[llvm-commits] CVS: llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp PPC64AsmPrinter.cpp PowerPC.h

Misha Brukman brukman at cs.uiuc.edu
Wed Aug 11 16:42:26 PDT 2004



Changes in directory llvm/lib/Target/PowerPC:

PPC64ISelSimple.cpp added (r1.1)
PPC64AsmPrinter.cpp added (r1.1)
PowerPC.h updated: 1.6 -> 1.7
---
Log message:

64-bit instruction selector and AIX-specific 64-bit asm printer


---
Diffs of the changes:  (+3887 -1)

Index: llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp
diff -c /dev/null llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp:1.1
*** /dev/null	Wed Aug 11 18:42:25 2004
--- llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp	Wed Aug 11 18:42:15 2004
***************
*** 0 ****
--- 1,3199 ----
+ //===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
+ // 
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ // 
+ //===----------------------------------------------------------------------===//
+ 
+ #define DEBUG_TYPE "isel"
+ #include "PowerPC.h"
+ #include "PowerPCInstrBuilder.h"
+ #include "PowerPCInstrInfo.h"
+ #include "PPC64TargetMachine.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Function.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Pass.h"
+ #include "llvm/CodeGen/IntrinsicLowering.h"
+ #include "llvm/CodeGen/MachineConstantPool.h"
+ #include "llvm/CodeGen/MachineFrameInfo.h"
+ #include "llvm/CodeGen/MachineFunction.h"
+ #include "llvm/CodeGen/SSARegMap.h"
+ #include "llvm/Target/MRegisterInfo.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Support/GetElementPtrTypeIterator.h"
+ #include "llvm/Support/InstVisitor.h"
+ #include "Support/Debug.h"
+ #include "Support/Statistic.h"
+ #include <vector>
+ using namespace llvm;
+ 
+ namespace {
+   Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
+ 
+   /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
+   /// PPC Representation.
+   ///
+   enum TypeClass {
+     cByte, cShort, cInt, cFP32, cFP64, cLong
+   };
+ }
+ 
+ /// getClass - Turn a primitive type into a "class" number which is based on the
+ /// size of the type, and whether or not it is floating point.
+ ///
+ static inline TypeClass getClass(const Type *Ty) {
+   switch (Ty->getTypeID()) {
+   case Type::SByteTyID:
+   case Type::UByteTyID:   return cByte;      // Byte operands are class #0
+   case Type::ShortTyID:
+   case Type::UShortTyID:  return cShort;     // Short operands are class #1
+   case Type::IntTyID:
+   case Type::UIntTyID:
+   case Type::PointerTyID: return cInt;       // Ints and pointers are class #2
+ 
+   case Type::FloatTyID:   return cFP32;      // Single float is #3
+   case Type::DoubleTyID:  return cFP64;      // Double Point is #4
+ 
+   case Type::LongTyID:
+   case Type::ULongTyID:   return cLong;      // Longs are class #5
+   default:
+     assert(0 && "Invalid type to getClass!");
+     return cByte;  // not reached
+   }
+ }
+ 
+ // getClassB - Just like getClass, but treat boolean values as ints.
+ static inline TypeClass getClassB(const Type *Ty) {
+   if (Ty == Type::BoolTy) return cInt;
+   return getClass(Ty);
+ }
+ 
+ namespace {
+   struct ISel : public FunctionPass, InstVisitor<ISel> {
+     PPC64TargetMachine &TM;
+     MachineFunction *F;                 // The function we are compiling into
+     MachineBasicBlock *BB;              // The current MBB we are compiling
+     int VarArgsFrameIndex;              // FrameIndex for start of varargs area
+     
+     std::map<Value*, unsigned> RegMap;  // Mapping between Values and SSA Regs
+ 
+     // External functions used in the Module
+     Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, 
+       *__umoddi3Fn,  *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
+       *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
+ 
+     // MBBMap - Mapping between LLVM BB -> Machine BB
+     std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
+ 
+     // AllocaMap - Mapping from fixed sized alloca instructions to the
+     // FrameIndex for the alloca.
+     std::map<AllocaInst*, unsigned> AllocaMap;
+ 
+     // A Reg to hold the base address used for global loads and stores, and a
+     // flag to set whether or not we need to emit it for this function.
+     unsigned GlobalBaseReg;
+     bool GlobalBaseInitialized;
+     
+     ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)), 
+       F(0), BB(0) {}
+ 
+     bool doInitialization(Module &M) {
+       // Add external functions that we may call
+       Type *i = Type::IntTy;
+       Type *d = Type::DoubleTy;
+       Type *f = Type::FloatTy;
+       Type *l = Type::LongTy;
+       Type *ul = Type::ULongTy;
+       Type *voidPtr = PointerType::get(Type::SByteTy);
+       // float fmodf(float, float);
+       fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
+       // double fmod(double, double);
+       fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
+       // int __cmpdi2(long, long);
+       __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
+       // long __moddi3(long, long);
+       __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
+       // long __divdi3(long, long);
+       __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
+       // unsigned long __umoddi3(unsigned long, unsigned long);
+       __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
+       // unsigned long __udivdi3(unsigned long, unsigned long);
+       __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
+       // long __fixsfdi(float)
+       __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
+       // long __fixdfdi(double)
+       __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
+       // unsigned long __fixunssfdi(float)
+       __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
+       // unsigned long __fixunsdfdi(double)
+       __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
+       // float __floatdisf(long)
+       __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
+       // double __floatdidf(long)
+       __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
+       // void* malloc(size_t)
+       mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
+       // void free(void*)
+       freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
+       return false;
+     }
+ 
+     /// runOnFunction - Top level implementation of instruction selection for
+     /// the entire function.
+     ///
+     bool runOnFunction(Function &Fn) {
+       // First pass over the function, lower any unknown intrinsic functions
+       // with the IntrinsicLowering class.
+       LowerUnknownIntrinsicFunctionCalls(Fn);
+ 
+       F = &MachineFunction::construct(&Fn, TM);
+ 
+       // Create all of the machine basic blocks for the function...
+       for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+         F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
+ 
+       BB = &F->front();
+ 
+       // Make sure we re-emit a set of the global base reg if necessary
+       GlobalBaseInitialized = false;
+ 
+       // Copy incoming arguments off of the stack...
+       LoadArgumentsToVirtualRegs(Fn);
+ 
+       // Instruction select everything except PHI nodes
+       visit(Fn);
+ 
+       // Select the PHI nodes
+       SelectPHINodes();
+ 
+       RegMap.clear();
+       MBBMap.clear();
+       AllocaMap.clear();
+       F = 0;
+       // We always build a machine code representation for the function
+       return true;
+     }
+ 
+     virtual const char *getPassName() const {
+       return "PowerPC Simple Instruction Selection";
+     }
+ 
+     /// visitBasicBlock - This method is called when we are visiting a new basic
+     /// block.  This simply creates a new MachineBasicBlock to emit code into
+     /// and adds it to the current MachineFunction.  Subsequent visit* for
+     /// instructions will be invoked for all instructions in the basic block.
+     ///
+     void visitBasicBlock(BasicBlock &LLVM_BB) {
+       BB = MBBMap[&LLVM_BB];
+     }
+ 
+     /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+     /// function, lowering any calls to unknown intrinsic functions into the
+     /// equivalent LLVM code.
+     ///
+     void LowerUnknownIntrinsicFunctionCalls(Function &F);
+ 
+     /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
+     /// from the stack into virtual registers.
+     ///
+     void LoadArgumentsToVirtualRegs(Function &F);
+ 
+     /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
+     /// because we have to generate our sources into the source basic blocks,
+     /// not the current one.
+     ///
+     void SelectPHINodes();
+ 
+     // Visitation methods for various instructions.  These methods simply emit
+     // fixed PowerPC code for each instruction.
+ 
+     // Control flow operators
+     void visitReturnInst(ReturnInst &RI);
+     void visitBranchInst(BranchInst &BI);
+ 
+     struct ValueRecord {
+       Value *Val;
+       unsigned Reg;
+       const Type *Ty;
+       ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
+       ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
+     };
+     
+     // This struct is for recording the necessary operations to emit the GEP
+     struct CollapsedGepOp {
+       bool isMul;
+       Value *index;
+       ConstantSInt *size;
+       CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
+         isMul(mul), index(i), size(s) {}
+     };
+ 
+     void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+                 const std::vector<ValueRecord> &Args, bool isVarArg);
+     void visitCallInst(CallInst &I);
+     void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
+ 
+     // Arithmetic operators
+     void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
+     void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
+     void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
+     void visitMul(BinaryOperator &B);
+ 
+     void visitDiv(BinaryOperator &B) { visitDivRem(B); }
+     void visitRem(BinaryOperator &B) { visitDivRem(B); }
+     void visitDivRem(BinaryOperator &B);
+ 
+     // Bitwise operators
+     void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
+     void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
+     void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
+ 
+     // Comparison operators...
+     void visitSetCondInst(SetCondInst &I);
+     unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+                             MachineBasicBlock *MBB,
+                             MachineBasicBlock::iterator MBBI);
+     void visitSelectInst(SelectInst &SI);
+     
+     
+     // Memory Instructions
+     void visitLoadInst(LoadInst &I);
+     void visitStoreInst(StoreInst &I);
+     void visitGetElementPtrInst(GetElementPtrInst &I);
+     void visitAllocaInst(AllocaInst &I);
+     void visitMallocInst(MallocInst &I);
+     void visitFreeInst(FreeInst &I);
+     
+     // Other operators
+     void visitShiftInst(ShiftInst &I);
+     void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
+     void visitCastInst(CastInst &I);
+     void visitVANextInst(VANextInst &I);
+     void visitVAArgInst(VAArgInst &I);
+ 
+     void visitInstruction(Instruction &I) {
+       std::cerr << "Cannot instruction select: " << I;
+       abort();
+     }
+ 
+     /// promote32 - Make a value 32-bits wide, and put it somewhere.
+     ///
+     void promote32(unsigned targetReg, const ValueRecord &VR);
+ 
+     /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+     /// constant expression GEP support.
+     ///
+     void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+                           Value *Src, User::op_iterator IdxBegin,
+                           User::op_iterator IdxEnd, unsigned TargetReg,
+                           bool CollapseRemainder, ConstantSInt **Remainder,
+                           unsigned *PendingAddReg);
+ 
+     /// emitCastOperation - Common code shared between visitCastInst and
+     /// constant expression cast support.
+     ///
+     void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
+                            Value *Src, const Type *DestTy, unsigned TargetReg);
+ 
+     /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+     /// and constant expression support.
+     ///
+     void emitSimpleBinaryOperation(MachineBasicBlock *BB,
+                                    MachineBasicBlock::iterator IP,
+                                    Value *Op0, Value *Op1,
+                                    unsigned OperatorClass, unsigned TargetReg);
+ 
+     /// emitBinaryFPOperation - This method handles emission of floating point
+     /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+     void emitBinaryFPOperation(MachineBasicBlock *BB,
+                                MachineBasicBlock::iterator IP,
+                                Value *Op0, Value *Op1,
+                                unsigned OperatorClass, unsigned TargetReg);
+ 
+     void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+                       Value *Op0, Value *Op1, unsigned TargetReg);
+ 
+     void doMultiply(MachineBasicBlock *MBB,
+                     MachineBasicBlock::iterator IP,
+                     unsigned DestReg, Value *Op0, Value *Op1);
+   
+     /// doMultiplyConst - This method will multiply the value in Op0Reg by the
+     /// value of the ContantInt *CI
+     void doMultiplyConst(MachineBasicBlock *MBB, 
+                          MachineBasicBlock::iterator IP,
+                          unsigned DestReg, Value *Op0, ConstantInt *CI);
+ 
+     void emitDivRemOperation(MachineBasicBlock *BB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Op0, Value *Op1, bool isDiv,
+                              unsigned TargetReg);
+ 
+     /// emitSetCCOperation - Common code shared between visitSetCondInst and
+     /// constant expression support.
+     ///
+     void emitSetCCOperation(MachineBasicBlock *BB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Op0, Value *Op1, unsigned Opcode,
+                             unsigned TargetReg);
+ 
+     /// emitShiftOperation - Common code shared between visitShiftInst and
+     /// constant expression support.
+     ///
+     void emitShiftOperation(MachineBasicBlock *MBB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Op, Value *ShiftAmount, bool isLeftShift,
+                             const Type *ResultTy, unsigned DestReg);
+       
+     /// emitSelectOperation - Common code shared between visitSelectInst and the
+     /// constant expression support.
+     ///
+     void emitSelectOperation(MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Cond, Value *TrueVal, Value *FalseVal,
+                              unsigned DestReg);
+ 
+     /// copyGlobalBaseToRegister - Output the instructions required to put the
+     /// base address to use for accessing globals into a register.
+     ///
+     void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
+                                         MachineBasicBlock::iterator IP,
+                                         unsigned R);
+ 
+     /// copyConstantToRegister - Output the instructions required to put the
+     /// specified constant into the specified register.
+     ///
+     void copyConstantToRegister(MachineBasicBlock *MBB,
+                                 MachineBasicBlock::iterator MBBI,
+                                 Constant *C, unsigned Reg);
+ 
+     void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                    unsigned LHS, unsigned RHS);
+ 
+     /// makeAnotherReg - This method returns the next register number we haven't
+     /// yet used.
+     ///
+     unsigned makeAnotherReg(const Type *Ty) {
+       assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
+              "Current target doesn't have PPC reg info??");
+       const PowerPCRegisterInfo *PPCRI =
+         static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
+       // Add the mapping of regnumber => reg class to MachineFunction
+       const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
+       return F->getSSARegMap()->createVirtualRegister(RC);
+     }
+ 
+     /// getReg - This method turns an LLVM value into a register number.
+     ///
+     unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
+     unsigned getReg(Value *V) {
+       // Just append to the end of the current bb.
+       MachineBasicBlock::iterator It = BB->end();
+       return getReg(V, BB, It);
+     }
+     unsigned getReg(Value *V, MachineBasicBlock *MBB,
+                     MachineBasicBlock::iterator IPt);
+     
+     /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+     /// is okay to use as an immediate argument to a certain binary operation
+     bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
+ 
+     /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+     /// that is to be statically allocated with the initial stack frame
+     /// adjustment.
+     unsigned getFixedSizedAllocaFI(AllocaInst *AI);
+   };
+ }
+ 
+ /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
+ /// instruction in the entry block, return it.  Otherwise, return a null
+ /// pointer.
+ static AllocaInst *dyn_castFixedAlloca(Value *V) {
+   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+     BasicBlock *BB = AI->getParent();
+     if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
+       return AI;
+   }
+   return 0;
+ }
+ 
+ /// getReg - This method turns an LLVM value into a register number.
