[llvm-branch-commits] [flang] [flang][Lower] Convert OMP Map and related functions to evaluate::Expr (PR #81626)

via llvm-branch-commits llvm-branch-commits at lists.llvm.org
Tue Feb 13 08:36:30 PST 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-flang-semantics

@llvm/pr-subscribers-openacc

Author: Krzysztof Parzyszek (kparzysz)

<details>
<summary>Changes</summary>

The related functions are `gatherDataOperandAddrAndBounds` and `genBoundsOps`. The former is used in OpenACC as well, and it was updated to pass evaluate::Expr instead of parser objects.

The difference in the test case comes from unfolded conversions of index expressions, which are explicitly of type integer(kind=8).

Delete now unused `findRepeatableClause2` and `findClause2`.

Add `AsGenericExpr` that takes std::optional. It already returns optional Expr. Making it accept an optional Expr as input would reduce the number of necessary checks when handling frequent optional values in evaluator.

---

Patch is 38.06 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/81626.diff


4 Files Affected:

- (modified) flang/include/flang/Evaluate/tools.h (+8) 
- (modified) flang/lib/Lower/DirectivesCommon.h (+235-154) 
- (modified) flang/lib/Lower/OpenACC.cpp (+35-19) 
- (modified) flang/lib/Lower/OpenMP.cpp (+33-72) 


``````````diff
diff --git a/flang/include/flang/Evaluate/tools.h b/flang/include/flang/Evaluate/tools.h
index e9999974944e88..d5713cfe420a2e 100644
--- a/flang/include/flang/Evaluate/tools.h
+++ b/flang/include/flang/Evaluate/tools.h
@@ -148,6 +148,14 @@ inline Expr<SomeType> AsGenericExpr(Expr<SomeType> &&x) { return std::move(x); }
 std::optional<Expr<SomeType>> AsGenericExpr(DataRef &&);
 std::optional<Expr<SomeType>> AsGenericExpr(const Symbol &);
 
+// Propagate std::optional from input to output.
+template <typename A>
+std::optional<Expr<SomeType>> AsGenericExpr(std::optional<A> &&x) {
+  if (!x)
+    return std::nullopt;
+  return AsGenericExpr(std::move(*x));
+}
+
 template <typename A>
 common::IfNoLvalue<Expr<SomeKind<ResultType<A>::category>>, A> AsCategoryExpr(
     A &&x) {
diff --git a/flang/lib/Lower/DirectivesCommon.h b/flang/lib/Lower/DirectivesCommon.h
index 8d560db34e05bf..2fa90572bc63eb 100644
--- a/flang/lib/Lower/DirectivesCommon.h
+++ b/flang/lib/Lower/DirectivesCommon.h
@@ -808,6 +808,75 @@ genBaseBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
   return bounds;
 }
 
+namespace detail {
+template <typename T> //
+static T &&AsRvalueRef(T &&t) {
+  return std::move(t);
+}
+template <typename T> //
+static T AsRvalueRef(T &t) {
+  return t;
+}
+template <typename T> //
+static T AsRvalueRef(const T &t) {
+  return t;
+}
+
+// Helper class for stripping enclosing parentheses and a conversion that
+// preserves type category. This is used for triplet elements, which are
+// always of type integer(kind=8). The lower/upper bounds are converted to
+// an "index" type, which is 64-bit, so the explicit conversion to kind=8
+// (if present) is not needed. When it's present, though, it causes generated
+// names to contain "int(..., kind=8)".
+struct PeelConvert {
+  template <Fortran::common::TypeCategory Category, int Kind>
+  static Fortran::semantics::MaybeExpr visit_with_category(
+      const Fortran::evaluate::Expr<Fortran::evaluate::Type<Category, Kind>>
+          &expr) {
+    return std::visit(
+        [](auto &&s) { return visit_with_category<Category, Kind>(s); },
+        expr.u);
+  }
+  template <Fortran::common::TypeCategory Category, int Kind>
+  static Fortran::semantics::MaybeExpr visit_with_category(
+      const Fortran::evaluate::Convert<Fortran::evaluate::Type<Category, Kind>,
+                                       Category> &expr) {
+    return AsGenericExpr(AsRvalueRef(expr.left()));
+  }
+  template <Fortran::common::TypeCategory Category, int Kind, typename T>
+  static Fortran::semantics::MaybeExpr visit_with_category(const T &) {
+    return std::nullopt; //
+  }
+  template <Fortran::common::TypeCategory Category, typename T>
+  static Fortran::semantics::MaybeExpr visit_with_category(const T &) {
+    return std::nullopt; //
+  }
+
+  template <Fortran::common::TypeCategory Category>
+  static Fortran::semantics::MaybeExpr
+  visit(const Fortran::evaluate::Expr<Fortran::evaluate::SomeKind<Category>>
+            &expr) {
