the corresponding value
+  // is -1 casted to a pointer.
+  const TargetRegisterClass *
+    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
+
+  // Map registers to all their references within a live range.
+  std::multimap<unsigned, MachineOperand *> RegRefs;
+
+  // The index of the most recent kill (proceding bottom-up), or -1 if
+  // the register is not live.
+  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
+  std::fill(KillIndices, array_endof(KillIndices), -1);
+  // The index of the most recent def (proceding bottom up), or -1 if
+  // the register is live.
+  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
+  std::fill(DefIndices, array_endof(DefIndices), BB->size());
+
+  // Determine the live-out physregs for this block.
+  if (!BB->empty() && BB->back().getDesc().isReturn())
+    // In a return block, examine the function live-out regs.
+    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
+         E = MRI.liveout_end(); I != E; ++I) {
+      unsigned Reg = *I;
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      KillIndices[Reg] = BB->size();
+      DefIndices[Reg] = -1;
+      // Repeat, for all aliases.
+      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+        unsigned AliasReg = *Alias;
+        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[AliasReg] = BB->size();
+        DefIndices[AliasReg] = -1;
+      }
+    }
+  else
+    // In a non-return block, examine the live-in regs of all successors.
+    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+         SE = BB->succ_end(); SI != SE; ++SI) 
+      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+           E = (*SI)->livein_end(); I != E; ++I) {
+        unsigned Reg = *I;
+        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[Reg] = BB->size();
+        DefIndices[Reg] = -1;
+        // Repeat, for all aliases.
+        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+          unsigned AliasReg = *Alias;
+          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+          KillIndices[AliasReg] = BB->size();
+          DefIndices[AliasReg] = -1;
+        }
+      }
+
+  // Consider callee-saved registers as live-out, since we're running after
+  // prologue/epilogue insertion so there's no way to add additional
+  // saved registers.
+  //
+  // TODO: If the callee saves and restores these, then we can potentially
+  // use them between the save and the restore. To do that, we could scan
+  // the exit blocks to see which of these registers are defined.
+  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
+    unsigned Reg = *I;
+    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+    KillIndices[Reg] = BB->size();
+    DefIndices[Reg] = -1;
+    // Repeat, for all aliases.
+    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+      unsigned AliasReg = *Alias;
+      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      KillIndices[AliasReg] = BB->size();
+      DefIndices[AliasReg] = -1;
+    }
+  }
+
+  // Consider this pattern:
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  // There are three anti-dependencies here, and without special care,
+  // we'd break all of them using the same register:
+  //   A = ...
+  //   ... = A
+  //   B = ...
+  //   ... = B
+  //   B = ...
+  //   ... = B
+  //   B = ...
+  //   ... = B
+  // because at each anti-dependence, B is the first register that
+  // isn't A which is free.  This re-introduces anti-dependencies
+  // at all but one of the original anti-dependencies that we were
+  // trying to break.  To avoid this, keep track of the most recent
+  // register that each register was replaced with, avoid avoid
+  // using it to repair an anti-dependence on the same register.
+  // This lets us produce this:
+  //   A = ...
+  //   ... = A
+  //   B = ...
+  //   ... = B
+  //   C = ...
+  //   ... = C
+  //   B = ...
+  //   ... = B
+  // This still has an anti-dependence on B, but at least it isn't on the
+  // original critical path.
+  //
+  // TODO: If we tracked more than one register here, we could potentially
+  // fix that remaining critical edge too. This is a little more involved,
+  // because unlike the most recent register, less recent registers should
+  // still be considered, though only if no other registers are available.
+  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
+
+  // A registers defined and not used in an instruction. This is used for
+  // liveness tracking and is declared outside the loop only to avoid
+  // having it be re-allocated on each iteration.
+  DenseSet<unsigned> Defs;
+
+  // Attempt to break anti-dependence edges on the critical path. Walk the
+  // instructions from the bottom up, tracking information about liveness
+  // as we go to help determine which registers are available.
+  bool Changed = false;
+  unsigned Count = BB->size() - 1;
+  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
+       I != E; ++I, --Count) {
+    MachineInstr *MI = &*I;
+
+    // Check if this instruction has an anti-dependence that we're
+    // interested in.
+    DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
+    unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
+      C->second : 0;
+
+    // Scan the register operands for this instruction and update
+    // Classes and RegRefs.
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI->getOperand(i);
+      if (!MO.isReg()) continue;
+      unsigned Reg = MO.getReg();
+      if (Reg == 0) continue;
+      const TargetRegisterClass *NewRC =
+        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
+
+      // If this instruction has a use of AntiDepReg, breaking it
+      // is invalid.
+      if (MO.isUse() && AntiDepReg == Reg)
+        AntiDepReg = 0;