+ ///
+ unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
+                       MachineBasicBlock::iterator IPt) {
+   if (Constant *C = dyn_cast<Constant>(V)) {
+     unsigned Reg = makeAnotherReg(V->getType());
+     copyConstantToRegister(MBB, IPt, C, Reg);
+     return Reg;
+   } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
+     unsigned Reg = makeAnotherReg(V->getType());
+     unsigned FI = getFixedSizedAllocaFI(AI);
+     addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
+     return Reg;
+   }
+ 
+   unsigned &Reg = RegMap[V];
+   if (Reg == 0) {
+     Reg = makeAnotherReg(V->getType());
+     RegMap[V] = Reg;
+   }
+ 
+   return Reg;
+ }
+ 
+ /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+ /// is okay to use as an immediate argument to a certain binary operator.
+ ///
+ /// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
+ bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
+   ConstantSInt *Op1Cs;
+   ConstantUInt *Op1Cu;
+       
+   // ADDI, Compare, and non-indexed Load take SIMM
+   bool cond1 = (Operator == 0) 
+     && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+     && (Op1Cs->getValue() <= 32767)
+     && (Op1Cs->getValue() >= -32768);
+ 
+   // SUBI takes -SIMM since it is a mnemonic for ADDI
+   bool cond2 = (Operator == 1)
+     && (Op1Cs = dyn_cast<ConstantSInt>(CI)) 
+     && (Op1Cs->getValue() <= 32768)
+     && (Op1Cs->getValue() >= -32767);
+       
+   // ANDIo, ORI, and XORI take unsigned values
+   bool cond3 = (Operator >= 2)
+     && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+     && (Op1Cs->getValue() >= 0)
+     && (Op1Cs->getValue() <= 32767);
+ 
+   // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
+   bool cond4 = (Operator < 2)
+     && (Op1Cu = dyn_cast<ConstantUInt>(CI)) 
+     && (Op1Cu->getValue() <= 32767);
+ 
+   // ANDIo, ORI, and XORI take UIMMs, so they can be larger
+   bool cond5 = (Operator >= 2)
+     && (Op1Cu = dyn_cast<ConstantUInt>(CI))
+     && (Op1Cu->getValue() <= 65535);
+ 
+   if (cond1 || cond2 || cond3 || cond4 || cond5)
+     return true;
+ 
+   return false;
+ }
+ 
+ /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+ /// that is to be statically allocated with the initial stack frame
+ /// adjustment.
+ unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
+   // Already computed this?
+   std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
+   if (I != AllocaMap.end() && I->first == AI) return I->second;
+ 
+   const Type *Ty = AI->getAllocatedType();
+   ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
+   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+   TySize *= CUI->getValue();   // Get total allocated size...
+   unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
+       
+   // Create a new stack object using the frame manager...
+   int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
+   AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
+   return FrameIdx;
+ }
+ 
+ 
+ /// copyGlobalBaseToRegister - Output the instructions required to put the
+ /// base address to use for accessing globals into a register.
+ ///
+ void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
+                                     MachineBasicBlock::iterator IP,
+                                     unsigned R) {
+   if (!GlobalBaseInitialized) {
+     // Insert the set of GlobalBaseReg into the first MBB of the function
+     MachineBasicBlock &FirstMBB = F->front();
+     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+     GlobalBaseReg = makeAnotherReg(Type::IntTy);
+     BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
+     BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
+     GlobalBaseInitialized = true;
+   }
+   // Emit our copy of GlobalBaseReg to the destination register in the
+   // current MBB
+   BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
+     .addReg(GlobalBaseReg);
+ }
+ 
+ /// copyConstantToRegister - Output the instructions required to put the
+ /// specified constant into the specified register.
+ ///
+ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
+                                   MachineBasicBlock::iterator IP,
+                                   Constant *C, unsigned R) {
+   if (C->getType()->isIntegral()) {
+     unsigned Class = getClassB(C->getType());
+ 
+     if (Class == cLong) {
+       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
+         uint64_t uval = CUI->getValue();
+         if (uval < (1LL << 32)) {
+           ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
+           copyConstantToRegister(MBB, IP, CU, R);
+           return;
+         }
+       } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
+         int64_t val = CUI->getValue();
+         if (val < (1LL << 31)) {
+           ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
+           copyConstantToRegister(MBB, IP, CU, R);
+           return;
+         }
+       } else {
+         std::cerr << "Unhandled long constant type!\n";
+         abort();
+       }
+       // Spill long to the constant pool and load it
+       MachineConstantPool *CP = F->getConstantPool();
+       unsigned CPI = CP->getConstantPoolIndex(C);
+       BuildMI(*MBB, IP, PPC::LD, 1, R)
+         .addReg(PPC::R2).addConstantPoolIndex(CPI);
+     }
+     
+     assert(Class <= cInt && "Type not handled yet!");
+ 
+     // Handle bool
+     if (C->getType() == Type::BoolTy) {
+       BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
+       return;
+     }
+     
+     // Handle int
+     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
+       unsigned uval = CUI->getValue();
+       if (uval < 32768) {
+         BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
+       } else {
+         unsigned Temp = makeAnotherReg(Type::IntTy);
+         BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
+         BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
+       }
+       return;
+     } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
+       int sval = CSI->getValue();
+       if (sval < 32768 && sval >= -32768) {
+         BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
+       } else {
+         unsigned Temp = makeAnotherReg(Type::IntTy);
+         BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
+         BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
+       }
+       return;
+     }
+     std::cerr << "Unhandled integer constant!\n";
+     abort();
+   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+     // We need to spill the constant to memory...
+     MachineConstantPool *CP = F->getConstantPool();
+     unsigned CPI = CP->getConstantPoolIndex(CFP);
+     const Type *Ty = CFP->getType();
+     unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
+     BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
+   } else if (isa<ConstantPointerNull>(C)) {
+     // Copy zero (null pointer) to the register.
+     BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
+   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
+     unsigned TmpReg = makeAnotherReg(GV->getType());
+     BuildMI(*MBB, IP, PPC::LD, 2, TmpReg).addGlobalAddress(GV).addReg(PPC::R2);
+     BuildMI(*MBB, IP, PPC::LWA, 2, R).addSImm(0).addReg(TmpReg);
+   } else {
+     std::cerr << "Offending constant: " << *C << "\n";
+     assert(0 && "Type not handled yet!");
+   }
+ }
+ 
+ /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
+ /// the stack into virtual registers.
+ void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
+   unsigned ArgOffset = 24;
+   unsigned GPR_remaining = 8;
+   unsigned FPR_remaining = 13;
+   unsigned GPR_idx = 0, FPR_idx = 0;
+   static const unsigned GPR[] = { 
+     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+   };
+   static const unsigned FPR[] = {
+     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+   };
+     
+   MachineFrameInfo *MFI = F->getFrameInfo();
+  
+   for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
+     bool ArgLive = !I->use_empty();
+     unsigned Reg = ArgLive ? getReg(*I) : 0;
+     int FI;          // Frame object index
+ 
+     switch (getClassB(I->getType())) {
+     case cByte:
+       if (ArgLive) {
+         FI = MFI->CreateFixedObject(4, ArgOffset);
+         if (GPR_remaining > 0) {
+           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+             .addReg(GPR[GPR_idx]);
+         } else {
+           addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
+         }
+       }
+       break;
+     case cShort:
+       if (ArgLive) {
+         FI = MFI->CreateFixedObject(4, ArgOffset);
+         if (GPR_remaining > 0) {
+           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+             .addReg(GPR[GPR_idx]);
+         } else {
+           addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
+         }
+       }
+       break;
+     case cInt:
+       if (ArgLive) {
+         FI = MFI->CreateFixedObject(4, ArgOffset);
+         if (GPR_remaining > 0) {
+           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+             .addReg(GPR[GPR_idx]);
+         } else {
+           addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
+         }
+       }
+       break;
+     case cLong:
+       if (ArgLive) {
+         FI = MFI->CreateFixedObject(8, ArgOffset);
+         if (GPR_remaining > 1) {
+           BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+             .addReg(GPR[GPR_idx]);
+         } else {
+           addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
+         }
+       }
+       // longs require 4 additional bytes
+       ArgOffset += 4;
+       break;
+     case cFP32:
+      if (ArgLive) {
+         FI = MFI->CreateFixedObject(4, ArgOffset);
+ 
+         if (FPR_remaining > 0) {
+           BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+           BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
+           FPR_remaining--;
+           FPR_idx++;
+         } else {
+           addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
+         }
+       }
+       break;
+     case cFP64:
+       if (ArgLive) {
+         FI = MFI->CreateFixedObject(8, ArgOffset);
+ 
+         if (FPR_remaining > 0) {
+           BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+           BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
+           FPR_remaining--;
+           FPR_idx++;
+         } else {
+           addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
+         }
+       }
+ 
+       // doubles require 4 additional bytes and use 2 GPRs of param space
+       ArgOffset += 4;   
+       if (GPR_remaining > 0) {
+         GPR_remaining--;
+         GPR_idx++;
+       }
+       break;
+     default:
+       assert(0 && "Unhandled argument type!");
+     }
+     ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
+     if (GPR_remaining > 0) {
+       GPR_remaining--;    // uses up 2 GPRs
+       GPR_idx++;
+     }
+   }
+ 
+   // If the function takes variable number of arguments, add a frame offset for
+   // the start of the first vararg value... this is used to expand
+   // llvm.va_start.
+   if (Fn.getFunctionType()->isVarArg())
+     VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
+ }
+ 
+ 
+ /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
+ /// because we have to generate our sources into the source basic blocks, not
+ /// the current one.
+ ///
+ void ISel::SelectPHINodes() {
+   const TargetInstrInfo &TII = *TM.getInstrInfo();
+   const Function &LF = *F->getFunction();  // The LLVM function...
+   for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
+     const BasicBlock *BB = I;
+     MachineBasicBlock &MBB = *MBBMap[I];
+ 
+     // Loop over all of the PHI nodes in the LLVM basic block...
+     MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
+     for (BasicBlock::const_iterator I = BB->begin();
+          PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
+ 
+       // Create a new machine instr PHI node, and insert it.
+       unsigned PHIReg = getReg(*PN);
+       MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
+                                     PPC::PHI, PN->getNumOperands(), PHIReg);
+ 
+       // PHIValues - Map of blocks to incoming virtual registers.  We use this
+       // so that we only initialize one incoming value for a particular block,
+       // even if the block has multiple entries in the PHI node.
+       //
+       std::map<MachineBasicBlock*, unsigned> PHIValues;
+ 
+       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+         MachineBasicBlock *PredMBB = 0;
+         for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
+              PE = MBB.pred_end (); PI != PE; ++PI)
+           if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
+             PredMBB = *PI;
+             break;
+           }
+         assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
+ 
+         unsigned ValReg;
+         std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
+           PHIValues.lower_bound(PredMBB);
+ 
+         if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
+           // We already inserted an initialization of the register for this
+           // predecessor.  Recycle it.
+           ValReg = EntryIt->second;
+         } else {
+           // Get the incoming value into a virtual register.
+           //
+           Value *Val = PN->getIncomingValue(i);
+ 
+           // If this is a constant or GlobalValue, we may have to insert code
+           // into the basic block to compute it into a virtual register.
+           if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
+               isa<GlobalValue>(Val)) {
+             // Simple constants get emitted at the end of the basic block,
+             // before any terminator instructions.  We "know" that the code to
+             // move a constant into a register will never clobber any flags.
+             ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
+           } else {
+             // Because we don't want to clobber any values which might be in
+             // physical registers with the computation of this constant (which
+             // might be arbitrarily complex if it is a constant expression),
+             // just insert the computation at the top of the basic block.
+             MachineBasicBlock::iterator PI = PredMBB->begin();
+ 
+             // Skip over any PHI nodes though!
+             while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
+               ++PI;
+ 
+             ValReg = getReg(Val, PredMBB, PI);
+           }
+ 
+           // Remember that we inserted a value for this PHI for this predecessor
+           PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
+         }
+ 
+         PhiMI->addRegOperand(ValReg);
+         PhiMI->addMachineBasicBlockOperand(PredMBB);
+       }
+ 
+       // Now that we emitted all of the incoming values for the PHI node, make
+       // sure to reposition the InsertPoint after the PHI that we just added.
+       // This is needed because we might have inserted a constant into this
+       // block, right after the PHI's which is before the old insert point!
+       PHIInsertPoint = PhiMI;
+       ++PHIInsertPoint;
+     }
+   }
+ }
+ 
+ 
+ // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
+ // it into the conditional branch or select instruction which is the only user
+ // of the cc instruction.  This is the case if the conditional branch is the
+ // only user of the setcc, and if the setcc is in the same basic block as the
+ // conditional branch.
+ //
+ static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
+   if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
+     if (SCI->hasOneUse()) {
+       Instruction *User = cast<Instruction>(SCI->use_back());
+       if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
+           SCI->getParent() == User->getParent())
+         return SCI;
+     }
+   return 0;
+ }
+ 
+ 
+ // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
+ // the load or store instruction that is the only user of the GEP.
+ //
+ static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
+   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
+     if (GEPI->hasOneUse()) {
+       Instruction *User = cast<Instruction>(GEPI->use_back());
+       if (isa<StoreInst>(User) &&
+           GEPI->getParent() == User->getParent() &&
+           User->getOperand(0) != GEPI &&
+           User->getOperand(1) == GEPI) {
+         ++GEPFolds;
+         return GEPI;
+       }
+       if (isa<LoadInst>(User) &&
+           GEPI->getParent() == User->getParent() &&
+           User->getOperand(0) == GEPI) {
+         ++GEPFolds;
+         return GEPI;
+       }
+     }
+   return 0;
+ }
+ 
+ 
+ // Return a fixed numbering for setcc instructions which does not depend on the
+ // order of the opcodes.
+ //
+ static unsigned getSetCCNumber(unsigned Opcode) {
+   switch (Opcode) {
+   default: assert(0 && "Unknown setcc instruction!");
+   case Instruction::SetEQ: return 0;
+   case Instruction::SetNE: return 1;
+   case Instruction::SetLT: return 2;
+   case Instruction::SetGE: return 3;
+   case Instruction::SetGT: return 4;
+   case Instruction::SetLE: return 5;
+   }
+ }
+ 
+ static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
+   switch (Opcode) {
+   default: assert(0 && "Unknown setcc instruction!");
+   case Instruction::SetEQ: return PPC::BEQ;
+   case Instruction::SetNE: return PPC::BNE;
+   case Instruction::SetLT: return PPC::BLT;
+   case Instruction::SetGE: return PPC::BGE;
+   case Instruction::SetGT: return PPC::BGT;
+   case Instruction::SetLE: return PPC::BLE;
+   }
+ }
+ 
+ /// emitUCOM - emits an unordered FP compare.
+ void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+                      unsigned LHS, unsigned RHS) {
+     BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
+ }
+ 
+ /// EmitComparison - emits a comparison of the two operands, returning the
+ /// extended setcc code to use.  The result is in CR0.
+ ///
+ unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+                               MachineBasicBlock *MBB,
+                               MachineBasicBlock::iterator IP) {
+   // The arguments are already supposed to be of the same type.
+   const Type *CompTy = Op0->getType();
+   unsigned Class = getClassB(CompTy);
+   unsigned Op0r = getReg(Op0, MBB, IP);
+ 
+   // Before we do a comparison, we have to make sure that we're truncating our
+   // registers appropriately.
