[clang] [llvm] [clang-tools-extra] [AArch64] Add an AArch64 pass for loop idiom transformations (PR #72273)

David Green via cfe-commits cfe-commits at lists.llvm.org
Mon Jan 8 04:32:41 PST 2024


================
@@ -0,0 +1,816 @@
+//===- AArch64LoopIdiomTransform.cpp - Loop idiom recognition -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a pass that recognizes certain loop idioms and
+// transforms them into more optimized versions of the same loop. In cases
+// where this happens, it can be a significant performance win.
+//
+// We currently only recognize one loop that finds the first mismatched byte
+// in an array and returns the index, i.e. something like:
+//
+//  while (++i != n) {
+//    if (a[i] != b[i])
+//      break;
+//  }
+//
+// In this example we can actually vectorize the loop despite the early exit,
+// although the loop vectorizer does not support it. It requires some extra
+// checks to deal with the possibility of faulting loads when crossing page
+// boundaries. However, even with these checks it is still profitable to do the
+// transformation.
+//
+//===----------------------------------------------------------------------===//
+//
+// TODO List:
+//
+// * When optimizing for code size we may want to avoid some transformations.
+// * We can also support the inverse case where we scan for a matching element.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64LoopIdiomTransform.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-loop-idiom-transform"
+
+static cl::opt<bool>
+    DisableAll("disable-aarch64-lit-all", cl::Hidden, cl::init(false),
+               cl::desc("Disable AArch64 Loop Idiom Transform Pass."));
+
+static cl::opt<bool> DisableByteCmp(
+    "disable-aarch64-lit-bytecmp", cl::Hidden, cl::init(false),
+    cl::desc("Proceed with AArch64 Loop Idiom Transform Pass, but do "
+             "not convert byte-compare loop(s)."));
+
+static cl::opt<bool> VerifyLoops(
+    "aarch64-lit-verify", cl::Hidden, cl::init(false),
+    cl::desc("Verify loops generated AArch64 Loop Idiom Transform Pass."));
+
+namespace llvm {
+
+void initializeAArch64LoopIdiomTransformLegacyPassPass(PassRegistry &);
+Pass *createAArch64LoopIdiomTransformPass();
+
+} // end namespace llvm
+
+namespace {
+
+class AArch64LoopIdiomTransform {
+  Loop *CurLoop = nullptr;
+  DominatorTree *DT;
+  LoopInfo *LI;
+  const TargetTransformInfo *TTI;
+  const DataLayout *DL;
+
+public:
+  explicit AArch64LoopIdiomTransform(DominatorTree *DT, LoopInfo *LI,
+                                     const TargetTransformInfo *TTI,
+                                     const DataLayout *DL)
+      : DT(DT), LI(LI), TTI(TTI), DL(DL) {}
+
+  bool run(Loop *L);
+
+private:
+  /// \name Countable Loop Idiom Handling
+  /// @{
+
+  bool runOnCountableLoop();
+  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
+                      SmallVectorImpl<BasicBlock *> &ExitBlocks);
+
+  bool recognizeByteCompare();
+  Value *expandFindMismatch(IRBuilder<> &Builder, GetElementPtrInst *GEPA,
+                            GetElementPtrInst *GEPB, Instruction *Index,
+                            Value *Start, Value *MaxLen);
+  void transformByteCompare(GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
+                            PHINode *IndPhi, Value *MaxLen, Instruction *Index,
+                            Value *Start, bool IncIdx, BasicBlock *FoundBB,
+                            BasicBlock *EndBB);
+  /// @}
+};
+
+class AArch64LoopIdiomTransformLegacyPass : public LoopPass {
+public:
+  static char ID;
+
+  explicit AArch64LoopIdiomTransformLegacyPass() : LoopPass(ID) {
+    initializeAArch64LoopIdiomTransformLegacyPassPass(
+        *PassRegistry::getPassRegistry());
+  }
+
+  StringRef getPassName() const override {
+    return "Transform AArch64-specific loop idioms";
+  }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<LoopInfoWrapperPass>();
+    AU.addRequired<DominatorTreeWrapperPass>();
+    AU.addRequired<TargetTransformInfoWrapperPass>();
+  }
+
+  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+};
+
+bool AArch64LoopIdiomTransformLegacyPass::runOnLoop(Loop *L,
+                                                    LPPassManager &LPM) {
