[clang] [CIR] Upstream overflow builtins (PR #166643)
via cfe-commits
cfe-commits at lists.llvm.org
Tue Nov 18 13:57:30 PST 2025
https://github.com/adams381 updated https://github.com/llvm/llvm-project/pull/166643
>From 7abb2167def4dfceeb96c4b231a94fd8308c6e08 Mon Sep 17 00:00:00 2001
From: Adam Smith <adams at nvidia.com>
Date: Wed, 5 Nov 2025 13:04:40 -0800
Subject: [PATCH 1/4] [CIR] Upstream overflow builtins
This implements the builtins that handle overflow.
---
.../CIR/Dialect/Builder/CIRBaseBuilder.h | 14 +
clang/include/clang/CIR/Dialect/IR/CIROps.td | 76 ++++
clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp | 194 ++++++++++
.../CIR/Lowering/DirectToLLVM/LowerToLLVM.cpp | 112 ++++++
clang/test/CIR/CodeGen/builtins-overflow.cpp | 364 ++++++++++++++++++
5 files changed, 760 insertions(+)
create mode 100644 clang/test/CIR/CodeGen/builtins-overflow.cpp
diff --git a/clang/include/clang/CIR/Dialect/Builder/CIRBaseBuilder.h b/clang/include/clang/CIR/Dialect/Builder/CIRBaseBuilder.h
index 3288f5b12c77e..6c1951714ba1f 100644
--- a/clang/include/clang/CIR/Dialect/Builder/CIRBaseBuilder.h
+++ b/clang/include/clang/CIR/Dialect/Builder/CIRBaseBuilder.h
@@ -408,6 +408,20 @@ class CIRBaseBuilderTy : public mlir::OpBuilder {
callee.getFunctionType().getReturnType(), operands);
}
+ struct BinOpOverflowResults {
+ mlir::Value result;
+ mlir::Value overflow;
+ };
+
+ BinOpOverflowResults createBinOpOverflowOp(mlir::Location loc,
+ cir::IntType resultTy,
+ cir::BinOpOverflowKind kind,
+ mlir::Value lhs, mlir::Value rhs) {
+ auto op =
+ cir::BinOpOverflowOp::create(*this, loc, resultTy, kind, lhs, rhs);
+ return {op.getResult(), op.getOverflow()};
+ }
+
//===--------------------------------------------------------------------===//
// Cast/Conversion Operators
//===--------------------------------------------------------------------===//
diff --git a/clang/include/clang/CIR/Dialect/IR/CIROps.td b/clang/include/clang/CIR/Dialect/IR/CIROps.td
index dc56db1bbd4ea..328880d6f3581 100644
--- a/clang/include/clang/CIR/Dialect/IR/CIROps.td
+++ b/clang/include/clang/CIR/Dialect/IR/CIROps.td
@@ -1628,6 +1628,82 @@ def CIR_CmpOp : CIR_Op<"cmp", [Pure, SameTypeOperands]> {
let isLLVMLoweringRecursive = true;
}
+//===----------------------------------------------------------------------===//
+// BinOpOverflowOp
+//===----------------------------------------------------------------------===//
+
+def CIR_BinOpOverflowKind : CIR_I32EnumAttr<
+ "BinOpOverflowKind", "checked binary arithmetic operation kind", [
+ I32EnumAttrCase<"Add", 0, "add">,
+ I32EnumAttrCase<"Sub", 1, "sub">,
+ I32EnumAttrCase<"Mul", 2, "mul">
+]>;
+
+def CIR_BinOpOverflowOp : CIR_Op<"binop.overflow", [Pure, SameTypeOperands]> {
+ let summary = "Perform binary integral arithmetic with overflow checking";
+ let description = [{
+ `cir.binop.overflow` performs binary arithmetic operations with overflow
+ checking on integral operands.
+
+ The `kind` argument specifies the kind of arithmetic operation to perform.
+ It can be either `add`, `sub`, or `mul`. The `lhs` and `rhs` arguments
+ specify the input operands of the arithmetic operation. The types of `lhs`
+ and `rhs` must be the same.
