[clang] [libc] [Clang] Rename GPU intrinsic functions from `__gpu_` to `_gpu_` (PR #118674)
Joseph Huber via cfe-commits
cfe-commits at lists.llvm.org
Wed Dec 4 12:01:35 PST 2024
https://github.com/jhuber6 updated https://github.com/llvm/llvm-project/pull/118674
>From 7e28f1039a0443baea8bca7c994bb85429730674 Mon Sep 17 00:00:00 2001
From: Joseph Huber <huberjn at outlook.com>
Date: Wed, 4 Dec 2024 11:55:07 -0600
Subject: [PATCH] [Clang] Rename GPU intrinsic functions from `__gpu_` to
`_gpu_`
Summary:
This is consistent with other intrinsic headers like the SSE/AVX
intrinsics. I don't think function names need to be specificlaly
reserved because we are not natively including this into any TUs. The
main reason to do this change is because LSP providers like `clangd`
intentionally ignore autocompleting `__` prefixed names as they are
considered internal. This makes using this header really, really
annoying.
---
clang/lib/Headers/amdgpuintrin.h | 54 +++++-----
clang/lib/Headers/gpuintrin.h | 98 ++++++++---------
clang/lib/Headers/nvptxintrin.h | 68 ++++++------
clang/test/Headers/gpuintrin.c | 162 ++++++++++++++--------------
clang/test/Headers/gpuintrin_lang.c | 4 +-
libc/shared/rpc_util.h | 14 +--
6 files changed, 200 insertions(+), 200 deletions(-)
diff --git a/clang/lib/Headers/amdgpuintrin.h b/clang/lib/Headers/amdgpuintrin.h
index 720674a85f52cf..07330061647915 100644
--- a/clang/lib/Headers/amdgpuintrin.h
+++ b/clang/lib/Headers/amdgpuintrin.h
@@ -34,90 +34,90 @@ _Pragma("omp begin declare variant match(device = {arch(amdgcn)})");
#define __gpu_kernel __attribute__((amdgpu_kernel, visibility("protected")))
// Returns the number of workgroups in the 'x' dimension of the grid.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks_x(void) {
return __builtin_amdgcn_grid_size_x() / __builtin_amdgcn_workgroup_size_x();
}
// Returns the number of workgroups in the 'y' dimension of the grid.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks_y(void) {
return __builtin_amdgcn_grid_size_y() / __builtin_amdgcn_workgroup_size_y();
}
// Returns the number of workgroups in the 'z' dimension of the grid.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks_z(void) {
return __builtin_amdgcn_grid_size_z() / __builtin_amdgcn_workgroup_size_z();
}
// Returns the 'x' dimension of the current AMD workgroup's id.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id_x(void) {
return __builtin_amdgcn_workgroup_id_x();
}
// Returns the 'y' dimension of the current AMD workgroup's id.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id_y(void) {
return __builtin_amdgcn_workgroup_id_y();
}
// Returns the 'z' dimension of the current AMD workgroup's id.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id_z(void) {
return __builtin_amdgcn_workgroup_id_z();
}
// Returns the number of workitems in the 'x' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads_x(void) {
return __builtin_amdgcn_workgroup_size_x();
}
// Returns the number of workitems in the 'y' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads_y(void) {
return __builtin_amdgcn_workgroup_size_y();
}
// Returns the number of workitems in the 'z' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads_z(void) {
return __builtin_amdgcn_workgroup_size_z();
}
// Returns the 'x' dimension id of the workitem in the current AMD workgroup.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id_x(void) {
return __builtin_amdgcn_workitem_id_x();
}
// Returns the 'y' dimension id of the workitem in the current AMD workgroup.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id_y(void) {
return __builtin_amdgcn_workitem_id_y();
}
// Returns the 'z' dimension id of the workitem in the current AMD workgroup.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id_z(void) {
return __builtin_amdgcn_workitem_id_z();
}
// Returns the size of an AMD wavefront, either 32 or 64 depending on hardware
// and compilation options.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_lanes(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_lanes(void) {
return __builtin_amdgcn_wavefrontsize();
}
// Returns the id of the thread inside of an AMD wavefront executing together.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_lane_id(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_lane_id(void) {
return __builtin_amdgcn_mbcnt_hi(~0u, __builtin_amdgcn_mbcnt_lo(~0u, 0u));
}
// Returns the bit-mask of active threads in the current wavefront.
-_DEFAULT_FN_ATTRS static __inline__ uint64_t __gpu_lane_mask(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint64_t _gpu_lane_mask(void) {
return __builtin_amdgcn_read_exec();
}
// Copies the value from the first active thread in the wavefront to the rest.
_DEFAULT_FN_ATTRS static __inline__ uint32_t
-__gpu_read_first_lane_u32(uint64_t __lane_mask, uint32_t __x) {
+_gpu_read_first_lane_u32(uint64_t __lane_mask, uint32_t __x) {
return __builtin_amdgcn_readfirstlane(__x);
}
// Copies the value from the first active thread in the wavefront to the rest.
_DEFAULT_FN_ATTRS __inline__ uint64_t
-__gpu_read_first_lane_u64(uint64_t __lane_mask, uint64_t __x) {
+_gpu_read_first_lane_u64(uint64_t __lane_mask, uint64_t __x) {
uint32_t __hi = (uint32_t)(__x >> 32ull);
uint32_t __lo = (uint32_t)(__x & 0xFFFFFFFF);
return ((uint64_t)__builtin_amdgcn_readfirstlane(__hi) << 32ull) |
@@ -125,33 +125,33 @@ __gpu_read_first_lane_u64(uint64_t __lane_mask, uint64_t __x) {
}
// Returns a bitmask of threads in the current lane for which \p x is true.
