[llvm-commits] CVS: llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp PPC64AsmPrinter.cpp PowerPC.h
Misha Brukman
brukman at cs.uiuc.edu
Wed Aug 11 16:42:26 PDT 2004
Changes in directory llvm/lib/Target/PowerPC:
PPC64ISelSimple.cpp added (r1.1)
PPC64AsmPrinter.cpp added (r1.1)
PowerPC.h updated: 1.6 -> 1.7
---
Log message:
64-bit instruction selector and AIX-specific 64-bit asm printer
---
Diffs of the changes: (+3887 -1)
Index: llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp
diff -c /dev/null llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp:1.1
*** /dev/null Wed Aug 11 18:42:25 2004
--- llvm/lib/Target/PowerPC/PPC64ISelSimple.cpp Wed Aug 11 18:42:15 2004
***************
*** 0 ****
--- 1,3199 ----
+ //===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
+ //
+ // The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+
+ #define DEBUG_TYPE "isel"
+ #include "PowerPC.h"
+ #include "PowerPCInstrBuilder.h"
+ #include "PowerPCInstrInfo.h"
+ #include "PPC64TargetMachine.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Function.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Pass.h"
+ #include "llvm/CodeGen/IntrinsicLowering.h"
+ #include "llvm/CodeGen/MachineConstantPool.h"
+ #include "llvm/CodeGen/MachineFrameInfo.h"
+ #include "llvm/CodeGen/MachineFunction.h"
+ #include "llvm/CodeGen/SSARegMap.h"
+ #include "llvm/Target/MRegisterInfo.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Support/GetElementPtrTypeIterator.h"
+ #include "llvm/Support/InstVisitor.h"
+ #include "Support/Debug.h"
+ #include "Support/Statistic.h"
+ #include <vector>
+ using namespace llvm;
+
+ namespace {
+ Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
+
+ /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
+ /// PPC Representation.
+ ///
+ enum TypeClass {
+ cByte, cShort, cInt, cFP32, cFP64, cLong
+ };
+ }
+
+ /// getClass - Turn a primitive type into a "class" number which is based on the
+ /// size of the type, and whether or not it is floating point.
+ ///
+ static inline TypeClass getClass(const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::SByteTyID:
+ case Type::UByteTyID: return cByte; // Byte operands are class #0
+ case Type::ShortTyID:
+ case Type::UShortTyID: return cShort; // Short operands are class #1
+ case Type::IntTyID:
+ case Type::UIntTyID:
+ case Type::PointerTyID: return cInt; // Ints and pointers are class #2
+
+ case Type::FloatTyID: return cFP32; // Single float is #3
+ case Type::DoubleTyID: return cFP64; // Double Point is #4
+
+ case Type::LongTyID:
+ case Type::ULongTyID: return cLong; // Longs are class #5
+ default:
+ assert(0 && "Invalid type to getClass!");
+ return cByte; // not reached
+ }
+ }
+
+ // getClassB - Just like getClass, but treat boolean values as ints.
+ static inline TypeClass getClassB(const Type *Ty) {
+ if (Ty == Type::BoolTy) return cInt;
+ return getClass(Ty);
+ }
+
+ namespace {
+ struct ISel : public FunctionPass, InstVisitor<ISel> {
+ PPC64TargetMachine &TM;
+ MachineFunction *F; // The function we are compiling into
+ MachineBasicBlock *BB; // The current MBB we are compiling
+ int VarArgsFrameIndex; // FrameIndex for start of varargs area
+
+ std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
+
+ // External functions used in the Module
+ Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
+ *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
+ *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
+
+ // MBBMap - Mapping between LLVM BB -> Machine BB
+ std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
+
+ // AllocaMap - Mapping from fixed sized alloca instructions to the
+ // FrameIndex for the alloca.
+ std::map<AllocaInst*, unsigned> AllocaMap;
+
+ // A Reg to hold the base address used for global loads and stores, and a
+ // flag to set whether or not we need to emit it for this function.
+ unsigned GlobalBaseReg;
+ bool GlobalBaseInitialized;
+
+ ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
+ F(0), BB(0) {}
+
+ bool doInitialization(Module &M) {
+ // Add external functions that we may call
+ Type *i = Type::IntTy;
+ Type *d = Type::DoubleTy;
+ Type *f = Type::FloatTy;
+ Type *l = Type::LongTy;
+ Type *ul = Type::ULongTy;
+ Type *voidPtr = PointerType::get(Type::SByteTy);
+ // float fmodf(float, float);
+ fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
+ // double fmod(double, double);
+ fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
+ // int __cmpdi2(long, long);
+ __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
+ // long __moddi3(long, long);
+ __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
+ // long __divdi3(long, long);
+ __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
+ // unsigned long __umoddi3(unsigned long, unsigned long);
+ __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
+ // unsigned long __udivdi3(unsigned long, unsigned long);
+ __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
+ // long __fixsfdi(float)
+ __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
+ // long __fixdfdi(double)
+ __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
+ // unsigned long __fixunssfdi(float)
+ __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
+ // unsigned long __fixunsdfdi(double)
+ __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
+ // float __floatdisf(long)
+ __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
+ // double __floatdidf(long)
+ __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
+ // void* malloc(size_t)
+ mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
+ // void free(void*)
+ freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
+ return false;
+ }
+
+ /// runOnFunction - Top level implementation of instruction selection for
+ /// the entire function.
+ ///
+ bool runOnFunction(Function &Fn) {
+ // First pass over the function, lower any unknown intrinsic functions
+ // with the IntrinsicLowering class.
+ LowerUnknownIntrinsicFunctionCalls(Fn);
+
+ F = &MachineFunction::construct(&Fn, TM);
+
+ // Create all of the machine basic blocks for the function...
+ for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+ F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
+
+ BB = &F->front();
+
+ // Make sure we re-emit a set of the global base reg if necessary
+ GlobalBaseInitialized = false;
+
+ // Copy incoming arguments off of the stack...
+ LoadArgumentsToVirtualRegs(Fn);
+
+ // Instruction select everything except PHI nodes
+ visit(Fn);
+
+ // Select the PHI nodes
+ SelectPHINodes();
+
+ RegMap.clear();
+ MBBMap.clear();
+ AllocaMap.clear();
+ F = 0;
+ // We always build a machine code representation for the function
+ return true;
+ }
+
+ virtual const char *getPassName() const {
+ return "PowerPC Simple Instruction Selection";
+ }
+
+ /// visitBasicBlock - This method is called when we are visiting a new basic
+ /// block. This simply creates a new MachineBasicBlock to emit code into
+ /// and adds it to the current MachineFunction. Subsequent visit* for
+ /// instructions will be invoked for all instructions in the basic block.
+ ///
+ void visitBasicBlock(BasicBlock &LLVM_BB) {
+ BB = MBBMap[&LLVM_BB];
+ }
+
+ /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+ /// function, lowering any calls to unknown intrinsic functions into the
+ /// equivalent LLVM code.
+ ///
+ void LowerUnknownIntrinsicFunctionCalls(Function &F);
+
+ /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
+ /// from the stack into virtual registers.
+ ///
+ void LoadArgumentsToVirtualRegs(Function &F);
+
+ /// SelectPHINodes - Insert machine code to generate phis. This is tricky
+ /// because we have to generate our sources into the source basic blocks,
+ /// not the current one.
+ ///
+ void SelectPHINodes();
+
+ // Visitation methods for various instructions. These methods simply emit
+ // fixed PowerPC code for each instruction.
+
+ // Control flow operators
+ void visitReturnInst(ReturnInst &RI);
+ void visitBranchInst(BranchInst &BI);
+
+ struct ValueRecord {
+ Value *Val;
+ unsigned Reg;
+ const Type *Ty;
+ ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
+ ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
+ };
+
+ // This struct is for recording the necessary operations to emit the GEP
+ struct CollapsedGepOp {
+ bool isMul;
+ Value *index;
+ ConstantSInt *size;
+ CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
+ isMul(mul), index(i), size(s) {}
+ };
+
+ void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+ const std::vector<ValueRecord> &Args, bool isVarArg);
+ void visitCallInst(CallInst &I);
+ void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
+
+ // Arithmetic operators
+ void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
+ void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
+ void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
+ void visitMul(BinaryOperator &B);
+
+ void visitDiv(BinaryOperator &B) { visitDivRem(B); }
+ void visitRem(BinaryOperator &B) { visitDivRem(B); }
+ void visitDivRem(BinaryOperator &B);
+
+ // Bitwise operators
+ void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
+ void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
+ void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
+
+ // Comparison operators...
+ void visitSetCondInst(SetCondInst &I);
+ unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MBBI);
+ void visitSelectInst(SelectInst &SI);
+
+
+ // Memory Instructions
+ void visitLoadInst(LoadInst &I);
+ void visitStoreInst(StoreInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitMallocInst(MallocInst &I);
+ void visitFreeInst(FreeInst &I);
+
+ // Other operators
+ void visitShiftInst(ShiftInst &I);
+ void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
+ void visitCastInst(CastInst &I);
+ void visitVANextInst(VANextInst &I);
+ void visitVAArgInst(VAArgInst &I);
+
+ void visitInstruction(Instruction &I) {
+ std::cerr << "Cannot instruction select: " << I;
+ abort();
+ }
+
+ /// promote32 - Make a value 32-bits wide, and put it somewhere.
+ ///
+ void promote32(unsigned targetReg, const ValueRecord &VR);
+
+ /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+ /// constant expression GEP support.
+ ///
+ void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+ Value *Src, User::op_iterator IdxBegin,
+ User::op_iterator IdxEnd, unsigned TargetReg,
+ bool CollapseRemainder, ConstantSInt **Remainder,
+ unsigned *PendingAddReg);
+
+ /// emitCastOperation - Common code shared between visitCastInst and
+ /// constant expression cast support.
+ ///
+ void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
+ Value *Src, const Type *DestTy, unsigned TargetReg);
+
+ /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+ /// and constant expression support.
+ ///
+ void emitSimpleBinaryOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1,
+ unsigned OperatorClass, unsigned TargetReg);
+
+ /// emitBinaryFPOperation - This method handles emission of floating point
+ /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+ void emitBinaryFPOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1,
+ unsigned OperatorClass, unsigned TargetReg);
+
+ void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, unsigned TargetReg);
+
+ void doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1);
+
+ /// doMultiplyConst - This method will multiply the value in Op0Reg by the
+ /// value of the ContantInt *CI
+ void doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, ConstantInt *CI);
+
+ void emitDivRemOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, bool isDiv,
+ unsigned TargetReg);
+
+ /// emitSetCCOperation - Common code shared between visitSetCondInst and
+ /// constant expression support.
+ ///
+ void emitSetCCOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, unsigned Opcode,
+ unsigned TargetReg);
+
+ /// emitShiftOperation - Common code shared between visitShiftInst and
+ /// constant expression support.
+ ///
+ void emitShiftOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Op, Value *ShiftAmount, bool isLeftShift,
+ const Type *ResultTy, unsigned DestReg);
+
+ /// emitSelectOperation - Common code shared between visitSelectInst and the
+ /// constant expression support.
+ ///
+ void emitSelectOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Cond, Value *TrueVal, Value *FalseVal,
+ unsigned DestReg);
+
+ /// copyGlobalBaseToRegister - Output the instructions required to put the
+ /// base address to use for accessing globals into a register.
+ ///
+ void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned R);
+
+ /// copyConstantToRegister - Output the instructions required to put the
+ /// specified constant into the specified register.
+ ///
+ void copyConstantToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MBBI,
+ Constant *C, unsigned Reg);
+
+ void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+ unsigned LHS, unsigned RHS);
+
+ /// makeAnotherReg - This method returns the next register number we haven't
+ /// yet used.
+ ///
+ unsigned makeAnotherReg(const Type *Ty) {
+ assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
+ "Current target doesn't have PPC reg info??");
+ const PowerPCRegisterInfo *PPCRI =
+ static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
+ // Add the mapping of regnumber => reg class to MachineFunction
+ const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
+ return F->getSSARegMap()->createVirtualRegister(RC);
+ }
+
+ /// getReg - This method turns an LLVM value into a register number.
+ ///
+ unsigned getReg(Value &V) { return getReg(&V); } // Allow references
+ unsigned getReg(Value *V) {
+ // Just append to the end of the current bb.
+ MachineBasicBlock::iterator It = BB->end();
+ return getReg(V, BB, It);
+ }
+ unsigned getReg(Value *V, MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IPt);
+
+ /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+ /// is okay to use as an immediate argument to a certain binary operation
+ bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
+
+ /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+ /// that is to be statically allocated with the initial stack frame
+ /// adjustment.
+ unsigned getFixedSizedAllocaFI(AllocaInst *AI);
+ };
+ }
+
+ /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
+ /// instruction in the entry block, return it. Otherwise, return a null
+ /// pointer.
+ static AllocaInst *dyn_castFixedAlloca(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ BasicBlock *BB = AI->getParent();
+ if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
+ return AI;
+ }
+ return 0;
+ }
+
+ /// getReg - This method turns an LLVM value into a register number.
+ ///
+ unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IPt) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ unsigned Reg = makeAnotherReg(V->getType());
+ copyConstantToRegister(MBB, IPt, C, Reg);
+ return Reg;
+ } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
+ unsigned Reg = makeAnotherReg(V->getType());
+ unsigned FI = getFixedSizedAllocaFI(AI);
+ addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
+ return Reg;
+ }
+
+ unsigned &Reg = RegMap[V];
+ if (Reg == 0) {
+ Reg = makeAnotherReg(V->getType());
+ RegMap[V] = Reg;
+ }
+
+ return Reg;
+ }
+
+ /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+ /// is okay to use as an immediate argument to a certain binary operator.
