[clang] 992cb98 - [clang][CodeGen] Break up TargetInfo.cpp [8/8]

Sergei Barannikov via cfe-commits cfe-commits at lists.llvm.org
Fri Jun 16 21:15:05 PDT 2023


Author: Sergei Barannikov
Date: 2023-06-17T07:14:50+03:00
New Revision: 992cb98462abb7630e87003516b75b241628f64c

URL: https://github.com/llvm/llvm-project/commit/992cb98462abb7630e87003516b75b241628f64c
DIFF: https://github.com/llvm/llvm-project/commit/992cb98462abb7630e87003516b75b241628f64c.diff

LOG: [clang][CodeGen] Break up TargetInfo.cpp [8/8]

This commit breaks up CodeGen/TargetInfo.cpp into a set of *.cpp files,
one file per target. There are no functional changes, mostly just code moving.

Non-code-moving changes are:
* A virtual destructor has been added to DefaultABIInfo to pin the vtable to a cpp file.
* A few methods of ABIInfo and DefaultABIInfo were split into declaration + definition
  in order to reduce the number of transitive includes.
* Several functions that used to be static have been placed in clang::CodeGen
  namespace so that they can be accessed from other cpp files.

RFC: https://discourse.llvm.org/t/rfc-splitting-clangs-targetinfo-cpp/69883

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D148094

Added: 
    clang/lib/CodeGen/ABIInfo.cpp
    clang/lib/CodeGen/ABIInfoImpl.cpp
    clang/lib/CodeGen/ABIInfoImpl.h
    clang/lib/CodeGen/Targets/AArch64.cpp
    clang/lib/CodeGen/Targets/AMDGPU.cpp
    clang/lib/CodeGen/Targets/ARC.cpp
    clang/lib/CodeGen/Targets/ARM.cpp
    clang/lib/CodeGen/Targets/AVR.cpp
    clang/lib/CodeGen/Targets/BPF.cpp
    clang/lib/CodeGen/Targets/CSKY.cpp
    clang/lib/CodeGen/Targets/Hexagon.cpp
    clang/lib/CodeGen/Targets/Lanai.cpp
    clang/lib/CodeGen/Targets/LoongArch.cpp
    clang/lib/CodeGen/Targets/M68k.cpp
    clang/lib/CodeGen/Targets/MSP430.cpp
    clang/lib/CodeGen/Targets/Mips.cpp
    clang/lib/CodeGen/Targets/NVPTX.cpp
    clang/lib/CodeGen/Targets/PNaCl.cpp
    clang/lib/CodeGen/Targets/PPC.cpp
    clang/lib/CodeGen/Targets/RISCV.cpp
    clang/lib/CodeGen/Targets/SPIR.cpp
    clang/lib/CodeGen/Targets/Sparc.cpp
    clang/lib/CodeGen/Targets/SystemZ.cpp
    clang/lib/CodeGen/Targets/TCE.cpp
    clang/lib/CodeGen/Targets/VE.cpp
    clang/lib/CodeGen/Targets/WebAssembly.cpp
    clang/lib/CodeGen/Targets/X86.cpp
    clang/lib/CodeGen/Targets/XCore.cpp

Modified: 
    clang/docs/UsersManual.rst
    clang/docs/tools/clang-formatted-files.txt
    clang/lib/CodeGen/ABIInfo.h
    clang/lib/CodeGen/CMakeLists.txt
    clang/lib/CodeGen/CodeGenModule.cpp
    clang/lib/CodeGen/TargetInfo.cpp
    clang/test/CodeGenCXX/microsoft-abi-member-pointers.cpp
    llvm/utils/gn/secondary/clang/lib/CodeGen/BUILD.gn

Removed: 
    


################################################################################
diff  --git a/clang/docs/UsersManual.rst b/clang/docs/UsersManual.rst
index 8c98b693c4511..f8dbf819d6ff7 100644
--- a/clang/docs/UsersManual.rst
+++ b/clang/docs/UsersManual.rst
@@ -3871,7 +3871,7 @@ codebases.
 
 On ``x86_64-mingw32``, passing i128(by value) is incompatible with the
 Microsoft x64 calling convention. You might need to tweak
-``WinX86_64ABIInfo::classify()`` in lib/CodeGen/TargetInfo.cpp.
+``WinX86_64ABIInfo::classify()`` in lib/CodeGen/Targets/X86.cpp.
 