+    return std::visit([](auto &&s) { return visit_with_category<Category>(s); },
+                      expr.u);
+  }
+  static Fortran::semantics::MaybeExpr
+  visit(const Fortran::evaluate::Expr<Fortran::evaluate::SomeType> &expr) {
+    return std::visit([](auto &&s) { return visit(s); }, expr.u);
+  }
+  template <typename T> //
+  static Fortran::semantics::MaybeExpr visit(const T &) {
+    return std::nullopt;
+  }
+};
+
+static Fortran::semantics::SomeExpr
+peelOuterConvert(Fortran::semantics::SomeExpr &expr) {
+  if (auto peeled = PeelConvert::visit(expr))
+    return *peeled;
+  return expr;
+}
+} // namespace detail
+
 /// Generate bounds operations for an array section when subscripts are
 /// provided.
 template <typename BoundsOp, typename BoundsType>
@@ -815,7 +884,7 @@ llvm::SmallVector<mlir::Value>
 genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
              Fortran::lower::AbstractConverter &converter,
              Fortran::lower::StatementContext &stmtCtx,
-             const std::list<Fortran::parser::SectionSubscript> &subscripts,
+             const std::vector<Fortran::evaluate::Subscript> &subscripts,
              std::stringstream &asFortran, fir::ExtendedValue &dataExv,
              bool dataExvIsAssumedSize, AddrAndBoundsInfo &info,
              bool treatIndexAsSection = false) {
@@ -828,8 +897,7 @@ genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
   mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
   const int dataExvRank = static_cast<int>(dataExv.rank());
   for (const auto &subscript : subscripts) {
-    const auto *triplet{
-        std::get_if<Fortran::parser::SubscriptTriplet>(&subscript.u)};
+    const auto *triplet{std::get_if<Fortran::evaluate::Triplet>(&subscript.u)};
     if (triplet || treatIndexAsSection) {
       if (dimension != 0)
         asFortran << ',';
@@ -868,13 +936,18 @@ genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
         strideInBytes = true;
       }
 
-      const Fortran::lower::SomeExpr *lower{nullptr};
+      Fortran::semantics::MaybeExpr lower;
       if (triplet) {
-        if (const auto &tripletLb{std::get<0>(triplet->t)})
-          lower = Fortran::semantics::GetExpr(*tripletLb);
+        if ((lower = Fortran::evaluate::AsGenericExpr(triplet->lower())))
+          lower = detail::peelOuterConvert(*lower);
       } else {
-        const auto &index{std::get<Fortran::parser::IntExpr>(subscript.u)};
-        lower = Fortran::semantics::GetExpr(index);
+        // Case of IndirectSubscriptIntegerExpr
+        using IndirectSubscriptIntegerExpr =
+            Fortran::evaluate::IndirectSubscriptIntegerExpr;
+        using SubscriptInteger = Fortran::evaluate::SubscriptInteger;
+        Fortran::evaluate::Expr<SubscriptInteger> oneInt =
+            std::get<IndirectSubscriptIntegerExpr>(subscript.u).value();
+        lower = Fortran::evaluate::AsGenericExpr(std::move(oneInt));
         if (lower->Rank() > 0) {
           mlir::emitError(
               loc, "vector subscript cannot be used for an array section");
@@ -912,10 +985,12 @@ genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
         extent = one;
       } else {
         asFortran << ':';
-        const auto &upper{std::get<1>(triplet->t)};
+        Fortran::semantics::MaybeExpr upper =
+            Fortran::evaluate::AsGenericExpr(triplet->upper());
 
         if (upper) {
-          uval = Fortran::semantics::GetIntValue(upper);
+          upper = detail::peelOuterConvert(*upper);
+          uval = Fortran::evaluate::ToInt64(*upper);
           if (uval) {
             if (defaultLb) {
               ubound = builder.createIntegerConstant(loc, idxTy, *uval - 1);
@@ -925,22 +1000,21 @@ genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
             }
             asFortran << *uval;
           } else {
-            const Fortran::lower::SomeExpr *uexpr =
-                Fortran::semantics::GetExpr(*upper);
             mlir::Value ub =
-                fir::getBase(converter.genExprValue(loc, *uexpr, stmtCtx));
+                fir::getBase(converter.genExprValue(loc, *upper, stmtCtx));
             ub = builder.createConvert(loc, baseLb.getType(), ub);
             ubound = builder.create<mlir::arith::SubIOp>(loc, ub, baseLb);
-            asFortran << uexpr->AsFortran();
+            asFortran << upper->AsFortran();
           }
         }
         if (lower && upper) {