+
+  if (skipLoop(L))
+    return false;
+
+  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+  auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
+      *L->getHeader()->getParent());
+  return AArch64LoopIdiomTransform(
+             DT, LI, &TTI, &L->getHeader()->getModule()->getDataLayout())
+      .run(L);
+}
+
+} // end anonymous namespace
+
+char AArch64LoopIdiomTransformLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(
+    AArch64LoopIdiomTransformLegacyPass, "aarch64-lit",
+    "Transform specific loop idioms into optimized vector forms", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(
+    AArch64LoopIdiomTransformLegacyPass, "aarch64-lit",
+    "Transform specific loop idioms into optimized vector forms", false, false)
+
+Pass *llvm::createAArch64LoopIdiomTransformPass() {
+  return new AArch64LoopIdiomTransformLegacyPass();
+}
+
+PreservedAnalyses
+AArch64LoopIdiomTransformPass::run(Loop &L, LoopAnalysisManager &AM,
+                                   LoopStandardAnalysisResults &AR,
+                                   LPMUpdater &) {
+  if (DisableAll)
+    return PreservedAnalyses::all();
+
+  const auto *DL = &L.getHeader()->getModule()->getDataLayout();
+
+  AArch64LoopIdiomTransform LIT(&AR.DT, &AR.LI, &AR.TTI, DL);
+  if (!LIT.run(&L))
+    return PreservedAnalyses::all();
+
+  return PreservedAnalyses::none();
+}
+
+//===----------------------------------------------------------------------===//
+//
+//          Implementation of AArch64LoopIdiomTransform
+//
+//===----------------------------------------------------------------------===//
+
+bool AArch64LoopIdiomTransform::run(Loop *L) {
+  CurLoop = L;
+
+  if (DisableAll)
+    return false;
+
+  // If the loop could not be converted to canonical form, it must have an
+  // indirectbr in it, just give up.
+  if (!L->getLoopPreheader())
+    return false;
+
+  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
+                    << CurLoop->getHeader()->getParent()->getName()
+                    << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
+
+  return recognizeByteCompare();
+}
+
+
+bool AArch64LoopIdiomTransform::recognizeByteCompare() {
+  // Currently the transformation only works on scalable vector types, although
+  // there is no fundamental reason why it cannot be made to work for fixed
+  // width too.
+
+  // We also need to know the minimum page size for the target in order to
+  // generate runtime memory checks to ensure the vector version won't fault.
+  if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
+      DisableByteCmp)
+    return false;
+
+  BasicBlock *Header = CurLoop->getHeader();
+
+  // In AArch64LoopIdiomTransform::run we have already checked that the loop
+  // has a preheader so we can assume it's in a canonical form.
+  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 2)
+    return false;
+
+  PHINode *PN = dyn_cast<PHINode>(&Header->front());
+  if (!PN || PN->getNumIncomingValues() != 2)
+    return false;
+
+  auto LoopBlocks = CurLoop->getBlocks();
+  // The first block in the loop should contain only 4 instructions, e.g.
+  //
+  //  while.cond:
+  //   %res.phi = phi i32 [ %start, %ph ], [ %inc, %while.body ]
+  //   %inc = add i32 %res.phi, 1
+  //   %cmp.not = icmp eq i32 %inc, %n
+  //   br i1 %cmp.not, label %while.end, label %while.body
+  //
+  auto CondBBInsts = LoopBlocks[0]->instructionsWithoutDebug();
+  if (std::distance(CondBBInsts.begin(), CondBBInsts.end()) > 4)
+    return false;
+
+  // The second block should contain 7 instructions, e.g.
+  //
+  // while.body:
+  //   %idx = zext i32 %inc to i64
+  //   %idx.a = getelementptr inbounds i8, ptr %a, i64 %idx
+  //   %load.a = load i8, ptr %idx.a
+  //   %idx.b = getelementptr inbounds i8, ptr %b, i64 %idx
+  //   %load.b = load i8, ptr %idx.b
+  //   %cmp.not.ld = icmp eq i8 %load.a, %load.b
+  //   br i1 %cmp.not.ld, label %while.cond, label %while.end
+  //
+  auto LoopBBInsts = LoopBlocks[1]->instructionsWithoutDebug();
+  if (std::distance(LoopBBInsts.begin(), LoopBBInsts.end()) > 7)
+    return false;
+
+  using namespace PatternMatch;
+
+  // The incoming value to the PHI node from the loop should be an add of 1.
