[clang] [llvm] [SPIR-V] Add SPIR-V structurizer (PR #107408)
Nathan Gauër via cfe-commits
cfe-commits at lists.llvm.org
Thu Sep 19 07:53:33 PDT 2024
================
@@ -0,0 +1,1242 @@
+//===-- SPIRVStructurizer.cpp ----------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+#include "Analysis/SPIRVConvergenceRegionAnalysis.h"
+#include "SPIRV.h"
+#include "SPIRVSubtarget.h"
+#include "SPIRVTargetMachine.h"
+#include "SPIRVUtils.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsSPIRV.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
+#include <queue>
+#include <stack>
+#include <unordered_set>
+
+using namespace llvm;
+using namespace SPIRV;
+
+namespace llvm {
+
+void initializeSPIRVStructurizerPass(PassRegistry &);
+
+namespace {
+
+using BlockSet = std::unordered_set<BasicBlock *>;
+using Edge = std::pair<BasicBlock *, BasicBlock *>;
+
+// Helper function to do a partial order visit from the block |Start|, calling
+// |Op| on each visited node.
+void partialOrderVisit(BasicBlock &Start,
+ std::function<bool(BasicBlock *)> Op) {
+ PartialOrderingVisitor V(*Start.getParent());
+ V.partialOrderVisit(Start, Op);
+}
+
+// Returns the exact convergence region in the tree defined by `Node` for which
+// `BB` is the header, nullptr otherwise.
+const ConvergenceRegion *getRegionForHeader(const ConvergenceRegion *Node,
+ BasicBlock *BB) {
+ if (Node->Entry == BB)
+ return Node;
+
+ for (auto *Child : Node->Children) {
+ const auto *CR = getRegionForHeader(Child, BB);
+ if (CR != nullptr)
+ return CR;
+ }
+ return nullptr;
+}
+
+// Returns the single BasicBlock exiting the convergence region `CR`,
+// nullptr if no such exit exists.
+BasicBlock *getExitFor(const ConvergenceRegion *CR) {
+ std::unordered_set<BasicBlock *> ExitTargets;
+ for (BasicBlock *Exit : CR->Exits) {
+ for (BasicBlock *Successor : successors(Exit)) {
+ if (CR->Blocks.count(Successor) == 0)
+ ExitTargets.insert(Successor);
+ }
+ }
+
+ assert(ExitTargets.size() <= 1);
+ if (ExitTargets.size() == 0)
+ return nullptr;
+
+ return *ExitTargets.begin();
+}
+
+// Returns the merge block designated by I if I is a merge instruction, nullptr
+// otherwise.
+BasicBlock *getDesignatedMergeBlock(Instruction *I) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
+ if (II == nullptr)
+ return nullptr;
+
+ if (II->getIntrinsicID() != Intrinsic::spv_loop_merge &&
+ II->getIntrinsicID() != Intrinsic::spv_selection_merge)
+ return nullptr;
+
+ BlockAddress *BA = cast<BlockAddress>(II->getOperand(0));
+ return BA->getBasicBlock();
+}
+
+// Returns the continue block designated by I if I is an OpLoopMerge, nullptr
+// otherwise.
+BasicBlock *getDesignatedContinueBlock(Instruction *I) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
+ if (II == nullptr)
+ return nullptr;
+
+ if (II->getIntrinsicID() != Intrinsic::spv_loop_merge)
+ return nullptr;
+
+ BlockAddress *BA = cast<BlockAddress>(II->getOperand(1));
+ return BA->getBasicBlock();
+}
+
+// Returns true if Header has one merge instruction which designated Merge as
+// merge block.
+bool isDefinedAsSelectionMergeBy(BasicBlock &Header, BasicBlock &Merge) {
+ for (auto &I : Header) {
+ BasicBlock *MB = getDesignatedMergeBlock(&I);
+ if (MB == &Merge)
+ return true;
+ }
+ return false;
+}
+
+// Returns true if the BB has one OpLoopMerge instruction.
