[llvm-branch-commits] [llvm] f5d07a0 - [Hexagon] Realign HVX vectors wherever possible
Krzysztof Parzyszek via llvm-branch-commits
llvm-branch-commits at lists.llvm.org
Wed Dec 9 15:16:52 PST 2020
Author: Krzysztof Parzyszek
Date: 2020-12-09T17:11:25-06:00
New Revision: f5d07a05bbd41f827ccfa1bed7bfdfbab2be85dc
URL: https://github.com/llvm/llvm-project/commit/f5d07a05bbd41f827ccfa1bed7bfdfbab2be85dc
DIFF: https://github.com/llvm/llvm-project/commit/f5d07a05bbd41f827ccfa1bed7bfdfbab2be85dc.diff
LOG: [Hexagon] Realign HVX vectors wherever possible
Introduce HexagonVectorCombine as a helper class for vector-related
optimizations.
Added:
llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp
llvm/test/CodeGen/Hexagon/autohvx/masked-vector-align.ll
Modified:
llvm/lib/Target/Hexagon/CMakeLists.txt
llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
llvm/test/CodeGen/Hexagon/v6vect-no-sideeffects.ll
Removed:
################################################################################
diff --git a/llvm/lib/Target/Hexagon/CMakeLists.txt b/llvm/lib/Target/Hexagon/CMakeLists.txt
index f99692b0f84e..5b20dd5009f0 100644
--- a/llvm/lib/Target/Hexagon/CMakeLists.txt
+++ b/llvm/lib/Target/Hexagon/CMakeLists.txt
@@ -60,6 +60,7 @@ add_llvm_target(HexagonCodeGen
HexagonTargetMachine.cpp
HexagonTargetObjectFile.cpp
HexagonTargetTransformInfo.cpp
+ HexagonVectorCombine.cpp
HexagonVectorLoopCarriedReuse.cpp
HexagonVectorPrint.cpp
HexagonVExtract.cpp
diff --git a/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp b/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
index 1e034ce515c1..23c047e0c23b 100644
--- a/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
+++ b/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
@@ -100,6 +100,9 @@ static cl::opt<bool> EnableVectorPrint("enable-hexagon-vector-print",
static cl::opt<bool> EnableVExtractOpt("hexagon-opt-vextract", cl::Hidden,
cl::ZeroOrMore, cl::init(true), cl::desc("Enable vextract optimization"));
+static cl::opt<bool> EnableVectorCombine("hexagon-vector-combine", cl::Hidden,
+ cl::ZeroOrMore, cl::init(true), cl::desc("Enable HVX vector combining"));
+
static cl::opt<bool> EnableInitialCFGCleanup("hexagon-initial-cfg-cleanup",
cl::Hidden, cl::ZeroOrMore, cl::init(true),
cl::desc("Simplify the CFG after atomic expansion pass"));
@@ -140,12 +143,13 @@ namespace llvm {
void initializeHexagonGenMuxPass(PassRegistry&);
void initializeHexagonHardwareLoopsPass(PassRegistry&);
void initializeHexagonLoopIdiomRecognizeLegacyPassPass(PassRegistry &);
- void initializeHexagonVectorLoopCarriedReuseLegacyPassPass(PassRegistry &);
void initializeHexagonNewValueJumpPass(PassRegistry&);
void initializeHexagonOptAddrModePass(PassRegistry&);
void initializeHexagonPacketizerPass(PassRegistry&);
void initializeHexagonRDFOptPass(PassRegistry&);
void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
+ void initializeHexagonVectorCombineLegacyPass(PassRegistry&);
+ void initializeHexagonVectorLoopCarriedReuseLegacyPassPass(PassRegistry &);
void initializeHexagonVExtractPass(PassRegistry&);
Pass *createHexagonLoopIdiomPass();
Pass *createHexagonVectorLoopCarriedReuseLegacyPass();
@@ -169,14 +173,15 @@ namespace llvm {
CodeGenOpt::Level OptLevel);
FunctionPass *createHexagonLoopRescheduling();
FunctionPass *createHexagonNewValueJump();
- FunctionPass *createHexagonOptimizeSZextends();
FunctionPass *createHexagonOptAddrMode();
+ FunctionPass *createHexagonOptimizeSZextends();
FunctionPass *createHexagonPacketizer(bool Minimal);
FunctionPass *createHexagonPeephole();
FunctionPass *createHexagonRDFOpt();
FunctionPass *createHexagonSplitConst32AndConst64();
FunctionPass *createHexagonSplitDoubleRegs();
FunctionPass *createHexagonStoreWidening();
+ FunctionPass *createHexagonVectorCombineLegacyPass();
FunctionPass *createHexagonVectorPrint();
FunctionPass *createHexagonVExtract();
} // end namespace llvm;
@@ -199,12 +204,13 @@ extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonTarget() {
initializeHexagonGenMuxPass(PR);
initializeHexagonHardwareLoopsPass(PR);
initializeHexagonLoopIdiomRecognizeLegacyPassPass(PR);
- initializeHexagonVectorLoopCarriedReuseLegacyPassPass(PR);
initializeHexagonNewValueJumpPass(PR);
initializeHexagonOptAddrModePass(PR);
initializeHexagonPacketizerPass(PR);
initializeHexagonRDFOptPass(PR);
initializeHexagonSplitDoubleRegsPass(PR);
+ initializeHexagonVectorCombineLegacyPass(PR);
+ initializeHexagonVectorLoopCarriedReuseLegacyPassPass(PR);
initializeHexagonVExtractPass(PR);
}
@@ -350,6 +356,8 @@ void HexagonPassConfig::addIRPasses() {
.sinkCommonInsts(true)));
if (EnableLoopPrefetch)
addPass(createLoopDataPrefetchPass());
+ if (EnableVectorCombine)
+ addPass(createHexagonVectorCombineLegacyPass());
if (EnableCommGEP)
addPass(createHexagonCommonGEP());
// Replace certain combinations of shifts and ands with extracts.
diff --git a/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp b/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
index 3c00b2c17193..1cefa6a04640 100644
--- a/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
+++ b/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
@@ -36,7 +36,7 @@ static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
cl::desc("Control lookup table emission on Hexagon target"));
static cl::opt<bool> HexagonMaskedVMem("hexagon-masked-vmem", cl::init(true),
- cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
+ cl::Hidden, cl::desc("Enable masked loads/stores for HVX"));
// Constant "cost factor" to make floating point operations more expensive
// in terms of vectorization cost. This isn't the best way, but it should
diff --git a/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp b/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp
new file mode 100644
index 000000000000..3ca3e9e5dc39
--- /dev/null
+++ b/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp
@@ -0,0 +1,1474 @@
+//===-- HexagonVectorCombine.cpp ------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+// HexagonVectorCombine is a utility class implementing a variety of functions
+// that assist in vector-based optimizations.
