[clang] [SystemZ][z/OS] Implement z/OS XPLINK ABI (PR #91384)

Fanbo Meng via cfe-commits cfe-commits at lists.llvm.org
Tue May 14 13:00:10 PDT 2024


https://github.com/fanbo-meng updated https://github.com/llvm/llvm-project/pull/91384

>From 6428b9603044031aa5c58b2d75a0e9310bc3af6a Mon Sep 17 00:00:00 2001
From: Fanbo Meng <Fanbo.Meng at ibm.com>
Date: Tue, 7 May 2024 13:36:38 -0400
Subject: [PATCH] [SystemZ][z/OS] Implement z/OS XPLINK ABI

The XPLINK calling convention is specified in the Language
Environment Vendor Interface, chapter 22,
(https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cee/cee.htm)
and in Redbook XPLink: OS/390 Extra Performance Linkage
(http://www.redbooks.ibm.com/abstracts/sg245991.html?Open)
---
 clang/lib/CodeGen/CodeGenModule.cpp   |   2 +
 clang/lib/CodeGen/TargetInfo.h        |   4 +
 clang/lib/CodeGen/Targets/SystemZ.cpp | 393 ++++++++++++++++++++++++++
 clang/test/CodeGen/zos-abi.c          | 162 +++++++++++
 4 files changed, 561 insertions(+)
 create mode 100644 clang/test/CodeGen/zos-abi.c

diff --git a/clang/lib/CodeGen/CodeGenModule.cpp b/clang/lib/CodeGen/CodeGenModule.cpp
index 489c08a4d4819..c7305dede7123 100644
--- a/clang/lib/CodeGen/CodeGenModule.cpp
+++ b/clang/lib/CodeGen/CodeGenModule.cpp
@@ -242,6 +242,8 @@ createTargetCodeGenInfo(CodeGenModule &CGM) {
   case llvm::Triple::systemz: {
     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
     bool HasVector = !SoftFloat && Target.getABI() == "vector";
+    if (Triple.getOS() == llvm::Triple::ZOS)
+      return createSystemZ_ZOS_TargetCodeGenInfo(CGM, HasVector, SoftFloat);
     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
   }
 
diff --git a/clang/lib/CodeGen/TargetInfo.h b/clang/lib/CodeGen/TargetInfo.h
index f242d9e36ed40..e15f9bdf39356 100644
--- a/clang/lib/CodeGen/TargetInfo.h
+++ b/clang/lib/CodeGen/TargetInfo.h
@@ -527,6 +527,10 @@ std::unique_ptr<TargetCodeGenInfo>
 createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
                                bool SoftFloatABI);
 
+std::unique_ptr<TargetCodeGenInfo>
+createSystemZ_ZOS_TargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
+                                    bool SoftFloatABI);
+
 std::unique_ptr<TargetCodeGenInfo>
 createTCETargetCodeGenInfo(CodeGenModule &CGM);
 
diff --git a/clang/lib/CodeGen/Targets/SystemZ.cpp b/clang/lib/CodeGen/Targets/SystemZ.cpp
index deaafc85a3157..d420286c71c16 100644
--- a/clang/lib/CodeGen/Targets/SystemZ.cpp
+++ b/clang/lib/CodeGen/Targets/SystemZ.cpp
@@ -10,6 +10,7 @@
 #include "TargetInfo.h"
 #include "clang/Basic/Builtins.h"
 #include "llvm/IR/IntrinsicsS390.h"
+#include <optional>
 
 using namespace clang;
 using namespace clang::CodeGen;
@@ -529,9 +530,401 @@ bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
   return false;
 }
 
