[llvm-branch-commits] [mlir] fbd2926 - Revert "Revert "[mlir][tensor] Loosen restrictions on folding dynamic reshape…"

via llvm-branch-commits llvm-branch-commits at lists.llvm.org
Wed Jun 4 11:06:49 PDT 2025


Author: Ian Wood
Date: 2025-06-04T11:06:46-07:00
New Revision: fbd2926fb3c197c6d5dfd9502bff0d2a5e77749a

URL: https://github.com/llvm/llvm-project/commit/fbd2926fb3c197c6d5dfd9502bff0d2a5e77749a
DIFF: https://github.com/llvm/llvm-project/commit/fbd2926fb3c197c6d5dfd9502bff0d2a5e77749a.diff

LOG: Revert "Revert "[mlir][tensor] Loosen restrictions on folding dynamic reshape…"

This reverts commit f5a2f00da9b741f4f2fe925a434f608aa217cee2.

Added: 
    mlir/unittests/Dialect/Utils/ReshapeOpsUtilsTest.cpp

Modified: 
    mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
    mlir/test/Dialect/Linalg/simplify-pack-unpack.mlir
    mlir/test/Dialect/Tensor/canonicalize.mlir
    mlir/unittests/Dialect/Utils/CMakeLists.txt

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp b/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
index 1a04d702e0559..3b1fdb69e8ef1 100644
--- a/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
+++ b/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
@@ -10,6 +10,10 @@
 
 #include "mlir/IR/AffineMap.h"
 #include "mlir/IR/Builders.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/LogicalResult.h"
 
 #include <numeric>
 #include <optional>
@@ -28,67 +32,329 @@ mlir::getReassociationIndicesForReshape(ShapedType sourceType,
   return std::nullopt;
 }
 
-std::optional<SmallVector<ReassociationIndices>>
-mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
-                                         ArrayRef<int64_t> targetShape) {
-  if (sourceShape.size() <= targetShape.size())
-    return std::nullopt;
-  unsigned sourceDim = 0;
-  SmallVector<ReassociationIndices> reassociationMap;
-  reassociationMap.reserve(targetShape.size());
+namespace {
+/// A simple struct to represent ReassociationIndices as an inclusive interval.
+/// It's designed to be feasibly minimal, so the call sites should manage the
+/// validity of the range manually.
+struct ReassociationIndexRange {
+  /// FIXME: Signed type is used for consistency with ReassociationIndices.
+  /// We should consider refactoring all reassociation utilities to use unsigned
+  /// types.
+  int64_t leftIdx = 0, rightIdx = 0;
+
+  /// Util for manual checks of the range's validity
+  LogicalResult verify() const {
+    return leftIdx >= 0 && (leftIdx <= rightIdx) ? success() : failure();
+  }
+
+  /// Checks range's containment within another range. Treats the edges
+  /// non-exclusively.
+  bool isInRange(const ReassociationIndexRange &outerRange) const {
+    return leftIdx >= outerRange.leftIdx && rightIdx <= outerRange.rightIdx;
+  }
+
+  unsigned size() const {
+    assert(succeeded(verify()));
+    return rightIdx - leftIdx + 1;
+  }
+  bool containsSingleIndex() const { return size() == 1; }
+
+  /// Collects indices that do not overlap between this and another range.
+  ReassociationIndices
+  getNonOverlappingIndicesWith(ReassociationIndexRange &rhs) const {
+    if (rightIdx < rhs.leftIdx) {
+      // The intervals do not overlap - concatenate the indices from both.
+      auto jointFullIndices = getFullIndices();
+      jointFullIndices.append(rhs.getFullIndices());
+      return jointFullIndices;
+    }
+    ReassociationIndices result;
+    // Handle the chunk left of the overlapping range.
+    int64_t leftStart = std::min(leftIdx, rhs.leftIdx);
+    int64_t leftEnd = std::max(leftIdx, rhs.leftIdx);
+    llvm::append_range(result, llvm::seq(leftStart, leftEnd));
+    // Handle the chunk right of the overlapping range. Symmetrically, we should
+    // skip the edge of the overlap AND include the rightmost index.
+    int64_t rightStart = std::min(rightIdx, rhs.rightIdx) + 1;
+    int64_t rightEnd = std::max(rightIdx, rhs.rightIdx);
+    if (rightStart < rightEnd)
+      llvm::append_range(result, llvm::seq_inclusive(rightStart, rightEnd));
+    return result;
+  }
+
+  /// Converts the range into ReassociationIndices.
+  ReassociationIndices getFullIndices() const {
+    ReassociationIndices result;
+    for (int64_t idx = leftIdx; idx <= rightIdx; ++idx) {
+      result.push_back(idx);
+    }
+    return result;
+  }
+};
+} // namespace
+
+/// Starting from `sourceStartIdx`, searches `sourceShape` for the first
+/// sequence that can be collapsed into a dynamic dimension (at least one must
+/// be present in the source).
+/// By default, lazily returns once the first dynamic dimension has been found.
+/// Setting `matchGreedily` as `true` will also mark all subsequent
+/// source dimensions for collapsing into the target.
+static FailureOr<ReassociationIndexRange>
+findReassociationRangeForDynamicDim(ArrayRef<int64_t> sourceShape,
+                                    int64_t sourceStartIdx,
+                                    bool matchGreedily = false) {
+  const unsigned numSourceDims = sourceShape.size();
+  ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
+  std::optional<ReassociationIndexRange> resultRange = std::nullopt;
+
+  ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
+  for (; iterationRange.isInRange(sourceShapeAsRange);
+       iterationRange.rightIdx++) {
+    int64_t sourceSize = sourceShape[iterationRange.rightIdx];
+    if (sourceSize == ShapedType::kDynamic) {
+      resultRange = iterationRange;
+      break;
+    }
+  }
+  if (!resultRange)
+    return failure();
+  if (matchGreedily)
+    resultRange->rightIdx = sourceShapeAsRange.rightIdx;
+  return *resultRange;
+}
 
