[llvm-commits] CVS: llvm/lib/Target/PowerPC/PPC64ISelPattern.cpp PowerPC.h PowerPCTargetMachine.cpp PPC64ISelSimple.cpp
Nate Begeman
natebegeman at mac.com
Tue Apr 5 01:51:27 PDT 2005
Changes in directory llvm/lib/Target/PowerPC:
PPC64ISelPattern.cpp added (r1.1)
PowerPC.h updated: 1.12 -> 1.13
PowerPCTargetMachine.cpp updated: 1.48 -> 1.49
PPC64ISelSimple.cpp (r1.18) removed
---
Log message:
Remove 64 bit simple ISel, it never worked correctly
Add initial (buggy) implementation of 64 bit pattern ISel
---
Diffs of the changes: (+1769 -2)
PPC64ISelPattern.cpp | 1767 +++++++++++++++++++++++++++++++++++++++++++++++
PowerPC.h | 2
PowerPCTargetMachine.cpp | 2
3 files changed, 1769 insertions(+), 2 deletions(-)
Index: llvm/lib/Target/PowerPC/PPC64ISelPattern.cpp
diff -c /dev/null llvm/lib/Target/PowerPC/PPC64ISelPattern.cpp:1.1
*** /dev/null Tue Apr 5 03:51:25 2005
--- llvm/lib/Target/PowerPC/PPC64ISelPattern.cpp Tue Apr 5 03:51:15 2005
***************
*** 0 ****
--- 1,1767 ----
+ //===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
+ //
+ // The LLVM Compiler Infrastructure
+ //
+ // This file was developed by Nate Begeman and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This file defines a pattern matching instruction selector for 32 bit PowerPC.
+ //
+ //===----------------------------------------------------------------------===//
+
+ #include "PowerPC.h"
+ #include "PowerPCInstrBuilder.h"
+ #include "PowerPCInstrInfo.h"
+ #include "PPC64RegisterInfo.h"
+ #include "llvm/Constants.h" // FIXME: REMOVE
+ #include "llvm/Function.h"
+ #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
+ #include "llvm/CodeGen/MachineFunction.h"
+ #include "llvm/CodeGen/MachineFrameInfo.h"
+ #include "llvm/CodeGen/SelectionDAG.h"
+ #include "llvm/CodeGen/SelectionDAGISel.h"
+ #include "llvm/CodeGen/SSARegMap.h"
+ #include "llvm/Target/TargetData.h"
+ #include "llvm/Target/TargetLowering.h"
+ #include "llvm/Target/TargetOptions.h"
+ #include "llvm/Support/Debug.h"
+ #include "llvm/Support/MathExtras.h"
+ #include "llvm/ADT/Statistic.h"
+ #include <set>
+ #include <algorithm>
+ using namespace llvm;
+
+ //===----------------------------------------------------------------------===//
+ // PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface
+ namespace {
+ class PPC64TargetLowering : public TargetLowering {
+ int VarArgsFrameIndex; // FrameIndex for start of varargs area.
+ int ReturnAddrIndex; // FrameIndex for return slot.
+ public:
+ PPC64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
+ // Set up the register classes.
+ addRegisterClass(MVT::i64, PPC64::GPRCRegisterClass);
+ addRegisterClass(MVT::f32, PPC64::FPRCRegisterClass);
+ addRegisterClass(MVT::f64, PPC64::FPRCRegisterClass);
+
+ // PowerPC has no intrinsics for these particular operations
+ setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
+ setOperationAction(ISD::MEMSET, MVT::Other, Expand);
+ setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
+
+ // PPC 64 has i16 and i32 but no i8 (or i1) SEXTLOAD
+ setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
+
+ setShiftAmountFlavor(Extend); // shl X, 32 == 0
+ addLegalFPImmediate(+0.0); // Necessary for FSEL
+ addLegalFPImmediate(-0.0); //
+
+ computeRegisterProperties();
+ }
+
+ /// LowerArguments - This hook must be implemented to indicate how we should
+ /// lower the arguments for the specified function, into the specified DAG.
+ virtual std::vector<SDOperand>
+ LowerArguments(Function &F, SelectionDAG &DAG);
+
+ /// LowerCallTo - This hook lowers an abstract call to a function into an
+ /// actual call.
+ virtual std::pair<SDOperand, SDOperand>
+ LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
+ SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
+
+ virtual std::pair<SDOperand, SDOperand>
+ LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
+
+ virtual std::pair<SDOperand,SDOperand>
+ LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
+ const Type *ArgTy, SelectionDAG &DAG);
+
+ virtual std::pair<SDOperand, SDOperand>
+ LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
+ SelectionDAG &DAG);
+ };
+ }
+
+
+ std::vector<SDOperand>
+ PPC64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
+ //
+ // add beautiful description of PPC stack frame format, or at least some docs
+ //
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineBasicBlock& BB = MF.front();
+ std::vector<SDOperand> ArgValues;
+
+ // Due to the rather complicated nature of the PowerPC ABI, rather than a
+ // fixed size array of physical args, for the sake of simplicity let the STL
+ // handle tracking them for us.
+ std::vector<unsigned> argVR, argPR, argOp;
+ unsigned ArgOffset = 24;
+ unsigned GPR_remaining = 8;
+ unsigned FPR_remaining = 13;
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ // Add DAG nodes to load the arguments... On entry to a function on PPC,
+ // the arguments start at offset 24, although they are likely to be passed
+ // in registers.