+
+      // For now, only allow the register to be changed if its register
+      // class is consistent across all uses.
+      if (!Classes[Reg] && NewRC)
+        Classes[Reg] = NewRC;
+      else if (!NewRC || Classes[Reg] != NewRC)
+        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+      // Now check for aliases.
+      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+        // If an alias of the reg is used during the live range, give up.
+        // Note that this allows us to skip checking if AntiDepReg
+        // overlaps with any of the aliases, among other things.
+        unsigned AliasReg = *Alias;
+        if (Classes[AliasReg]) {
+          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        }
+      }
+
+      // If we're still willing to consider this register, note the reference.
+      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
+        RegRefs.insert(std::make_pair(Reg, &MO));
+    }
+
+    // Determine AntiDepReg's register class, if it is live and is
+    // consistently used within a single class.
+    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
+    assert(AntiDepReg == 0 || RC != NULL &&
+           "Register should be live if it's causing an anti-dependence!");
+    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
+      AntiDepReg = 0;
+
+    // Look for a suitable register to use to break the anti-depenence.
+    //
+    // TODO: Instead of picking the first free register, consider which might
+    // be the best.
+    if (AntiDepReg != 0) {
+      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
+           RE = RC->allocation_order_end(*MF); R != RE; ++R) {
+        unsigned NewReg = *R;
+        // Don't replace a register with itself.
+        if (NewReg == AntiDepReg) continue;
+        // Don't replace a register with one that was recently used to repair
+        // an anti-dependence with this AntiDepReg, because that would
+        // re-introduce that anti-dependence.
+        if (NewReg == LastNewReg[AntiDepReg]) continue;
+        // If NewReg is dead and NewReg's most recent def is not before
+        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
+        assert(((KillIndices[AntiDepReg] == -1) != (DefIndices[AntiDepReg] == -1)) &&
+               "Kill and Def maps aren't consistent for AntiDepReg!");
+        assert(((KillIndices[NewReg] == -1) != (DefIndices[NewReg] == -1)) &&
+               "Kill and Def maps aren't consistent for NewReg!");
+        if (KillIndices[NewReg] == -1 &&
+            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
+          DOUT << "Breaking anti-dependence edge on reg " << AntiDepReg
+               << " with reg " << NewReg << "!\n";
+
+          // Update the references to the old register to refer to the new
+          // register.
+          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
+                    std::multimap<unsigned, MachineOperand *>::iterator>
+             Range = RegRefs.equal_range(AntiDepReg);
+          for (std::multimap<unsigned, MachineOperand *>::iterator
+               Q = Range.first, QE = Range.second; Q != QE; ++Q)
+            Q->second->setReg(NewReg);
+
+          // We just went back in time and modified history; the
+          // liveness information for the anti-depenence reg is now
+          // inconsistent. Set the state as if it were dead.
+          Classes[NewReg] = Classes[AntiDepReg];
+          DefIndices[NewReg] = DefIndices[AntiDepReg];
+          KillIndices[NewReg] = KillIndices[AntiDepReg];
+
+          Classes[AntiDepReg] = 0;
+          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
+          KillIndices[AntiDepReg] = -1;
+
+          RegRefs.erase(AntiDepReg);
+          Changed = true;
+          LastNewReg[AntiDepReg] = NewReg;
+          break;
+        }
+      }
+    }
+
+    // Update liveness.
+    Defs.clear();
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI->getOperand(i);
+      if (!MO.isReg()) continue;
+      unsigned Reg = MO.getReg();
+      if (Reg == 0) continue;
+      if (MO.isDef())
+        Defs.insert(Reg);
+      else {
+        // Treat a use in the same instruction as a def as an extension of
+        // a live range.
+        Defs.erase(Reg);
+        // It wasn't previously live but now it is, this is a kill.
+        if (KillIndices[Reg] == -1) {
+          KillIndices[Reg] = Count;
+          DefIndices[Reg] = -1;
+        }
+        // Repeat, for all aliases.
+        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+          unsigned AliasReg = *Alias;
+          Defs.erase(AliasReg);
+          if (KillIndices[AliasReg] == -1) {
+            KillIndices[AliasReg] = Count;
+            DefIndices[AliasReg] = -1;
+          }
+        }
+      }
+    }
+    // Proceding upwards, registers that are defed but not used in this
+    // instruction are now dead.
+    for (DenseSet<unsigned>::iterator D = Defs.begin(), DE = Defs.end();
+         D != DE; ++D) {
+      unsigned Reg = *D;
+      DefIndices[Reg] = Count;
+      KillIndices[Reg] = -1;
+      Classes[Reg] = 0;
+      RegRefs.erase(Reg);
+      // Repeat, for all subregs.
+      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+           *Subreg; ++Subreg) {
+        unsigned SubregReg = *Subreg;
+        DefIndices[SubregReg] = Count;
+        KillIndices[SubregReg] = -1;
+        Classes[SubregReg] = 0;
+        RegRefs.erase(SubregReg);
+      }
+    }
+  }
+  assert(Count == -1u && "Count mismatch!");
+
+  return Changed;
+}
+
 //===----------------------------------------------------------------------===//
 //  Top-Down Scheduling
 //===----------------------------------------------------------------------===//
@@ -202,8 +596,7 @@
       }
     }
     