+  Value *StartIdx = nullptr;
+  Instruction *Index = nullptr;
+  if (!CurLoop->contains(PN->getIncomingBlock(0))) {
+    StartIdx = PN->getIncomingValue(0);
+    Index = dyn_cast<Instruction>(PN->getIncomingValue(1));
+  } else {
+    StartIdx = PN->getIncomingValue(1);
+    Index = dyn_cast<Instruction>(PN->getIncomingValue(0));
+  }
+
+  // Limit to 32-bit types for now
+  if (!Index || !Index->getType()->isIntegerTy(32) ||
+      !match(Index, m_c_Add(m_Specific(PN), m_One())))
+    return false;
+
+  // If we match the pattern, PN and Index will be replaced with the result of
+  // the cttz.elts intrinsic. If any other instructions are used outside of
+  // the loop, we cannot replace it.
+  for (BasicBlock *BB : LoopBlocks)
+    for (Instruction &I : *BB)
+      if (&I != PN && &I != Index)
+        for (User *U : I.users())
+          if (!CurLoop->contains(cast<Instruction>(U)))
+            return false;
+
+  // Match the branch instruction for the header
+  ICmpInst::Predicate Pred;
+  Value *MaxLen;
+  BasicBlock *EndBB, *WhileBB;
+  if (!match(Header->getTerminator(),
+             m_Br(m_ICmp(Pred, m_Specific(Index), m_Value(MaxLen)),
+                  m_BasicBlock(EndBB), m_BasicBlock(WhileBB))) ||
+      Pred != ICmpInst::Predicate::ICMP_EQ || !CurLoop->contains(WhileBB))
+    return false;
+
+  // WhileBB should contain the pattern of load & compare instructions. Match
+  // the pattern and find the GEP instructions used by the loads.
+  ICmpInst::Predicate WhilePred;
+  BasicBlock *FoundBB;
+  BasicBlock *TrueBB;
+  Value *LoadA, *LoadB;
+  if (!match(WhileBB->getTerminator(),
+             m_Br(m_ICmp(WhilePred, m_Value(LoadA), m_Value(LoadB)),
+                  m_BasicBlock(TrueBB), m_BasicBlock(FoundBB))) ||
+      WhilePred != ICmpInst::Predicate::ICMP_EQ || !CurLoop->contains(TrueBB))
+    return false;
+
+  Value *A, *B;
+  if (!match(LoadA, m_Load(m_Value(A))) || !match(LoadB, m_Load(m_Value(B))))
+    return false;
+
+  GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(A);
+  GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(B);
+
+  if (!GEPA || !GEPB)
+    return false;
+
+  Value *PtrA = GEPA->getPointerOperand();
+  Value *PtrB = GEPB->getPointerOperand();
+
+  // Check we are loading i8 values from two loop invariant pointers
+  if (!CurLoop->isLoopInvariant(PtrA) || !CurLoop->isLoopInvariant(PtrB) ||
+      !GEPA->getResultElementType()->isIntegerTy(8) ||
+      !GEPB->getResultElementType()->isIntegerTy(8) ||
+      !cast<LoadInst>(LoadA)->getType()->isIntegerTy(8) ||
+      !cast<LoadInst>(LoadB)->getType()->isIntegerTy(8) || PtrA == PtrB)
+    return false;
+
+  // Check that the index to the GEPs is the index we found earlier
+  if (GEPA->getNumIndices() > 1 || GEPB->getNumIndices() > 1)
+    return false;
+
+  Value *IdxA = GEPA->getOperand(GEPA->getNumIndices());
+  Value *IdxB = GEPB->getOperand(GEPB->getNumIndices());
+  if (IdxA != IdxB || !match(IdxA, m_ZExt(m_Specific(Index))))
+    return false;
+
+  // Ensure that when the Found and End blocks are identical the PHIs have the
+  // supported format. We don't currently allow cases like this:
+  // while.cond:
+  //   ...
+  //   br i1 %cmp.not, label %while.end, label %while.body
+  //
+  // while.body:
+  //   ...
+  //   br i1 %cmp.not2, label %while.cond, label %while.end
+  //
+  // while.end:
+  //   %final_ptr = phi ptr [ %c, %while.body ], [ %d, %while.cond ]
+  //
+  // Where the incoming values for %final_ptr are unique and from each of the
+  // loop blocks, but not actually defined in the loop. This requires extra
+  // work setting up the byte.compare block, i.e. by introducing a select to
+  // choose the correct value.
+  // TODO: We could add support for this in future.
+  if (FoundBB == EndBB) {
+    for (PHINode &PN : EndBB->phis()) {
+      Value *LastValue = nullptr;
+      for (unsigned I = 0; I < PN.getNumIncomingValues(); I++) {
+        BasicBlock *BB = PN.getIncomingBlock(I);
+        if (CurLoop->contains(BB)) {
+          Value *V = PN.getIncomingValue(I);
+          if (!LastValue)
+            LastValue = V;
+          else if (LastValue != V)
+            return false;
+        }
+      }
+    }
+  }
+
+  LLVM_DEBUG(dbgs() << "FOUND IDIOM IN LOOP: \n"
+                    << *(EndBB->getParent()) << "\n\n");
+
+  // The index is incremented before the GEP/Load pair so we need to
+  // add 1 to the start value.