-_DEFAULT_FN_ATTRS static __inline__ uint64_t __gpu_ballot(uint64_t __lane_mask,
- bool __x) {
+_DEFAULT_FN_ATTRS static __inline__ uint64_t _gpu_ballot(uint64_t __lane_mask,
+ bool __x) {
// The lane_mask & gives the nvptx semantics when lane_mask is a subset of
// the active threads
return __lane_mask & __builtin_amdgcn_ballot_w64(__x);
}
// Waits for all the threads in the block to converge and issues a fence.
-_DEFAULT_FN_ATTRS static __inline__ void __gpu_sync_threads(void) {
+_DEFAULT_FN_ATTRS static __inline__ void _gpu_sync_threads(void) {
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_fence(__ATOMIC_SEQ_CST, "workgroup");
}
// Wait for all threads in the wavefront to converge, this is a noop on AMDGPU.
-_DEFAULT_FN_ATTRS static __inline__ void __gpu_sync_lane(uint64_t __lane_mask) {
+_DEFAULT_FN_ATTRS static __inline__ void _gpu_sync_lane(uint64_t __lane_mask) {
__builtin_amdgcn_wave_barrier();
}
// Shuffles the the lanes inside the wavefront according to the given index.
_DEFAULT_FN_ATTRS static __inline__ uint32_t
-__gpu_shuffle_idx_u32(uint64_t __lane_mask, uint32_t __idx, uint32_t __x) {
+_gpu_shuffle_idx_u32(uint64_t __lane_mask, uint32_t __idx, uint32_t __x) {
return __builtin_amdgcn_ds_bpermute(__idx << 2, __x);
}
// Shuffles the the lanes inside the wavefront according to the given index.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
-__gpu_shuffle_idx_u64(uint64_t __lane_mask, uint32_t __idx, uint64_t __x) {
+_gpu_shuffle_idx_u64(uint64_t __lane_mask, uint32_t __idx, uint64_t __x) {
uint32_t __hi = (uint32_t)(__x >> 32ull);
uint32_t __lo = (uint32_t)(__x & 0xFFFFFFFF);
return ((uint64_t)__builtin_amdgcn_ds_bpermute(__idx << 2, __hi) << 32ull) |
@@ -159,24 +159,24 @@ __gpu_shuffle_idx_u64(uint64_t __lane_mask, uint32_t __idx, uint64_t __x) {
}
// Returns true if the flat pointer points to CUDA 'shared' memory.
-_DEFAULT_FN_ATTRS static __inline__ bool __gpu_is_ptr_local(void *ptr) {
+_DEFAULT_FN_ATTRS static __inline__ bool _gpu_is_ptr_local(void *ptr) {
return __builtin_amdgcn_is_shared((void __attribute__((address_space(0))) *)((
void [[clang::opencl_generic]] *)ptr));
}
// Returns true if the flat pointer points to CUDA 'local' memory.
-_DEFAULT_FN_ATTRS static __inline__ bool __gpu_is_ptr_private(void *ptr) {
+_DEFAULT_FN_ATTRS static __inline__ bool _gpu_is_ptr_private(void *ptr) {
return __builtin_amdgcn_is_private((void __attribute__((
address_space(0))) *)((void [[clang::opencl_generic]] *)ptr));
}
// Terminates execution of the associated wavefront.
-_DEFAULT_FN_ATTRS [[noreturn]] static __inline__ void __gpu_exit(void) {
+_DEFAULT_FN_ATTRS [[noreturn]] static __inline__ void _gpu_exit(void) {
__builtin_amdgcn_endpgm();
}
// Suspend the thread briefly to assist the scheduler during busy loops.
-_DEFAULT_FN_ATTRS static __inline__ void __gpu_thread_suspend(void) {
+_DEFAULT_FN_ATTRS static __inline__ void _gpu_thread_suspend(void) {
__builtin_amdgcn_s_sleep(2);
}
diff --git a/clang/lib/Headers/gpuintrin.h b/clang/lib/Headers/gpuintrin.h
index 4c463c333308fc..be4ab81f6c961e 100644
--- a/clang/lib/Headers/gpuintrin.h
+++ b/clang/lib/Headers/gpuintrin.h
@@ -48,56 +48,56 @@ _Pragma("omp begin declare variant match(device = {kind(gpu)})");
#define __GPU_Z_DIM 2
// Returns the number of blocks in the requested dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks(int __dim) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks(int __dim) {
switch (__dim) {
case 0:
- return __gpu_num_blocks_x();
+ return _gpu_num_blocks_x();
case 1:
- return __gpu_num_blocks_y();
+ return _gpu_num_blocks_y();
case 2:
- return __gpu_num_blocks_z();
+ return _gpu_num_blocks_z();
default:
__builtin_unreachable();
}
}
// Returns the number of block id in the requested dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id(int __dim) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id(int __dim) {
switch (__dim) {
case 0:
- return __gpu_block_id_x();
+ return _gpu_block_id_x();
case 1:
- return __gpu_block_id_y();
+ return _gpu_block_id_y();
case 2:
- return __gpu_block_id_z();
+ return _gpu_block_id_z();
default:
__builtin_unreachable();
}
}
// Returns the number of threads in the requested dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads(int __dim) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads(int __dim) {
switch (__dim) {
case 0:
- return __gpu_num_threads_x();
+ return _gpu_num_threads_x();
case 1:
- return __gpu_num_threads_y();
+ return _gpu_num_threads_y();
case 2:
- return __gpu_num_threads_z();
+ return _gpu_num_threads_z();
default:
__builtin_unreachable();
}
}
// Returns the thread id in the requested dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id(int __dim) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id(int __dim) {
switch (__dim) {
case 0:
- return __gpu_thread_id_x();
+ return _gpu_thread_id_x();
case 1:
- return __gpu_thread_id_y();
+ return _gpu_thread_id_y();
case 2:
- return __gpu_thread_id_z();
+ return _gpu_thread_id_z();
default:
__builtin_unreachable();
}
@@ -105,83 +105,83 @@ _DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id(int __dim) {
// Get the first active thread inside the lane.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
-__gpu_first_lane_id(uint64_t __lane_mask) {
+_gpu_first_lane_id(uint64_t __lane_mask) {
return __builtin_ffsll(__lane_mask) - 1;
}
// Conditional that is only true for a single thread in a lane.