 For the X86 target, clang supports the `-m16` command line
 argument which enables 16-bit code output. This is broadly similar to

diff  --git a/clang/docs/tools/clang-formatted-files.txt b/clang/docs/tools/clang-formatted-files.txt
index 7f36a9df78b97..3f94fbb729941 100644
--- a/clang/docs/tools/clang-formatted-files.txt
+++ b/clang/docs/tools/clang-formatted-files.txt
@@ -378,6 +378,8 @@ clang/lib/Basic/Targets/VE.h
 clang/lib/Basic/Targets/WebAssembly.cpp
 clang/lib/Basic/Targets/WebAssembly.h
 clang/lib/Basic/Targets/XCore.cpp
+clang/lib/CodeGen/ABIInfoImpl.cpp
+clang/lib/CodeGen/ABIInfoImpl.h
 clang/lib/CodeGen/CGCUDARuntime.cpp
 clang/lib/CodeGen/CGLoopInfo.cpp
 clang/lib/CodeGen/CGLoopInfo.h

diff  --git a/clang/lib/CodeGen/ABIInfo.cpp b/clang/lib/CodeGen/ABIInfo.cpp
new file mode 100644
index 0000000000000..1b56cf7c596d0
--- /dev/null
+++ b/clang/lib/CodeGen/ABIInfo.cpp
@@ -0,0 +1,231 @@
+//===- ABIInfo.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfo.h"
+#include "ABIInfoImpl.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+// Pin the vtable to this file.
+ABIInfo::~ABIInfo() = default;
+
+CGCXXABI &ABIInfo::getCXXABI() const { return CGT.getCXXABI(); }
+
+ASTContext &ABIInfo::getContext() const { return CGT.getContext(); }
+
+llvm::LLVMContext &ABIInfo::getVMContext() const {
+  return CGT.getLLVMContext();
+}
+
+const llvm::DataLayout &ABIInfo::getDataLayout() const {
+  return CGT.getDataLayout();
+}
+
+const TargetInfo &ABIInfo::getTarget() const { return CGT.getTarget(); }
+
+const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
+  return CGT.getCodeGenOpts();
+}
+
+bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
+
+bool ABIInfo::isOHOSFamily() const {
+  return getTarget().getTriple().isOHOSFamily();
+}
+
+Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                             QualType Ty) const {
+  return Address::invalid();
+}
+
+bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+  return false;
+}
+
+bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+                                                uint64_t Members) const {
+  return false;
+}
+
+bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
+  // For compatibility with GCC, ignore empty bitfields in C++ mode.
+  return getContext().getLangOpts().CPlusPlus;
+}
+
+bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
+                                     uint64_t &Members) const {
+  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+    uint64_t NElements = AT->getSize().getZExtValue();
+    if (NElements == 0)
+      return false;
+    if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
+      return false;
+    Members *= NElements;
+  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    const RecordDecl *RD = RT->getDecl();
+    if (RD->hasFlexibleArrayMember())
+      return false;
+
+    Members = 0;
+
+    // If this is a C++ record, check the properties of the record such as
+    // bases and ABI specific restrictions
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+      if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
+        return false;
+
+      for (const auto &I : CXXRD->bases()) {
+        // Ignore empty records.
+        if (isEmptyRecord(getContext(), I.getType(), true))
+          continue;
+
+        uint64_t FldMembers;
+        if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
+          return false;
+
+        Members += FldMembers;
+      }
+    }
+
+    for (const auto *FD : RD->fields()) {
+      // Ignore (non-zero arrays of) empty records.
+      QualType FT = FD->getType();
+      while (const ConstantArrayType *AT =
+             getContext().getAsConstantArrayType(FT)) {
+        if (AT->getSize().getZExtValue() == 0)
+          return false;
+        FT = AT->getElementType();
+      }
+      if (isEmptyRecord(getContext(), FT, true))
+        continue;
+
+      if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() &&
+          FD->isZeroLengthBitField(getContext()))
+        continue;
+
+      uint64_t FldMembers;
+      if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
+        return false;
+
+      Members = (RD->isUnion() ?
+                 std::max(Members, FldMembers) : Members + FldMembers);
+    }
+
+    if (!Base)
+      return false;
+
+    // Ensure there is no padding.
+    if (getContext().getTypeSize(Base) * Members !=