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
+ SDOperand newroot, argt;
+ unsigned ObjSize;
+ bool needsLoad = false;
+ MVT::ValueType ObjectVT = getValueType(I->getType());
+
+ switch (ObjectVT) {
+ default: assert(0 && "Unhandled argument type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ ObjSize = 4;
+ if (GPR_remaining > 0) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32,
+ DAG.getRoot());
+ if (ObjectVT != MVT::i32)
+ argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot);
+ } else {
+ needsLoad = true;
+ }
+ break;
+ case MVT::i64: ObjSize = 8;
+ // FIXME: can split 64b load between reg/mem if it is last arg in regs
+ if (GPR_remaining > 1) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
+ // Copy the extracted halves into the virtual registers
+ SDOperand argHi = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32,
+ DAG.getRoot());
+ SDOperand argLo = DAG.getCopyFromReg(GPR[GPR_idx+1], MVT::i32, argHi);
+ // Build the outgoing arg thingy
+ argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
+ newroot = argLo;
+ } else {
+ needsLoad = true;
+ }
+ break;
+ case MVT::f32: ObjSize = 4;
+ case MVT::f64: ObjSize = 8;
+ if (FPR_remaining > 0) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+ argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT,
+ DAG.getRoot());
+ --FPR_remaining;
+ ++FPR_idx;
+ } else {
+ needsLoad = true;
+ }
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined above
+ // that we ran out of physical registers of the appropriate type
+ if (needsLoad) {
+ unsigned SubregOffset = 0;
+ if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
+ if (ObjectVT == MVT::i16) SubregOffset = 2;
+ int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
+ SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
+ FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
+ DAG.getConstant(SubregOffset, MVT::i32));
+ argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN);
+ }
+
+ // Every 4 bytes of argument space consumes one of the GPRs available for
+ // argument passing.
+ if (GPR_remaining > 0) {
+ unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
+ GPR_remaining -= delta;
+ GPR_idx += delta;
+ }
+ ArgOffset += ObjSize;
+
+ DAG.setRoot(newroot.getValue(1));
+ ArgValues.push_back(argt);
+ }
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (F.isVarArg()) {
+ VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
+ SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ std::vector<SDOperand> MemOps;
+ for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ SDOperand Val = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot());
+ SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
+ Val, FIN);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
+ FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
+ }
+ DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
+ }
+
+ return ArgValues;
+ }
+
+ std::pair<SDOperand, SDOperand>
+ PPC64TargetLowering::LowerCallTo(SDOperand Chain,
+ const Type *RetTy, bool isVarArg,
+ SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) {
+ // args_to_use will accumulate outgoing args for the ISD::CALL case in
+ // SelectExpr to use to put the arguments in the appropriate registers.
+ std::vector<SDOperand> args_to_use;
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area.
+ unsigned NumBytes = 24;
+
+ if (Args.empty()) {
+ Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, getPointerTy()));
+ } else {
+ for (unsigned i = 0, e = Args.size(); i != e; ++i)
+ switch (getValueType(Args[i].second)) {
+ default: assert(0 && "Unknown value type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::f32:
+ NumBytes += 4;
+ break;
+ case MVT::i64:
+ case MVT::f64:
+ NumBytes += 8;
+ break;
+ }
+
+ // Just to be safe, we'll always reserve the full 24 bytes of linkage area
+ // plus 32 bytes of argument space in case any called code gets funky on us.
+ if (NumBytes < 56) NumBytes = 56;
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, getPointerTy()));
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32,
+ DAG.getEntryNode());
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = 24;
+ unsigned GPR_remaining = 8;
+ unsigned FPR_remaining = 13;
+
+ std::vector<SDOperand> MemOps;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
+ MVT::ValueType ArgVT = getValueType(Args[i].second);
+
+ switch (ArgVT) {
+ default: assert(0 && "Unexpected ValueType for argument!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ // Promote the integer to 32 bits. If the input type is signed use a
+ // sign extend, otherwise use a zero extend.
+ if (Args[i].second->isSigned())
+ Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
+ else
+ Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
+ // FALL THROUGH
+ case MVT::i32:
+ if (GPR_remaining > 0) {
+ args_to_use.push_back(Args[i].first);
+ --GPR_remaining;
+ } else {
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff));
+ }
+ ArgOffset += 4;
+ break;
+ case MVT::i64:
+ // If we have one free GPR left, we can place the upper half of the i64
+ // in it, and store the other half to the stack. If we have two or more
+ // free GPRs, then we can pass both halves of the i64 in registers.
+ if (GPR_remaining > 0) {
+ SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
+ Args[i].first, DAG.getConstant(1, MVT::i32));
+ SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
+ Args[i].first, DAG.getConstant(0, MVT::i32));
+ args_to_use.push_back(Hi);
+ --GPR_remaining;
+ if (GPR_remaining > 0) {
+ args_to_use.push_back(Lo);
+ --GPR_remaining;
+ } else {
+ SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Lo, PtrOff));
+ }
+ } else {
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff));
+ }
+ ArgOffset += 8;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (FPR_remaining > 0) {
+ args_to_use.push_back(Args[i].first);
+ --FPR_remaining;
+ if (isVarArg) {
+ SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff);
+ MemOps.push_back(Store);
+ // Float varargs are always shadowed in available integer registers
+ if (GPR_remaining > 0) {
+ SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff);
+ MemOps.push_back(Load);
+ args_to_use.push_back(Load);
+ --GPR_remaining;
+ }
+ if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
+ SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
+ SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff);
+ MemOps.push_back(Load);
+ args_to_use.push_back(Load);
+ --GPR_remaining;
+ }
+ } else {
+ // If we have any FPRs remaining, we may also have GPRs remaining.
+ // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
+ // GPRs.
+ if (GPR_remaining > 0) {
+ args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
+ --GPR_remaining;
+ }
+ if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
+ args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
+ --GPR_remaining;
+ }
+ }
+ } else {
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff));
+ }
+ ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
+ break;
+ }
+ }
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
+ }
+
+ std::vector<MVT::ValueType> RetVals;
+ MVT::ValueType RetTyVT = getValueType(RetTy);
+ if (RetTyVT != MVT::isVoid)
+ RetVals.push_back(RetTyVT);
+ RetVals.push_back(MVT::Other);
+
+ SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
+ Chain, Callee, args_to_use), 0);
+ Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
+ Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, getPointerTy()));
+ return std::make_pair(TheCall, Chain);
+ }
+
+ std::pair<SDOperand, SDOperand>
+ PPC64TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
+ //vastart just returns the address of the VarArgsFrameIndex slot.