+//
+// AlignVectors: replace unaligned vector loads and stores with aligned ones.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsHexagon.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+
+#include <algorithm>
+#include <deque>
+#include <map>
+#include <set>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "hexagon-vc"
+
+using namespace llvm;
+
+namespace {
+class HexagonVectorCombine {
+public:
+ HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
+ DominatorTree &DT_, TargetLibraryInfo &TLI_,
+ const TargetMachine &TM_)
+ : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
+ TLI(TLI_),
+ HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
+
+ bool run();
+
+ // Common integer type.
+ IntegerType *getIntTy() const;
+ // Byte type: either scalar (when Length = 0), or vector with given
+ // element count.
+ Type *getByteTy(int ElemCount = 0) const;
+ // Boolean type: either scalar (when Length = 0), or vector with given
+ // element count.
+ Type *getBoolTy(int ElemCount = 0) const;
+ // Create a ConstantInt of type returned by getIntTy with the value Val.
+ ConstantInt *getConstInt(int Val) const;
+ // Create a 'true' or 'false' value of type getBoolTy.
+ ConstantInt *getConstBool(bool Val) const;
+ // Get the integer value of V, if it exists.
+ Optional<APInt> getIntValue(const Value *Val) const;
+ // Is V a constant 0, or a vector of 0s?
+ bool isZero(const Value *Val) const;
+ // Is V an undef value?
+ bool isUndef(const Value *Val) const;
+
+ int getSizeOf(const Value *Val) const;
+ int getSizeOf(const Type *Ty) const;
+ int getTypeAlignment(Type *Ty) const;
+
+ VectorType *getByteVectorTy(int ScLen) const;
+ Constant *getNullValue(Type *Ty) const;
+ Constant *getFullValue(Type *Ty) const;
+
+ Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
+ int Length, int Where) const;
+ Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
+ Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
+ Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
+ Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
+ Value *Pad) const;
+ Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
+ Type *ToTy) const;
+ Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
+ Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
+
+ Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
+ Type *RetTy, ArrayRef<Value *> Args) const;
+
+ Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
+
+ template <typename T = std::vector<Instruction *>>
+ bool isSafeToMoveBeforeInBB(const Instruction &In,
+ BasicBlock::const_iterator To,
+ const T &Ignore = {}) const;
+
+ Function &F;
+ const DataLayout &DL;
+ AliasAnalysis &AA;
+ AssumptionCache &AC;
+ DominatorTree &DT;
+ TargetLibraryInfo &TLI;
+ const HexagonSubtarget &HST;
+
+private:
+ bool isByteVecTy(Type *Ty) const;
+ bool isSectorTy(Type *Ty) const;
+ Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
+ int Length) const;
+};
+
+class AlignVectors {
+public:
+ AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
+
+ bool run();
+
+private:
+ using InstList = std::vector<Instruction *>;
+
+ struct Segment {
+ void *Data;
+ int Start;
+ int Size;
+ };
+
+ struct AddrInfo {
+ AddrInfo(const AddrInfo &) = default;
+ AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
+ Align H)
+ : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
+ NeedAlign(HVC.getTypeAlignment(ValTy)) {}
+
+ // XXX: add Size member?
+ Instruction *Inst;
+ Value *Addr;
+ Type *ValTy;
+ Align HaveAlign;
+ Align NeedAlign;
+ int Offset = 0; // Offset (in bytes) from the first member of the
+ // containing AddrList.
+ };
+ using AddrList = std::vector<AddrInfo>;
+
+ struct InstrLess {
+ bool operator()(const Instruction *A, const Instruction *B) const {
+ return A->comesBefore(B);
+ }
+ };
+ using DepList = std::set<Instruction *, InstrLess>;
+
+ struct MoveGroup {
+ MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
+ : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
+ Instruction *Base; // Base instruction of the parent address group.
+ InstList Main; // Main group of instructions.
+ InstList Deps; // List of dependencies.
+ bool IsHvx; // Is this group of HVX instructions?
+ bool IsLoad; // Is this a load group?
+ };
+ using MoveList = std::vector<MoveGroup>;
+
+ struct ByteSpan {
+ struct Segment {
+ Segment(Value *Val, int Begin, int Len)
+ : Val(Val), Start(Begin), Size(Len) {}
+ Segment(const Segment &Seg) = default;
+ Value *Val;
+ int Start;
+ int Size;
+ };
+
+ struct Block {
+ Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
+ Block(Value *Val, int Off, int Len, int Pos)
+ : Seg(Val, Off, Len), Pos(Pos) {}
+ Block(const Block &Blk) = default;
+ Segment Seg;
+ int Pos;
+ };
+
+ int extent() const;
+ ByteSpan section(int Start, int Length) const;
+ ByteSpan &normalize();
+
+ int size() const { return Blocks.size(); }
+ Block &operator[](int i) { return Blocks[i]; }
+
+ std::vector<Block> Blocks;
+
+ using iterator = decltype(Blocks)::iterator;
+ iterator begin() { return Blocks.begin(); }
+ iterator end() { return Blocks.end(); }
+ using const_iterator = decltype(Blocks)::const_iterator;
+ const_iterator begin() const { return Blocks.begin(); }
+ const_iterator end() const { return Blocks.end(); }
+ };
+
+ template <typename T> static T *getIfUnordered(T *MaybeT) {
+ return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
+ }
+ template <typename T> static T *isCandidate(Instruction *In) {
+ return dyn_cast<T>(In);
+ }
+ template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
+ return getIfUnordered(dyn_cast<LoadInst>(In));
+ }
+ template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
+ return getIfUnordered(dyn_cast<StoreInst>(In));
+ }
+
+ Align getAlignFromValue(const Value *V) const;
+ Optional<MemoryLocation> getLocation(const Instruction &In) const;
+ Optional<AddrInfo> getAddrInfo(Instruction &In) const;
+ bool isHvx(const AddrInfo &AI) const;
+
+ Value *getPayload(Value *Val) const;
+ Value *getMask(Value *Val) const;
+ Value *getPassThrough(Value *Val) const;
+
+ Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
+ int Adjust) const;
+ Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
+ int Alignment) const;
+ Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
+ int Alignment, Value *Mask, Value *PassThru) const;
+ Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
+ int Alignment, Value *Mask) const;
+
+ bool createAddressGroups();
+ MoveList createLoadGroups(const AddrList &Group) const;
+ MoveList createStoreGroups(const AddrList &Group) const;
+ bool move(const MoveGroup &Move) const;
+ bool realignGroup(const MoveGroup &Move) const;
+
+ friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
+ friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
+ friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
+
+ std::map<Instruction *, AddrList> AddrGroups;
+ HexagonVectorCombine &HVC;
+};
+
+LLVM_ATTRIBUTE_UNUSED
+raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
+ OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n';
+ OS << "Addr: " << *AI.Addr << '\n';
+ OS << "Type: " << *AI.ValTy << '\n';
+ OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
+ OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
+ OS << "Offset: " << AI.Offset;
+ return OS;
+}
+
+LLVM_ATTRIBUTE_UNUSED
+raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
+ OS << "Main\n";
+ for (Instruction *I : MG.Main)
+ OS << " " << *I << '\n';
+ OS << "Deps\n";
+ for (Instruction *I : MG.Deps)
+ OS << " " << *I << '\n';
+ return OS;
+}
+
+LLVM_ATTRIBUTE_UNUSED
+raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
+ OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
+ for (const AlignVectors::ByteSpan::Block &B : BS) {
+ OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
+ << *B.Seg.Val << '\n';
+ }
+ OS << ']';
+ return OS;
+}
+
+} // namespace
+
+namespace {
+
+template <typename Pred, typename... Ts>
+void erase_if(std::map<Ts...> &map, Pred p) {
+ for (auto i = map.begin(), e = map.end(); i != e;) {
+ if (p(*i))
+ i = map.erase(i);
+ else
+ i = std::next(i);
+ }
+}
+
+// Forward other erase_ifs to the LLVM implementations.
