[llvm-commits] CVS: llvm/lib/Transforms/Instrumentation/RSProfiling.cpp RSProfiling.h

Andrew Lenharth alenhar2 at cs.uiuc.edu
Sun Nov 27 16:58:21 PST 2005



Changes in directory llvm/lib/Transforms/Instrumentation:

RSProfiling.cpp added (r1.1)
RSProfiling.h added (r1.1)
---
Log message:

Random sampling (aka Arnold and Ryder) profiling.  This is still preliminary, but it works on spec on x86 and alpha.  The idea is to allow profiling passes to remember what profiling they inserted, then a random sampling framework is inserted which consists of duplicated basic blocks (without profiling), such that at each backedge in the program and entry into every function, the framework chooses whether to use the instrumented code or the instrumentation free code.  The goal of such a framework is to make it reasonably cheap to do random sampling of very expensive profiling products (such as load-value profiling).

The code is organized into 3 parts (2 passes)
1) a linked set of profiling passes, which implement an analysis group (linked, like alias analysis are).  These insert profiling into the program, and remember what they inserted, so that at a later time they can be queried about any instruction.

2) a pass that handles inserting the random sampling framework.  This also has options to control how random samples are choosen.  Currently implemented are Global counters, register allocated global counters, and read cycle counter (see? there was a reason for it).

The profiling passes are almost identical to the existing ones (block, function, and null profiling is supported right now), and they are valid passes without the sampling framework (hence the existing passes can be unified with the new ones, not done yet).

Some things are a bit ugly still, but that should be fixed up soon enough.

Other todo? making the counter values not "magic 2^16 -1" values, but dynamically choosable.



---
Diffs of the changes:  (+730 -0)

 RSProfiling.cpp |  702 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 RSProfiling.h   |   28 ++
 2 files changed, 730 insertions(+)