+ return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain);
+ }
+
+ std::pair<SDOperand,SDOperand> PPC64TargetLowering::
+ LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
+ const Type *ArgTy, SelectionDAG &DAG) {
+ MVT::ValueType ArgVT = getValueType(ArgTy);
+ SDOperand Result;
+ if (!isVANext) {
+ Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList);
+ } else {
+ unsigned Amt;
+ if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
+ Amt = 4;
+ else {
+ assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
+ "Other types should have been promoted for varargs!");
+ Amt = 8;
+ }
+ Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
+ DAG.getConstant(Amt, VAList.getValueType()));
+ }
+ return std::make_pair(Result, Chain);
+ }
+
+
+ std::pair<SDOperand, SDOperand> PPC64TargetLowering::
+ LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
+ SelectionDAG &DAG) {
+ assert(0 && "LowerFrameReturnAddress unimplemented");
+ abort();
+ }
+
+ namespace {
+ Statistic<>NotLogic("ppc-codegen", "Number of inverted logical ops");
+ Statistic<>FusedFP("ppc-codegen", "Number of fused fp operations");
+ //===--------------------------------------------------------------------===//
+ /// ISel - PPC32 specific code to select PPC32 machine instructions for
+ /// SelectionDAG operations.
+ //===--------------------------------------------------------------------===//
+ class ISel : public SelectionDAGISel {
+
+ /// Comment Here.
+ PPC64TargetLowering PPC64Lowering;
+
+ /// ExprMap - As shared expressions are codegen'd, we keep track of which
+ /// vreg the value is produced in, so we only emit one copy of each compiled
+ /// tree.
+ std::map<SDOperand, unsigned> ExprMap;
+
+ unsigned GlobalBaseReg;
+ bool GlobalBaseInitialized;
+
+ public:
+ ISel(TargetMachine &TM) : SelectionDAGISel(PPC64Lowering), PPC64Lowering(TM)
+ {}
+
+ /// runOnFunction - Override this function in order to reset our per-function
+ /// variables.
+ virtual bool runOnFunction(Function &Fn) {
+ // Make sure we re-emit a set of the global base reg if necessary
+ GlobalBaseInitialized = false;
+ return SelectionDAGISel::runOnFunction(Fn);
+ }
+
+ /// InstructionSelectBasicBlock - This callback is invoked by
+ /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+ virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
+ DEBUG(BB->dump());
+ // Codegen the basic block.
+ Select(DAG.getRoot());
+
+ // Clear state used for selection.
+ ExprMap.clear();
+ }
+
+ unsigned getGlobalBaseReg();
+ unsigned getConstDouble(double floatVal, unsigned Result);
+ unsigned SelectSetCR0(SDOperand CC);
+ unsigned SelectExpr(SDOperand N);
+ unsigned SelectExprFP(SDOperand N, unsigned Result);
+ void Select(SDOperand N);
+
+ bool SelectAddr(SDOperand N, unsigned& Reg, int& offset);
+ void SelectBranchCC(SDOperand N);
+ };
+
+ /// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
+ /// returns zero when the input is not exactly a power of two.
+ static unsigned ExactLog2(unsigned Val) {
+ if (Val == 0 || (Val & (Val-1))) return 0;
+ unsigned Count = 0;
+ while (Val != 1) {
+ Val >>= 1;
+ ++Count;
+ }
+ return Count;
+ }
+
+ /// getImmediateForOpcode - This method returns a value indicating whether
+ /// the ConstantSDNode N can be used as an immediate to Opcode. The return
+ /// values are either 0, 1 or 2. 0 indicates that either N is not a
+ /// ConstantSDNode, or is not suitable for use by that opcode. A return value
+ /// of 1 indicates that the constant may be used in normal immediate form. A
+ /// return value of 2 indicates that the constant may be used in shifted
+ /// immediate form. A return value of 3 indicates that log base 2 of the
+ /// constant may be used.
+ ///
+ static unsigned getImmediateForOpcode(SDOperand N, unsigned Opcode,
+ unsigned& Imm, bool U = false) {
+ if (N.getOpcode() != ISD::Constant) return 0;
+
+ int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
+
+ switch(Opcode) {
+ default: return 0;
+ case ISD::ADD:
+ if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
+ if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
+ break;
+ case ISD::AND:
+ case ISD::XOR:
+ case ISD::OR:
+ if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
+ if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
+ break;
+ case ISD::MUL:
+ case ISD::SUB:
+ if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
+ break;
+ case ISD::SETCC:
+ if (U && (v >= 0 && v <= 65535)) { Imm = v & 0xFFFF; return 1; }
+ if (!U && (v <= 32767 && v >= -32768)) { Imm = v & 0xFFFF; return 1; }
+ break;
+ case ISD::SDIV:
+ if ((Imm = ExactLog2(v))) { return 3; }
+ break;
+ }
+ return 0;
+ }
+
+ /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
+ /// to Condition. If the Condition is unordered or unsigned, the bool argument
+ /// U is set to true, otherwise it is set to false.
+ static unsigned getBCCForSetCC(unsigned Condition, bool& U) {
+ U = false;
+ switch (Condition) {
+ default: assert(0 && "Unknown condition!"); abort();
+ case ISD::SETEQ: return PPC::BEQ;
+ case ISD::SETNE: return PPC::BNE;
+ case ISD::SETULT: U = true;
+ case ISD::SETLT: return PPC::BLT;
+ case ISD::SETULE: U = true;
+ case ISD::SETLE: return PPC::BLE;
+ case ISD::SETUGT: U = true;
+ case ISD::SETGT: return PPC::BGT;
+ case ISD::SETUGE: U = true;
+ case ISD::SETGE: return PPC::BGE;
+ }
+ return 0;
+ }
+
+ /// IndexedOpForOp - Return the indexed variant for each of the PowerPC load
+ /// and store immediate instructions.
+ static unsigned IndexedOpForOp(unsigned Opcode) {
+ switch(Opcode) {
+ default: assert(0 && "Unknown opcode!"); abort();
+ case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX;
+ case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX;
+ case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX;
+ case PPC::LWZ: return PPC::LWZX; case PPC::STD: return PPC::STDX;
+ case PPC::LD: return PPC::LDX; case PPC::STFS: return PPC::STFSX;
+ case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX;
+ case PPC::LFD: return PPC::LFDX;
+ }
+ return 0;
+ }
+ }
+
+ /// getGlobalBaseReg - Output the instructions required to put the
+ /// base address to use for accessing globals into a register.
