[libclc] d4144ca - [libclc][NFC] Clang-format two files

Fraser Cormack via cfe-commits cfe-commits at lists.llvm.org
Thu Feb 6 01:05:07 PST 2025


Author: Fraser Cormack
Date: 2025-02-06T09:04:27Z
New Revision: d4144ca27da174da3f8e7e3472e788b4246fd04e

URL: https://github.com/llvm/llvm-project/commit/d4144ca27da174da3f8e7e3472e788b4246fd04e
DIFF: https://github.com/llvm/llvm-project/commit/d4144ca27da174da3f8e7e3472e788b4246fd04e.diff

LOG: [libclc][NFC] Clang-format two files

Pre-commit changes to avoid noise in an upcoming PR.

Added: 
    

Modified: 
    libclc/generic/lib/math/clc_fmod.cl
    libclc/generic/lib/math/clc_remainder.cl

Removed: 
    


################################################################################
diff  --git a/libclc/generic/lib/math/clc_fmod.cl b/libclc/generic/lib/math/clc_fmod.cl
index 35298b7e42d5c01..a4a2ab791df68a6 100644
--- a/libclc/generic/lib/math/clc_fmod.cl
+++ b/libclc/generic/lib/math/clc_fmod.cl
@@ -30,158 +30,156 @@
 #include <clc/shared/clc_max.h>
 #include <math/clc_remainder.h>
 
-_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y)
-{
-    int ux = as_int(x);
-    int ax = ux & EXSIGNBIT_SP32;
-    float xa = as_float(ax);
-    int sx = ux ^ ax;
-    int ex = ax >> EXPSHIFTBITS_SP32;
-
-    int uy = as_int(y);
-    int ay = uy & EXSIGNBIT_SP32;
-    float ya = as_float(ay);
-    int ey = ay >> EXPSHIFTBITS_SP32;
-
-    float xr = as_float(0x3f800000 | (ax & 0x007fffff));
-    float yr = as_float(0x3f800000 | (ay & 0x007fffff));
-    int c;
-    int k = ex - ey;
-
-    while (k > 0) {
-        c = xr >= yr;
-        xr -= c ? yr : 0.0f;
-        xr += xr;
-        --k;
-    }
-
+_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) {
+  int ux = as_int(x);
+  int ax = ux & EXSIGNBIT_SP32;
+  float xa = as_float(ax);
+  int sx = ux ^ ax;
+  int ex = ax >> EXPSHIFTBITS_SP32;
+
+  int uy = as_int(y);
+  int ay = uy & EXSIGNBIT_SP32;
+  float ya = as_float(ay);
+  int ey = ay >> EXPSHIFTBITS_SP32;
+
+  float xr = as_float(0x3f800000 | (ax & 0x007fffff));
+  float yr = as_float(0x3f800000 | (ay & 0x007fffff));
+  int c;
+  int k = ex - ey;
+
+  while (k > 0) {
     c = xr >= yr;
     xr -= c ? yr : 0.0f;
+    xr += xr;
+    --k;
+  }
 
-    int lt = ex < ey;
-
-    xr = lt ? xa : xr;
-    yr = lt ? ya : yr;
+  c = xr >= yr;
+  xr -= c ? yr : 0.0f;
 
+  int lt = ex < ey;
 
-    float s = as_float(ey << EXPSHIFTBITS_SP32);
-    xr *= lt ? 1.0f : s;
+  xr = lt ? xa : xr;
+  yr = lt ? ya : yr;
 
-    c = ax == ay;
-    xr = c ? 0.0f : xr;
+  float s = as_float(ey << EXPSHIFTBITS_SP32);
+  xr *= lt ? 1.0f : s;
 
-    xr = as_float(sx ^ as_int(xr));
+  c = ax == ay;
+  xr = c ? 0.0f : xr;
 
-    c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
-    xr = c ? as_float(QNANBITPATT_SP32) : xr;
+  xr = as_float(sx ^ as_int(xr));
 