+bool hasLoopMergeInstruction(BasicBlock &BB) {
+ for (auto &I : BB)
+ if (getDesignatedContinueBlock(&I))
+ return true;
+ return false;
+}
+
+// Returns true is I is an OpSelectionMerge or OpLoopMerge instruction, false
+// otherwise.
+bool isMergeInstruction(Instruction *I) {
+ return getDesignatedMergeBlock(I) != nullptr;
+}
+
+// Returns all blocks in F having at least one OpLoopMerge or OpSelectionMerge
+// instruction.
+SmallPtrSet<BasicBlock *, 2> getHeaderBlocks(Function &F) {
+ SmallPtrSet<BasicBlock *, 2> Output;
+ for (BasicBlock &BB : F) {
+ for (Instruction &I : BB) {
+ if (getDesignatedMergeBlock(&I) != nullptr)
+ Output.insert(&BB);
+ }
+ }
+ return Output;
+}
+
+// Returns all basic blocks in |F| referenced by at least 1
+// OpSelectionMerge/OpLoopMerge instruction.
+SmallPtrSet<BasicBlock *, 2> getMergeBlocks(Function &F) {
+ SmallPtrSet<BasicBlock *, 2> Output;
+ for (BasicBlock &BB : F) {
+ for (Instruction &I : BB) {
+ BasicBlock *MB = getDesignatedMergeBlock(&I);
+ if (MB != nullptr)
+ Output.insert(MB);
+ }
+ }
+ return Output;
+}
+
+// Return all the merge instructions contained in BB.
+// Note: the SPIR-V spec doesn't allow a single BB to contain more than 1 merge
+// instruction, but this can happen while we structurize the CFG.
+std::vector<Instruction *> getMergeInstructions(BasicBlock &BB) {
+ std::vector<Instruction *> Output;
+ for (Instruction &I : BB)
+ if (isMergeInstruction(&I))
+ Output.push_back(&I);
+ return Output;
+}
+
+// Returns all basic blocks in |F| referenced as continue target by at least 1
+// OpLoopMerge instruction.
+SmallPtrSet<BasicBlock *, 2> getContinueBlocks(Function &F) {
+ SmallPtrSet<BasicBlock *, 2> Output;
+ for (BasicBlock &BB : F) {
+ for (Instruction &I : BB) {
+ BasicBlock *MB = getDesignatedContinueBlock(&I);
+ if (MB != nullptr)
+ Output.insert(MB);
+ }
+ }
+ return Output;
+}
+
+// Do a preorder traversal of the CFG starting from the BB |Start|.
+// point. Calls |op| on each basic block encountered during the traversal.
+void visit(BasicBlock &Start, std::function<bool(BasicBlock *)> op) {
+ std::stack<BasicBlock *> ToVisit;
+ SmallPtrSet<BasicBlock *, 8> Seen;
+
+ ToVisit.push(&Start);
+ Seen.insert(ToVisit.top());
+ while (ToVisit.size() != 0) {
+ BasicBlock *BB = ToVisit.top();
+ ToVisit.pop();
+
+ if (!op(BB))
+ continue;
+
+ for (auto Succ : successors(BB)) {
+ if (Seen.contains(Succ))
+ continue;
+ ToVisit.push(Succ);
+ Seen.insert(Succ);
+ }
+ }
+}
+
+// Replaces the conditional and unconditional branch targets of |BB| by
+// |NewTarget| if the target was |OldTarget|. This function also makes sure the
+// associated merge instruction gets updated accordingly.
+void replaceIfBranchTargets(BasicBlock *BB, BasicBlock *OldTarget,
+ BasicBlock *NewTarget) {
+ auto *BI = cast<BranchInst>(BB->getTerminator());
+
+ // 1. Replace all matching successors.
+ for (size_t i = 0; i < BI->getNumSuccessors(); i++) {
+ if (BI->getSuccessor(i) == OldTarget)
+ BI->setSuccessor(i, NewTarget);
+ }
+
+ // Branch was unconditional, no fixup required.
+ if (BI->isUnconditional())
+ return;
+
+ // Branch had 2 successors, maybe now both are the same?