+template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
+ llvm::erase_if(std::forward<T>(container), p);
+}
+
+} // namespace
+
+// --- Begin AlignVectors
+
+auto AlignVectors::ByteSpan::extent() const -> int {
+ if (size() == 0)
+ return 0;
+ int Min = Blocks[0].Pos;
+ int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
+ for (int i = 1, e = size(); i != e; ++i) {
+ Min = std::min(Min, Blocks[i].Pos);
+ Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
+ }
+ return Max - Min;
+}
+
+auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
+ ByteSpan Section;
+ for (const ByteSpan::Block &B : Blocks) {
+ int L = std::max(B.Pos, Start); // Left end.
+ int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
+ if (L < R) {
+ // How much to chop off the beginning of the segment:
+ int Off = L > B.Pos ? L - B.Pos : 0;
+ Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
+ }
+ }
+ return Section;
+}
+
+auto AlignVectors::ByteSpan::normalize() -> ByteSpan & {
+ if (size() == 0)
+ return *this;
+ int Min = Blocks[0].Pos;
+ for (int i = 1, e = size(); i != e; ++i)
+ Min = std::min(Min, Blocks[i].Pos);
+ if (Min != 0) {
+ for (Block &B : Blocks)
+ B.Pos -= Min;
+ }
+ return *this;
+}
+
+auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
+ const auto *C = dyn_cast<ConstantInt>(V);
+ assert(C && "Alignment must be a compile-time constant integer");
+ return C->getAlignValue();
+}
+
+auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
+ if (auto *L = isCandidate<LoadInst>(&In))
+ return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
+ L->getAlign());
+ if (auto *S = isCandidate<StoreInst>(&In))
+ return AddrInfo(HVC, S, S->getPointerOperand(),
+ S->getValueOperand()->getType(), S->getAlign());
+ if (auto *II = isCandidate<IntrinsicInst>(&In)) {
+ Intrinsic::ID ID = II->getIntrinsicID();
+ switch (ID) {
+ case Intrinsic::masked_load:
+ return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
+ getAlignFromValue(II->getArgOperand(1)));
+ case Intrinsic::masked_store:
+ return AddrInfo(HVC, II, II->getArgOperand(1),
+ II->getArgOperand(0)->getType(),
+ getAlignFromValue(II->getArgOperand(2)));
+ }
+ }
+ return Optional<AddrInfo>();
+}
+
+auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
+ return HVC.HST.isTypeForHVX(AI.ValTy);
+}
+
+auto AlignVectors::getPayload(Value *Val) const -> Value * {
+ if (auto *In = dyn_cast<Instruction>(Val)) {
+ Intrinsic::ID ID = 0;
+ if (auto *II = dyn_cast<IntrinsicInst>(In))
+ ID = II->getIntrinsicID();
+ if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
+ return In->getOperand(0);
+ }
+ return Val;
+}
+
+auto AlignVectors::getMask(Value *Val) const -> Value * {
+ if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::masked_load:
+ return II->getArgOperand(2);
+ case Intrinsic::masked_store:
+ return II->getArgOperand(3);
+ }
+ }
+
+ Type *ValTy = getPayload(Val)->getType();
+ if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
+ int ElemCount = VecTy->getElementCount().getFixedValue();
+ return HVC.getFullValue(HVC.getBoolTy(ElemCount));
+ }
+ return HVC.getFullValue(HVC.getBoolTy());
+}
+
+auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
+ if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
+ if (II->getIntrinsicID() == Intrinsic::masked_load)
+ return II->getArgOperand(3);
+ }
+ return UndefValue::get(getPayload(Val)->getType());
+}
+
+auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
+ Type *ValTy, int Adjust) const
+ -> Value * {
+ // The adjustment is in bytes, but if it's a multiple of the type size,
+ // we don't need to do pointer casts.
+ Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType();
+ int ElemSize = HVC.getSizeOf(ElemTy);
+ if (Adjust % ElemSize == 0) {
+ Value *Tmp0 = Builder.CreateGEP(Ptr, HVC.getConstInt(Adjust / ElemSize));
+ return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
+ }
+
+ PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
+ Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
+ Value *Tmp1 = Builder.CreateGEP(Tmp0, HVC.getConstInt(Adjust));
+ return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
+}
+
+auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
+ Type *ValTy, int Alignment) const
+ -> Value * {
+ Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
+ Value *Mask = HVC.getConstInt(-Alignment);
+ Value *And = Builder.CreateAnd(AsInt, Mask);
+ return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
+}
+
+auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
+ Value *Ptr, int Alignment, Value *Mask,
+ Value *PassThru) const -> Value * {
+ assert(!HVC.isUndef(Mask)); // Should this be allowed?
+ if (HVC.isZero(Mask))
+ return PassThru;
+ if (Mask == ConstantInt::getTrue(Mask->getType()))
+ return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
+ return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru);
+}
+
+auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
+ Value *Ptr, int Alignment,
+ Value *Mask) const -> Value * {
+ if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
+ return UndefValue::get(Val->getType());
+ if (Mask == ConstantInt::getTrue(Mask->getType()))
+ return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
+ return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
+}
+
+auto AlignVectors::createAddressGroups() -> bool {
+ // An address group created here may contain instructions spanning
+ // multiple basic blocks.
+ AddrList WorkStack;
+
+ auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
+ for (AddrInfo &W : WorkStack) {
+ if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
+ return std::make_pair(W.Inst, *D);
+ }
+ return std::make_pair(nullptr, 0);
+ };
+
+ auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
+ BasicBlock &Block = *DomN->getBlock();
+ for (Instruction &I : Block) {
+ auto AI = getAddrInfo(I);
+ if (!AI)
+ continue;
+ auto F = findBaseAndOffset(*AI);
+ Instruction *GroupInst;
+ if (Instruction *BI = F.first) {
+ AI->Offset = F.second;
+ GroupInst = BI;
+ } else {
+ WorkStack.push_back(*AI);
+ GroupInst = AI->Inst;
+ }
+ AddrGroups[GroupInst].push_back(*AI);
+ }
+
+ for (DomTreeNode *C : DomN->children())
+ Visit(C, Visit);
+
+ while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
+ WorkStack.pop_back();
+ };
+
+ traverseBlock(HVC.DT.getRootNode(), traverseBlock);
+ assert(WorkStack.empty());
+
+ // AddrGroups are formed.
