[libclc] b4ef43f - [libclc] Format clc_fma.cl. NFC

Fraser Cormack via cfe-commits cfe-commits at lists.llvm.org
Mon Nov 4 03:56:08 PST 2024


Author: Fraser Cormack
Date: 2024-11-04T11:55:42Z
New Revision: b4ef43fc75dfeea76d4d968553858b2820420e58

URL: https://github.com/llvm/llvm-project/commit/b4ef43fc75dfeea76d4d968553858b2820420e58
DIFF: https://github.com/llvm/llvm-project/commit/b4ef43fc75dfeea76d4d968553858b2820420e58.diff

LOG: [libclc] Format clc_fma.cl. NFC

Added: 
    

Modified: 
    libclc/generic/lib/math/clc_fma.cl

Removed: 
    


################################################################################
diff  --git a/libclc/generic/lib/math/clc_fma.cl b/libclc/generic/lib/math/clc_fma.cl
index dee90e999c3983..34355a3b3c0275 100644
--- a/libclc/generic/lib/math/clc_fma.cl
+++ b/libclc/generic/lib/math/clc_fma.cl
@@ -22,137 +22,141 @@
 
 #include <clc/clc.h>
 
+#include "../clcmacro.h"
 #include "config.h"
 #include "math.h"
-#include "../clcmacro.h"
 
 struct fp {
-	ulong mantissa;
-	int exponent;
-	uint sign;
+  ulong mantissa;
+  int exponent;
+  uint sign;
 };
 
-_CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c)
-{
-	/* special cases */
-	if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b))
-		return mad(a, b, c);
+_CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) {
+  /* special cases */
+  if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b))
+    return mad(a, b, c);
 
-	/* If only c is inf, and both a,b are regular numbers, the result is c*/
-	if (isinf(c))
-		return c;
+  /* If only c is inf, and both a,b are regular numbers, the result is c*/
+  if (isinf(c))
+    return c;
 
-	a = __clc_flush_denormal_if_not_supported(a);
-	b = __clc_flush_denormal_if_not_supported(b);
-	c = __clc_flush_denormal_if_not_supported(c);
+  a = __clc_flush_denormal_if_not_supported(a);
+  b = __clc_flush_denormal_if_not_supported(b);
+  c = __clc_flush_denormal_if_not_supported(c);
 
-	if (c == 0)
-		return a * b;
+  if (c == 0)
+    return a * b;
 
-	struct fp st_a, st_b, st_c;
+  struct fp st_a, st_b, st_c;
 
-	st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127;
-	st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127;
-	st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127;
+  st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127;
+  st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127;
+  st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127;
 
-	st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000;
-	st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000;
-	st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000;
+  st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000;
+  st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000;
+  st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000;
 
-	st_a.sign = as_uint(a) & 0x80000000;
-	st_b.sign = as_uint(b) & 0x80000000;
-	st_c.sign = as_uint(c) & 0x80000000;
+  st_a.sign = as_uint(a) & 0x80000000;
+  st_b.sign = as_uint(b) & 0x80000000;
+  st_c.sign = as_uint(c) & 0x80000000;
 
-	// Multiplication.
-	// Move the product to the highest bits to maximize precision
-	// mantissa is 24 bits => product is 48 bits, 2bits non-fraction.
-	// Add one bit for future addition overflow,
-	// add another bit to detect subtraction underflow
-	struct fp st_mul;
-	st_mul.sign = st_a.sign ^ st_b.sign;
-	st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul;
-	st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0;
+  // Multiplication.
+  // Move the product to the highest bits to maximize precision
+  // mantissa is 24 bits => product is 48 bits, 2bits non-fraction.
+  // Add one bit for future addition overflow,
+  // add another bit to detect subtraction underflow
+  struct fp st_mul;
+  st_mul.sign = st_a.sign ^ st_b.sign;
+  st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul;
+  st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0;
 
-	// FIXME: Detecting a == 0 || b == 0 above crashed GCN isel
-	if (st_mul.exponent == 0 && st_mul.mantissa == 0)
-		return c;
+  // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel
+  if (st_mul.exponent == 0 && st_mul.mantissa == 0)
+    return c;
 
 // Mantissa is 23 fractional bits, shift it the same way as product mantissa
 #define C_ADJUST 37ul
 