+  transformByteCompare(GEPA, GEPB, PN, MaxLen, Index, StartIdx, /*IncIdx=*/true,
+                       FoundBB, EndBB);
+  return true;
+}
+
+Value *AArch64LoopIdiomTransform::expandFindMismatch(
+    IRBuilder<> &Builder, GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
+    Instruction *Index, Value *Start, Value *MaxLen) {
+  Value *PtrA = GEPA->getPointerOperand();
+  Value *PtrB = GEPB->getPointerOperand();
+
+  // Get the arguments and types for the intrinsic.
+  BasicBlock *Preheader = CurLoop->getLoopPreheader();
+  BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
+  LLVMContext &Ctx = PHBranch->getContext();
+  Type *LoadType = Type::getInt8Ty(Ctx);
+  Type *ResType = Builder.getInt32Ty();
+
+  // Split block in the original loop preheader.
+  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+  BasicBlock *EndBlock =
+      SplitBlock(Preheader, PHBranch, DT, LI, nullptr, "mismatch_end");
+
+  // Create the blocks that we're going to need:
+  //  1. A block for checking the zero-extended length exceeds 0
+  //  2. A block to check that the start and end addresses of a given array
+  //     lie on the same page.
+  //  3. The SVE loop preheader.
+  //  4. The first SVE loop block.
+  //  5. The SVE loop increment block.
+  //  6. A block we can jump to from the SVE loop when a mismatch is found.
+  //  7. The first block of the scalar loop itself, containing PHIs , loads
+  //  and cmp.
+  //  8. A scalar loop increment block to increment the PHIs and go back
+  //  around the loop.
+
+  BasicBlock *MinItCheckBlock = BasicBlock::Create(
+      Ctx, "mismatch_min_it_check", EndBlock->getParent(), EndBlock);
+
+  // Update the terminator added by SplitBlock to branch to the first block
+  Preheader->getTerminator()->setSuccessor(0, MinItCheckBlock);
+
+  BasicBlock *MemCheckBlock = BasicBlock::Create(
+      Ctx, "mismatch_mem_check", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *SVELoopPreheaderBlock = BasicBlock::Create(
+      Ctx, "mismatch_sve_loop_preheader", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *SVELoopStartBlock = BasicBlock::Create(
+      Ctx, "mismatch_sve_loop", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *SVELoopIncBlock = BasicBlock::Create(
+      Ctx, "mismatch_sve_loop_inc", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *SVELoopMismatchBlock = BasicBlock::Create(
+      Ctx, "mismatch_sve_loop_found", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *LoopPreHeaderBlock = BasicBlock::Create(
+      Ctx, "mismatch_loop_pre", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *LoopStartBlock =
+      BasicBlock::Create(Ctx, "mismatch_loop", EndBlock->getParent(), EndBlock);
+
+  BasicBlock *LoopIncBlock = BasicBlock::Create(
+      Ctx, "mismatch_loop_inc", EndBlock->getParent(), EndBlock);
+
+  DTU.applyUpdates({{DominatorTree::Insert, Preheader, MinItCheckBlock},
+                    {DominatorTree::Delete, Preheader, EndBlock}});
+
+  // Update LoopInfo with the new SVE & scalar loops.
+  auto SVELoop = LI->AllocateLoop();
+  auto ScalarLoop = LI->AllocateLoop();
+
+  if (CurLoop->getParentLoop()) {
+    CurLoop->getParentLoop()->addBasicBlockToLoop(MinItCheckBlock, *LI);
+    CurLoop->getParentLoop()->addBasicBlockToLoop(MemCheckBlock, *LI);
+    CurLoop->getParentLoop()->addBasicBlockToLoop(SVELoopPreheaderBlock, *LI);
+    CurLoop->getParentLoop()->addChildLoop(SVELoop);
+    CurLoop->getParentLoop()->addBasicBlockToLoop(SVELoopMismatchBlock, *LI);
+    CurLoop->getParentLoop()->addBasicBlockToLoop(LoopPreHeaderBlock, *LI);
+    CurLoop->getParentLoop()->addChildLoop(ScalarLoop);
+  } else {
+    LI->addTopLevelLoop(SVELoop);
+    LI->addTopLevelLoop(ScalarLoop);
+  }
+
+  // Add the new basic blocks to their associated loops.