+
+ // Remove groups of size 1.
+ erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
+ // Remove groups that don't use HVX types.
+ erase_if(AddrGroups, [&](auto &G) {
+ return !llvm::any_of(
+ G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
+ });
+ // Remove groups where everything is properly aligned.
+ erase_if(AddrGroups, [&](auto &G) {
+ return llvm::all_of(G.second,
+ [&](auto &I) { return I.HaveAlign >= I.NeedAlign; });
+ });
+
+ return !AddrGroups.empty();
+}
+
+auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
+ // Form load groups.
+ // To avoid complications with moving code across basic blocks, only form
+ // groups that are contained within a single basic block.
+
+ auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
+ BasicBlock *Parent = Base->getParent();
+ assert(In->getParent() == Parent &&
+ "Base and In should be in the same block");
+ assert(Base->comesBefore(In) && "Base should come before In");
+
+ DepList Deps;
+ std::deque<Instruction *> WorkQ = {In};
+ while (!WorkQ.empty()) {
+ Instruction *D = WorkQ.front();
+ WorkQ.pop_front();
+ Deps.insert(D);
+ for (Value *Op : D->operands()) {
+ if (auto *I = dyn_cast<Instruction>(Op)) {
+ if (I->getParent() == Parent && Base->comesBefore(I))
+ WorkQ.push_back(I);
+ }
+ }
+ }
+ return Deps;
+ };
+
+ auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
+ assert(!Move.Main.empty() && "Move group should have non-empty Main");
+ // Don't mix HVX and non-HVX instructions.
+ if (Move.IsHvx != isHvx(Info))
+ return false;
+ // Leading instruction in the load group.
+ Instruction *Base = Move.Main.front();
+ if (Base->getParent() != Info.Inst->getParent())
+ return false;
+
+ auto isSafeToMoveToBase = [&](const Instruction *I) {
+ return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
+ };
+ DepList Deps = getUpwardDeps(Info.Inst, Base);
+ if (!llvm::all_of(Deps, isSafeToMoveToBase))
+ return false;
+
+ // The dependencies will be moved together with the load, so make sure
+ // that none of them could be moved independently in another group.
+ Deps.erase(Info.Inst);
+ auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
+ if (llvm::any_of(Deps, inAddrMap))
+ return false;
+ Move.Main.push_back(Info.Inst);
+ Move.Deps.insert(Move.Deps.end(), Deps.begin(), Deps.end());
+ return true;
+ };
+
+ MoveList LoadGroups;
+
+ for (const AddrInfo &Info : Group) {
+ if (!Info.Inst->mayReadFromMemory())
+ continue;
+ if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
+ LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
+ }
+
+ // Erase singleton groups.
+ erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
+ return LoadGroups;
+}
+
+auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
+ // Form store groups.
+ // To avoid complications with moving code across basic blocks, only form
+ // groups that are contained within a single basic block.
+
+ auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
+ assert(!Move.Main.empty() && "Move group should have non-empty Main");
+ // For stores with return values we'd have to collect downward depenencies.
+ // There are no such stores that we handle at the moment, so omit that.
+ assert(Info.Inst->getType()->isVoidTy() &&
+ "Not handling stores with return values");
+ // Don't mix HVX and non-HVX instructions.
+ if (Move.IsHvx != isHvx(Info))
+ return false;
+ // For stores we need to be careful whether it's safe to move them.
+ // Stores that are otherwise safe to move together may not appear safe
+ // to move over one another (i.e. isSafeToMoveBefore may return false).
+ Instruction *Base = Move.Main.front();
+ if (Base->getParent() != Info.Inst->getParent())
+ return false;
+ if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
+ return false;
+ Move.Main.push_back(Info.Inst);
+ return true;
+ };
+
+ MoveList StoreGroups;
+
+ for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
+ const AddrInfo &Info = *I;
+ if (!Info.Inst->mayWriteToMemory())
+ continue;
+ if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
+ StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
+ }
+
+ // Erase singleton groups.
+ erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
+ return StoreGroups;
+}
+
+auto AlignVectors::move(const MoveGroup &Move) const -> bool {
+ assert(!Move.Main.empty() && "Move group should have non-empty Main");
+ Instruction *Where = Move.Main.front();
+
+ if (Move.IsLoad) {
+ // Move all deps to before Where, keeping order.
+ for (Instruction *D : Move.Deps)
+ D->moveBefore(Where);
+ // Move all main instructions to after Where, keeping order.
+ ArrayRef<Instruction *> Main(Move.Main);
+ for (Instruction *M : Main.drop_front(1)) {
+ M->moveAfter(Where);
+ Where = M;
+ }
+ } else {
+ // NOTE: Deps are empty for "store" groups. If they need to be
+ // non-empty, decide on the order.
+ assert(Move.Deps.empty());
+ // Move all main instructions to before Where, inverting order.
+ ArrayRef<Instruction *> Main(Move.Main);
+ for (Instruction *M : Main.drop_front(1)) {
+ M->moveBefore(Where);
+ Where = M;
+ }
+ }
+
+ return Move.Main.size() + Move.Deps.size() > 1;
+}
+
+auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
+ // Return the element with the maximum alignment from Range,
+ // where GetValue obtains the value to compare from an element.
+ auto getMaxOf = [](auto Range, auto GetValue) {
+ return *std::max_element(
+ Range.begin(), Range.end(),
+ [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
+ };
+
+ const AddrList &BaseInfos = AddrGroups.at(Move.Base);
+
+ // Conceptually, there is a vector of N bytes covering the addresses
+ // starting from the minimum offset (i.e. Base.Addr+Start). This vector
+ // represents a contiguous memory region that spans all accessed memory
+ // locations.
+ // The correspondence between loaded or stored values will be expressed
+ // in terms of this vector. For example, the 0th element of the vector
+ // from the Base address info will start at byte Start from the beginning
+ // of this conceptual vector.
+ //
+ // This vector will be loaded/stored starting at the nearest down-aligned
+ // address and the amount od the down-alignment will be AlignVal:
+ // valign(load_vector(align_down(Base+Start)), AlignVal)
+
+ std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
+ AddrList MoveInfos;
+ llvm::copy_if(
+ BaseInfos, std::back_inserter(MoveInfos),
+ [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
+
+ // Maximum alignment present in the whole address group.
+ const AddrInfo &WithMaxAlign =
+ getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
+ Align MaxGiven = WithMaxAlign.HaveAlign;
+
+ // Minimum alignment present in the move address group.