-    return xr;
+  c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 |
+      ay == 0;
+  xr = c ? as_float(QNANBITPATT_SP32) : xr;
 
+  return xr;
 }
 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float);
 
 #ifdef cl_khr_fp64
-_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y)
-{
-    ulong ux = as_ulong(x);
-    ulong ax = ux & ~SIGNBIT_DP64;
-    ulong xsgn = ux ^ ax;
-    double dx = as_double(ax);
-    int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
-    int xexp1 = 11 - (int) __clc_clz(ax & MANTBITS_DP64);
-    xexp1 = xexp < 1 ? xexp1 : xexp;
-
-    ulong uy = as_ulong(y);
-    ulong ay = uy & ~SIGNBIT_DP64;
-    double dy = as_double(ay);
-    int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
-    int yexp1 = 11 - (int) __clc_clz(ay & MANTBITS_DP64);
-    yexp1 = yexp < 1 ? yexp1 : yexp;
-
-    // First assume |x| > |y|
-
-    // Set ntimes to the number of times we need to do a
-    // partial remainder. If the exponent of x is an exact multiple
-    // of 53 larger than the exponent of y, and the mantissa of x is
-    // less than the mantissa of y, ntimes will be one too large
-    // but it doesn't matter - it just means that we'll go round
-    // the loop below one extra time.
-    int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
-    double w =  ldexp(dy, ntimes * 53);
-    w = ntimes == 0 ? dy : w;
-    double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
-
-    // Each time round the loop we compute a partial remainder.
-    // This is done by subtracting a large multiple of w
-    // from x each time, where w is a scaled up version of y.
-    // The subtraction must be performed exactly in quad
-    // precision, though the result at each stage can
-    // fit exactly in a double precision number.
-    int i;
-    double t, v, p, pp;
-
-    for (i = 0; i < ntimes; i++) {
-        // Compute integral multiplier
-        t = __clc_trunc(dx / w);
-
-        // Compute w * t in quad precision
-        p = w * t;
-        pp = fma(w, t, -p);
-
-        // Subtract w * t from dx
-        v = dx - p;
-        dx = v + (((dx - v) - p) - pp);
-
-        // If t was one too large, dx will be negative. Add back one w.
-        dx += dx < 0.0 ? w : 0.0;
-
-        // Scale w down by 2^(-53) for the next iteration
-        w *= scale;
-    }
-
-    // One more time
-    // Variable todd says whether the integer t is odd or not
-    t = __clc_floor(dx / w);
-    long lt = (long)t;
-    int todd = lt & 1;
-
+_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) {
+  ulong ux = as_ulong(x);
+  ulong ax = ux & ~SIGNBIT_DP64;
+  ulong xsgn = ux ^ ax;
+  double dx = as_double(ax);
+  int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
+  int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64);
+  xexp1 = xexp < 1 ? xexp1 : xexp;
+
+  ulong uy = as_ulong(y);
+  ulong ay = uy & ~SIGNBIT_DP64;
+  double dy = as_double(ay);
+  int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
+  int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64);
+  yexp1 = yexp < 1 ? yexp1 : yexp;
+
+  // First assume |x| > |y|
+
+  // Set ntimes to the number of times we need to do a
+  // partial remainder. If the exponent of x is an exact multiple
+  // of 53 larger than the exponent of y, and the mantissa of x is
+  // less than the mantissa of y, ntimes will be one too large
+  // but it doesn't matter - it just means that we'll go round
+  // the loop below one extra time.
+  int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
+  double w = ldexp(dy, ntimes * 53);
+  w = ntimes == 0 ? dy : w;
+  double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
+
+  // Each time round the loop we compute a partial remainder.
+  // This is done by subtracting a large multiple of w
+  // from x each time, where w is a scaled up version of y.
+  // The subtraction must be performed exactly in quad
+  // precision, though the result at each stage can
+  // fit exactly in a double precision number.
+  int i;
+  double t, v, p, pp;
+
+  for (i = 0; i < ntimes; i++) {
+    // Compute integral multiplier
+    t = __clc_trunc(dx / w);
+
+    // Compute w * t in quad precision
     p = w * t;
     pp = fma(w, t, -p);
+
+    // Subtract w * t from dx
     v = dx - p;
     dx = v + (((dx - v) - p) - pp);
-    i = dx < 0.0;
-    todd ^= i;
-    dx += i ? w : 0.0;
 