+  SVELoop->addBasicBlockToLoop(SVELoopStartBlock, *LI);
+  SVELoop->addBasicBlockToLoop(SVELoopIncBlock, *LI);
+
+  ScalarLoop->addBasicBlockToLoop(LoopStartBlock, *LI);
+  ScalarLoop->addBasicBlockToLoop(LoopIncBlock, *LI);
+
+  // Set up some types and constants that we intend to reuse.
+  Type *I64Type = Builder.getInt64Ty();
+
+  // Check the zero-extended iteration count > 0
+  Builder.SetInsertPoint(MinItCheckBlock);
+  Value *ExtStart = Builder.CreateZExt(Start, I64Type);
+  Value *ExtEnd = Builder.CreateZExt(MaxLen, I64Type);
+  // This check doesn't really cost us very much.
+
+  Value *LimitCheck = Builder.CreateICmpULE(Start, MaxLen);
+  BranchInst *MinItCheckBr =
+      BranchInst::Create(MemCheckBlock, LoopPreHeaderBlock, LimitCheck);
+  MinItCheckBr->setMetadata(
+      LLVMContext::MD_prof,
+      MDBuilder(MinItCheckBr->getContext()).createBranchWeights(99, 1));
+  Builder.Insert(MinItCheckBr);
+
+  DTU.applyUpdates(
+      {{DominatorTree::Insert, MinItCheckBlock, MemCheckBlock},
+       {DominatorTree::Insert, MinItCheckBlock, LoopPreHeaderBlock}});
+
+  // For each of the arrays, check the start/end addresses are on the same
+  // page.
+  Builder.SetInsertPoint(MemCheckBlock);
+
+  // The early exit in the original loop means that when performing vector
+  // loads we are potentially reading ahead of the early exit. So we could
+  // fault if crossing a page boundary. Therefore, we create runtime memory
+  // checks based on the minimum page size as follows:
+  //   1. Calculate the addresses of the first memory accesses in the loop,
+  //      i.e. LhsStart and RhsStart.
+  //   2. Get the last accessed addresses in the loop, i.e. LhsEnd and RhsEnd.
+  //   3. Determine which pages correspond to all the memory accesses, i.e
+  //      LhsStartPage, LhsEndPage, RhsStartPage, RhsEndPage.
+  //   4. If LhsStartPage == LhsEndPage and RhsStartPage == RhsEndPage, then
+  //      we know we won't cross any page boundaries in the loop so we can
+  //      enter the vector loop! Otherwise we fall back on the scalar loop.
+  Value *LhsStartGEP = Builder.CreateGEP(LoadType, PtrA, ExtStart);
+  Value *RhsStartGEP = Builder.CreateGEP(LoadType, PtrB, ExtStart);
+  Value *RhsStart = Builder.CreatePtrToInt(RhsStartGEP, I64Type);
+  Value *LhsStart = Builder.CreatePtrToInt(LhsStartGEP, I64Type);
+  Value *LhsEndGEP = Builder.CreateGEP(LoadType, PtrA, ExtEnd);
+  Value *RhsEndGEP = Builder.CreateGEP(LoadType, PtrB, ExtEnd);
+  Value *LhsEnd = Builder.CreatePtrToInt(LhsEndGEP, I64Type);
+  Value *RhsEnd = Builder.CreatePtrToInt(RhsEndGEP, I64Type);
+
+  const uint64_t MinPageSize = TTI->getMinPageSize().value();
+  const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
+  Value *LhsStartPage = Builder.CreateLShr(LhsStart, AddrShiftAmt);
+  Value *LhsEndPage = Builder.CreateLShr(LhsEnd, AddrShiftAmt);
+  Value *RhsStartPage = Builder.CreateLShr(RhsStart, AddrShiftAmt);
+  Value *RhsEndPage = Builder.CreateLShr(RhsEnd, AddrShiftAmt);
+  Value *LhsPageCmp = Builder.CreateICmpNE(LhsStartPage, LhsEndPage);
+  Value *RhsPageCmp = Builder.CreateICmpNE(RhsStartPage, RhsEndPage);
+
+  Value *CombinedPageCmp = Builder.CreateOr(LhsPageCmp, RhsPageCmp);
+  BranchInst *CombinedPageCmpCmpBr = BranchInst::Create(
+      LoopPreHeaderBlock, SVELoopPreheaderBlock, CombinedPageCmp);
+  CombinedPageCmpCmpBr->setMetadata(
+      LLVMContext::MD_prof, MDBuilder(CombinedPageCmpCmpBr->getContext())
+                                .createBranchWeights(10, 90));
+  Builder.Insert(CombinedPageCmpCmpBr);
+
+  DTU.applyUpdates(
+      {{DominatorTree::Insert, MemCheckBlock, LoopPreHeaderBlock},
+       {DominatorTree::Insert, MemCheckBlock, SVELoopPreheaderBlock}});
+
+  // Set up the SVE loop preheader, i.e. calculate initial loop predicate,
+  // zero-extend MaxLen to 64-bits, determine the number of vector elements
+  // processed in each iteration, etc.