+ ///
+ /// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
+ bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
+ ConstantSInt *Op1Cs;
+ ConstantUInt *Op1Cu;
+
+ // ADDI, Compare, and non-indexed Load take SIMM
+ bool cond1 = (Operator == 0)
+ && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32767)
+ && (Op1Cs->getValue() >= -32768);
+
+ // SUBI takes -SIMM since it is a mnemonic for ADDI
+ bool cond2 = (Operator == 1)
+ && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32768)
+ && (Op1Cs->getValue() >= -32767);
+
+ // ANDIo, ORI, and XORI take unsigned values
+ bool cond3 = (Operator >= 2)
+ && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() >= 0)
+ && (Op1Cs->getValue() <= 32767);
+
+ // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
+ bool cond4 = (Operator < 2)
+ && (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 32767);
+
+ // ANDIo, ORI, and XORI take UIMMs, so they can be larger
+ bool cond5 = (Operator >= 2)
+ && (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 65535);
+
+ if (cond1 || cond2 || cond3 || cond4 || cond5)
+ return true;
+
+ return false;
+ }
+
+ /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+ /// that is to be statically allocated with the initial stack frame
+ /// adjustment.
+ unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
+ // Already computed this?
+ std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
+ if (I != AllocaMap.end() && I->first == AI) return I->second;
+
+ const Type *Ty = AI->getAllocatedType();
+ ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
+ unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+ TySize *= CUI->getValue(); // Get total allocated size...
+ unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
+
+ // Create a new stack object using the frame manager...
+ int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
+ AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
+ return FrameIdx;
+ }
+
+
+ /// copyGlobalBaseToRegister - Output the instructions required to put the
+ /// base address to use for accessing globals into a register.
+ ///
+ void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned R) {
+ if (!GlobalBaseInitialized) {
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = F->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ GlobalBaseReg = makeAnotherReg(Type::IntTy);
+ BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
+ BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
+ GlobalBaseInitialized = true;
+ }
+ // Emit our copy of GlobalBaseReg to the destination register in the
+ // current MBB
+ BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
+ .addReg(GlobalBaseReg);
+ }
+
+ /// copyConstantToRegister - Output the instructions required to put the
+ /// specified constant into the specified register.
+ ///
+ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Constant *C, unsigned R) {
+ if (C->getType()->isIntegral()) {
+ unsigned Class = getClassB(C->getType());
+
+ if (Class == cLong) {
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
+ uint64_t uval = CUI->getValue();
+ if (uval < (1LL << 32)) {
+ ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
+ copyConstantToRegister(MBB, IP, CU, R);
+ return;
+ }
+ } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
+ int64_t val = CUI->getValue();
+ if (val < (1LL << 31)) {
+ ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
+ copyConstantToRegister(MBB, IP, CU, R);
+ return;
+ }
+ } else {
+ std::cerr << "Unhandled long constant type!\n";
+ abort();
+ }
+ // Spill long to the constant pool and load it
+ MachineConstantPool *CP = F->getConstantPool();
+ unsigned CPI = CP->getConstantPoolIndex(C);
+ BuildMI(*MBB, IP, PPC::LD, 1, R)
+ .addReg(PPC::R2).addConstantPoolIndex(CPI);
+ }
+
+ assert(Class <= cInt && "Type not handled yet!");
+
+ // Handle bool
+ if (C->getType() == Type::BoolTy) {
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
+ return;
+ }
+
+ // Handle int
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
+ unsigned uval = CUI->getValue();
+ if (uval < 32768) {
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
+ } else {
+ unsigned Temp = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
+ BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
+ }
+ return;
+ } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
+ int sval = CSI->getValue();
+ if (sval < 32768 && sval >= -32768) {
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
+ } else {
+ unsigned Temp = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
+ BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
+ }
+ return;
+ }
+ std::cerr << "Unhandled integer constant!\n";
+ abort();
+ } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ // We need to spill the constant to memory...
+ MachineConstantPool *CP = F->getConstantPool();
+ unsigned CPI = CP->getConstantPoolIndex(CFP);
+ const Type *Ty = CFP->getType();
+ unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
+ BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
+ } else if (isa<ConstantPointerNull>(C)) {
+ // Copy zero (null pointer) to the register.
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
+ unsigned TmpReg = makeAnotherReg(GV->getType());
+ BuildMI(*MBB, IP, PPC::LD, 2, TmpReg).addGlobalAddress(GV).addReg(PPC::R2);
+ BuildMI(*MBB, IP, PPC::LWA, 2, R).addSImm(0).addReg(TmpReg);
+ } else {
+ std::cerr << "Offending constant: " << *C << "\n";
+ assert(0 && "Type not handled yet!");
+ }
+ }
+
+ /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
+ /// the stack into virtual registers.
+ void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
+ unsigned ArgOffset = 24;
+ unsigned GPR_remaining = 8;
+ unsigned FPR_remaining = 13;
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ MachineFrameInfo *MFI = F->getFrameInfo();
+
+ for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
+ bool ArgLive = !I->use_empty();
+ unsigned Reg = ArgLive ? getReg(*I) : 0;
+ int FI; // Frame object index
+
+ switch (getClassB(I->getType())) {
+ case cByte:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
+ }
+ }
+ break;
+ case cShort:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
+ }
+ }
+ break;
+ case cInt:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
+ }
+ }
+ break;
+ case cLong:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(8, ArgOffset);
+ if (GPR_remaining > 1) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
+ }
+ }
+ // longs require 4 additional bytes
+ ArgOffset += 4;
+ break;
+ case cFP32:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+
+ if (FPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+ BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
+ FPR_remaining--;
+ FPR_idx++;
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
+ }
+ }
+ break;
+ case cFP64:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(8, ArgOffset);
+
+ if (FPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+ BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
+ FPR_remaining--;
+ FPR_idx++;
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
+ }
+ }
+
+ // doubles require 4 additional bytes and use 2 GPRs of param space
+ ArgOffset += 4;
+ if (GPR_remaining > 0) {
+ GPR_remaining--;
+ GPR_idx++;
+ }
+ break;
+ default:
+ assert(0 && "Unhandled argument type!");
+ }
+ ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
+ if (GPR_remaining > 0) {
+ GPR_remaining--; // uses up 2 GPRs
+ GPR_idx++;
+ }
+ }
+
+ // If the function takes variable number of arguments, add a frame offset for
+ // the start of the first vararg value... this is used to expand
+ // llvm.va_start.
+ if (Fn.getFunctionType()->isVarArg())
+ VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
+ }
+
+
+ /// SelectPHINodes - Insert machine code to generate phis. This is tricky
+ /// because we have to generate our sources into the source basic blocks, not
+ /// the current one.
+ ///
+ void ISel::SelectPHINodes() {
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const Function &LF = *F->getFunction(); // The LLVM function...
+ for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
+ const BasicBlock *BB = I;
+ MachineBasicBlock &MBB = *MBBMap[I];
+
+ // Loop over all of the PHI nodes in the LLVM basic block...
+ MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
+ for (BasicBlock::const_iterator I = BB->begin();
+ PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
+
+ // Create a new machine instr PHI node, and insert it.
+ unsigned PHIReg = getReg(*PN);
+ MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
+ PPC::PHI, PN->getNumOperands(), PHIReg);
+
+ // PHIValues - Map of blocks to incoming virtual registers. We use this
+ // so that we only initialize one incoming value for a particular block,
+ // even if the block has multiple entries in the PHI node.
+ //
+ std::map<MachineBasicBlock*, unsigned> PHIValues;
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ MachineBasicBlock *PredMBB = 0;
+ for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
+ PE = MBB.pred_end (); PI != PE; ++PI)
+ if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
+ PredMBB = *PI;
+ break;
+ }
+ assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
+
+ unsigned ValReg;
+ std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
+ PHIValues.lower_bound(PredMBB);
+
+ if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
+ // We already inserted an initialization of the register for this
+ // predecessor. Recycle it.
+ ValReg = EntryIt->second;
+ } else {
+ // Get the incoming value into a virtual register.
+ //
+ Value *Val = PN->getIncomingValue(i);
+
+ // If this is a constant or GlobalValue, we may have to insert code
+ // into the basic block to compute it into a virtual register.
+ if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
+ isa<GlobalValue>(Val)) {
+ // Simple constants get emitted at the end of the basic block,
+ // before any terminator instructions. We "know" that the code to
+ // move a constant into a register will never clobber any flags.
+ ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
+ } else {
+ // Because we don't want to clobber any values which might be in
+ // physical registers with the computation of this constant (which
+ // might be arbitrarily complex if it is a constant expression),
+ // just insert the computation at the top of the basic block.
+ MachineBasicBlock::iterator PI = PredMBB->begin();
+
+ // Skip over any PHI nodes though!
+ while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
+ ++PI;
+
+ ValReg = getReg(Val, PredMBB, PI);
+ }
+
+ // Remember that we inserted a value for this PHI for this predecessor
+ PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
+ }
+
+ PhiMI->addRegOperand(ValReg);
+ PhiMI->addMachineBasicBlockOperand(PredMBB);
+ }
+
+ // Now that we emitted all of the incoming values for the PHI node, make
+ // sure to reposition the InsertPoint after the PHI that we just added.
+ // This is needed because we might have inserted a constant into this
+ // block, right after the PHI's which is before the old insert point!
+ PHIInsertPoint = PhiMI;
+ ++PHIInsertPoint;
+ }
+ }
+ }
+
+
+ // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
+ // it into the conditional branch or select instruction which is the only user
+ // of the cc instruction. This is the case if the conditional branch is the
+ // only user of the setcc, and if the setcc is in the same basic block as the
+ // conditional branch.
+ //
+ static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
+ if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
+ if (SCI->hasOneUse()) {
+ Instruction *User = cast<Instruction>(SCI->use_back());
+ if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
+ SCI->getParent() == User->getParent())
+ return SCI;
+ }
+ return 0;
+ }
+
+
+ // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
+ // the load or store instruction that is the only user of the GEP.
+ //
+ static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
+ if (GEPI->hasOneUse()) {
+ Instruction *User = cast<Instruction>(GEPI->use_back());
+ if (isa<StoreInst>(User) &&
+ GEPI->getParent() == User->getParent() &&
+ User->getOperand(0) != GEPI &&
+ User->getOperand(1) == GEPI) {
+ ++GEPFolds;
+ return GEPI;
+ }
+ if (isa<LoadInst>(User) &&
+ GEPI->getParent() == User->getParent() &&
+ User->getOperand(0) == GEPI) {
+ ++GEPFolds;
+ return GEPI;
+ }
+ }
+ return 0;
+ }
+
+
+ // Return a fixed numbering for setcc instructions which does not depend on the
+ // order of the opcodes.
+ //
+ static unsigned getSetCCNumber(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown setcc instruction!");
+ case Instruction::SetEQ: return 0;
+ case Instruction::SetNE: return 1;
+ case Instruction::SetLT: return 2;
+ case Instruction::SetGE: return 3;
+ case Instruction::SetGT: return 4;
+ case Instruction::SetLE: return 5;
+ }
+ }
+
+ static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown setcc instruction!");
+ case Instruction::SetEQ: return PPC::BEQ;
+ case Instruction::SetNE: return PPC::BNE;
+ case Instruction::SetLT: return PPC::BLT;
+ case Instruction::SetGE: return PPC::BGE;
+ case Instruction::SetGT: return PPC::BGT;
+ case Instruction::SetLE: return PPC::BLE;
+ }
+ }
+
+ /// emitUCOM - emits an unordered FP compare.
+ void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+ unsigned LHS, unsigned RHS) {
+ BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
+ }
+
+ /// EmitComparison - emits a comparison of the two operands, returning the
+ /// extended setcc code to use. The result is in CR0.
+ ///
+ unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP) {
+ // The arguments are already supposed to be of the same type.
+ const Type *CompTy = Op0->getType();
+ unsigned Class = getClassB(CompTy);
+ unsigned Op0r = getReg(Op0, MBB, IP);
+
+ // Before we do a comparison, we have to make sure that we're truncating our
+ // registers appropriately.
+ if (Class == cByte) {
+ unsigned TmpReg = makeAnotherReg(CompTy);
+ if (CompTy->isSigned())
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
+ .addImm(24).addImm(31);
+ Op0r = TmpReg;
+ } else if (Class == cShort) {
+ unsigned TmpReg = makeAnotherReg(CompTy);
+ if (CompTy->isSigned())
+ BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
+ .addImm(16).addImm(31);
+ Op0r = TmpReg;
+ }
+
+ // Use crand for lt, gt and crandc for le, ge
+ unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
+ unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
+ unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
+ if (Class == cLong) {
+ Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
+ OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
+ }
+
+ // Special case handling of: cmp R, i
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ unsigned Op1v = CI->getRawValue() & 0xFFFF;
+
+ // Treat compare like ADDI for the purposes of immediate suitability
+ if (canUseAsImmediateForOpcode(CI, 0)) {
+ BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
+ } else {
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
+ }
+ return OpNum;
+ }
+
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ switch (Class) {
+ default: assert(0 && "Unknown type class!");
+ case cByte:
+ case cShort:
+ case cInt:
+ case cLong:
+ BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
+ break;
+
+ case cFP32:
+ case cFP64:
+ emitUCOM(MBB, IP, Op0r, Op1r);
+ break;
+ }
+
+ return OpNum;
+ }
+
+ /// visitSetCondInst - emit code to calculate the condition via
+ /// EmitComparison(), and possibly store a 0 or 1 to a register as a result
+ ///
+ void ISel::visitSetCondInst(SetCondInst &I) {
+ if (canFoldSetCCIntoBranchOrSelect(&I))
+ return;
+
+ unsigned DestReg = getReg(I);
+ unsigned OpNum = I.getOpcode();
+ const Type *Ty = I.getOperand (0)->getType();
+
+ EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
+
+ unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // cmpTY cr0, r1, r2
+ // bCC copy1MBB
+ // b copy0MBB
+
+ // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
+ // if we could insert other, non-terminator instructions after the
+ // bCC. But MBB->getFirstTerminator() can't understand this.
+ MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
+ F->getBasicBlockList().insert(It, copy1MBB);
+ BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ F->getBasicBlockList().insert(It, copy0MBB);
+ BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy1MBB);
+ BB->addSuccessor(copy0MBB);
+
+ // copy1MBB:
+ // %TrueValue = li 1
+ // b sinkMBB
+ BB = copy1MBB;
+ unsigned TrueValue = makeAnotherReg(I.getType());
+ BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
+ BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = li 0
+ // fallthrough
+ BB = copy0MBB;
+ unsigned FalseValue = makeAnotherReg(I.getType());
+ BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
+ }
+
+ void ISel::visitSelectInst(SelectInst &SI) {
+ unsigned DestReg = getReg(SI);
+ MachineBasicBlock::iterator MII = BB->end();
+ emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
+ SI.getFalseValue(), DestReg);
+ }
+
+ /// emitSelect - Common code shared between visitSelectInst and the constant
+ /// expression support.
+ /// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
+ /// no select instruction. FSEL only works for comparisons against zero.
+ void ISel::emitSelectOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Cond, Value *TrueVal, Value *FalseVal,
+ unsigned DestReg) {
+ unsigned SelectClass = getClassB(TrueVal->getType());
+ unsigned Opcode;
+
+ // See if we can fold the setcc into the select instruction, or if we have
+ // to get the register of the Cond value
+ if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
+ // We successfully folded the setcc into the select instruction.
+ unsigned OpNum = getSetCCNumber(SCI->getOpcode());
+ OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
+ Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
+ } else {
+ unsigned CondReg = getReg(Cond, MBB, IP);
+ BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
+ Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
+ }
+
+ // thisMBB:
+ // ...
+ // cmpTY cr0, r1, r2
+ // bCC copy1MBB
+ // b copy0MBB
+
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
+ // if we could insert other, non-terminator instructions after the
+ // bCC. But MBB->getFirstTerminator() can't understand this.
+ MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
+ F->getBasicBlockList().insert(It, copy1MBB);
+ BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ F->getBasicBlockList().insert(It, copy0MBB);
+ BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy1MBB);
+ BB->addSuccessor(copy0MBB);
+
+ // copy1MBB:
+ // %TrueValue = ...
+ // b sinkMBB
+ BB = copy1MBB;
+ unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
+ BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // fallthrough
+ BB = copy0MBB;
+ unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
+ return;
+ }
+
+
+
+ /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
+ /// operand, in the specified target register.
+ ///
+ void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
+ bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
+
+ Value *Val = VR.Val;
+ const Type *Ty = VR.Ty;
+ if (Val) {
+ if (Constant *C = dyn_cast<Constant>(Val)) {
+ Val = ConstantExpr::getCast(C, Type::IntTy);
+ if (isa<ConstantExpr>(Val)) // Could not fold
+ Val = C;
+ else
+ Ty = Type::IntTy; // Folded!
+ }
+
+ // If this is a simple constant, just emit a load directly to avoid the copy
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ int TheVal = CI->getRawValue() & 0xFFFFFFFF;
+
+ if (TheVal < 32768 && TheVal >= -32768) {
+ BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
+ } else {
+ unsigned TmpReg = makeAnotherReg(Type::IntTy);
+ BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
+ BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
+ .addImm(TheVal & 0xFFFF);
+ }
+ return;
+ }
+ }
+
+ // Make sure we have the register number for this value...
+ unsigned Reg = Val ? getReg(Val) : VR.Reg;
+ switch (getClassB(Ty)) {
+ case cByte:
+ // Extend value into target register (8->32)
+ if (isUnsigned)
+ BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
+ .addZImm(24).addZImm(31);
+ else
+ BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
+ break;
+ case cShort:
+ // Extend value into target register (16->32)
+ if (isUnsigned)
+ BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
+ .addZImm(16).addZImm(31);
+ else
+ BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
+ break;
+ case cInt:
+ case cLong:
+ // Move value into target register (32->32)
+ BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
+ break;
+ default:
+ assert(0 && "Unpromotable operand class in promote32");
+ }
+ }
+
+ /// visitReturnInst - implemented with BLR
+ ///
+ void ISel::visitReturnInst(ReturnInst &I) {
+ // Only do the processing if this is a non-void return
+ if (I.getNumOperands() > 0) {
+ Value *RetVal = I.getOperand(0);
+ switch (getClassB(RetVal->getType())) {
+ case cByte: // integral return values: extend or move into r3 and return
+ case cShort:
+ case cInt:
+ case cLong:
+ promote32(PPC::R3, ValueRecord(RetVal));
+ break;
+ case cFP32:
+ case cFP64: { // Floats & Doubles: Return in f1
+ unsigned RetReg = getReg(RetVal);
+ BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
+ break;
+ }
+ default:
+ visitInstruction(I);
+ }
+ }
+ BuildMI(BB, PPC::BLR, 1).addImm(0);
+ }
+
+ // getBlockAfter - Return the basic block which occurs lexically after the
+ // specified one.
+ static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
+ Function::iterator I = BB; ++I; // Get iterator to next block
+ return I != BB->getParent()->end() ? &*I : 0;
+ }
+
+ /// visitBranchInst - Handle conditional and unconditional branches here. Note
+ /// that since code layout is frozen at this point, that if we are trying to
+ /// jump to a block that is the immediate successor of the current block, we can
+ /// just make a fall-through (but we don't currently).
+ ///
+ void ISel::visitBranchInst(BranchInst &BI) {
+ // Update machine-CFG edges
+ BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
+ if (BI.isConditional())
+ BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
+
+ BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
+
+ if (!BI.isConditional()) { // Unconditional branch?
+ if (BI.getSuccessor(0) != NextBB)
+ BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+ return;
+ }
+
+ // See if we can fold the setcc into the branch itself...
+ SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
+ if (SCI == 0) {
+ // Nope, cannot fold setcc into this branch. Emit a branch on a condition
+ // computed some other way...
+ unsigned condReg = getReg(BI.getCondition());
+ BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
+ .addImm(0);
+ if (BI.getSuccessor(1) == NextBB) {
+ if (BI.getSuccessor(0) != NextBB)
+ BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
+ .addMBB(MBBMap[BI.getSuccessor(0)])
+ .addMBB(MBBMap[BI.getSuccessor(1)]);
+ } else {
+ BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
+ .addMBB(MBBMap[BI.getSuccessor(1)])
+ .addMBB(MBBMap[BI.getSuccessor(0)]);
+ if (BI.getSuccessor(0) != NextBB)
+ BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+ }
+ return;
+ }
+
+ unsigned OpNum = getSetCCNumber(SCI->getOpcode());
+ unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
+ MachineBasicBlock::iterator MII = BB->end();
+ OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
+
+ if (BI.getSuccessor(0) != NextBB) {
+ BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
+ .addMBB(MBBMap[BI.getSuccessor(0)])
+ .addMBB(MBBMap[BI.getSuccessor(1)]);
+ if (BI.getSuccessor(1) != NextBB)
+ BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
+ } else {
+ // Change to the inverse condition...
+ if (BI.getSuccessor(1) != NextBB) {
+ Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
+ BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
+ .addMBB(MBBMap[BI.getSuccessor(1)])
+ .addMBB(MBBMap[BI.getSuccessor(0)]);
+ }
+ }
+ }
+
+ /// doCall - This emits an abstract call instruction, setting up the arguments
+ /// and the return value as appropriate. For the actual function call itself,
+ /// it inserts the specified CallMI instruction into the stream.
+ ///
+ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+ const std::vector<ValueRecord> &Args, bool isVarArg) {
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area.
+ unsigned NumBytes = 24;
+ unsigned ArgOffset = 24;
+
+ if (!Args.empty()) {
+ for (unsigned i = 0, e = Args.size(); i != e; ++i)
+ switch (getClassB(Args[i].Ty)) {
+ case cByte: case cShort: case cInt:
+ NumBytes += 4; break;
+ case cLong:
+ NumBytes += 8; break;
+ case cFP32:
+ NumBytes += 4; break;
+ case cFP64:
+ NumBytes += 8; break;
+ break;
+ default: assert(0 && "Unknown class!");
+ }
+
+ // Just to be safe, we'll always reserve the full 32 bytes worth of
+ // argument passing space in case any called code gets funky on us.
+ if (NumBytes < 24 + 32) NumBytes = 24 + 32;
+
+ // Adjust the stack pointer for the new arguments...
+ // These functions are automatically eliminated by the prolog/epilog pass
+ BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
+
+ // Arguments go on the stack in reverse order, as specified by the ABI.
+ // Offset to the paramater area on the stack is 24.
+ int GPR_remaining = 8, FPR_remaining = 13;
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
+ PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
+ PPC::F13
+ };
+
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ unsigned ArgReg;
+ switch (getClassB(Args[i].Ty)) {
+ case cByte:
+ case cShort:
+ // Promote arg to 32 bits wide into a temporary register...
+ ArgReg = makeAnotherReg(Type::UIntTy);
+ promote32(ArgReg, Args[i]);
+
+ // Reg or stack?
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
+ .addReg(ArgReg);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ if (GPR_remaining <= 0 || isVarArg) {
+ BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ }
+ break;
+ case cInt:
+ ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+
+ // Reg or stack?
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
+ .addReg(ArgReg);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ if (GPR_remaining <= 0 || isVarArg) {
+ BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ }
+ break;
+ case cLong:
+ ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+
+ // Reg or stack?
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
+ .addReg(ArgReg);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ if (GPR_remaining <= 0 || isVarArg) {
+ BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ }
+ ArgOffset += 4; // 8 byte entry, not 4.
+ break;
+ case cFP32:
+ ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+ // Reg or stack?
+ if (FPR_remaining > 0) {
+ BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
+ CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
+ FPR_remaining--;
+ FPR_idx++;
+
+ // If this is a vararg function, and there are GPRs left, also
+ // pass the float in an int. Otherwise, put it on the stack.
+ if (isVarArg) {
+ BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
+ .addSImm(ArgOffset).addReg(ArgReg);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ }
+ } else {
+ BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ }
+ break;
+ case cFP64:
+ ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+ // Reg or stack?
+ if (FPR_remaining > 0) {
+ BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
+ CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
+ FPR_remaining--;
+ FPR_idx++;
+ // For vararg functions, must pass doubles via int regs as well
+ if (isVarArg) {
+ BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ }
+ } else {
+ BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
+ .addReg(PPC::R1);
+ }
+ // Doubles use 8 bytes
+ ArgOffset += 4;
+ break;
+
+ default: assert(0 && "Unknown class!");
+ }
+ ArgOffset += 4;
+ GPR_remaining--;
+ GPR_idx++;
+ }
+ } else {
+ BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
+ }
+
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
+ BB->push_back(CallMI);
+ BuildMI(BB, PPC::NOP, 1).addImm(0);
+
+ // These functions are automatically eliminated by the prolog/epilog pass
+ BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
+
+ // If there is a return value, scavenge the result from the location the call
+ // leaves it in...
+ //
+ if (Ret.Ty != Type::VoidTy) {
+ unsigned DestClass = getClassB(Ret.Ty);
+ switch (DestClass) {
+ case cByte:
+ case cShort:
+ case cInt:
+ case cLong:
+ // Integral results are in r3
+ BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
+ break;
+ case cFP32: // Floating-point return values live in f1
+ case cFP64:
+ BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
+ break;
+ default: assert(0 && "Unknown class!");
+ }
+ }
+ }
+
+
+ /// visitCallInst - Push args on stack and do a procedure call instruction.
+ void ISel::visitCallInst(CallInst &CI) {
+ MachineInstr *TheCall;
+ Function *F = CI.getCalledFunction();
+ if (F) {
+ // Is it an intrinsic function call?
+ if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
+ visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
+ return;
+ }
+ // Emit a CALL instruction with PC-relative displacement.
+ TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
+ // Add it to the set of functions called to be used by the Printer
+ TM.CalledFunctions.insert(F);
+ } else { // Emit an indirect call through the CTR
+ unsigned Reg = getReg(CI.getCalledValue());
+ BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
+ TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
+ }
+
+ std::vector<ValueRecord> Args;
+ for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
+ Args.push_back(ValueRecord(CI.getOperand(i)));
+
+ unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
+ bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
+ doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
+ }
+
+
+ /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
+ ///
+ static Value *dyncastIsNan(Value *V) {
+ if (CallInst *CI = dyn_cast<CallInst>(V))
+ if (Function *F = CI->getCalledFunction())
+ if (F->getIntrinsicID() == Intrinsic::isunordered)
+ return CI->getOperand(1);
+ return 0;
+ }
+
+ /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
+ /// or's whos operands are all calls to the isnan predicate.
+ static bool isOnlyUsedByUnorderedComparisons(Value *V) {
+ assert(dyncastIsNan(V) && "The value isn't an isnan call!");
+
+ // Check all uses, which will be or's of isnans if this predicate is true.