+
+ `cir.binop.overflow` produces two SSA values. `result` is the result of the
+ arithmetic operation truncated to its specified type. `overflow` is a
+ boolean value indicating whether overflow happens during the operation.
+
+ The exact semantic of this operation is as follows:
+
+ - `lhs` and `rhs` are promoted to an imaginary integral type that has
+ infinite precision.
+ - The arithmetic operation is performed on the promoted operands.
+ - The infinite-precision result is truncated to the type of `result`. The
+ truncated result is assigned to `result`.
+ - If the truncated result is equal to the un-truncated result, `overflow`
+ is assigned to false. Otherwise, `overflow` is assigned to true.
+ }];
+
+ let arguments = (ins
+ CIR_BinOpOverflowKind:$kind,
+ CIR_IntType:$lhs,
+ CIR_IntType:$rhs
+ );
+
+ let results = (outs CIR_IntType:$result, CIR_BoolType:$overflow);
+
+ let assemblyFormat = [{
+ `(` $kind `,` $lhs `,` $rhs `)` `:` type($lhs) `,`
+ `(` type($result) `,` type($overflow) `)`
+ attr-dict
+ }];
+
+ let builders = [
+ OpBuilder<(ins "cir::IntType":$resultTy,
+ "cir::BinOpOverflowKind":$kind,
+ "mlir::Value":$lhs,
+ "mlir::Value":$rhs), [{
+ auto overflowTy = cir::BoolType::get($_builder.getContext());
+ build($_builder, $_state, resultTy, overflowTy, kind, lhs, rhs);
+ }]>
+ ];
+
+ let extraLLVMLoweringPatternDecl = [{
+ static std::string getLLVMIntrinName(cir::BinOpOverflowKind opKind,
+ bool isSigned, unsigned width);
+
+ struct EncompassedTypeInfo {
+ bool sign;
+ unsigned width;
+ };
+
+ static EncompassedTypeInfo computeEncompassedTypeWidth(cir::IntType operandTy,
+ cir::IntType resultTy);
+ }];
+}
+
+
//===----------------------------------------------------------------------===//
// BinOp
//===----------------------------------------------------------------------===//
diff --git a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
index d9b9e3b877b50..19ce15ca5aeeb 100644
--- a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
@@ -58,6 +58,52 @@ static RValue emitBuiltinBitOp(CIRGenFunction &cgf, const CallExpr *e,
return RValue::get(result);
}
+namespace {
+struct WidthAndSignedness {
+ unsigned Width;
+ bool Signed;
+};
+} // namespace
+
+static WidthAndSignedness
+getIntegerWidthAndSignedness(const clang::ASTContext &astContext,
+ const clang::QualType Type) {
+ assert(Type->isIntegerType() && "Given type is not an integer.");
+ unsigned Width = Type->isBooleanType() ? 1
+ : Type->isBitIntType() ? astContext.getIntWidth(Type)
+ : astContext.getTypeInfo(Type).Width;
+ bool Signed = Type->isSignedIntegerType();
+ return {Width, Signed};
+}
+
+// Given one or more integer types, this function produces an integer type that
+// encompasses them: any value in one of the given types could be expressed in
+// the encompassing type.
+static struct WidthAndSignedness
+EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
+ assert(Types.size() > 0 && "Empty list of types.");
+
+ // If any of the given types is signed, we must return a signed type.
+ bool Signed = false;
+ for (const auto &Type : Types) {
+ Signed |= Type.Signed;
+ }
+
+ // The encompassing type must have a width greater than or equal to the width
+ // of the specified types. Additionally, if the encompassing type is signed,
+ // its width must be strictly greater than the width of any unsigned types
+ // given.