+//===----------------------------------------------------------------------===//
+// z/OS XPLINK ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ZOSXPLinkABIInfo : public ABIInfo {
+  const unsigned GPRBits = 64;
+  bool HasVector;
+
+public:
+  ZOSXPLinkABIInfo(CodeGenTypes &CGT, bool HV) : ABIInfo(CGT), HasVector(HV) {}
+
+  bool isPromotableIntegerType(QualType Ty) const;
+  bool isCompoundType(QualType Ty) const;
+  bool isVectorArgumentType(QualType Ty) const;
+  bool isFPArgumentType(QualType Ty) const;
+  QualType getSingleElementType(QualType Ty) const;
+  unsigned getMaxAlignFromTypeDefs(QualType Ty) const;
+  std::optional<QualType> getFPTypeOfComplexLikeType(QualType Ty) const;
+
+  ABIArgInfo classifyReturnType(QualType RetTy,
+                                unsigned functionCallConv) const;
+  ABIArgInfo classifyArgumentType(QualType ArgTy, bool IsNamedArg,
+                                  unsigned functionCallConv) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() =
+          classifyReturnType(FI.getReturnType(), FI.getCallingConvention());
+
+    unsigned NumRequiredArgs = FI.getNumRequiredArgs();
+    unsigned ArgNo = 0;
+
+    for (auto &I : FI.arguments()) {
+      bool IsNamedArg = ArgNo < NumRequiredArgs;
+      I.info =
+          classifyArgumentType(I.type, IsNamedArg, FI.getCallingConvention());
+      ++ArgNo;
+    }
+  }
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class ZOSXPLinkTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  ZOSXPLinkTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
+      : TargetCodeGenInfo(std::make_unique<ZOSXPLinkABIInfo>(CGT, HasVector)) {
+    SwiftInfo =
+        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+  }
+};
+
+} // namespace
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 64 bits.
+bool ZOSXPLinkABIInfo::isPromotableIntegerType(QualType Ty) const {
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Promotable integer types are required to be promoted by the ABI.
+  if (getContext().isPromotableIntegerType(Ty))
+    return true;
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() < 64)
+      return true;
+
+  // In addition to the usual promotable integer types, we also need to
+  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+    switch (BT->getKind()) {
+    case BuiltinType::Int:
+    case BuiltinType::UInt:
+      return true;
+    default:
+      break;
+    }
+
+  return false;
+}
+
+bool ZOSXPLinkABIInfo::isCompoundType(QualType Ty) const {
+  return (Ty->isAnyComplexType() || Ty->isVectorType() ||
+          isAggregateTypeForABI(Ty));
+}
+
+bool ZOSXPLinkABIInfo::isVectorArgumentType(QualType Ty) const {
+  return (HasVector && Ty->isVectorType() &&
+          getContext().getTypeSize(Ty) <= 128);
+}
+
+bool ZOSXPLinkABIInfo::isFPArgumentType(QualType Ty) const {
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+    switch (BT->getKind()) {
+    case BuiltinType::Float:
+    case BuiltinType::Double:
+    case BuiltinType::LongDouble:
+      return true;
+    default:
+      return false;
+    }
+
+  return false;
+}
+
+QualType ZOSXPLinkABIInfo::getSingleElementType(QualType Ty) const {
+  if (const RecordType *RT = Ty->getAsStructureType()) {
+    const RecordDecl *RD = RT->getDecl();
+    QualType Found;
+
+    // If this is a C++ record, check the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+      for (const auto &I : CXXRD->bases()) {
+        QualType Base = I.getType();
+
+        // Empty bases don't affect things either way.
+        if (isEmptyRecord(getContext(), Base, true))
+          continue;
+
+        if (!Found.isNull())
+          return Ty;
+        Found = getSingleElementType(Base);
+      }
+
+    // Check the fields.
+    for (const auto *FD : RD->fields()) {
+      // Unlike isSingleElementStruct(), empty structure and array fields
+      // do count.  So do anonymous bitfields that aren't zero-sized.
+      if (getContext().getLangOpts().CPlusPlus &&
+          FD->isZeroLengthBitField(getContext()))
+        continue;
+
+      // Unlike isSingleElementStruct(), arrays do not count.
+      // Nested structures still do though.
+      if (!Found.isNull())