+   if (Class == cByte) {
+     unsigned TmpReg = makeAnotherReg(CompTy);
+     if (CompTy->isSigned())
+       BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
+     else
+       BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
+         .addImm(24).addImm(31);
+     Op0r = TmpReg;
+   } else if (Class == cShort) {
+     unsigned TmpReg = makeAnotherReg(CompTy);
+     if (CompTy->isSigned())
+       BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
+     else
+       BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
+         .addImm(16).addImm(31);
+     Op0r = TmpReg;
+   }
+   
+   // Use crand for lt, gt and crandc for le, ge
+   unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
+   unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
+   unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
+   if (Class == cLong) {
+     Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
+     OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
+   }
+ 
+   // Special case handling of: cmp R, i
+   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+     unsigned Op1v = CI->getRawValue() & 0xFFFF;
+ 
+     // Treat compare like ADDI for the purposes of immediate suitability
+     if (canUseAsImmediateForOpcode(CI, 0)) {
+       BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
+     } else {
+       unsigned Op1r = getReg(Op1, MBB, IP);
+       BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
+     }
+     return OpNum;
+   }
+ 
+   unsigned Op1r = getReg(Op1, MBB, IP);
+ 
+   switch (Class) {
+   default: assert(0 && "Unknown type class!");
+   case cByte:
+   case cShort:
+   case cInt:
+   case cLong:
+     BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
+     break;
+ 
+   case cFP32:
+   case cFP64:
+     emitUCOM(MBB, IP, Op0r, Op1r);
+     break;
+   }
+ 
+   return OpNum;
+ }
+ 
+ /// visitSetCondInst - emit code to calculate the condition via
+ /// EmitComparison(), and possibly store a 0 or 1 to a register as a result
+ ///
+ void ISel::visitSetCondInst(SetCondInst &I) {
+   if (canFoldSetCCIntoBranchOrSelect(&I))
+     return;
+ 
+   unsigned DestReg = getReg(I);
+   unsigned OpNum = I.getOpcode();
+   const Type *Ty = I.getOperand (0)->getType();
+ 
+   EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
+   
+   unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
+   MachineBasicBlock *thisMBB = BB;
+   const BasicBlock *LLVM_BB = BB->getBasicBlock();
+   ilist<MachineBasicBlock>::iterator It = BB;
+   ++It;
+   
+   //  thisMBB:
+   //  ...
+   //   cmpTY cr0, r1, r2
+   //   bCC copy1MBB
+   //   b copy0MBB
+ 
+   // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
+   // if we could insert other, non-terminator instructions after the
+   // bCC. But MBB->getFirstTerminator() can't understand this.
+   MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
+   F->getBasicBlockList().insert(It, copy1MBB);
+   BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
+   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+   F->getBasicBlockList().insert(It, copy0MBB);
+   BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
+   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+   F->getBasicBlockList().insert(It, sinkMBB);
+   // Update machine-CFG edges
+   BB->addSuccessor(copy1MBB);
+   BB->addSuccessor(copy0MBB);
+ 
+   //  copy1MBB:
+   //   %TrueValue = li 1
+   //   b sinkMBB
+   BB = copy1MBB;
+   unsigned TrueValue = makeAnotherReg(I.getType());
+   BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
+   BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
+   // Update machine-CFG edges
+   BB->addSuccessor(sinkMBB);
+ 
+   //  copy0MBB:
+   //   %FalseValue = li 0
+   //   fallthrough
+   BB = copy0MBB;
+   unsigned FalseValue = makeAnotherReg(I.getType());
+   BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
+   // Update machine-CFG edges
+   BB->addSuccessor(sinkMBB);
+ 
+   //  sinkMBB:
+   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
+   //  ...
+   BB = sinkMBB;
+   BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
+     .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
+ }
+ 
+ void ISel::visitSelectInst(SelectInst &SI) {
+   unsigned DestReg = getReg(SI);
+   MachineBasicBlock::iterator MII = BB->end();
+   emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
+                       SI.getFalseValue(), DestReg);
+ }
+  
+ /// emitSelect - Common code shared between visitSelectInst and the constant
+ /// expression support.
+ /// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
+ /// no select instruction.  FSEL only works for comparisons against zero.
+ void ISel::emitSelectOperation(MachineBasicBlock *MBB,
+                                MachineBasicBlock::iterator IP,
+                                Value *Cond, Value *TrueVal, Value *FalseVal,
+                                unsigned DestReg) {
+   unsigned SelectClass = getClassB(TrueVal->getType());
+   unsigned Opcode;
+ 
+   // See if we can fold the setcc into the select instruction, or if we have
+   // to get the register of the Cond value
+   if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
+     // We successfully folded the setcc into the select instruction.
+     unsigned OpNum = getSetCCNumber(SCI->getOpcode());
+     OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
+     Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
+   } else {
+     unsigned CondReg = getReg(Cond, MBB, IP);
+     BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
+     Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
+   }
+ 
+   //  thisMBB:
+   //  ...
+   //   cmpTY cr0, r1, r2
+   //   bCC copy1MBB
+   //   b copy0MBB
+ 
+   MachineBasicBlock *thisMBB = BB;
+   const BasicBlock *LLVM_BB = BB->getBasicBlock();
+   ilist<MachineBasicBlock>::iterator It = BB;
+   ++It;
+ 
+   // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
+   // if we could insert other, non-terminator instructions after the
+   // bCC. But MBB->getFirstTerminator() can't understand this.
+   MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
+   F->getBasicBlockList().insert(It, copy1MBB);
+   BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
+   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+   F->getBasicBlockList().insert(It, copy0MBB);
+   BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
+   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+   F->getBasicBlockList().insert(It, sinkMBB);
+   // Update machine-CFG edges
+   BB->addSuccessor(copy1MBB);
+   BB->addSuccessor(copy0MBB);
+ 
+   //  copy1MBB:
+   //   %TrueValue = ...
+   //   b sinkMBB
+   BB = copy1MBB;
+   unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
+   BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
+   // Update machine-CFG edges
+   BB->addSuccessor(sinkMBB);
+ 
+   //  copy0MBB:
+   //   %FalseValue = ...
+   //   fallthrough
+   BB = copy0MBB;
+   unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
+   // Update machine-CFG edges
+   BB->addSuccessor(sinkMBB);
+ 
+   //  sinkMBB:
+   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
+   //  ...
+   BB = sinkMBB;
+   BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
+     .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
+   return;
+ }
+ 
+ 
+ 
+ /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
+ /// operand, in the specified target register.
+ ///
+ void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
+   bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
+ 
+   Value *Val = VR.Val;
+   const Type *Ty = VR.Ty;
+   if (Val) {
+     if (Constant *C = dyn_cast<Constant>(Val)) {
+       Val = ConstantExpr::getCast(C, Type::IntTy);
+       if (isa<ConstantExpr>(Val))   // Could not fold
+         Val = C;
+       else
+         Ty = Type::IntTy;           // Folded!
+     }
+ 
+     // If this is a simple constant, just emit a load directly to avoid the copy
+     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+       int TheVal = CI->getRawValue() & 0xFFFFFFFF;
+ 
+       if (TheVal < 32768 && TheVal >= -32768) {
+         BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
+       } else {
+         unsigned TmpReg = makeAnotherReg(Type::IntTy);
+         BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
+         BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
+           .addImm(TheVal & 0xFFFF);
+       }
+       return;
+     }
+   }
+ 
+   // Make sure we have the register number for this value...
+   unsigned Reg = Val ? getReg(Val) : VR.Reg;
+   switch (getClassB(Ty)) {
+   case cByte:
+     // Extend value into target register (8->32)
+     if (isUnsigned)
+       BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
+         .addZImm(24).addZImm(31);
+     else
+       BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
+     break;
+   case cShort:
+     // Extend value into target register (16->32)
+     if (isUnsigned)
+       BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
+         .addZImm(16).addZImm(31);
+     else
+       BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
+     break;
+   case cInt:
+   case cLong:
+     // Move value into target register (32->32)
+     BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
+     break;
+   default:
+     assert(0 && "Unpromotable operand class in promote32");
+   }
+ }
+ 
+ /// visitReturnInst - implemented with BLR
+ ///
+ void ISel::visitReturnInst(ReturnInst &I) {
+   // Only do the processing if this is a non-void return
+   if (I.getNumOperands() > 0) {
+     Value *RetVal = I.getOperand(0);
+     switch (getClassB(RetVal->getType())) {
+     case cByte:   // integral return values: extend or move into r3 and return
+     case cShort:
+     case cInt:
+     case cLong:
+       promote32(PPC::R3, ValueRecord(RetVal));
+       break;
+     case cFP32:
+     case cFP64: {   // Floats & Doubles: Return in f1
+       unsigned RetReg = getReg(RetVal);
+       BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
+       break;
+     }
+     default:
+       visitInstruction(I);
+     }
+   }
+   BuildMI(BB, PPC::BLR, 1).addImm(0);
+ }
+ 
+ // getBlockAfter - Return the basic block which occurs lexically after the
+ // specified one.
+ static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
+   Function::iterator I = BB; ++I;  // Get iterator to next block
+   return I != BB->getParent()->end() ? &*I : 0;
+ }
+ 
+ /// visitBranchInst - Handle conditional and unconditional branches here.  Note
+ /// that since code layout is frozen at this point, that if we are trying to
+ /// jump to a block that is the immediate successor of the current block, we can
+ /// just make a fall-through (but we don't currently).
+ ///
+ void ISel::visitBranchInst(BranchInst &BI) {
+   // Update machine-CFG edges
+   BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
+   if (BI.isConditional())
+     BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
+   
+   BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
+ 
+   if (!BI.isConditional()) {  // Unconditional branch?
+     if (BI.getSuccessor(0) != NextBB) 
+       BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+     return;
+   }
+   
+   // See if we can fold the setcc into the branch itself...
+   SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
+   if (SCI == 0) {
+     // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
+     // computed some other way...
+     unsigned condReg = getReg(BI.getCondition());
+     BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
+       .addImm(0);
+     if (BI.getSuccessor(1) == NextBB) {
+       if (BI.getSuccessor(0) != NextBB)
+         BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
+           .addMBB(MBBMap[BI.getSuccessor(0)])
+           .addMBB(MBBMap[BI.getSuccessor(1)]);
+     } else {
+       BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
+         .addMBB(MBBMap[BI.getSuccessor(1)])
+         .addMBB(MBBMap[BI.getSuccessor(0)]);
+       if (BI.getSuccessor(0) != NextBB)
+         BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+     }
+     return;
+   }
+ 
+   unsigned OpNum = getSetCCNumber(SCI->getOpcode());
+   unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
+   MachineBasicBlock::iterator MII = BB->end();
+   OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
+   
+   if (BI.getSuccessor(0) != NextBB) {
+     BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
+       .addMBB(MBBMap[BI.getSuccessor(0)])
+       .addMBB(MBBMap[BI.getSuccessor(1)]);
+     if (BI.getSuccessor(1) != NextBB)
+       BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
+   } else {
+     // Change to the inverse condition...
+     if (BI.getSuccessor(1) != NextBB) {
+       Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
+       BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
+         .addMBB(MBBMap[BI.getSuccessor(1)])
+         .addMBB(MBBMap[BI.getSuccessor(0)]);
+     }
+   }
+ }
+ 
+ /// doCall - This emits an abstract call instruction, setting up the arguments
+ /// and the return value as appropriate.  For the actual function call itself,
+ /// it inserts the specified CallMI instruction into the stream.
+ ///
+ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+                   const std::vector<ValueRecord> &Args, bool isVarArg) {
+   // Count how many bytes are to be pushed on the stack, including the linkage
+   // area, and parameter passing area.
+   unsigned NumBytes = 24;
+   unsigned ArgOffset = 24;
+ 
+   if (!Args.empty()) {
+     for (unsigned i = 0, e = Args.size(); i != e; ++i)
+       switch (getClassB(Args[i].Ty)) {
+       case cByte: case cShort: case cInt:
+         NumBytes += 4; break;
+       case cLong:
+         NumBytes += 8; break;
+       case cFP32:
+         NumBytes += 4; break;
+       case cFP64:
+         NumBytes += 8; break;
+         break;
+       default: assert(0 && "Unknown class!");
+       }
+ 
+     // Just to be safe, we'll always reserve the full 32 bytes worth of
+     // argument passing space in case any called code gets funky on us.
+     if (NumBytes < 24 + 32) NumBytes = 24 + 32;
+ 
+     // Adjust the stack pointer for the new arguments...
+     // These functions are automatically eliminated by the prolog/epilog pass
+     BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
+ 
+     // Arguments go on the stack in reverse order, as specified by the ABI.
+     // Offset to the paramater area on the stack is 24.
+     int GPR_remaining = 8, FPR_remaining = 13;
+     unsigned GPR_idx = 0, FPR_idx = 0;
+     static const unsigned GPR[] = { 
+       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+     };
+     static const unsigned FPR[] = {
+       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, 
+       PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, 
+       PPC::F13
+     };
+     
+     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+       unsigned ArgReg;
+       switch (getClassB(Args[i].Ty)) {
+       case cByte:
+       case cShort:
+         // Promote arg to 32 bits wide into a temporary register...
+         ArgReg = makeAnotherReg(Type::UIntTy);
+         promote32(ArgReg, Args[i]);
+           
+         // Reg or stack?
+         if (GPR_remaining > 0) {
+           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
+             .addReg(ArgReg);
+           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+         }
+         if (GPR_remaining <= 0 || isVarArg) {
+           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
+             .addReg(PPC::R1);
+         }
+         break;
+       case cInt:
+         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+ 
+         // Reg or stack?
+         if (GPR_remaining > 0) {
+           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
+             .addReg(ArgReg);
+           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+         }
+         if (GPR_remaining <= 0 || isVarArg) {
+           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
+             .addReg(PPC::R1);
+         }
+         break;
+       case cLong:
+         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+ 
+         // Reg or stack?
+         if (GPR_remaining > 0) {
+           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
+             .addReg(ArgReg);
+           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+         }
+         if (GPR_remaining <= 0 || isVarArg) {
+           BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
+             .addReg(PPC::R1);
+         }
+         ArgOffset += 4;        // 8 byte entry, not 4.
+         break;
+       case cFP32:
+         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+         // Reg or stack?
+         if (FPR_remaining > 0) {
+           BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
+           CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
+           FPR_remaining--;
+           FPR_idx++;
+           
+           // If this is a vararg function, and there are GPRs left, also
+           // pass the float in an int.  Otherwise, put it on the stack.
+           if (isVarArg) {
+             BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
+             .addReg(PPC::R1);
+             if (GPR_remaining > 0) {
+               BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
+               .addSImm(ArgOffset).addReg(ArgReg);
+               CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+             }
+           }
+         } else {
+           BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
+           .addReg(PPC::R1);
+         }
+         break;
+       case cFP64:
+         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+         // Reg or stack?