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+ Instruction *I = cast<Instruction>(*UI);
+ if (I->getOpcode() != Instruction::Or) return false;
+ if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
+ if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
+ }
+
+ return true;
+ }
+
+ /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+ /// function, lowering any calls to unknown intrinsic functions into the
+ /// equivalent LLVM code.
+ ///
+ void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+ if (CallInst *CI = dyn_cast<CallInst>(I++))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ case Intrinsic::vastart:
+ case Intrinsic::vacopy:
+ case Intrinsic::vaend:
+ case Intrinsic::returnaddress:
+ case Intrinsic::frameaddress:
+ // FIXME: should lower these ourselves
+ // case Intrinsic::isunordered:
+ // case Intrinsic::memcpy: -> doCall(). system memcpy almost
+ // guaranteed to be faster than anything we generate ourselves
+ // We directly implement these intrinsics
+ break;
+ case Intrinsic::readio: {
+ // On PPC, memory operations are in-order. Lower this intrinsic
+ // into a volatile load.
+ Instruction *Before = CI->getPrev();
+ LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
+ CI->replaceAllUsesWith(LI);
+ BB->getInstList().erase(CI);
+ break;
+ }
+ case Intrinsic::writeio: {
+ // On PPC, memory operations are in-order. Lower this intrinsic
+ // into a volatile store.
+ Instruction *Before = CI->getPrev();
+ StoreInst *SI = new StoreInst(CI->getOperand(1),
+ CI->getOperand(2), true, CI);
+ CI->replaceAllUsesWith(SI);
+ BB->getInstList().erase(CI);
+ break;
+ }
+ default:
+ // All other intrinsic calls we must lower.
+ Instruction *Before = CI->getPrev();
+ TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
+ if (Before) { // Move iterator to instruction after call
+ I = Before; ++I;
+ } else {
+ I = BB->begin();
+ }
+ }
+ }
+
+ void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
+ unsigned TmpReg1, TmpReg2, TmpReg3;
+ switch (ID) {
+ case Intrinsic::vastart:
+ // Get the address of the first vararg value...
+ TmpReg1 = getReg(CI);
+ addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
+ 0, false);
+ return;
+
+ case Intrinsic::vacopy:
+ TmpReg1 = getReg(CI);
+ TmpReg2 = getReg(CI.getOperand(1));
+ BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
+ return;
+ case Intrinsic::vaend: return;
+
+ case Intrinsic::returnaddress:
+ TmpReg1 = getReg(CI);
+ if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
+ MachineFrameInfo *MFI = F->getFrameInfo();
+ unsigned NumBytes = MFI->getStackSize();
+
+ BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
+ .addReg(PPC::R1);
+ } else {
+ // Values other than zero are not implemented yet.
+ BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
+ }
+ return;
+
+ case Intrinsic::frameaddress:
+ TmpReg1 = getReg(CI);
+ if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
+ BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
+ } else {
+ // Values other than zero are not implemented yet.
+ BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
+ }
+ return;
+
+ #if 0
+ // This may be useful for supporting isunordered
+ case Intrinsic::isnan:
+ // If this is only used by 'isunordered' style comparisons, don't emit it.
+ if (isOnlyUsedByUnorderedComparisons(&CI)) return;
+ TmpReg1 = getReg(CI.getOperand(1));
+ emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
+ TmpReg2 = makeAnotherReg(Type::IntTy);
+ BuildMI(BB, PPC::MFCR, TmpReg2);
+ TmpReg3 = getReg(CI);
+ BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
+ return;
+ #endif
+
+ default: assert(0 && "Error: unknown intrinsics should have been lowered!");
+ }
+ }
+
+ /// visitSimpleBinary - Implement simple binary operators for integral types...
+ /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
+ /// Xor.
+ ///
+ void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
+ unsigned DestReg = getReg(B);
+ MachineBasicBlock::iterator MI = BB->end();
+ Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
+ unsigned Class = getClassB(B.getType());
+
+ emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
+ }
+
+ /// emitBinaryFPOperation - This method handles emission of floating point
+ /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+ void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1,
+ unsigned OperatorClass, unsigned DestReg) {
+
+ // Special case: op Reg, <const fp>
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ // Create a constant pool entry for this constant.
+ MachineConstantPool *CP = F->getConstantPool();
+ unsigned CPI = CP->getConstantPoolIndex(Op1C);
+ const Type *Ty = Op1->getType();
+ assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+
+ static const unsigned OpcodeTab[][4] = {
+ { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
+ { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
+ };
+
+ unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+ unsigned Op1Reg = getReg(Op1C, BB, IP);
+ unsigned Op0r = getReg(Op0, BB, IP);
+ BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
+ return;
+ }
+
+ // Special case: R1 = op <const fp>, R2
+ if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
+ if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
+ // -0.0 - X === -X
+ unsigned op1Reg = getReg(Op1, BB, IP);
+ BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
+ return;
+ } else {
+ // R1 = op CST, R2 --> R1 = opr R2, CST
+
+ // Create a constant pool entry for this constant.
+ MachineConstantPool *CP = F->getConstantPool();
+ unsigned CPI = CP->getConstantPoolIndex(Op0C);
+ const Type *Ty = Op0C->getType();
+ assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+
+ static const unsigned OpcodeTab[][4] = {
+ { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
+ { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
+ };
+
+ unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+ unsigned Op0Reg = getReg(Op0C, BB, IP);
+ unsigned Op1Reg = getReg(Op1, BB, IP);
+ BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
+ return;
+ }
+
+ // General case.
+ static const unsigned OpcodeTab[] = {
+ PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV
+ };
+
+ unsigned Opcode = OpcodeTab[OperatorClass];
+ unsigned Op0r = getReg(Op0, BB, IP);
+ unsigned Op1r = getReg(Op1, BB, IP);
+ BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+ }
+
+ /// emitSimpleBinaryOperation - Implement simple binary operators for integral
+ /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
+ /// Or, 4 for Xor.
+ ///
+ /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+ /// and constant expression support.
+ ///
+ void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1,
+ unsigned OperatorClass, unsigned DestReg) {
+ unsigned Class = getClassB(Op0->getType());
+
+ // Arithmetic and Bitwise operators
+ static const unsigned OpcodeTab[] = {
+ PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
+ };
+ static const unsigned ImmOpcodeTab[] = {
+ PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
+ };
+ static const unsigned RImmOpcodeTab[] = {
+ PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
+ };
+
+ if (Class == cFP32 || Class == cFP64) {
+ assert(OperatorClass < 2 && "No logical ops for FP!");
+ emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
+ return;
+ }
+
+ if (Op0->getType() == Type::BoolTy) {
+ if (OperatorClass == 3)
+ // If this is an or of two isnan's, emit an FP comparison directly instead
+ // of or'ing two isnan's together.
+ if (Value *LHS = dyncastIsNan(Op0))
+ if (Value *RHS = dyncastIsNan(Op1)) {
+ unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
+ unsigned TmpReg = makeAnotherReg(Type::IntTy);
+ emitUCOM(MBB, IP, Op0Reg, Op1Reg);
+ BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
+ .addImm(31).addImm(31);
+ return;
+ }
+ }
+
+ // Special case: op <const int>, Reg
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
+ // sub 0, X -> subfic
+ if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ int imm = CI->getRawValue() & 0xFFFF;
+ BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
+ return;
+ }
+
+ // If it is easy to do, swap the operands and emit an immediate op
+ if (Class != cLong && OperatorClass != 1 &&
+ canUseAsImmediateForOpcode(CI, OperatorClass)) {
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ int imm = CI->getRawValue() & 0xFFFF;
+
+ if (OperatorClass < 2)
+ BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
+ .addSImm(imm);
+ else
+ BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
+ .addZImm(imm);
+ return;
+ }
+ }
+
+ // Special case: op Reg, <const int>
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+
+ // xor X, -1 -> not X
+ if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
+ BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+ return;
+ }
+
+ if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
+ int immediate = Op1C->getRawValue() & 0xFFFF;
+
+ if (OperatorClass < 2)
+ BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
+ .addSImm(immediate);
+ else
+ BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
+ .addZImm(immediate);
+ } else {
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
+ }
+ return;
+ }
+
+ // We couldn't generate an immediate variant of the op, load both halves into
+ // registers and emit the appropriate opcode.
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ unsigned Opcode = OpcodeTab[OperatorClass];
+ BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+ return;
+ }
+
+ // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
+ // returns zero when the input is not exactly a power of two.
+ static unsigned ExactLog2(unsigned Val) {
+ if (Val == 0 || (Val & (Val-1))) return 0;
+ unsigned Count = 0;
+ while (Val != 1) {
+ Val >>= 1;
+ ++Count;
+ }
+ return Count;
+ }
+
+ /// doMultiply - Emit appropriate instructions to multiply together the
+ /// Values Op0 and Op1, and put the result in DestReg.
+ ///
+ void ISel::doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1) {
+ unsigned Class0 = getClass(Op0->getType());
+ unsigned Class1 = getClass(Op1->getType());
+
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ // 64 x 64 -> 64
+ if (Class0 == cLong && Class1 == cLong) {
+ unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+ // FIXME: long is not split into two regs
+ BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+ return;
+ }
+
+ // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
+ if (Class0 == cLong && Class1 <= cInt) {
+ unsigned Tmp0 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+ if (Op1->getType()->isSigned())
+ BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
+ else
+ BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
+ // FIXME: long is not split into two regs
+ BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
+ BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+ return;
+ }
+
+ // 32 x 32 -> 32
+ if (Class0 <= cInt && Class1 <= cInt) {
+ BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
+ return;
+ }
+
+ assert(0 && "doMultiply cannot operate on unknown type!");
+ }
+
+ /// doMultiplyConst - This method will multiply the value in Op0 by the
+ /// value of the ContantInt *CI
+ void ISel::doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, ConstantInt *CI) {
+ unsigned Class = getClass(Op0->getType());
+
+ // Mul op0, 0 ==> 0
+ if (CI->isNullValue()) {
+ BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
+ return;
+ }
+
+ // Mul op0, 1 ==> op0
+ if (CI->equalsInt(1)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+ return;
+ }
+
+ // If the element size is exactly a power of 2, use a shift to get it.
+ if (unsigned Shift = ExactLog2(CI->getRawValue())) {
+ ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
+ emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
+ return;
+ }
+
+ // If 32 bits or less and immediate is in right range, emit mul by immediate
+ if (Class == cByte || Class == cShort || Class == cInt) {
+ if (canUseAsImmediateForOpcode(CI, 0)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned imm = CI->getRawValue() & 0xFFFF;
+ BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
+ return;
+ }
+ }
+
+ doMultiply(MBB, IP, DestReg, Op0, CI);
+ }
+
+ void ISel::visitMul(BinaryOperator &I) {
+ unsigned ResultReg = getReg(I);
+
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+
+ MachineBasicBlock::iterator IP = BB->end();
+ emitMultiply(BB, IP, Op0, Op1, ResultReg);
+ }
+
+ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, unsigned DestReg) {
+ TypeClass Class = getClass(Op0->getType());
+
+ switch (Class) {
+ case cByte:
+ case cShort:
+ case cInt:
+ case cLong:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ doMultiplyConst(MBB, IP, DestReg, Op0, CI);
+ } else {
+ doMultiply(MBB, IP, DestReg, Op0, Op1);
+ }
+ return;
+ case cFP32:
+ case cFP64:
+ emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
+ return;
+ break;
+ }
+ }
+
+
+ /// visitDivRem - Handle division and remainder instructions... these
+ /// instruction both require the same instructions to be generated, they just
+ /// select the result from a different register. Note that both of these
+ /// instructions work differently for signed and unsigned operands.
+ ///
+ void ISel::visitDivRem(BinaryOperator &I) {
+ unsigned ResultReg = getReg(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ MachineBasicBlock::iterator IP = BB->end();
+ emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
+ ResultReg);
+ }
+
+ void ISel::emitDivRemOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, bool isDiv,
+ unsigned ResultReg) {
+ const Type *Ty = Op0->getType();
+ unsigned Class = getClass(Ty);
+ switch (Class) {
+ case cFP32:
+ if (isDiv) {
+ // Floating point divide...
+ emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
+ return;
+ } else {
+ // Floating point remainder via fmodf(float x, float y);
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ unsigned Op1Reg = getReg(Op1, BB, IP);
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
+ Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
+ doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
+ TM.CalledFunctions.insert(fmodfFn);
+ }
+ return;
+ case cFP64:
+ if (isDiv) {
+ // Floating point divide...
+ emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
+ return;
+ } else {
+ // Floating point remainder via fmod(double x, double y);
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ unsigned Op1Reg = getReg(Op1, BB, IP);
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
+ Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
+ doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
+ TM.CalledFunctions.insert(fmodFn);
+ }
+ return;
+ case cLong: {
+ static Function* const Funcs[] =
+ { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ unsigned Op1Reg = getReg(Op1, BB, IP);
+ unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
+
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
+ Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
+ doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
+ TM.CalledFunctions.insert(Funcs[NameIdx]);
+ return;
+ }
+ case cByte: case cShort: case cInt:
+ break; // Small integrals, handled below...
+ default: assert(0 && "Unknown class!");
+ }
+
+ // Special case signed division by power of 2.