+        return Ty;
+      Found = getSingleElementType(FD->getType());
+    }
+
+    // Unlike isSingleElementStruct(), trailing padding is allowed.
+    if (!Found.isNull())
+      return Found;
+  }
+
+  return Ty;
+}
+
+unsigned ZOSXPLinkABIInfo::getMaxAlignFromTypeDefs(QualType Ty) const {
+  unsigned MaxAlign = 0;
+  while (Ty != Ty.getSingleStepDesugaredType(getContext())) {
+    auto *DesugaredType =
+        Ty.getSingleStepDesugaredType(getContext()).getTypePtr();
+    if (auto *TypedefTy = dyn_cast<TypedefType>(DesugaredType)) {
+      auto *TyDecl = TypedefTy->getDecl();
+      unsigned CurrAlign = TyDecl->getMaxAlignment();
+      MaxAlign = std::max(CurrAlign, MaxAlign);
+    }
+    Ty = Ty.getSingleStepDesugaredType(getContext());
+  }
+  return MaxAlign;
+}
+
+std::optional<QualType>
+ZOSXPLinkABIInfo::getFPTypeOfComplexLikeType(QualType Ty) const {
+  if (const RecordType *RT = Ty->getAsStructureType()) {
+    const RecordDecl *RD = RT->getDecl();
+
+    // Check for non-empty base classes.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+      if (CXXRD->hasDefinition())
+        for (const auto &I : CXXRD->bases()) {
+          QualType Base = I.getType();
+          if (!isEmptyRecord(getContext(), Base, true))
+            return std::nullopt;
+        }
+
+    // Check for exactly two elements with exactly the same floating point type.
+    // A single-element struct containing only a float, double, or long double
+    // counts as a field of that type. If the struct has one field consisting
+    // of a complex type, it does not count. This design may be somewhat
+    // inconsistent but it matches the behavior of the legacy C compiler.
+    int Count = 0;
+    clang::BuiltinType::Kind elemKind;
+    QualType RetTy;
+    for (const auto *FD : RD->fields()) {
+      if (Count >= 2)
+        return std::nullopt;
+
+      unsigned MaxAlignOnDecl = FD->getMaxAlignment();
+      QualType FT = FD->getType();
+      QualType FTSingleTy = getSingleElementType(FT);
+      unsigned MaxAlign =
+          std::max(getMaxAlignFromTypeDefs(FTSingleTy), MaxAlignOnDecl);
+
+      // The first element of a complex type may have an alignment enforced
+      // that is less strict than twice its size, since that would be naturally
+      // enforced by any complex type anyways. The second element may have an
+      // alignment enforced that is less strict than its size.
+      if (Count == 0) {
+        if (MaxAlign > 2 * getContext().getTypeSize(FTSingleTy))
+          return std::nullopt;
+      } else if (Count == 1) {
+        if (MaxAlign > getContext().getTypeSize(FTSingleTy))
+          return std::nullopt;
+      }
+
+      if (const BuiltinType *BT = FTSingleTy->getAs<BuiltinType>()) {
+        switch (BT->getKind()) {
+        case BuiltinType::Float:
+        case BuiltinType::Double:
+        case BuiltinType::LongDouble:
+          if (Count == 0) {
+            elemKind = BT->getKind();
+            RetTy = FTSingleTy;
+            break;
+          } else if (elemKind == BT->getKind()) {
+            break;
+          } else {
+            return std::nullopt;
+          }
+        default:
+          return std::nullopt;
+        }
+      } else {
+        return std::nullopt;
+      }
+
+      Count++;
+    }
+    if (Count == 2) {
+      // The last thing that needs to be checked is the alignment of the struct.
+      // If we have to emit any padding (eg. because of attribute aligned), this
+      // disqualifies the type from being complex.
+      unsigned MaxAlign = RT->getDecl()->getMaxAlignment();
+      unsigned ElemSize = getContext().getTypeSize(RetTy);
+      if (MaxAlign > 2 * ElemSize)
+        return std::nullopt;
+      return RetTy;
+    }
+  }
+  return std::nullopt;
+}
+
+ABIArgInfo ZOSXPLinkABIInfo::classifyReturnType(QualType RetTy,
+                                                unsigned CallConv) const {
+
+  // Ignore void types.
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  // For non-C calling convention, indirect by value for structs and complex.
+  if ((CallConv != llvm::CallingConv::C) &&
+      (isAggregateTypeForABI(RetTy) || RetTy->isAnyComplexType())) {