-    // If there are no instructions available, don't try to issue anything, and
-    // don't advance the hazard recognizer.
+    // If there are no instructions available, don't try to issue anything.
     if (AvailableQueue.empty()) {
       ++CurCycle;
       continue;

Modified: llvm/trunk/lib/CodeGen/ScheduleDAG.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/ScheduleDAG.cpp?rev=59999&r1=59998&r2=59999&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/ScheduleDAG.cpp (original)
+++ llvm/trunk/lib/CodeGen/ScheduleDAG.cpp Mon Nov 24 18:52:40 2008
@@ -263,3 +263,204 @@
          "The number of nodes scheduled doesn't match the expected number!");
 }
 #endif
+
+/// InitDAGTopologicalSorting - create the initial topological 
+/// ordering from the DAG to be scheduled.
+///
+/// The idea of the algorithm is taken from 
+/// "Online algorithms for managing the topological order of
+/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
+/// This is the MNR algorithm, which was first introduced by 
+/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in  
+/// "Maintaining a topological order under edge insertions".
+///
+/// Short description of the algorithm: 
+///
+/// Topological ordering, ord, of a DAG maps each node to a topological
+/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
+///
+/// This means that if there is a path from the node X to the node Z, 
+/// then ord(X) < ord(Z).
+///
+/// This property can be used to check for reachability of nodes:
+/// if Z is reachable from X, then an insertion of the edge Z->X would 
+/// create a cycle.
+///
+/// The algorithm first computes a topological ordering for the DAG by
+/// initializing the Index2Node and Node2Index arrays and then tries to keep
+/// the ordering up-to-date after edge insertions by reordering the DAG.
+///
+/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
+/// the nodes reachable from Y, and then shifts them using Shift to lie
+/// immediately after X in Index2Node.
+void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
+  unsigned DAGSize = SUnits.size();
+  std::vector<SUnit*> WorkList;
+  WorkList.reserve(DAGSize);
+
+  Index2Node.resize(DAGSize);
+  Node2Index.resize(DAGSize);
+
+  // Initialize the data structures.
+  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
+    SUnit *SU = &SUnits[i];
+    int NodeNum = SU->NodeNum;
+    unsigned Degree = SU->Succs.size();
+    // Temporarily use the Node2Index array as scratch space for degree counts.
+    Node2Index[NodeNum] = Degree;
+
+    // Is it a node without dependencies?
+    if (Degree == 0) {
+      assert(SU->Succs.empty() && "SUnit should have no successors");
+      // Collect leaf nodes.
+      WorkList.push_back(SU);
+    }
+  }  
+
+  int Id = DAGSize;
+  while (!WorkList.empty()) {
+    SUnit *SU = WorkList.back();
+    WorkList.pop_back();
+    Allocate(SU->NodeNum, --Id);
+    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+         I != E; ++I) {
+      SUnit *SU = I->Dep;
+      if (!--Node2Index[SU->NodeNum])
+        // If all dependencies of the node are processed already,
+        // then the node can be computed now.
+        WorkList.push_back(SU);
+    }
+  }
+
+  Visited.resize(DAGSize);
+
+#ifndef NDEBUG
+  // Check correctness of the ordering
+  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
+    SUnit *SU = &SUnits[i];
+    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+         I != E; ++I) {
+      assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && 
+      "Wrong topological sorting");
+    }
+  }
+#endif
+}
+
+/// AddPred - Updates the topological ordering to accomodate an edge