+ if (BI->getSuccessor(0) != BI->getSuccessor(1))
+ return;
+
+ // Note: we may end up here because the original IR had such branches.
+ // This means Target is not necessarily equal to NewTarget.
+ IRBuilder<> Builder(BB);
+ Builder.SetInsertPoint(BI);
+ Builder.CreateBr(BI->getSuccessor(0));
+ BI->eraseFromParent();
+
+ // The branch was the only instruction, nothing else to do.
+ if (BB->size() == 1)
+ return;
+
+ // Otherwise, we need to check: was there an OpSelectionMerge before this
+ // branch? If we removed the OpBranchConditional, we must also remove the
+ // OpSelectionMerge. This is not valid for OpLoopMerge:
+ IntrinsicInst *II =
+ dyn_cast<IntrinsicInst>(BB->getTerminator()->getPrevNode());
+ if (!II || II->getIntrinsicID() != Intrinsic::spv_selection_merge)
+ return;
+
+ Constant *C = cast<Constant>(II->getOperand(0));
+ II->eraseFromParent();
+ if (!C->isConstantUsed())
+ C->destroyConstant();
+}
+
+// Replaces the target of branch instruction in |BB| with |NewTarget| if it
+// was |OldTarget|. This function also fixes the associated merge instruction.
+// Note: this function does not simplify branching instructions, it only updates
+// targets. See also: simplifyBranches.
+void replaceBranchTargets(BasicBlock *BB, BasicBlock *OldTarget,
+ BasicBlock *NewTarget) {
+ auto *T = BB->getTerminator();
+ if (isa<ReturnInst>(T))
+ return;
+
+ if (isa<BranchInst>(T))
+ return replaceIfBranchTargets(BB, OldTarget, NewTarget);
+
+ if (auto *SI = dyn_cast<SwitchInst>(T)) {
+ for (size_t i = 0; i < SI->getNumSuccessors(); i++) {
+ if (SI->getSuccessor(i) == OldTarget)
+ SI->setSuccessor(i, NewTarget);
+ }
+ return;
+ }
+
+ assert(false && "Unhandled terminator type.");
+}
+
+// Replaces basic bloc operands |OldSrc| or OpPhi instructions in |BB| by
+// |NewSrc|. This function does not simplify the OpPhi instruction once
+// transformed.
+void replacePhiTargets(BasicBlock *BB, BasicBlock *OldSrc, BasicBlock *NewSrc) {
+ for (PHINode &Phi : BB->phis()) {
+ int index = Phi.getBasicBlockIndex(OldSrc);
+ if (index == -1)
+ continue;
+ Phi.setIncomingBlock(index, NewSrc);
+ }
+}
+
+} // anonymous namespace
+
+// Given a reducible CFG, produces a structurized CFG in the SPIR-V sense,
+// adding merge instructions when required.
+class SPIRVStructurizer : public FunctionPass {
+
+ struct DivergentConstruct;
+ // Represents a list of condition/loops/switch constructs.
+ // See SPIR-V 2.11.2. Structured Control-flow Constructs for the list of
+ // constructs.
+ using ConstructList = std::vector<std::unique_ptr<DivergentConstruct>>;
+
+ // Represents a divergent construct in the SPIR-V sense.
+ // Such constructs are represented by a header (entry), a merge block (exit),
+ // and possibly a continue block (back-edge). A construct can contain other
+ // constructs, but their boundaries do not cross.
+ struct DivergentConstruct {
+ BasicBlock *Header = nullptr;
+ BasicBlock *Merge = nullptr;
+ BasicBlock *Continue = nullptr;
+
+ DivergentConstruct *Parent = nullptr;
+ ConstructList Children;
+ };
+
+ // An helper class to clean the construct boundaries.
+ // It is used to gather the list of blocks that should belong to each
+ // divergent construct, and possibly modify CFG edges when exits would cross
+ // the boundary of multiple constructs.