+    return getNaturalAlignIndirect(RetTy);
+  }
+
+  // Vectors are returned directly.
+  if (isVectorArgumentType(RetTy))
+    return ABIArgInfo::getDirect();
+
+  // Complex types are returned by value as per the XPLINK docs.
+  // Their members will be placed in FPRs.
+  if (RetTy->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+
+  // Complex LIKE structures are returned by value as per the XPLINK docs.
+  // Their members will be placed in FPRs.
+  if (RetTy->getAs<RecordType>()) {
+    if (getFPTypeOfComplexLikeType(RetTy))
+      return ABIArgInfo::getDirect();
+  }
+
+  // Aggregates with a size of less than 3 GPRs are returned in GRPs 1, 2 and 3.
+  // Other aggregates are passed in memory as an implicit first parameter.
+  if (isAggregateTypeForABI(RetTy)) {
+    uint64_t AggregateTypeSize = getContext().getTypeSize(RetTy);
+
+    if (AggregateTypeSize <= 3 * GPRBits) {
+      uint64_t NumElements =
+          AggregateTypeSize / GPRBits + (AggregateTypeSize % GPRBits != 0);
+
+      // Types up to 8 bytes are passed as an integer type in GPR1.
+      // Types between 8 and 16 bytes are passed as integer types in GPR1, 2.
+      // Types between 16 and 24 bytes are passed as integer types in GPR1, 2
+      // and 3.
+      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+      if (NumElements > 1)
+        CoerceTy = llvm::ArrayType::get(CoerceTy, NumElements);
+      return ABIArgInfo::getDirectInReg(CoerceTy);
+    }
+    return getNaturalAlignIndirect(RetTy);
+  }
+
+  return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                         : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo ZOSXPLinkABIInfo::classifyArgumentType(QualType Ty, bool IsNamedArg,
+                                                  unsigned CallConv) const {
+  // Handle the generic C++ ABI.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+  // Integers and enums are extended to full register width.
+  if (isPromotableIntegerType(Ty))
+    return ABIArgInfo::getExtend(Ty);
+
+  // For non-C calling conventions, compound types passed by address copy.
+  if ((CallConv != llvm::CallingConv::C) && isCompoundType(Ty))
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+  // Complex types are passed by value as per the XPLINK docs.
+  // If place available, their members will be placed in FPRs.
+  auto CompTy = getFPTypeOfComplexLikeType(Ty);
+  if (IsNamedArg) {
+    if (Ty->isComplexType()) {
+      auto AI = ABIArgInfo::getDirectInReg(CGT.ConvertType(Ty));
+      AI.setCanBeFlattened(false);
+      return AI;
+    }
+
+    if (CompTy.has_value()) {
+      llvm::Type *FPTy = CGT.ConvertType(*CompTy);
+      llvm::Type *CoerceTy = llvm::StructType::get(FPTy, FPTy);
+      auto AI = ABIArgInfo::getDirectInReg(CoerceTy);
+      AI.setCanBeFlattened(false);
+      return AI;
+    }
+  }
+
+  // Vectors are passed directly.
+  if (isVectorArgumentType(Ty))
+    return ABIArgInfo::getDirect();
+
+  // Handle structures. They are returned by value.
+  // If not complex like types, they are passed in GPRs, if possible.
+  // If place available, complex like types will have their members
+  // placed in FPRs.
+  if (Ty->getAs<RecordType>() || Ty->isAnyComplexType() || CompTy.has_value()) {
+    if (isAggregateTypeForABI(Ty) || Ty->isAnyComplexType() ||
+        CompTy.has_value()) {
+      // Since an aggregate may end up in registers, pass the aggregate as
+      // array. This is usually beneficial since we avoid forcing the back-end
+      // to store the argument to memory.
+      uint64_t Bits = getContext().getTypeSize(Ty);
+      llvm::Type *CoerceTy;
+
+      if (Bits <= GPRBits) {
+        // Struct types up to 8 bytes are passed as integer type (which will be
+        // properly aligned in the argument save area doubleword).
+        CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+      } else {
+        // Larger types are passed as arrays, with the base type selected
+        // according to the required alignment in the save area.
+        uint64_t NumRegs = llvm::alignTo(Bits, GPRBits) / GPRBits;
+        llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+        CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