+ ///
+ unsigned ISel::getGlobalBaseReg() {
+ if (!GlobalBaseInitialized) {
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = BB->getParent()->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ GlobalBaseReg = MakeReg(MVT::i64);
+ BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
+ BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
+ GlobalBaseInitialized = true;
+ }
+ return GlobalBaseReg;
+ }
+
+ /// getConstDouble - Loads a floating point value into a register, via the
+ /// Constant Pool. Optionally takes a register in which to load the value.
+ unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) {
+ unsigned Tmp1 = MakeReg(MVT::i32);
+ if (0 == Result) Result = MakeReg(MVT::f64);
+ MachineConstantPool *CP = BB->getParent()->getConstantPool();
+ ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal);
+ unsigned CPI = CP->getConstantPoolIndex(CFP);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(CPI);
+ BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
+ return Result;
+ }
+
+ unsigned ISel::SelectSetCR0(SDOperand CC) {
+ unsigned Opc, Tmp1, Tmp2;
+ static const unsigned CompareOpcodes[] =
+ { PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW };
+
+ // If the first operand to the select is a SETCC node, then we can fold it
+ // into the branch that selects which value to return.
+ SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
+ if (SetCC && CC.getOpcode() == ISD::SETCC) {
+ bool U;
+ Opc = getBCCForSetCC(SetCC->getCondition(), U);
+ Tmp1 = SelectExpr(SetCC->getOperand(0));
+
+ // Pass the optional argument U to getImmediateForOpcode for SETCC,
+ // so that it knows whether the SETCC immediate range is signed or not.
+ if (1 == getImmediateForOpcode(SetCC->getOperand(1), ISD::SETCC,
+ Tmp2, U)) {
+ if (U)
+ BuildMI(BB, PPC::CMPLWI, 2, PPC::CR0).addReg(Tmp1).addImm(Tmp2);
+ else
+ BuildMI(BB, PPC::CMPWI, 2, PPC::CR0).addReg(Tmp1).addSImm(Tmp2);
+ } else {
+ bool IsInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
+ unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U];
+ Tmp2 = SelectExpr(SetCC->getOperand(1));
+ BuildMI(BB, CompareOpc, 2, PPC::CR0).addReg(Tmp1).addReg(Tmp2);
+ }
+ } else {
+ Tmp1 = SelectExpr(CC);
+ BuildMI(BB, PPC::CMPLWI, 2, PPC::CR0).addReg(Tmp1).addImm(0);
+ Opc = PPC::BNE;
+ }
+ return Opc;
+ }
+
+ /// Check to see if the load is a constant offset from a base register
+ bool ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
+ {
+ unsigned imm = 0, opcode = N.getOpcode();
+ if (N.getOpcode() == ISD::ADD) {
+ Reg = SelectExpr(N.getOperand(0));
+ if (1 == getImmediateForOpcode(N.getOperand(1), opcode, imm)) {
+ offset = imm;
+ return false;
+ }
+ offset = SelectExpr(N.getOperand(1));
+ return true;
+ }
+ Reg = SelectExpr(N);
+ offset = 0;
+ return false;
+ }
+
+ void ISel::SelectBranchCC(SDOperand N)
+ {
+ assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
+ MachineBasicBlock *Dest =
+ cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
+
+ // Get the MBB we will fall through to so that we can hand it off to the
+ // branch selection pass as an argument to the PPC::COND_BRANCH pseudo op.
+ //ilist<MachineBasicBlock>::iterator It = BB;
+ //MachineBasicBlock *Fallthrough = ++It;
+
+ Select(N.getOperand(0)); //chain
+ unsigned Opc = SelectSetCR0(N.getOperand(1));
+ // FIXME: Use this once we have something approximating two-way branches
+ // We cannot currently use this in case the ISel hands us something like
+ // BRcc MBBx
+ // BR MBBy
+ // since the fallthrough basic block for the conditional branch does not start
+ // with the unconditional branch (it is skipped over).
+ //BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opc)
+ // .addMBB(Dest).addMBB(Fallthrough);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(Dest);
+ return;
+ }
+
+ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
+ {
+ unsigned Tmp1, Tmp2, Tmp3;
+ unsigned Opc = 0;
+ SDNode *Node = N.Val;
+ MVT::ValueType DestType = N.getValueType();
+ unsigned opcode = N.getOpcode();
+
+ switch (opcode) {
+ default:
+ Node->dump();
+ assert(0 && "Node not handled!\n");
+
+ case ISD::SELECT: {
+ // Attempt to generate FSEL. We can do this whenever we have an FP result,
+ // and an FP comparison in the SetCC node.
+ SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(N.getOperand(0).Val);
+ if (SetCC && N.getOperand(0).getOpcode() == ISD::SETCC &&
+ !MVT::isInteger(SetCC->getOperand(0).getValueType()) &&
+ SetCC->getCondition() != ISD::SETEQ &&
+ SetCC->getCondition() != ISD::SETNE) {
+ MVT::ValueType VT = SetCC->getOperand(0).getValueType();
+ Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against
+ unsigned TV = SelectExpr(N.getOperand(1)); // Use if TRUE
+ unsigned FV = SelectExpr(N.getOperand(2)); // Use if FALSE
+
+ ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1));
+ if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) {
+ switch(SetCC->getCondition()) {
+ default: assert(0 && "Invalid FSEL condition"); abort();
+ case ISD::SETULT:
+ case ISD::SETLT:
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(FV).addReg(TV);
+ return Result;
+ case ISD::SETUGE:
+ case ISD::SETGE:
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV);
+ return Result;
+ case ISD::SETUGT:
+ case ISD::SETGT: {
+ Tmp2 = MakeReg(VT);
+ BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(FV).addReg(TV);
+ return Result;
+ }
+ case ISD::SETULE:
+ case ISD::SETLE: {
+ Tmp2 = MakeReg(VT);
+ BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV);
+ return Result;
+ }
+ }
+ } else {
+ Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS;
+ Tmp2 = SelectExpr(SetCC->getOperand(1));
+ Tmp3 = MakeReg(VT);
+ switch(SetCC->getCondition()) {
+ default: assert(0 && "Invalid FSEL condition"); abort();
+ case ISD::SETULT:
+ case ISD::SETLT:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
+ return Result;
+ case ISD::SETUGE:
+ case ISD::SETGE:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
+ return Result;
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
+ return Result;
+ case ISD::SETULE:
+ case ISD::SETLE:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
+ return Result;
+ }
+ }
+ assert(0 && "Should never get here");
+ return 0;
+ }
+
+ unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
+ unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
+ Opc = SelectSetCR0(N.getOperand(0));
+
+ // Create an iterator with which to insert the MBB for copying the false
+ // value and the MBB to hold the PHI instruction for this SetCC.