+ unsigned Width = 0;
+ for (const auto &Type : Types) {
+ unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
+ if (Width < MinWidth) {
+ Width = MinWidth;
+ }
+ }
+
+ return {Width, Signed};
+}
+
RValue CIRGenFunction::emitRotate(const CallExpr *e, bool isRotateLeft) {
mlir::Value input = emitScalarExpr(e->getArg(0));
mlir::Value amount = emitScalarExpr(e->getArg(1));
@@ -491,6 +537,154 @@ RValue CIRGenFunction::emitBuiltinExpr(const GlobalDecl &gd, unsigned builtinID,
cir::PrefetchOp::create(builder, loc, address, locality, isWrite);
return RValue::get(nullptr);
}
+ case Builtin::BI__builtin_add_overflow:
+ case Builtin::BI__builtin_sub_overflow:
+ case Builtin::BI__builtin_mul_overflow: {
+ const clang::Expr *LeftArg = e->getArg(0);
+ const clang::Expr *RightArg = e->getArg(1);
+ const clang::Expr *ResultArg = e->getArg(2);
+
+ clang::QualType ResultQTy =
+ ResultArg->getType()->castAs<clang::PointerType>()->getPointeeType();
+
+ WidthAndSignedness LeftInfo =
+ getIntegerWidthAndSignedness(cgm.getASTContext(), LeftArg->getType());
+ WidthAndSignedness RightInfo =
+ getIntegerWidthAndSignedness(cgm.getASTContext(), RightArg->getType());
+ WidthAndSignedness ResultInfo =
+ getIntegerWidthAndSignedness(cgm.getASTContext(), ResultQTy);
+
+ // Note we compute the encompassing type with the consideration to the
+ // result type, so later in LLVM lowering we don't get redundant integral
+ // extension casts.
+ WidthAndSignedness EncompassingInfo =
+ EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
+
+ auto EncompassingCIRTy = cir::IntType::get(
+ &getMLIRContext(), EncompassingInfo.Width, EncompassingInfo.Signed);
+ auto ResultCIRTy = mlir::cast<cir::IntType>(cgm.convertType(ResultQTy));
+
+ mlir::Value Left = emitScalarExpr(LeftArg);
+ mlir::Value Right = emitScalarExpr(RightArg);
+ Address ResultPtr = emitPointerWithAlignment(ResultArg);
+
+ // Extend each operand to the encompassing type, if necessary.
+ if (Left.getType() != EncompassingCIRTy)
+ Left =
+ builder.createCast(cir::CastKind::integral, Left, EncompassingCIRTy);
+ if (Right.getType() != EncompassingCIRTy)
+ Right =
+ builder.createCast(cir::CastKind::integral, Right, EncompassingCIRTy);
+
+ // Perform the operation on the extended values.
+ cir::BinOpOverflowKind OpKind;
+ switch (builtinID) {
+ default:
+ llvm_unreachable("Unknown overflow builtin id.");
+ case Builtin::BI__builtin_add_overflow:
+ OpKind = cir::BinOpOverflowKind::Add;
+ break;
+ case Builtin::BI__builtin_sub_overflow:
+ OpKind = cir::BinOpOverflowKind::Sub;
+ break;
+ case Builtin::BI__builtin_mul_overflow:
+ OpKind = cir::BinOpOverflowKind::Mul;
+ break;
+ }
+
+ auto Loc = getLoc(e->getSourceRange());
+ auto ArithResult =
+ builder.createBinOpOverflowOp(Loc, ResultCIRTy, OpKind, Left, Right);
+
+ // Here is a slight difference from the original clang CodeGen:
+ // - In the original clang CodeGen, the checked arithmetic result is
+ // first computed as a value of the encompassing type, and then it is
+ // truncated to the actual result type with a second overflow checking.
+ // - In CIRGen, the checked arithmetic operation directly produce the
+ // checked arithmetic result in its expected type.
+ //
+ // So we don't need a truncation and a second overflow checking here.
+
+ // Finally, store the result using the pointer.
+ bool isVolatile =
+ ResultArg->getType()->getPointeeType().isVolatileQualified();
+ builder.createStore(Loc, emitToMemory(ArithResult.result, ResultQTy),
+ ResultPtr, isVolatile);
+
+ return RValue::get(ArithResult.overflow);
+ }
+
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow: {
+ // Scalarize our inputs.