+      }
+
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+
+    return ABIArgInfo::getDirect();
+  }
+
+  // Non-structure compounds are passed indirectly, i.e. arrays.
+  if (isCompoundType(Ty))
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+  return ABIArgInfo::getDirect();
+}
+
+Address ZOSXPLinkABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                    QualType Ty) const {
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
+                          CGF.getContext().getTypeInfoInChars(Ty),
+                          CGF.getPointerSize(),
+                          /*allowHigherAlign*/ false);
+}
+
 std::unique_ptr<TargetCodeGenInfo>
 CodeGen::createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
                                         bool SoftFloatABI) {
   return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
                                                     SoftFloatABI);
 }
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSystemZ_ZOS_TargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
+                                             bool SoftFloatABI) {
+  return std::make_unique<ZOSXPLinkTargetCodeGenInfo>(CGM.getTypes(),
+                                                      HasVector);
+}
diff --git a/clang/test/CodeGen/zos-abi.c b/clang/test/CodeGen/zos-abi.c
new file mode 100644
index 0000000000000..1fee351475b34
--- /dev/null
+++ b/clang/test/CodeGen/zos-abi.c
@@ -0,0 +1,162 @@
+// RUN: %clang_cc1 -triple s390x-ibm-zos \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-feature +vector \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu z13 \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu arch11 \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu z14 \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu arch12 \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu z15 \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu arch13 \
+// RUN:   -emit-llvm -no-enable-noundef-analysis -o - %s | FileCheck %s
+
+// RUN: %clang_cc1 -triple s390x-ibm-zos -target-cpu arch11 \
+// RUN:   -DTEST_VEC -fzvector -emit-llvm -no-enable-noundef-analysis \
+// RUN:   -o - %s | FileCheck --check-prefixes=CHECKVEC %s
+
+// Scalar types
+
+signed char pass_schar(signed char arg) { return arg; }
+// CHECK-LABEL: define signext i8 @pass_schar(i8 signext %{{.*}})
+
+unsigned char pass_uchar(unsigned char arg) { return arg; }
+// CHECK-LABEL: define zeroext i8 @pass_uchar(i8 zeroext %{{.*}})
+
+short pass_short(short arg) { return arg; }
+// CHECK-LABEL: define signext i16 @pass_short(i16 signext %{{.*}})
+
+int pass_int(int arg) { return arg; }
+// CHECK-LABEL: define signext i32 @pass_int(i32 signext %{{.*}})
+
+long pass_long(long arg) { return arg; }
+// CHECK-LABEL: define i64 @pass_long(i64 %{{.*}})
+
+long long pass_longlong(long long arg) { return arg; }
+// CHECK-LABEL: define i64 @pass_longlong(i64 %{{.*}})
+
+float pass_float(float arg) { return arg; }
+// CHECK-LABEL: define float @pass_float(float %{{.*}})
+
+double pass_double(double arg) { return arg; }
+// CHECK-LABEL: define double @pass_double(double %{{.*}})
+
+long double pass_longdouble(long double arg) { return arg; }
+// CHECK-LABEL: define fp128 @pass_longdouble(fp128 %{{.*}})
+
+enum Color { Red, Blue };
+enum Color pass_enum(enum Color arg) { return arg; }
+// CHECK-LABEL: define zeroext i32 @pass_enum(i32 zeroext %{{.*}})
+
+#ifdef TEST_VEC
+vector unsigned int pass_vector(vector unsigned int arg) { return arg; };
+// CHECKVEC-LABEL: define <4 x i32> @pass_vector(<4 x i32> %{{.*}})
+
+struct SingleVec { vector unsigned int v; };
+struct SingleVec pass_SingleVec_agg(struct SingleVec arg) { return arg; };
+// CHECKVEC-LABEL: define inreg [2 x i64] @pass_SingleVec_agg([2 x i64] %{{.*}})
+#endif
+
+// Complex types
+
+_Complex float pass_complex_float(_Complex float arg) { return arg; }
+// CHECK-LABEL: define { float, float } @pass_complex_float({ float, float } inreg %{{.*}})
+
+_Complex double pass_complex_double(_Complex double arg) { return arg; }
+// CHECK-LABEL: define { double, double } @pass_complex_double({ double, double } inreg %{{.*}})
+