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY cr0, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
+ return Result;
+ }
+
+ case ISD::FNEG:
+ if (!NoExcessFPPrecision &&
+ ISD::ADD == N.getOperand(0).getOpcode() &&
+ N.getOperand(0).Val->hasOneUse() &&
+ ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
+ N.getOperand(0).getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ } else if (!NoExcessFPPrecision &&
+ ISD::SUB == N.getOperand(0).getOpcode() &&
+ N.getOperand(0).Val->hasOneUse() &&
+ ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
+ N.getOperand(0).getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ } else if (ISD::FABS == N.getOperand(0).getOpcode()) {
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1);
+ } else {
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1);
+ }
+ return Result;
+
+ case ISD::FABS:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::FP_ROUND:
+ assert (DestType == MVT::f32 &&
+ N.getOperand(0).getValueType() == MVT::f64 &&
+ "only f64 to f32 conversion supported here");
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::FP_EXTEND:
+ assert (DestType == MVT::f64 &&
+ N.getOperand(0).getValueType() == MVT::f32 &&
+ "only f32 to f64 conversion supported here");
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::CopyFromReg:
+ if (Result == 1)
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+ Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
+ BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::ConstantFP: {
+ ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
+ Result = getConstDouble(CN->getValue(), Result);
+ return Result;
+ }
+
+ case ISD::ADD:
+ if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
+ N.getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ return Result;
+ }
+ Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS;
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::SUB:
+ if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
+ N.getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ return Result;
+ }
+ Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS;
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::MUL:
+ case ISD::SDIV:
+ switch( opcode ) {
+ case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break;
+ case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break;
+ };
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP: {
+ bool IsUnsigned = (ISD::UINT_TO_FP == opcode);
+ Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
+ Tmp2 = MakeReg(MVT::f64); // temp reg to load the integer value into
+ Tmp3 = MakeReg(MVT::i64); // temp reg to hold the conversion constant
+ unsigned ConstF = MakeReg(MVT::f64); // temp reg to hold the fp constant
+
+ int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
+ MachineConstantPool *CP = BB->getParent()->getConstantPool();
+
+ // FIXME: pull this FP constant generation stuff out into something like
+ // the simple ISel's getReg.
+ if (IsUnsigned) {
+ addFrameReference(BuildMI(BB, PPC::STD, 3).addReg(Tmp1), FrameIdx);
+ addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
+ BuildMI(BB, PPC::FCFID, 1, Result).addReg(Tmp2);
+ } else {
+ ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
+ unsigned CPI = CP->getConstantPoolIndex(CFP);
+ // Load constant fp value
+ unsigned Tmp4 = MakeReg(MVT::i32);
+ unsigned TmpL = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp4).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(CPI);
+ BuildMI(BB, PPC::LFD, 2, ConstF).addConstantPoolIndex(CPI).addReg(Tmp4);
+ // Store the hi & low halves of the fp value, currently in int regs
+ BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330);
+ addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx);
+ BuildMI(BB, PPC::XORIS, 2, TmpL).addReg(Tmp1).addImm(0x8000);
+ addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(TmpL), FrameIdx, 4);
+ addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
+ // Generate the return value with a subtract
+ BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF);
+ }
+ return Result;
+ }
+ }
+ assert(0 && "Should never get here");
+ return 0;
+ }
+
+ unsigned ISel::SelectExpr(SDOperand N) {
+ unsigned Result;
+ unsigned Tmp1, Tmp2, Tmp3;
+ unsigned Opc = 0;
+ unsigned opcode = N.getOpcode();
+
+ SDNode *Node = N.Val;
+ MVT::ValueType DestType = N.getValueType();
+
+ unsigned &Reg = ExprMap[N];
+ if (Reg) return Reg;
+
+ switch (N.getOpcode()) {
+ default:
+ Reg = Result = (N.getValueType() != MVT::Other) ?
+ MakeReg(N.getValueType()) : 1;
+ break;
+ case ISD::CALL:
+ // If this is a call instruction, make sure to prepare ALL of the result
+ // values as well as the chain.
+ if (Node->getNumValues() == 1)
+ Reg = Result = 1; // Void call, just a chain.
+ else {
+ Result = MakeReg(Node->getValueType(0));
+ ExprMap[N.getValue(0)] = Result;
+ for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
+ ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
+ ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
+ }
+ break;
+ }
+
+ if (ISD::CopyFromReg == opcode)
+ DestType = N.getValue(0).getValueType();
+
+ if (DestType == MVT::f64 || DestType == MVT::f32)
+ if (ISD::LOAD != opcode && ISD::EXTLOAD != opcode && ISD::UNDEF != opcode)
+ return SelectExprFP(N, Result);
+
+ switch (opcode) {
+ default:
+ Node->dump();
+ assert(0 && "Node not handled!\n");
+ case ISD::UNDEF:
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result);
+ return Result;
+ case ISD::DYNAMIC_STACKALLOC:
+ // Generate both result values. FIXME: Need a better commment here?
+ if (Result != 1)
+ ExprMap[N.getValue(1)] = 1;
+ else
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+
+ // FIXME: We are currently ignoring the requested alignment for handling
+ // greater than the stack alignment. This will need to be revisited at some
+ // point. Align = N.getOperand(2);
+ if (!isa<ConstantSDNode>(N.getOperand(2)) ||
+ cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
+ std::cerr << "Cannot allocate stack object with greater alignment than"
+ << " the stack alignment yet!";
+ abort();
+ }
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ // Subtract size from stack pointer, thereby allocating some space.
+ BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
+ // Put a pointer to the space into the result register by copying the SP
+ BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
+ return Result;
+
+ case ISD::ConstantPool:
+ Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
+ Tmp2 = MakeReg(MVT::i64);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(Tmp1);
+ BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1);
+ return Result;
+
+ case ISD::FrameIndex:
+ Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
+ addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false);
+ return Result;
+
+ case ISD::GlobalAddress: {
+ GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
+ Tmp1 = MakeReg(MVT::i64);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
+ .addGlobalAddress(GV);
+ if (GV->hasWeakLinkage() || GV->isExternal()) {
+ BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
+ } else {
+ BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
+ }
+ return Result;
+ }
+
+ case ISD::LOAD:
+ case ISD::EXTLOAD:
+ case ISD::ZEXTLOAD:
+ case ISD::SEXTLOAD: {
+ MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ?