_DEFAULT_FN_ATTRS static __inline__ bool
-__gpu_is_first_in_lane(uint64_t __lane_mask) {
- return __gpu_lane_id() == __gpu_first_lane_id(__lane_mask);
+_gpu_is_first_in_lane(uint64_t __lane_mask) {
+ return _gpu_lane_id() == _gpu_first_lane_id(__lane_mask);
}
// Gets the first floating point value from the active lanes.
_DEFAULT_FN_ATTRS static __inline__ float
-__gpu_read_first_lane_f32(uint64_t __lane_mask, float __x) {
+_gpu_read_first_lane_f32(uint64_t __lane_mask, float __x) {
return __builtin_bit_cast(
- float, __gpu_read_first_lane_u32(__lane_mask,
- __builtin_bit_cast(uint32_t, __x)));
+ float,
+ _gpu_read_first_lane_u32(__lane_mask, __builtin_bit_cast(uint32_t, __x)));
}
// Gets the first floating point value from the active lanes.
_DEFAULT_FN_ATTRS static __inline__ double
-__gpu_read_first_lane_f64(uint64_t __lane_mask, double __x) {
+_gpu_read_first_lane_f64(uint64_t __lane_mask, double __x) {
return __builtin_bit_cast(
- double, __gpu_read_first_lane_u64(__lane_mask,
- __builtin_bit_cast(uint64_t, __x)));
+ double,
+ _gpu_read_first_lane_u64(__lane_mask, __builtin_bit_cast(uint64_t, __x)));
}
// Shuffles the the lanes according to the given index.
_DEFAULT_FN_ATTRS static __inline__ float
-__gpu_shuffle_idx_f32(uint64_t __lane_mask, uint32_t __idx, float __x) {
+_gpu_shuffle_idx_f32(uint64_t __lane_mask, uint32_t __idx, float __x) {
return __builtin_bit_cast(
- float, __gpu_shuffle_idx_u32(__lane_mask, __idx,
- __builtin_bit_cast(uint32_t, __x)));
+ float, _gpu_shuffle_idx_u32(__lane_mask, __idx,
+ __builtin_bit_cast(uint32_t, __x)));
}
// Shuffles the the lanes according to the given index.
_DEFAULT_FN_ATTRS static __inline__ double
-__gpu_shuffle_idx_f64(uint64_t __lane_mask, uint32_t __idx, double __x) {
+_gpu_shuffle_idx_f64(uint64_t __lane_mask, uint32_t __idx, double __x) {
return __builtin_bit_cast(
- double, __gpu_shuffle_idx_u64(__lane_mask, __idx,
- __builtin_bit_cast(uint64_t, __x)));
+ double, _gpu_shuffle_idx_u64(__lane_mask, __idx,
+ __builtin_bit_cast(uint64_t, __x)));
}
// Gets the sum of all lanes inside the warp or wavefront.
#define __DO_LANE_SUM(__type, __suffix) \
- _DEFAULT_FN_ATTRS static __inline__ __type __gpu_lane_sum_##__suffix( \
+ _DEFAULT_FN_ATTRS static __inline__ __type _gpu_lane_sum_##__suffix( \
uint64_t __lane_mask, __type __x) { \
- for (uint32_t __step = __gpu_num_lanes() / 2; __step > 0; __step /= 2) { \
- uint32_t __index = __step + __gpu_lane_id(); \
- __x += __gpu_shuffle_idx_##__suffix(__lane_mask, __index, __x); \
+ for (uint32_t __step = _gpu_num_lanes() / 2; __step > 0; __step /= 2) { \
+ uint32_t __index = __step + _gpu_lane_id(); \
+ __x += _gpu_shuffle_idx_##__suffix(__lane_mask, __index, __x); \
} \
- return __gpu_read_first_lane_##__suffix(__lane_mask, __x); \
+ return _gpu_read_first_lane_##__suffix(__lane_mask, __x); \
}
-__DO_LANE_SUM(uint32_t, u32); // uint32_t __gpu_lane_sum_u32(m, x)
-__DO_LANE_SUM(uint64_t, u64); // uint64_t __gpu_lane_sum_u64(m, x)
-__DO_LANE_SUM(float, f32); // float __gpu_lane_sum_f32(m, x)
-__DO_LANE_SUM(double, f64); // double __gpu_lane_sum_f64(m, x)
+__DO_LANE_SUM(uint32_t, u32); // uint32_t _gpu_lane_sum_u32(m, x)
+__DO_LANE_SUM(uint64_t, u64); // uint64_t _gpu_lane_sum_u64(m, x)
+__DO_LANE_SUM(float, f32); // float _gpu_lane_sum_f32(m, x)
+__DO_LANE_SUM(double, f64); // double _gpu_lane_sum_f64(m, x)
#undef __DO_LANE_SUM
// Gets the accumulator scan of the threads in the warp or wavefront.