Index: llvm/lib/Transforms/Instrumentation/RSProfiling.cpp
diff -c /dev/null llvm/lib/Transforms/Instrumentation/RSProfiling.cpp:1.1
*** /dev/null	Sun Nov 27 18:58:19 2005
--- llvm/lib/Transforms/Instrumentation/RSProfiling.cpp	Sun Nov 27 18:58:09 2005
***************
*** 0 ****
--- 1,702 ----
+ //===- RSProfiling.cpp - Various profiling using random sampling ----------===//
+ //
+ //                      The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // These passes implement a random sampling based profiling.  Different methods
+ // of choosing when to sample are supported, as well as different types of
+ // profiling.  This is done as two passes.  The first is a sequence of profiling
+ // passes which insert profiling into the program, and remember what they inserted.
+ // The second stage duplicates all instructions in a function, ignoring the 
+ // profiling code, then connects the two versions togeather at the entry and at
+ // backedges.  At each connection point a choice is made as to whether to jump
+ // to the profiled code (take a sample) or execute the unprofiled code.
+ //
+ // It is highly recommeneded that after this pass one runs mem2reg and adce
+ // (instcombine load-vn gdce dse also are good to run afterwards)
+ //
+ // This design is intended to make the profiling passes independent of the RS
+ // framework, but any profiling pass that implements the RSProfiling interface
+ // is compatible with the rs framework (and thus can be sampled)
+ //
+ // TODO: obviously the block and function profiling are almost identical to the
+ // existing ones, so they can be unified (esp since these passes are valid
+ // without the rs framework).
+ // TODO: Fix choice code so that frequency is not hard coded
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #include "llvm/Pass.h"
+ #include "llvm/Function.h"
+ #include "llvm/Module.h"
+ #include "llvm/BasicBlock.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Transforms/Scalar.h"
+ #include "llvm/Transforms/Utils/BasicBlockUtils.h"
+ #include "llvm/ADT/Statistic.h"
+ #include "llvm/Support/CommandLine.h"
+ #include "llvm/Support/Debug.h"
+ #include "llvm/Transforms/Instrumentation.h"
+ #include "ProfilingUtils.h"
+ #include "RSProfiling.h"
+ 
+ #include <set>
+ #include <map>
+ #include <queue>
+ #include <list>
+ #include <iostream>
+ 
+ using namespace llvm;
+ 
+ namespace {
+   Statistic<> NumBackEdges("bedge", "Number of BackEdges");
+ 
+   enum RandomMeth {
+     GBV, GBVO, HOSTCC
+   };
+ 
+   cl::opt<RandomMeth> RandomMethod("profile-randomness",
+       cl::desc("How to randomly choose to profile:"),
+       cl::values(
+                  clEnumValN(GBV, "global", "global counter"),
+                  clEnumValN(GBVO, "ra_global", "register allocated global counter"),
+                  clEnumValN(HOSTCC, "rdcc", "cycle counter"),
+                  clEnumValEnd));
+   
+ 
+   class FunctionProfilerRS : public RSProfilers {
+     bool runOnModule(Module &M);
+   };
+ 
+   class BlockProfilerRS : public RSProfilers {
+     bool runOnModule(Module &M);
+   };
+ 
+   class NullProfilerRS : public RSProfilers {
+   public:
+     bool isProfiling(Value* v) {
+       return false;
+     }
+     bool runOnModule(Module &M) {
+       return false;
+     }
+     void getAnalysisUsage(AnalysisUsage &AU) const {
+       AU.setPreservesAll();
+     }
+   };
+ 
+   static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
+   static RegisterOpt<NullProfilerRS> NP("insert-null-profiling-rs",
+                                           "Measure profiling framework overhead");
+   static RegisterAnalysisGroup<RSProfilers, NullProfilerRS, true> NPT;
+   static RegisterOpt<BlockProfilerRS> BBP("insert-block-profiling-rs",
+                                           "Add block count instrumentation");
+   static RegisterAnalysisGroup<RSProfilers, BlockProfilerRS> BBPT;
+   static RegisterOpt<FunctionProfilerRS> FP("insert-function-profiling-rs",
+                                           "Add function count instrumentation");
+   static RegisterAnalysisGroup<RSProfilers, FunctionProfilerRS> FPT;
+ 
+ 
+   //Something that chooses how to sample
+   class Chooser {
+   public:
+     virtual void ProcessChoicePoint(BasicBlock*) = 0;
+     virtual void PrepFunction(Function*) = 0;
+     virtual ~Chooser() {}
+   };
+ 
+   //Things that implement sampling policies
+   class GlobalRandomCounter : public Chooser {
+     GlobalVariable* Counter;
+     Value* ResetValue;
+     const Type* T;
+   public:
+     GlobalRandomCounter(Module& M, const Type* t, uint64_t resetval);
+     virtual ~GlobalRandomCounter();
+     virtual void PrepFunction(Function* F);
+     virtual void ProcessChoicePoint(BasicBlock* bb);
+   };
+ 
+   class GlobalRandomCounterOpt : public Chooser {
+     GlobalVariable* Counter;
+     Value* ResetValue;
+     AllocaInst* AI;
+     const Type* T;
+   public:
+     GlobalRandomCounterOpt(Module& M, const Type* t, uint64_t resetval);
+     virtual ~GlobalRandomCounterOpt();
+     virtual void PrepFunction(Function* F);
+     virtual void ProcessChoicePoint(BasicBlock* bb);
+   };
+ 
+   class CycleCounter : public Chooser {
+     uint64_t rm;
+     Function* F;
+   public:
+     CycleCounter(Module& m, uint64_t resetmask);
+     virtual ~CycleCounter();
+     virtual void PrepFunction(Function* F);
+     virtual void ProcessChoicePoint(BasicBlock* bb);
+   };
+ 
+ 
+   struct ProfilerRS : public FunctionPass {
+     std::map<Value*, Value*> TransCache;
+     std::set<BasicBlock*> ChoicePoints;
+     Chooser* c;
+ 
+     Value* Translate(Value* v);
+     void Duplicate(Function& F, RSProfilers& LI);
+     void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
+     bool runOnFunction(Function& F);
+     bool doInitialization(Module &M);
+     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+   };
+ 
+   RegisterOpt<ProfilerRS> X("insert-rs-profiling-framework",
+                                 "Insert random sampling instrumentation  framework");
+ };
+ 
+ //Local utilities
+ static void ReplacePhiPred(BasicBlock* btarget, 
+                            BasicBlock* bold, BasicBlock* bnew);
+ 
+ static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);
+ 
+ template<class T>
+ static void recBackEdge(BasicBlock* bb, T& BackEdges, 
+                         std::map<BasicBlock*, int>& color,
+                         std::map<BasicBlock*, int>& depth,
+                         std::map<BasicBlock*, int>& finish,
+                         int& time);
+ 
+ //find the back edges and where they go to
+ template<class T>
+ static void getBackEdges(Function& F, T& BackEdges);
+ 
+ 
+ ///////////////////////////////////////
+ // Methods of choosing when to profile
+ ///////////////////////////////////////
+   
+ GlobalRandomCounter::GlobalRandomCounter(Module& M, const Type* t, 
+                                          uint64_t resetval) : T(t) {
+   Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
+                                ConstantUInt::get(T, resetval),
+                                "RandomSteeringCounter", &M);
+   ResetValue = ConstantUInt::get(T, resetval);
+ }
+ 
+ GlobalRandomCounter::~GlobalRandomCounter() {}
+ 
+ void GlobalRandomCounter::PrepFunction(Function* F) {}
+ 
+ void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
+   BranchInst* t = cast<BranchInst>(bb->getTerminator());
+   
+   //decrement counter
+   LoadInst* l = new LoadInst(Counter, "counter", t);
+   
+   SetCondInst* s = new SetCondInst(Instruction::SetEQ, l, ConstantUInt::get(T, 0), 
+                                    "countercc", t);
+   Value* nv = BinaryOperator::create(Instruction::Sub, l,
+                                      ConstantInt::get(T, 1),
+                                      "counternew", t);
+   new StoreInst(nv, Counter, t);
+   t->setCondition(s);
+   
+   //reset counter
+   BasicBlock* oldnext = t->getSuccessor(0);
+   BasicBlock* resetblock = new BasicBlock("reset", oldnext->getParent(), oldnext);
+   TerminatorInst* t2 = new BranchInst(oldnext, resetblock);
+   t->setSuccessor(0, resetblock);
+   new StoreInst(ResetValue, Counter, t2);
+   ReplacePhiPred(oldnext, bb, resetblock);
+ }
+ 
+ GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const Type* t, 
+                                                uint64_t resetval) 
+   : AI(0), T(t) {
+   Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
+                                ConstantUInt::get(T, resetval),
+                                "RandomSteeringCounter", &M);
+   ResetValue = ConstantUInt::get(T, resetval);
+ }
+ 
+ GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
+ 
+ void GlobalRandomCounterOpt::PrepFunction(Function* F) {
+   //make a local temporary to cache the global
+   BasicBlock& bb = F->getEntryBlock();
+   AI = new AllocaInst(T, 0, "localcounter", bb.begin());
+   LoadInst* l = new LoadInst(Counter, "counterload", AI->getNext());
+   new StoreInst(l, AI, l->getNext());
+   
+   //modify all functions and return values