-  ReassociationIndices currIndices;
+/// Starting from `sourceStartIdx`, searches `sourceShape` for the first
+/// sequence of static dimensions such that their product matches `targetSize`.
+/// By default, lazily returns once the product matches the target size. Setting
+/// `matchGreedily` as `true` will append all neighboring unit dimensions
+/// (dimensions of 1) to the match.
+static FailureOr<ReassociationIndexRange>
+findReassociationRangeForSize(ArrayRef<int64_t> sourceShape,
+                              int64_t sourceStartIdx, int64_t targetSize,
+                              bool matchGreedily = false) {
+  const unsigned numSourceDims = sourceShape.size();
+  ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
+  std::optional<ReassociationIndexRange> resultRange = std::nullopt;
+
+  ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
   int64_t prodOfCollapsedDims = 1;
-  while (sourceDim < sourceShape.size()) {
-    unsigned targetDim = reassociationMap.size();
-    // If we have mapped all the target dimensions stop and handle the remaining
-    // tail of size-1 dimensions explicitly.
-    if (targetDim == targetShape.size())
+  while (iterationRange.isInRange(sourceShapeAsRange)) {
+    int64_t sourceSize = sourceShape[iterationRange.rightIdx];
+    if (sourceSize == ShapedType::kDynamic) {
+      // Reassociation for a static dim cannot include a dynamic dim. Reset
+      // induction variables to essentially restart the loop from the next
+      // source dimension.
+      prodOfCollapsedDims = 1;
+      iterationRange = {iterationRange.rightIdx + 1,
+                        iterationRange.rightIdx + 1};
+      continue;
+    }
+    prodOfCollapsedDims *= sourceSize;
+    // If the target size has been exceeded without matching, we need to shift
+    // the range start right. From the start of the range, roll back the
+    // multiplication until the target size exceeds the product again.
+    while (prodOfCollapsedDims > targetSize &&
+           !iterationRange.containsSingleIndex()) {
+      int64_t frontSourceSize = sourceShape[iterationRange.leftIdx];
+      prodOfCollapsedDims /= frontSourceSize;
+      // Shrink the range rightwards
+      iterationRange.leftIdx++;
+    }
+    // We could've reached the target size with the current dimension,
+    // also as a result of the above shift to right.
+    if (prodOfCollapsedDims == targetSize) {
+      resultRange = iterationRange;
       break;
+    }
+    // Increment the iteration range
+    iterationRange.rightIdx++;
+  }
+  if (!resultRange)
+    return failure();
+  if (matchGreedily) {
+    // We now want to collect all unit dimensions directly after the target
+    // product match. Advance the iterator to avoid OOB when the product match
+    // happens at the last element.
+    iterationRange.rightIdx++;
+    while (iterationRange.isInRange(sourceShapeAsRange) &&
+           sourceShape[iterationRange.rightIdx] == 1) {
+      resultRange = iterationRange;
+      iterationRange.rightIdx++;
+    }
+  }
+  return *resultRange;
+}
 