#define __DO_LANE_SCAN(__type, __bitmask_type, __suffix) \
- _DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_lane_scan_##__suffix( \
+ _DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_lane_scan_##__suffix( \
uint64_t __lane_mask, uint32_t __x) { \
- for (uint32_t __step = 1; __step < __gpu_num_lanes(); __step *= 2) { \
- uint32_t __index = __gpu_lane_id() - __step; \
- __bitmask_type bitmask = __gpu_lane_id() >= __step; \
+ for (uint32_t __step = 1; __step < _gpu_num_lanes(); __step *= 2) { \
+ uint32_t __index = _gpu_lane_id() - __step; \
+ __bitmask_type bitmask = _gpu_lane_id() >= __step; \
__x += __builtin_bit_cast( \
__type, \
-bitmask & __builtin_bit_cast(__bitmask_type, \
- __gpu_shuffle_idx_##__suffix( \
+ _gpu_shuffle_idx_##__suffix( \
__lane_mask, __index, __x))); \
} \
return __x; \
}
-__DO_LANE_SCAN(uint32_t, uint32_t, u32); // uint32_t __gpu_lane_scan_u32(m, x)
-__DO_LANE_SCAN(uint64_t, uint64_t, u64); // uint64_t __gpu_lane_scan_u64(m, x)
-__DO_LANE_SCAN(float, uint32_t, f32); // float __gpu_lane_scan_f32(m, x)
-__DO_LANE_SCAN(double, uint64_t, f64); // double __gpu_lane_scan_f64(m, x)
+__DO_LANE_SCAN(uint32_t, uint32_t, u32); // uint32_t _gpu_lane_scan_u32(m, x)
+__DO_LANE_SCAN(uint64_t, uint64_t, u64); // uint64_t _gpu_lane_scan_u64(m, x)
+__DO_LANE_SCAN(float, uint32_t, f32); // float _gpu_lane_scan_f32(m, x)
+__DO_LANE_SCAN(double, uint64_t, f64); // double _gpu_lane_scan_f64(m, x)
#undef __DO_LANE_SCAN
_Pragma("omp end declare variant");
diff --git a/clang/lib/Headers/nvptxintrin.h b/clang/lib/Headers/nvptxintrin.h
index 962dca9cf03126..14ff684cb893a4 100644
--- a/clang/lib/Headers/nvptxintrin.h
+++ b/clang/lib/Headers/nvptxintrin.h
@@ -34,159 +34,159 @@ _Pragma("omp begin declare variant match(device = {arch(nvptx64)})");
#define __gpu_kernel __attribute__((nvptx_kernel, visibility("protected")))
// Returns the number of CUDA blocks in the 'x' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks_x(void) {
return __nvvm_read_ptx_sreg_nctaid_x();
}
// Returns the number of CUDA blocks in the 'y' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks_y(void) {
return __nvvm_read_ptx_sreg_nctaid_y();
}
// Returns the number of CUDA blocks in the 'z' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_blocks_z(void) {
return __nvvm_read_ptx_sreg_nctaid_z();
}
// Returns the 'x' dimension of the current CUDA block's id.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id_x(void) {
return __nvvm_read_ptx_sreg_ctaid_x();
}
// Returns the 'y' dimension of the current CUDA block's id.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id_y(void) {
return __nvvm_read_ptx_sreg_ctaid_y();
}
// Returns the 'z' dimension of the current CUDA block's id.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_block_id_z(void) {
return __nvvm_read_ptx_sreg_ctaid_z();
}
// Returns the number of CUDA threads in the 'x' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads_x(void) {
return __nvvm_read_ptx_sreg_ntid_x();
}
// Returns the number of CUDA threads in the 'y' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads_y(void) {
return __nvvm_read_ptx_sreg_ntid_y();
}
// Returns the number of CUDA threads in the 'z' dimension.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_threads_z(void) {
return __nvvm_read_ptx_sreg_ntid_z();
}
// Returns the 'x' dimension id of the thread in the current CUDA block.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id_x(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id_x(void) {
return __nvvm_read_ptx_sreg_tid_x();
}
// Returns the 'y' dimension id of the thread in the current CUDA block.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id_y(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id_y(void) {
return __nvvm_read_ptx_sreg_tid_y();
}
// Returns the 'z' dimension id of the thread in the current CUDA block.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id_z(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_thread_id_z(void) {
return __nvvm_read_ptx_sreg_tid_z();
}
// Returns the size of a CUDA warp, always 32 on NVIDIA hardware.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_lanes(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_num_lanes(void) {
return __nvvm_read_ptx_sreg_warpsize();
}
// Returns the id of the thread inside of a CUDA warp executing together.
-_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_lane_id(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint32_t _gpu_lane_id(void) {
return __nvvm_read_ptx_sreg_laneid();
}
// Returns the bit-mask of active threads in the current warp.
-_DEFAULT_FN_ATTRS static __inline__ uint64_t __gpu_lane_mask(void) {
+_DEFAULT_FN_ATTRS static __inline__ uint64_t _gpu_lane_mask(void) {
return __nvvm_activemask();
}
// Copies the value from the first active thread in the warp to the rest.