+_Complex long double pass_complex_longdouble(_Complex long double arg) { return arg; }
+// CHECK-LABEL: define { fp128, fp128 } @pass_complex_longdouble({ fp128, fp128 } inreg %{{.*}})
+
+// Verify that the following are complex-like types
+struct complexlike_float { float re, im; };
+struct complexlike_float pass_complexlike_float(struct complexlike_float arg) { return arg; }
+// CHECK-LABEL: define %struct.complexlike_float @pass_complexlike_float({ float, float } inreg %{{.*}})
+
+struct complexlike_double { double re, im; };
+struct complexlike_double pass_complexlike_double(struct complexlike_double arg) { return arg; }
+// CHECK-LABEL: define %struct.complexlike_double @pass_complexlike_double({ double, double } inreg %{{.*}})
+
+struct complexlike_longdouble { long double re, im; };
+struct complexlike_longdouble pass_complexlike_longdouble(struct complexlike_longdouble arg) { return arg; }
+// CHECK-LABEL: define %struct.complexlike_longdouble @pass_complexlike_longdouble({ fp128, fp128 } inreg %{{.*}})
+
+// Unnamed types
+
+int pass_unnamed_int(int) { return 0; }
+// CHECK-LABEL: define signext i32 @pass_unnamed_int(i32 signext %{{.*}})
+
+signed char pass_unnamed_schar(signed char) { return '0'; }
+// CHECK-LABEL: define signext i8 @pass_unnamed_schar(i8 signext %{{.*}})
+
+long double pass_unnamed_longdouble(long double) { return 0; }
+// CHECK-LABEL: define fp128 @pass_unnamed_longdouble(fp128 %{{.*}})
+
+// Aggregate types
+
+struct agg_1byte { char a[1]; };
+struct agg_1byte pass_agg_1byte(struct agg_1byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_1byte(i64 %{{.*}})
+
+struct agg_2byte { char a[2]; };
+struct agg_2byte pass_agg_2byte(struct agg_2byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_2byte(i64 %{{.*}})
+
+struct agg_3byte { char a[3]; };
+struct agg_3byte pass_agg_3byte(struct agg_3byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_3byte(i64 %{{.*}})
+
+struct agg_4byte { char a[4]; };
+struct agg_4byte pass_agg_4byte(struct agg_4byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_4byte(i64 %{{.*}})
+
+struct agg_5byte { char a[5]; };
+struct agg_5byte pass_agg_5byte(struct agg_5byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_5byte(i64 %{{.*}})
+
+struct agg_6byte { char a[6]; };
+struct agg_6byte pass_agg_6byte(struct agg_6byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_6byte(i64 %{{.*}})
+
+struct agg_7byte { char a[7]; };
+struct agg_7byte pass_agg_7byte(struct agg_7byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_7byte(i64 %{{.*}})
+
+struct agg_8byte { char a[8]; };
+struct agg_8byte pass_agg_8byte(struct agg_8byte arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_8byte(i64 %{{.*}})
+
+struct agg_9byte { char a[9]; };
+struct agg_9byte pass_agg_9byte(struct agg_9byte arg) { return arg; }
+// CHECK-LABEL: define inreg [2 x i64] @pass_agg_9byte([2 x i64] %{{.*}})
+
+struct agg_16byte { char a[16]; };
+struct agg_16byte pass_agg_16byte(struct agg_16byte arg) { return arg; }
+// CHECK-LABEL: define inreg [2 x i64] @pass_agg_16byte([2 x i64] %{{.*}})
+
+struct agg_24byte { char a[24]; };
+struct agg_24byte pass_agg_24byte(struct agg_24byte arg) { return arg; }
+// CHECK-LABEL: define inreg [3 x i64] @pass_agg_24byte([3 x i64] %{{.*}})
+
+struct agg_25byte { char a[25]; };
+struct agg_25byte pass_agg_25byte(struct agg_25byte arg) { return arg; }
+// CHECK-LABEL: define void @pass_agg_25byte(ptr dead_on_unwind noalias writable sret{{.*}} align 1 %{{.*}}, [4 x i64] %{{.*}})
+
+// Check that a float-like aggregate type is really passed as aggregate
+struct agg_float { float a; };
+struct agg_float pass_agg_float(struct agg_float arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_float(i64 %{{.*}})
+
+// Verify that the following are *not* float-like aggregate types
+
+struct agg_nofloat2 { float a; int b; };
+struct agg_nofloat2 pass_agg_nofloat2(struct agg_nofloat2 arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_nofloat2(i64 %{{.*}})
+
+struct agg_nofloat3 { float a; int : 0; };
+struct agg_nofloat3 pass_agg_nofloat3(struct agg_nofloat3 arg) { return arg; }
+// CHECK-LABEL: define inreg i64 @pass_agg_nofloat3(i64 %{{.*}})



More information about the cfe-commits mailing list