+   for(Function::iterator fib = F->begin(), fie = F->end();
+       fib != fie; ++fib)
+     for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
+         bib != bie; ++bib)
+       if (isa<CallInst>(&*bib)) {
+         LoadInst* l = new LoadInst(AI, "counter", bib);
+         new StoreInst(l, Counter, bib);
+         l = new LoadInst(Counter, "counter", bib->getNext());
+         new StoreInst(l, AI, l->getNext());
+       } else if (isa<InvokeInst>(&*bib)) {
+         LoadInst* l = new LoadInst(AI, "counter", bib);
+         new StoreInst(l, Counter, bib);
+         
+         BasicBlock* bb = cast<InvokeInst>(&*bib)->getNormalDest();
+         Instruction* i = bb->begin();
+         while (isa<PHINode>(i)) i = i->getNext();
+         l = new LoadInst(Counter, "counter", i);
+         
+         bb = cast<InvokeInst>(&*bib)->getUnwindDest();
+         i = bb->begin();
+         while (isa<PHINode>(i)) i = i->getNext();
+         l = new LoadInst(Counter, "counter", i);
+         new StoreInst(l, AI, l->getNext());
+       } else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
+         LoadInst* l = new LoadInst(AI, "counter", bib);
+         new StoreInst(l, Counter, bib);
+       }
+ }
+ 
+ void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
+   BranchInst* t = cast<BranchInst>(bb->getTerminator());
+   
+   //decrement counter
+   LoadInst* l = new LoadInst(AI, "counter", t);
+   
+   SetCondInst* s = new SetCondInst(Instruction::SetEQ, l, ConstantUInt::get(T, 0), 
+                                    "countercc", t);
+   Value* nv = BinaryOperator::create(Instruction::Sub, l,
+                                      ConstantInt::get(T, 1),
+                                      "counternew", t);
+   new StoreInst(nv, AI, t);
+   t->setCondition(s);
+   
+   //reset counter
+   BasicBlock* oldnext = t->getSuccessor(0);
+   BasicBlock* resetblock = new BasicBlock("reset", oldnext->getParent(), oldnext);
+   TerminatorInst* t2 = new BranchInst(oldnext, resetblock);
+   t->setSuccessor(0, resetblock);
+   new StoreInst(ResetValue, AI, t2);
+   ReplacePhiPred(oldnext, bb, resetblock);
+ }
+ 
+ 
+ CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
+   F = m.getOrInsertFunction("llvm.readcyclecounter", Type::ULongTy, NULL);
+ }
+ 
+ CycleCounter::~CycleCounter() {}
+ 
+ void CycleCounter::PrepFunction(Function* F) {}
+ 
+ void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
+   BranchInst* t = cast<BranchInst>(bb->getTerminator());
+   
+   CallInst* c = new CallInst(F, "rdcc", t);
+   BinaryOperator* b = BinaryOperator::create(Instruction::And, c, ConstantUInt::get(Type::ULongTy, rm), "mrdcc", t);
+   
+   SetCondInst* s = new SetCondInst(Instruction::SetEQ, b, ConstantUInt::get(Type::ULongTy, 0), 
+                                    "mrdccc", t);
+   t->setCondition(s);
+ }
+ 
+ ///////////////////////////////////////
+ // Profiling:
+ ///////////////////////////////////////
+ bool RSProfilers::isProfiling(Value* v) {
+   if (profcode.find(v) != profcode.end())
+     return true;
+   //else
+   RSProfilers& LI = getAnalysis<RSProfilers>();
+   return LI.isProfiling(v);
+ }
+ 
+ void RSProfilers::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
+                                           GlobalValue *CounterArray) {
+   // Insert the increment after any alloca or PHI instructions...
+   BasicBlock::iterator InsertPos = BB->begin();
+   while (isa<AllocaInst>(InsertPos) || isa<PHINode>(InsertPos))
+     ++InsertPos;
+   
+   // Create the getelementptr constant expression
+   std::vector<Constant*> Indices(2);
+   Indices[0] = Constant::getNullValue(Type::IntTy);
+   Indices[1] = ConstantSInt::get(Type::IntTy, CounterNum);
+   Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray, Indices);
+   
+   // Load, increment and store the value back.
+   Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
+   profcode.insert(OldVal);
+   Value *NewVal = BinaryOperator::create(Instruction::Add, OldVal,
+                                          ConstantInt::get(Type::UIntTy, 1),
+                                          "NewCounter", InsertPos);
+   profcode.insert(NewVal);
+   profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
+ }
+ 
+ void RSProfilers::getAnalysisUsage(AnalysisUsage &AU) const {
+   //grab any outstanding profiler, or get the null one
+   AU.addRequired<RSProfilers>();
+ }
+ 
+ bool FunctionProfilerRS::runOnModule(Module &M) {
+   Function *Main = M.getMainFunction();
+   if (Main == 0) {