-    int64_t currTargetShape = targetShape[targetDim];
-    while (sourceDim < (sourceShape.size() - 1) &&
-           sourceShape[sourceDim] != ShapedType::kDynamic &&
-           prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) {
-      prodOfCollapsedDims *= sourceShape[sourceDim];
-      currIndices.push_back(sourceDim++);
+/// Attempts to find a valid collapsing reassociation of `sourceShape` into
+/// `targetShape` through a simple traversal. If successful, an array of source
+/// index ranges is returned, correspondingly to each dimension in the target
+/// shape. The resulting indices shall fully cover the `sourceShape` without
+/// overlaps.
+///
+/// The algorithm is essentially a lazy one, searching for non-greedy matches -
+/// it will only yield a greedy match for the last target dimension.
+/// FIXME: The algorithm can only backtrack when it needs to append an offset
+/// for a static target dimension to the preceding dynamic one (this retains the
+/// linear complexity). As feasible, consider adding further backtracking
+/// routines to enable more reassociations, e.g.:
+/// - ?x2x?x2 into ?x2
+static FailureOr<SmallVector<ReassociationIndexRange>>
+findReassociationRangesForCollapse(ArrayRef<int64_t> sourceShape,
+                                   ArrayRef<int64_t> targetShape) {
+  unsigned numSourceDims = sourceShape.size(),
+           numTargetDims = targetShape.size();
+  assert(numSourceDims > numTargetDims);
+  ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
+
+  SmallVector<ReassociationIndexRange> reassocRanges;
+  reassocRanges.reserve(numTargetDims);
+  // We'll iterate in strides of 2 to enable pseudo-backtracking for simple
+  // cases, e.g.:
+  // - ?x2x3x5 into ?x15
+  std::optional<int64_t> prevTargetSize = std::nullopt;
+  for (unsigned targetDimIdx = 0, sourceDimIdx = 0;
+       targetDimIdx < numTargetDims; ++targetDimIdx) {
+    int64_t targetSize = targetShape[targetDimIdx];
+    // Simply check if there are any subsequent target dimensions left - if not,
+    // the match must be made greedily.
+    bool shouldMatchGreedily = targetDimIdx == numTargetDims - 1;
+    FailureOr<ReassociationIndexRange> sourceRange;
+    if (targetSize == ShapedType::kDynamic) {
+      sourceRange = findReassociationRangeForDynamicDim(
+          sourceShape, sourceDimIdx, shouldMatchGreedily);
+    } else {
+      sourceRange = findReassociationRangeForSize(
+          sourceShape, sourceDimIdx, targetSize, shouldMatchGreedily);
     }
 