+ if (isDiv)
+ if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
+ assert(Class != cLong && "This doesn't handle 64-bit divides!");
+ int V = CI->getValue();
+
+ if (V == 1) { // X /s 1 => X
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
+ return;
+ }
+
+ if (V == -1) { // X /s -1 => -X
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
+ return;
+ }
+
+ unsigned log2V = ExactLog2(V);
+ if (log2V != 0 && Ty->isSigned()) {
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ unsigned TmpReg = makeAnotherReg(Op0->getType());
+
+ BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
+ BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
+ return;
+ }
+ }
+
+ unsigned Op0Reg = getReg(Op0, BB, IP);
+ unsigned Op1Reg = getReg(Op1, BB, IP);
+ unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
+
+ if (isDiv) {
+ BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
+ } else { // Remainder
+ unsigned TmpReg1 = makeAnotherReg(Op0->getType());
+ unsigned TmpReg2 = makeAnotherReg(Op0->getType());
+
+ BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
+ BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
+ BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
+ }
+ }
+
+
+ /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
+ /// for constant immediate shift values, and for constant immediate
+ /// shift values equal to 1. Even the general case is sort of special,
+ /// because the shift amount has to be in CL, not just any old register.
+ ///
+ void ISel::visitShiftInst(ShiftInst &I) {
+ MachineBasicBlock::iterator IP = BB->end();
+ emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
+ I.getOpcode() == Instruction::Shl, I.getType(),
+ getReg(I));
+ }
+
+ /// emitShiftOperation - Common code shared between visitShiftInst and
+ /// constant expression support.
+ ///
+ void ISel::emitShiftOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Op, Value *ShiftAmount, bool isLeftShift,
+ const Type *ResultTy, unsigned DestReg) {
+ unsigned SrcReg = getReg (Op, MBB, IP);
+ bool isSigned = ResultTy->isSigned ();
+ unsigned Class = getClass (ResultTy);
+
+ // Longs, as usual, are handled specially...
+ if (Class == cLong) {
+ // If we have a constant shift, we can generate much more efficient code
+ // than otherwise...
+ //
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+ unsigned Amount = CUI->getValue();
+ if (Amount < 32) {
+ if (isLeftShift) {
+ // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
+ // FIXME: long
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(Amount).addImm(0).addImm(31-Amount);
+ BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
+ .addImm(Amount).addImm(32-Amount).addImm(31);
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+ .addImm(Amount).addImm(0).addImm(31-Amount);
+ } else {
+ // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
+ // FIXME: long
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+ .addImm(32-Amount).addImm(Amount).addImm(31);
+ BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
+ .addImm(32-Amount).addImm(0).addImm(Amount-1);
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(32-Amount).addImm(Amount).addImm(31);
+ }
+ } else { // Shifting more than 32 bits
+ Amount -= 32;
+ if (isLeftShift) {
+ if (Amount != 0) {
+ // FIXME: long
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
+ .addImm(Amount).addImm(0).addImm(31-Amount);
+ } else {
+ // FIXME: long
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
+ .addReg(SrcReg+1);
+ }
+ BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
+ } else {
+ if (Amount != 0) {
+ if (isSigned)
+ BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
+ .addImm(Amount);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
+ .addImm(32-Amount).addImm(Amount).addImm(31);
+ } else {
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
+ }
+ BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
+ }
+ }
+ } else {
+ unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
+ unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
+ unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
+ unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
+ unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
+ unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
+ unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+
+ if (isLeftShift) {
+ BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
+ .addSImm(32);
+ BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
+ .addReg(ShiftAmountReg);
+ BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
+ .addReg(TmpReg1);
+ BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+ BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
+ .addSImm(-32);
+ BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
+ .addReg(TmpReg5);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
+ .addReg(TmpReg6);
+ BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
+ .addReg(ShiftAmountReg);
+ } else {
+ if (isSigned) {
+ // FIXME: Unimplemented
+ // Page C-3 of the PowerPC 32bit Programming Environments Manual
+ std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
+ abort();
+ } else {
+ BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
+ .addSImm(32);
+ BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
+ .addReg(ShiftAmountReg);
+ BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
+ .addReg(TmpReg1);
+ BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
+ .addReg(TmpReg3);
+ BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
+ .addSImm(-32);
+ BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
+ .addReg(TmpReg5);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
+ .addReg(TmpReg6);
+ BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
+ .addReg(ShiftAmountReg);
+ }
+ }
+ }
+ return;
+ }
+
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+ // The shift amount is constant, guaranteed to be a ubyte. Get its value.
+ assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
+ unsigned Amount = CUI->getValue();
+
+ if (isLeftShift) {
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(Amount).addImm(0).addImm(31-Amount);
+ } else {
+ if (isSigned) {
+ BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
+ } else {
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(32-Amount).addImm(Amount).addImm(31);
+ }
+ }
+ } else { // The shift amount is non-constant.
+ unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+
+ if (isLeftShift) {
+ BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
+ .addReg(ShiftAmountReg);
+ } else {
+ BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
+ .addReg(SrcReg).addReg(ShiftAmountReg);
+ }
+ }
+ }
+
+
+ /// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
+ /// mapping of LLVM classes to PPC load instructions, with the exception of
+ /// signed byte loads, which need a sign extension following them.
+ ///
+ void ISel::visitLoadInst(LoadInst &I) {
+ // Immediate opcodes, for reg+imm addressing
+ static const unsigned ImmOpcodes[] = {
+ PPC::LBZ, PPC::LHZ, PPC::LWZ,
+ PPC::LFS, PPC::LFD, PPC::LWZ
+ };
+ // Indexed opcodes, for reg+reg addressing
+ static const unsigned IdxOpcodes[] = {
+ PPC::LBZX, PPC::LHZX, PPC::LWZX,
+ PPC::LFSX, PPC::LFDX, PPC::LWZX
+ };
+
+ unsigned Class = getClassB(I.getType());
+ unsigned ImmOpcode = ImmOpcodes[Class];
+ unsigned IdxOpcode = IdxOpcodes[Class];
+ unsigned DestReg = getReg(I);
+ Value *SourceAddr = I.getOperand(0);
+
+ if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
+ if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
+
+ if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
+ unsigned FI = getFixedSizedAllocaFI(AI);
+ if (Class == cByte && I.getType()->isSigned()) {
+ unsigned TmpReg = makeAnotherReg(I.getType());
+ addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
+ BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+ } else {
+ addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
+ }
+ return;
+ }
+
+ // If this load is the only use of the GEP instruction that is its address,
+ // then we can fold the GEP directly into the load instruction.
+ // emitGEPOperation with a second to last arg of 'true' will place the
+ // base register for the GEP into baseReg, and the constant offset from that
+ // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
+ // otherwise, we copy the offset into another reg, and use reg+reg addressing.
+ if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
+ unsigned baseReg = getReg(GEPI);
+ unsigned pendingAdd;
+ ConstantSInt *offset;
+
+ emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
+ GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
+
+ if (pendingAdd == 0 && Class != cLong &&
+ canUseAsImmediateForOpcode(offset, 0)) {
+ if (Class == cByte && I.getType()->isSigned()) {
+ unsigned TmpReg = makeAnotherReg(I.getType());
+ BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
+ .addReg(baseReg);
+ BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+ } else {
+ BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
+ .addReg(baseReg);
+ }
+ return;
+ }
+
+ unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
+
+ if (Class == cByte && I.getType()->isSigned()) {
+ unsigned TmpReg = makeAnotherReg(I.getType());
+ BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
+ BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+ } else {
+ BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
+ }
+ return;
+ }
+
+ // The fallback case, where the load was from a source that could not be
+ // folded into the load instruction.
+ unsigned SrcAddrReg = getReg(SourceAddr);
+
+ if (Class == cByte && I.getType()->isSigned()) {
+ unsigned TmpReg = makeAnotherReg(I.getType());
+ BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
+ BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
+ } else {
+ BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
+ }
+ }
+
+ /// visitStoreInst - Implement LLVM store instructions
+ ///
+ void ISel::visitStoreInst(StoreInst &I) {
+ // Immediate opcodes, for reg+imm addressing
+ static const unsigned ImmOpcodes[] = {
+ PPC::STB, PPC::STH, PPC::STW,
+ PPC::STFS, PPC::STFD, PPC::STW
+ };
+ // Indexed opcodes, for reg+reg addressing
+ static const unsigned IdxOpcodes[] = {
+ PPC::STBX, PPC::STHX, PPC::STWX,
+ PPC::STFSX, PPC::STFDX, PPC::STWX
+ };
+
+ Value *SourceAddr = I.getOperand(1);
+ const Type *ValTy = I.getOperand(0)->getType();
+ unsigned Class = getClassB(ValTy);
+ unsigned ImmOpcode = ImmOpcodes[Class];
+ unsigned IdxOpcode = IdxOpcodes[Class];
+ unsigned ValReg = getReg(I.getOperand(0));
+
+ // If this store is the only use of the GEP instruction that is its address,
+ // then we can fold the GEP directly into the store instruction.
+ // emitGEPOperation with a second to last arg of 'true' will place the
+ // base register for the GEP into baseReg, and the constant offset from that
+ // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
+ // otherwise, we copy the offset into another reg, and use reg+reg addressing.
+ if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
+ unsigned baseReg = getReg(GEPI);
+ unsigned pendingAdd;
+ ConstantSInt *offset;
+
+ emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
+ GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
+
+ if (0 == pendingAdd && Class != cLong &&
+ canUseAsImmediateForOpcode(offset, 0)) {
+ BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
+ .addReg(baseReg);
+ return;
+ }
+
+ unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
+ BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
+ return;
+ }
+
+ // If the store address wasn't the only use of a GEP, we fall back to the
+ // standard path: store the ValReg at the value in AddressReg.
+ unsigned AddressReg = getReg(I.getOperand(1));
+ BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
+ }
+
+
+ /// visitCastInst - Here we have various kinds of copying with or without sign
+ /// extension going on.
+ ///
+ void ISel::visitCastInst(CastInst &CI) {
+ Value *Op = CI.getOperand(0);
+
+ unsigned SrcClass = getClassB(Op->getType());
+ unsigned DestClass = getClassB(CI.getType());
+
+ // If this is a cast from a 32-bit integer to a Long type, and the only uses
+ // of the case are GEP instructions, then the cast does not need to be
+ // generated explicitly, it will be folded into the GEP.
+ if (DestClass == cLong && SrcClass == cInt) {
+ bool AllUsesAreGEPs = true;
+ for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
+ if (!isa<GetElementPtrInst>(*I)) {
+ AllUsesAreGEPs = false;
+ break;
+ }
+
+ // No need to codegen this cast if all users are getelementptr instrs...
+ if (AllUsesAreGEPs) return;
+ }
+
+ unsigned DestReg = getReg(CI);
+ MachineBasicBlock::iterator MI = BB->end();
+ emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
+ }
+
+ /// emitCastOperation - Common code shared between visitCastInst and constant
+ /// expression cast support.
+ ///
+ void ISel::emitCastOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Src, const Type *DestTy,
+ unsigned DestReg) {
+ const Type *SrcTy = Src->getType();
+ unsigned SrcClass = getClassB(SrcTy);
+ unsigned DestClass = getClassB(DestTy);
+ unsigned SrcReg = getReg(Src, MBB, IP);
+
+ // Implement casts to bool by using compare on the operand followed by set if
+ // not zero on the result.
+ if (DestTy == Type::BoolTy) {
+ switch (SrcClass) {
+ case cByte:
+ case cShort:
+ case cInt:
+ case cLong: {
+ unsigned TmpReg = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
+ BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
+ break;
+ }
+ case cFP32:
+ case cFP64:
+ // FSEL perhaps?
+ std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
+ abort();
+ }
+ return;
+ }
+
+ // Handle cast of Float -> Double
+ if (SrcClass == cFP32 && DestClass == cFP64) {
+ BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
+ return;
+ }
+
+ // Handle cast of Double -> Float
+ if (SrcClass == cFP64 && DestClass == cFP32) {
+ BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
+ return;
+ }
+
+ // Handle casts from integer to floating point now...
+ if (DestClass == cFP32 || DestClass == cFP64) {
+
+ // Emit a library call for long to float conversion
+ if (SrcClass == cLong) {
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(SrcReg, SrcTy));
+ Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
+ doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
+ TM.CalledFunctions.insert(floatFn);
+ return;
+ }
+
+ // Make sure we're dealing with a full 32 bits
+ unsigned TmpReg = makeAnotherReg(Type::IntTy);
+ promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
+
+ SrcReg = TmpReg;
+
+ // Spill the integer to memory and reload it from there.
+ // Also spill room for a special conversion constant
+ int ConstantFrameIndex =
+ F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+ int ValueFrameIdx =
+ F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+
+ unsigned constantHi = makeAnotherReg(Type::IntTy);
+ unsigned constantLo = makeAnotherReg(Type::IntTy);
+ unsigned ConstF = makeAnotherReg(Type::DoubleTy);
+ unsigned TempF = makeAnotherReg(Type::DoubleTy);
+
+ if (!SrcTy->isSigned()) {
+ BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
+ BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
+ ConstantFrameIndex);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
+ ConstantFrameIndex, 4);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
+ ValueFrameIdx);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg),
+ ValueFrameIdx, 4);
+ addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
+ ConstantFrameIndex);
+ addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
+ BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+ } else {
+ unsigned TempLo = makeAnotherReg(Type::IntTy);
+ BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
+ BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
+ ConstantFrameIndex);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
+ ConstantFrameIndex, 4);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
+ ValueFrameIdx);
+ BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
+ addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo),
+ ValueFrameIdx, 4);
+ addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
+ ConstantFrameIndex);
+ addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
+ BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+ }
+ return;
+ }
+
+ // Handle casts from floating point to integer now...