+/// to be added from SUnit X to SUnit Y.
+void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
+  int UpperBound, LowerBound;
+  LowerBound = Node2Index[Y->NodeNum];
+  UpperBound = Node2Index[X->NodeNum];
+  bool HasLoop = false;
+  // Is Ord(X) < Ord(Y) ?
+  if (LowerBound < UpperBound) {
+    // Update the topological order.
+    Visited.reset();
+    DFS(Y, UpperBound, HasLoop);
+    assert(!HasLoop && "Inserted edge creates a loop!");
+    // Recompute topological indexes.
+    Shift(Visited, LowerBound, UpperBound);
+  }
+}
+
+/// RemovePred - Updates the topological ordering to accomodate an
+/// an edge to be removed from the specified node N from the predecessors
+/// of the current node M.
+void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
+  // InitDAGTopologicalSorting();
+}
+
+/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
+/// all nodes affected by the edge insertion. These nodes will later get new
+/// topological indexes by means of the Shift method.
+void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
+  std::vector<const SUnit*> WorkList;
+  WorkList.reserve(SUnits.size()); 
+
+  WorkList.push_back(SU);
+  while (!WorkList.empty()) {
+    SU = WorkList.back();
+    WorkList.pop_back();
+    Visited.set(SU->NodeNum);
+    for (int I = SU->Succs.size()-1; I >= 0; --I) {
+      int s = SU->Succs[I].Dep->NodeNum;
+      if (Node2Index[s] == UpperBound) {
+        HasLoop = true; 
+        return;
+      }
+      // Visit successors if not already and in affected region.
+      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
+        WorkList.push_back(SU->Succs[I].Dep);
+      } 
+    } 
+  }
+}
+
+/// Shift - Renumber the nodes so that the topological ordering is 
+/// preserved.
+void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 
+                              int UpperBound) {
+  std::vector<int> L;
+  int shift = 0;
+  int i;
+
+  for (i = LowerBound; i <= UpperBound; ++i) {
+    // w is node at topological index i.
+    int w = Index2Node[i];
+    if (Visited.test(w)) {
+      // Unmark.
+      Visited.reset(w);
+      L.push_back(w);
+      shift = shift + 1;
+    } else {
+      Allocate(w, i - shift);
+    }
+  }
+
+  for (unsigned j = 0; j < L.size(); ++j) {
+    Allocate(L[j], i - shift);
+    i = i + 1;
+  }
+}
+
+
+/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
+/// create a cycle.
+bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
+  if (IsReachable(TargetSU, SU))
+    return true;
+  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+       I != E; ++I)
+    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
+      return true;
+  return false;
+}
+
+/// IsReachable - Checks if SU is reachable from TargetSU.
+bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
+  // If insertion of the edge SU->TargetSU would create a cycle
+  // then there is a path from TargetSU to SU.
+  int UpperBound, LowerBound;
+  LowerBound = Node2Index[TargetSU->NodeNum];
+  UpperBound = Node2Index[SU->NodeNum];
+  bool HasLoop = false;
+  // Is Ord(TargetSU) < Ord(SU) ?
+  if (LowerBound < UpperBound) {
+    Visited.reset();
+    // There may be a path from TargetSU to SU. Check for it. 
+    DFS(TargetSU, UpperBound, HasLoop);
+  }
+  return HasLoop;
+}
+
+/// Allocate - assign the topological index to the node n.
+void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
+  Node2Index[n] = index;
+  Index2Node[index] = n;
+}
+
+ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
+                                                     std::vector<SUnit> &sunits)
+ : SUnits(sunits) {}

