[clang] [Clang] [NFC] Introduce `DynamicRecursiveASTVisitor` (PR #110040)
via cfe-commits
cfe-commits at lists.llvm.org
Tue Oct 22 04:59:01 PDT 2024
================
@@ -0,0 +1,452 @@
+//=== DynamicRecursiveASTVisitor.cpp - Dynamic AST Visitor Implementation -===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements DynamicRecursiveASTVisitor in terms of the CRTP-based
+// RecursiveASTVisitor.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/DynamicRecursiveASTVisitor.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+
+using namespace clang;
+
+// The implementation of DRAV deserves some explanation:
+//
+// We want to implement DynamicRecursiveASTVisitor without having to inherit or
+// reference RecursiveASTVisitor in any way in the header: if we instantiate
+// RAV in the header, then every user of (or rather every file that uses) DRAV
+// still has to instantiate a RAV, which gets us nowhere. Moreover, even just
+// including RecursiveASTVisitor.h would probably cause some amount of slowdown
+// because we'd have to parse a huge template. For these reasons, the fact that
+// DRAV is implemented using a RAV is solely an implementation detail.
+//
+// As for the implementation itself, DRAV by default acts exactly like a RAV
+// that overrides none of RAV's functions. There are two parts to this:
+//
+// 1. Any function in DRAV has to act like the corresponding function in RAV,
+// unless overridden by a derived class, of course.
+//
+// 2. Any call to a function by the RAV implementation that DRAV allows to be
+// overridden must be transformed to a virtual call on the user-provided
+// DRAV object: if some function in RAV calls e.g. TraverseCallExpr()
+// during traversal, then the derived class's TraverseCallExpr() must be
+// called (provided it overrides TraverseCallExpr()).
+//
+// The 'Impl' class is a helper that connects the two implementations; it is
+// a wrapper around a reference to a DRAV that is itself a RecursiveASTVisitor.
+// It overrides every function in RAV *that is virtual in DRAV* to perform a
+// virtual call on its DRAV reference. This accomplishes point 2 above.
+//
+// Point 1 is accomplished by, first, having the base class implementation of
+// each of the virtual functions construct an Impl object (which is actually
+// just a no-op), passing in itself so that any virtual calls use the right
+// vtable. Secondly, it then calls RAV's implementation of that same function
+// *on Impl* (using a qualified call so that we actually call into the RAV
+// implementation instead of Impl's version of that same function); this way,
+// we both execute RAV's implementation for this function only and ensure that
+// calls to subsequent functions call into Impl via CRTP (and Impl then calls
+// back into DRAV and so on).
+//
+// While this ends up constructing a lot of Impl instances (almost one per
+// function call), this doesn't really matter since Impl just holds a single
+// pointer, and everything in this file should get inlined into all the DRAV
+// functions here anyway.
+//
+//===----------------------------------------------------------------------===//
+//
+// The following illustrates how a call to an (overridden) function is actually
+// resolved: given some class 'Derived' that derives from DRAV and overrides
+// TraverseStmt(), if we are traversing some AST, and TraverseStmt() is called
+// by the RAV implementation, the following happens:
+//
+// 1. Impl::TraverseStmt() overrides RAV::TraverseStmt() via CRTP, so the
+// former is called.
+//
+// 2. Impl::TraverseStmt() performs a virtual call to the visitor (which is
+// an instance to Derived), so Derived::TraverseStmt() is called.
+//
+// End result: Derived::TraverseStmt() is executed.
+//
+// Suppose some other function, e.g. TraverseCallExpr(), which is NOT overridden
+// by Derived is called, we get:
+//
+// 1. Impl::TraverseCallExpr() overrides RAV::TraverseCallExpr() via CRTP,
+// so the former is called.
+//
+// 2. Impl::TraverseCallExpr() performs a virtual call, but since Derived
+// does not override that function, DRAV::TraverseCallExpr() is called.
+//
+// 3. DRAV::TraverseCallExpr() creates a new instance of Impl, passing in
+// itself (this doesn't change that the pointer is an instance of Derived);
+// it then calls RAV::TraverseCallExpr() on the Impl object, which actually
+// ends up executing RAV's implementation because we used a qualified
+// function call.