+         if (FPR_remaining > 0) {
+           BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
+           CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
+           FPR_remaining--;
+           FPR_idx++;
+           // For vararg functions, must pass doubles via int regs as well
+           if (isVarArg) {
+             BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
+             .addReg(PPC::R1);
+             
+             if (GPR_remaining > 0) {
+               BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
+               .addReg(PPC::R1);
+               CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+             }
+           }
+         } else {
+           BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
+           .addReg(PPC::R1);
+         }
+         // Doubles use 8 bytes
+         ArgOffset += 4;
+         break;
+         
+       default: assert(0 && "Unknown class!");
+       }
+       ArgOffset += 4;
+       GPR_remaining--;
+       GPR_idx++;
+     }
+   } else {
+     BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
+   }
+ 
+   BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
+   BB->push_back(CallMI);
+   BuildMI(BB, PPC::NOP, 1).addImm(0);
+   
+   // These functions are automatically eliminated by the prolog/epilog pass
+   BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
+ 
+   // If there is a return value, scavenge the result from the location the call
+   // leaves it in...
+   //
+   if (Ret.Ty != Type::VoidTy) {
+     unsigned DestClass = getClassB(Ret.Ty);
+     switch (DestClass) {
+     case cByte:
+     case cShort:
+     case cInt:
+     case cLong:
+       // Integral results are in r3
+       BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
+       break;
+     case cFP32:   // Floating-point return values live in f1
+     case cFP64:
+       BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
+       break;
+     default: assert(0 && "Unknown class!");
+     }
+   }
+ }
+ 
+ 
+ /// visitCallInst - Push args on stack and do a procedure call instruction.
+ void ISel::visitCallInst(CallInst &CI) {
+   MachineInstr *TheCall;
+   Function *F = CI.getCalledFunction();
+   if (F) {
+     // Is it an intrinsic function call?
+     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
+       visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
+       return;
+     }
+     // Emit a CALL instruction with PC-relative displacement.
+     TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
+     // Add it to the set of functions called to be used by the Printer
+     TM.CalledFunctions.insert(F);
+   } else {  // Emit an indirect call through the CTR
+     unsigned Reg = getReg(CI.getCalledValue());
+     BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
+     TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
+   }
+ 
+   std::vector<ValueRecord> Args;
+   for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
+     Args.push_back(ValueRecord(CI.getOperand(i)));
+ 
+   unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
+   bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
+   doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
+ }         
+ 
+ 
+ /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
+ ///
+ static Value *dyncastIsNan(Value *V) {
+   if (CallInst *CI = dyn_cast<CallInst>(V))
+     if (Function *F = CI->getCalledFunction())
+       if (F->getIntrinsicID() == Intrinsic::isunordered)
+         return CI->getOperand(1);
+   return 0;
+ }
+ 
+ /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
+ /// or's whos operands are all calls to the isnan predicate.
+ static bool isOnlyUsedByUnorderedComparisons(Value *V) {
+   assert(dyncastIsNan(V) && "The value isn't an isnan call!");
+ 
+   // Check all uses, which will be or's of isnans if this predicate is true.
+   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+     Instruction *I = cast<Instruction>(*UI);
+     if (I->getOpcode() != Instruction::Or) return false;
+     if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
+     if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
+   }
+ 
+   return true;
+ }
+ 
+ /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+ /// function, lowering any calls to unknown intrinsic functions into the
+ /// equivalent LLVM code.
+ ///
+ void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
+   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+       if (CallInst *CI = dyn_cast<CallInst>(I++))
+         if (Function *F = CI->getCalledFunction())
+           switch (F->getIntrinsicID()) {
+           case Intrinsic::not_intrinsic:
+           case Intrinsic::vastart:
+           case Intrinsic::vacopy:
+           case Intrinsic::vaend:
+           case Intrinsic::returnaddress:
+           case Intrinsic::frameaddress:
+             // FIXME: should lower these ourselves
+             // case Intrinsic::isunordered:
+             // case Intrinsic::memcpy: -> doCall().  system memcpy almost
+             // guaranteed to be faster than anything we generate ourselves
+             // We directly implement these intrinsics
+             break;
+           case Intrinsic::readio: {
+             // On PPC, memory operations are in-order.  Lower this intrinsic
+             // into a volatile load.
+             Instruction *Before = CI->getPrev();
+             LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
+             CI->replaceAllUsesWith(LI);
+             BB->getInstList().erase(CI);
+             break;
+           }
+           case Intrinsic::writeio: {
+             // On PPC, memory operations are in-order.  Lower this intrinsic
+             // into a volatile store.
+             Instruction *Before = CI->getPrev();
+             StoreInst *SI = new StoreInst(CI->getOperand(1),
+                                           CI->getOperand(2), true, CI);
+             CI->replaceAllUsesWith(SI);
+             BB->getInstList().erase(CI);
+             break;
+           }
+           default:
+             // All other intrinsic calls we must lower.
+             Instruction *Before = CI->getPrev();
+             TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
+             if (Before) {        // Move iterator to instruction after call
+               I = Before; ++I;
+             } else {
+               I = BB->begin();
+             }
+           }
+ }
+ 
+ void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
+   unsigned TmpReg1, TmpReg2, TmpReg3;
+   switch (ID) {
+   case Intrinsic::vastart:
+     // Get the address of the first vararg value...
+     TmpReg1 = getReg(CI);
+     addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, 
+                       0, false);
+     return;
+ 
+   case Intrinsic::vacopy:
+     TmpReg1 = getReg(CI);
+     TmpReg2 = getReg(CI.getOperand(1));
+     BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
+     return;
+   case Intrinsic::vaend: return;
+ 
+   case Intrinsic::returnaddress:
+     TmpReg1 = getReg(CI);
+     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
+       MachineFrameInfo *MFI = F->getFrameInfo();
+       unsigned NumBytes = MFI->getStackSize();
+       
+       BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
+         .addReg(PPC::R1);
+     } else {
+       // Values other than zero are not implemented yet.
+       BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
+     }
+     return;
+ 
+   case Intrinsic::frameaddress:
+     TmpReg1 = getReg(CI);
+     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
+       BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
+     } else {
+       // Values other than zero are not implemented yet.
+       BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
+     }
+     return;
+     
+ #if 0
+     // This may be useful for supporting isunordered
+   case Intrinsic::isnan:
+     // If this is only used by 'isunordered' style comparisons, don't emit it.
+     if (isOnlyUsedByUnorderedComparisons(&CI)) return;
+     TmpReg1 = getReg(CI.getOperand(1));
+     emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
+     TmpReg2 = makeAnotherReg(Type::IntTy);
+     BuildMI(BB, PPC::MFCR, TmpReg2);
+     TmpReg3 = getReg(CI);
+     BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
+     return;
+ #endif
+     
+   default: assert(0 && "Error: unknown intrinsics should have been lowered!");
+   }
+ }
+ 
+ /// visitSimpleBinary - Implement simple binary operators for integral types...
+ /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
+ /// Xor.
+ ///
+ void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
+   unsigned DestReg = getReg(B);
+   MachineBasicBlock::iterator MI = BB->end();
+   Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
+   unsigned Class = getClassB(B.getType());
+ 
+   emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
+ }
+ 
+ /// emitBinaryFPOperation - This method handles emission of floating point
+ /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+ void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
+                                  MachineBasicBlock::iterator IP,
+                                  Value *Op0, Value *Op1,
+                                  unsigned OperatorClass, unsigned DestReg) {
+ 
+   // Special case: op Reg, <const fp>
+   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+     // Create a constant pool entry for this constant.
+     MachineConstantPool *CP = F->getConstantPool();
+     unsigned CPI = CP->getConstantPoolIndex(Op1C);
+     const Type *Ty = Op1->getType();
+     assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+ 
+     static const unsigned OpcodeTab[][4] = {
+       { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
+       { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
+     };
+ 
+     unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+     unsigned Op1Reg = getReg(Op1C, BB, IP);
+     unsigned Op0r = getReg(Op0, BB, IP);
+     BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
+     return;
+   }
+   
+   // Special case: R1 = op <const fp>, R2
+   if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
+     if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
+       // -0.0 - X === -X
+       unsigned op1Reg = getReg(Op1, BB, IP);
+       BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
+       return;
+     } else {
+       // R1 = op CST, R2  -->  R1 = opr R2, CST
+ 
+       // Create a constant pool entry for this constant.
+       MachineConstantPool *CP = F->getConstantPool();
+       unsigned CPI = CP->getConstantPoolIndex(Op0C);
+       const Type *Ty = Op0C->getType();
+       assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+ 
+       static const unsigned OpcodeTab[][4] = {
+         { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
+         { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
+       };
+ 
+       unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+       unsigned Op0Reg = getReg(Op0C, BB, IP);
+       unsigned Op1Reg = getReg(Op1, BB, IP);
+       BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
+       return;
+     }
+ 
+   // General case.
+   static const unsigned OpcodeTab[] = {
+     PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV
+   };
+ 
+   unsigned Opcode = OpcodeTab[OperatorClass];
+   unsigned Op0r = getReg(Op0, BB, IP);
+   unsigned Op1r = getReg(Op1, BB, IP);
+   BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+ }
+ 
+ /// emitSimpleBinaryOperation - Implement simple binary operators for integral
+ /// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
+ /// Or, 4 for Xor.
+ ///
+ /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+ /// and constant expression support.
+ ///
+ void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
+                                      MachineBasicBlock::iterator IP,
+                                      Value *Op0, Value *Op1,
+                                      unsigned OperatorClass, unsigned DestReg) {
+   unsigned Class = getClassB(Op0->getType());
+ 
+   // Arithmetic and Bitwise operators
+   static const unsigned OpcodeTab[] = {
+     PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
+   };
+   static const unsigned ImmOpcodeTab[] = {
+     PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
+   };
+   static const unsigned RImmOpcodeTab[] = {
+     PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
+   };
+ 
+   if (Class == cFP32 || Class == cFP64) {
+     assert(OperatorClass < 2 && "No logical ops for FP!");
+     emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
+     return;
+   }
+ 
+   if (Op0->getType() == Type::BoolTy) {
+     if (OperatorClass == 3)
+       // If this is an or of two isnan's, emit an FP comparison directly instead
+       // of or'ing two isnan's together.
+       if (Value *LHS = dyncastIsNan(Op0))
+         if (Value *RHS = dyncastIsNan(Op1)) {
+           unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
+           unsigned TmpReg = makeAnotherReg(Type::IntTy);
+           emitUCOM(MBB, IP, Op0Reg, Op1Reg);
+           BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
+           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
+             .addImm(31).addImm(31);
+           return;
+         }
+   }
+ 
+   // Special case: op <const int>, Reg
+   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
+     // sub 0, X -> subfic
+     if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
+       unsigned Op1r = getReg(Op1, MBB, IP);
+       int imm = CI->getRawValue() & 0xFFFF;
+       BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
+       return;
+     }
+     
+     // If it is easy to do, swap the operands and emit an immediate op
+     if (Class != cLong && OperatorClass != 1 && 
+         canUseAsImmediateForOpcode(CI, OperatorClass)) {
+       unsigned Op1r = getReg(Op1, MBB, IP);
+       int imm = CI->getRawValue() & 0xFFFF;
+     
+       if (OperatorClass < 2)
+         BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
+           .addSImm(imm);
+       else
+         BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
+           .addZImm(imm);
+       return;
+     }
+   }
+ 
+   // Special case: op Reg, <const int>
+   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+     unsigned Op0r = getReg(Op0, MBB, IP);
+ 
+     // xor X, -1 -> not X
+     if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
+       BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+       return;
+     }
+     
+     if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
+       int immediate = Op1C->getRawValue() & 0xFFFF;
+       
+       if (OperatorClass < 2)
+         BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
+           .addSImm(immediate);
+       else
+         BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
+           .addZImm(immediate);
+     } else {
+       unsigned Op1r = getReg(Op1, MBB, IP);
+       BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+         .addReg(Op1r);
+     }
+     return;
+   }
+   
+   // We couldn't generate an immediate variant of the op, load both halves into
+   // registers and emit the appropriate opcode.
+   unsigned Op0r = getReg(Op0, MBB, IP);
+   unsigned Op1r = getReg(Op1, MBB, IP);
+ 
+   unsigned Opcode = OpcodeTab[OperatorClass];
+   BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+   return;
+ }
+ 
+ // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
+ // returns zero when the input is not exactly a power of two.
+ static unsigned ExactLog2(unsigned Val) {
+   if (Val == 0 || (Val & (Val-1))) return 0;
+   unsigned Count = 0;
+   while (Val != 1) {
+     Val >>= 1;
+     ++Count;
+   }
+   return Count;
+ }
+ 
+ /// doMultiply - Emit appropriate instructions to multiply together the
+ /// Values Op0 and Op1, and put the result in DestReg.
+ ///
+ void ISel::doMultiply(MachineBasicBlock *MBB,
+                       MachineBasicBlock::iterator IP,
+                       unsigned DestReg, Value *Op0, Value *Op1) {
+   unsigned Class0 = getClass(Op0->getType());
+   unsigned Class1 = getClass(Op1->getType());
+   
+   unsigned Op0r = getReg(Op0, MBB, IP);
+   unsigned Op1r = getReg(Op1, MBB, IP);
+   
+   // 64 x 64 -> 64
+   if (Class0 == cLong && Class1 == cLong) {
+     unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+     // FIXME: long is not split into two regs
+     BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
+     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
+     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
+     BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
+     BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+     return;
+   }
+   
+   // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
+   if (Class0 == cLong && Class1 <= cInt) {
+     unsigned Tmp0 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+     unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+     if (Op1->getType()->isSigned())
+       BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
+     else
+       BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
+     // FIXME: long is not split into two regs
+     BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
+     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
+     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
+     BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
+     BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+     return;
+   }
+   
+   // 32 x 32 -> 32
+   if (Class0 <= cInt && Class1 <= cInt) {
+     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
+     return;
+   }
+   
+   assert(0 && "doMultiply cannot operate on unknown type!");
+ }
+ 
+ /// doMultiplyConst - This method will multiply the value in Op0 by the
+ /// value of the ContantInt *CI
+ void ISel::doMultiplyConst(MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator IP,
+                            unsigned DestReg, Value *Op0, ConstantInt *CI) {
+   unsigned Class = getClass(Op0->getType());
+ 
+   // Mul op0, 0 ==> 0
+   if (CI->isNullValue()) {
+     BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
+     return;
+   }
+   
+   // Mul op0, 1 ==> op0
+   if (CI->equalsInt(1)) {
+     unsigned Op0r = getReg(Op0, MBB, IP);
+     BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+     return;
+   }
+ 
+   // If the element size is exactly a power of 2, use a shift to get it.