+ mlir::Value X = emitScalarExpr(e->getArg(0));
+ mlir::Value Y = emitScalarExpr(e->getArg(1));
+
+ const clang::Expr *ResultArg = e->getArg(2);
+ Address ResultPtr = emitPointerWithAlignment(ResultArg);
+
+ // Decide which of the arithmetic operation we are lowering to:
+ cir::BinOpOverflowKind ArithKind;
+ switch (builtinID) {
+ default:
+ llvm_unreachable("Unknown overflow builtin id.");
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ ArithKind = cir::BinOpOverflowKind::Add;
+ break;
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ ArithKind = cir::BinOpOverflowKind::Sub;
+ break;
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow:
+ ArithKind = cir::BinOpOverflowKind::Mul;
+ break;
+ }
+
+ clang::QualType ResultQTy =
+ ResultArg->getType()->castAs<clang::PointerType>()->getPointeeType();
+ auto ResultCIRTy = mlir::cast<cir::IntType>(cgm.convertType(ResultQTy));
+
+ auto Loc = getLoc(e->getSourceRange());
+ auto ArithResult =
+ builder.createBinOpOverflowOp(Loc, ResultCIRTy, ArithKind, X, Y);
+
+ bool isVolatile =
+ ResultArg->getType()->getPointeeType().isVolatileQualified();
+ builder.createStore(Loc, emitToMemory(ArithResult.result, ResultQTy),
+ ResultPtr, isVolatile);
+
+ return RValue::get(ArithResult.overflow);
+ }
}
// If this is an alias for a lib function (e.g. __builtin_sin), emit
diff --git a/clang/lib/CIR/Lowering/DirectToLLVM/LowerToLLVM.cpp b/clang/lib/CIR/Lowering/DirectToLLVM/LowerToLLVM.cpp
index d94108294a9a3..c81f7cc657137 100644
--- a/clang/lib/CIR/Lowering/DirectToLLVM/LowerToLLVM.cpp
+++ b/clang/lib/CIR/Lowering/DirectToLLVM/LowerToLLVM.cpp
@@ -2503,6 +2503,118 @@ mlir::LogicalResult CIRToLLVMCmpOpLowering::matchAndRewrite(
return cmpOp.emitError() << "unsupported type for CmpOp: " << type;
}
+mlir::LogicalResult CIRToLLVMBinOpOverflowOpLowering::matchAndRewrite(
+ cir::BinOpOverflowOp op, OpAdaptor adaptor,
+ mlir::ConversionPatternRewriter &rewriter) const {
+ auto loc = op.getLoc();
+ auto arithKind = op.getKind();
+ auto operandTy = op.getLhs().getType();
+ auto resultTy = op.getResult().getType();
+
+ auto encompassedTyInfo = computeEncompassedTypeWidth(operandTy, resultTy);
+ auto encompassedLLVMTy = rewriter.getIntegerType(encompassedTyInfo.width);
+
+ auto lhs = adaptor.getLhs();
+ auto rhs = adaptor.getRhs();
+ if (operandTy.getWidth() < encompassedTyInfo.width) {
+ if (operandTy.isSigned()) {
+ lhs = rewriter.create<mlir::LLVM::SExtOp>(loc, encompassedLLVMTy, lhs);
+ rhs = rewriter.create<mlir::LLVM::SExtOp>(loc, encompassedLLVMTy, rhs);
+ } else {
+ lhs = rewriter.create<mlir::LLVM::ZExtOp>(loc, encompassedLLVMTy, lhs);
+ rhs = rewriter.create<mlir::LLVM::ZExtOp>(loc, encompassedLLVMTy, rhs);
+ }
+ }
+
+ auto intrinName = getLLVMIntrinName(arithKind, encompassedTyInfo.sign,
+ encompassedTyInfo.width);
+ auto intrinNameAttr = mlir::StringAttr::get(op.getContext(), intrinName);
+
+ auto overflowLLVMTy = rewriter.getI1Type();
+ auto intrinRetTy = mlir::LLVM::LLVMStructType::getLiteral(
+ rewriter.getContext(), {encompassedLLVMTy, overflowLLVMTy});
+
+ auto callLLVMIntrinOp = rewriter.create<mlir::LLVM::CallIntrinsicOp>(
+ loc, intrinRetTy, intrinNameAttr, mlir::ValueRange{lhs, rhs});
+ auto intrinRet = callLLVMIntrinOp.getResult(0);
+
+ auto result = rewriter
+ .create<mlir::LLVM::ExtractValueOp>(loc, intrinRet,
+ ArrayRef<int64_t>{0})
+ .getResult();
+ auto overflow = rewriter
+ .create<mlir::LLVM::ExtractValueOp>(loc, intrinRet,
+ ArrayRef<int64_t>{1})
+ .getResult();
+
+ if (resultTy.getWidth() < encompassedTyInfo.width) {
+ auto resultLLVMTy = getTypeConverter()->convertType(resultTy);
+ auto truncResult =
+ rewriter.create<mlir::LLVM::TruncOp>(loc, resultLLVMTy, result);
+
+ // Extend the truncated result back to the encompassing type to check for
+ // any overflows during the truncation.