+  Builder.SetInsertPoint(SVELoopPreheaderBlock);
+
+  // At this point we know two things must be true:
+  //  1. Start <= End
+  //  2. ExtMaxLen <= MinPageSize due to the page checks.
+  // Therefore, we know that we can use a 64-bit induction variable that
+  // starts from 0 -> ExtMaxLen and it will not overflow.
+  ScalableVectorType *PredVTy =
+      ScalableVectorType::get(Builder.getInt1Ty(), 16);
+
+  Value *InitialPred = Builder.CreateIntrinsic(
+      Intrinsic::get_active_lane_mask, {PredVTy, I64Type}, {ExtStart, ExtEnd});
+
+  Value *VecLen = Builder.CreateIntrinsic(Intrinsic::vscale, {I64Type}, {});
+  VecLen = Builder.CreateMul(VecLen, ConstantInt::get(I64Type, 16), "",
+                             /*HasNUW=*/true, /*HasNSW=*/true);
+
+  Value *PFalse = Builder.CreateVectorSplat(PredVTy->getElementCount(),
+                                            Builder.getInt1(false));
+
+  BranchInst *JumpToSVELoop = BranchInst::Create(SVELoopStartBlock);
+  Builder.Insert(JumpToSVELoop);
+
+  DTU.applyUpdates(
+      {{DominatorTree::Insert, SVELoopPreheaderBlock, SVELoopStartBlock}});
+
+  // Set up the first SVE loop block by creating the PHIs, doing the vector
+  // loads and comparing the vectors.
+  Builder.SetInsertPoint(SVELoopStartBlock);
+  PHINode *LoopPred = Builder.CreatePHI(PredVTy, 2, "mismatch_sve_loop_pred");
+  LoopPred->addIncoming(InitialPred, SVELoopPreheaderBlock);
+  PHINode *SVEIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_sve_index");
+  SVEIndexPhi->addIncoming(ExtStart, SVELoopPreheaderBlock);
+  Type *SVELoadType = ScalableVectorType::get(Builder.getInt8Ty(), 16);
+  Value *GepOffset = SVEIndexPhi;
+  Value *Passthru = ConstantInt::getNullValue(SVELoadType);
+
+  Value *SVELhsGep = Builder.CreateGEP(LoadType, PtrA, GepOffset);
+  if (GEPA->isInBounds())
+    cast<GetElementPtrInst>(SVELhsGep)->setIsInBounds(true);
+  Value *SVELhsLoad = Builder.CreateMaskedLoad(SVELoadType, SVELhsGep, Align(1),
+                                               LoopPred, Passthru);
+
+  Value *SVERhsGep = Builder.CreateGEP(LoadType, PtrB, GepOffset);
+  if (GEPB->isInBounds())
+    cast<GetElementPtrInst>(SVERhsGep)->setIsInBounds(true);
+  Value *SVERhsLoad = Builder.CreateMaskedLoad(SVELoadType, SVERhsGep, Align(1),
+                                               LoopPred, Passthru);
+
+  Value *SVEMatchCmp = Builder.CreateICmpNE(SVELhsLoad, SVERhsLoad);
+  SVEMatchCmp = Builder.CreateSelect(LoopPred, SVEMatchCmp, PFalse);
+  Value *SVEMatchHasActiveLanes = Builder.CreateOrReduce(SVEMatchCmp);
+  BranchInst *SVEEarlyExit = BranchInst::Create(
+      SVELoopMismatchBlock, SVELoopIncBlock, SVEMatchHasActiveLanes);
+  Builder.Insert(SVEEarlyExit);
+
+  DTU.applyUpdates(
+      {{DominatorTree::Insert, SVELoopStartBlock, SVELoopMismatchBlock},
+       {DominatorTree::Insert, SVELoopStartBlock, SVELoopIncBlock}});
+
+  // Increment the index counter and calculate the predicate for the next
+  // iteration of the loop. We branch back to the start of the loop if there
+  // is at least one active lane.