+ if (SrcClass == cFP32 || SrcClass == cFP64) {
+ static Function* const Funcs[] =
+ { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
+ // emit library call
+ if (DestClass == cLong) {
+ bool isDouble = SrcClass == cFP64;
+ unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(SrcReg, SrcTy));
+ Function *floatFn = Funcs[nameIndex];
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
+ doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
+ TM.CalledFunctions.insert(floatFn);
+ return;
+ }
+
+ int ValueFrameIdx =
+ F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
+
+ if (DestTy->isSigned()) {
+ unsigned TempReg = makeAnotherReg(Type::DoubleTy);
+
+ // Convert to integer in the FP reg and store it to a stack slot
+ BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
+ addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
+ .addReg(TempReg), ValueFrameIdx);
+
+ // There is no load signed byte opcode, so we must emit a sign extend for
+ // that particular size. Make sure to source the new integer from the
+ // correct offset.
+ if (DestClass == cByte) {
+ unsigned TempReg2 = makeAnotherReg(DestTy);
+ addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2),
+ ValueFrameIdx, 7);
+ BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
+ } else {
+ int offset = (DestClass == cShort) ? 6 : 4;
+ unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
+ addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
+ ValueFrameIdx, offset);
+ }
+ } else {
+ unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
+ double maxInt = (1LL << 32) - 1;
+ unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
+ double border = 1LL << 31;
+ unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
+ unsigned UseZero = makeAnotherReg(Type::DoubleTy);
+ unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
+ unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
+ unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
+ unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
+ unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
+ unsigned IntTmp = makeAnotherReg(Type::IntTy);
+ unsigned XorReg = makeAnotherReg(Type::IntTy);
+ int FrameIdx =
+ F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
+ // Update machine-CFG edges
+ MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
+ MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
+ MachineBasicBlock *OldMBB = BB;
+ ilist<MachineBasicBlock>::iterator It = BB; ++It;
+ F->getBasicBlockList().insert(It, XorMBB);
+ F->getBasicBlockList().insert(It, PhiMBB);
+ BB->addSuccessor(XorMBB);
+ BB->addSuccessor(PhiMBB);
+
+ // Convert from floating point to unsigned 32-bit value
+ // Use 0 if incoming value is < 0.0
+ BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
+ .addReg(Zero);
+ // Use 2**32 - 1 if incoming value is >= 2**32
+ BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
+ BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
+ .addReg(UseZero).addReg(MaxInt);
+ // Subtract 2**31
+ BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
+ // Use difference if >= 2**31
+ BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
+ .addReg(Border);
+ BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
+ .addReg(UseChoice);
+ // Convert to integer
+ BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
+ addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
+ FrameIdx);
+ if (DestClass == cByte) {
+ addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
+ FrameIdx, 7);
+ } else if (DestClass == cShort) {
+ addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
+ FrameIdx, 6);
+ } if (DestClass == cInt) {
+ addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
+ FrameIdx, 4);
+ BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
+ BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
+
+ // XorMBB:
+ // add 2**31 if input was >= 2**31
+ BB = XorMBB;
+ BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
+ XorMBB->addSuccessor(PhiMBB);
+
+ // PhiMBB:
+ // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
+ BB = PhiMBB;
+ BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
+ .addReg(XorReg).addMBB(XorMBB);
+ }
+ }
+ return;
+ }
+
+ // Check our invariants
+ assert((SrcClass <= cInt || SrcClass == cLong) &&
+ "Unhandled source class for cast operation!");
+ assert((DestClass <= cInt || DestClass == cLong) &&
+ "Unhandled destination class for cast operation!");
+
+ bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+ bool destUnsigned = DestTy->isUnsigned();
+
+ // Unsigned -> Unsigned, clear if larger
+ if (sourceUnsigned && destUnsigned) {
+ // handle long dest class now to keep switch clean
+ if (DestClass == cLong) {
+ // FIXME: long
+ if (SrcClass == cLong) {
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
+ .addReg(SrcReg+1);
+ } else {
+ BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
+ }
+ return;
+ }
+
+ // handle u{ byte, short, int } x u{ byte, short, int }
+ unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
+ switch (SrcClass) {
+ case cByte:
+ case cShort:
+ if (SrcClass == DestClass)
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(0).addImm(clearBits).addImm(31);
+ break;
+ case cLong:
+ ++SrcReg;
+ // Fall through
+ case cInt:
+ if (DestClass == cInt)
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(0).addImm(clearBits).addImm(31);
+ break;
+ }
+ return;
+ }
+
+ // Signed -> Signed
+ if (!sourceUnsigned && !destUnsigned) {
+ // handle long dest class now to keep switch clean
+ if (DestClass == cLong) {
+ // FIXME: long
+ if (SrcClass == cLong) {
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
+ .addReg(SrcReg+1);
+ } else {
+ BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
+ }
+ return;
+ }
+
+ // handle { byte, short, int } x { byte, short, int }
+ switch (SrcClass) {
+ case cByte:
+ if (DestClass == cByte)
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+ break;
+ case cShort:
+ if (DestClass == cByte)
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+ else if (DestClass == cShort)
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+ break;
+ case cLong:
+ ++SrcReg;
+ // Fall through
+ case cInt:
+ if (DestClass == cByte)
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+ else if (DestClass == cShort)
+ BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ break;
+ }
+ return;
+ }
+
+ // Unsigned -> Signed
+ if (sourceUnsigned && !destUnsigned) {
+ // handle long dest class now to keep switch clean
+ if (DestClass == cLong) {
+ // FIXME: long
+ if (SrcClass == cLong) {
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1).
+ addReg(SrcReg+1);
+ } else {
+ BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
+ }
+ return;
+ }
+
+ // handle u{ byte, short, int } -> { byte, short, int }
+ switch (SrcClass) {
+ case cByte:
+ if (DestClass == cByte)
+ // uByte 255 -> signed byte == -1
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+ else
+ // uByte 255 -> signed short/int == 255
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
+ .addImm(24).addImm(31);
+ break;
+ case cShort:
+ if (DestClass == cByte)
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+ else if (DestClass == cShort)
+ BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
+ .addImm(16).addImm(31);
+ break;
+ case cLong:
+ ++SrcReg;
+ // Fall through
+ case cInt:
+ if (DestClass == cByte)
+ BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
+ else if (DestClass == cShort)
+ BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ break;
+ }
+ return;
+ }
+
+ // Signed -> Unsigned
+ if (!sourceUnsigned && destUnsigned) {
+ // handle long dest class now to keep switch clean
+ if (DestClass == cLong) {
+ // FIXME: long
+ if (SrcClass == cLong) {
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
+ .addReg(SrcReg+1);
+ } else {
+ BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
+ }
+ return;
+ }
+
+ // handle { byte, short, int } -> u{ byte, short, int }
+ unsigned clearBits = (DestClass == cByte) ? 24 : 16;
+ switch (SrcClass) {
+ case cByte:
+ case cShort:
+ if (DestClass == cByte || DestClass == cShort)
+ // sbyte -1 -> ubyte 0x000000FF
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(0).addImm(clearBits).addImm(31);
+ else
+ // sbyte -1 -> ubyte 0xFFFFFFFF
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ break;
+ case cLong:
+ ++SrcReg;
+ // Fall through
+ case cInt:
+ if (DestClass == cInt)
+ BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ else
+ BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
+ .addImm(0).addImm(clearBits).addImm(31);
+ break;
+ }
+ return;
+ }
+
+ // Anything we haven't handled already, we can't (yet) handle at all.
+ std::cerr << "Unhandled cast from " << SrcTy->getDescription()
+ << "to " << DestTy->getDescription() << '\n';
+ abort();
+ }
+
+ /// visitVANextInst - Implement the va_next instruction...
+ ///
+ void ISel::visitVANextInst(VANextInst &I) {
+ unsigned VAList = getReg(I.getOperand(0));
+ unsigned DestReg = getReg(I);
+
+ unsigned Size;
+ switch (I.getArgType()->getTypeID()) {
+ default:
+ std::cerr << I;
+ assert(0 && "Error: bad type for va_next instruction!");
+ return;
+ case Type::PointerTyID:
+ case Type::UIntTyID:
+ case Type::IntTyID:
+ Size = 4;
+ break;
+ case Type::ULongTyID:
+ case Type::LongTyID:
+ case Type::DoubleTyID:
+ Size = 8;
+ break;
+ }
+
+ // Increment the VAList pointer...
+ BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
+ }
+
+ void ISel::visitVAArgInst(VAArgInst &I) {
+ unsigned VAList = getReg(I.getOperand(0));
+ unsigned DestReg = getReg(I);
+
+ switch (I.getType()->getTypeID()) {
+ default:
+ std::cerr << I;
+ assert(0 && "Error: bad type for va_next instruction!");
+ return;
+ case Type::PointerTyID:
+ case Type::UIntTyID:
+ case Type::IntTyID:
+ BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
+ break;
+ case Type::ULongTyID:
+ case Type::LongTyID:
+ BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
+ break;
+ case Type::FloatTyID:
+ BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
+ break;
+ case Type::DoubleTyID:
+ BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
+ break;
+ }
+ }
+
+ /// visitGetElementPtrInst - instruction-select GEP instructions
+ ///
+ void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
+ if (canFoldGEPIntoLoadOrStore(&I))
+ return;
+
+ unsigned outputReg = getReg(I);
+ emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
+ outputReg, false, 0, 0);
+ }
+
+ /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+ /// constant expression GEP support.
+ ///
+ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Src, User::op_iterator IdxBegin,
+ User::op_iterator IdxEnd, unsigned TargetReg,
+ bool GEPIsFolded, ConstantSInt **RemainderPtr,
+ unsigned *PendingAddReg) {
+ const TargetData &TD = TM.getTargetData();
+ const Type *Ty = Src->getType();
+ unsigned basePtrReg = getReg(Src, MBB, IP);
+ int64_t constValue = 0;
+
+ // Record the operations to emit the GEP in a vector so that we can emit them
+ // after having analyzed the entire instruction.
+ std::vector<CollapsedGepOp> ops;
+
+ // GEPs have zero or more indices; we must perform a struct access
+ // or array access for each one.
+ for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
+ ++oi) {
+ Value *idx = *oi;
+ if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+ // It's a struct access. idx is the index into the structure,
+ // which names the field. Use the TargetData structure to
+ // pick out what the layout of the structure is in memory.
+ // Use the (constant) structure index's value to find the
+ // right byte offset from the StructLayout class's list of
+ // structure member offsets.
+ unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
+ unsigned memberOffset =
+ TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
+
+ // StructType member offsets are always constant values. Add it to the
+ // running total.
+ constValue += memberOffset;
+
+ // The next type is the member of the structure selected by the
+ // index.
+ Ty = StTy->getElementType (fieldIndex);
+ } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
+ // Many GEP instructions use a [cast (int/uint) to LongTy] as their
+ // operand. Handle this case directly now...
+ if (CastInst *CI = dyn_cast<CastInst>(idx))
+ if (CI->getOperand(0)->getType() == Type::IntTy ||
+ CI->getOperand(0)->getType() == Type::UIntTy)
+ idx = CI->getOperand(0);
+
+ // It's an array or pointer access: [ArraySize x ElementType].
+ // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
+ // must find the size of the pointed-to type (Not coincidentally, the next
+ // type is the type of the elements in the array).
+ Ty = SqTy->getElementType();
+ unsigned elementSize = TD.getTypeSize(Ty);
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
+ if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
+ constValue += CS->getValue() * elementSize;
+ else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
+ constValue += CU->getValue() * elementSize;
+ else
+ assert(0 && "Invalid ConstantInt GEP index type!");
+ } else {
+ // Push current gep state to this point as an add
+ ops.push_back(CollapsedGepOp(false, 0,
+ ConstantSInt::get(Type::IntTy,constValue)));
+
+ // Push multiply gep op and reset constant value
+ ops.push_back(CollapsedGepOp(true, idx,
+ ConstantSInt::get(Type::IntTy, elementSize)));
+
+ constValue = 0;
+ }
+ }
+ }
+ // Emit instructions for all the collapsed ops
+ bool pendingAdd = false;
+ unsigned pendingAddReg = 0;
+
+ for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
+ cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
+ CollapsedGepOp& cgo = *cgo_i;
+ unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
+
+ // If we didn't emit an add last time through the loop, we need to now so
+ // that the base reg is updated appropriately.
+ if (pendingAdd) {
+ assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
+ BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(pendingAddReg);
+ basePtrReg = nextBasePtrReg;
+ nextBasePtrReg = makeAnotherReg(Type::IntTy);
+ pendingAddReg = 0;
+ pendingAdd = false;
+ }
+
+ if (cgo.isMul) {
+ // We know the elementSize is a constant, so we can emit a constant mul
+ unsigned TmpReg = makeAnotherReg(Type::IntTy);
+ doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
+ pendingAddReg = basePtrReg;
+ pendingAdd = true;
+ } else {
+ // Try and generate an immediate addition if possible
+ if (cgo.size->isNullValue()) {
+ BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(basePtrReg);
+ } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
+ BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addSImm(cgo.size->getValue());
+ } else {
+ unsigned Op1r = getReg(cgo.size, MBB, IP);
+ BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(Op1r);
+ }
+ }
+
+ basePtrReg = nextBasePtrReg;
+ }
+ // Add the current base register plus any accumulated constant value
+ ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
+
+ // If we are emitting this during a fold, copy the current base register to
+ // the target, and save the current constant offset so the folding load or
+ // store can try and use it as an immediate.