+ Node->getValueType(0) : cast<MVTSDNode>(Node)->getExtraValueType();
+ bool sext = (ISD::SEXTLOAD == opcode);
+ bool byte = (MVT::i8 == TypeBeingLoaded);
+
+ // Make sure we generate both values.
+ if (Result != 1)
+ ExprMap[N.getValue(1)] = 1; // Generate the token
+ else
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+
+ SDOperand Chain = N.getOperand(0);
+ SDOperand Address = N.getOperand(1);
+ Select(Chain);
+
+ switch (TypeBeingLoaded) {
+ default: Node->dump(); assert(0 && "Cannot load this type!");
+ case MVT::i1: Opc = PPC::LBZ; break;
+ case MVT::i8: Opc = PPC::LBZ; break;
+ case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break;
+ case MVT::i32: Opc = sext ? PPC::LWA : PPC::LWZ; break;
+ case MVT::i64: Opc = PPC::LD; break;
+ case MVT::f32: Opc = PPC::LFS; break;
+ case MVT::f64: Opc = PPC::LFD; break;
+ }
+
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
+ Tmp1 = MakeReg(MVT::i64);
+ int CPI = CP->getIndex();
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(CPI);
+ BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
+ }
+ else if(Address.getOpcode() == ISD::FrameIndex) {
+ Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex();
+ addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1);
+ } else {
+ int offset;
+ bool idx = SelectAddr(Address, Tmp1, offset);
+ if (idx) {
+ Opc = IndexedOpForOp(Opc);
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset);
+ } else {
+ BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
+ }
+ }
+ return Result;
+ }
+
+ case ISD::CALL: {
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ // Lower the chain for this call.
+ Select(N.getOperand(0));
+ ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
+
+ MachineInstr *CallMI;
+ // Emit the correct call instruction based on the type of symbol called.
+ if (GlobalAddressSDNode *GASD =
+ dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
+ CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(),
+ true);
+ } else if (ExternalSymbolSDNode *ESSDN =
+ dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
+ CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(),
+ true);
+ } else {
+ Tmp1 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
+ BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
+ CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0)
+ .addReg(PPC::R12);
+ }
+
+ // Load the register args to virtual regs
+ std::vector<unsigned> ArgVR;
+ for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
+ ArgVR.push_back(SelectExpr(N.getOperand(i)));
+
+ // Copy the virtual registers into the appropriate argument register
+ for(int i = 0, e = ArgVR.size(); i < e; ++i) {
+ switch(N.getOperand(i+2).getValueType()) {
+ default: Node->dump(); assert(0 && "Unknown value type for call");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ assert(GPR_idx < 8 && "Too many int args");
+ if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) {
+ BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ ++GPR_idx;
+ break;
+ case MVT::f64:
+ case MVT::f32:
+ assert(FPR_idx < 13 && "Too many fp args");
+ BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]);
+ CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
+ ++FPR_idx;
+ break;
+ }
+ }
+
+ // Put the call instruction in the correct place in the MachineBasicBlock
+ BB->push_back(CallMI);
+
+ switch (Node->getValueType(0)) {
+ default: assert(0 && "Unknown value type for call result!");
+ case MVT::Other: return 1;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1);
+ break;
+ }
+ return Result+N.ResNo;
+ }
+
+ case ISD::SIGN_EXTEND:
+ case ISD::SIGN_EXTEND_INREG:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
+ default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break;
+ case MVT::i32:
+ BuildMI(BB, PPC::EXTSW, 1, Result).addReg(Tmp1);
+ break;
+ case MVT::i16:
+ BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
+ break;
+ case MVT::i8:
+ BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1);
+ break;
+ case MVT::i1:
+ BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0);
+ break;
+ }
+ return Result;
+
+ case ISD::ZERO_EXTEND_INREG:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
+ default: Node->dump(); assert(0 && "Unhandled ZERO_EXTEND type"); break;
+ case MVT::i16: Tmp2 = 16; break;
+ case MVT::i8: Tmp2 = 24; break;
+ case MVT::i1: Tmp2 = 31; break;
+ }
+ BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(0).addImm(Tmp2)
+ .addImm(31);
+ return Result;
+
+ case ISD::CopyFromReg:
+ if (Result == 1)
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+ Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
+ BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1);
+ return Result;
+
+ case ISD::SHL:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ Tmp2 = CN->getValue() & 0x1F;
+ BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0)
+ .addImm(31-Tmp2);
+ } else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::SRL:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ Tmp2 = CN->getValue() & 0x1F;
+ BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(32-Tmp2)
+ .addImm(Tmp2).addImm(31);
+ } else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::SRA:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ Tmp2 = CN->getValue() & 0x1F;
+ BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ } else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::ADD:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
+ default: assert(0 && "unhandled result code");
+ case 0: // No immediate
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case 1: // Low immediate
+ BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
+ break;
+ case 2: // Shifted immediate
+ BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2);
+ break;
+ }
+ return Result;
+
+ case ISD::AND:
+ case ISD::OR:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
+ default: assert(0 && "unhandled result code");
+ case 0: // No immediate
+ Tmp2 = SelectExpr(N.getOperand(1));
+ switch (opcode) {
+ case ISD::AND: Opc = PPC::AND; break;
+ case ISD::OR: Opc = PPC::OR; break;
+ }
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case 1: // Low immediate
+ switch (opcode) {
+ case ISD::AND: Opc = PPC::ANDIo; break;
+ case ISD::OR: Opc = PPC::ORI; break;
+ }
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ case 2: // Shifted immediate
+ switch (opcode) {
+ case ISD::AND: Opc = PPC::ANDISo; break;
+ case ISD::OR: Opc = PPC::ORIS; break;
+ }
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ }
+ return Result;
+
+ case ISD::XOR: {
+ // Check for EQV: xor, (xor a, -1), b
+ if (N.getOperand(0).getOpcode() == ISD::XOR &&
+ N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->isAllOnesValue()) {
+ ++NotLogic;
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+ }
+ // Check for NOT, NOR, and NAND: xor (copy, or, and), -1
