[llvm-bugs] [Bug 47674] New: Clang discards attributes aligned and may_alias for typedefs passed as template arguments

via llvm-bugs llvm-bugs at lists.llvm.org
Mon Sep 28 17:37:06 PDT 2020


https://bugs.llvm.org/show_bug.cgi?id=47674

            Bug ID: 47674
           Summary: Clang discards attributes aligned and may_alias for
                    typedefs passed as template arguments
           Product: clang
           Version: 10.0
          Hardware: All
                OS: Linux
            Status: NEW
          Severity: normal
          Priority: P
         Component: C++
          Assignee: unassignedclangbugs at nondot.org
          Reporter: mte.zych at gmail.com
                CC: blitzrakete at gmail.com, dgregor at apple.com,
                    erik.pilkington at gmail.com, llvm-bugs at lists.llvm.org,
                    richard-llvm at metafoo.co.uk

Hello!

Clang discards aligned attribute, applied on a typdef,
when it's passed as a template argument.

Compiler Expolorer:
 Clang -> https://godbolt.org/z/x375GT

C++ Source Code:
 #include <iostream>

 typedef float vec __attribute__((vector_size(8)));
 typedef float fp  __attribute__((aligned(16)));

 template <typename t> struct identity { typedef t type; };

 int main ()
 {
     std::cout << sizeof(typename identity<vec>::type) << std::endl;
     std::cout << sizeof(vec                         ) << std::endl;

     std::cout << alignof(typename identity<fp>::type) << std::endl;
     std::cout << alignof(fp                         ) << std::endl;
 }

Program Output:
 8
 8
 4
 16

The above program shows that alignment of the fp typedef changes,
after it's been passed through the identity meta-function - it's 4-bytes
instead of expected 16-bytes.


What's interesting is not all type attributes are discarded - the vector_size
attribute is preserved after being passed through the identity meta-function.

This behavior is required, since removal of the vector_size attribute
would be a semantic change of the vec type, affecting even its size,
because the vec type would represent a single float,
instead of a vector of 2 floats.

The same could be said about the aligned attribute - discarding it
is also a semantic change, since alignment is a fundamental property of a type,
affecting among others code generation,
that is, two types are not equivalent if they have different alignment.

This is the reason why I argue that, passing a typedef as a template argument
should preserve its aligned attribute, instead of discarding it.


Moreover, the Intel C++ compiler implements this behavior correctly.

Compiler Expolorer:
 ICC -> https://godbolt.org/z/9vr9se

Program Output:
 8
 8
 16
 16


The issue described above doesn't apply only to the aligned type attribute,
but also to the may_alias type attribute.

Compiler Expolorer:
 Clang -> https://godbolt.org/z/zYEz78

C++ Source Code:
 #include <iostream>
 #include <limits>

 typedef float fp __attribute__((may_alias));

 template <typename T> struct identity { typedef T type; };

 static_assert( sizeof(float) ==  sizeof(int)       , "");
 static_assert(alignof(float) == alignof(int)       , "");
 static_assert(std::numeric_limits<float>::is_iec559, "");

 bool can_alias_float ()
 {
     const auto fn = [] (float *f, int *i) -> int
     {
         *i = 0x1;
         *f = 2.0f; // In ieee754 bin repr of 2.0f is 0x40000000.
         return *i;
     };
     int val; // Casting int* to float* is UB!
     val = fn(reinterpret_cast<float*>(&val), &val);
     return val == 0x40000000;
 }

 bool can_alias_fp ()
 {
     const auto fn = [] (fp *f, int *i) -> int
     {
         *i = 0x1;
         *f = 2.0f; // In ieee754 bin repr of 2.0f is 0x40000000.
         return *i;
     };
     int val; // Casting int* to fp* is OK, due to attribute may_alias.
     val = fn(reinterpret_cast<fp*>(&val), &val);
     return val == 0x40000000;
 }

 bool can_alias_identity_type_fp ()
 {
     const auto fn = [] (typename identity<fp>::type *f, int *i) -> int
     {
         *i = 0x1;
         *f = 2.0f; // In ieee754 bin repr of 2.0f is 0x40000000.
         return *i;
     };       // Casting int* to fp* should be OK, 
     int val; // but the attribute may_alias is discarded, causing UB!
     val = fn(reinterpret_cast<typename identity<fp>::type*>(&val), &val);
     return val == 0x40000000;
 }

 int main ()
 {
     std::cout << "fp                 " << can_alias_fp              () <<
'\n';
     std::cout << "identity<fp>::type " << can_alias_identity_type_fp() <<
'\n';
     std::cout << "float              " << can_alias_float           () <<
'\n';
 }

Again, discarding attribute may_alias is a semantic change,
because aliasing rules can affect code generation.