_DEFAULT_FN_ATTRS static __inline__ uint32_t
-__gpu_read_first_lane_u32(uint64_t __lane_mask, uint32_t __x) {
+_gpu_read_first_lane_u32(uint64_t __lane_mask, uint32_t __x) {
uint32_t __mask = (uint32_t)__lane_mask;
uint32_t __id = __builtin_ffs(__mask) - 1;
- return __nvvm_shfl_sync_idx_i32(__mask, __x, __id, __gpu_num_lanes() - 1);
+ return __nvvm_shfl_sync_idx_i32(__mask, __x, __id, _gpu_num_lanes() - 1);
}
// Copies the value from the first active thread in the warp to the rest.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
-__gpu_read_first_lane_u64(uint64_t __lane_mask, uint64_t __x) {
+_gpu_read_first_lane_u64(uint64_t __lane_mask, uint64_t __x) {
uint32_t __hi = (uint32_t)(__x >> 32ull);
uint32_t __lo = (uint32_t)(__x & 0xFFFFFFFF);
uint32_t __mask = (uint32_t)__lane_mask;
uint32_t __id = __builtin_ffs(__mask) - 1;
return ((uint64_t)__nvvm_shfl_sync_idx_i32(__mask, __hi, __id,
- __gpu_num_lanes() - 1)
+ _gpu_num_lanes() - 1)
<< 32ull) |
((uint64_t)__nvvm_shfl_sync_idx_i32(__mask, __lo, __id,
- __gpu_num_lanes() - 1));
+ _gpu_num_lanes() - 1));
}
// Returns a bitmask of threads in the current lane for which \p x is true.
-_DEFAULT_FN_ATTRS static __inline__ uint64_t __gpu_ballot(uint64_t __lane_mask,
- bool __x) {
+_DEFAULT_FN_ATTRS static __inline__ uint64_t _gpu_ballot(uint64_t __lane_mask,
+ bool __x) {
uint32_t __mask = (uint32_t)__lane_mask;
return __nvvm_vote_ballot_sync(__mask, __x);
}
// Waits for all the threads in the block to converge and issues a fence.
-_DEFAULT_FN_ATTRS static __inline__ void __gpu_sync_threads(void) {
+_DEFAULT_FN_ATTRS static __inline__ void _gpu_sync_threads(void) {
__syncthreads();
}
// Waits for all threads in the warp to reconverge for independent scheduling.
-_DEFAULT_FN_ATTRS static __inline__ void __gpu_sync_lane(uint64_t __lane_mask) {
+_DEFAULT_FN_ATTRS static __inline__ void _gpu_sync_lane(uint64_t __lane_mask) {
__nvvm_bar_warp_sync((uint32_t)__lane_mask);
}
// Shuffles the the lanes inside the warp according to the given index.
_DEFAULT_FN_ATTRS static __inline__ uint32_t
-__gpu_shuffle_idx_u32(uint64_t __lane_mask, uint32_t __idx, uint32_t __x) {
+_gpu_shuffle_idx_u32(uint64_t __lane_mask, uint32_t __idx, uint32_t __x) {
uint32_t __mask = (uint32_t)__lane_mask;
uint32_t __bitmask = (__mask >> __idx) & 1u;
return -__bitmask &
- __nvvm_shfl_sync_idx_i32(__mask, __x, __idx, __gpu_num_lanes() - 1u);
+ __nvvm_shfl_sync_idx_i32(__mask, __x, __idx, _gpu_num_lanes() - 1u);
}
// Shuffles the the lanes inside the warp according to the given index.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
-__gpu_shuffle_idx_u64(uint64_t __lane_mask, uint32_t __idx, uint64_t __x) {
+_gpu_shuffle_idx_u64(uint64_t __lane_mask, uint32_t __idx, uint64_t __x) {
uint32_t __hi = (uint32_t)(__x >> 32ull);
uint32_t __lo = (uint32_t)(__x & 0xFFFFFFFF);
uint32_t __mask = (uint32_t)__lane_mask;
uint64_t __bitmask = (__mask >> __idx) & 1u;
- return -__bitmask & ((uint64_t)__nvvm_shfl_sync_idx_i32(
- __mask, __hi, __idx, __gpu_num_lanes() - 1u)
+ return -__bitmask & ((uint64_t)__nvvm_shfl_sync_idx_i32(__mask, __hi, __idx,
+ _gpu_num_lanes() - 1u)
<< 32ull) |
((uint64_t)__nvvm_shfl_sync_idx_i32(__mask, __lo, __idx,
- __gpu_num_lanes() - 1u));
+ _gpu_num_lanes() - 1u));
}
// Returns true if the flat pointer points to CUDA 'shared' memory.
-_DEFAULT_FN_ATTRS static __inline__ bool __gpu_is_ptr_local(void *ptr) {
+_DEFAULT_FN_ATTRS static __inline__ bool _gpu_is_ptr_local(void *ptr) {
return __nvvm_isspacep_shared(ptr);
}
// Returns true if the flat pointer points to CUDA 'local' memory.
-_DEFAULT_FN_ATTRS static __inline__ bool __gpu_is_ptr_private(void *ptr) {
+_DEFAULT_FN_ATTRS static __inline__ bool _gpu_is_ptr_private(void *ptr) {
return __nvvm_isspacep_local(ptr);
}
// Terminates execution of the calling thread.
-_DEFAULT_FN_ATTRS [[noreturn]] static __inline__ void __gpu_exit(void) {
+_DEFAULT_FN_ATTRS [[noreturn]] static __inline__ void _gpu_exit(void) {
__nvvm_exit();
}
// Suspend the thread briefly to assist the scheduler during busy loops.