-    // At this point, dx lies in the range [0,dy)
-    double ret = as_double(xsgn ^ as_ulong(dx));
-    dx = as_double(ax);
+    // If t was one too large, dx will be negative. Add back one w.
+    dx += dx < 0.0 ? w : 0.0;
+
+    // Scale w down by 2^(-53) for the next iteration
+    w *= scale;
+  }
+
+  // One more time
+  // Variable todd says whether the integer t is odd or not
+  t = __clc_floor(dx / w);
+  long lt = (long)t;
+  int todd = lt & 1;
+
+  p = w * t;
+  pp = fma(w, t, -p);
+  v = dx - p;
+  dx = v + (((dx - v) - p) - pp);
+  i = dx < 0.0;
+  todd ^= i;
+  dx += i ? w : 0.0;
+
+  // At this point, dx lies in the range [0,dy)
+  double ret = as_double(xsgn ^ as_ulong(dx));
+  dx = as_double(ax);
 
-    // Now handle |x| == |y|
-    int c = dx == dy;
-    t = as_double(xsgn);
-    ret = c ? t : ret;
+  // Now handle |x| == |y|
+  int c = dx == dy;
+  t = as_double(xsgn);
+  ret = c ? t : ret;
 
-    // Next, handle |x| < |y|
-    c = dx < dy;
-    ret = c ? x : ret;
+  // Next, handle |x| < |y|
+  c = dx < dy;
+  ret = c ? x : ret;
 
-    // We don't need anything special for |x| == 0
+  // We don't need anything special for |x| == 0
 
-    // |y| is 0
-    c = dy == 0.0;
-    ret = c ? as_double(QNANBITPATT_DP64) : ret;
+  // |y| is 0
+  c = dy == 0.0;
+  ret = c ? as_double(QNANBITPATT_DP64) : ret;
 
-    // y is +-Inf, NaN
-    c = yexp > BIASEDEMAX_DP64;
-    t = y == y ? x : y;
-    ret = c ? t : ret;
+  // y is +-Inf, NaN
+  c = yexp > BIASEDEMAX_DP64;
+  t = y == y ? x : y;
+  ret = c ? t : ret;
 
-    // x is +=Inf, NaN
-    c = xexp > BIASEDEMAX_DP64;
-    ret = c ? as_double(QNANBITPATT_DP64) : ret;
+  // x is +=Inf, NaN
+  c = xexp > BIASEDEMAX_DP64;
+  ret = c ? as_double(QNANBITPATT_DP64) : ret;
 
-    return ret;
+  return ret;
 }
-_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double);
+_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double,
+                      double);
 #endif

diff  --git a/libclc/generic/lib/math/clc_remainder.cl b/libclc/generic/lib/math/clc_remainder.cl
index 3a357de6f1962f9..31d17d5aaf6b6a5 100644
--- a/libclc/generic/lib/math/clc_remainder.cl
+++ b/libclc/generic/lib/math/clc_remainder.cl
@@ -30,192 +30,192 @@
 #include <clc/shared/clc_max.h>
 #include <math/clc_remainder.h>
 