+//
+// End result: RAV::TraverseCallExpr() is executed,
+namespace {
+struct Impl : RecursiveASTVisitor<Impl> {
+ DynamicRecursiveASTVisitor &Visitor;
+ Impl(DynamicRecursiveASTVisitor &Visitor) : Visitor(Visitor) {}
+
+ bool shouldVisitTemplateInstantiations() const {
+ return Visitor.ShouldVisitTemplateInstantiations;
+ }
+
+ bool shouldWalkTypesOfTypeLocs() const {
+ return Visitor.ShouldWalkTypesOfTypeLocs;
+ }
+
+ bool shouldVisitImplicitCode() const {
+ return Visitor.ShouldVisitImplicitCode;
+ }
+
+ bool shouldVisitLambdaBody() const { return Visitor.ShouldVisitLambdaBody; }
+
+ // Supporting post-order would be very hard because of quirks of the
+ // RAV implementation that only work with CRTP. It also is only used
+ // by less than 5 visitors in the entire code base.
+ bool shouldTraversePostOrder() const { return false; }
+
+ bool TraverseAST(ASTContext &AST) { return Visitor.TraverseAST(AST); }
+ bool TraverseAttr(Attr *At) { return Visitor.TraverseAttr(At); }
+ bool TraverseDecl(Decl *D) { return Visitor.TraverseDecl(D); }
+ bool TraverseType(QualType T) { return Visitor.TraverseType(T); }
+ bool TraverseTypeLoc(TypeLoc TL) { return Visitor.TraverseTypeLoc(TL); }
+ bool TraverseStmt(Stmt *S) { return Visitor.TraverseStmt(S); }
+
+ bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
+ return Visitor.TraverseConstructorInitializer(Init);
+ }
+
+ bool TraverseTemplateArgument(const TemplateArgument &Arg) {
+ return Visitor.TraverseTemplateArgument(Arg);
+ }
+
+ bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
+ return Visitor.TraverseTemplateArgumentLoc(ArgLoc);
+ }
+
+ bool TraverseTemplateName(TemplateName Template) {
+ return Visitor.TraverseTemplateName(Template);
+ }
+
+ bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
+ return Visitor.TraverseObjCProtocolLoc(ProtocolLoc);
+ }
+
+ bool TraverseTypeConstraint(const TypeConstraint *C) {
+ return Visitor.TraverseTypeConstraint(C);
+ }
+ bool TraverseConceptRequirement(concepts::Requirement *R) {
+ return Visitor.TraverseConceptRequirement(R);
+ }
+ bool TraverseConceptTypeRequirement(concepts::TypeRequirement *R) {
+ return Visitor.TraverseConceptTypeRequirement(R);
+ }
+ bool TraverseConceptExprRequirement(concepts::ExprRequirement *R) {
+ return Visitor.TraverseConceptExprRequirement(R);
+ }
+ bool TraverseConceptNestedRequirement(concepts::NestedRequirement *R) {
+ return Visitor.TraverseConceptNestedRequirement(R);
+ }
+
+ bool TraverseConceptReference(ConceptReference *CR) {
+ return Visitor.TraverseConceptReference(CR);
+ }
+
+ bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base) {
+ return Visitor.TraverseCXXBaseSpecifier(Base);
+ }
+
+ bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo) {
+ return Visitor.TraverseDeclarationNameInfo(NameInfo);
+ }
+
+ bool TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C,
+ Expr *Init) {
+ return Visitor.TraverseLambdaCapture(LE, C, Init);
+ }
+
+ bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
+ return Visitor.TraverseNestedNameSpecifier(NNS);
+ }
+
+ bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) {
+ return Visitor.TraverseNestedNameSpecifierLoc(NNS);
+ }
+
+ bool VisitConceptReference(ConceptReference *CR) {
+ return Visitor.VisitConceptReference(CR);
+ }
+
+ bool dataTraverseStmtPre(Stmt *S) { return Visitor.dataTraverseStmtPre(S); }
+ bool dataTraverseStmtPost(Stmt *S) { return Visitor.dataTraverseStmtPost(S); }
+
+ // TraverseStmt() always passes in a queue, so we have no choice but to
+ // accept it as a parameter here.
+ bool dataTraverseNode(Stmt *S, DataRecursionQueue * = nullptr) {
+ // But since don't support postorder traversal, we don't need it, so
+ // simply discard it here. This way, derived classes don't need to worry
+ // about including it as a parameter that they never use.
+ return Visitor.dataTraverseNode(S);
----------------
Sirraide wrote:
Post-order traversal is already disabled because `shouldTraversePostOrder()` in `Impl` is hard-coded to return `false`. We can’t assert that the queue is null here because the RAV’s `TraverseStmt()` always passes a non-null queue to this.
https://github.com/llvm/llvm-project/pull/110040
More information about the cfe-commits
mailing list