+     std::cerr << "WARNING: cannot insert function profiling into a module"
+               << " with no main function!\n";
+     return false;  // No main, no instrumentation!
+   }
+   
+   unsigned NumFunctions = 0;
+   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+     if (!I->isExternal())
+       ++NumFunctions;
+   
+   const Type *ATy = ArrayType::get(Type::UIntTy, NumFunctions);
+   GlobalVariable *Counters =
+     new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
+                        Constant::getNullValue(ATy), "FuncProfCounters", &M);
+   
+   // Instrument all of the functions...
+   unsigned i = 0;
+   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+     if (!I->isExternal())
+       // Insert counter at the start of the function
+       IncrementCounterInBlock(I->begin(), i++, Counters);
+   
+   // Add the initialization call to main.
+   InsertProfilingInitCall(Main, "llvm_start_func_profiling", Counters);
+   return true;
+ }
+ 
+ bool BlockProfilerRS::runOnModule(Module &M) {
+   Function *Main = M.getMainFunction();
+   if (Main == 0) {
+     std::cerr << "WARNING: cannot insert block profiling into a module"
+               << " with no main function!\n";
+     return false;  // No main, no instrumentation!
+   }
+   
+   unsigned NumBlocks = 0;
+   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+     NumBlocks += I->size();
+   
+   const Type *ATy = ArrayType::get(Type::UIntTy, NumBlocks);
+   GlobalVariable *Counters =
+     new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
+                        Constant::getNullValue(ATy), "BlockProfCounters", &M);
+   
+   // Instrument all of the blocks...
+   unsigned i = 0;
+   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+     for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
+       // Insert counter at the start of the block
+       IncrementCounterInBlock(BB, i++, Counters);
+   
+   // Add the initialization call to main.
+   InsertProfilingInitCall(Main, "llvm_start_block_profiling", Counters);
+   return true;
+ }
+ 
+ ///////////////////////////////////////
+ // RS Framework
+ ///////////////////////////////////////
+ 
+ Value* ProfilerRS::Translate(Value* v) {
+   if(TransCache[v])
+     return TransCache[v];
+   
+   if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
+     if (bb == &bb->getParent()->getEntryBlock())
+       TransCache[bb] = bb; //don't translate entry block
+     else
+       TransCache[bb] = new BasicBlock("dup_" + bb->getName(), bb->getParent(), NULL);
+     return TransCache[bb];
+   } else if (Instruction* i = dyn_cast<Instruction>(v)) {
+     //we have already translated this
+     //do not translate entry block allocas
+     if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
+       TransCache[i] = i;
+       return i;
+     } else {
+       //translate this
+       Instruction* i2 = i->clone();
+       if (i->hasName())
+         i2->setName("dup_" + i->getName());
+       TransCache[i] = i2;
+       //NumNewInst++;
+       for (unsigned x = 0; x < i2->getNumOperands(); ++x)
+         i2->setOperand(x, Translate(i2->getOperand(x)));
+       return i2;
+     }
+   } else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
+     TransCache[v] = v;
+     return v;
+   }
+   assert(0 && "Value not handled");
+ }
+ 
+ void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
+ {
+   //perform a breadth first search, building up a duplicate of the code
+   std::queue<BasicBlock*> worklist;
+   std::set<BasicBlock*> seen;
+   
+   //This loop ensures proper BB order, to help performance
+   for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
+     worklist.push(fib);
+   while (!worklist.empty()) {
+     Translate(worklist.front());
+     worklist.pop();
+   }
+   
+   //remember than reg2mem created a new entry block we don't want to duplicate
+   worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
+   seen.insert(&F.getEntryBlock());
+   
+   while (!worklist.empty()) {
+     BasicBlock* bb = worklist.front();
+     worklist.pop();
+     if(seen.find(bb) == seen.end()) {
+       BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
+       BasicBlock::InstListType& instlist = bbtarget->getInstList();
+       for (BasicBlock::iterator iib = bb->begin(), iie = bb->end(); 
+            iib != iie; ++iib) {
+         //NumOldInst++;
+         if (!LI.isProfiling(&*iib)) {
+           Instruction* i = cast<Instruction>(Translate(iib));
+           instlist.insert(bbtarget->end(), i);
+         }
+       }