+ mlir::Value truncResultExt;
+ if (resultTy.isSigned())
+ truncResultExt = rewriter.create<mlir::LLVM::SExtOp>(
+ loc, encompassedLLVMTy, truncResult);
+ else
+ truncResultExt = rewriter.create<mlir::LLVM::ZExtOp>(
+ loc, encompassedLLVMTy, truncResult);
+ auto truncOverflow = rewriter.create<mlir::LLVM::ICmpOp>(
+ loc, mlir::LLVM::ICmpPredicate::ne, truncResultExt, result);
+
+ result = truncResult;
+ overflow = rewriter.create<mlir::LLVM::OrOp>(loc, overflow, truncOverflow);
+ }
+
+ auto boolLLVMTy = getTypeConverter()->convertType(op.getOverflow().getType());
+ if (boolLLVMTy != rewriter.getI1Type())
+ overflow = rewriter.create<mlir::LLVM::ZExtOp>(loc, boolLLVMTy, overflow);
+
+ rewriter.replaceOp(op, mlir::ValueRange{result, overflow});
+
+ return mlir::success();
+}
+
+std::string CIRToLLVMBinOpOverflowOpLowering::getLLVMIntrinName(
+ cir::BinOpOverflowKind opKind, bool isSigned, unsigned width) {
+ // The intrinsic name is `@llvm.{s|u}{opKind}.with.overflow.i{width}`
+
+ std::string name = "llvm.";
+
+ if (isSigned)
+ name.push_back('s');
+ else
+ name.push_back('u');
+
+ switch (opKind) {
+ case cir::BinOpOverflowKind::Add:
+ name.append("add.");
+ break;
+ case cir::BinOpOverflowKind::Sub:
+ name.append("sub.");
+ break;
+ case cir::BinOpOverflowKind::Mul:
+ name.append("mul.");
+ break;
+ }
+
+ name.append("with.overflow.i");
+ name.append(std::to_string(width));
+
+ return name;
+}
+
+CIRToLLVMBinOpOverflowOpLowering::EncompassedTypeInfo
+CIRToLLVMBinOpOverflowOpLowering::computeEncompassedTypeWidth(
+ cir::IntType operandTy, cir::IntType resultTy) {
+ auto sign = operandTy.getIsSigned() || resultTy.getIsSigned();
+ auto width = std::max(operandTy.getWidth() + (sign && operandTy.isUnsigned()),
+ resultTy.getWidth() + (sign && resultTy.isUnsigned()));
+ return {sign, width};
+}
+
mlir::LogicalResult CIRToLLVMShiftOpLowering::matchAndRewrite(
cir::ShiftOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const {
diff --git a/clang/test/CIR/CodeGen/builtins-overflow.cpp b/clang/test/CIR/CodeGen/builtins-overflow.cpp
new file mode 100644
index 0000000000000..8cd227d58686d
--- /dev/null
+++ b/clang/test/CIR/CodeGen/builtins-overflow.cpp
@@ -0,0 +1,364 @@
+// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fclangir -emit-cir %s -o %t.cir
+// RUN: FileCheck %s --check-prefix=CIR --input-file=%t.cir
+
+bool test_add_overflow_uint_uint_uint(unsigned x, unsigned y, unsigned *res) {
+ return __builtin_add_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z32test_add_overflow_uint_uint_uintjjPj
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u32i>>, !cir.ptr<!u32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#LHS]], %[[#RHS]]) : !u32i, (!u32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u32i, !cir.ptr<!u32i>
+// CIR: }
+
+bool test_add_overflow_int_int_int(int x, int y, int *res) {
+ return __builtin_add_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z29test_add_overflow_int_int_intiiPi
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#LHS]], %[[#RHS]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_add_overflow_xint31_xint31_xint31(_BitInt(31) x, _BitInt(31) y, _BitInt(31) *res) {
+ return __builtin_add_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z38test_add_overflow_xint31_xint31_xint31DB31_S_PS_
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.int<s, 31>>, !cir.int<s, 31>
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.int<s, 31>>, !cir.int<s, 31>
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!cir.int<s, 31>>>, !cir.ptr<!cir.int<s, 31>>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#LHS]], %[[#RHS]]) : <s, 31>, (<s, 31>, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !cir.int<s, 31>, !cir.ptr<!cir.int<s, 31>>
+// CIR: }
+
+bool test_sub_overflow_uint_uint_uint(unsigned x, unsigned y, unsigned *res) {
+ return __builtin_sub_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z32test_sub_overflow_uint_uint_uintjjPj
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u32i>>, !cir.ptr<!u32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#LHS]], %[[#RHS]]) : !u32i, (!u32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u32i, !cir.ptr<!u32i>
+// CIR: }
+
+bool test_sub_overflow_int_int_int(int x, int y, int *res) {
+ return __builtin_sub_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z29test_sub_overflow_int_int_intiiPi