-    // If the current expanded dimension is dynamic, then the collapsed
-    // dimensions should also be dynamic and product of all previous unprocessed
-    // dimensions of the expanded shape should be 1.
-    if (sourceShape[sourceDim] == ShapedType::kDynamic &&
-        (currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1))
-      return std::nullopt;
-
-    // If the collapsed dim is dynamic, the current expanded dim should also
-    // be dynamic.
-    if (currTargetShape == ShapedType::kDynamic &&
-        sourceShape[sourceDim] != ShapedType::kDynamic)
-      return std::nullopt;
-
-    // For static shapes, if the product of dimensions of the expanded shape
-    // should match the collapsed dimension shape.
-    if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
-      return std::nullopt;
-
-    currIndices.push_back(sourceDim++);
-    reassociationMap.emplace_back(ReassociationIndices{});
-    std::swap(reassociationMap.back(), currIndices);
-    prodOfCollapsedDims = 1;
+    // Run sanity checks on the returned index range.
+    if (failed(sourceRange) || failed(sourceRange->verify()) ||
+        !sourceRange->isInRange(sourceShapeAsRange))
+      return failure();
+    if (sourceRange->leftIdx > sourceDimIdx) {
+      // If some source dimensions had to be skipped in order to find a match,
+      // they must be collapsed into the directly preceding dynamic dimension.
+      if (!prevTargetSize || prevTargetSize != ShapedType::kDynamic)
+        return failure();
+      reassocRanges.back().rightIdx = sourceRange->leftIdx - 1;
+    }
+
+    // Store the gathered information as required for the next iteration.
+    prevTargetSize = targetSize;
+    sourceDimIdx = sourceRange->rightIdx + 1;
+    reassocRanges.push_back(*sourceRange);
   }
-  // All the dimensions in the target must have been processed.
-  if (reassociationMap.size() != targetShape.size())
+  // Fail if the source shape wasn't a full match for the target shape. We only
+  // need to check the last recorded index - any other gaps should have been
+  // mended by the main loop.
+  if (reassocRanges.back().rightIdx < sourceShapeAsRange.rightIdx)
+    return failure();
+  return reassocRanges;
+}
+
+/// A variant of `findReassociationRangesForCollapse(...)` that can also scan
+/// the shapes right-to-left.
+static FailureOr<SmallVector<ReassociationIndexRange>>
+findReassociationRangesForCollapse(ArrayRef<int64_t> sourceShape,
+                                   ArrayRef<int64_t> targetShape,
+                                   bool iterateRightToLeft) {
+  if (!iterateRightToLeft)
+    return findReassociationRangesForCollapse(sourceShape, targetShape);
+  // NB: To iterate right-to-left, we currently reverse the shapes and then
+  // reverse the result back. The reversed shapes must not be temporary, as
+  // we're passing through an ArrayRef.
+  // FIXME: It would be preferable to avoid the expensive copies. At the moment,
+  // this approach is chosen for readability of the main implementation.
+  std::vector<int64_t> sourceToReverse = sourceShape.vec(),
+                       targetToReverse = targetShape.vec();
+  std::reverse(sourceToReverse.begin(), sourceToReverse.end());
+  std::reverse(targetToReverse.begin(), targetToReverse.end());
+  auto invertedRanges =
+      findReassociationRangesForCollapse(sourceToReverse, targetToReverse);
+  if (failed(invertedRanges))
+    return failure();
+  SmallVector<ReassociationIndexRange> &rangesToInvert = *invertedRanges;
+  unsigned numSourceDims = sourceShape.size();
+  // We have received the ranges for inverted shapes. Now we have to invert
+  // the ranges back to correspond with the original source shape.
+  for (auto &range : rangesToInvert) {
+    int64_t invLeftIdx = range.leftIdx, invRightIdx = range.rightIdx;
+    range.leftIdx = numSourceDims - 1 - invRightIdx;
+    range.rightIdx = numSourceDims - 1 - invLeftIdx;
+  }
+  // Also invert the ordering of the ranges to correspond with the original