-_CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y)
-{
-    int ux = as_int(x);
-    int ax = ux & EXSIGNBIT_SP32;
-    float xa = as_float(ax);
-    int sx = ux ^ ax;
-    int ex = ax >> EXPSHIFTBITS_SP32;
-
-    int uy = as_int(y);
-    int ay = uy & EXSIGNBIT_SP32;
-    float ya = as_float(ay);
-    int ey = ay >> EXPSHIFTBITS_SP32;
-
-    float xr = as_float(0x3f800000 | (ax & 0x007fffff));
-    float yr = as_float(0x3f800000 | (ay & 0x007fffff));
-    int c;
-    int k = ex - ey;
-
-    uint q = 0;
-
-    while (k > 0) {
-        c = xr >= yr;
-        q = (q << 1) | c;
-        xr -= c ? yr : 0.0f;
-        xr += xr;
-	--k;
-    }
-
-    c = xr > yr;
+_CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y) {
+  int ux = as_int(x);
+  int ax = ux & EXSIGNBIT_SP32;
+  float xa = as_float(ax);
+  int sx = ux ^ ax;
+  int ex = ax >> EXPSHIFTBITS_SP32;
+
+  int uy = as_int(y);
+  int ay = uy & EXSIGNBIT_SP32;
+  float ya = as_float(ay);
+  int ey = ay >> EXPSHIFTBITS_SP32;
+
+  float xr = as_float(0x3f800000 | (ax & 0x007fffff));
+  float yr = as_float(0x3f800000 | (ay & 0x007fffff));
+  int c;
+  int k = ex - ey;
+
+  uint q = 0;
+
+  while (k > 0) {
+    c = xr >= yr;
     q = (q << 1) | c;
     xr -= c ? yr : 0.0f;
+    xr += xr;
+    --k;
+  }
 
-    int lt = ex < ey;
+  c = xr > yr;
+  q = (q << 1) | c;
+  xr -= c ? yr : 0.0f;
 
-    q = lt ? 0 : q;
-    xr = lt ? xa : xr;
-    yr = lt ? ya : yr;
+  int lt = ex < ey;
 
-    c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
-    xr -= c ? yr : 0.0f;
-    q += c;
+  q = lt ? 0 : q;
+  xr = lt ? xa : xr;
+  yr = lt ? ya : yr;
 
-    float s = as_float(ey << EXPSHIFTBITS_SP32);
-    xr *= lt ? 1.0f : s;
+  c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
+  xr -= c ? yr : 0.0f;
+  q += c;
 
-    c = ax == ay;
-    xr = c ? 0.0f : xr;
+  float s = as_float(ey << EXPSHIFTBITS_SP32);
+  xr *= lt ? 1.0f : s;
 
-    xr = as_float(sx ^ as_int(xr));
+  c = ax == ay;
+  xr = c ? 0.0f : xr;
 
-    c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
-    xr = c ? as_float(QNANBITPATT_SP32) : xr;
+  xr = as_float(sx ^ as_int(xr));
 
-    return xr;
+  c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 |
+      ay == 0;
+  xr = c ? as_float(QNANBITPATT_SP32) : xr;
 
+  return xr;
 }
-_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float, float);
+_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float,
+                      float);
 