Modified: llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp?rev=59999&r1=59998&r2=59999&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp Mon Nov 24 18:52:40 2008
@@ -69,12 +69,16 @@
   std::vector<SUnit*> LiveRegDefs;
   std::vector<unsigned> LiveRegCycles;
 
+  /// Topo - A topological ordering for SUnits which permits fast IsReachable
+  /// and similar queries.
+  ScheduleDAGTopologicalSort Topo;
+
 public:
   ScheduleDAGRRList(SelectionDAG *dag, MachineBasicBlock *bb,
                     const TargetMachine &tm, bool isbottomup,
                     SchedulingPriorityQueue *availqueue)
     : ScheduleDAGSDNodes(dag, bb, tm), isBottomUp(isbottomup),
-      AvailableQueue(availqueue) {
+      AvailableQueue(availqueue), Topo(SUnits) {
     }
 
   ~ScheduleDAGRRList() {
@@ -84,22 +88,32 @@
   void Schedule();
 
   /// IsReachable - Checks if SU is reachable from TargetSU.
-  bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
+  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
+    return Topo.IsReachable(SU, TargetSU);
+  }
 
   /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
   /// create a cycle.
-  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
+  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
+    return Topo.WillCreateCycle(SU, TargetSU);
+  }
 
   /// AddPred - This adds the specified node X as a predecessor of 
   /// the current node Y if not already.
   /// This returns true if this is a new predecessor.
   /// Updates the topological ordering if required.
   bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isArtificial,
-               unsigned PhyReg = 0, int Cost = 1);
+               unsigned PhyReg = 0, int Cost = 1) {
+    Topo.AddPred(Y, X);
+    return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
+  }
 
   /// RemovePred - This removes the specified node N from the predecessors of 
   /// the current node M. Updates the topological ordering if required.
-  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial);
+  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial) {
+    Topo.RemovePred(M, N);
+    return M->removePred(N, isCtrl, isArtificial, false);
+  }
 
 private:
   void ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain);
@@ -123,49 +137,24 @@
   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
   /// Updates the topological ordering if required.
   SUnit *CreateNewSUnit(SDNode *N) {
+    unsigned NumSUnits = SUnits.size();
     SUnit *NewNode = NewSUnit(N);
     // Update the topological ordering.
-    if (NewNode->NodeNum >= Node2Index.size())
-      InitDAGTopologicalSorting();
+    if (NewNode->NodeNum >= NumSUnits)
+      Topo.InitDAGTopologicalSorting();
     return NewNode;
   }
 
   /// CreateClone - Creates a new SUnit from an existing one.
   /// Updates the topological ordering if required.
   SUnit *CreateClone(SUnit *N) {
+    unsigned NumSUnits = SUnits.size();
     SUnit *NewNode = Clone(N);
     // Update the topological ordering.
-    if (NewNode->NodeNum >= Node2Index.size())
-      InitDAGTopologicalSorting();
+    if (NewNode->NodeNum >= NumSUnits)
+      Topo.InitDAGTopologicalSorting();
     return NewNode;
   }
-
-  /// Functions for preserving the topological ordering
-  /// even after dynamic insertions of new edges.
-  /// This allows a very fast implementation of IsReachable.
-
-  /// InitDAGTopologicalSorting - create the initial topological 
-  /// ordering from the DAG to be scheduled.
-  void InitDAGTopologicalSorting();
-
-  /// DFS - make a DFS traversal and mark all nodes affected by the 
-  /// edge insertion. These nodes will later get new topological indexes
-  /// by means of the Shift method.
-  void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
-
-  /// Shift - reassign topological indexes for the nodes in the DAG
-  /// to preserve the topological ordering.
-  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
-
-  /// Allocate - assign the topological index to the node n.
-  void Allocate(int n, int index);
-
-  /// Index2Node - Maps topological index to the node number.
-  std::vector<int> Index2Node;
-  /// Node2Index - Maps the node number to its topological index.
-  std::vector<int> Node2Index;
-  /// Visited - a set of nodes visited during a DFS traversal.
-  BitVector Visited;
 };
 }  // end anonymous namespace
 
@@ -185,7 +174,7 @@
           SUnits[su].dumpAll(this));
   CalculateDepths();
   CalculateHeights();
-  InitDAGTopologicalSorting();
+  Topo.InitDAGTopologicalSorting();
 
   AvailableQueue->initNodes(SUnits);
   