+       //updated search state;
+       seen.insert(bb);
+       TerminatorInst* ti = bb->getTerminator();
+       for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
+         BasicBlock* bbs = ti->getSuccessor(x);
+         if (seen.find(bbs) == seen.end()) {
+           worklist.push(bbs);
+         }
+       }
+     }
+   }
+ }
+ 
+ void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
+   //given a backedge from B -> A, and translations A' and B',
+   //a: insert C and C'
+   //b: add branches in C to A and A' and in C' to A and A'
+   //c: mod terminators at B, replace A with C
+   //d: mod terminators at B', replace A' with C'
+   //e: mod phis at A for pred B to be pred C
+   //       if multiple entries, simplify to one
+   //f: mod phis at A' for pred B' to be pred C'
+   //       if multiple entries, simplify to one
+   //g: for all phis at A with pred C using x
+   //       add in edge from C' using x'
+   //       add in edge from C using x in A'
+   
+   //a:
+   BasicBlock* bbC = new BasicBlock("choice", &F, src->getNext() );
+   //ChoicePoints.insert(bbC);
+   BasicBlock* bbCp = new BasicBlock("choice", &F, cast<BasicBlock>(Translate(src))->getNext() );
+   ChoicePoints.insert(bbCp);
+   
+   //b:
+   //new BranchInst(dst, cast<BasicBlock>(Translate(dst)), ConstantBool::get(true), bbC);
+   new BranchInst(cast<BasicBlock>(Translate(dst)), bbC);
+   new BranchInst(dst, cast<BasicBlock>(Translate(dst)), ConstantBool::get(true), bbCp);
+   //c:
+   {
+     TerminatorInst* iB = src->getTerminator();
+     for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
+       if (iB->getSuccessor(x) == dst)
+         iB->setSuccessor(x, bbC);
+   }
+   //d:
+   {
+     TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
+     for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
+       if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
+         iBp->setSuccessor(x, bbCp);
+   }
+   //e:
+   ReplacePhiPred(dst, src, bbC);
+   //src could be a switch, in which case we are replacing several edges with one
+   //thus collapse those edges int the Phi
+   CollapsePhi(dst, bbC);
+   //f:
+   ReplacePhiPred(cast<BasicBlock>(Translate(dst)),cast<BasicBlock>(Translate(src)),bbCp);
+   CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
+   //g:
+   for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
+       ++ib)
+     if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
+       for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
+         if(bbC == phi->getIncomingBlock(x)) {
+           phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
+           cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x), bbC);
+         }
+       phi->removeIncomingValue(bbC);
+     }
+ }
+ 
+ bool ProfilerRS::runOnFunction(Function& F) {
+   if (!F.isExternal()) {
+     std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
+     RSProfilers& LI = getAnalysis<RSProfilers>();
+     
+     getBackEdges(F, BackEdges);
+     DEBUG(
+           for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator ii = BackEdges.begin();
+                ii != BackEdges.end(); ++ii)
+             std::cerr << ii->first->getName() << " -> " << ii->second->getName() << "\n";
+           );
+     Duplicate(F, LI);
+     //assume that stuff worked.  now connect the duplicated basic blocks 
+     //with the originals in such a way as to preserve ssa.  yuk!
+     for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator ib = BackEdges.begin(),
+            ie = BackEdges.end(); ib != ie; ++ib)
+       ProcessBackEdge(ib->first, ib->second, F);
+     
+     //oh, and add the edge from the reg2mem created entry node to the duplicated second node
+     TerminatorInst* T = F.getEntryBlock().getTerminator();
+     ReplaceInstWithInst(T, new BranchInst(T->getSuccessor(0),
+                                           cast<BasicBlock>(Translate(T->getSuccessor(0))),
+                                           ConstantBool::get(true)));
+     
+     //do whatever is needed now that the function is duplicated
+     c->PrepFunction(&F);
+     
+     //add entry node to choice points
+     ChoicePoints.insert(&F.getEntryBlock());
+     
+     for (std::set<BasicBlock*>::iterator ii = ChoicePoints.begin(), ie = ChoicePoints.end();
+          ii != ie; ++ii)
+       c->ProcessChoicePoint(*ii);
+     
+     ChoicePoints.clear();
+     TransCache.clear();
+     
+     return true;
+   }
+   return false;
+ }
+ 
+ bool ProfilerRS::doInitialization(Module &M) {