+  // target shape.
+  std::reverse(rangesToInvert.begin(), rangesToInvert.end());
+  return rangesToInvert;
+}
+
+std::optional<SmallVector<ReassociationIndices>>
+mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
+                                         ArrayRef<int64_t> targetShape) {
+  unsigned numSourceDims = sourceShape.size(),
+           numTargetDims = targetShape.size();
+  // We're supposed to search for a collapsing reassociation. If the sizes
+  // match, there's no actual collapsing taking place - it's either a no-op or a
+  // `tensor.reshape`-style reassociation (that would be beyond the scope of
+  // this utility).
+  if (numSourceDims <= numTargetDims)
+    return std::nullopt;
+  // Early handling for scalar target types.
+  if (numTargetDims == 0) {
+    ReassociationIndices allSourceIndices;
+    allSourceIndices.reserve(numSourceDims);
+    for (unsigned sourceDimIdx = 0; sourceDimIdx < numSourceDims;
+         ++sourceDimIdx) {
+      int64_t sourceSize = sourceShape[sourceDimIdx];
+      // All source dimensions must be unit or dynamic.
+      if (sourceSize != 1 && sourceSize != ShapedType::kDynamic)
+        return std::nullopt;
+      allSourceIndices.push_back(sourceDimIdx);
+    }
+    return SmallVector<ReassociationIndices>{allSourceIndices};
+  }
+
+  // Collect source ranges by iterating over the target shape left-to-right.
+  FailureOr<SmallVector<ReassociationIndexRange>> maybeForwardRanges =
+      findReassociationRangesForCollapse(sourceShape, targetShape);
+  if (failed(maybeForwardRanges))
+    return std::nullopt;
+  auto &ranges = *maybeForwardRanges;
+  // Now do the same in reverse. We need to get another valid reassociation
+  // through some other strategy, and then compare the results in order to
+  // disambiguate mixed subshapes, such as:
+  // ?x?x? into ?x?, ?x2x? into ?x?, ?x2x3x6x? into ?x6x?
+  // This leads us to lose some of the reassociation opportunities that can only
+  // be found by iterating in a certain direction, e.g. 2x2x? into 2x? - without
+  // backtracking, the algorithm will fail right-to-left. However, this is the
+  // best way to preserve correctness.
+  FailureOr<SmallVector<ReassociationIndexRange>> maybeReverseRanges =
+      findReassociationRangesForCollapse(sourceShape, targetShape,
+                                         /*iterateRightToLeft=*/true);
+  if (failed(maybeReverseRanges))
+    return std::nullopt;
+  auto &reverseRanges = *maybeReverseRanges;
+
+  if (ranges.size() != numTargetDims || reverseRanges.size() != numTargetDims)
     return std::nullopt;
-  // Process any remaining entries in the source shape. They all need to be
-  // 1 or dynamic.
-  for (; sourceDim < sourceShape.size(); sourceDim++) {
-    if (sourceShape[sourceDim] != ShapedType::kDynamic &&
-        sourceShape[sourceDim] != 1)
-      return std::nullopt;
-    // The map is empty when the target type is a scalar.
-    if (!reassociationMap.empty())
-      reassociationMap.back().push_back(sourceDim);
+  // Now we can check for ambiguity of each target dimension's reassociation. If
+  // successful, we put the full indices into our result map for the target
+  // shape.
+  SmallVector<ReassociationIndices> reassociationMap(numTargetDims);
+  for (unsigned targetDimIdx = 0; targetDimIdx < numTargetDims;
+       ++targetDimIdx) {
+    ReassociationIndexRange &range = ranges[targetDimIdx];
+    ReassociationIndexRange &reverseRange = reverseRanges[targetDimIdx];
+    // Get non-overlapping indices between the ranges
+    ReassociationIndices nonMatchingIndices =
+        range.getNonOverlappingIndicesWith(reverseRange);
+    // Unit dimensions can be collapsed wherever - this is the only ambiguity
+    // that we allow.
+    for (int64_t sourceDimIdx : nonMatchingIndices) {
+      if (sourceShape[sourceDimIdx] != 1)
+        return std::nullopt;
+    }
+    reassociationMap[targetDimIdx] = range.getFullIndices();
   }
   return reassociationMap;
 }