-_DEFAULT_FN_ATTRS static __inline__ void __gpu_thread_suspend(void) {
+_DEFAULT_FN_ATTRS static __inline__ void _gpu_thread_suspend(void) {
if (__nvvm_reflect("__CUDA_ARCH") >= 700)
asm("nanosleep.u32 64;" ::: "memory");
}
diff --git a/clang/test/Headers/gpuintrin.c b/clang/test/Headers/gpuintrin.c
index 2e45f73692f534..6947105fdebedd 100644
--- a/clang/test/Headers/gpuintrin.c
+++ b/clang/test/Headers/gpuintrin.c
@@ -15,93 +15,93 @@
// AMDGPU-LABEL: define protected amdgpu_kernel void @foo(
// AMDGPU-SAME: ) #[[ATTR0:[0-9]+]] {
// AMDGPU-NEXT: [[ENTRY:.*:]]
-// AMDGPU-NEXT: [[CALL:%.*]] = call i32 @__gpu_num_blocks_x() #[[ATTR7:[0-9]+]]
-// AMDGPU-NEXT: [[CALL1:%.*]] = call i32 @__gpu_num_blocks_y() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL2:%.*]] = call i32 @__gpu_num_blocks_z() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL3:%.*]] = call i32 @__gpu_num_blocks(i32 noundef 0) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL4:%.*]] = call i32 @__gpu_block_id_x() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL5:%.*]] = call i32 @__gpu_block_id_y() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL6:%.*]] = call i32 @__gpu_block_id_z() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL7:%.*]] = call i32 @__gpu_block_id(i32 noundef 0) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL8:%.*]] = call i32 @__gpu_num_threads_x() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL9:%.*]] = call i32 @__gpu_num_threads_y() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL10:%.*]] = call i32 @__gpu_num_threads_z() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL11:%.*]] = call i32 @__gpu_num_threads(i32 noundef 0) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL12:%.*]] = call i32 @__gpu_thread_id_x() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL13:%.*]] = call i32 @__gpu_thread_id_y() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL14:%.*]] = call i32 @__gpu_thread_id_z() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL15:%.*]] = call i32 @__gpu_thread_id(i32 noundef 0) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL16:%.*]] = call i32 @__gpu_num_lanes() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL17:%.*]] = call i32 @__gpu_lane_id() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL18:%.*]] = call i64 @__gpu_lane_mask() #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL19:%.*]] = call i32 @__gpu_read_first_lane_u32(i64 noundef -1, i32 noundef -1) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL20:%.*]] = call i64 @__gpu_ballot(i64 noundef -1, i1 noundef zeroext true) #[[ATTR7]]
-// AMDGPU-NEXT: call void @__gpu_sync_threads() #[[ATTR7]]
-// AMDGPU-NEXT: call void @__gpu_sync_lane(i64 noundef -1) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL21:%.*]] = call i32 @__gpu_shuffle_idx_u32(i64 noundef -1, i32 noundef -1, i32 noundef -1) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL22:%.*]] = call i64 @__gpu_first_lane_id(i64 noundef -1) #[[ATTR7]]
-// AMDGPU-NEXT: [[CALL23:%.*]] = call zeroext i1 @__gpu_is_first_in_lane(i64 noundef -1) #[[ATTR7]]
-// AMDGPU-NEXT: call void @__gpu_exit() #[[ATTR8:[0-9]+]]
+// AMDGPU-NEXT: [[CALL:%.*]] = call i32 @_gpu_num_blocks_x() #[[ATTR7:[0-9]+]]
+// AMDGPU-NEXT: [[CALL1:%.*]] = call i32 @_gpu_num_blocks_y() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL2:%.*]] = call i32 @_gpu_num_blocks_z() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL3:%.*]] = call i32 @_gpu_num_blocks(i32 noundef 0) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL4:%.*]] = call i32 @_gpu_block_id_x() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL5:%.*]] = call i32 @_gpu_block_id_y() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL6:%.*]] = call i32 @_gpu_block_id_z() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL7:%.*]] = call i32 @_gpu_block_id(i32 noundef 0) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL8:%.*]] = call i32 @_gpu_num_threads_x() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL9:%.*]] = call i32 @_gpu_num_threads_y() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL10:%.*]] = call i32 @_gpu_num_threads_z() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL11:%.*]] = call i32 @_gpu_num_threads(i32 noundef 0) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL12:%.*]] = call i32 @_gpu_thread_id_x() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL13:%.*]] = call i32 @_gpu_thread_id_y() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL14:%.*]] = call i32 @_gpu_thread_id_z() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL15:%.*]] = call i32 @_gpu_thread_id(i32 noundef 0) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL16:%.*]] = call i32 @_gpu_num_lanes() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL17:%.*]] = call i32 @_gpu_lane_id() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL18:%.*]] = call i64 @_gpu_lane_mask() #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL19:%.*]] = call i32 @_gpu_read_first_lane_u32(i64 noundef -1, i32 noundef -1) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL20:%.*]] = call i64 @_gpu_ballot(i64 noundef -1, i1 noundef zeroext true) #[[ATTR7]]