+ const AddrInfo &WithMinOffset =
+ getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
+
+ const AddrInfo &WithMaxNeeded =
+ getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
+ Align MinNeeded = WithMaxNeeded.NeedAlign;
+
+ // Set the builder at the top instruction in the move group.
+ Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
+ IRBuilder<> Builder(TopIn);
+ Value *AlignAddr = nullptr; // Actual aligned address.
+ Value *AlignVal = nullptr; // Right-shift amount (for valign).
+
+ if (MinNeeded <= MaxGiven) {
+ int Start = WithMinOffset.Offset;
+ int OffAtMax = WithMaxAlign.Offset;
+ // Shift the offset of the maximally aligned instruction (OffAtMax)
+ // back by just enough multiples of the required alignment to cover the
+ // distance from Start to OffAtMax.
+ // Calculate the address adjustment amount based on the address with the
+ // maximum alignment. This is to allow a simple gep instruction instead
+ // of potential bitcasts to i8*.
+ int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
+ AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
+ WithMaxAlign.ValTy, Adjust);
+ int Diff = Start - (OffAtMax + Adjust);
+ AlignVal = HVC.getConstInt(Diff);
+ // Sanity.
+ assert(Diff >= 0);
+ assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
+ } else {
+ // WithMinOffset is the lowest address in the group,
+ // WithMinOffset.Addr = Base+Start.
+ // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
+ // mask off unnecessary bits, so it's ok to just the original pointer as
+ // the alignment amount.
+ // Do an explicit down-alignment of the address to avoid creating an
+ // aligned instruction with an address that is not really aligned.
+ AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
+ WithMinOffset.ValTy, MinNeeded.value());
+ AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
+ }
+
+ ByteSpan VSpan;
+ for (const AddrInfo &AI : MoveInfos) {
+ VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
+ AI.Offset - WithMinOffset.Offset);
+ }
+
+ // The aligned loads/stores will use blocks that are either scalars,
+ // or HVX vectors. Let "sector" be the unified term for such a block.
+ // blend(scalar, vector) -> sector...
+ int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
+ : std::max<int>(MinNeeded.value(), 4);
+ assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
+ assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
+
+ Type *SecTy = HVC.getByteTy(ScLen);
+ int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
+
+ if (Move.IsLoad) {
+ ByteSpan ASpan;
+ auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
+ auto *Undef = UndefValue::get(SecTy);
+
+ for (int i = 0; i != NumSectors + 1; ++i) {
+ Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
+ // FIXME: generate a predicated load?
+ Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
+ ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
+ }
+
+ for (int j = 0; j != NumSectors; ++j) {
+ ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
+ ASpan[j + 1].Seg.Val, AlignVal);
+ }
+
+ for (ByteSpan::Block &B : VSpan) {
+ ByteSpan Section = ASpan.section(B.Pos, B.Seg.Size).normalize();
+ Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
+ for (ByteSpan::Block &S : Section) {
+ Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
+ Accum =
+ HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
+ }
+ // Instead of casting everything to bytes for the vselect, cast to the
+ // original value type. This will avoid complications with casting masks.
+ // For example, in cases when the original mask applied to i32, it could
+ // be converted to a mask applicable to i8 via pred_typecast intrinsic,
+ // but if the mask is not exactly of HVX length, extra handling would be
+ // needed to make it work.
+ Type *ValTy = getPayload(B.Seg.Val)->getType();
+ Value *Cast = Builder.CreateBitCast(Accum, ValTy);
+ Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
+ getPassThrough(B.Seg.Val));
+ B.Seg.Val->replaceAllUsesWith(Sel);
+ }
+ } else {
+ // Stores.
+ ByteSpan ASpanV, ASpanM;
+
+ for (int i = -1; i != NumSectors; ++i) {
+ ByteSpan Section = VSpan.section(i * ScLen, ScLen).normalize();
+ Value *AccumV = UndefValue::get(SecTy);
+ Value *AccumM = HVC.getNullValue(SecTy);
+ for (ByteSpan::Block &S : Section) {
+ Value *Pay = getPayload(S.Seg.Val);
+ Value *Mask = HVC.rescale(Builder, getMask(S.Seg.Val), Pay->getType(),
+ HVC.getByteTy());
+ AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
+ S.Seg.Start, S.Seg.Size, S.Pos);
+ AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
+ S.Seg.Start, S.Seg.Size, S.Pos);
+ }
+ ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
+ ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
+ }
+
+ // vlalign
+ for (int j = 1; j != NumSectors + 1; ++j) {
+ ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
+ ASpanV[j].Seg.Val, AlignVal);
+ ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
+ ASpanM[j].Seg.Val, AlignVal);
+ }
+
+ for (int i = 0; i != NumSectors; ++i) {
+ Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
+ Value *Val = ASpanV[i].Seg.Val;
+ Value *Mask = ASpanM[i].Seg.Val; // bytes
+ if (!HVC.isUndef(Val) && !HVC.isZero(Mask))
+ createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask));
+ }
+ }
+
+ for (auto *Inst : Move.Main)
+ Inst->eraseFromParent();
+
+ return true;
+}
+
+auto AlignVectors::run() -> bool {
+ if (!createAddressGroups())
+ return false;
+
+ bool Changed = false;
+ MoveList LoadGroups, StoreGroups;
+
+ for (auto &G : AddrGroups) {
+ llvm::append_range(LoadGroups, createLoadGroups(G.second));
+ llvm::append_range(StoreGroups, createStoreGroups(G.second));
+ }
+
+ for (auto &M : LoadGroups)
+ Changed |= move(M);
+ for (auto &M : StoreGroups)
+ Changed |= move(M);
+
+ for (auto &M : LoadGroups)
+ Changed |= realignGroup(M);
+ for (auto &M : StoreGroups)
+ Changed |= realignGroup(M);
+
+ return Changed;
+}
+
+// --- End AlignVectors
+
+auto HexagonVectorCombine::run() -> bool {
+ if (!HST.useHVXOps())
+ return false;
+
+ bool Changed = AlignVectors(*this).run();
+ return Changed;
+}
+
+auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
+ return Type::getInt32Ty(F.getContext());
+}
+
+auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
+ assert(ElemCount >= 0);
+ IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
+ if (ElemCount == 0)
+ return ByteTy;
+ return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
+}
+
+auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
+ assert(ElemCount >= 0);
+ IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
+ if (ElemCount == 0)
+ return BoolTy;
+ return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
+}
+
+auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
+ return ConstantInt::getSigned(getIntTy(), Val);
+}
+
+auto HexagonVectorCombine::getConstBool(bool Val) const -> ConstantInt * {
+ Constant *C = Val ? ConstantInt::getTrue(getBoolTy())
+ : ConstantInt::getFalse(getBoolTy());
+ return cast<ConstantInt>(C);
+}
+
+auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
+ if (auto *C = dyn_cast<Constant>(Val))
+ return C->isZeroValue();
+ return false;
+}
+
+auto HexagonVectorCombine::getIntValue(const Value *Val) const
+ -> Optional<APInt> {
+ if (auto *CI = dyn_cast<ConstantInt>(Val))
+ return CI->getValue();
+ return None;
+}
+
+auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
+ return isa<UndefValue>(Val);
+}
+
+auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
+ return getSizeOf(Val->getType());
+}
+
+auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
+ return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
+}
+
+auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
+ // The actual type may be shorter than the HVX vector, so determine
+ // the alignment based on subtarget info.