+ if (N.getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(N.getOperand(1))->isAllOnesValue()) {
+ ++NotLogic;
+ switch(N.getOperand(0).getOpcode()) {
+ case ISD::OR:
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case ISD::AND:
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ default:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1);
+ break;
+ }
+ return Result;
+ }
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
+ default: assert(0 && "unhandled result code");
+ case 0: // No immediate
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case 1: // Low immediate
+ BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ case 2: // Shifted immediate
+ BuildMI(BB, PPC::XORIS, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ }
+ return Result;
+ }
+
+ case ISD::SUB:
+ Tmp2 = SelectExpr(N.getOperand(1));
+ if (1 == getImmediateForOpcode(N.getOperand(0), opcode, Tmp1))
+ BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1);
+ else {
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
+ }
+ return Result;
+
+ case ISD::MUL:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2))
+ BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
+ else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::MULLD, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::SDIV:
+ case ISD::UDIV:
+ if (3 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp3)) {
+ Tmp1 = MakeReg(MVT::i64);
+ Tmp2 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
+ BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1);
+ return Result;
+ }
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW;
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::UREM:
+ case ISD::SREM: {
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ Tmp3 = MakeReg(MVT::i64);
+ unsigned Tmp4 = MakeReg(MVT::i64);
+ Opc = (ISD::UREM == opcode) ? PPC::DIVDU : PPC::DIVD;
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(BB, PPC::MULLD, 2, Tmp4).addReg(Tmp3).addReg(Tmp2);
+ BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp4).addReg(Tmp1);
+ return Result;
+ }
+
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT: {
+ bool U = (ISD::FP_TO_UINT == opcode);
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (!U) {
+ Tmp2 = MakeReg(MVT::f64);
+ BuildMI(BB, PPC::FCTIWZ, 1, Tmp2).addReg(Tmp1);
+ int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
+ addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx);
+ addFrameReference(BuildMI(BB, PPC::LWZ, 2, Result), FrameIdx, 4);
+ return Result;
+ } else {
+ unsigned Zero = getConstDouble(0.0);
+ unsigned MaxInt = getConstDouble((1LL << 32) - 1);
+ unsigned Border = getConstDouble(1LL << 31);
+ unsigned UseZero = MakeReg(MVT::f64);
+ unsigned UseMaxInt = MakeReg(MVT::f64);
+ unsigned UseChoice = MakeReg(MVT::f64);
+ unsigned TmpReg = MakeReg(MVT::f64);
+ unsigned TmpReg2 = MakeReg(MVT::f64);
+ unsigned ConvReg = MakeReg(MVT::f64);
+ unsigned IntTmp = MakeReg(MVT::i32);
+ unsigned XorReg = MakeReg(MVT::i32);
+ MachineFunction *F = BB->getParent();
+ int FrameIdx = F->getFrameInfo()->CreateStackObject(8, 8);
+ // Update machine-CFG edges
+ MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
+ MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
+ MachineBasicBlock *OldMBB = BB;
+ ilist<MachineBasicBlock>::iterator It = BB; ++It;
+ F->getBasicBlockList().insert(It, XorMBB);
+ F->getBasicBlockList().insert(It, PhiMBB);
+ BB->addSuccessor(XorMBB);
+ BB->addSuccessor(PhiMBB);
+ // Convert from floating point to unsigned 32-bit value
+ // Use 0 if incoming value is < 0.0
+ BuildMI(BB, PPC::FSEL, 3, UseZero).addReg(Tmp1).addReg(Tmp1).addReg(Zero);
+ // Use 2**32 - 1 if incoming value is >= 2**32
+ BuildMI(BB, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt).addReg(UseZero)
+ .addReg(MaxInt);
+ // Subtract 2**31
+ BuildMI(BB, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
+ // Use difference if >= 2**31
+ BuildMI(BB, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice).addReg(Border);
+ BuildMI(BB, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
+ .addReg(UseChoice);
+ // Convert to integer
+ BuildMI(BB, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
+ addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(ConvReg), FrameIdx);
+ addFrameReference(BuildMI(BB, PPC::LWZ, 2, IntTmp), FrameIdx, 4);
+ BuildMI(BB, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
+ BuildMI(BB, PPC::B, 1).addMBB(XorMBB);
+
+ // XorMBB:
+ // add 2**31 if input was >= 2**31
+ BB = XorMBB;
+ BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
+ XorMBB->addSuccessor(PhiMBB);
+
+ // PhiMBB:
+ // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
+ BB = PhiMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(IntTmp).addMBB(OldMBB)
+ .addReg(XorReg).addMBB(XorMBB);
+ return Result;
+ }
+ assert(0 && "Should never get here");
+ return 0;
+ }
+
+ case ISD::SETCC:
+ if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
+ Opc = SelectSetCR0(N);
+
+ unsigned TrueValue = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
+ unsigned FalseValue = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
+
+ // Create an iterator with which to insert the MBB for copying the false
+ // value and the MBB to hold the PHI instruction for this SetCC.
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // cmpTY cr0, r1, r2
+ // %TrueValue = li 1
+ // bCC sinkMBB
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = li 0
+ // fallthrough
+ BB = copy0MBB;
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
+ return Result;
+ }
+ assert(0 && "Is this legal?");
+ return 0;
+
+ case ISD::SELECT: {
+ unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
+ unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
+ Opc = SelectSetCR0(N.getOperand(0));
+
+ // Create an iterator with which to insert the MBB for copying the false
+ // value and the MBB to hold the PHI instruction for this SetCC.
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY cr0, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
+
+ // FIXME: Select i64?
+ return Result;
+ }
+
+ case ISD::Constant:
+ switch (N.getValueType()) {
+ default: assert(0 && "Cannot use constants of this type!");
+ case MVT::i1:
+ BuildMI(BB, PPC::LI, 1, Result)
+ .addSImm(!cast<ConstantSDNode>(N)->isNullValue());
+ break;
+ case MVT::i32:
+ {
+ int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
+ if (v < 32768 && v >= -32768) {
+ BuildMI(BB, PPC::LI, 1, Result).addSImm(v);
+ } else {
+ Tmp1 = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16);
+ BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF);
+ }
+ }
+ }
+ return Result;
+ }
+
+ return 0;
+ }
+
+ void ISel::Select(SDOperand N) {
+ unsigned Tmp1, Tmp2, Opc;
+ unsigned opcode = N.getOpcode();
+
+ if (!ExprMap.insert(std::make_pair(N, 1)).second)
+ return; // Already selected.