+        getContext().getTypeSize(Ty))
+      return false;
+  } else {
+    Members = 1;
+    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+      Members = 2;
+      Ty = CT->getElementType();
+    }
+
+    // Most ABIs only support float, double, and some vector type widths.
+    if (!isHomogeneousAggregateBaseType(Ty))
+      return false;
+
+    // The base type must be the same for all members.  Types that
+    // agree in both total size and mode (float vs. vector) are
+    // treated as being equivalent here.
+    const Type *TyPtr = Ty.getTypePtr();
+    if (!Base) {
+      Base = TyPtr;
+      // If it's a non-power-of-2 vector, its size is already a power-of-2,
+      // so make sure to widen it explicitly.
+      if (const VectorType *VT = Base->getAs<VectorType>()) {
+        QualType EltTy = VT->getElementType();
+        unsigned NumElements =
+            getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
+        Base = getContext()
+                   .getVectorType(EltTy, NumElements, VT->getVectorKind())
+                   .getTypePtr();
+      }
+    }
+
+    if (Base->isVectorType() != TyPtr->isVectorType() ||
+        getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
+      return false;
+  }
+  return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
+}
+
+bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
+  if (getContext().isPromotableIntegerType(Ty))
+    return true;
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
+      return true;
+
+  return false;
+}
+
+ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
+                                            bool Realign,
+                                            llvm::Type *Padding) const {
+  return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
+                                 Realign, Padding);
+}
+
+ABIArgInfo ABIInfo::getNaturalAlignIndirectInReg(QualType Ty,
+                                                 bool Realign) const {
+  return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
+                                      /*ByVal*/ false, Realign);
+}
+
+// Pin the vtable to this file.
+SwiftABIInfo::~SwiftABIInfo() = default;
+
+/// Does the given lowering require more than the given number of
+/// registers when expanded?
+///
+/// This is intended to be the basis of a reasonable basic implementation
+/// of should{Pass,Return}Indirectly.
+///
+/// For most targets, a limit of four total registers is reasonable; this
+/// limits the amount of code required in order to move around the value
+/// in case it wasn't produced immediately prior to the call by the caller
+/// (or wasn't produced in exactly the right registers) or isn't used
+/// immediately within the callee.  But some targets may need to further
+/// limit the register count due to an inability to support that many
+/// return registers.
+bool SwiftABIInfo::occupiesMoreThan(ArrayRef<llvm::Type *> scalarTypes,
+                                    unsigned maxAllRegisters) const {
+  unsigned intCount = 0, fpCount = 0;
+  for (llvm::Type *type : scalarTypes) {
+    if (type->isPointerTy()) {
+      intCount++;
+    } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
+      auto ptrWidth = CGT.getTarget().getPointerWidth(LangAS::Default);
+      intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
+    } else {
+      assert(type->isVectorTy() || type->isFloatingPointTy());
+      fpCount++;
+    }
+  }
+
+  return (intCount + fpCount > maxAllRegisters);
+}
+
+bool SwiftABIInfo::shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
+                                        bool AsReturnValue) const {
+  return occupiesMoreThan(ComponentTys, /*total=*/4);
+}
+
+bool SwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+                                     unsigned NumElts) const {
+  // The default implementation of this assumes that the target guarantees
+  // 128-bit SIMD support but nothing more.
+  return (VectorSize.getQuantity() > 8 && VectorSize.getQuantity() <= 16);
+}

diff  --git a/clang/lib/CodeGen/ABIInfo.h b/clang/lib/CodeGen/ABIInfo.h
index 3caad8fe9dea4..b9a5ef6e43669 100644
--- a/clang/lib/CodeGen/ABIInfo.h
+++ b/clang/lib/CodeGen/ABIInfo.h
@@ -93,6 +93,9 @@ class ABIInfo {
                                                  uint64_t Members) const;
   virtual bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const;
 