           if (lval && uval && *uval < *lval) {
             mlir::emitError(loc, "zero sized array section");
             break;
-          } else if (std::get<2>(triplet->t)) {
-            const auto &strideExpr{std::get<2>(triplet->t)};
-            if (strideExpr) {
+          } else {
+            // Stride is mandatory in evaluate::Triplet. Make sure it's 1.
+            auto val = Fortran::evaluate::ToInt64(triplet->GetStride());
+            if (!val || *val != 1) {
               mlir::emitError(loc, "stride cannot be specified on "
                                    "an array section");
               break;
@@ -993,150 +1067,157 @@ genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
   return bounds;
 }
 
-template <typename ObjectType, typename BoundsOp, typename BoundsType>
+namespace detail {
+template <typename Ref, typename Expr> //
+std::optional<Ref> getRef(Expr &&expr) {
+  if constexpr (std::is_same_v<llvm::remove_cvref_t<Expr>,
+                               Fortran::evaluate::DataRef>) {
+    if (auto *ref = std::get_if<Ref>(&expr.u))
+      return *ref;
+    return std::nullopt;
+  } else {
+    auto maybeRef = Fortran::evaluate::ExtractDataRef(expr);
+    if (!maybeRef || !std::holds_alternative<Ref>(maybeRef->u))
+      return std::nullopt;
+    return std::get<Ref>(maybeRef->u);
+  }
+}
+} // namespace detail
+
+template <typename BoundsOp, typename BoundsType>
 AddrAndBoundsInfo gatherDataOperandAddrAndBounds(
     Fortran::lower::AbstractConverter &converter, fir::FirOpBuilder &builder,
-    Fortran::semantics::SemanticsContext &semanticsContext,
-    Fortran::lower::StatementContext &stmtCtx, const ObjectType &object,
+    semantics::SemanticsContext &semaCtx,
+    Fortran::lower::StatementContext &stmtCtx,
+    Fortran::semantics::SymbolRef symbol,
+    const Fortran::semantics::MaybeExpr &maybeDesignator,
     mlir::Location operandLocation, std::stringstream &asFortran,
     llvm::SmallVector<mlir::Value> &bounds, bool treatIndexAsSection = false) {
+  using namespace Fortran;
+
   AddrAndBoundsInfo info;
-  std::visit(
-      Fortran::common::visitors{
-          [&](const Fortran::parser::Designator &designator) {
-            if (auto expr{Fortran::semantics::AnalyzeExpr(semanticsContext,
-                                                          designator)}) {
-              if (((*expr).Rank() > 0 || treatIndexAsSection) &&
-                  Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
-                      designator)) {
-                const auto *arrayElement =
-                    Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
-                        designator);
-                const auto *dataRef =
-                    std::get_if<Fortran::parser::DataRef>(&designator.u);
-                fir::ExtendedValue dataExv;
-                bool dataExvIsAssumedSize = false;
-                if (Fortran::parser::Unwrap<
-                        Fortran::parser::StructureComponent>(
-                        arrayElement->base)) {
-                  auto exprBase = Fortran::semantics::AnalyzeExpr(
-                      semanticsContext, arrayElement->base);
-                  dataExv = converter.genExprAddr(operandLocation, *exprBase,
-                                                  stmtCtx);
-                  info.addr = fir::getBase(dataExv);
-                  info.rawInput = info.addr;
-                  asFortran << (*exprBase).AsFortran();
-                } else {
-                  const Fortran::parser::Name &name =
-                      Fortran::parser::GetLastName(*dataRef);
-                  dataExvIsAssumedSize = Fortran::semantics::IsAssumedSizeArray(
-                      name.symbol->GetUltimate());
-                  info = getDataOperandBaseAddr(converter, builder,
-                                                *name.symbol, operandLocation);
-                  dataExv = converter.getSymbolExtendedValue(*name.symbol);
-                  asFortran << name.ToString();
-                }
-
-                if (!arrayElement->subscripts.empty()) {
-                  asFortran << '(';
-                  bounds = genBoundsOps<BoundsOp, BoundsType>(
-                      builder, operandLocation, converter, stmtCtx,
-                      arrayElement->subscripts, asFortran, dataExv,