+ if (GEPIsFolded) {
+ // If this is a folded GEP and the last element was an index, then we need
+ // to do some extra work to turn a shift/add/stw into a shift/stwx
+ if (pendingAdd && 0 == remainder->getValue()) {
+ assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
+ *PendingAddReg = pendingAddReg;
+ } else {
+ *PendingAddReg = 0;
+ if (pendingAdd) {
+ unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
+ assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
+ BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(pendingAddReg);
+ basePtrReg = nextBasePtrReg;
+ }
+ }
+ BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
+ .addReg(basePtrReg);
+ *RemainderPtr = remainder;
+ return;
+ }
+
+ // If we still have a pending add at this point, emit it now
+ if (pendingAdd) {
+ unsigned TmpReg = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
+ .addReg(basePtrReg);
+ basePtrReg = TmpReg;
+ }
+
+ // After we have processed all the indices, the result is left in
+ // basePtrReg. Move it to the register where we were expected to
+ // put the answer.
+ if (remainder->isNullValue()) {
+ BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
+ .addReg(basePtrReg);
+ } else if (canUseAsImmediateForOpcode(remainder, 0)) {
+ BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
+ .addSImm(remainder->getValue());
+ } else {
+ unsigned Op1r = getReg(remainder, MBB, IP);
+ BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
+ }
+ }
+
+ /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
+ /// frame manager, otherwise do it the hard way.
+ ///
+ void ISel::visitAllocaInst(AllocaInst &I) {
+ // If this is a fixed size alloca in the entry block for the function, we
+ // statically stack allocate the space, so we don't need to do anything here.
+ //
+ if (dyn_castFixedAlloca(&I)) return;
+
+ // Find the data size of the alloca inst's getAllocatedType.
+ const Type *Ty = I.getAllocatedType();
+ unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+
+ // Create a register to hold the temporary result of multiplying the type size
+ // constant by the variable amount.
+ unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
+
+ // TotalSizeReg = mul <numelements>, <TypeSize>
+ MachineBasicBlock::iterator MBBI = BB->end();
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
+ doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
+
+ // AddedSize = add <TotalSizeReg>, 15
+ unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
+ BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
+
+ // AlignedSize = and <AddedSize>, ~15
+ unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
+ BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
+ .addImm(0).addImm(27);
+
+ // Subtract size from stack pointer, thereby allocating some space.
+ BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
+
+ // Put a pointer to the space into the result register, by copying
+ // the stack pointer.
+ BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
+
+ // Inform the Frame Information that we have just allocated a variable-sized
+ // object.
+ F->getFrameInfo()->CreateVariableSizedObject();
+ }
+
+ /// visitMallocInst - Malloc instructions are code generated into direct calls
+ /// to the library malloc.
+ ///
+ void ISel::visitMallocInst(MallocInst &I) {
+ unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
+ unsigned Arg;
+
+ if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
+ Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
+ } else {
+ Arg = makeAnotherReg(Type::UIntTy);
+ MachineBasicBlock::iterator MBBI = BB->end();
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
+ doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
+ }
+
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(Arg, Type::UIntTy));
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
+ doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
+ TM.CalledFunctions.insert(mallocFn);
+ }
+
+
+ /// visitFreeInst - Free instructions are code gen'd to call the free libc
+ /// function.
+ ///
+ void ISel::visitFreeInst(FreeInst &I) {
+ std::vector<ValueRecord> Args;
+ Args.push_back(ValueRecord(I.getOperand(0)));
+ MachineInstr *TheCall =
+ BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
+ doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
+ TM.CalledFunctions.insert(freeFn);
+ }
+
+ /// createPPC64ISelSimple - This pass converts an LLVM function into a machine
+ /// code representation is a very simple peep-hole fashion.
+ ///
+ FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
+ return new ISel(TM);
+ }
Index: llvm/lib/Target/PowerPC/PPC64AsmPrinter.cpp
diff -c /dev/null llvm/lib/Target/PowerPC/PPC64AsmPrinter.cpp:1.1
*** /dev/null Wed Aug 11 18:42:26 2004
--- llvm/lib/Target/PowerPC/PPC64AsmPrinter.cpp Wed Aug 11 18:42:15 2004
***************
*** 0 ****
--- 1,686 ----
+ //===-- PPC64AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===//
+ //
+ // The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This file contains a printer that converts from our internal representation
+ // of machine-dependent LLVM code to PowerPC assembly language. This printer is
+ // the output mechanism used by `llc'.
+ //
+ //===----------------------------------------------------------------------===//
+
+ #define DEBUG_TYPE "asmprinter"
+ #include "PowerPC.h"
+ #include "PowerPCInstrInfo.h"
+ #include "PPC64TargetMachine.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Module.h"
+ #include "llvm/Assembly/Writer.h"
+ #include "llvm/CodeGen/MachineConstantPool.h"
+ #include "llvm/CodeGen/MachineFunctionPass.h"
+ #include "llvm/CodeGen/MachineInstr.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Support/Mangler.h"
+ #include "Support/CommandLine.h"
+ #include "Support/Debug.h"
+ #include "Support/MathExtras.h"
+ #include "Support/Statistic.h"
+ #include "Support/StringExtras.h"
+ #include <set>
+
+ namespace llvm {
+
+ namespace {
+ Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
+
+ struct Printer : public MachineFunctionPass {
+ /// Output stream on which we're printing assembly code.
+ ///
+ std::ostream &O;
+
+ /// Target machine description which we query for reg. names, data
+ /// layout, etc.
+ ///
+ PPC64TargetMachine &TM;
+
+ /// Name-mangler for global names.
+ ///
+ Mangler *Mang;
+
+ /// Map for labels corresponding to global variables
+ ///
+ std::map<const GlobalVariable*,std::string> GVToLabelMap;
+
+ Printer(std::ostream &o, TargetMachine &tm) : O(o),
+ TM(reinterpret_cast<PPC64TargetMachine&>(tm)), LabelNumber(0) {}
+
+ /// Cache of mangled name for current function. This is
+ /// recalculated at the beginning of each call to
+ /// runOnMachineFunction().
+ ///
+ std::string CurrentFnName;
+
+ /// Unique incrementer for label values for referencing Global values.
+ ///
+ unsigned LabelNumber;
+
+ virtual const char *getPassName() const {
+ return "PPC64 Assembly Printer";
+ }
+
+ void printMachineInstruction(const MachineInstr *MI);
+ void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
+ void printImmOp(const MachineOperand &MO, unsigned ArgType);
+ void printConstantPool(MachineConstantPool *MCP);
+ bool runOnMachineFunction(MachineFunction &F);
+ bool doInitialization(Module &M);
+ bool doFinalization(Module &M);
+ void emitGlobalConstant(const Constant* CV);
+ void emitConstantValueOnly(const Constant *CV);
+ };
+ } // end of anonymous namespace
+
+ /// createPPC64AsmPrinterPass - Returns a pass that prints the PPC
+ /// assembly code for a MachineFunction to the given output stream,
+ /// using the given target machine description. This should work
+ /// regardless of whether the function is in SSA form or not.
+ ///
+ FunctionPass *createPPC64AsmPrinter(std::ostream &o,TargetMachine &tm) {
+ return new Printer(o, tm);
+ }
+
+ /// isStringCompatible - Can we treat the specified array as a string?
+ /// Only if it is an array of ubytes or non-negative sbytes.
+ ///
+ static bool isStringCompatible(const ConstantArray *CVA) {
+ const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
+ if (ETy == Type::UByteTy) return true;
+ if (ETy != Type::SByteTy) return false;
+
+ for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
+ if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
+ return false;
+
+ return true;
+ }
+
+ /// toOctal - Convert the low order bits of X into an octal digit.
+ ///
+ static inline char toOctal(int X) {
+ return (X&7)+'0';
+ }
+
+ /// getAsCString - Return the specified array as a C compatible
+ /// string, only if the predicate isStringCompatible is true.
+ ///
+ static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
+ assert(isStringCompatible(CVA) && "Array is not string compatible!");
+
+ O << "\"";
+ for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
+ unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
+
+ if (C == '"') {
+ O << "\\\"";
+ } else if (C == '\\') {
+ O << "\\\\";
+ } else if (isprint(C)) {
+ O << C;
+ } else {
+ switch (C) {
+ case '\b': O << "\\b"; break;
+ case '\f': O << "\\f"; break;
+ case '\n': O << "\\n"; break;
+ case '\r': O << "\\r"; break;
+ case '\t': O << "\\t"; break;
+ default:
+ O << '\\';
+ O << toOctal(C >> 6);
+ O << toOctal(C >> 3);
+ O << toOctal(C >> 0);
+ break;
+ }
+ }
+ }
+ O << "\"";
+ }
+
+ // Print out the specified constant, without a storage class. Only the
+ // constants valid in constant expressions can occur here.
+ void Printer::emitConstantValueOnly(const Constant *CV) {
+ if (CV->isNullValue())
+ O << "0";
+ else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+ assert(CB == ConstantBool::True);
+ O << "1";
+ } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
+ O << CI->getValue();
+ else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
+ O << CI->getValue();
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
+ // This is a constant address for a global variable or function. Use the
+ // name of the variable or function as the address value.
+ O << Mang->getValueName(GV);
+ else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ const TargetData &TD = TM.getTargetData();
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // generate a symbolic expression for the byte address
+ const Constant *ptrVal = CE->getOperand(0);
+ std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
+ if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
+ O << "(";
+ emitConstantValueOnly(ptrVal);
+ O << ") + " << Offset;
+ } else {
+ emitConstantValueOnly(ptrVal);
+ }
+ break;
+ }
+ case Instruction::Cast: {
+ // Support only non-converting or widening casts for now, that is, ones
+ // that do not involve a change in value. This assertion is really gross,
+ // and may not even be a complete check.
+ Constant *Op = CE->getOperand(0);
+ const Type *OpTy = Op->getType(), *Ty = CE->getType();
+
+ // Remember, kids, pointers on x86 can be losslessly converted back and
+ // forth into 32-bit or wider integers, regardless of signedness. :-P
+ assert(((isa<PointerType>(OpTy)
+ && (Ty == Type::LongTy || Ty == Type::ULongTy
+ || Ty == Type::IntTy || Ty == Type::UIntTy))
+ || (isa<PointerType>(Ty)
+ && (OpTy == Type::LongTy || OpTy == Type::ULongTy
+ || OpTy == Type::IntTy || OpTy == Type::UIntTy))
+ || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
+ && OpTy->isLosslesslyConvertibleTo(Ty))))
+ && "FIXME: Don't yet support this kind of constant cast expr");
+ O << "(";
+ emitConstantValueOnly(Op);
+ O << ")";
+ break;
+ }
+ case Instruction::Add:
+ O << "(";
+ emitConstantValueOnly(CE->getOperand(0));
+ O << ") + (";
+ emitConstantValueOnly(CE->getOperand(1));
+ O << ")";
+ break;
+ default:
+ assert(0 && "Unsupported operator!");
+ }
+ } else {
+ assert(0 && "Unknown constant value!");
+ }
+ }
+
+ // Print a constant value or values, with the appropriate storage class as a
+ // prefix.
+ void Printer::emitGlobalConstant(const Constant *CV) {
+ const TargetData &TD = TM.getTargetData();
+
+ if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+ if (isStringCompatible(CVA)) {
+ O << "\t.byte ";
+ printAsCString(O, CVA);
+ O << "\n";
+ } else { // Not a string. Print the values in successive locations
+ for (unsigned i=0, e = CVA->getNumOperands(); i != e; i++)
+ emitGlobalConstant(CVA->getOperand(i));
+ }
+ return;
+ } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+ // Print the fields in successive locations. Pad to align if needed!
+ const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
+ unsigned sizeSoFar = 0;
+ for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
+ const Constant* field = CVS->getOperand(i);
+
+ // Check if padding is needed and insert one or more 0s.
+ unsigned fieldSize = TD.getTypeSize(field->getType());
+ unsigned padSize = ((i == e-1? cvsLayout->StructSize
+ : cvsLayout->MemberOffsets[i+1])
+ - cvsLayout->MemberOffsets[i]) - fieldSize;
+ sizeSoFar += fieldSize + padSize;
+
+ // Now print the actual field value
+ emitGlobalConstant(field);
+
+ // Insert the field padding unless it's zero bytes...
+ if (padSize)
+ O << "\t.space\t " << padSize << "\n";
+ }
+ assert(sizeSoFar == cvsLayout->StructSize &&
+ "Layout of constant struct may be incorrect!");
+ return;
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ // FP Constants are printed as integer constants to avoid losing
+ // precision...
