[clang] [LifetimeSafety] Implement dataflow analysis for loan propagation (PR #148065)
Yitzhak Mandelbaum via cfe-commits
cfe-commits at lists.llvm.org
Mon Jul 14 09:59:24 PDT 2025
================
@@ -493,7 +496,241 @@ class FactGenerator : public ConstStmtVisitor<FactGenerator> {
};
// ========================================================================= //
-// TODO: Run dataflow analysis to propagate loans, analyse and error reporting.
+// The Dataflow Lattice
+// ========================================================================= //
+
+// Using LLVM's immutable collections is efficient for dataflow analysis
+// as it avoids deep copies during state transitions.
+// TODO(opt): Consider using a bitset to represent the set of loans.
+using LoanSet = llvm::ImmutableSet<LoanID>;
+using OriginLoanMap = llvm::ImmutableMap<OriginID, LoanSet>;
+
+/// An object to hold the factories for immutable collections, ensuring
+/// that all created states share the same underlying memory management.
+struct LifetimeFactory {
+ OriginLoanMap::Factory OriginMapFact;
+ LoanSet::Factory LoanSetFact;
+
+ LoanSet createLoanSet(LoanID LID) {
+ return LoanSetFact.add(LoanSetFact.getEmptySet(), LID);
+ }
+};
+
+/// LifetimeLattice represents the state of our analysis at a given program
+/// point. It is an immutable object, and all operations produce a new
+/// instance rather than modifying the existing one.
+struct LifetimeLattice {
+ /// The map from an origin to the set of loans it contains.
+ /// TODO(opt): To reduce the lattice size, propagate origins of declarations,
+ /// not expressions, because expressions are not visible across blocks.
+ OriginLoanMap Origins = OriginLoanMap(nullptr);
+
+ explicit LifetimeLattice(const OriginLoanMap &S) : Origins(S) {}
+ LifetimeLattice() = default;
+
+ bool operator==(const LifetimeLattice &Other) const {
+ return Origins == Other.Origins;
+ }
+ bool operator!=(const LifetimeLattice &Other) const {
+ return !(*this == Other);
+ }
+
+ LoanSet getLoans(OriginID OID, LifetimeFactory &Factory) const {
+ if (auto *Loans = Origins.lookup(OID))
+ return *Loans;
+ return Factory.LoanSetFact.getEmptySet();
+ }
+
+ /// Computes the union of two lattices by performing a key-wise join of
+ /// their OriginLoanMaps.
+ // TODO(opt): This key-wise join is a performance bottleneck. A more
+ // efficient merge could be implemented using a Patricia Trie or HAMT
+ // instead of the current AVL-tree-based ImmutableMap.
+ // TODO(opt): Keep the state small by removing origins which become dead.
+ LifetimeLattice join(const LifetimeLattice &Other,
+ LifetimeFactory &Factory) const {
+ /// Merge the smaller map into the larger one ensuring we iterate over the
+ /// smaller map.
+ if (Origins.getHeight() < Other.Origins.getHeight())
+ return Other.join(*this, Factory);
+
+ OriginLoanMap JoinedState = Origins;
+ // For each origin in the other map, union its loan set with ours.
+ for (const auto &Entry : Other.Origins) {
+ OriginID OID = Entry.first;
+ LoanSet OtherLoanSet = Entry.second;
+ JoinedState = Factory.OriginMapFact.add(
+ JoinedState, OID,
+ join(getLoans(OID, Factory), OtherLoanSet, Factory));
+ }
+ return LifetimeLattice(JoinedState);
+ }
+
+ LoanSet join(LoanSet a, LoanSet b, LifetimeFactory &Factory) const {
+ /// Merge the smaller set into the larger one ensuring we iterate over the
+ /// smaller set.
+ if (a.getHeight() < b.getHeight())
+ std::swap(a, b);
+ LoanSet Result = a;
+ for (LoanID LID : b) {
+ /// TODO(opt): Profiling shows that this loop is a major performance
+ /// bottleneck. Investigate using a BitVector to represent the set of
+ /// loans for improved join performance.
+ Result = Factory.LoanSetFact.add(Result, LID);
+ }
+ return Result;
+ }
+
+ void dump(llvm::raw_ostream &OS) const {
+ OS << "LifetimeLattice State:\n";
+ if (Origins.isEmpty())
+ OS << " <empty>\n";
+ for (const auto &Entry : Origins) {
+ if (Entry.second.isEmpty())
+ OS << " Origin " << Entry.first << " contains no loans\n";
+ for (const LoanID &LID : Entry.second)
+ OS << " Origin " << Entry.first << " contains Loan " << LID << "\n";
+ }
+ }
+};
+
+// ========================================================================= //
+// The Transfer Function
+// ========================================================================= //
+class Transferer {
+ FactManager &AllFacts;
+ LifetimeFactory &Factory;
+
+public:
+ explicit Transferer(FactManager &F, LifetimeFactory &Factory)
+ : AllFacts(F), Factory(Factory) {}
+
+ /// Computes the exit state of a block by applying all its facts sequentially
+ /// to a given entry state.