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#LHS]], %[[#RHS]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_sub_overflow_xint31_xint31_xint31(_BitInt(31) x, _BitInt(31) y, _BitInt(31) *res) {
+ return __builtin_sub_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z38test_sub_overflow_xint31_xint31_xint31DB31_S_PS_
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.int<s, 31>>, !cir.int<s, 31>
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.int<s, 31>>, !cir.int<s, 31>
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!cir.int<s, 31>>>, !cir.ptr<!cir.int<s, 31>>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#LHS]], %[[#RHS]]) : <s, 31>, (<s, 31>, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !cir.int<s, 31>, !cir.ptr<!cir.int<s, 31>>
+// CIR: }
+
+bool test_mul_overflow_uint_uint_uint(unsigned x, unsigned y, unsigned *res) {
+ return __builtin_mul_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z32test_mul_overflow_uint_uint_uintjjPj
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u32i>>, !cir.ptr<!u32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#LHS]], %[[#RHS]]) : !u32i, (!u32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u32i, !cir.ptr<!u32i>
+// CIR: }
+
+bool test_mul_overflow_int_int_int(int x, int y, int *res) {
+ return __builtin_mul_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z29test_mul_overflow_int_int_intiiPi
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#LHS]], %[[#RHS]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_mul_overflow_xint31_xint31_xint31(_BitInt(31) x, _BitInt(31) y, _BitInt(31) *res) {
+ return __builtin_mul_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z38test_mul_overflow_xint31_xint31_xint31DB31_S_PS_
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.int<s, 31>>, !cir.int<s, 31>
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.int<s, 31>>, !cir.int<s, 31>
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!cir.int<s, 31>>>, !cir.ptr<!cir.int<s, 31>>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#LHS]], %[[#RHS]]) : <s, 31>, (<s, 31>, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !cir.int<s, 31>, !cir.ptr<!cir.int<s, 31>>
+// CIR: }
+
+bool test_mul_overflow_ulong_ulong_long(unsigned long x, unsigned long y, unsigned long *res) {
+ return __builtin_mul_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z34test_mul_overflow_ulong_ulong_longmmPm
+// CIR: %[[#LHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RHS:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#LHS]], %[[#RHS]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_add_overflow_uint_int_int(unsigned x, int y, int *res) {
+ return __builtin_add_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z30test_add_overflow_uint_int_intjiPi
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[#PROM_X:]] = cir.cast integral %[[#X]] : !u32i -> !cir.int<s, 33>
+// CIR-NEXT: %[[#PROM_Y:]] = cir.cast integral %[[#Y]] : !s32i -> !cir.int<s, 33>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#PROM_X]], %[[#PROM_Y]]) : <s, 33>, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_add_overflow_volatile(int x, int y, volatile int *res) {
+ return __builtin_add_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z26test_add_overflow_volatileiiPVi
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store volatile{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_uadd_overflow(unsigned x, unsigned y, unsigned *res) {
+ return __builtin_uadd_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z18test_uadd_overflowjjPj
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u32i>>, !cir.ptr<!u32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !u32i, (!u32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u32i, !cir.ptr<!u32i>
+// CIR: }
+
+bool test_uaddl_overflow(unsigned long x, unsigned long y, unsigned long *res) {
+ return __builtin_uaddl_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z19test_uaddl_overflowmmPm
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *res) {
+ return __builtin_uaddll_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z20test_uaddll_overflowyyPy
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_usub_overflow(unsigned x, unsigned y, unsigned *res) {
