[clang] [llvm] [transforms] Inline simple variadic functions (PR #81058)
Matt Arsenault via cfe-commits
cfe-commits at lists.llvm.org
Wed Feb 28 21:41:59 PST 2024
================
@@ -0,0 +1,698 @@
+//===-- ExpandVariadicsPass.cpp --------------------------------*- C++ -*-=//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This is an optimisation pass for variadic functions. If called from codegen,
+// it can serve as the implementation of variadic functions for a given target.
+//
+// The target-dependent parts are in namespace VariadicABIInfo. Enabling a new
+// target means adding a case to VariadicABIInfo::create() along with tests.
+//
+// The module pass using that information is class ExpandVariadics.
+//
+// The strategy is:
+// 1. Test whether a variadic function is sufficiently simple
+// 2. If it was, calls to it can be replaced with calls to a different function
+// 3. If it wasn't, try to split it into a simple function and a remainder
+// 4. Optionally rewrite the varadic function calling convention as well
+//
+// This pass considers "sufficiently simple" to mean a variadic function that
+// calls into a different function taking a va_list to do the real work. For
+// example, libc might implement fprintf as a single basic block calling into
+// vfprintf. This pass can then rewrite call to the variadic into some code
+// to construct a target-specific value to use for the va_list and a call
+// into the non-variadic implementation function. There's a test for that.
+//
+// Most other variadic functions whose definition is known can be converted into
+// that form. Create a new internal function taking a va_list where the original
+// took a ... parameter. Move the blocks across. Create a new block containing a
+// va_start that calls into the new function. This is nearly target independent.
+//
+// Where this transform is consistent with the ABI, e.g. AMDGPU or NVPTX, or
+// where the ABI can be chosen to align with this transform, the function
+// interface can be rewritten along with calls to unknown variadic functions.
+//
+// The aggregate effect is to unblock other transforms, most critically the
+// general purpose inliner. Known calls to variadic functions become zero cost.
+//
+// This pass does define some target specific information which is partially
+// redundant with other parts of the compiler. In particular, the call frame
+// it builds must be the exact complement of the va_arg lowering performed
+// by clang. The va_list construction is similar to work done by the backend
+// for targets that lower variadics there, though distinct in that this pass
+// constructs the pieces using alloca instead of relative to stack pointers.
+//
+// Consistency with clang is primarily tested by emitting va_arg using clang
+// then expanding the variadic functions using this pass, followed by trying
+// to constant fold the functions to no-ops.
+//
+// Target specific behaviour is tested in IR - mainly checking that values are
+// put into positions in call frames that make sense for that particular target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/ExpandVariadics.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/TargetParser/Triple.h"
+
+#define DEBUG_TYPE "expand-variadics"
+
+using namespace llvm;
+
+namespace {
+namespace VariadicABIInfo {
+
+// calling convention for passing as valist object, same as it would be in C
+// aarch64 uses byval
+enum class valistCC { value, pointer, /*byval*/ };
+
+struct Interface {
+protected:
+ Interface(uint32_t MinAlign, uint32_t MaxAlign)
+ : MinAlign(MinAlign), MaxAlign(MaxAlign) {}
+
+public:
+ virtual ~Interface() {}
+ const uint32_t MinAlign;
+ const uint32_t MaxAlign;
+
+ // Most ABIs use a void* or char* for va_list, others can specialise
+ virtual Type *vaListType(LLVMContext &Ctx) {
+ return PointerType::getUnqual(Ctx);
+ }
+
+ // How the vaListType is passed
+ virtual valistCC vaListCC() { return valistCC::value; }
+
+ // The valist might need to be stack allocated.
+ virtual bool valistOnStack() { return false; }
+
+ virtual void initializeVAList(LLVMContext &Ctx, IRBuilder<> &Builder,
+ AllocaInst * /*va_list*/, Value * /*buffer*/) {
+ // Function needs to be implemented if valist is on the stack
+ assert(!valistOnStack());
+ __builtin_unreachable();
+ }
+
+ // All targets currently implemented use a ptr for the valist parameter
+ Type *vaListParameterType(LLVMContext &Ctx) {
+ return PointerType::getUnqual(Ctx);
----------------
arsenm wrote:
Yes, we need to change those to use the right address space
https://github.com/llvm/llvm-project/pull/81058
More information about the cfe-commits
mailing list