+   if (unsigned Shift = ExactLog2(CI->getRawValue())) {
+     ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
+     emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
+     return;
+   }
+   
+   // If 32 bits or less and immediate is in right range, emit mul by immediate
+   if (Class == cByte || Class == cShort || Class == cInt) {
+     if (canUseAsImmediateForOpcode(CI, 0)) {
+       unsigned Op0r = getReg(Op0, MBB, IP);
+       unsigned imm = CI->getRawValue() & 0xFFFF;
+       BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
+       return;
+     }
+   }
+   
+   doMultiply(MBB, IP, DestReg, Op0, CI);
+ }
+ 
+ void ISel::visitMul(BinaryOperator &I) {
+   unsigned ResultReg = getReg(I);
+ 
+   Value *Op0 = I.getOperand(0);
+   Value *Op1 = I.getOperand(1);
+ 
+   MachineBasicBlock::iterator IP = BB->end();
+   emitMultiply(BB, IP, Op0, Op1, ResultReg);
+ }
+ 
+ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+                         Value *Op0, Value *Op1, unsigned DestReg) {
+   TypeClass Class = getClass(Op0->getType());
+ 
+   switch (Class) {
+   case cByte:
+   case cShort:
+   case cInt:
+   case cLong:
+     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+       doMultiplyConst(MBB, IP, DestReg, Op0, CI);
+     } else {
+       doMultiply(MBB, IP, DestReg, Op0, Op1);
+     }
+     return;
+   case cFP32:
+   case cFP64:
+     emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
+     return;
+     break;
+   }
+ }
+ 
+ 
+ /// visitDivRem - Handle division and remainder instructions... these
+ /// instruction both require the same instructions to be generated, they just
+ /// select the result from a different register.  Note that both of these
+ /// instructions work differently for signed and unsigned operands.
+ ///
+ void ISel::visitDivRem(BinaryOperator &I) {
+   unsigned ResultReg = getReg(I);
+   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ 
+   MachineBasicBlock::iterator IP = BB->end();
+   emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
+                       ResultReg);
+ }
+ 
+ void ISel::emitDivRemOperation(MachineBasicBlock *BB,
+                                MachineBasicBlock::iterator IP,
+                                Value *Op0, Value *Op1, bool isDiv,
+                                unsigned ResultReg) {
+   const Type *Ty = Op0->getType();
+   unsigned Class = getClass(Ty);
+   switch (Class) {
+   case cFP32:
+     if (isDiv) {
+       // Floating point divide...
+       emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
+       return;
+     } else {
+       // Floating point remainder via fmodf(float x, float y);
+       unsigned Op0Reg = getReg(Op0, BB, IP);
+       unsigned Op1Reg = getReg(Op1, BB, IP);
+       MachineInstr *TheCall =
+         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
+       std::vector<ValueRecord> Args;
+       Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
+       Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
+       doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
+       TM.CalledFunctions.insert(fmodfFn);
+     }
+     return;
+   case cFP64:
+     if (isDiv) {
+       // Floating point divide...
+       emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
+       return;
+     } else {               
+       // Floating point remainder via fmod(double x, double y);
+       unsigned Op0Reg = getReg(Op0, BB, IP);
+       unsigned Op1Reg = getReg(Op1, BB, IP);
+       MachineInstr *TheCall =
+         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
+       std::vector<ValueRecord> Args;
+       Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
+       Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
+       doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
+       TM.CalledFunctions.insert(fmodFn);
+     }
+     return;
+   case cLong: {
+     static Function* const Funcs[] =
+       { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
+     unsigned Op0Reg = getReg(Op0, BB, IP);
+     unsigned Op1Reg = getReg(Op1, BB, IP);
+     unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
+     MachineInstr *TheCall =
+       BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
+ 
+     std::vector<ValueRecord> Args;
+     Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
+     Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
+     doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
+     TM.CalledFunctions.insert(Funcs[NameIdx]);
+     return;
+   }
+   case cByte: case cShort: case cInt:
+     break;          // Small integrals, handled below...
+   default: assert(0 && "Unknown class!");
+   }
+ 
+   // Special case signed division by power of 2.
+   if (isDiv)
+     if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
+       assert(Class != cLong && "This doesn't handle 64-bit divides!");
+       int V = CI->getValue();
+ 
+       if (V == 1) {       // X /s 1 => X
+         unsigned Op0Reg = getReg(Op0, BB, IP);
+         BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
+         return;
+       }
+ 
+       if (V == -1) {      // X /s -1 => -X
+         unsigned Op0Reg = getReg(Op0, BB, IP);
+         BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
+         return;
+       }
+ 
+       unsigned log2V = ExactLog2(V);
+       if (log2V != 0 && Ty->isSigned()) {
+         unsigned Op0Reg = getReg(Op0, BB, IP);
+         unsigned TmpReg = makeAnotherReg(Op0->getType());
+         
+         BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
+         BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
+         return;
+       }
+     }
+ 
+   unsigned Op0Reg = getReg(Op0, BB, IP);
+   unsigned Op1Reg = getReg(Op1, BB, IP);
+   unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
+   
+   if (isDiv) {
+     BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
+   } else { // Remainder
+     unsigned TmpReg1 = makeAnotherReg(Op0->getType());
+     unsigned TmpReg2 = makeAnotherReg(Op0->getType());
+     
+     BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
+     BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
+     BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
+   }
+ }
+ 
+ 
+ /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
+ /// for constant immediate shift values, and for constant immediate
+ /// shift values equal to 1. Even the general case is sort of special,
+ /// because the shift amount has to be in CL, not just any old register.
+ ///
+ void ISel::visitShiftInst(ShiftInst &I) {
+   MachineBasicBlock::iterator IP = BB->end();
+   emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
+                      I.getOpcode() == Instruction::Shl, I.getType(),
+                      getReg(I));
+ }
+ 
+ /// emitShiftOperation - Common code shared between visitShiftInst and
+ /// constant expression support.
+ ///
+ void ISel::emitShiftOperation(MachineBasicBlock *MBB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Op, Value *ShiftAmount, bool isLeftShift,
+                               const Type *ResultTy, unsigned DestReg) {
+   unsigned SrcReg = getReg (Op, MBB, IP);
+   bool isSigned = ResultTy->isSigned ();
+   unsigned Class = getClass (ResultTy);
+   
+   // Longs, as usual, are handled specially...
+   if (Class == cLong) {
+     // If we have a constant shift, we can generate much more efficient code
+     // than otherwise...
+     //
+     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+       unsigned Amount = CUI->getValue();
+       if (Amount < 32) {
+         if (isLeftShift) {
+           // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
+           // FIXME: long
+           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+             .addImm(Amount).addImm(0).addImm(31-Amount);
+           BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
+             .addImm(Amount).addImm(32-Amount).addImm(31);
+           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+             .addImm(Amount).addImm(0).addImm(31-Amount);
+         } else {
+           // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
+           // FIXME: long
+           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+             .addImm(32-Amount).addImm(Amount).addImm(31);
+           BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
+             .addImm(32-Amount).addImm(0).addImm(Amount-1);
+           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+             .addImm(32-Amount).addImm(Amount).addImm(31);
+         }
+       } else {                 // Shifting more than 32 bits
+         Amount -= 32;
+         if (isLeftShift) {
+           if (Amount != 0) {
+             // FIXME: long
+             BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
+               .addImm(Amount).addImm(0).addImm(31-Amount);
+           } else {
+             // FIXME: long
+             BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
+               .addReg(SrcReg+1);
+           }
+           BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
+         } else {
+           if (Amount != 0) {
+             if (isSigned)
+               BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
+                 .addImm(Amount);
+             else
+               BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
+                 .addImm(32-Amount).addImm(Amount).addImm(31);
+           } else {
+             BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+               .addReg(SrcReg);
+           }
+           BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
+         }
+       }
+     } else {
+       unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
+       unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
+       unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
+       unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
+       unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
+       unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
+       unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+       
+       if (isLeftShift) {
+         BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
+           .addSImm(32);
+         BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
+           .addReg(ShiftAmountReg);
+         BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
+           .addReg(TmpReg1);
+         BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+         BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
+           .addSImm(-32);
+         BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
+           .addReg(TmpReg5);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
+           .addReg(TmpReg6);
+         BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
+           .addReg(ShiftAmountReg);
+       } else {
+         if (isSigned) {
+           // FIXME: Unimplemented
+           // Page C-3 of the PowerPC 32bit Programming Environments Manual
+           std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
+           abort();
+         } else {
+           BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
+             .addSImm(32);
+           BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
+             .addReg(ShiftAmountReg);
+           BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
+             .addReg(TmpReg1);
+           BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
+             .addReg(TmpReg3);
+           BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
+             .addSImm(-32);
+           BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
+             .addReg(TmpReg5);
+           BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
+             .addReg(TmpReg6);
+           BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
+             .addReg(ShiftAmountReg);
+         }
+       }
+     }
+     return;
+   }
+ 
+   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+     // The shift amount is constant, guaranteed to be a ubyte. Get its value.
+     assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
+     unsigned Amount = CUI->getValue();
+ 
+     if (isLeftShift) {
+       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+         .addImm(Amount).addImm(0).addImm(31-Amount);
+     } else {
+       if (isSigned) {
+         BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
+       } else {
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+           .addImm(32-Amount).addImm(Amount).addImm(31);
+       }
+     }
+   } else {                  // The shift amount is non-constant.
+     unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+ 
+     if (isLeftShift) {
+       BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
+         .addReg(ShiftAmountReg);
+     } else {
+       BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
+         .addReg(SrcReg).addReg(ShiftAmountReg);
+     }
+   }
+ }
+ 
+ 
+ /// visitLoadInst - Implement LLVM load instructions.  Pretty straightforward
+ /// mapping of LLVM classes to PPC load instructions, with the exception of
+ /// signed byte loads, which need a sign extension following them.
+ ///
+ void ISel::visitLoadInst(LoadInst &I) {
+   // Immediate opcodes, for reg+imm addressing
+   static const unsigned ImmOpcodes[] = { 
+     PPC::LBZ, PPC::LHZ, PPC::LWZ, 
+     PPC::LFS, PPC::LFD, PPC::LWZ
+   };
+   // Indexed opcodes, for reg+reg addressing
+   static const unsigned IdxOpcodes[] = {
+     PPC::LBZX, PPC::LHZX, PPC::LWZX,
+     PPC::LFSX, PPC::LFDX, PPC::LWZX
+   };
+ 
+   unsigned Class     = getClassB(I.getType());
+   unsigned ImmOpcode = ImmOpcodes[Class];
+   unsigned IdxOpcode = IdxOpcodes[Class];
+   unsigned DestReg   = getReg(I);
+   Value *SourceAddr  = I.getOperand(0);
+   
+   if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
+   if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
+ 
+   if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
+     unsigned FI = getFixedSizedAllocaFI(AI);
+     if (Class == cByte && I.getType()->isSigned()) {
+       unsigned TmpReg = makeAnotherReg(I.getType());
+       addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
+       BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+     } else {
+       addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
+     }
+     return;
+   }
+   
+   // If this load is the only use of the GEP instruction that is its address,
+   // then we can fold the GEP directly into the load instruction.
+   // emitGEPOperation with a second to last arg of 'true' will place the
+   // base register for the GEP into baseReg, and the constant offset from that
+   // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
+   // otherwise, we copy the offset into another reg, and use reg+reg addressing.
+   if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
+     unsigned baseReg = getReg(GEPI);
+     unsigned pendingAdd;
+     ConstantSInt *offset;
+     
+     emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
+                      GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
+ 
+     if (pendingAdd == 0 && Class != cLong && 
+         canUseAsImmediateForOpcode(offset, 0)) {
+       if (Class == cByte && I.getType()->isSigned()) {
+         unsigned TmpReg = makeAnotherReg(I.getType());
+         BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
+           .addReg(baseReg);
+         BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+       } else {
+         BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
+           .addReg(baseReg);
+       }
+       return;
+     }
+     
+     unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
+ 
+     if (Class == cByte && I.getType()->isSigned()) {
+       unsigned TmpReg = makeAnotherReg(I.getType());
+       BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
+       BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+     } else {
+       BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
+     }
+     return;
+   }
+   
+   // The fallback case, where the load was from a source that could not be
+   // folded into the load instruction. 
+   unsigned SrcAddrReg = getReg(SourceAddr);
+     
+   if (Class == cByte && I.getType()->isSigned()) {
+     unsigned TmpReg = makeAnotherReg(I.getType());
+     BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
+     BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+   } else {
+     BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
+   }
+ }
+ 
+ /// visitStoreInst - Implement LLVM store instructions
+ ///
+ void ISel::visitStoreInst(StoreInst &I) {
+   // Immediate opcodes, for reg+imm addressing
+   static const unsigned ImmOpcodes[] = {
+     PPC::STB, PPC::STH, PPC::STW, 
+     PPC::STFS, PPC::STFD, PPC::STW
+   };
+   // Indexed opcodes, for reg+reg addressing
+   static const unsigned IdxOpcodes[] = {
+     PPC::STBX, PPC::STHX, PPC::STWX, 
+     PPC::STFSX, PPC::STFDX, PPC::STWX
+   };
+   
+   Value *SourceAddr  = I.getOperand(1);
+   const Type *ValTy  = I.getOperand(0)->getType();
+   unsigned Class     = getClassB(ValTy);
+   unsigned ImmOpcode = ImmOpcodes[Class];
+   unsigned IdxOpcode = IdxOpcodes[Class];
+   unsigned ValReg    = getReg(I.getOperand(0));
+ 
+   // If this store is the only use of the GEP instruction that is its address,
+   // then we can fold the GEP directly into the store instruction.
+   // emitGEPOperation with a second to last arg of 'true' will place the
+   // base register for the GEP into baseReg, and the constant offset from that
+   // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
+   // otherwise, we copy the offset into another reg, and use reg+reg addressing.
+   if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
+     unsigned baseReg = getReg(GEPI);
+     unsigned pendingAdd;
+     ConstantSInt *offset;
+     
+     emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
+                      GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
+ 
+     if (0 == pendingAdd && Class != cLong && 
+         canUseAsImmediateForOpcode(offset, 0)) {
+       BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
+         .addReg(baseReg);
+       return;
+     }
+     
+     unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
+     BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
+     return;
+   }
+   
+   // If the store address wasn't the only use of a GEP, we fall back to the
+   // standard path: store the ValReg at the value in AddressReg.
+   unsigned AddressReg  = getReg(I.getOperand(1));
+   BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
+ }
+ 
+ 
+ /// visitCastInst - Here we have various kinds of copying with or without sign
+ /// extension going on.
+ ///
+ void ISel::visitCastInst(CastInst &CI) {
+   Value *Op = CI.getOperand(0);
+ 
+   unsigned SrcClass = getClassB(Op->getType());
+   unsigned DestClass = getClassB(CI.getType());
+ 
+   // If this is a cast from a 32-bit integer to a Long type, and the only uses
+   // of the case are GEP instructions, then the cast does not need to be
+   // generated explicitly, it will be folded into the GEP.
+   if (DestClass == cLong && SrcClass == cInt) {
+     bool AllUsesAreGEPs = true;
+     for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
+       if (!isa<GetElementPtrInst>(*I)) {
+         AllUsesAreGEPs = false;
+         break;
+       }        
+ 
+     // No need to codegen this cast if all users are getelementptr instrs...
+     if (AllUsesAreGEPs) return;
+   }
+ 
+   unsigned DestReg = getReg(CI);
+   MachineBasicBlock::iterator MI = BB->end();
+   emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
+ }
+ 
+ /// emitCastOperation - Common code shared between visitCastInst and constant
+ /// expression cast support.