-	// both exponents are bias adjusted
-	int exp_
diff  = st_mul.exponent - st_c.exponent;
-
-	st_c.mantissa <<= C_ADJUST;
-	ulong cutoff_bits = 0;
-	ulong cutoff_mask = (1ul << abs(exp_
diff )) - 1ul;
-	if (exp_
diff  > 0) {
-		cutoff_bits = exp_
diff  >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask);
-		st_c.mantissa = exp_
diff  >= 64 ? 0 : (st_c.mantissa >> exp_
diff );
-	} else {
-		cutoff_bits = -exp_
diff  >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask);
-		st_mul.mantissa = -exp_
diff  >= 64 ? 0 : (st_mul.mantissa >> -exp_
diff );
-	}
-
-	struct fp st_fma;
-	st_fma.sign = st_mul.sign;
-	st_fma.exponent = max(st_mul.exponent, st_c.exponent);
-	if (st_c.sign == st_mul.sign) {
-		st_fma.mantissa = st_mul.mantissa + st_c.mantissa;
-	} else {
-		// cutoff bits borrow one
-		st_fma.mantissa = st_mul.mantissa - st_c.mantissa - (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0);
-	}
-
-	// underflow: st_c.sign != st_mul.sign, and magnitude switches the sign
-	if (st_fma.mantissa > LONG_MAX) {
-		st_fma.mantissa = 0 - st_fma.mantissa;
-		st_fma.sign = st_mul.sign ^ 0x80000000;
-	}
-
-	// detect overflow/underflow
-	int overflow_bits = 3 - clz(st_fma.mantissa);
-
-	// adjust exponent
-	st_fma.exponent += overflow_bits;
-
-	// handle underflow
-	if (overflow_bits < 0) {
-		st_fma.mantissa <<= -overflow_bits;
-		overflow_bits = 0;
-	}
-
-	// rounding
-	ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1;
-	ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0);
-	ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits));
-	ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits));
-
-	// round to nearest even
-	if ((trunc_bits > grs_bits) ||
-	    (trunc_bits == grs_bits && last_bit != 0))
-		st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits));
-
-	// Shift mantissa back to bit 23
-	st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits));
-
-	// Detect rounding overflow
-	if (st_fma.mantissa > 0xffffff) {
-		++st_fma.exponent;
-		st_fma.mantissa >>= 1;
-	}
-
-	if (st_fma.mantissa == 0)
-		return .0f;
-
-	// Flating point range limit
-	if (st_fma.exponent > 127)
-		return as_float(as_uint(INFINITY) | st_fma.sign);
-
-	// Flush denormals
-	if (st_fma.exponent <= -127)
-		return as_float(st_fma.sign);
-
-	return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | ((uint)st_fma.mantissa & 0x7fffff));
+  // both exponents are bias adjusted
+  int exp_
diff  = st_mul.exponent - st_c.exponent;
+
+  st_c.mantissa <<= C_ADJUST;
+  ulong cutoff_bits = 0;
+  ulong cutoff_mask = (1ul << abs(exp_
diff )) - 1ul;
+  if (exp_
diff  > 0) {
+    cutoff_bits =
+        exp_
diff  >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask);
+    st_c.mantissa = exp_
diff  >= 64 ? 0 : (st_c.mantissa >> exp_
diff );
+  } else {
+    cutoff_bits =
+        -exp_
diff  >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask);
+    st_mul.mantissa = -exp_
diff  >= 64 ? 0 : (st_mul.mantissa >> -exp_
diff );
+  }
+
+  struct fp st_fma;
+  st_fma.sign = st_mul.sign;
+  st_fma.exponent = max(st_mul.exponent, st_c.exponent);
+  if (st_c.sign == st_mul.sign) {
+    st_fma.mantissa = st_mul.mantissa + st_c.mantissa;
+  } else {
+    // cutoff bits borrow one
+    st_fma.mantissa =
+        st_mul.mantissa - st_c.mantissa -
+        (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0);
+  }
+
+  // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign
+  if (st_fma.mantissa > LONG_MAX) {
+    st_fma.mantissa = 0 - st_fma.mantissa;
+    st_fma.sign = st_mul.sign ^ 0x80000000;
+  }
+
+  // detect overflow/underflow
+  int overflow_bits = 3 - clz(st_fma.mantissa);
+
+  // adjust exponent
+  st_fma.exponent += overflow_bits;
+
+  // handle underflow
+  if (overflow_bits < 0) {
+    st_fma.mantissa <<= -overflow_bits;
+    overflow_bits = 0;
+  }
+
+  // rounding
+  ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1;
+  ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0);
+  ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits));
+  ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits));
+
+  // round to nearest even
+  if ((trunc_bits > grs_bits) || (trunc_bits == grs_bits && last_bit != 0))
+    st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits));
+
+  // Shift mantissa back to bit 23
+  st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits));
+
+  // Detect rounding overflow
+  if (st_fma.mantissa > 0xffffff) {
+    ++st_fma.exponent;
+    st_fma.mantissa >>= 1;
+  }
+
+  if (st_fma.mantissa == 0)
+    return .0f;
+
+  // Flating point range limit
+  if (st_fma.exponent > 127)
+    return as_float(as_uint(INFINITY) | st_fma.sign);
+
+  // Flush denormals
+  if (st_fma.exponent <= -127)
+    return as_float(st_fma.sign);
+
+  return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) |
+                  ((uint)st_fma.mantissa & 0x7fffff));
 }
-_CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float, float, float)
+_CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float,
+                       float, float)


        


More information about the cfe-commits mailing list