@@ -374,207 +363,6 @@
   AvailableQueue->push(SU);
 }
 
-/// IsReachable - Checks if SU is reachable from TargetSU.
-bool ScheduleDAGRRList::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
-  // If insertion of the edge SU->TargetSU would create a cycle
-  // then there is a path from TargetSU to SU.
-  int UpperBound, LowerBound;
-  LowerBound = Node2Index[TargetSU->NodeNum];
-  UpperBound = Node2Index[SU->NodeNum];
-  bool HasLoop = false;
-  // Is Ord(TargetSU) < Ord(SU) ?
-  if (LowerBound < UpperBound) {
-    Visited.reset();
-    // There may be a path from TargetSU to SU. Check for it. 
-    DFS(TargetSU, UpperBound, HasLoop);
-  }
-  return HasLoop;
-}
-
-/// Allocate - assign the topological index to the node n.
-inline void ScheduleDAGRRList::Allocate(int n, int index) {
-  Node2Index[n] = index;
-  Index2Node[index] = n;
-}
-
-/// InitDAGTopologicalSorting - create the initial topological 
-/// ordering from the DAG to be scheduled.
-
-/// The idea of the algorithm is taken from 
-/// "Online algorithms for managing the topological order of
-/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
-/// This is the MNR algorithm, which was first introduced by 
-/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in  
-/// "Maintaining a topological order under edge insertions".
-///
-/// Short description of the algorithm: 
-///
-/// Topological ordering, ord, of a DAG maps each node to a topological
-/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
-///
-/// This means that if there is a path from the node X to the node Z, 
-/// then ord(X) < ord(Z).
-///
-/// This property can be used to check for reachability of nodes:
-/// if Z is reachable from X, then an insertion of the edge Z->X would 
-/// create a cycle.
-///
-/// The algorithm first computes a topological ordering for the DAG by
-/// initializing the Index2Node and Node2Index arrays and then tries to keep
-/// the ordering up-to-date after edge insertions by reordering the DAG.
-///
-/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
-/// the nodes reachable from Y, and then shifts them using Shift to lie
-/// immediately after X in Index2Node.
-void ScheduleDAGRRList::InitDAGTopologicalSorting() {
-  unsigned DAGSize = SUnits.size();
-  std::vector<SUnit*> WorkList;
-  WorkList.reserve(DAGSize);
-
-  Index2Node.resize(DAGSize);
-  Node2Index.resize(DAGSize);
-
-  // Initialize the data structures.
-  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
-    SUnit *SU = &SUnits[i];
-    int NodeNum = SU->NodeNum;
-    unsigned Degree = SU->Succs.size();
-    // Temporarily use the Node2Index array as scratch space for degree counts.
-    Node2Index[NodeNum] = Degree;
-
-    // Is it a node without dependencies?
-    if (Degree == 0) {
-        assert(SU->Succs.empty() && "SUnit should have no successors");
-        // Collect leaf nodes.
-        WorkList.push_back(SU);
-    }
-  }  
-
-  int Id = DAGSize;
-  while (!WorkList.empty()) {
-    SUnit *SU = WorkList.back();
-    WorkList.pop_back();
-    Allocate(SU->NodeNum, --Id);
-    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-         I != E; ++I) {
-      SUnit *SU = I->Dep;
-      if (!--Node2Index[SU->NodeNum])
-        // If all dependencies of the node are processed already,
-        // then the node can be computed now.
-        WorkList.push_back(SU);
-    }
-  }
-
-  Visited.resize(DAGSize);
-
-#ifndef NDEBUG
-  // Check correctness of the ordering
-  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
-    SUnit *SU = &SUnits[i];
-    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-         I != E; ++I) {
-       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && 
-       "Wrong topological sorting");
-    }
-  }
-#endif
-}
-
-/// AddPred - adds an edge from SUnit X to SUnit Y.
-/// Updates the topological ordering if required.
-bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl,
-                 bool isArtificial, unsigned PhyReg, int Cost) {
-  int UpperBound, LowerBound;
-  LowerBound = Node2Index[Y->NodeNum];
-  UpperBound = Node2Index[X->NodeNum];
-  bool HasLoop = false;
-  // Is Ord(X) < Ord(Y) ?
-  if (LowerBound < UpperBound) {
-    // Update the topological order.
-    Visited.reset();
-    DFS(Y, UpperBound, HasLoop);
-    assert(!HasLoop && "Inserted edge creates a loop!");
-    // Recompute topological indexes.
-    Shift(Visited, LowerBound, UpperBound);
-  }
-  // Now really insert the edge.
-  return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
-}
-
-/// RemovePred - This removes the specified node N from the predecessors of 
-/// the current node M. Updates the topological ordering if required.
-bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N, 
-                                   bool isCtrl, bool isArtificial) {
-  // InitDAGTopologicalSorting();
-  return M->removePred(N, isCtrl, isArtificial, false);
-}
-
-/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
-/// all nodes affected by the edge insertion. These nodes will later get new
-/// topological indexes by means of the Shift method.
-void ScheduleDAGRRList::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
-  std::vector<const SUnit*> WorkList;
-  WorkList.reserve(SUnits.size()); 
-
-  WorkList.push_back(SU);
-  while (!WorkList.empty()) {
-    SU = WorkList.back();
-    WorkList.pop_back();
-    Visited.set(SU->NodeNum);
-    for (int I = SU->Succs.size()-1; I >= 0; --I) {
-      int s = SU->Succs[I].Dep->NodeNum;
-      if (Node2Index[s] == UpperBound) {
-        HasLoop = true; 
-        return;
-      }
-      // Visit successors if not already and in affected region.
-      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
-        WorkList.push_back(SU->Succs[I].Dep);
-      } 
-    } 
-  }
-}
-
-/// Shift - Renumber the nodes so that the topological ordering is 
-/// preserved.
-void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound, 
-                              int UpperBound) {
-  std::vector<int> L;
-  int shift = 0;
-  int i;
-
-  for (i = LowerBound; i <= UpperBound; ++i) {
-    // w is node at topological index i.
-    int w = Index2Node[i];
-    if (Visited.test(w)) {
-      // Unmark.
-      Visited.reset(w);
-      L.push_back(w);
-      shift = shift + 1;
-    } else {
-      Allocate(w, i - shift);
-    }
-  }
-
-  for (unsigned j = 0; j < L.size(); ++j) {
-    Allocate(L[j], i - shift);
-    i = i + 1;
-  }
-}
-
-
-/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
-/// create a cycle.
-bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
-  if (IsReachable(TargetSU, SU))
-    return true;
-  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-       I != E; ++I)
-    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
-      return true;
-  return false;
-}
-
 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
 /// BTCycle in order to schedule a specific node. Returns the last unscheduled
 /// SUnit. Also returns if a successor is unscheduled in the process.