+ ///
+ void ISel::emitCastOperation(MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Src, const Type *DestTy,
+                              unsigned DestReg) {
+   const Type *SrcTy = Src->getType();
+   unsigned SrcClass = getClassB(SrcTy);
+   unsigned DestClass = getClassB(DestTy);
+   unsigned SrcReg = getReg(Src, MBB, IP);
+ 
+   // Implement casts to bool by using compare on the operand followed by set if
+   // not zero on the result.
+   if (DestTy == Type::BoolTy) {
+     switch (SrcClass) {
+     case cByte:
+     case cShort:
+     case cInt:
+     case cLong: {
+       unsigned TmpReg = makeAnotherReg(Type::IntTy);
+       BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
+       BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
+       break;
+     }
+     case cFP32:
+     case cFP64:
+       // FSEL perhaps?
+       std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
+       abort();
+     }
+     return;
+   }
+ 
+   // Handle cast of Float -> Double
+   if (SrcClass == cFP32 && DestClass == cFP64) {
+     BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
+     return;
+   }
+   
+   // Handle cast of Double -> Float
+   if (SrcClass == cFP64 && DestClass == cFP32) {
+     BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
+     return;
+   }
+   
+   // Handle casts from integer to floating point now...
+   if (DestClass == cFP32 || DestClass == cFP64) {
+ 
+     // Emit a library call for long to float conversion
+     if (SrcClass == cLong) {
+       std::vector<ValueRecord> Args;
+       Args.push_back(ValueRecord(SrcReg, SrcTy));
+       Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
+       MachineInstr *TheCall =
+         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
+       doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
+       TM.CalledFunctions.insert(floatFn);
+       return;
+     }
+     
+     // Make sure we're dealing with a full 32 bits
+     unsigned TmpReg = makeAnotherReg(Type::IntTy);
+     promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
+ 
+     SrcReg = TmpReg;
+     
+     // Spill the integer to memory and reload it from there.
+     // Also spill room for a special conversion constant
+     int ConstantFrameIndex = 
+       F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+     int ValueFrameIdx =
+       F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+ 
+     unsigned constantHi = makeAnotherReg(Type::IntTy);
+     unsigned constantLo = makeAnotherReg(Type::IntTy);
+     unsigned ConstF = makeAnotherReg(Type::DoubleTy);
+     unsigned TempF = makeAnotherReg(Type::DoubleTy);
+     
+     if (!SrcTy->isSigned()) {
+       BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
+       BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
+                         ConstantFrameIndex);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), 
+                         ConstantFrameIndex, 4);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
+                         ValueFrameIdx);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg), 
+                         ValueFrameIdx, 4);
+       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), 
+                         ConstantFrameIndex);
+       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
+       BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+     } else {
+       unsigned TempLo = makeAnotherReg(Type::IntTy);
+       BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
+       BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
+                         ConstantFrameIndex);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), 
+                         ConstantFrameIndex, 4);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
+                         ValueFrameIdx);
+       BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
+       addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo), 
+                         ValueFrameIdx, 4);
+       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), 
+                         ConstantFrameIndex);
+       addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
+       BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+     }
+     return;
+   }
+ 
+   // Handle casts from floating point to integer now...
+   if (SrcClass == cFP32 || SrcClass == cFP64) {
+     static Function* const Funcs[] =
+       { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
+     // emit library call
+     if (DestClass == cLong) {
+       bool isDouble = SrcClass == cFP64;
+       unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
+       std::vector<ValueRecord> Args;
+       Args.push_back(ValueRecord(SrcReg, SrcTy));
+       Function *floatFn = Funcs[nameIndex];
+       MachineInstr *TheCall =
+         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
+       doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
+       TM.CalledFunctions.insert(floatFn);
+       return;
+     }
+ 
+     int ValueFrameIdx =
+       F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
+ 
+     if (DestTy->isSigned()) {
+       unsigned TempReg = makeAnotherReg(Type::DoubleTy);
+       
+       // Convert to integer in the FP reg and store it to a stack slot
+       BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
+       addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
+                           .addReg(TempReg), ValueFrameIdx);
+ 
+       // There is no load signed byte opcode, so we must emit a sign extend for
+       // that particular size.  Make sure to source the new integer from the 
+       // correct offset.
+       if (DestClass == cByte) {
+         unsigned TempReg2 = makeAnotherReg(DestTy);
+         addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2), 
+                           ValueFrameIdx, 7);
+         BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
+       } else {
+         int offset = (DestClass == cShort) ? 6 : 4;
+         unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
+         addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg), 
+                           ValueFrameIdx, offset);
+       }
+     } else {
+       unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
+       double maxInt = (1LL << 32) - 1;
+       unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
+       double border = 1LL << 31;
+       unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
+       unsigned UseZero = makeAnotherReg(Type::DoubleTy);
+       unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
+       unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
+       unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
+       unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
+       unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
+       unsigned IntTmp = makeAnotherReg(Type::IntTy);
+       unsigned XorReg = makeAnotherReg(Type::IntTy);
+       int FrameIdx = 
+         F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
+       // Update machine-CFG edges
+       MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
+       MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
+       MachineBasicBlock *OldMBB = BB;
+       ilist<MachineBasicBlock>::iterator It = BB; ++It;
+       F->getBasicBlockList().insert(It, XorMBB);
+       F->getBasicBlockList().insert(It, PhiMBB);
+       BB->addSuccessor(XorMBB);
+       BB->addSuccessor(PhiMBB);
+ 
+       // Convert from floating point to unsigned 32-bit value
+       // Use 0 if incoming value is < 0.0
+       BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
+         .addReg(Zero);
+       // Use 2**32 - 1 if incoming value is >= 2**32
+       BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
+       BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
+         .addReg(UseZero).addReg(MaxInt);
+       // Subtract 2**31
+       BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
+       // Use difference if >= 2**31
+       BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
+         .addReg(Border);
+       BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
+         .addReg(UseChoice);
+       // Convert to integer
+       BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
+       addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
+                         FrameIdx);
+       if (DestClass == cByte) {
+         addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
+                           FrameIdx, 7);
+       } else if (DestClass == cShort) {
+         addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
+                           FrameIdx, 6);
+       } if (DestClass == cInt) {
+         addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
+                           FrameIdx, 4);
+         BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
+         BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
+ 
+         // XorMBB:
+         //   add 2**31 if input was >= 2**31
+         BB = XorMBB;
+         BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
+         XorMBB->addSuccessor(PhiMBB);
+ 
+         // PhiMBB:
+         //   DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
+         BB = PhiMBB;
+         BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
+           .addReg(XorReg).addMBB(XorMBB);
+       }
+     }
+     return;
+   }
+ 
+   // Check our invariants
+   assert((SrcClass <= cInt || SrcClass == cLong) && 
+          "Unhandled source class for cast operation!");
+   assert((DestClass <= cInt || DestClass == cLong) && 
+          "Unhandled destination class for cast operation!");
+ 
+   bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+   bool destUnsigned = DestTy->isUnsigned();
+ 
+   // Unsigned -> Unsigned, clear if larger
+   if (sourceUnsigned && destUnsigned) {
+     // handle long dest class now to keep switch clean
+     if (DestClass == cLong) {
+       // FIXME: long
+       if (SrcClass == cLong) {
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
+           .addReg(SrcReg+1);
+       } else {
+         BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+           .addReg(SrcReg);
+       }
+       return;
+     }
+ 
+     // handle u{ byte, short, int } x u{ byte, short, int }
+     unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
+     switch (SrcClass) {
+     case cByte:
+     case cShort:
+       if (SrcClass == DestClass)
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+           .addImm(0).addImm(clearBits).addImm(31);
+       break;
+     case cLong:
+       ++SrcReg;
+       // Fall through
+     case cInt:
+       if (DestClass == cInt)
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+           .addImm(0).addImm(clearBits).addImm(31);
+       break;
+     }
+     return;
+   }
+ 
+   // Signed -> Signed
+   if (!sourceUnsigned && !destUnsigned) {
+     // handle long dest class now to keep switch clean
+     if (DestClass == cLong) {
+       // FIXME: long
+       if (SrcClass == cLong) {
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
+           .addReg(SrcReg+1);
+       } else {
+         BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+           .addReg(SrcReg);
+       }
+       return;
+     }
+ 
+     // handle { byte, short, int } x { byte, short, int }
+     switch (SrcClass) {
+     case cByte:
+       if (DestClass == cByte)
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+       break;
+     case cShort:
+       if (DestClass == cByte)
+         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+       else if (DestClass == cShort)
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+       break;
+     case cLong:
+       ++SrcReg;
+       // Fall through
+     case cInt:
+       if (DestClass == cByte)
+         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+       else if (DestClass == cShort)
+         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       break;
+     }
+     return;
+   }
+ 
+   // Unsigned -> Signed
+   if (sourceUnsigned && !destUnsigned) {
+     // handle long dest class now to keep switch clean
+     if (DestClass == cLong) {
+       // FIXME: long
+       if (SrcClass == cLong) {
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1).
+           addReg(SrcReg+1);
+       } else {
+         BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+           .addReg(SrcReg);
+       }
+       return;
+     }
+ 
+     // handle u{ byte, short, int } -> { byte, short, int }
+     switch (SrcClass) {
+     case cByte:
+       if (DestClass == cByte)
+         // uByte 255 -> signed byte == -1
+         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+       else
+         // uByte 255 -> signed short/int == 255
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
+           .addImm(24).addImm(31);
+       break;
+     case cShort:
+       if (DestClass == cByte)
+         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+       else if (DestClass == cShort)
+         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
+           .addImm(16).addImm(31);
+       break;
+     case cLong:
+       ++SrcReg;
+       // Fall through
+     case cInt:
+       if (DestClass == cByte)
+         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+       else if (DestClass == cShort)
+         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       break;
+     }
+     return;
+   }
+ 
+   // Signed -> Unsigned
+   if (!sourceUnsigned && destUnsigned) {
+     // handle long dest class now to keep switch clean
+     if (DestClass == cLong) {
+       // FIXME: long
+       if (SrcClass == cLong) {
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
+           .addReg(SrcReg+1);
+       } else {
+         BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+           .addReg(SrcReg);
+       }
+       return;
+     }
+ 
+     // handle { byte, short, int } -> u{ byte, short, int }
+     unsigned clearBits = (DestClass == cByte) ? 24 : 16;
+     switch (SrcClass) {
+     case cByte:
+     case cShort:
+       if (DestClass == cByte || DestClass == cShort)
+         // sbyte -1 -> ubyte 0x000000FF
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+           .addImm(0).addImm(clearBits).addImm(31);
+       else
+         // sbyte -1 -> ubyte 0xFFFFFFFF
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       break;
+     case cLong:
+       ++SrcReg;
+       // Fall through
+     case cInt:
+       if (DestClass == cInt)
+         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       else
+         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+           .addImm(0).addImm(clearBits).addImm(31);
+       break;
+     }
+     return;
+   }
+ 
+   // Anything we haven't handled already, we can't (yet) handle at all.
+   std::cerr << "Unhandled cast from " << SrcTy->getDescription()
+             << "to " << DestTy->getDescription() << '\n';
+   abort();
+ }
+ 
+ /// visitVANextInst - Implement the va_next instruction...
+ ///
+ void ISel::visitVANextInst(VANextInst &I) {
+   unsigned VAList = getReg(I.getOperand(0));
+   unsigned DestReg = getReg(I);
+ 
+   unsigned Size;
+   switch (I.getArgType()->getTypeID()) {
+   default:
+     std::cerr << I;
+     assert(0 && "Error: bad type for va_next instruction!");
+     return;
+   case Type::PointerTyID:
+   case Type::UIntTyID:
+   case Type::IntTyID:
+     Size = 4;
+     break;
+   case Type::ULongTyID:
+   case Type::LongTyID:
+   case Type::DoubleTyID:
+     Size = 8;
+     break;
+   }
+ 
+   // Increment the VAList pointer...
+   BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
+ }
+ 
+ void ISel::visitVAArgInst(VAArgInst &I) {
+   unsigned VAList = getReg(I.getOperand(0));
+   unsigned DestReg = getReg(I);
+ 
+   switch (I.getType()->getTypeID()) {
+   default:
+     std::cerr << I;
+     assert(0 && "Error: bad type for va_next instruction!");
+     return;
+   case Type::PointerTyID:
+   case Type::UIntTyID:
+   case Type::IntTyID:
+     BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
+     break;
+   case Type::ULongTyID:
+   case Type::LongTyID:
+     BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
+     break;
+   case Type::FloatTyID:
+     BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
+     break;
+   case Type::DoubleTyID:
+     BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
+     break;
+   }
+ }
+ 
+ /// visitGetElementPtrInst - instruction-select GEP instructions
+ ///
+ void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
+   if (canFoldGEPIntoLoadOrStore(&I))
+     return;
+ 
+   unsigned outputReg = getReg(I);
+   emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), 
+                    outputReg, false, 0, 0);
+ }
+ 
+ /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+ /// constant expression GEP support.
+ ///
+ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Src, User::op_iterator IdxBegin,
+                             User::op_iterator IdxEnd, unsigned TargetReg,
+                             bool GEPIsFolded, ConstantSInt **RemainderPtr,
+                             unsigned *PendingAddReg) {
+   const TargetData &TD = TM.getTargetData();
+   const Type *Ty = Src->getType();
+   unsigned basePtrReg = getReg(Src, MBB, IP);
+   int64_t constValue = 0;
+   
+   // Record the operations to emit the GEP in a vector so that we can emit them
+   // after having analyzed the entire instruction.
+   std::vector<CollapsedGepOp> ops;
+   
+   // GEPs have zero or more indices; we must perform a struct access
+   // or array access for each one.
+   for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
+        ++oi) {
+     Value *idx = *oi;
+     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+       // It's a struct access.  idx is the index into the structure,
+       // which names the field. Use the TargetData structure to
+       // pick out what the layout of the structure is in memory.
+       // Use the (constant) structure index's value to find the
+       // right byte offset from the StructLayout class's list of
+       // structure member offsets.
+       unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
+       unsigned memberOffset =
+         TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
+ 
+       // StructType member offsets are always constant values.  Add it to the
+       // running total.
+       constValue += memberOffset;
+ 
+       // The next type is the member of the structure selected by the
+       // index.
+       Ty = StTy->getElementType (fieldIndex);
+     } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
+       // Many GEP instructions use a [cast (int/uint) to LongTy] as their
+       // operand.  Handle this case directly now...
+       if (CastInst *CI = dyn_cast<CastInst>(idx))
+         if (CI->getOperand(0)->getType() == Type::IntTy ||
+             CI->getOperand(0)->getType() == Type::UIntTy)
+           idx = CI->getOperand(0);
+ 
+       // It's an array or pointer access: [ArraySize x ElementType].
+       // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
+       // must find the size of the pointed-to type (Not coincidentally, the next
+       // type is the type of the elements in the array).