+// AMDGPU-NEXT: call void @_gpu_sync_threads() #[[ATTR7]]
+// AMDGPU-NEXT: call void @_gpu_sync_lane(i64 noundef -1) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL21:%.*]] = call i32 @_gpu_shuffle_idx_u32(i64 noundef -1, i32 noundef -1, i32 noundef -1) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL22:%.*]] = call i64 @_gpu_first_lane_id(i64 noundef -1) #[[ATTR7]]
+// AMDGPU-NEXT: [[CALL23:%.*]] = call zeroext i1 @_gpu_is_first_in_lane(i64 noundef -1) #[[ATTR7]]
+// AMDGPU-NEXT: call void @_gpu_exit() #[[ATTR8:[0-9]+]]
// AMDGPU-NEXT: unreachable
//
// NVPTX-LABEL: define protected void @foo(
// NVPTX-SAME: ) #[[ATTR0:[0-9]+]] {
// NVPTX-NEXT: [[ENTRY:.*:]]
-// NVPTX-NEXT: [[CALL:%.*]] = call i32 @__gpu_num_blocks_x() #[[ATTR6:[0-9]+]]
-// NVPTX-NEXT: [[CALL1:%.*]] = call i32 @__gpu_num_blocks_y() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL2:%.*]] = call i32 @__gpu_num_blocks_z() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL3:%.*]] = call i32 @__gpu_num_blocks(i32 noundef 0) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL4:%.*]] = call i32 @__gpu_block_id_x() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL5:%.*]] = call i32 @__gpu_block_id_y() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL6:%.*]] = call i32 @__gpu_block_id_z() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL7:%.*]] = call i32 @__gpu_block_id(i32 noundef 0) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL8:%.*]] = call i32 @__gpu_num_threads_x() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL9:%.*]] = call i32 @__gpu_num_threads_y() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL10:%.*]] = call i32 @__gpu_num_threads_z() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL11:%.*]] = call i32 @__gpu_num_threads(i32 noundef 0) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL12:%.*]] = call i32 @__gpu_thread_id_x() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL13:%.*]] = call i32 @__gpu_thread_id_y() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL14:%.*]] = call i32 @__gpu_thread_id_z() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL15:%.*]] = call i32 @__gpu_thread_id(i32 noundef 0) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL16:%.*]] = call i32 @__gpu_num_lanes() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL17:%.*]] = call i32 @__gpu_lane_id() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL18:%.*]] = call i64 @__gpu_lane_mask() #[[ATTR6]]
-// NVPTX-NEXT: [[CALL19:%.*]] = call i32 @__gpu_read_first_lane_u32(i64 noundef -1, i32 noundef -1) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL20:%.*]] = call i64 @__gpu_ballot(i64 noundef -1, i1 noundef zeroext true) #[[ATTR6]]
-// NVPTX-NEXT: call void @__gpu_sync_threads() #[[ATTR6]]
-// NVPTX-NEXT: call void @__gpu_sync_lane(i64 noundef -1) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL21:%.*]] = call i32 @__gpu_shuffle_idx_u32(i64 noundef -1, i32 noundef -1, i32 noundef -1) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL22:%.*]] = call i64 @__gpu_first_lane_id(i64 noundef -1) #[[ATTR6]]
-// NVPTX-NEXT: [[CALL23:%.*]] = call zeroext i1 @__gpu_is_first_in_lane(i64 noundef -1) #[[ATTR6]]
-// NVPTX-NEXT: call void @__gpu_exit() #[[ATTR7:[0-9]+]]
+// NVPTX-NEXT: [[CALL:%.*]] = call i32 @_gpu_num_blocks_x() #[[ATTR6:[0-9]+]]
+// NVPTX-NEXT: [[CALL1:%.*]] = call i32 @_gpu_num_blocks_y() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL2:%.*]] = call i32 @_gpu_num_blocks_z() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL3:%.*]] = call i32 @_gpu_num_blocks(i32 noundef 0) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL4:%.*]] = call i32 @_gpu_block_id_x() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL5:%.*]] = call i32 @_gpu_block_id_y() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL6:%.*]] = call i32 @_gpu_block_id_z() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL7:%.*]] = call i32 @_gpu_block_id(i32 noundef 0) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL8:%.*]] = call i32 @_gpu_num_threads_x() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL9:%.*]] = call i32 @_gpu_num_threads_y() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL10:%.*]] = call i32 @_gpu_num_threads_z() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL11:%.*]] = call i32 @_gpu_num_threads(i32 noundef 0) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL12:%.*]] = call i32 @_gpu_thread_id_x() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL13:%.*]] = call i32 @_gpu_thread_id_y() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL14:%.*]] = call i32 @_gpu_thread_id_z() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL15:%.*]] = call i32 @_gpu_thread_id(i32 noundef 0) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL16:%.*]] = call i32 @_gpu_num_lanes() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL17:%.*]] = call i32 @_gpu_lane_id() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL18:%.*]] = call i64 @_gpu_lane_mask() #[[ATTR6]]
