[llvm-branch-commits] [flang] [flang][cuda] Handle gpu.return in AbstractResult pass (PR #119035)

Valentin Clement バレンタイン クレメン via llvm-branch-commits llvm-branch-commits at lists.llvm.org
Fri Dec 6 13:44:41 PST 2024


https://github.com/clementval created https://github.com/llvm/llvm-project/pull/119035

Process `gpu.return` in AbstractResult pass when the function is a `gpu.func`. 

>From 72a892909a7ce898423cea709f674956dc2121d1 Mon Sep 17 00:00:00 2001
From: Valentin Clement <clementval at gmail.com>
Date: Fri, 6 Dec 2024 13:42:06 -0800
Subject: [PATCH] [flang][cuda] Handle gpu.return in AbstractResult pass

---
 .../Optimizer/Transforms/AbstractResult.cpp   | 123 +++++++++++-------
 flang/test/Fir/CUDA/cuda-abstract-result.mlir |  37 ++++++
 2 files changed, 111 insertions(+), 49 deletions(-)
 create mode 100644 flang/test/Fir/CUDA/cuda-abstract-result.mlir

diff --git a/flang/lib/Optimizer/Transforms/AbstractResult.cpp b/flang/lib/Optimizer/Transforms/AbstractResult.cpp
index 2ed66cc83eefb5..b0327cc10e9de6 100644
--- a/flang/lib/Optimizer/Transforms/AbstractResult.cpp
+++ b/flang/lib/Optimizer/Transforms/AbstractResult.cpp
@@ -234,6 +234,60 @@ class SaveResultOpConversion
   }
 };
 
+template <typename OpTy>
+static mlir::LogicalResult
+processReturnLikeOp(OpTy ret, mlir::Value newArg,
+                    mlir::PatternRewriter &rewriter) {
+  auto loc = ret.getLoc();
+  rewriter.setInsertionPoint(ret);
+  mlir::Value resultValue = ret.getOperand(0);
+  fir::LoadOp resultLoad;
+  mlir::Value resultStorage;
+  // Identify result local storage.
+  if (auto load = resultValue.getDefiningOp<fir::LoadOp>()) {
+    resultLoad = load;
+    resultStorage = load.getMemref();
+    // The result alloca may be behind a fir.declare, if any.
+    if (auto declare = resultStorage.getDefiningOp<fir::DeclareOp>())
+      resultStorage = declare.getMemref();
+  }
+  // Replace old local storage with new storage argument, unless
+  // the derived type is C_PTR/C_FUN_PTR, in which case the return
+  // type is updated to return void* (no new argument is passed).
+  if (fir::isa_builtin_cptr_type(resultValue.getType())) {
+    auto module = ret->template getParentOfType<mlir::ModuleOp>();
+    FirOpBuilder builder(rewriter, module);
+    mlir::Value cptr = resultValue;
+    if (resultLoad) {
+      // Replace whole derived type load by component load.
+      cptr = resultLoad.getMemref();
+      rewriter.setInsertionPoint(resultLoad);
+    }
+    mlir::Value newResultValue =
+        fir::factory::genCPtrOrCFunptrValue(builder, loc, cptr);
+    newResultValue = builder.createConvert(
+        loc, getVoidPtrType(ret.getContext()), newResultValue);
+    rewriter.setInsertionPoint(ret);
+    rewriter.replaceOpWithNewOp<OpTy>(ret, mlir::ValueRange{newResultValue});
+  } else if (resultStorage) {
+    resultStorage.replaceAllUsesWith(newArg);
+    rewriter.replaceOpWithNewOp<OpTy>(ret);
+  } else {
+    // The result storage may have been optimized out by a memory to
+    // register pass, this is possible for fir.box results, or fir.record
+    // with no length parameters. Simply store the result in the result
+    // storage. at the return point.
+    rewriter.create<fir::StoreOp>(loc, resultValue, newArg);
+    rewriter.replaceOpWithNewOp<OpTy>(ret);
+  }
+  // Delete result old local storage if unused.
+  if (resultStorage)
+    if (auto alloc = resultStorage.getDefiningOp<fir::AllocaOp>())
+      if (alloc->use_empty())
+        rewriter.eraseOp(alloc);
+  return mlir::success();
+}
+
 class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
 public:
   using OpRewritePattern::OpRewritePattern;
@@ -242,55 +296,23 @@ class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
   llvm::LogicalResult
   matchAndRewrite(mlir::func::ReturnOp ret,
                   mlir::PatternRewriter &rewriter) const override {
-    auto loc = ret.getLoc();
-    rewriter.setInsertionPoint(ret);
-    mlir::Value resultValue = ret.getOperand(0);
-    fir::LoadOp resultLoad;
-    mlir::Value resultStorage;
-    // Identify result local storage.
-    if (auto load = resultValue.getDefiningOp<fir::LoadOp>()) {
-      resultLoad = load;
-      resultStorage = load.getMemref();
-      // The result alloca may be behind a fir.declare, if any.
-      if (auto declare = resultStorage.getDefiningOp<fir::DeclareOp>())
-        resultStorage = declare.getMemref();
-    }
-    // Replace old local storage with new storage argument, unless
-    // the derived type is C_PTR/C_FUN_PTR, in which case the return
-    // type is updated to return void* (no new argument is passed).
-    if (fir::isa_builtin_cptr_type(resultValue.getType())) {
-      auto module = ret->getParentOfType<mlir::ModuleOp>();
-      FirOpBuilder builder(rewriter, module);
-      mlir::Value cptr = resultValue;
-      if (resultLoad) {
-        // Replace whole derived type load by component load.
-        cptr = resultLoad.getMemref();
-        rewriter.setInsertionPoint(resultLoad);
-      }
-      mlir::Value newResultValue =
-          fir::factory::genCPtrOrCFunptrValue(builder, loc, cptr);
-      newResultValue = builder.createConvert(
-          loc, getVoidPtrType(ret.getContext()), newResultValue);
-      rewriter.setInsertionPoint(ret);
-      rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(
-          ret, mlir::ValueRange{newResultValue});
-    } else if (resultStorage) {
-      resultStorage.replaceAllUsesWith(newArg);
-      rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
-    } else {
-      // The result storage may have been optimized out by a memory to
-      // register pass, this is possible for fir.box results, or fir.record
-      // with no length parameters. Simply store the result in the result
-      // storage. at the return point.
-      rewriter.create<fir::StoreOp>(loc, resultValue, newArg);
-      rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
-    }
-    // Delete result old local storage if unused.
-    if (resultStorage)
-      if (auto alloc = resultStorage.getDefiningOp<fir::AllocaOp>())
-        if (alloc->use_empty())
-          rewriter.eraseOp(alloc);
-    return mlir::success();
+    return processReturnLikeOp(ret, newArg, rewriter);
+  }
+
+private:
+  mlir::Value newArg;
+};
+
+class GPUReturnOpConversion
+    : public mlir::OpRewritePattern<mlir::gpu::ReturnOp> {
+public:
+  using OpRewritePattern::OpRewritePattern;
+  GPUReturnOpConversion(mlir::MLIRContext *context, mlir::Value newArg)
+      : OpRewritePattern(context), newArg{newArg} {}
+  llvm::LogicalResult
+  matchAndRewrite(mlir::gpu::ReturnOp ret,
+                  mlir::PatternRewriter &rewriter) const override {
+    return processReturnLikeOp(ret, newArg, rewriter);
   }
 