+ if (HST.isTypeForHVX(Ty))
+ return HST.getVectorLength();
+ return DL.getABITypeAlign(Ty).value();
+}
+
+auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
+ assert(Ty->isIntOrIntVectorTy());
+ auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
+ if (auto *VecTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
+ return Zero;
+}
+
+auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
+ assert(Ty->isIntOrIntVectorTy());
+ auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
+ if (auto *VecTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
+ return Minus1;
+}
+
+// Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
+auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
+ int Start, int Length, int Where) const
+ -> Value * {
+ assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
+ int SrcLen = getSizeOf(Src);
+ int DstLen = getSizeOf(Dst);
+ assert(0 <= Start && Start + Length <= SrcLen);
+ assert(0 <= Where && Where + Length <= DstLen);
+
+ int P2Len = PowerOf2Ceil(SrcLen | DstLen);
+ auto *Undef = UndefValue::get(getByteTy());
+ Value *P2Src = vresize(Builder, Src, P2Len, Undef);
+ Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
+
+ SmallVector<int, 256> SMask(P2Len);
+ for (int i = 0; i != P2Len; ++i) {
+ // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
+ // Otherwise, pick Dst[i];
+ SMask[i] =
+ (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
+ }
+
+ Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
+ return vresize(Builder, P2Insert, DstLen, Undef);
+}
+
+auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
+ Value *Amt) const -> Value * {
+ assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
+ assert(isSectorTy(Hi->getType()));
+ if (isZero(Amt))
+ return Hi;
+ int VecLen = getSizeOf(Hi);
+ if (auto IntAmt = getIntValue(Amt))
+ return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
+ VecLen);
+
+ if (HST.isTypeForHVX(Hi->getType())) {
+ int HwLen = HST.getVectorLength();
+ assert(VecLen == HwLen && "Expecting an exact HVX type");
+ Intrinsic::ID V6_vlalignb = HwLen == 64
+ ? Intrinsic::hexagon_V6_vlalignb
+ : Intrinsic::hexagon_V6_vlalignb_128B;
+ return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
+ {Hi, Lo, Amt});
+ }
+
+ if (VecLen == 4) {
+ Value *Pair = concat(Builder, {Lo, Hi});
+ Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
+ Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
+ return Builder.CreateBitCast(Trunc, Hi->getType());
+ }
+ if (VecLen == 8) {
+ Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
+ return vralignb(Builder, Lo, Hi, Sub);
+ }
+ llvm_unreachable("Unexpected vector length");
+}
+
+auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
+ Value *Amt) const -> Value * {
+ assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
+ assert(isSectorTy(Lo->getType()));
+ if (isZero(Amt))
+ return Lo;
+ int VecLen = getSizeOf(Lo);
+ if (auto IntAmt = getIntValue(Amt))
+ return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
+
+ if (HST.isTypeForHVX(Lo->getType())) {
+ int HwLen = HST.getVectorLength();
+ assert(VecLen == HwLen && "Expecting an exact HVX type");
+ Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
+ : Intrinsic::hexagon_V6_valignb_128B;
+ return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
+ {Hi, Lo, Amt});
+ }
+
+ if (VecLen == 4) {
+ Value *Pair = concat(Builder, {Lo, Hi});
+ Value *Shift = Builder.CreateLShr(Pair, Amt);
+ Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
+ return Builder.CreateBitCast(Trunc, Lo->getType());
+ }
+ if (VecLen == 8) {
+ Type *Int64Ty = Type::getInt64Ty(F.getContext());
+ Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
+ Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
+ Function *FI = Intrinsic::getDeclaration(F.getParent(),
+ Intrinsic::hexagon_S2_valignrb);
+ Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
+ return Builder.CreateBitCast(Call, Lo->getType());
+ }
+ llvm_unreachable("Unexpected vector length");
+}
+
+// Concatenates a sequence of vectors of the same type.
+auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
+ ArrayRef<Value *> Vecs) const -> Value * {
+ assert(!Vecs.empty());
+ SmallVector<int, 256> SMask;
+ std::vector<Value *> Work[2];
+ int ThisW = 0, OtherW = 1;
+
+ Work[ThisW].assign(Vecs.begin(), Vecs.end());
+ while (Work[ThisW].size() > 1) {
+ auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
+ int ElemCount = Ty->getElementCount().getFixedValue();
+ SMask.resize(ElemCount * 2);
+ std::iota(SMask.begin(), SMask.end(), 0);
+
+ Work[OtherW].clear();
+ if (Work[ThisW].size() % 2 != 0)
+ Work[ThisW].push_back(UndefValue::get(Ty));
+ for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
+ Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
+ Work[ThisW][i + 1], SMask);
+ Work[OtherW].push_back(Joined);
+ }
+ std::swap(ThisW, OtherW);
+ }
+
+ // Since there may have been some undefs appended to make shuffle operands
+ // have the same type, perform the last shuffle to only pick the original
+ // elements.
+ SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
+ std::iota(SMask.begin(), SMask.end(), 0);
+ Value *Total = Work[OtherW].front();
+ return Builder.CreateShuffleVector(Total, UndefValue::get(Total->getType()),
+ SMask);
+}
+
+auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
+ int NewSize, Value *Pad) const -> Value * {
+ assert(isa<VectorType>(Val->getType()));
+ auto *ValTy = cast<VectorType>(Val->getType());
+ auto *PadTy = Pad->getType();
+ assert(ValTy->getElementType() == PadTy);
+
+ int CurSize = ValTy->getElementCount().getFixedValue();
+ if (CurSize == NewSize)
+ return Val;
+ // Truncate?
+ if (CurSize > NewSize)
+ return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
+ // Extend.
+ SmallVector<int, 128> SMask(NewSize);
+ std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
+ std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
+ Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
+ return Builder.CreateShuffleVector(Val, PadVec, SMask);
+}
+
+auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
+ Type *FromTy, Type *ToTy) const -> Value * {
+ // Mask is a vector <N x i1>, where each element corresponds to an
+ // element of FromTy. Remap it so that each element will correspond
+ // to an element of ToTy.