+// NVPTX-NEXT: [[CALL19:%.*]] = call i32 @_gpu_read_first_lane_u32(i64 noundef -1, i32 noundef -1) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL20:%.*]] = call i64 @_gpu_ballot(i64 noundef -1, i1 noundef zeroext true) #[[ATTR6]]
+// NVPTX-NEXT: call void @_gpu_sync_threads() #[[ATTR6]]
+// NVPTX-NEXT: call void @_gpu_sync_lane(i64 noundef -1) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL21:%.*]] = call i32 @_gpu_shuffle_idx_u32(i64 noundef -1, i32 noundef -1, i32 noundef -1) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL22:%.*]] = call i64 @_gpu_first_lane_id(i64 noundef -1) #[[ATTR6]]
+// NVPTX-NEXT: [[CALL23:%.*]] = call zeroext i1 @_gpu_is_first_in_lane(i64 noundef -1) #[[ATTR6]]
+// NVPTX-NEXT: call void @_gpu_exit() #[[ATTR7:[0-9]+]]
// NVPTX-NEXT: unreachable
//
__gpu_kernel void foo() {
- __gpu_num_blocks_x();
- __gpu_num_blocks_y();
- __gpu_num_blocks_z();
- __gpu_num_blocks(0);
- __gpu_block_id_x();
- __gpu_block_id_y();
- __gpu_block_id_z();
- __gpu_block_id(0);
- __gpu_num_threads_x();
- __gpu_num_threads_y();
- __gpu_num_threads_z();
- __gpu_num_threads(0);
- __gpu_thread_id_x();
- __gpu_thread_id_y();
- __gpu_thread_id_z();
- __gpu_thread_id(0);
- __gpu_num_lanes();
- __gpu_lane_id();
- __gpu_lane_mask();
- __gpu_read_first_lane_u32(-1, -1);
- __gpu_ballot(-1, 1);
- __gpu_sync_threads();
- __gpu_sync_lane(-1);
- __gpu_shuffle_idx_u32(-1, -1, -1);
- __gpu_first_lane_id(-1);
- __gpu_is_first_in_lane(-1);
- __gpu_exit();
+ _gpu_num_blocks_x();
+ _gpu_num_blocks_y();
+ _gpu_num_blocks_z();
+ _gpu_num_blocks(0);
+ _gpu_block_id_x();
+ _gpu_block_id_y();
+ _gpu_block_id_z();
+ _gpu_block_id(0);
+ _gpu_num_threads_x();
+ _gpu_num_threads_y();
+ _gpu_num_threads_z();
+ _gpu_num_threads(0);
+ _gpu_thread_id_x();
+ _gpu_thread_id_y();
+ _gpu_thread_id_z();
+ _gpu_thread_id(0);
+ _gpu_num_lanes();
+ _gpu_lane_id();
+ _gpu_lane_mask();
+ _gpu_read_first_lane_u32(-1, -1);
+ _gpu_ballot(-1, 1);
+ _gpu_sync_threads();
+ _gpu_sync_lane(-1);
+ _gpu_shuffle_idx_u32(-1, -1, -1);
+ _gpu_first_lane_id(-1);
+ _gpu_is_first_in_lane(-1);
+ _gpu_exit();
}
diff --git a/clang/test/Headers/gpuintrin_lang.c b/clang/test/Headers/gpuintrin_lang.c
index fa04849f8094d6..855d1747c5cf98 100644
--- a/clang/test/Headers/gpuintrin_lang.c
+++ b/clang/test/Headers/gpuintrin_lang.c
@@ -31,7 +31,7 @@
#include <gpuintrin.h>
#ifdef __device__
-__device__ int foo() { return __gpu_thread_id_x(); }
+__device__ int foo() { return _gpu_thread_id_x(); }
#else
// CUDA-LABEL: define dso_local i32 @foo(
// CUDA-SAME: ) #[[ATTR0:[0-9]+]] {
@@ -71,6 +71,6 @@ __device__ int foo() { return __gpu_thread_id_x(); }
// C89-NEXT: [[TMP0:%.*]] = call noundef {{.*}}i32 @llvm.amdgcn.workitem.id.x()
// C89-NEXT: ret i32 [[TMP0]]
//
-int foo() { return __gpu_thread_id_x(); }
+int foo() { return _gpu_thread_id_x(); }
#pragma omp declare target to(foo)
#endif
diff --git a/libc/shared/rpc_util.h b/libc/shared/rpc_util.h
index bb0177c01b85ea..6ba0a71825547e 100644
--- a/libc/shared/rpc_util.h
+++ b/libc/shared/rpc_util.h
@@ -172,14 +172,14 @@ RPC_INLINE constexpr bool is_process_gpu() {
/// Wait for all lanes in the group to complete.
RPC_INLINE void sync_lane(uint64_t lane_mask) {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_sync_lane(lane_mask);
+ return _gpu_sync_lane(lane_mask);
#endif
}
/// Copies the value from the first active thread to the rest.
RPC_INLINE uint32_t broadcast_value(uint64_t lane_mask, uint32_t x) {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_read_first_lane_u32(lane_mask, x);
+ return _gpu_read_first_lane_u32(lane_mask, x);
#else
return x;
#endif
@@ -188,7 +188,7 @@ RPC_INLINE uint32_t broadcast_value(uint64_t lane_mask, uint32_t x) {
/// Returns the number lanes that participate in the RPC interface.
RPC_INLINE uint32_t get_num_lanes() {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_num_lanes();
+ return _gpu_num_lanes();
#else
return 1;
#endif
@@ -197,7 +197,7 @@ RPC_INLINE uint32_t get_num_lanes() {
/// Returns the id of the thread inside of an AMD wavefront executing together.
RPC_INLINE uint64_t get_lane_mask() {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_lane_mask();
+ return _gpu_lane_mask();
#else
return 1;
#endif
@@ -206,7 +206,7 @@ RPC_INLINE uint64_t get_lane_mask() {
/// Returns the id of the thread inside of an AMD wavefront executing together.
RPC_INLINE uint32_t get_lane_id() {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_lane_id();
+ return _gpu_lane_id();
#else
return 0;
#endif
@@ -215,7 +215,7 @@ RPC_INLINE uint32_t get_lane_id() {
/// Conditional that is only true for a single thread in a lane.
RPC_INLINE bool is_first_lane(uint64_t lane_mask) {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_is_first_in_lane(lane_mask);
+ return _gpu_is_first_in_lane(lane_mask);
#else
return true;
#endif
@@ -224,7 +224,7 @@ RPC_INLINE bool is_first_lane(uint64_t lane_mask) {
/// Returns a bitmask of threads in the current lane for which \p x is true.
RPC_INLINE uint64_t ballot(uint64_t lane_mask, bool x) {
#ifdef RPC_TARGET_IS_GPU
- return __gpu_ballot(lane_mask, x);
+ return _gpu_ballot(lane_mask, x);
#else
return x;
#endif
More information about the cfe-commits
mailing list