+ double Val = CFP->getValue();
+ switch (CFP->getType()->getTypeID()) {
+ default: assert(0 && "Unknown floating point type!");
+ case Type::FloatTyID: {
+ union FU { // Abide by C TBAA rules
+ float FVal;
+ unsigned UVal;
+ } U;
+ U.FVal = Val;
+ O << "\t.long " << U.UVal << "\t# float " << Val << "\n";
+ return;
+ }
+ case Type::DoubleTyID: {
+ union DU { // Abide by C TBAA rules
+ double FVal;
+ uint64_t UVal;
+ struct {
+ uint32_t MSWord;
+ uint32_t LSWord;
+ } T;
+ } U;
+ U.FVal = Val;
+
+ O << ".long " << U.T.MSWord << "\t# double most significant word "
+ << Val << "\n";
+ O << ".long " << U.T.LSWord << "\t# double least significant word "
+ << Val << "\n";
+ return;
+ }
+ }
+ } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ union DU { // Abide by C TBAA rules
+ int64_t UVal;
+ struct {
+ uint32_t MSWord;
+ uint32_t LSWord;
+ } T;
+ } U;
+ U.UVal = CI->getRawValue();
+
+ O << ".long " << U.T.MSWord << "\t# Double-word most significant word "
+ << U.UVal << "\n";
+ O << ".long " << U.T.LSWord << "\t# Double-word least significant word "
+ << U.UVal << "\n";
+ return;
+ }
+ }
+
+ const Type *type = CV->getType();
+ O << "\t";
+ switch (type->getTypeID()) {
+ case Type::UByteTyID: case Type::SByteTyID:
+ O << "\t.byte";
+ break;
+ case Type::UShortTyID: case Type::ShortTyID:
+ O << "\t.short";
+ break;
+ case Type::BoolTyID:
+ case Type::PointerTyID:
+ case Type::UIntTyID: case Type::IntTyID:
+ O << "\t.long";
+ break;
+ case Type::ULongTyID: case Type::LongTyID:
+ assert (0 && "Should have already output double-word constant.");
+ case Type::FloatTyID: case Type::DoubleTyID:
+ assert (0 && "Should have already output floating point constant.");
+ default:
+ if (CV == Constant::getNullValue(type)) { // Zero initializer?
+ O << "\t.space " << TD.getTypeSize(type) << "\n";
+ return;
+ }
+ std::cerr << "Can't handle printing: " << *CV;
+ abort();
+ break;
+ }
+ O << ' ';
+ emitConstantValueOnly(CV);
+ O << '\n';
+ }
+
+ /// printConstantPool - Print to the current output stream assembly
+ /// representations of the constants in the constant pool MCP. This is
+ /// used to print out constants which have been "spilled to memory" by
+ /// the code generator.
+ ///
+ void Printer::printConstantPool(MachineConstantPool *MCP) {
+ const std::vector<Constant*> &CP = MCP->getConstants();
+ const TargetData &TD = TM.getTargetData();
+
+ if (CP.empty()) return;
+
+ for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+ O << "\t.const\n";
+ O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
+ << "\n";
+ O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
+ << *CP[i] << "\n";
+ emitGlobalConstant(CP[i]);
+ }
+ }
+
+ /// runOnMachineFunction - This uses the printMachineInstruction()
+ /// method to print assembly for each instruction.
+ ///
+ bool Printer::runOnMachineFunction(MachineFunction &MF) {
+ CurrentFnName = MF.getFunction()->getName();
+
+ // Print out constants referenced by the function
+ printConstantPool(MF.getConstantPool());
+
+ // Print out header for the function.
+ O << "\t.csect .text[PR]\n"
+ << "\t.align 2\n"
+ << "\t.globl " << CurrentFnName << '\n'
+ << "\t.globl ." << CurrentFnName << '\n'
+ << "\t.csect " << CurrentFnName << "[DS],3\n"
+ << CurrentFnName << ":\n"
+ << "\t.llong ." << CurrentFnName << ", TOC[tc0], 0\n"
+ << "\t.csect .text[PR]\n"
+ << '.' << CurrentFnName << ":\n";
+
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ // Print a label for the basic block.
+ O << "LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
+ << I->getBasicBlock()->getName() << "\n";
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II) {
+ // Print the assembly for the instruction.
+ O << "\t";
+ printMachineInstruction(II);
+ }
+ }
+ ++LabelNumber;
+
+ O << "LT.." << CurrentFnName << ":\n"
+ << "\t.long 0\n"
+ << "\t.byte 0,0,32,65,128,0,0,0\n"
+ << "\t.long LT.." << CurrentFnName << "-." << CurrentFnName << '\n'
+ << "\t.short 3\n"
+ << "\t.byte \"" << CurrentFnName << "\"\n"
+ << "\t.align 2\n";
+
+ // We didn't modify anything.
+ return false;
+ }
+
+ void Printer::printOp(const MachineOperand &MO,
+ bool elideOffsetKeyword /* = false */) {
+ const MRegisterInfo &RI = *TM.getRegisterInfo();
+ int new_symbol;
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_VirtualRegister:
+ if (Value *V = MO.getVRegValueOrNull()) {
+ O << "<" << V->getName() << ">";
+ return;
+ }
+ // FALLTHROUGH
+ case MachineOperand::MO_MachineRegister:
+ case MachineOperand::MO_CCRegister: {
+ // On AIX, do not print out the 'r' in register names
+ const char *regName = RI.get(MO.getReg()).Name;
+ O << ®Name[1];
+ return;
+ }
+
+ case MachineOperand::MO_SignExtendedImmed:
+ case MachineOperand::MO_UnextendedImmed:
+ std::cerr << "printOp() does not handle immediate values\n";
+ abort();
+ return;
+
+ case MachineOperand::MO_PCRelativeDisp:
+ std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
+ abort();
+ return;
+
+ case MachineOperand::MO_MachineBasicBlock: {
+ MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
+ O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
+ << "_" << MBBOp->getNumber() << "\t# "
+ << MBBOp->getBasicBlock()->getName();
+ return;
+ }
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
+ return;
+
+ case MachineOperand::MO_ExternalSymbol:
+ O << MO.getSymbolName();
+ return;
+
+ case MachineOperand::MO_GlobalAddress:
+ if (!elideOffsetKeyword) {
+ GlobalValue *GV = MO.getGlobal();
+
+ if (Function *F = dyn_cast<Function>(GV)) {
+ O << "." << F->getName();
+ } else if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+ // output the label name
+ O << GVToLabelMap[GVar];
+ }
+ }
+ return;
+
+ default:
+ O << "<unknown operand type: " << MO.getType() << ">";
+ return;
+ }
+ }
+
+ void Printer::printImmOp(const MachineOperand &MO, unsigned ArgType) {
+ int Imm = MO.getImmedValue();
+ if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
+ O << (short)Imm;
+ } else if (ArgType == PPCII::Zimm16) {
+ O << (unsigned short)Imm;
+ } else {
+ O << Imm;
+ }
+ }
+
+ /// printMachineInstruction -- Print out a single PPC LLVM instruction
+ /// MI in Darwin syntax to the current output stream.
+ ///
+ void Printer::printMachineInstruction(const MachineInstr *MI) {
+ unsigned Opcode = MI->getOpcode();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetInstrDescriptor &Desc = TII.get(Opcode);
+ unsigned i;
+
+ unsigned ArgCount = MI->getNumOperands();
+ unsigned ArgType[] = {
+ (Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
+ };
+ assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
+ "Instruction requires VMX support");
+ ++EmittedInsts;
+
+ // CALLpcrel and CALLindirect are handled specially here to print only the
+ // appropriate number of args that the assembler expects. This is because
+ // may have many arguments appended to record the uses of registers that are
+ // holding arguments to the called function.
+ if (Opcode == PPC::COND_BRANCH) {
+ std::cerr << "Error: untranslated conditional branch psuedo instruction!\n";
+ abort();
+ } else if (Opcode == PPC::IMPLICIT_DEF) {
+ O << "# IMPLICIT DEF ";
+ printOp(MI->getOperand(0));
+ O << "\n";
+ return;
+ } else if (Opcode == PPC::CALLpcrel) {
+ O << TII.getName(Opcode) << " ";
+ printOp(MI->getOperand(0));
+ O << "\n";
+ return;
+ } else if (Opcode == PPC::CALLindirect) {
+ O << TII.getName(Opcode) << " ";
+ printImmOp(MI->getOperand(0), ArgType[0]);
+ O << ", ";
+ printImmOp(MI->getOperand(1), ArgType[0]);
+ O << "\n";
+ return;
+ } else if (Opcode == PPC::MovePCtoLR) {
+ // FIXME: should probably be converted to cout.width and cout.fill
+ O << "bl \"L0000" << LabelNumber << "$pb\"\n";
+ O << "\"L0000" << LabelNumber << "$pb\":\n";
+ O << "\tmflr ";
+ printOp(MI->getOperand(0));
+ O << "\n";
+ return;
+ }
+
+ O << TII.getName(Opcode) << " ";
+ if (Opcode == PPC::LD || Opcode == PPC::LWA ||
+ Opcode == PPC::STDU || Opcode == PPC::STDUX) {
+ printOp(MI->getOperand(0));
+ O << ", ";
+ MachineOperand MO = MI->getOperand(1);
+ if (MO.isImmediate())
+ printImmOp(MO, ArgType[1]);
+ else
+ printOp(MO);
+ O << "(";
+ printOp(MI->getOperand(2));
+ O << ")\n";
+ } else if (Opcode == PPC::BLR || Opcode == PPC::NOP) {
+ // FIXME: BuildMI() should handle 0 params
+ O << "\n";
+ } else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
+ printOp(MI->getOperand(0));
+ O << ", ";
+ printImmOp(MI->getOperand(1), ArgType[1]);
+ O << "(";
+ if (MI->getOperand(2).hasAllocatedReg() &&
+ MI->getOperand(2).getReg() == PPC::R0)
+ O << "0";
+ else
+ printOp(MI->getOperand(2));
+ O << ")\n";
+ } else {
+ for (i = 0; i < ArgCount; ++i) {
+ // addi and friends
+ if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
+ MI->getOperand(1).hasAllocatedReg() &&
+ MI->getOperand(1).getReg() == PPC::R0) {
+ O << "0";
+ // for long branch support, bc $+8
+ } else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
+ TII.isBranch(MI->getOpcode())) {
+ O << "$+8";
+ assert(8 == MI->getOperand(i).getImmedValue()
+ && "branch off PC not to pc+8?");
+ //printOp(MI->getOperand(i));
+ } else if (MI->getOperand(i).isImmediate()) {
+ printImmOp(MI->getOperand(i), ArgType[i]);
+ } else {
+ printOp(MI->getOperand(i));
+ }
+ if (ArgCount - 1 == i)
+ O << "\n";
+ else
+ O << ", ";
+ }
+ }
+ }
+
+ // SwitchSection - Switch to the specified section of the executable if we are
+ // not already in it!
+ //
+ static void SwitchSection(std::ostream &OS, std::string &CurSection,
+ const char *NewSection) {
+ if (CurSection != NewSection) {
+ CurSection = NewSection;
+ if (!CurSection.empty())
+ OS << "\t" << NewSection << "\n";
+ }
+ }
+
+ bool Printer::doInitialization(Module &M) {
+ const TargetData &TD = TM.getTargetData();
+ std::string CurSection;
+
+ O << "\t.machine \"ppc64\"\n"
+ << "\t.toc\n"
+ << "\t.csect .text[PR]\n";
+
+ // Print out module-level global variables
+ for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+ if (!I->hasInitializer())
+ continue;
+
+ std::string Name = I->getName();
+ Constant *C = I->getInitializer();
+ // N.B.: We are defaulting to writable strings
+ if (I->hasExternalLinkage()) {
+ O << "\t.globl " << Name << '\n'
+ << "\t.csect .data[RW],3\n";
+ } else {
+ O << "\t.csect _global.rw_c[RW],3\n";
+ }
+ O << Name << ":\n";
+ emitGlobalConstant(C);
+ }
+
+ // Output labels for globals
+ if (M.gbegin() != M.gend()) O << "\t.toc\n";
+ for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+ const GlobalVariable *GV = I;
+ // Do not output labels for unused variables
+ if (GV->isExternal() && GV->use_begin() == GV->use_end())
+ continue;
+
+ std::string Name = GV->getName();
+ std::string Label = "LC.." + utostr(LabelNumber++);
+ GVToLabelMap[GV] = Label;
+ O << Label << ":\n"
+ << "\t.tc " << Name << "[TC]," << Name;
+ if (GV->isExternal()) O << "[RW]";
+ O << '\n';
+ }
+
+ Mang = new Mangler(M, true);
+ return false; // success
+ }
+
+ bool Printer::doFinalization(Module &M) {
+ const TargetData &TD = TM.getTargetData();
+ // Print out module-level global variables
+ for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+ if (I->hasInitializer() || I->hasExternalLinkage())
+ continue;
+
+ std::string Name = I->getName();
+ if (I->hasInternalLinkage()) {
+ O << "\t.lcomm " << Name << ",16,_global.bss_c";
+ } else {
+ O << "\t.comm " << Name << "," << TD.getTypeSize(I->getType())
+ << "," << log2((unsigned)TD.getTypeAlignment(I->getType()));
+ }
+ O << "\t\t# ";
+ WriteAsOperand(O, I, true, true, &M);
+ O << "\n";
+ }
+
+ O << "_section_.text:\n"
+ << "\t.csect .data[RW],3\n"
+ << "\t.llong _section_.text\n";
+
+ delete Mang;
+ return false; // success
+ }
+
+ } // End llvm namespace
Index: llvm/lib/Target/PowerPC/PowerPC.h
diff -u llvm/lib/Target/PowerPC/PowerPC.h:1.6 llvm/lib/Target/PowerPC/PowerPC.h:1.7
--- llvm/lib/Target/PowerPC/PowerPC.h:1.6 Wed Aug 11 02:40:04 2004
+++ llvm/lib/Target/PowerPC/PowerPC.h Wed Aug 11 18:42:15 2004
@@ -25,8 +25,9 @@
FunctionPass *createPowerPCPEI();
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
-FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
FunctionPass *createPPC32AsmPrinter(std::ostream &OS,TargetMachine &TM);
+FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
+FunctionPass *createPPC64AsmPrinter(std::ostream &OS,TargetMachine &TM);
} // end namespace llvm;
More information about the llvm-commits
mailing list