+  Builder.SetInsertPoint(SVELoopIncBlock);
+  Value *NewSVEIndexPhi = Builder.CreateAdd(SVEIndexPhi, VecLen, "",
+                                            /*HasNUW=*/true, /*HasNSW=*/true);
+  SVEIndexPhi->addIncoming(NewSVEIndexPhi, SVELoopIncBlock);
+  Value *NewPred =
+      Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
+                              {PredVTy, I64Type}, {NewSVEIndexPhi, ExtEnd});
+  LoopPred->addIncoming(NewPred, SVELoopIncBlock);
+
+  Value *PredHasActiveLanes =
+      Builder.CreateExtractElement(NewPred, uint64_t(0));
+  BranchInst *SVELoopBranchBack =
+      BranchInst::Create(SVELoopStartBlock, EndBlock, PredHasActiveLanes);
+  Builder.Insert(SVELoopBranchBack);
+
+  DTU.applyUpdates({{DominatorTree::Insert, SVELoopIncBlock, SVELoopStartBlock},
+                    {DominatorTree::Insert, SVELoopIncBlock, EndBlock}});
+
+  // If we found a mismatch then we need to calculate which lane in the vector
+  // had a mismatch and add that on to the current loop index.
+  Builder.SetInsertPoint(SVELoopMismatchBlock);
+  PHINode *FoundPred = Builder.CreatePHI(PredVTy, 1, "mismatch_sve_found_pred");
+  FoundPred->addIncoming(SVEMatchCmp, SVELoopStartBlock);
+  PHINode *LastLoopPred =
+      Builder.CreatePHI(PredVTy, 1, "mismatch_sve_last_loop_pred");
+  LastLoopPred->addIncoming(LoopPred, SVELoopStartBlock);
+  PHINode *SVEFoundIndex =
+      Builder.CreatePHI(I64Type, 1, "mismatch_sve_found_index");
+  SVEFoundIndex->addIncoming(SVEIndexPhi, SVELoopStartBlock);
+
+  Value *PredMatchCmp = Builder.CreateAnd(LastLoopPred, FoundPred);
+  Value *Ctz = Builder.CreateIntrinsic(
+      Intrinsic::experimental_cttz_elts, {ResType, PredMatchCmp->getType()},
+      {PredMatchCmp, /*ZeroIsPoison=*/Builder.getInt1(true)});
+  Ctz = Builder.CreateZExt(Ctz, I64Type);
+  Value *SVELoopRes64 = Builder.CreateAdd(SVEFoundIndex, Ctz, "",
+                                          /*HasNUW=*/true, /*HasNSW=*/true);
+  Value *SVELoopRes = Builder.CreateTrunc(SVELoopRes64, ResType);
+
+  Builder.Insert(BranchInst::Create(EndBlock));
+
+  DTU.applyUpdates({{DominatorTree::Insert, SVELoopMismatchBlock, EndBlock}});
+
+  // Generate code for scalar loop.
+  Builder.SetInsertPoint(LoopPreHeaderBlock);
+  Builder.Insert(BranchInst::Create(LoopStartBlock));
+
+  DTU.applyUpdates(
+      {{DominatorTree::Insert, LoopPreHeaderBlock, LoopStartBlock}});
+
+  Builder.SetInsertPoint(LoopStartBlock);
+  PHINode *IndexPhi = Builder.CreatePHI(ResType, 2, "mismatch_index");
+  IndexPhi->addIncoming(Start, LoopPreHeaderBlock);
+
+  // Otherwise compare the values
+  // Load bytes from each array and compare them.
+  GepOffset = Builder.CreateZExt(IndexPhi, I64Type);
+
+  Value *LhsGep = Builder.CreateGEP(LoadType, PtrA, GepOffset);
+  if (GEPA->isInBounds())
+    cast<GetElementPtrInst>(LhsGep)->setIsInBounds(true);
+  Value *LhsLoad = Builder.CreateLoad(LoadType, LhsGep);
+
+  Value *RhsGep = Builder.CreateGEP(LoadType, PtrB, GepOffset);
+  if (GEPB->isInBounds())
+    cast<GetElementPtrInst>(RhsGep)->setIsInBounds(true);
+  Value *RhsLoad = Builder.CreateLoad(LoadType, RhsGep);
+
+  Value *MatchCmp = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
+  // If we have a mismatch then exit the loop ...
+  BranchInst *MatchCmpBr = BranchInst::Create(LoopIncBlock, EndBlock, MatchCmp);
+  Builder.Insert(MatchCmpBr);
+
+  DTU.applyUpdates({{DominatorTree::Insert, LoopStartBlock, LoopIncBlock},
+                    {DominatorTree::Insert, LoopStartBlock, EndBlock}});
+
+  // Have we reached the maximum permitted length for the loop?