-                      dataExvIsAssumedSize, info, treatIndexAsSection);
-                }
-                asFortran << ')';
-              } else if (auto structComp = Fortran::parser::Unwrap<
-                             Fortran::parser::StructureComponent>(designator)) {
-                fir::ExtendedValue compExv =
-                    converter.genExprAddr(operandLocation, *expr, stmtCtx);
-                info.addr = fir::getBase(compExv);
-                info.rawInput = info.addr;
-                if (fir::unwrapRefType(info.addr.getType())
-                        .isa<fir::SequenceType>())
-                  bounds = genBaseBoundsOps<BoundsOp, BoundsType>(
-                      builder, operandLocation, converter, compExv,
-                      /*isAssumedSize=*/false);
-                asFortran << (*expr).AsFortran();
-
-                bool isOptional = Fortran::semantics::IsOptional(
-                    *Fortran::parser::GetLastName(*structComp).symbol);
-                if (isOptional)
-                  info.isPresent = builder.create<fir::IsPresentOp>(
-                      operandLocation, builder.getI1Type(), info.rawInput);
-
-                if (auto loadOp = mlir::dyn_cast_or_null<fir::LoadOp>(
-                        info.addr.getDefiningOp())) {
-                  if (fir::isAllocatableType(loadOp.getType()) ||
-                      fir::isPointerType(loadOp.getType()))
-                    info.addr = builder.create<fir::BoxAddrOp>(operandLocation,
-                                                               info.addr);
-                  info.rawInput = info.addr;
-                }
-
-                // If the component is an allocatable or pointer the result of
-                // genExprAddr will be the result of a fir.box_addr operation or
-                // a fir.box_addr has been inserted just before.
-                // Retrieve the box so we handle it like other descriptor.
-                if (auto boxAddrOp = mlir::dyn_cast_or_null<fir::BoxAddrOp>(
-                        info.addr.getDefiningOp())) {
-                  info.addr = boxAddrOp.getVal();
-                  info.rawInput = info.addr;
-                  bounds = genBoundsOpsFromBox<BoundsOp, BoundsType>(
-                      builder, operandLocation, converter, compExv, info);
-                }
-              } else {
-                if (Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
-                        designator)) {
-                  // Single array element.
-                  const auto *arrayElement =
-                      Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
-                          designator);
-                  (void)arrayElement;
-                  fir::ExtendedValue compExv =
-                      converter.genExprAddr(operandLocation, *expr, stmtCtx);
-                  info.addr = fir::getBase(compExv);
-                  info.rawInput = info.addr;
-                  asFortran << (*expr).AsFortran();
-                } else if (const auto *dataRef{
-                               std::get_if<Fortran::parser::DataRef>(
-                                   &designator.u)}) {
-                  // Scalar or full array.
-                  const Fortran::parser::Name &name =
-                      Fortran::parser::GetLastName(*dataRef);
-                  fir::ExtendedValue dataExv =
-                      converter.getSymbolExtendedValue(*name.symbol);
-                  info = getDataOperandBaseAddr(converter, builder,
-                                                *name.symbol, operandLocation);
-                  if (fir::unwrapRefType(info.addr.getType())
-                          .isa<fir::BaseBoxType>()) {
-                    bounds = genBoundsOpsFromBox<BoundsOp, BoundsType>(
-                        builder, operandLocation, converter, dataExv, info);
-                  }
-                  bool dataExvIsAssumedSize =
-                      Fortran::semantics::IsAssumedSizeArray(
-                          name.symbol->GetUltimate());
-                  if (fir::unwrapRefType(info.addr.getType())
-                          .isa<fir::SequenceType>())
-                    bounds = genBaseBoundsOps<BoundsOp, BoundsType>(
-                        builder, operandLocation, converter, dataExv,
-                        dataExvIsAssumedSize);