+ assert(isa<VectorType>(Mask->getType()));
+
+ Type *FromSTy = FromTy->getScalarType();
+ Type *ToSTy = ToTy->getScalarType();
+ if (FromSTy == ToSTy)
+ return Mask;
+
+ int FromSize = getSizeOf(FromSTy);
+ int ToSize = getSizeOf(ToSTy);
+ assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
+
+ auto *MaskTy = cast<VectorType>(Mask->getType());
+ int FromCount = MaskTy->getElementCount().getFixedValue();
+ int ToCount = (FromCount * FromSize) / ToSize;
+ assert((FromCount * FromSize) % ToSize == 0);
+
+ // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
+ // -> trunc to <M x i1>.
+ Value *Ext = Builder.CreateSExt(
+ Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false));
+ Value *Cast = Builder.CreateBitCast(
+ Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false));
+ return Builder.CreateTrunc(
+ Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
+}
+
+// Bitcast to bytes, and return least significant bits.
+auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
+ -> Value * {
+ Type *ScalarTy = Val->getType()->getScalarType();
+ if (ScalarTy == getBoolTy())
+ return Val;
+
+ Value *Bytes = vbytes(Builder, Val);
+ if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
+ return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(Bytes)));
+ // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
+ // <1 x i1>.
+ return Builder.CreateTrunc(Bytes, getBoolTy());
+}
+
+// Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
+auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
+ -> Value * {
+ Type *ScalarTy = Val->getType()->getScalarType();
+ if (ScalarTy == getByteTy())
+ return Val;
+
+ if (ScalarTy != getBoolTy())
+ return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
+ // For bool, return a sext from i1 to i8.
+ if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
+ return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
+ return Builder.CreateSExt(Val, getByteTy());
+}
+
+auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
+ Intrinsic::ID IntID, Type *RetTy,
+ ArrayRef<Value *> Args) const
+ -> Value * {
+ int HwLen = HST.getVectorLength();
+ Type *BoolTy = Type::getInt1Ty(F.getContext());
+ Type *Int32Ty = Type::getInt32Ty(F.getContext());
+ Type *Int64Ty = Type::getInt64Ty(F.getContext());
+ // HVX vector -> v16i32/v32i32
+ // HVX vector predicate -> v512i1/v1024i1
+ auto getTypeForIntrin = [&](Type *Ty) -> Type * {
+ if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
+ Type *ElemTy = cast<VectorType>(Ty)->getElementType();
+ if (ElemTy == Int32Ty)
+ return Ty;
+ if (ElemTy == BoolTy)
+ return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
+ return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
+ }
+ // Non-HVX type. It should be a scalar.
+ assert(Ty == Int32Ty || Ty == Int64Ty);
+ return Ty;
+ };
+
+ auto getCast = [&](IRBuilder<> &Builder, Value *Val,
+ Type *DestTy) -> Value * {
+ Type *SrcTy = Val->getType();
+ if (SrcTy == DestTy)
+ return Val;
+ if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
+ if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
+ // This should take care of casts the other way too, for example
+ // v1024i1 -> v32i1.
+ Intrinsic::ID TC = HwLen == 64
+ ? Intrinsic::hexagon_V6_pred_typecast
+ : Intrinsic::hexagon_V6_pred_typecast_128B;
+ Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
+ {DestTy, Val->getType()});
+ return Builder.CreateCall(FI, {Val});
+ }
+ // Non-predicate HVX vector.
+ return Builder.CreateBitCast(Val, DestTy);
+ }
+ // Non-HVX type. It should be a scalar, and it should already have
+ // a valid type.
+ llvm_unreachable("Unexpected type");
+ };
+
+ SmallVector<Value *, 4> IntOps;
+ for (Value *A : Args)
+ IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
+ Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
+ Value *Call = Builder.CreateCall(FI, IntOps);
+
+ Type *CallTy = Call->getType();
+ if (CallTy == RetTy)
+ return Call;
+ // Scalar types should have RetTy matching the call return type.
+ assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
+ if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
+ return getCast(Builder, Call, RetTy);
+ return Builder.CreateBitCast(Call, RetTy);
+}
+
+auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
+ Value *Ptr1) const
+ -> Optional<int> {
+ struct Builder : IRBuilder<> {
+ Builder(BasicBlock *B) : IRBuilder<>(B) {}
+ ~Builder() {
+ for (Instruction *I : llvm::reverse(ToErase))
+ I->eraseFromParent();
+ }
+ SmallVector<Instruction *, 8> ToErase;
+ };
+
+#define CallBuilder(B, F) \
+ [&](auto &B_) { \
+ Value *V = B_.F; \
+ if (auto *I = dyn_cast<Instruction>(V)) \
+ B_.ToErase.push_back(I); \
+ return V; \
+ }(B)
+
+ auto Simplify = [&](Value *V) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
+ if (Value *S = SimplifyInstruction(I, Q))
+ return S;
+ }
+ return V;
+ };
+
+ auto StripBitCast = [](Value *V) {
+ while (auto *C = dyn_cast<BitCastInst>(V))
+ V = C->getOperand(0);
+ return V;
+ };
+
+ Ptr0 = StripBitCast(Ptr0);
+ Ptr1 = StripBitCast(Ptr1);
+ if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
+ return None;
+
+ auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
+ auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
+ if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
+ return None;
+
+ Builder B(Gep0->getParent());
+ Value *BasePtr = Gep0->getPointerOperand();
+ int Scale = DL.getTypeStoreSize(BasePtr->getType()->getPointerElementType());
+
+ // FIXME: for now only check GEPs with a single index.
+ if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
+ return None;
+
+ Value *Idx0 = Gep0->getOperand(1);
+ Value *Idx1 = Gep1->getOperand(1);
+
+ // First, try to simplify the subtraction directly.
+ if (auto *Diff = dyn_cast<ConstantInt>(
+ Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
+ return Diff->getSExtValue() * Scale;
+
+ KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
+ KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
+ APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
+ if (Unknown.isAllOnesValue())
+ return None;
+
+ Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
+ Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
+ Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
+ Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
+ int Diff0 = 0;
+ if (auto *C = dyn_cast<ConstantInt>(SubU)) {
+ Diff0 = C->getSExtValue();
+ } else {
+ return None;
+ }
+
+ Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
+ Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
+ Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
+ Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
+ int Diff1 = 0;
+ if (auto *C = dyn_cast<ConstantInt>(SubK)) {
+ Diff1 = C->getSExtValue();
+ } else {
+ return None;
+ }
+
+ return (Diff0 + Diff1) * Scale;
+
+#undef CallBuilder
+}
+
+template <typename T>
+auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
+ BasicBlock::const_iterator To,
+ const T &Ignore) const
+ -> bool {
+ auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
+ if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::masked_load:
+ return MemoryLocation::getForArgument(II, 0, TLI);
+ case Intrinsic::masked_store:
+ return MemoryLocation::getForArgument(II, 1, TLI);
+ }
+ }
+ return MemoryLocation::getOrNone(&I);
+ };
+
+ // The source and the destination must be in the same basic block.
+ const BasicBlock &Block = *In.getParent();
+ assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
+ // No PHIs.