+   switch (RandomMethod) {
+   case GBV:
+     c = new GlobalRandomCounter(M, Type::UIntTy, (1 << 14) - 1);
+     break;
+   case GBVO:
+     c = new GlobalRandomCounterOpt(M, Type::UIntTy, (1 << 14) - 1);
+     break;
+   case HOSTCC:
+     c = new CycleCounter(M, (1 << 14) - 1);
+     break;
+   };
+   return true;
+ }
+ 
+ void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
+   AU.addRequired<RSProfilers>();
+   AU.addRequiredID(DemoteRegisterToMemoryID);
+ }
+ 
+ ///////////////////////////////////////
+ // Utilities:
+ ///////////////////////////////////////
+ static void ReplacePhiPred(BasicBlock* btarget, 
+                            BasicBlock* bold, BasicBlock* bnew) {
+   for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
+       ib != ie; ++ib)
+     if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
+       for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
+         if(bold == phi->getIncomingBlock(x))
+           phi->setIncomingBlock(x, bnew);
+     }
+ }
+ 
+ static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
+   for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
+       ib != ie; ++ib)
+     if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
+       unsigned total = phi->getNumIncomingValues();
+       std::map<BasicBlock*, Value*> counter;
+       for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
+         if (counter[phi->getIncomingBlock(i)]) {
+           assert (phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
+           phi->removeIncomingValue(i, false);
+         } else {
+           counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
+           ++i;
+         }
+       }
+     } 
+ }
+ 
+ template<class T>
+ static void recBackEdge(BasicBlock* bb, T& BackEdges, 
+                         std::map<BasicBlock*, int>& color,
+                         std::map<BasicBlock*, int>& depth,
+                         std::map<BasicBlock*, int>& finish,
+                         int& time)
+ {
+   color[bb] = 1;
+   ++time;
+   depth[bb] = time;
+   TerminatorInst* t= bb->getTerminator();
+   for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
+     BasicBlock* bbnew = t->getSuccessor(i);
+     if (color[bbnew] == 0)
+       recBackEdge(bbnew, BackEdges, color, depth, finish, time);
+     else if (color[bbnew] == 1) {
+       BackEdges.insert(std::make_pair(bb, bbnew));
+       //NumBackEdges++;
+     }
+   }
+   color[bb] = 2;
+   ++time;
+   finish[bb] = time;
+ }
+ 
+ 
+ 
+ //find the back edges and where they go to
+ template<class T>
+ static void getBackEdges(Function& F, T& BackEdges) {
+   std::map<BasicBlock*, int> color;
+   std::map<BasicBlock*, int> depth;
+   std::map<BasicBlock*, int> finish;
+   int time = 0;
+   recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
+   DEBUG(std::cerr << F.getName() << " " << BackEdges.size() << "\n");
+ }
+ 
+ 
+ //Creation functions
+ ModulePass* llvm::createBlockProfilerRSPass() {
+   return new BlockProfilerRS();
+ }
+ 
+ ModulePass* llvm::createFunctionProfilerRSPass() {
+   return new FunctionProfilerRS();
+ }
+ 
+ ModulePass* llvm::createNullProfilerRSPass() {
+   return new NullProfilerRS();
+ }
+ 
+ FunctionPass* llvm::createRSProfilingPass() {
+   return new ProfilerRS();
+ }


Index: llvm/lib/Transforms/Instrumentation/RSProfiling.h
diff -c /dev/null llvm/lib/Transforms/Instrumentation/RSProfiling.h:1.1
*** /dev/null	Sun Nov 27 18:58:21 2005
--- llvm/lib/Transforms/Instrumentation/RSProfiling.h	Sun Nov 27 18:58:09 2005
***************
*** 0 ****
--- 1,28 ----
+ //===- RSProfiling.cpp - Various profiling using random sampling ----------===//
+ //
+ //                      The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // See notes in RSProfiling.cpp
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ namespace llvm {
+   // By default, we provide some convienence stuff to clients, so they 
+   // can just store the instructions they create to do profiling.
+   // also, handle all chaining issues.
+   // a client is free to overwrite these, as long as it implements the
+   // chaining itself.
+   struct RSProfilers : public ModulePass {
+     std::set<Value*> profcode;
+     virtual bool isProfiling(Value* v);
+     virtual ~RSProfilers() {}
+     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+     void IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
+                                  GlobalValue *CounterArray);
+   };
+ };






More information about the llvm-commits mailing list