+ /// TODO: We might need to store intermediate states per-fact in the block for
+ /// later analysis.
+ LifetimeLattice transferBlock(const CFGBlock *Block,
+ LifetimeLattice EntryState) {
+ LifetimeLattice BlockState = EntryState;
+ llvm::ArrayRef<const Fact *> Facts = AllFacts.getFacts(Block);
+
+ for (const Fact *F : Facts) {
+ BlockState = transferFact(BlockState, F);
+ }
+ return BlockState;
+ }
+
+private:
+ LifetimeLattice transferFact(LifetimeLattice In, const Fact *F) {
+ switch (F->getKind()) {
+ case Fact::Kind::Issue:
+ return transfer(In, *F->getAs<IssueFact>());
+ case Fact::Kind::AssignOrigin:
+ return transfer(In, *F->getAs<AssignOriginFact>());
+ // Expire and ReturnOfOrigin facts don't modify the Origins and the State.
+ case Fact::Kind::Expire:
+ case Fact::Kind::ReturnOfOrigin:
+ return In;
+ }
+ llvm_unreachable("Unknown fact kind");
+ }
+
+ /// A new loan is issued to the origin. Old loans are erased.
+ LifetimeLattice transfer(LifetimeLattice In, const IssueFact &F) {
+ OriginID OID = F.getOriginID();
+ LoanID LID = F.getLoanID();
+ return LifetimeLattice(
+ Factory.OriginMapFact.add(In.Origins, OID, Factory.createLoanSet(LID)));
+ }
+
+ /// The destination origin's loan set is replaced by the source's.
+ /// This implicitly "resets" the old loans of the destination.
+ LifetimeLattice transfer(LifetimeLattice InState, const AssignOriginFact &F) {
+ OriginID DestOID = F.getDestOriginID();
+ OriginID SrcOID = F.getSrcOriginID();
+ LoanSet SrcLoans = InState.getLoans(SrcOID, Factory);
+ return LifetimeLattice(
+ Factory.OriginMapFact.add(InState.Origins, DestOID, SrcLoans));
+ }
+};
+
+// ========================================================================= //
+// Dataflow analysis
+// ========================================================================= //
+
+/// Drives the intra-procedural dataflow analysis.
+///
+/// Orchestrates the analysis by iterating over the CFG using a worklist
+/// algorithm. It computes a fixed point by propagating the LifetimeLattice
+/// state through each block until the state no longer changes.
+/// TODO: Maybe use the dataflow framework! The framework might need changes
+/// to support the current comparison done at block-entry.
+class LifetimeDataflow {
+ const CFG &Cfg;
+ AnalysisDeclContext &AC;
+ LifetimeFactory LifetimeFact;
+
+ Transferer Xfer;
+
+ /// Stores the merged analysis state at the entry of each CFG block.
+ llvm::DenseMap<const CFGBlock *, LifetimeLattice> BlockEntryStates;
+ /// Stores the analysis state at the exit of each CFG block, after the
+ /// transfer function has been applied.
+ llvm::DenseMap<const CFGBlock *, LifetimeLattice> BlockExitStates;
+
+public:
+ LifetimeDataflow(const CFG &C, FactManager &FS, AnalysisDeclContext &AC)
+ : Cfg(C), AC(AC), Xfer(FS, LifetimeFact) {}
+
+ void run() {
+ llvm::TimeTraceScope TimeProfile("Lifetime Dataflow");
+ ForwardDataflowWorklist Worklist(Cfg, AC);
+ const CFGBlock *Entry = &Cfg.getEntry();
+ BlockEntryStates[Entry] = LifetimeLattice{};
+ Worklist.enqueueBlock(Entry);
+ while (const CFGBlock *B = Worklist.dequeue()) {
+ LifetimeLattice EntryState = getEntryState(B);
+ LifetimeLattice ExitState = Xfer.transferBlock(B, EntryState);
+ BlockExitStates[B] = ExitState;
+
+ for (const CFGBlock *Successor : B->succs()) {
+ auto SuccIt = BlockEntryStates.find(Successor);
+ LifetimeLattice OldSuccEntryState = (SuccIt != BlockEntryStates.end())
+ ? SuccIt->second
+ : LifetimeLattice{};
+ LifetimeLattice NewSuccEntryState =
+ OldSuccEntryState.join(ExitState, LifetimeFact);
----------------
ymand wrote:
This algorithm lacks widening. Is the lattice a finite height (e.g. limited by the number of source locations in a function)? If so, maybe mention this somewhere.
https://github.com/llvm/llvm-project/pull/148065
More information about the cfe-commits
mailing list