Why this issue is important?
Well, because it prevents generic programming, via C++ templates,
using x86 SIMD types.

If we would look at definitions of x86 SIMD types, we will notice that they are
essentially typedefs with attributes vector_size and may_alias applied on them:

- immintrin.h
   typedef float     __m256  __attribute__((__vector_size__(32),
__may_alias__));

- emmintrin.h
   typedef long long __m128i __attribute__((__vector_size__(16),
__may_alias__));
   typedef double    __m128d __attribute__((__vector_size__(16),
__may_alias__));

- xmmintrin.h
   typedef float     __m128  __attribute__((__vector_size__(16),
__may_alias__));

Note that, the may_alias attributes is required and cannot be removed:

- /usr/lib/gcc/x86_64-linux-gnu/10/include/immintrin.h
    /* The Intel API is flexible enough that we must allow aliasing with other
       vector types, and their scalar components.  */


What's the root cause of this problem?

Well, the problem is a C++ typedef is just an alias (a new name) for the old
type,
that is, it does *not* introduce a new type.

Implementing support for attributes vector_size, aligned and may_alias
in C++ typedefs requires an opaque/strong typedef,
introducing a brand new type and storing information about applied attributes.

 typedef float fp __attribute__((aligned(16)));

Think about it - a typedef introducing the fp type has to create a new type,
because even though both fp and float types represent
floating point numbers identically, the fp type is *not* the float type,
because these types have different alignment requirements.


Note that, the Intel C++ Compiler does not introduce new types for typedefs,
which have attributes aligned or may_alias applied on them.

Compiler Explorer:
 ICC -> https://godbolt.org/z/MjdMqx

C++ Source Code:
 #include <iostream>

 typedef int vectorized_int __attribute__((vector_size(8)));
 typedef int    aligned_int __attribute__((aligned(16)));
 typedef int   aliasing_int __attribute__((may_alias));

 int main ()
 {
     std::cout << typeid(           int).name() << std::endl;
     std::cout << typeid(vectorized_int).name() << std::endl;
     std::cout << typeid(   aligned_int).name() << std::endl;
     std::cout << typeid(  aliasing_int).name() << std::endl;
 }

Program Output:
 i
 Dv2_i
 i
 i


However, this behavior leads to a contradiction, in which
there can exists a single type, which has 2 different alignment requirements.

Compiler Explorer:
 ICC -> https://godbolt.org/z/4o9o3M

C++ Source Code:
 template <class, class> struct is_same       { static const auto value =
false; };
 template <class T>      struct is_same<T, T> { static const auto value = 
true; };

 typedef float fp __attribute__((aligned(16)));

 template <typename first_type, typename second_type>
 struct check_same
 {
     static_assert(is_same<first_type, second_type>::value    , "");
     static_assert( sizeof(first_type) ==  sizeof(second_type), "");
     static_assert(alignof(first_type) == alignof(second_type), "");
 };

 int main ()
 {
     check_same<int, signed int> { };
     check_same< fp,      float> { };
 }

Compilation Log:
 error: static assertion failed
     static_assert(alignof(first_type) == alignof(second_type), "");
     ^
 detected during instantiation of class
 "check_same<first_type, second_type> [with first_type=fp={float},
second_type=float]"

To avoid these kind of issues,
Clang could replicate the behavior of the vector_size attribute, that is,
introduce a brand new type and store information about applied attributes.


Thank you, Mateusz Zych

PS. I want to thank Ivo Kabadshow from JSC for helping me with
    preparing these code samples!

-- 
You are receiving this mail because:
You are on the CC list for the bug.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-bugs/attachments/20200929/708aeec0/attachment.html>


More information about the llvm-bugs mailing list