Added: llvm/trunk/test/CodeGen/X86/break-anti-dependencies.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/break-anti-dependencies.ll?rev=59999&view=auto

==============================================================================
--- llvm/trunk/test/CodeGen/X86/break-anti-dependencies.ll (added)
+++ llvm/trunk/test/CodeGen/X86/break-anti-dependencies.ll Mon Nov 24 18:52:40 2008
@@ -0,0 +1,33 @@
+; RUN: llvm-as < %s | llc -march=x86-64 -disable-post-RA-scheduler=false > %t
+; RUN:   grep {%xmm0} %t | count 14
+; RUN:   not grep {%xmm1} %t
+; RUN: llvm-as < %s | llc -march=x86-64 -disable-post-RA-scheduler=false -break-anti-dependencies > %t
+; RUN:   grep {%xmm0} %t | count 7
+; RUN:   grep {%xmm1} %t | count 7
+
+define void @goo(double* %r, double* %p, double* %q) nounwind {
+entry:
+	%0 = load double* %p, align 8
+	%1 = add double %0, 1.100000e+00
+	%2 = mul double %1, 1.200000e+00
+	%3 = add double %2, 1.300000e+00
+	%4 = mul double %3, 1.400000e+00
+	%5 = add double %4, 1.500000e+00
+	%6 = fptosi double %5 to i32
+	%7 = load double* %r, align 8
+	%8 = add double %7, 7.100000e+00
+	%9 = mul double %8, 7.200000e+00
+	%10 = add double %9, 7.300000e+00
+	%11 = mul double %10, 7.400000e+00
+	%12 = add double %11, 7.500000e+00
+	%13 = fptosi double %12 to i32
+	%14 = icmp slt i32 %6, %13
+	br i1 %14, label %bb, label %return
+
+bb:
+	store double 9.300000e+00, double* %q, align 8
+	ret void
+
+return:
+	ret void
+}





More information about the llvm-commits mailing list