+ struct Splitter {
+ Function &F;
+ LoopInfo &LI;
+ DomTreeBuilder::BBDomTree DT;
+ DomTreeBuilder::BBPostDomTree PDT;
+
+ Splitter(Function &F, LoopInfo &LI) : F(F), LI(LI) { invalidate(); }
+
+ void invalidate() {
+ PDT.recalculate(F);
+ DT.recalculate(F);
+ }
+
+ // Returns the list of blocks that belong to a SPIR-V loop construct,
+ // including the continue construct.
+ std::vector<BasicBlock *> getLoopConstructBlocks(BasicBlock *Header,
+ BasicBlock *Merge) {
+ assert(DT.dominates(Header, Merge));
+ std::vector<BasicBlock *> Output;
+ partialOrderVisit(*Header, [&](BasicBlock *BB) {
+ if (BB == Merge)
+ return false;
+ if (DT.dominates(Merge, BB) || !DT.dominates(Header, BB))
+ return false;
+ Output.push_back(BB);
+ return true;
+ });
+ return Output;
+ }
+
+ // Returns the list of blocks that belong to a SPIR-V selection construct.
+ std::vector<BasicBlock *>
+ getSelectionConstructBlocks(DivergentConstruct *Node) {
+ assert(DT.dominates(Node->Header, Node->Merge));
+ BlockSet OutsideBlocks;
+ OutsideBlocks.insert(Node->Merge);
+
+ for (DivergentConstruct *It = Node->Parent; It != nullptr;
+ It = It->Parent) {
+ OutsideBlocks.insert(It->Merge);
+ if (It->Continue)
+ OutsideBlocks.insert(It->Continue);
+ }
+
+ std::vector<BasicBlock *> Output;
+ partialOrderVisit(*Node->Header, [&](BasicBlock *BB) {
+ if (OutsideBlocks.count(BB) != 0)
+ return false;
+ if (DT.dominates(Node->Merge, BB) || !DT.dominates(Node->Header, BB))
+ return false;
+ Output.push_back(BB);
+ return true;
+ });
+ return Output;
+ }
+
+ // Returns the list of blocks that belong to a SPIR-V switch construct.
+ std::vector<BasicBlock *> getSwitchConstructBlocks(BasicBlock *Header,
+ BasicBlock *Merge) {
+ assert(DT.dominates(Header, Merge));
+
+ std::vector<BasicBlock *> Output;
+ partialOrderVisit(*Header, [&](BasicBlock *BB) {
+ // the blocks structurally dominated by a switch header,
+ if (!DT.dominates(Header, BB))
+ return false;
+ // excluding blocks structurally dominated by the switch header’s merge
+ // block.
+ if (DT.dominates(Merge, BB) || BB == Merge)
+ return false;
+ Output.push_back(BB);
+ return true;
+ });
+ return Output;
+ }
+
+ // Returns the list of blocks that belong to a SPIR-V case construct.
+ std::vector<BasicBlock *> getCaseConstructBlocks(BasicBlock *Target,
+ BasicBlock *Merge) {
+ assert(DT.dominates(Target, Merge));
+
+ std::vector<BasicBlock *> Output;
+ partialOrderVisit(*Target, [&](BasicBlock *BB) {
+ // the blocks structurally dominated by an OpSwitch Target or Default
+ // block
+ if (!DT.dominates(Target, BB))
+ return false;
+ // excluding the blocks structurally dominated by the OpSwitch
+ // construct’s corresponding merge block.
+ if (DT.dominates(Merge, BB) || BB == Merge)
+ return false;
+ Output.push_back(BB);
+ return true;
+ });
+ return Output;
+ }
+
+ // Splits the given edges by recreating proxy nodes so that the destination
+ // OpPhi instruction can still be viable.
+ //
+ // clang-format off
+ //
+ // In SPIR-V, constructs must have a single exit/merge.
+ // Given nodes A and B in the construct, a node C outside, and the following edges.