+ return __builtin_usub_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z18test_usub_overflowjjPj
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u32i>>, !cir.ptr<!u32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#X]], %[[#Y]]) : !u32i, (!u32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u32i, !cir.ptr<!u32i>
+// CIR: }
+
+bool test_usubl_overflow(unsigned long x, unsigned long y, unsigned long *res) {
+ return __builtin_usubl_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z19test_usubl_overflowmmPm
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#X]], %[[#Y]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *res) {
+ return __builtin_usubll_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z20test_usubll_overflowyyPy
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#X]], %[[#Y]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_umul_overflow(unsigned x, unsigned y, unsigned *res) {
+ return __builtin_umul_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z18test_umul_overflowjjPj
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u32i>, !u32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u32i>>, !cir.ptr<!u32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#X]], %[[#Y]]) : !u32i, (!u32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u32i, !cir.ptr<!u32i>
+// CIR: }
+
+bool test_umull_overflow(unsigned long x, unsigned long y, unsigned long *res) {
+ return __builtin_umull_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z19test_umull_overflowmmPm
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#X]], %[[#Y]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *res) {
+ return __builtin_umulll_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z20test_umulll_overflowyyPy
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!u64i>, !u64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!u64i>>, !cir.ptr<!u64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#X]], %[[#Y]]) : !u64i, (!u64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !u64i, !cir.ptr<!u64i>
+// CIR: }
+
+bool test_sadd_overflow(int x, int y, int *res) {
+ return __builtin_sadd_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z18test_sadd_overflowiiPi
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_saddl_overflow(long x, long y, long *res) {
+ return __builtin_saddl_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z19test_saddl_overflowllPl
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s64i>>, !cir.ptr<!s64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !s64i, (!s64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s64i, !cir.ptr<!s64i>
+// CIR: }
+
+bool test_saddll_overflow(long long x, long long y, long long *res) {
+ return __builtin_saddll_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z20test_saddll_overflowxxPx
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s64i>>, !cir.ptr<!s64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(add, %[[#X]], %[[#Y]]) : !s64i, (!s64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s64i, !cir.ptr<!s64i>
+// CIR: }
+
+bool test_ssub_overflow(int x, int y, int *res) {
+ return __builtin_ssub_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z18test_ssub_overflowiiPi
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#X]], %[[#Y]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_ssubl_overflow(long x, long y, long *res) {
+ return __builtin_ssubl_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z19test_ssubl_overflowllPl
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s64i>>, !cir.ptr<!s64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#X]], %[[#Y]]) : !s64i, (!s64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s64i, !cir.ptr<!s64i>
+// CIR: }
+
+bool test_ssubll_overflow(long long x, long long y, long long *res) {
+ return __builtin_ssubll_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z20test_ssubll_overflowxxPx
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s64i>>, !cir.ptr<!s64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(sub, %[[#X]], %[[#Y]]) : !s64i, (!s64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s64i, !cir.ptr<!s64i>
+// CIR: }
+
+bool test_smul_overflow(int x, int y, int *res) {
+ return __builtin_smul_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z18test_smul_overflowiiPi