diff  --git a/mlir/test/Dialect/Linalg/simplify-pack-unpack.mlir b/mlir/test/Dialect/Linalg/simplify-pack-unpack.mlir
index 51350e5bc8498..6979770154bab 100644
--- a/mlir/test/Dialect/Linalg/simplify-pack-unpack.mlir
+++ b/mlir/test/Dialect/Linalg/simplify-pack-unpack.mlir
@@ -158,8 +158,8 @@ func.func @unpack_to_partial_slice(%arg0: tensor<8x32xf32>) -> tensor<255xf32> {
 // -----
 
 // CHECK-LABEL: func.func @unpack_dynamic
-// CHECK-NOT:     tensor.collapse
-// CHECK:         linalg.unpack
+// CHECK:     tensor.collapse
+// CHECK-NOT:         linalg.unpack
 func.func @unpack_dynamic(%arg0: tensor<?x32xf32>) -> tensor<?xf32> {
   %c32 = arith.constant 32 : index
   %c0 = arith.constant 0 : index

diff  --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index 0abec7e01d184..646b2197d9aa6 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -1117,7 +1117,7 @@ func.func @fold_expand_of_collapse(%arg0 : tensor<3x4x4xf32>) -> tensor<3x4x4xf3
 
 // -----
 
-func.func @fold_expand_of_collapse_dynamic(%arg0 : tensor<?x4x?xf32>, %arg1: index, %arg2: index)
+func.func @fold_expand_of_collapse_mixed_subshape(%arg0 : tensor<?x4x?xf32>, %arg1: index, %arg2: index)
     -> tensor<?x4x?xf32> {
   %0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
       : tensor<?x4x?xf32> into tensor<?x?xf32>
@@ -1125,12 +1125,28 @@ func.func @fold_expand_of_collapse_dynamic(%arg0 : tensor<?x4x?xf32>, %arg1: ind
       : tensor<?x?xf32> into tensor<?x4x?xf32>
   return %1 : tensor<?x4x?xf32>
 }
-// CHECK-LABEL: @fold_expand_of_collapse_dynamic
+// CHECK-LABEL: @fold_expand_of_collapse_mixed_subshape
 //   CHECK-NOT:   tensor.{{.*}}_shape
 
 // -----
 
-func.func @no_fold_expand_of_collapse_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index, %arg3: index)
+func.func @fold_expand_of_collapse_mixed_target_subshape(%arg0 : tensor<?x4x?x2xf32>, %arg1: index, %arg2: index)
+    -> tensor<?x4x?xf32> {
+  %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]]
+      : tensor<?x4x?x2xf32> into tensor<?x?xf32>
+  %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, 4, %arg2]
+      : tensor<?x?xf32> into tensor<?x4x?xf32>
+  return %1 : tensor<?x4x?xf32>
+}
+// CHECK-LABEL: @fold_expand_of_collapse_mixed_target_subshape
+//   CHECK-NOT:   tensor.expand_shape
+//       CHECK:   %[[COLLAPSE:.+]] = tensor.collapse_shape %arg0 {{\[}}[0], [1], [2, 3]]
+//  CHECK-SAME:     : tensor<?x4x?x2xf32> into tensor<?x4x?xf32>
+//  CHECK-NEXT:   return %[[COLLAPSE]]
+
+// -----
+
+func.func @no_fold_expand_of_collapse_fully_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index, %arg3: index)
     -> tensor<?x?x?xf32> {
   %0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
       : tensor<?x?x?xf32> into tensor<?x?xf32>
@@ -1138,7 +1154,22 @@ func.func @no_fold_expand_of_collapse_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1:
       : tensor<?x?xf32> into tensor<?x?x?xf32>
   return %1 : tensor<?x?x?xf32>
 }
-// CHECK-LABEL: @no_fold_expand_of_collapse_dynamic
+// CHECK-LABEL: @no_fold_expand_of_collapse_fully_dynamic
+//       CHECK:   tensor.collapse_shape
+//       CHECK:   %[[EXPAND:.+]] = tensor.expand_shape
+//       CHECK:   return %[[EXPAND]]
+
+// -----
+
+func.func @no_fold_expand_of_collapse_adjacent_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index)
+    -> tensor<?x?xf32> {
+  %0 = tensor.collapse_shape %arg0 [[0, 1, 2]]
+      : tensor<?x?x?xf32> into tensor<?xf32>
+  %1 = tensor.expand_shape %0 [[0, 1]] output_shape [%arg1, %arg2]
+      : tensor<?xf32> into tensor<?x?xf32>
+  return %1 : tensor<?x?xf32>
+}
+// CHECK-LABEL: @no_fold_expand_of_collapse_adjacent_dynamic
 //       CHECK:   tensor.collapse_shape
 //       CHECK:   %[[EXPAND:.+]] = tensor.expand_shape
 //       CHECK:   return %[[EXPAND]]