+ // A -> C
+ // B -> C
+ //
+ // In such cases, we must create a new exit node D, that belong to the construct to make is viable:
+ // A -> D -> C
+ // B -> D -> C
+ //
+ // But if C had a phi node, adding such proxy-block breaks it. In such case, we must add 1 new block per
+ // exit, and patchup the phi node:
+ // A -> D -> D1 -> C
+ // B -> D -> D2 -> C
+ //
+ // A, B, D belongs to the construct. D is the exit. D1 and D2 are empty, just used as
+ // source operands for C's phi node.
+ //
+ // clang-format on
+ std::vector<Edge>
+ createAliasBlocksForComplexEdges(std::vector<Edge> Edges) {
+ std::unordered_map<BasicBlock *, BasicBlock *> Seen;
+ std::vector<Edge> Output;
+
+ for (auto &[Src, Dst] : Edges) {
+ auto [iterator, inserted] = Seen.insert({Src, Dst});
+ if (inserted) {
+ Output.emplace_back(Src, Dst);
+ continue;
+ }
+
+ // The exact same edge was already seen. Ignoring.
+ if (iterator->second == Dst)
+ continue;
+
+ // The same Src block branches to 2 distinct blocks. This will be an
+ // issue for the generated OpPhi. Creating alias block.
+ BasicBlock *NewSrc =
+ BasicBlock::Create(F.getContext(), "new.exit.src", &F);
+ replaceBranchTargets(Src, Dst, NewSrc);
+ replacePhiTargets(Dst, Src, NewSrc);
+
+ IRBuilder<> Builder(NewSrc);
+ Builder.CreateBr(Dst);
+
+ Seen.emplace(NewSrc, Dst);
+ Output.emplace_back(NewSrc, Dst);
+ }
+
+ return Output;
+ }
+
+ // Given a construct defined by |Header|, and a list of exiting edges
+ // |Edges|, creates a new single exit node, fixing up those edges.
+ BasicBlock *createSingleExitNode(BasicBlock *Header,
+ std::vector<Edge> &Edges) {
+ auto NewExit = BasicBlock::Create(F.getContext(), "new.exit", &F);
+ IRBuilder<> ExitBuilder(NewExit);
+
+ std::vector<BasicBlock *> Dsts;
+ std::unordered_map<BasicBlock *, ConstantInt *> DstToIndex;
+
+ // Given 2 edges: Src1 -> Dst, Src2 -> Dst:
+ // If Dst has an PHI node, and Src1 and Src2 are both operands, both Src1
+ // and Src2 cannot be hidden by NewExit. Create 2 new nodes: Alias1,
+ // Alias2 to which NewExit will branch before going to Dst. Then, patchup
+ // Dst PHI node to look for Alias1 and Alias2.
+ std::vector<Edge> FixedEdges = createAliasBlocksForComplexEdges(Edges);
+
+ for (auto &[Src, Dst] : FixedEdges) {
+ if (DstToIndex.count(Dst) != 0)
+ continue;
+ DstToIndex.emplace(Dst, ExitBuilder.getInt32(DstToIndex.size()));
+ Dsts.push_back(Dst);
+ }
+
+ if (Dsts.size() == 1) {
+ for (auto &[Src, Dst] : FixedEdges) {
+ replaceBranchTargets(Src, Dst, NewExit);
+ replacePhiTargets(Dst, Src, NewExit);
+ }
+ ExitBuilder.CreateBr(Dsts[0]);
+ return NewExit;
+ }
+
+ PHINode *PhiNode =
+ ExitBuilder.CreatePHI(ExitBuilder.getInt32Ty(), FixedEdges.size());
+
+ for (auto &[Src, Dst] : FixedEdges) {
+ PhiNode->addIncoming(DstToIndex[Dst], Src);
+ replaceBranchTargets(Src, Dst, NewExit);
+ replacePhiTargets(Dst, Src, NewExit);
+ }
+
+ // If we can avoid an OpSwitch, generate an OpBranch. Reason is some
+ // OpBranch are allowed to exist without a new OpSelectionMerge if one of
+ // the branch is the parent's merge node, while OpSwitches are not.