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s32i>, !s32i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s32i>>, !cir.ptr<!s32i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#X]], %[[#Y]]) : !s32i, (!s32i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s32i, !cir.ptr<!s32i>
+// CIR: }
+
+bool test_smull_overflow(long x, long y, long *res) {
+ return __builtin_smull_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z19test_smull_overflowllPl
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s64i>>, !cir.ptr<!s64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#X]], %[[#Y]]) : !s64i, (!s64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s64i, !cir.ptr<!s64i>
+// CIR: }
+
+bool test_smulll_overflow(long long x, long long y, long long *res) {
+ return __builtin_smulll_overflow(x, y, res);
+}
+
+// CIR: cir.func dso_local @_Z20test_smulll_overflowxxPx
+// CIR: %[[#X:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#Y:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!s64i>, !s64i
+// CIR-NEXT: %[[#RES_PTR:]] = cir.load{{.*}} %{{.+}} : !cir.ptr<!cir.ptr<!s64i>>, !cir.ptr<!s64i>
+// CIR-NEXT: %[[RES:.+]], %{{.+}} = cir.binop.overflow(mul, %[[#X]], %[[#Y]]) : !s64i, (!s64i, !cir.bool)
+// CIR-NEXT: cir.store{{.*}} %[[RES]], %[[#RES_PTR]] : !s64i, !cir.ptr<!s64i>
+// CIR: }
>From d03208983759d5fcffc1531b5c0c99aa57275e7f Mon Sep 17 00:00:00 2001
From: adams381 <adams at nvidia.com>
Date: Tue, 18 Nov 2025 15:48:57 -0600
Subject: [PATCH 2/4] Update clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
Co-authored-by: Henrich Lauko <henrich.lau at gmail.com>
---
clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp | 10 +++-------
1 file changed, 3 insertions(+), 7 deletions(-)
diff --git a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
index 19ce15ca5aeeb..c56ae5ac9028b 100644
--- a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
@@ -93,13 +93,9 @@ EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
// of the specified types. Additionally, if the encompassing type is signed,
// its width must be strictly greater than the width of any unsigned types
// given.
- unsigned Width = 0;
- for (const auto &Type : Types) {
- unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
- if (Width < MinWidth) {
- Width = MinWidth;
- }
- }
+unsigned Width = 0;
+for (const auto &Type : Types)
+ Width = std::max(Width, Type.Width + (Signed && !Type.Signed));
return {Width, Signed};
}
>From 7d73c087a161cfe1f8dd9f03ac2f8e28bce62018 Mon Sep 17 00:00:00 2001
From: adams381 <adams at nvidia.com>
Date: Tue, 18 Nov 2025 15:49:26 -0600
Subject: [PATCH 3/4] Update clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
Co-authored-by: Henrich Lauko <henrich.lau at gmail.com>
---
clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp | 5 +----
1 file changed, 1 insertion(+), 4 deletions(-)
diff --git a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
index c56ae5ac9028b..ce53b4039e1f9 100644
--- a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
@@ -84,10 +84,7 @@ EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
assert(Types.size() > 0 && "Empty list of types.");
// If any of the given types is signed, we must return a signed type.
- bool Signed = false;
- for (const auto &Type : Types) {
- Signed |= Type.Signed;
- }
+bool Signed = llvm::any_of(Types, [](const auto &T) { return T.Signed; });
// The encompassing type must have a width greater than or equal to the width
// of the specified types. Additionally, if the encompassing type is signed,
>From 848fbe751dd73e588b95d8b3781df622f7e56c13 Mon Sep 17 00:00:00 2001
From: adams381 <adams at nvidia.com>
Date: Tue, 18 Nov 2025 15:57:21 -0600
Subject: [PATCH 4/4] Update clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
Co-authored-by: Andy Kaylor <akaylor at nvidia.com>
---
clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
index ce53b4039e1f9..6caad2c15fb86 100644
--- a/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
@@ -67,7 +67,7 @@ struct WidthAndSignedness {
static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext &astContext,
- const clang::QualType Type) {
+ const clang::QualType type) {
assert(Type->isIntegerType() && "Given type is not an integer.");
unsigned Width = Type->isBooleanType() ? 1
: Type->isBitIntType() ? astContext.getIntWidth(Type)
More information about the cfe-commits
mailing list