+
+ SDNode *Node = N.Val;
+
+ switch (Node->getOpcode()) {
+ default:
+ Node->dump(); std::cerr << "\n";
+ assert(0 && "Node not handled yet!");
+ case ISD::EntryToken: return; // Noop
+ case ISD::TokenFactor:
+ for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
+ Select(Node->getOperand(i));
+ return;
+ case ISD::ADJCALLSTACKDOWN:
+ case ISD::ADJCALLSTACKUP:
+ Select(N.getOperand(0));
+ Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
+ Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN :
+ PPC::ADJCALLSTACKUP;
+ BuildMI(BB, Opc, 1).addImm(Tmp1);
+ return;
+ case ISD::BR: {
+ MachineBasicBlock *Dest =
+ cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
+ Select(N.getOperand(0));
+ BuildMI(BB, PPC::B, 1).addMBB(Dest);
+ return;
+ }
+ case ISD::BRCOND:
+ SelectBranchCC(N);
+ return;
+ case ISD::CopyToReg:
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ Tmp2 = cast<RegSDNode>(N)->getReg();
+
+ if (Tmp1 != Tmp2) {
+ if (N.getOperand(1).getValueType() == MVT::f64 ||
+ N.getOperand(1).getValueType() == MVT::f32)
+ BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1);
+ else
+ BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
+ }
+ return;
+ case ISD::ImplicitDef:
+ Select(N.getOperand(0));
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg());
+ return;
+ case ISD::RET:
+ switch (N.getNumOperands()) {
+ default:
+ assert(0 && "Unknown return instruction!");
+ case 3:
+ assert(N.getOperand(1).getValueType() == MVT::i32 &&
+ N.getOperand(2).getValueType() == MVT::i32 &&
+ "Unknown two-register value!");
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ Tmp2 = SelectExpr(N.getOperand(2));
+ BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2);
+ BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1);
+ break;
+ case 2:
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ switch (N.getOperand(1).getValueType()) {
+ default:
+ assert(0 && "Unknown return type!");
+ case MVT::f64:
+ case MVT::f32:
+ BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1);
+ break;
+ case MVT::i32:
+ BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
+ break;
+ }
+ case 1:
+ Select(N.getOperand(0));
+ break;
+ }
+ BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
+ return;
+ case ISD::TRUNCSTORE:
+ case ISD::STORE:
+ {
+ SDOperand Chain = N.getOperand(0);
+ SDOperand Value = N.getOperand(1);
+ SDOperand Address = N.getOperand(2);
+ Select(Chain);
+
+ Tmp1 = SelectExpr(Value); //value
+
+ if (opcode == ISD::STORE) {
+ switch(Value.getValueType()) {
+ default: assert(0 && "unknown Type in store");
+ case MVT::i64: Opc = PPC::STD; break;
+ case MVT::f64: Opc = PPC::STFD; break;
+ case MVT::f32: Opc = PPC::STFS; break;
+ }
+ } else { //ISD::TRUNCSTORE
+ switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
+ default: assert(0 && "unknown Type in store");
+ case MVT::i1: //FIXME: DAG does not promote this load
+ case MVT::i8: Opc= PPC::STB; break;
+ case MVT::i16: Opc = PPC::STH; break;
+ case MVT::i32: Opc = PPC::STW; break;
+ }
+ }
+
+ if(Address.getOpcode() == ISD::FrameIndex)
+ {
+ Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
+ addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2);
+ }
+ else
+ {
+ int offset;
+ bool idx = SelectAddr(Address, Tmp2, offset);
+ if (idx) {
+ Opc = IndexedOpForOp(Opc);
+ BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset);
+ } else {
+ BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
+ }
+ }
+ return;
+ }
+ case ISD::EXTLOAD:
+ case ISD::SEXTLOAD:
+ case ISD::ZEXTLOAD:
+ case ISD::LOAD:
+ case ISD::CopyFromReg:
+ case ISD::CALL:
+ case ISD::DYNAMIC_STACKALLOC:
+ ExprMap.erase(N);
+ SelectExpr(N);
+ return;
+ }
+ assert(0 && "Should not be reached!");
+ }
+
+
+ /// createPPC32PatternInstructionSelector - This pass converts an LLVM function
+ /// into a machine code representation using pattern matching and a machine
+ /// description file.
+ ///
+ FunctionPass *llvm::createPPC64ISelPattern(TargetMachine &TM) {
+ return new ISel(TM);
+ }
+
Index: llvm/lib/Target/PowerPC/PowerPC.h
diff -u llvm/lib/Target/PowerPC/PowerPC.h:1.12 llvm/lib/Target/PowerPC/PowerPC.h:1.13
--- llvm/lib/Target/PowerPC/PowerPC.h:1.12 Wed Mar 23 22:41:43 2005
+++ llvm/lib/Target/PowerPC/PowerPC.h Tue Apr 5 03:51:15 2005
@@ -25,7 +25,7 @@
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
FunctionPass *createPPC32ISelPattern(TargetMachine &TM);
-FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
+FunctionPass *createPPC64ISelPattern(TargetMachine &TM);
FunctionPass *createDarwinAsmPrinter(std::ostream &OS, TargetMachine &TM);
FunctionPass *createAIXAsmPrinter(std::ostream &OS, TargetMachine &TM);
Index: llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp
diff -u llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp:1.48 llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp:1.49
--- llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp:1.48 Thu Mar 24 00:28:42 2005
+++ llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp Tue Apr 5 03:51:15 2005
@@ -97,7 +97,7 @@
PM.add(createUnreachableBlockEliminationPass());
if (LP64)
- PM.add(createPPC64ISelSimple(*this));
+ PM.add(createPPC64ISelPattern(*this));
else if (EnablePatternISel)
PM.add(createPPC32ISelPattern(*this));
else
More information about the llvm-commits
mailing list