 private:
@@ -373,6 +395,9 @@ class AbstractResultOpt
         patterns.insert<ReturnOpConversion>(context, newArg);
         target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
             [](mlir::func::ReturnOp ret) { return ret.getOperands().empty(); });
+        patterns.insert<GPUReturnOpConversion>(context, newArg);
+        target.addDynamicallyLegalOp<mlir::gpu::ReturnOp>(
+            [](mlir::gpu::ReturnOp ret) { return ret.getOperands().empty(); });
         assert(func.getFunctionType() ==
                getNewFunctionType(funcTy, shouldBoxResult));
       } else {
diff --git a/flang/test/Fir/CUDA/cuda-abstract-result.mlir b/flang/test/Fir/CUDA/cuda-abstract-result.mlir
new file mode 100644
index 00000000000000..8c59487ca5cd5c
--- /dev/null
+++ b/flang/test/Fir/CUDA/cuda-abstract-result.mlir
@@ -0,0 +1,37 @@
+// RUN: fir-opt -pass-pipeline='builtin.module(gpu.module(gpu.func(abstract-result)))' %s | FileCheck %s
+
+gpu.module @test {
+ gpu.func @_QMinterval_mPtest1(%arg0: !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, %arg1: !fir.ref<f32>) -> !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}> {
+    %c1_i32 = arith.constant 1 : i32
+    %18 = fir.dummy_scope : !fir.dscope
+    %19 = fir.declare %arg0 dummy_scope %18 {uniq_name = "_QMinterval_mFtest1Ea"} : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.dscope) -> !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>
+    %20 = fir.declare %arg1 dummy_scope %18 {uniq_name = "_QMinterval_mFtest1Eb"} : (!fir.ref<f32>, !fir.dscope) -> !fir.ref<f32>
+    %21 = fir.alloca !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}> {bindc_name = "c", uniq_name = "_QMinterval_mFtest1Ec"}
+    %22 = fir.declare %21 {uniq_name = "_QMinterval_mFtest1Ec"} : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>) -> !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>
+    %23 = fir.alloca i32 {bindc_name = "warpsize", uniq_name = "_QMcudadeviceECwarpsize"}
+    %24 = fir.declare %23 {uniq_name = "_QMcudadeviceECwarpsize"} : (!fir.ref<i32>) -> !fir.ref<i32>
+    %25 = fir.field_index inf, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
+    %26 = fir.coordinate_of %19, %25 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
+    %27 = fir.load %20 : !fir.ref<f32>
+    %28 = arith.negf %27 fastmath<contract> : f32
+    %29 = fir.load %26 : !fir.ref<f32>
+    %30 = fir.call @__fadd_rd(%29, %28) proc_attrs<bind_c> fastmath<contract> : (f32, f32) -> f32
+    %31 = fir.field_index inf, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
+    %32 = fir.coordinate_of %22, %31 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
+    fir.store %30 to %32 : !fir.ref<f32>
+    %33 = fir.field_index sup, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
+    %34 = fir.coordinate_of %19, %33 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
+    %35 = fir.load %20 : !fir.ref<f32>
+    %36 = arith.negf %35 fastmath<contract> : f32
+    %37 = fir.load %34 : !fir.ref<f32>
+    %38 = fir.call @__fadd_ru(%37, %36) proc_attrs<bind_c> fastmath<contract> : (f32, f32) -> f32
+    %39 = fir.field_index sup, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
+    %40 = fir.coordinate_of %22, %39 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
+    fir.store %38 to %40 : !fir.ref<f32>
+    %41 = fir.load %22 : !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>
+    gpu.return %41 : !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
+  }
+}
+
+// CHECK: gpu.func @_QMinterval_mPtest1(%arg0: !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, %arg1: !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, %arg2: !fir.ref<f32>) {
+// CHECK: gpu.return{{$}}



More information about the llvm-branch-commits mailing list