 #ifdef cl_khr_fp64
-_CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y)
-{
-    ulong ux = as_ulong(x);
-    ulong ax = ux & ~SIGNBIT_DP64;
-    ulong xsgn = ux ^ ax;
-    double dx = as_double(ax);
-    int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
-    int xexp1 = 11 - (int) __clc_clz(ax & MANTBITS_DP64);
-    xexp1 = xexp < 1 ? xexp1 : xexp;
-
-    ulong uy = as_ulong(y);
-    ulong ay = uy & ~SIGNBIT_DP64;
-    double dy = as_double(ay);
-    int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
-    int yexp1 = 11 - (int) __clc_clz(ay & MANTBITS_DP64);
-    yexp1 = yexp < 1 ? yexp1 : yexp;
-
-    int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
-
-    // First assume |x| > |y|
-
-    // Set ntimes to the number of times we need to do a
-    // partial remainder. If the exponent of x is an exact multiple
-    // of 53 larger than the exponent of y, and the mantissa of x is
-    // less than the mantissa of y, ntimes will be one too large
-    // but it doesn't matter - it just means that we'll go round
-    // the loop below one extra time.
-    int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
-    double w =  ldexp(dy, ntimes * 53);
-    w = ntimes == 0 ? dy : w;
-    double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
-
-    // Each time round the loop we compute a partial remainder.
-    // This is done by subtracting a large multiple of w
-    // from x each time, where w is a scaled up version of y.
-    // The subtraction must be performed exactly in quad
-    // precision, though the result at each stage can
-    // fit exactly in a double precision number.
-    int i;
-    double t, v, p, pp;
-
-    for (i = 0; i < ntimes; i++) {
-        // Compute integral multiplier
-        t = __clc_trunc(dx / w);
-
-        // Compute w * t in quad precision
-        p = w * t;
-        pp = fma(w, t, -p);
-
-        // Subtract w * t from dx
-        v = dx - p;
-        dx = v + (((dx - v) - p) - pp);
-
-        // If t was one too large, dx will be negative. Add back one w.
-        dx += dx < 0.0 ? w : 0.0;
-
-        // Scale w down by 2^(-53) for the next iteration
-        w *= scale;
-    }
-
-    // One more time
-    // Variable todd says whether the integer t is odd or not
-    t = __clc_floor(dx / w);
-    long lt = (long)t;
-    int todd = lt & 1;
-
+_CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y) {
+  ulong ux = as_ulong(x);
+  ulong ax = ux & ~SIGNBIT_DP64;
+  ulong xsgn = ux ^ ax;
+  double dx = as_double(ax);
+  int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
+  int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64);
+  xexp1 = xexp < 1 ? xexp1 : xexp;
+
+  ulong uy = as_ulong(y);
+  ulong ay = uy & ~SIGNBIT_DP64;
+  double dy = as_double(ay);
+  int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
+  int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64);
+  yexp1 = yexp < 1 ? yexp1 : yexp;
+
+  int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
+
+  // First assume |x| > |y|
+
+  // Set ntimes to the number of times we need to do a
+  // partial remainder. If the exponent of x is an exact multiple
+  // of 53 larger than the exponent of y, and the mantissa of x is
+  // less than the mantissa of y, ntimes will be one too large
+  // but it doesn't matter - it just means that we'll go round
+  // the loop below one extra time.
+  int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
+  double w = ldexp(dy, ntimes * 53);
+  w = ntimes == 0 ? dy : w;
+  double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
+
+  // Each time round the loop we compute a partial remainder.
+  // This is done by subtracting a large multiple of w
+  // from x each time, where w is a scaled up version of y.
+  // The subtraction must be performed exactly in quad
+  // precision, though the result at each stage can
+  // fit exactly in a double precision number.
+  int i;
+  double t, v, p, pp;
+
+  for (i = 0; i < ntimes; i++) {
+    // Compute integral multiplier
+    t = __clc_trunc(dx / w);
+
+    // Compute w * t in quad precision
     p = w * t;
     pp = fma(w, t, -p);
+
+    // Subtract w * t from dx
     v = dx - p;
     dx = v + (((dx - v) - p) - pp);
-    i = dx < 0.0;
-    todd ^= i;
-    dx += i ? w : 0.0;
 
-    // At this point, dx lies in the range [0,dy)
+    // If t was one too large, dx will be negative. Add back one w.
+    dx += dx < 0.0 ? w : 0.0;
+
+    // Scale w down by 2^(-53) for the next iteration
+    w *= scale;
+  }
+
+  // One more time
+  // Variable todd says whether the integer t is odd or not
+  t = __clc_floor(dx / w);
+  long lt = (long)t;
+  int todd = lt & 1;
+
+  p = w * t;
+  pp = fma(w, t, -p);
+  v = dx - p;
+  dx = v + (((dx - v) - p) - pp);
+  i = dx < 0.0;
+  todd ^= i;
+  dx += i ? w : 0.0;
+
+  // At this point, dx lies in the range [0,dy)
 