diff  --git a/mlir/unittests/Dialect/Utils/CMakeLists.txt b/mlir/unittests/Dialect/Utils/CMakeLists.txt
index 61b9cdcb3b8f3..e921c8bcfb4e5 100644
--- a/mlir/unittests/Dialect/Utils/CMakeLists.txt
+++ b/mlir/unittests/Dialect/Utils/CMakeLists.txt
@@ -1,5 +1,6 @@
 add_mlir_unittest(MLIRDialectUtilsTests
   StructuredOpsUtilsTest.cpp
+  ReshapeOpsUtilsTest.cpp
   IndexingUtilsTest.cpp
 )
 mlir_target_link_libraries(MLIRDialectUtilsTests

diff  --git a/mlir/unittests/Dialect/Utils/ReshapeOpsUtilsTest.cpp b/mlir/unittests/Dialect/Utils/ReshapeOpsUtilsTest.cpp
new file mode 100644
index 0000000000000..db1a87a4de2d5
--- /dev/null
+++ b/mlir/unittests/Dialect/Utils/ReshapeOpsUtilsTest.cpp
@@ -0,0 +1,203 @@
+//===- ReshapeOpsUtilsTest.cpp - ReshapeOpsUtils unit tests ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "llvm/ADT/STLExtras.h"
+#include "gtest/gtest.h"
+#include <optional>
+
+using namespace mlir;
+
+/// Helper to make constructing
+/// `std::optional<SmallVector<ReassociationIndices>>` more readable.
+static std::optional<SmallVector<ReassociationIndices>>
+makeOptionalIndices(std::initializer_list<ReassociationIndices> list) {
+  return std::optional<SmallVector<ReassociationIndices>>(list);
+}
+
+TEST(ReassociationIndicesForCollapse, ScalarTest) {
+  EXPECT_EQ(getReassociationIndicesForCollapse({1}, {}),
+            makeOptionalIndices({{0}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, 1}, {}),
+            makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({ShapedType::kDynamic}, {}),
+            makeOptionalIndices({{0}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, ShapedType::kDynamic,
+                                                ShapedType::kDynamic, 1,
+                                                ShapedType::kDynamic},
+                                               {}),
+            makeOptionalIndices({{0, 1, 2, 3, 4}}));
+}
+
+TEST(ReassociationIndicesForCollapse, ScalarTestFailure) {
+  EXPECT_EQ(getReassociationIndicesForCollapse({}, {}), std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse({}, {1}), std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse({2}, {}), std::nullopt);
+  EXPECT_EQ(
+      getReassociationIndicesForCollapse({1, 2, ShapedType::kDynamic, 1}, {}),
+      std::nullopt);
+}
+
+TEST(ReassociationIndicesForCollapse, StaticTest) {
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20}, {200}),
+            makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20, 30}, {10, 600}),
+            makeOptionalIndices({{0}, {1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20, 30}, {200, 30}),
+            makeOptionalIndices({{0, 1}, {2}}));
+}
+
+TEST(ReassociationIndicesForCollapse, StaticTestFailure) {
+  // No-op reassociation
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20}, {10, 20}),
+            std::nullopt);
+  // Invalid static reassociations
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20}, {10}), std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20, 30}, {200, 300}),
+            std::nullopt);
+  // Non-collapsing (expanding) reassociation
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 20, 30}, {1, 10, 20, 30}),
+            std::nullopt);
+}
+
+TEST(ReassociationIndicesForCollapse, StaticTestUnitDims) {
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, 1}, {10}),
+            makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, 20, 30}, {600}),
+            makeOptionalIndices({{0, 1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, 1, 1}, {1}),
+            makeOptionalIndices({{0, 1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, 1, 1, 1}, {1, 1, 1}),
+            makeOptionalIndices({{0}, {1}, {2, 3}}));
+}
+
+TEST(ReassociationIndicesForCollapse, DynamicTest) {
+  EXPECT_EQ(getReassociationIndicesForCollapse({ShapedType::kDynamic, 1},
+                                               {ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({ShapedType::kDynamic, 1, 1},
+                                               {ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {1, ShapedType::kDynamic, 1, ShapedType::kDynamic, 1},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1}, {2, 3, 4}}));
+  EXPECT_EQ(
+      getReassociationIndicesForCollapse(
+          {ShapedType::kDynamic, ShapedType::kDynamic}, {ShapedType::kDynamic}),
+      makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {1, ShapedType::kDynamic, ShapedType::kDynamic},
+                {1, ShapedType::kDynamic}),
+            makeOptionalIndices({{0}, {1, 2}}));
+
+  EXPECT_EQ(getReassociationIndicesForCollapse({ShapedType::kDynamic, 10},