+       Ty = SqTy->getElementType();
+       unsigned elementSize = TD.getTypeSize(Ty);
+       
+       if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
+         if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
+           constValue += CS->getValue() * elementSize;
+         else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
+           constValue += CU->getValue() * elementSize;
+         else
+           assert(0 && "Invalid ConstantInt GEP index type!");
+       } else {
+         // Push current gep state to this point as an add
+         ops.push_back(CollapsedGepOp(false, 0, 
+           ConstantSInt::get(Type::IntTy,constValue)));
+         
+         // Push multiply gep op and reset constant value
+         ops.push_back(CollapsedGepOp(true, idx, 
+           ConstantSInt::get(Type::IntTy, elementSize)));
+         
+         constValue = 0;
+       }
+     }
+   }
+   // Emit instructions for all the collapsed ops
+   bool pendingAdd = false;
+   unsigned pendingAddReg = 0;
+   
+   for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
+       cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
+     CollapsedGepOp& cgo = *cgo_i;
+     unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
+   
+     // If we didn't emit an add last time through the loop, we need to now so
+     // that the base reg is updated appropriately.
+     if (pendingAdd) {
+       assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
+       BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+         .addReg(pendingAddReg);
+       basePtrReg = nextBasePtrReg;
+       nextBasePtrReg = makeAnotherReg(Type::IntTy);
+       pendingAddReg = 0;
+       pendingAdd = false;
+     }
+ 
+     if (cgo.isMul) {
+       // We know the elementSize is a constant, so we can emit a constant mul
+       unsigned TmpReg = makeAnotherReg(Type::IntTy);
+       doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
+       pendingAddReg = basePtrReg;
+       pendingAdd = true;
+     } else {
+       // Try and generate an immediate addition if possible
+       if (cgo.size->isNullValue()) {
+         BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
+           .addReg(basePtrReg);
+       } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
+         BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
+           .addSImm(cgo.size->getValue());
+       } else {
+         unsigned Op1r = getReg(cgo.size, MBB, IP);
+         BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+           .addReg(Op1r);
+       }
+     }
+ 
+     basePtrReg = nextBasePtrReg;
+   }
+   // Add the current base register plus any accumulated constant value
+   ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
+   
+   // If we are emitting this during a fold, copy the current base register to
+   // the target, and save the current constant offset so the folding load or
+   // store can try and use it as an immediate.
+   if (GEPIsFolded) {
+     // If this is a folded GEP and the last element was an index, then we need
+     // to do some extra work to turn a shift/add/stw into a shift/stwx
+     if (pendingAdd && 0 == remainder->getValue()) {
+       assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
+       *PendingAddReg = pendingAddReg;
+     } else {
+       *PendingAddReg = 0;
+       if (pendingAdd) {
+         unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
+         assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
+         BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+           .addReg(pendingAddReg);
+         basePtrReg = nextBasePtrReg;
+       }
+     }
+     BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
+       .addReg(basePtrReg);
+     *RemainderPtr = remainder;
+     return;
+   }
+ 
+   // If we still have a pending add at this point, emit it now
+   if (pendingAdd) {
+     unsigned TmpReg = makeAnotherReg(Type::IntTy);
+     BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
+       .addReg(basePtrReg);
+     basePtrReg = TmpReg;
+   }
+   
+   // After we have processed all the indices, the result is left in
+   // basePtrReg.  Move it to the register where we were expected to
+   // put the answer.
+   if (remainder->isNullValue()) {
+     BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
+       .addReg(basePtrReg);
+   } else if (canUseAsImmediateForOpcode(remainder, 0)) {
+     BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
+       .addSImm(remainder->getValue());
+   } else {
+     unsigned Op1r = getReg(remainder, MBB, IP);
+     BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
+   }
+ }
+ 
+ /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
+ /// frame manager, otherwise do it the hard way.
+ ///
+ void ISel::visitAllocaInst(AllocaInst &I) {
+   // If this is a fixed size alloca in the entry block for the function, we
+   // statically stack allocate the space, so we don't need to do anything here.
+   //
+   if (dyn_castFixedAlloca(&I)) return;
+   
+   // Find the data size of the alloca inst's getAllocatedType.
+   const Type *Ty = I.getAllocatedType();
+   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+ 
+   // Create a register to hold the temporary result of multiplying the type size
+   // constant by the variable amount.
+   unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
+   
+   // TotalSizeReg = mul <numelements>, <TypeSize>
+   MachineBasicBlock::iterator MBBI = BB->end();
+   ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
+   doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
+ 
+   // AddedSize = add <TotalSizeReg>, 15
+   unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
+   BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
+ 
+   // AlignedSize = and <AddedSize>, ~15
+   unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
+   BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
+     .addImm(0).addImm(27);
+   
+   // Subtract size from stack pointer, thereby allocating some space.
+   BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
+ 
+   // Put a pointer to the space into the result register, by copying
+   // the stack pointer.
+   BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
+ 
+   // Inform the Frame Information that we have just allocated a variable-sized
+   // object.
+   F->getFrameInfo()->CreateVariableSizedObject();
+ }
+ 
+ /// visitMallocInst - Malloc instructions are code generated into direct calls
+ /// to the library malloc.
+ ///
+ void ISel::visitMallocInst(MallocInst &I) {
+   unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
+   unsigned Arg;
+ 
+   if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
+     Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
+   } else {
+     Arg = makeAnotherReg(Type::UIntTy);
+     MachineBasicBlock::iterator MBBI = BB->end();
+     ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
+     doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
+   }
+ 
+   std::vector<ValueRecord> Args;
+   Args.push_back(ValueRecord(Arg, Type::UIntTy));
+   MachineInstr *TheCall = 
+     BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
+   doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
+   TM.CalledFunctions.insert(mallocFn);
+ }
+ 
+ 
+ /// visitFreeInst - Free instructions are code gen'd to call the free libc
+ /// function.
+ ///
+ void ISel::visitFreeInst(FreeInst &I) {
+   std::vector<ValueRecord> Args;
+   Args.push_back(ValueRecord(I.getOperand(0)));
+   MachineInstr *TheCall = 
+     BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
+   doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
+   TM.CalledFunctions.insert(freeFn);
+ }
+    
+ /// createPPC64ISelSimple - This pass converts an LLVM function into a machine
+ /// code representation is a very simple peep-hole fashion.
+ ///
+ FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
+   return new ISel(TM);
+ }


Index: llvm/lib/Target/PowerPC/PPC64AsmPrinter.cpp
diff -c /dev/null llvm/lib/Target/PowerPC/PPC64AsmPrinter.cpp:1.1
*** /dev/null	Wed Aug 11 18:42:26 2004
--- llvm/lib/Target/PowerPC/PPC64AsmPrinter.cpp	Wed Aug 11 18:42:15 2004
***************
*** 0 ****
--- 1,686 ----
+ //===-- PPC64AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===//
+ // 
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ // 
+ //===----------------------------------------------------------------------===//
+ //
+ // This file contains a printer that converts from our internal representation
+ // of machine-dependent LLVM code to PowerPC assembly language. This printer is
+ // the output mechanism used by `llc'.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #define DEBUG_TYPE "asmprinter"
+ #include "PowerPC.h"
+ #include "PowerPCInstrInfo.h"
+ #include "PPC64TargetMachine.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Module.h"
+ #include "llvm/Assembly/Writer.h"
+ #include "llvm/CodeGen/MachineConstantPool.h"
+ #include "llvm/CodeGen/MachineFunctionPass.h"
+ #include "llvm/CodeGen/MachineInstr.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Support/Mangler.h"
+ #include "Support/CommandLine.h"
+ #include "Support/Debug.h"
+ #include "Support/MathExtras.h"
+ #include "Support/Statistic.h"
+ #include "Support/StringExtras.h"
+ #include <set>
+ 
+ namespace llvm {
+ 
+ namespace {
+   Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
+ 
+   struct Printer : public MachineFunctionPass {
+     /// Output stream on which we're printing assembly code.
+     ///
+     std::ostream &O;
+ 
+     /// Target machine description which we query for reg. names, data
+     /// layout, etc.
+     ///
+     PPC64TargetMachine &TM;
+ 
+     /// Name-mangler for global names.
+     ///
+     Mangler *Mang;
+ 
+     /// Map for labels corresponding to global variables
+     ///
+     std::map<const GlobalVariable*,std::string> GVToLabelMap;
+ 
+     Printer(std::ostream &o, TargetMachine &tm) : O(o),
+       TM(reinterpret_cast<PPC64TargetMachine&>(tm)), LabelNumber(0) {}
+ 
+     /// Cache of mangled name for current function. This is
+     /// recalculated at the beginning of each call to
+     /// runOnMachineFunction().
+     ///
+     std::string CurrentFnName;
+ 
+     /// Unique incrementer for label values for referencing Global values.
+     ///
+     unsigned LabelNumber;
+   
+     virtual const char *getPassName() const {
+       return "PPC64 Assembly Printer";
+     }
+ 
+     void printMachineInstruction(const MachineInstr *MI);
+     void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
+     void printImmOp(const MachineOperand &MO, unsigned ArgType);
+     void printConstantPool(MachineConstantPool *MCP);
+     bool runOnMachineFunction(MachineFunction &F);    
+     bool doInitialization(Module &M);
+     bool doFinalization(Module &M);
+     void emitGlobalConstant(const Constant* CV);
+     void emitConstantValueOnly(const Constant *CV);
+   };
+ } // end of anonymous namespace
+ 
+ /// createPPC64AsmPrinterPass - Returns a pass that prints the PPC
+ /// assembly code for a MachineFunction to the given output stream,
+ /// using the given target machine description.  This should work
+ /// regardless of whether the function is in SSA form or not.
+ ///
+ FunctionPass *createPPC64AsmPrinter(std::ostream &o,TargetMachine &tm) {
+   return new Printer(o, tm);
+ }
+ 
+ /// isStringCompatible - Can we treat the specified array as a string?
+ /// Only if it is an array of ubytes or non-negative sbytes.
+ ///
+ static bool isStringCompatible(const ConstantArray *CVA) {
+   const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
+   if (ETy == Type::UByteTy) return true;
+   if (ETy != Type::SByteTy) return false;
+ 
+   for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
+     if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
+       return false;
+ 
+   return true;
+ }
+ 
+ /// toOctal - Convert the low order bits of X into an octal digit.
+ ///
+ static inline char toOctal(int X) {
+   return (X&7)+'0';
+ }
+ 
+ /// getAsCString - Return the specified array as a C compatible
+ /// string, only if the predicate isStringCompatible is true.
+ ///
+ static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
+   assert(isStringCompatible(CVA) && "Array is not string compatible!");
+ 
+   O << "\"";
+   for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
+     unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
+ 
+     if (C == '"') {
+       O << "\\\"";
+     } else if (C == '\\') {
+       O << "\\\\";
+     } else if (isprint(C)) {
+       O << C;
+     } else {
+       switch (C) {
+       case '\b': O << "\\b"; break;
+       case '\f': O << "\\f"; break;
+       case '\n': O << "\\n"; break;
+       case '\r': O << "\\r"; break;
+       case '\t': O << "\\t"; break;
+       default:
+         O << '\\';
+         O << toOctal(C >> 6);
+         O << toOctal(C >> 3);
+         O << toOctal(C >> 0);
+         break;
+       }
+     }
+   }
+   O << "\"";
+ }
+ 
+ // Print out the specified constant, without a storage class.  Only the
+ // constants valid in constant expressions can occur here.
+ void Printer::emitConstantValueOnly(const Constant *CV) {
+   if (CV->isNullValue())
+     O << "0";
+   else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+     assert(CB == ConstantBool::True);
+     O << "1";
+   } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
+     O << CI->getValue();
+   else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
+     O << CI->getValue();
+   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
+     // This is a constant address for a global variable or function.  Use the
+     // name of the variable or function as the address value.
+     O << Mang->getValueName(GV);
+   else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+     const TargetData &TD = TM.getTargetData();
+     switch (CE->getOpcode()) {
+     case Instruction::GetElementPtr: {
+       // generate a symbolic expression for the byte address
+       const Constant *ptrVal = CE->getOperand(0);
+       std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
+       if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
+         O << "(";
+         emitConstantValueOnly(ptrVal);
+         O << ") + " << Offset;
+       } else {
+         emitConstantValueOnly(ptrVal);
+       }
+       break;
+     }
+     case Instruction::Cast: {
+       // Support only non-converting or widening casts for now, that is, ones
+       // that do not involve a change in value.  This assertion is really gross,
+       // and may not even be a complete check.
+       Constant *Op = CE->getOperand(0);
+       const Type *OpTy = Op->getType(), *Ty = CE->getType();
+ 
+       // Remember, kids, pointers on x86 can be losslessly converted back and
+       // forth into 32-bit or wider integers, regardless of signedness. :-P
+       assert(((isa<PointerType>(OpTy)
+                && (Ty == Type::LongTy || Ty == Type::ULongTy
+                    || Ty == Type::IntTy || Ty == Type::UIntTy))
+               || (isa<PointerType>(Ty)
+                   && (OpTy == Type::LongTy || OpTy == Type::ULongTy
+                       || OpTy == Type::IntTy || OpTy == Type::UIntTy))
+               || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
+                    && OpTy->isLosslesslyConvertibleTo(Ty))))
+              && "FIXME: Don't yet support this kind of constant cast expr");
+       O << "(";
+       emitConstantValueOnly(Op);
+       O << ")";
+       break;
+     }
+     case Instruction::Add:
+       O << "(";
+       emitConstantValueOnly(CE->getOperand(0));
+       O << ") + (";
+       emitConstantValueOnly(CE->getOperand(1));
+       O << ")";
+       break;
+     default:
+       assert(0 && "Unsupported operator!");
+     }
+   } else {
+     assert(0 && "Unknown constant value!");
+   }
+ }
+ 
+ // Print a constant value or values, with the appropriate storage class as a
+ // prefix.
+ void Printer::emitGlobalConstant(const Constant *CV) {  
+   const TargetData &TD = TM.getTargetData();
+ 
+   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+     if (isStringCompatible(CVA)) {
+       O << "\t.byte ";
+       printAsCString(O, CVA);
+       O << "\n";
+     } else { // Not a string.  Print the values in successive locations
+       for (unsigned i=0, e = CVA->getNumOperands(); i != e; i++)
+         emitGlobalConstant(CVA->getOperand(i));
+     }
+     return;
+   } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+     // Print the fields in successive locations. Pad to align if needed!
+     const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
+     unsigned sizeSoFar = 0;
+     for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
+       const Constant* field = CVS->getOperand(i);
+ 
+       // Check if padding is needed and insert one or more 0s.
+       unsigned fieldSize = TD.getTypeSize(field->getType());
+       unsigned padSize = ((i == e-1? cvsLayout->StructSize
+                            : cvsLayout->MemberOffsets[i+1])
+                           - cvsLayout->MemberOffsets[i]) - fieldSize;
+       sizeSoFar += fieldSize + padSize;
+ 
+       // Now print the actual field value
+       emitGlobalConstant(field);
+ 
+       // Insert the field padding unless it's zero bytes...
+       if (padSize)
+         O << "\t.space\t " << padSize << "\n";      
+     }
+     assert(sizeSoFar == cvsLayout->StructSize &&
+            "Layout of constant struct may be incorrect!");
+     return;
+   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+     // FP Constants are printed as integer constants to avoid losing
+     // precision...