-                  asFortran << name.ToString();
-                } else { // Unsupported
-                  llvm::report_fatal_error(
-                      "Unsupported type of OpenACC operand");
-                }
-              }
-            }
-          },
-          [&](const Fortran::parser::Name &name) {
-            info = getDataOperandBaseAddr(converter, builder, *name.symbol,
-                                          operandLocation);
-            asFortran << name.ToString();
-          }},
-      object.u);
+
+  if (!maybeDesignator) {
+    info = getDataOperandBaseAddr(converter, builder, symbol, operandLocation);
+    asFortran << symbol->name().ToString();
+    return info;
+  }
+
+  semantics::SomeExpr designator = *maybeDesignator;
+
+  if ((designator.Rank() > 0 || treatIndexAsSection) &&
+      IsArrayElement(designator)) {
+    auto arrayRef = detail::getRef<evaluate::ArrayRef>(designator);
+    // This shouldn't fail after IsArrayElement(designator).
+    assert(arrayRef && "Expecting ArrayRef");
+
+    fir::ExtendedValue dataExv;
+    bool dataExvIsAssumedSize = false;
+
+    auto toMaybeExpr = [&](auto &&base) {
+      using BaseType = llvm::remove_cvref_t<decltype(base)>;
+      evaluate::ExpressionAnalyzer ea{semaCtx};
+
+      if constexpr (std::is_same_v<evaluate::NamedEntity, BaseType>) {
+        if (auto *ref = base.UnwrapSymbolRef())
+          return ea.Designate(evaluate::DataRef{*ref});
+        if (auto *ref = base.UnwrapComponent())
+          return ea.Designate(evaluate::DataRef{*ref});
+        llvm_unreachable("Unexpected NamedEntity");
+      } else {
+        static_assert(std::is_same_v<semantics::SymbolRef, BaseType>);
+        return ea.Designate(evaluate::DataRef{base});
+      }
+    };
+
+    auto arrayBase = toMaybeExpr(arrayRef->base());
+    assert(arrayBase);
+
+    if (detail::getRef<evaluate::Component>(*arrayBase)) {
+      dataExv = converter.genExprAddr(operandLocation, *arrayBase, stmtCtx);
+      info.addr = fir::getBase(dataExv);
+      info.rawInput = info.addr;
+      asFortran << arrayBase->AsFortran();
+    } else {
+      const semantics::Symbol &sym = arrayRef->GetLastSymbol();
+      dataExvIsAssumedSize =
+          Fortran::semantics::IsAssumedSizeArray(sym.GetUltimate());
+      info = getDataOperandBaseAddr(converter, builder, sym, operandLocation);
+      dataExv = converter.getSymbolExtendedValue(sym);
+      asFortran << sym.name().ToString();
+    }
+
+    if (!arrayRef->subscript().empty()) {
+      asFortran << '(';
+      bounds = genBoundsOps<BoundsOp, BoundsType>(
+          builder, operandLocation, converter, stmtCtx, arrayRef->subscript(),
+          asFortran, dataExv, dataExvIsAssumedSize, info, treatIndexAsSection);
+    }
+    asFortran << ')';
+  } else if (auto compRef = detail::getRef<evaluate::Component>(designator)) {
+    fir::ExtendedValue compExv =
+        converter.genExprAddr(operandLocation, designator, stmtCtx);
+    info.addr = fir::getBase(compExv);
+    info.rawInput = info.addr;
+    if (fir::unwrapRefType(info.addr.getType()).isa<fir::SequenceType>())
+      bounds = genBaseBoundsOps<BoundsOp, BoundsType>(builder, operandLocation,
+                                                      converter, compExv,
+                                                      /*isAssumedSize=*/false);
+    asFortran << designator.AsFortran();
+
+    if (semantics::IsOptional(compRef->GetLastSymbol())) {
+      info.isPresent = builder.create<fir::IsPresentOp>(
+          operandLocation, builder.getI1Type(), info.rawInput);
+    }
+
+    if (auto loadOp =
+            mlir::dyn_cast_or_null<fir::LoadOp>(info.addr.getDefiningOp())) {
+      if (fir::isAllocatableType(loadOp.getType()) ||
+          fir::isPointerType(loadOp.getType()))
+        info.addr = builder.create<fir::BoxAddrOp>(operandLocation, info.addr);
+      info.rawInput = info.addr;
+    }
+
+    // If the component is an allocatable or pointer the result of
+    // genExprAddr will be the result of a fir.box_addr operation or
+    // a fir.box_addr has been inserted just before.
+    // Retrieve the box so we handle it like other descriptor.
+    if (auto boxAddrOp =
+            mlir::dyn_cast_or_null<fir::BoxAddrOp>(info.add...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/81626


More information about the llvm-branch-commits mailing list