+                                               {ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {1, ShapedType::kDynamic, ShapedType::kDynamic},
+                {ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, ShapedType::kDynamic},
+                                               {ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 1, 2, ShapedType::kDynamic, 10},
+                {ShapedType::kDynamic, 10}),
+            makeOptionalIndices({{0, 1, 2, 3}, {4}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({ShapedType::kDynamic, 10, 20},
+                                               {ShapedType::kDynamic, 20}),
+            makeOptionalIndices({{0, 1}, {2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({10, ShapedType::kDynamic, 20},
+                                               {ShapedType::kDynamic, 20}),
+            makeOptionalIndices({{0, 1}, {2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 3, 2, 5, 2}, {ShapedType::kDynamic, 20}),
+            makeOptionalIndices({{0, 1}, {2, 3, 4}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {10, ShapedType::kDynamic, 20, ShapedType::kDynamic, 1},
+                {ShapedType::kDynamic, 20, ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1}, {2}, {3, 4}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, ShapedType::kDynamic, 1},
+                                               {ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, ShapedType::kDynamic, 1},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            makeOptionalIndices({{0}, {1, 2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {1, ShapedType::kDynamic, ShapedType::kDynamic},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            makeOptionalIndices({{0, 1}, {2}}));
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 1, ShapedType::kDynamic},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            makeOptionalIndices({{0}, {1, 2}}));
+}
+
+TEST(ReassociationIndicesForCollapse, DynamicTestFailure) {
+  EXPECT_EQ(getReassociationIndicesForCollapse({ShapedType::kDynamic, 10, 20},
+                                               {ShapedType::kDynamic, 10}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 10, ShapedType::kDynamic},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {20, ShapedType::kDynamic, 10, ShapedType::kDynamic},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 5, 3, 2, 2}, {ShapedType::kDynamic, 20}),
+            std::nullopt);
+  EXPECT_EQ(
+      getReassociationIndicesForCollapse(
+          {ShapedType::kDynamic, ShapedType::kDynamic, ShapedType::kDynamic},
+          {ShapedType::kDynamic, ShapedType::kDynamic}),
+      std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, ShapedType::kDynamic, 10, 1,
+                 ShapedType::kDynamic},
+                {ShapedType::kDynamic, ShapedType::kDynamic}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 10, 10, 10, ShapedType::kDynamic},
+                {ShapedType::kDynamic, 10, ShapedType::kDynamic}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 10, 10, 10, ShapedType::kDynamic},
+                {ShapedType::kDynamic, 2, 2, ShapedType::kDynamic}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 3, 4, 3, ShapedType::kDynamic},
+                {ShapedType::kDynamic, 12, ShapedType::kDynamic}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 8, 4, 2, 16, ShapedType::kDynamic},
+                {ShapedType::kDynamic, 32, ShapedType::kDynamic}),
+            std::nullopt);
+
+  //===----------------------------------------------------------------------===//
+  // TODO: Reassociation for the following examples can be computed, but isn't
+  // supported by `getReassociationIndicesForCollapse`.
+  //===----------------------------------------------------------------------===//
+
+  // TODO: Fails because there's no backtracking when some source dimensions
+  // remain unmatched at either edge.
+  EXPECT_EQ(getReassociationIndicesForCollapse(
+                {ShapedType::kDynamic, 10, ShapedType::kDynamic, 10},
+                {ShapedType::kDynamic, 10}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse({1, ShapedType::kDynamic, 2, 2},
+                                               {1, ShapedType::kDynamic, 2}),
+            std::nullopt);
+  EXPECT_EQ(getReassociationIndicesForCollapse({2, 2, ShapedType::kDynamic, 1},
+                                               {2, ShapedType::kDynamic}),
+            std::nullopt);
+}


        


More information about the llvm-branch-commits mailing list