+  Builder.SetInsertPoint(LoopIncBlock);
+  Value *PhiInc = Builder.CreateAdd(IndexPhi, ConstantInt::get(ResType, 1), "",
+                                    /*HasNUW=*/Index->hasNoUnsignedWrap(),
+                                    /*HasNSW=*/Index->hasNoSignedWrap());
+  IndexPhi->addIncoming(PhiInc, LoopIncBlock);
+  Value *IVCmp = Builder.CreateICmpEQ(PhiInc, MaxLen);
+  BranchInst *IVCmpBr = BranchInst::Create(EndBlock, LoopStartBlock, IVCmp);
+  Builder.Insert(IVCmpBr);
+
+  DTU.applyUpdates({{DominatorTree::Insert, LoopIncBlock, EndBlock},
+                    {DominatorTree::Insert, LoopIncBlock, LoopStartBlock}});
+
+  // In the end block we need to insert a PHI node to deal with three cases:
+  //  1. We didn't find a mismatch in the scalar loop, so we return MaxLen.
+  //  2. We exitted the scalar loop early due to a mismatch and need to return
+  //  the index that we found.
+  //  3. We didn't find a mismatch in the SVE loop, so we return MaxLen.
+  //  4. We exitted the SVE loop early due to a mismatch and need to return
+  //  the index that we found.
+  Builder.SetInsertPoint(EndBlock, EndBlock->getFirstInsertionPt());
+  PHINode *ResPhi = Builder.CreatePHI(ResType, 4, "mismatch_result");
+  ResPhi->addIncoming(MaxLen, LoopIncBlock);
+  ResPhi->addIncoming(IndexPhi, LoopStartBlock);
+  ResPhi->addIncoming(MaxLen, SVELoopIncBlock);
+  ResPhi->addIncoming(SVELoopRes, SVELoopMismatchBlock);
+
+  Value *FinalRes = Builder.CreateTrunc(ResPhi, ResType);
+
+  if (VerifyLoops) {
+    ScalarLoop->verifyLoop();
+    SVELoop->verifyLoop();
+    if (!SVELoop->isRecursivelyLCSSAForm(*DT, *LI))
+      report_fatal_error("Loops must remain in LCSSA form!");
+    if (!ScalarLoop->isRecursivelyLCSSAForm(*DT, *LI))
+      report_fatal_error("Loops must remain in LCSSA form!");
+  }
+
+  return FinalRes;
+}
+
+void AArch64LoopIdiomTransform::transformByteCompare(
+    GetElementPtrInst *GEPA, GetElementPtrInst *GEPB, PHINode *IndPhi,
+    Value *MaxLen, Instruction *Index, Value *Start, bool IncIdx,
+    BasicBlock *FoundBB, BasicBlock *EndBB) {
+
+  // Insert the byte compare code at the end of the preheader block
+  BasicBlock *Preheader = CurLoop->getLoopPreheader();
+  BasicBlock *Header = CurLoop->getHeader();
+  BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
+  IRBuilder<> Builder(PHBranch);
+  Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());
+
+  // Increment the pointer if this was done before the loads in the loop.
+  if (IncIdx)
+    Start = Builder.CreateAdd(Start, ConstantInt::get(Start->getType(), 1));
+
+  Value *ByteCmpRes =
+      expandFindMismatch(Builder, GEPA, GEPB, Index, Start, MaxLen);
+
+  // Replaces uses of index & induction Phi with intrinsic (we already
+  // checked that the the first instruction of Header is the Phi above).
+  IndPhi->replaceAllUsesWith(ByteCmpRes);
+  Index->replaceAllUsesWith(ByteCmpRes);
+
+  assert(PHBranch->isUnconditional() &&
+         "Expected preheader to terminate with an unconditional branch.");
+
+  // If no mismatch was found, we can jump to the end block. Create a
+  // new basic block for the compare instruction.
+  auto *CmpBB = BasicBlock::Create(Preheader->getContext(), "byte.compare",
----------------
davemgreen wrote:

I think my point was that (old) preheader branches unconditionally to CmpBB, and CmpBB branches to EndBB/FoundBB. The preheader could be branch to EndBB/FoundBB. The condition for the preheader is `Builder.CreateCondBr(Builder.getTrue(), CmpBB, Header);` though, so it might make sense to keep it as is and let simplify-cfg clean up the branches.

https://github.com/llvm/llvm-project/pull/72273


More information about the cfe-commits mailing list