+     double Val = CFP->getValue();
+     switch (CFP->getType()->getTypeID()) {
+     default: assert(0 && "Unknown floating point type!");
+     case Type::FloatTyID: {
+       union FU {                            // Abide by C TBAA rules
+         float FVal;
+         unsigned UVal;
+       } U;
+       U.FVal = Val;
+       O << "\t.long " << U.UVal << "\t# float " << Val << "\n";
+       return;
+     }
+     case Type::DoubleTyID: {
+       union DU {                            // Abide by C TBAA rules
+         double FVal;
+         uint64_t UVal;
+         struct {
+           uint32_t MSWord;
+           uint32_t LSWord;
+         } T;
+       } U;
+       U.FVal = Val;
+       
+       O << ".long " << U.T.MSWord << "\t# double most significant word " 
+         << Val << "\n";
+       O << ".long " << U.T.LSWord << "\t# double least significant word " 
+         << Val << "\n";
+       return;
+     }
+     }
+   } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
+     if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+       union DU {                            // Abide by C TBAA rules
+         int64_t UVal;
+         struct {
+           uint32_t MSWord;
+           uint32_t LSWord;
+         } T;
+       } U;
+       U.UVal = CI->getRawValue();
+         
+       O << ".long " << U.T.MSWord << "\t# Double-word most significant word " 
+         << U.UVal << "\n";
+       O << ".long " << U.T.LSWord << "\t# Double-word least significant word " 
+         << U.UVal << "\n";
+       return;
+     }
+   }
+ 
+   const Type *type = CV->getType();
+   O << "\t";
+   switch (type->getTypeID()) {
+   case Type::UByteTyID: case Type::SByteTyID:
+     O << "\t.byte";
+     break;
+   case Type::UShortTyID: case Type::ShortTyID:
+     O << "\t.short";
+     break;
+   case Type::BoolTyID: 
+   case Type::PointerTyID:
+   case Type::UIntTyID: case Type::IntTyID:
+     O << "\t.long";
+     break;
+   case Type::ULongTyID: case Type::LongTyID:    
+     assert (0 && "Should have already output double-word constant.");
+   case Type::FloatTyID: case Type::DoubleTyID:
+     assert (0 && "Should have already output floating point constant.");
+   default:
+     if (CV == Constant::getNullValue(type)) {  // Zero initializer?
+       O << "\t.space " << TD.getTypeSize(type) << "\n";      
+       return;
+     }
+     std::cerr << "Can't handle printing: " << *CV;
+     abort();
+     break;
+   }
+   O << ' ';
+   emitConstantValueOnly(CV);
+   O << '\n';
+ }
+ 
+ /// printConstantPool - Print to the current output stream assembly
+ /// representations of the constants in the constant pool MCP. This is
+ /// used to print out constants which have been "spilled to memory" by
+ /// the code generator.
+ ///
+ void Printer::printConstantPool(MachineConstantPool *MCP) {
+   const std::vector<Constant*> &CP = MCP->getConstants();
+   const TargetData &TD = TM.getTargetData();
+  
+   if (CP.empty()) return;
+ 
+   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+     O << "\t.const\n";
+     O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
+       << "\n";
+     O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
+       << *CP[i] << "\n";
+     emitGlobalConstant(CP[i]);
+   }
+ }
+ 
+ /// runOnMachineFunction - This uses the printMachineInstruction()
+ /// method to print assembly for each instruction.
+ ///
+ bool Printer::runOnMachineFunction(MachineFunction &MF) {
+   CurrentFnName = MF.getFunction()->getName();
+ 
+   // Print out constants referenced by the function
+   printConstantPool(MF.getConstantPool());
+ 
+   // Print out header for the function.
+   O << "\t.csect .text[PR]\n"
+     << "\t.align 2\n"
+     << "\t.globl "  << CurrentFnName << '\n'
+     << "\t.globl ." << CurrentFnName << '\n'
+     << "\t.csect "  << CurrentFnName << "[DS],3\n"
+     << CurrentFnName << ":\n"
+     << "\t.llong ." << CurrentFnName << ", TOC[tc0], 0\n"
+     << "\t.csect .text[PR]\n"
+     << '.' << CurrentFnName << ":\n";
+ 
+   // Print out code for the function.
+   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+        I != E; ++I) {
+     // Print a label for the basic block.
+     O << "LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
+       << I->getBasicBlock()->getName() << "\n";
+     for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+       II != E; ++II) {
+       // Print the assembly for the instruction.
+       O << "\t";
+       printMachineInstruction(II);
+     }
+   }
+   ++LabelNumber;
+ 
+   O << "LT.." << CurrentFnName << ":\n"
+     << "\t.long 0\n"
+     << "\t.byte 0,0,32,65,128,0,0,0\n"
+     << "\t.long LT.." << CurrentFnName << "-." << CurrentFnName << '\n'
+     << "\t.short 3\n"
+     << "\t.byte \"" << CurrentFnName << "\"\n"
+     << "\t.align 2\n";
+ 
+   // We didn't modify anything.
+   return false;
+ }
+ 
+ void Printer::printOp(const MachineOperand &MO,
+                       bool elideOffsetKeyword /* = false */) {
+   const MRegisterInfo &RI = *TM.getRegisterInfo();
+   int new_symbol;
+   
+   switch (MO.getType()) {
+   case MachineOperand::MO_VirtualRegister:
+     if (Value *V = MO.getVRegValueOrNull()) {
+       O << "<" << V->getName() << ">";
+       return;
+     }
+     // FALLTHROUGH
+   case MachineOperand::MO_MachineRegister:
+   case MachineOperand::MO_CCRegister: {
+     // On AIX, do not print out the 'r' in register names
+     const char *regName = RI.get(MO.getReg()).Name;
+     O << &regName[1];
+     return;
+   }
+ 
+   case MachineOperand::MO_SignExtendedImmed:
+   case MachineOperand::MO_UnextendedImmed:
+     std::cerr << "printOp() does not handle immediate values\n";
+     abort();
+     return;
+ 
+   case MachineOperand::MO_PCRelativeDisp:
+     std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
+     abort();
+     return;
+     
+   case MachineOperand::MO_MachineBasicBlock: {
+     MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
+     O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
+       << "_" << MBBOp->getNumber() << "\t# "
+       << MBBOp->getBasicBlock()->getName();
+     return;
+   }
+ 
+   case MachineOperand::MO_ConstantPoolIndex:
+     O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
+     return;
+ 
+   case MachineOperand::MO_ExternalSymbol:
+     O << MO.getSymbolName();
+     return;
+ 
+   case MachineOperand::MO_GlobalAddress:
+     if (!elideOffsetKeyword) {
+       GlobalValue *GV = MO.getGlobal();
+ 
+       if (Function *F = dyn_cast<Function>(GV)) {
+         O << "." << F->getName();
+       } else if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+         // output the label name
+         O << GVToLabelMap[GVar];
+       }
+     }
+     return;
+     
+   default:
+     O << "<unknown operand type: " << MO.getType() << ">";
+     return;
+   }
+ }
+ 
+ void Printer::printImmOp(const MachineOperand &MO, unsigned ArgType) {
+   int Imm = MO.getImmedValue();
+   if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
+     O << (short)Imm;
+   } else if (ArgType == PPCII::Zimm16) {
+     O << (unsigned short)Imm;
+   } else {
+     O << Imm;
+   }
+ }
+ 
+ /// printMachineInstruction -- Print out a single PPC LLVM instruction
+ /// MI in Darwin syntax to the current output stream.
+ ///
+ void Printer::printMachineInstruction(const MachineInstr *MI) {
+   unsigned Opcode = MI->getOpcode();
+   const TargetInstrInfo &TII = *TM.getInstrInfo();
+   const TargetInstrDescriptor &Desc = TII.get(Opcode);
+   unsigned i;
+ 
+   unsigned ArgCount = MI->getNumOperands();
+   unsigned ArgType[] = {
+     (Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
+     (Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
+     (Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
+     (Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
+     (Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
+   };
+   assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
+          "Instruction requires VMX support");
+   ++EmittedInsts;
+ 
+   // CALLpcrel and CALLindirect are handled specially here to print only the
+   // appropriate number of args that the assembler expects.  This is because
+   // may have many arguments appended to record the uses of registers that are
+   // holding arguments to the called function.
+   if (Opcode == PPC::COND_BRANCH) {
+     std::cerr << "Error: untranslated conditional branch psuedo instruction!\n";
+     abort();
+   } else if (Opcode == PPC::IMPLICIT_DEF) {
+     O << "# IMPLICIT DEF ";
+     printOp(MI->getOperand(0));
+     O << "\n";
+     return;
+   } else if (Opcode == PPC::CALLpcrel) {
+     O << TII.getName(Opcode) << " ";
+     printOp(MI->getOperand(0));
+     O << "\n";
+     return;
+   } else if (Opcode == PPC::CALLindirect) {
+     O << TII.getName(Opcode) << " ";
+     printImmOp(MI->getOperand(0), ArgType[0]);
+     O << ", ";
+     printImmOp(MI->getOperand(1), ArgType[0]);
+     O << "\n";
+     return;
+   } else if (Opcode == PPC::MovePCtoLR) {
+     // FIXME: should probably be converted to cout.width and cout.fill
+     O << "bl \"L0000" << LabelNumber << "$pb\"\n";
+     O << "\"L0000" << LabelNumber << "$pb\":\n";
+     O << "\tmflr ";
+     printOp(MI->getOperand(0));
+     O << "\n";
+     return;
+   }
+ 
+   O << TII.getName(Opcode) << " ";
+   if (Opcode == PPC::LD || Opcode == PPC::LWA || 
+       Opcode == PPC::STDU || Opcode == PPC::STDUX) {
+     printOp(MI->getOperand(0));
+     O << ", ";
+     MachineOperand MO = MI->getOperand(1);
+     if (MO.isImmediate())
+       printImmOp(MO, ArgType[1]);
+     else
+       printOp(MO);
+     O << "(";
+     printOp(MI->getOperand(2));
+     O << ")\n";
+   } else if (Opcode == PPC::BLR || Opcode == PPC::NOP) {
+     // FIXME: BuildMI() should handle 0 params
+     O << "\n";
+   } else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
+     printOp(MI->getOperand(0));
+     O << ", ";
+     printImmOp(MI->getOperand(1), ArgType[1]);
+     O << "(";
+     if (MI->getOperand(2).hasAllocatedReg() &&
+         MI->getOperand(2).getReg() == PPC::R0)
+       O << "0";
+     else
+       printOp(MI->getOperand(2));
+     O << ")\n";
+   } else {
+     for (i = 0; i < ArgCount; ++i) {
+       // addi and friends
+       if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
+           MI->getOperand(1).hasAllocatedReg() && 
+           MI->getOperand(1).getReg() == PPC::R0) {
+         O << "0";
+       // for long branch support, bc $+8
+       } else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
+                  TII.isBranch(MI->getOpcode())) {
+         O << "$+8";
+         assert(8 == MI->getOperand(i).getImmedValue()
+           && "branch off PC not to pc+8?");
+         //printOp(MI->getOperand(i));
+       } else if (MI->getOperand(i).isImmediate()) {
+         printImmOp(MI->getOperand(i), ArgType[i]);
+       } else {
+         printOp(MI->getOperand(i));
+       }
+       if (ArgCount - 1 == i)
+         O << "\n";
+       else
+         O << ", ";
+     }
+   }
+ }
+ 
+ // SwitchSection - Switch to the specified section of the executable if we are
+ // not already in it!
+ //
+ static void SwitchSection(std::ostream &OS, std::string &CurSection,
+                           const char *NewSection) {
+   if (CurSection != NewSection) {
+     CurSection = NewSection;
+     if (!CurSection.empty())
+       OS << "\t" << NewSection << "\n";
+   }
+ }
+ 
+ bool Printer::doInitialization(Module &M) {
+   const TargetData &TD = TM.getTargetData();
+   std::string CurSection;
+ 
+   O << "\t.machine \"ppc64\"\n" 
+     << "\t.toc\n"
+     << "\t.csect .text[PR]\n";
+ 
+   // Print out module-level global variables
+   for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+     if (!I->hasInitializer())
+       continue;
+  
+     std::string Name = I->getName();
+     Constant *C = I->getInitializer();
+     // N.B.: We are defaulting to writable strings
+     if (I->hasExternalLinkage()) { 
+       O << "\t.globl " << Name << '\n'
+         << "\t.csect .data[RW],3\n";
+     } else {
+       O << "\t.csect _global.rw_c[RW],3\n";
+     }
+     O << Name << ":\n";
+     emitGlobalConstant(C);
+   }
+ 
+   // Output labels for globals
+   if (M.gbegin() != M.gend()) O << "\t.toc\n";
+   for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+     const GlobalVariable *GV = I;
+     // Do not output labels for unused variables
+     if (GV->isExternal() && GV->use_begin() == GV->use_end())
+       continue;
+ 
+     std::string Name = GV->getName();
+     std::string Label = "LC.." + utostr(LabelNumber++);
+     GVToLabelMap[GV] = Label;
+     O << Label << ":\n"
+       << "\t.tc " << Name << "[TC]," << Name;
+     if (GV->isExternal()) O << "[RW]";
+     O << '\n';
+   }
+ 
+   Mang = new Mangler(M, true);
+   return false; // success
+ }
+ 
+ bool Printer::doFinalization(Module &M) {
+   const TargetData &TD = TM.getTargetData();
+   // Print out module-level global variables
+   for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+     if (I->hasInitializer() || I->hasExternalLinkage())
+       continue;
+ 
+     std::string Name = I->getName();
+     if (I->hasInternalLinkage()) {
+       O << "\t.lcomm " << Name << ",16,_global.bss_c";
+     } else {
+       O << "\t.comm " << Name << "," << TD.getTypeSize(I->getType())
+         << "," << log2((unsigned)TD.getTypeAlignment(I->getType()));
+     }
+     O << "\t\t# ";
+     WriteAsOperand(O, I, true, true, &M);
+     O << "\n";
+   }
+ 
+   O << "_section_.text:\n"
+     << "\t.csect .data[RW],3\n"
+     << "\t.llong _section_.text\n";
+ 
+   delete Mang;
+   return false; // success
+ }
+ 
+ } // End llvm namespace


Index: llvm/lib/Target/PowerPC/PowerPC.h
diff -u llvm/lib/Target/PowerPC/PowerPC.h:1.6 llvm/lib/Target/PowerPC/PowerPC.h:1.7
--- llvm/lib/Target/PowerPC/PowerPC.h:1.6	Wed Aug 11 02:40:04 2004
+++ llvm/lib/Target/PowerPC/PowerPC.h	Wed Aug 11 18:42:15 2004
@@ -25,8 +25,9 @@
 FunctionPass *createPowerPCPEI();
 FunctionPass *createPPCBranchSelectionPass();
 FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
-FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
 FunctionPass *createPPC32AsmPrinter(std::ostream &OS,TargetMachine &TM);
+FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
+FunctionPass *createPPC64AsmPrinter(std::ostream &OS,TargetMachine &TM);
 
 } // end namespace llvm;
 






More information about the llvm-commits mailing list