-    // For the fmod function, we're done apart from setting the correct sign.
-    //
-    // For the remainder function, we need to adjust dx
-    // so that it lies in the range (-y/2, y/2] by carefully
-    // subtracting w (== dy == y) if necessary. The rigmarole
-    // with todd is to get the correct sign of the result
-    // when x/y lies exactly half way between two integers,
-    // when we need to choose the even integer.
+  // For the fmod function, we're done apart from setting the correct sign.
+  //
+  // For the remainder function, we need to adjust dx
+  // so that it lies in the range (-y/2, y/2] by carefully
+  // subtracting w (== dy == y) if necessary. The rigmarole
+  // with todd is to get the correct sign of the result
+  // when x/y lies exactly half way between two integers,
+  // when we need to choose the even integer.
 
-    int al = (2.0*dx > w) | (todd & (2.0*dx == w));
-    double dxl = dx - (al ? w : 0.0);
+  int al = (2.0 * dx > w) | (todd & (2.0 * dx == w));
+  double dxl = dx - (al ? w : 0.0);
 
-    int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w));
-    double dxg = dx - (ag ? w : 0.0);
+  int ag = (dx > 0.5 * w) | (todd & (dx == 0.5 * w));
+  double dxg = dx - (ag ? w : 0.0);
 
-    dx = dy < 0x1.0p+1022 ? dxl : dxg;
+  dx = dy < 0x1.0p+1022 ? dxl : dxg;
 
-    double ret = as_double(xsgn ^ as_ulong(dx));
-    dx = as_double(ax);
+  double ret = as_double(xsgn ^ as_ulong(dx));
+  dx = as_double(ax);
 
-    // Now handle |x| == |y|
-    int c = dx == dy;
-    t = as_double(xsgn);
-    ret = c ? t : ret;
+  // Now handle |x| == |y|
+  int c = dx == dy;
+  t = as_double(xsgn);
+  ret = c ? t : ret;
 
-    // Next, handle |x| < |y|
-    c = dx < dy;
-    ret = c ? x : ret;
+  // Next, handle |x| < |y|
+  c = dx < dy;
+  ret = c ? x : ret;
 
-    c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy);
-    // we could use a conversion here instead since qsgn = +-1
-    p = qsgn == 1 ? -1.0 : 1.0;
-    t = fma(y, p, x);
-    ret = c ? t : ret;
+  c &= (yexp<1023 & 2.0 * dx> dy) | (dx > 0.5 * dy);
+  // we could use a conversion here instead since qsgn = +-1
+  p = qsgn == 1 ? -1.0 : 1.0;
+  t = fma(y, p, x);
+  ret = c ? t : ret;
 
-    // We don't need anything special for |x| == 0
+  // We don't need anything special for |x| == 0
 
-    // |y| is 0
-    c = dy == 0.0;
-    ret = c ? as_double(QNANBITPATT_DP64) : ret;
+  // |y| is 0
+  c = dy == 0.0;
+  ret = c ? as_double(QNANBITPATT_DP64) : ret;
 
-    // y is +-Inf, NaN
-    c = yexp > BIASEDEMAX_DP64;
-    t = y == y ? x : y;
-    ret = c ? t : ret;
+  // y is +-Inf, NaN
+  c = yexp > BIASEDEMAX_DP64;
+  t = y == y ? x : y;
+  ret = c ? t : ret;
 
-    // x is +=Inf, NaN
-    c = xexp > BIASEDEMAX_DP64;
-    ret = c ? as_double(QNANBITPATT_DP64) : ret;
+  // x is +=Inf, NaN
+  c = xexp > BIASEDEMAX_DP64;
+  ret = c ? as_double(QNANBITPATT_DP64) : ret;
 
-    return ret;
+  return ret;
 }
-_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double, double);
+_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double,
+                      double);
 #endif


        


More information about the cfe-commits mailing list