+ if (Dsts.size() == 2) {
+ Value *Condition = ExitBuilder.CreateCmp(CmpInst::ICMP_EQ,
+ DstToIndex[Dsts[0]], PhiNode);
+ ExitBuilder.CreateCondBr(Condition, Dsts[0], Dsts[1]);
+ return NewExit;
+ }
+
+ SwitchInst *Sw =
+ ExitBuilder.CreateSwitch(PhiNode, Dsts[0], Dsts.size() - 1);
+ for (auto It = Dsts.begin() + 1; It != Dsts.end(); ++It) {
+ Sw->addCase(DstToIndex[*It], *It);
+ }
+ return NewExit;
+ }
+ };
+
+ /// Create a value in BB set to the value associated with the branch the block
+ /// terminator will take.
+ Value *createExitVariable(
+ BasicBlock *BB,
+ const DenseMap<BasicBlock *, ConstantInt *> &TargetToValue) {
+ auto *T = BB->getTerminator();
+ if (isa<ReturnInst>(T))
+ return nullptr;
+
+ IRBuilder<> Builder(BB);
+ Builder.SetInsertPoint(T);
+
+ if (auto *BI = dyn_cast<BranchInst>(T)) {
+
+ BasicBlock *LHSTarget = BI->getSuccessor(0);
+ BasicBlock *RHSTarget =
+ BI->isConditional() ? BI->getSuccessor(1) : nullptr;
+
+ Value *LHS = TargetToValue.count(LHSTarget) != 0
+ ? TargetToValue.at(LHSTarget)
+ : nullptr;
+ Value *RHS = TargetToValue.count(RHSTarget) != 0
+ ? TargetToValue.at(RHSTarget)
+ : nullptr;
+
+ if (LHS == nullptr || RHS == nullptr)
+ return LHS == nullptr ? RHS : LHS;
+ return Builder.CreateSelect(BI->getCondition(), LHS, RHS);
+ }
+
+ // TODO: add support for switch cases.
+ llvm_unreachable("Unhandled terminator type.");
+ }
+
+ // Creates a new basic block in F with a single OpUnreachable instruction.
+ BasicBlock *CreateUnreachable(Function &F) {
+ BasicBlock *BB = BasicBlock::Create(F.getContext(), "new.exit", &F);
+ IRBuilder<> Builder(BB);
+ Builder.CreateUnreachable();
+ return BB;
+ }
+
+ // Add OpLoopMerge instruction on cycles.
+ bool addMergeForLoops(Function &F) {
+ LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto *TopLevelRegion =
+ getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
+ .getRegionInfo()
+ .getTopLevelRegion();
+
+ bool Modified = false;
+ for (auto &BB : F) {
+ // Not a loop header. Ignoring for now.
+ if (!LI.isLoopHeader(&BB))
+ continue;
+ auto *L = LI.getLoopFor(&BB);
+
+ // This loop header is not the entrance of a convergence region. Ignoring
+ // this block.
+ auto *CR = getRegionForHeader(TopLevelRegion, &BB);
+ if (CR == nullptr)
+ continue;
+
+ IRBuilder<> Builder(&BB);
+
+ auto *Merge = getExitFor(CR);
+ // We are indeed in a loop, but there are no exits (infinite loop).
+ // This could be caused by a bad shader, but also could be an artifact
+ // from an earlier optimization. It is not always clear if structurally
+ // reachable means runtime reachable, so we cannot error-out. What we must
+ // do however is to make is legal on the SPIR-V point of view, hence
+ // adding an unreachable merge block.
+ if (Merge == nullptr) {
+ BranchInst *Br = cast<BranchInst>(BB.getTerminator());
+ assert(cast<BranchInst>(BB.getTerminator())->isUnconditional());
----------------
Keenuts wrote:
That's a good point. And to be honest I'm not entirely sure right now.
I added an assert, explaining I made this assumption, but it might be something to revisit.
In addition to that, switches are a bit of a specific case I need to iterate on. Some scenarios are not completely covered.
https://github.com/llvm/llvm-project/pull/107408
More information about the cfe-commits
mailing list