+ if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
+ return false;
+
+ if (!mayBeMemoryDependent(In))
+ return true;
+ bool MayWrite = In.mayWriteToMemory();
+ auto MaybeLoc = getLocOrNone(In);
+
+ auto From = In.getIterator();
+ if (From == To)
+ return true;
+ bool MoveUp = (To != Block.end() && To->comesBefore(&In));
+ auto Range =
+ MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
+ for (auto It = Range.first; It != Range.second; ++It) {
+ const Instruction &I = *It;
+ if (llvm::is_contained(Ignore, &I))
+ continue;
+ // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
+ if (I.mayThrow())
+ return false;
+ if (auto *CB = dyn_cast<CallBase>(&I)) {
+ if (!CB->hasFnAttr(Attribute::WillReturn))
+ return false;
+ if (!CB->hasFnAttr(Attribute::NoSync))
+ return false;
+ }
+ if (I.mayReadOrWriteMemory()) {
+ auto MaybeLocI = getLocOrNone(I);
+ if (MayWrite || I.mayWriteToMemory()) {
+ if (!MaybeLoc || !MaybeLocI)
+ return false;
+ if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
+ if (auto *VecTy = dyn_cast<VectorType>(Ty))
+ return VecTy->getElementType() == getByteTy();
+ return false;
+}
+
+auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
+ if (!isByteVecTy(Ty))
+ return false;
+ int Size = getSizeOf(Ty);
+ if (HST.isTypeForHVX(Ty))
+ return Size == static_cast<int>(HST.getVectorLength());
+ return Size == 4 || Size == 8;
+}
+
+auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
+ Value *Hi, int Start,
+ int Length) const -> Value * {
+ assert(0 <= Start && Start < Length);
+ SmallVector<int, 128> SMask(Length);
+ std::iota(SMask.begin(), SMask.end(), Start);
+ return Builder.CreateShuffleVector(Lo, Hi, SMask);
+}
+
+// Pass management.
+
+namespace llvm {
+void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
+FunctionPass *createHexagonVectorCombineLegacyPass();
+} // namespace llvm
+
+namespace {
+class HexagonVectorCombineLegacy : public FunctionPass {
+public:
+ static char ID;
+
+ HexagonVectorCombineLegacy() : FunctionPass(ID) {}
+
+ StringRef getPassName() const override { return "Hexagon Vector Combine"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetPassConfig>();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnFunction(Function &F) override {
+ AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ AssumptionCache &AC =
+ getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ TargetLibraryInfo &TLI =
+ getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
+ HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
+ return HVC.run();
+ }
+};
+} // namespace
+
+char HexagonVectorCombineLegacy::ID = 0;
+
+INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
+ "Hexagon Vector Combine", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
+ "Hexagon Vector Combine", false, false)
+
+FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
+ return new HexagonVectorCombineLegacy();
+}
diff --git a/llvm/test/CodeGen/Hexagon/autohvx/masked-vector-align.ll b/llvm/test/CodeGen/Hexagon/autohvx/masked-vector-align.ll
new file mode 100644
index 000000000000..27afe949d889
--- /dev/null
+++ b/llvm/test/CodeGen/Hexagon/autohvx/masked-vector-align.ll
@@ -0,0 +1,69 @@
+; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
+; RUN: llc -march=hexagon < %s | FileCheck %s
+
+; Function Attrs: nounwind
+define <32 x i32> @f0(i8* %a0, i32 %a1) #0 {
+; CHECK-LABEL: f0:
+; CHECK: // %bb.0: // %b0
+; CHECK-NEXT: {
+; CHECK-NEXT: r0 = add(r1,r0)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: r7 = #8
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: r4 = ##.LCPI0_0
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: r2 = #-1
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: v0 = vmem(r0+#1)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: v1 = vmem(r0+#2)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: r0 = add(r0,#128)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: v1 = valign(v1,v0,r7)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: v2 = vmem(r4+#0)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: q0 = vand(v2,r2)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: v0.w = vadd(v0.w,v1.w)
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: if (q0) vmem(r0+#0) = v0
+; CHECK-NEXT: }
+; CHECK-NEXT: {
+; CHECK-NEXT: jumpr r31
+; CHECK-NEXT: }
+b0:
+ %v0 = add i32 %a1, 128
+ %v1 = getelementptr i8, i8* %a0, i32 %v0
+ %v2 = bitcast i8* %v1 to <32 x i32>*
+ %v3 = tail call <32 x i32> @llvm.masked.load.v32i32.p0v32i32(<32 x i32>* %v2, i32 128, <32 x i1> <i1 true, i1 true, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false>, <32 x i32> undef)
+ %v4 = add i32 %a1, 136
+ %v5 = getelementptr i8, i8* %a0, i32 %v4
+ %v6 = bitcast i8* %v5 to <32 x i32>*
+ %v7 = tail call <32 x i32> @llvm.masked.load.v32i32.p0v32i32(<32 x i32>* %v6, i32 8, <32 x i1> <i1 true, i1 true, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false>, <32 x i32> undef)
+ %v8 = add <32 x i32> %v3, %v7
+ tail call void @llvm.masked.store.v32i32.p0v32i32(<32 x i32> %v8, <32 x i32>* %v2, i32 128, <32 x i1> <i1 true, i1 true, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false, i1 false>)
+ ret <32 x i32> %v8
+}
+
+; Function Attrs: argmemonly nounwind readonly willreturn
+declare <32 x i32> @llvm.masked.load.v32i32.p0v32i32(<32 x i32>*, i32 immarg, <32 x i1>, <32 x i32>) #1
+
+; Function Attrs: argmemonly nounwind willreturn
+declare void @llvm.masked.store.v32i32.p0v32i32(<32 x i32>, <32 x i32>*, i32 immarg, <32 x i1>) #2
+
+attributes #0 = { nounwind "target-cpu"="hexagonv66" "target-features"="+hvx,+hvx-length128b,-packets" }
+attributes #1 = { argmemonly nounwind readonly willreturn }
+attributes #2 = { argmemonly nounwind willreturn }
diff --git a/llvm/test/CodeGen/Hexagon/v6vect-no-sideeffects.ll b/llvm/test/CodeGen/Hexagon/v6vect-no-sideeffects.ll
index 06a70a8f1ff5..cb9c878d1a7c 100644
--- a/llvm/test/CodeGen/Hexagon/v6vect-no-sideeffects.ll
+++ b/llvm/test/CodeGen/Hexagon/v6vect-no-sideeffects.ll
@@ -1,4 +1,4 @@
-; RUN: llc -march=hexagon -enable-pipeliner=false < %s | FileCheck %s
+; RUN: llc -march=hexagon -enable-pipeliner=false -hexagon-vector-combine=false < %s | FileCheck %s
; Test that the vsplat and vmemu are not all serialized due to chain edges
; caused by the hasSideEffects flag. The exact code generation may change
More information about the llvm-branch-commits
mailing list