+  /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
+  /// aggregate.  Base is set to the base element type, and Members is set
+  /// to the number of base elements.
   bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
                               uint64_t &Members) const;
 

diff  --git a/clang/lib/CodeGen/ABIInfoImpl.cpp b/clang/lib/CodeGen/ABIInfoImpl.cpp
new file mode 100644
index 0000000000000..308d1a5132195
--- /dev/null
+++ b/clang/lib/CodeGen/ABIInfoImpl.cpp
@@ -0,0 +1,453 @@
+//===- ABIInfoImpl.cpp ----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+// Pin the vtable to this file.
+DefaultABIInfo::~DefaultABIInfo() = default;
+
+ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // passed by value.
+    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+    return getNaturalAlignIndirect(Ty);
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  ASTContext &Context = getContext();
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() >
+        Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
+                                ? Context.Int128Ty
+                                : Context.LongLongTy))
+      return getNaturalAlignIndirect(Ty);
+
+  return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                            : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (isAggregateTypeForABI(RetTy))
+    return getNaturalAlignIndirect(RetTy);
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+    RetTy = EnumTy->getDecl()->getIntegerType();
+
+  if (const auto *EIT = RetTy->getAs<BitIntType>())
+    if (EIT->getNumBits() >
+        getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
+                                     ? getContext().Int128Ty
+                                     : getContext().LongLongTy))
+      return getNaturalAlignIndirect(RetTy);
+
+  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                               : ABIArgInfo::getDirect());
+}
+
+void DefaultABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  for (auto &I : FI.arguments())
+    I.info = classifyArgumentType(I.type);
+}
+
+Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                  QualType Ty) const {
+  return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
+}
+
+ABIArgInfo CodeGen::coerceToIntArray(QualType Ty, ASTContext &Context,
+                                     llvm::LLVMContext &LLVMContext) {
+  // Alignment and Size are measured in bits.
+  const uint64_t Size = Context.getTypeSize(Ty);
+  const uint64_t Alignment = Context.getTypeAlign(Ty);
+  llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
+  const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
+  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
+}
+
+void CodeGen::AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
+                                 llvm::Value *Array, llvm::Value *Value,
+                                 unsigned FirstIndex, unsigned LastIndex) {
+  // Alternatively, we could emit this as a loop in the source.
+  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
+    llvm::Value *Cell =
+        Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
+    Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
+  }
+}
+
+bool CodeGen::isAggregateTypeForABI(QualType T) {
+  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
+         T->isMemberFunctionPointerType();
+}
+
+llvm::Type *CodeGen::getVAListElementType(CodeGenFunction &CGF) {
+  return CGF.ConvertTypeForMem(
+      CGF.getContext().getBuiltinVaListType()->getPointeeType());
+}
+
+CGCXXABI::RecordArgABI CodeGen::getRecordArgABI(const RecordType *RT,
+                                                CGCXXABI &CXXABI) {
+  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
+  if (!RD) {
+    if (!RT->getDecl()->canPassInRegisters())
+      return CGCXXABI::RAA_Indirect;
+    return CGCXXABI::RAA_Default;
+  }
+  return CXXABI.getRecordArgABI(RD);
+}
+
+CGCXXABI::RecordArgABI CodeGen::getRecordArgABI(QualType T, CGCXXABI &CXXABI) {
+  const RecordType *RT = T->getAs<RecordType>();
+  if (!RT)
+    return CGCXXABI::RAA_Default;
+  return getRecordArgABI(RT, CXXABI);
+}
+
+bool CodeGen::classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
+                                 const ABIInfo &Info) {
+  QualType Ty = FI.getReturnType();
+
+  if (const auto *RT = Ty->getAs<RecordType>())
+    if (!isa<CXXRecordDecl>(RT->getDecl()) &&
+        !RT->getDecl()->canPassInRegisters()) {
+      FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
+      return true;
+    }
+
+  return CXXABI.classifyReturnType(FI);
+}
+
+QualType CodeGen::useFirstFieldIfTransparentUnion(QualType Ty) {
+  if (const RecordType *UT = Ty->getAsUnionType()) {
+    const RecordDecl *UD = UT->getDecl();
+    if (UD->hasAttr<TransparentUnionAttr>()) {
+      assert(!UD->field_empty() && "sema created an empty transparent union");
+      return UD->field_begin()->getType();
+    }
+  }
+  return Ty;
+}
+
+llvm::Value *CodeGen::emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
+                                                    llvm::Value *Ptr,
+                                                    CharUnits Align) {
+  // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
+  llvm::Value *RoundUp = CGF.Builder.CreateConstInBoundsGEP1_32(
+      CGF.Builder.getInt8Ty(), Ptr, Align.getQuantity() - 1);
+  return CGF.Builder.CreateIntrinsic(
+      llvm::Intrinsic::ptrmask, {CGF.AllocaInt8PtrTy, CGF.IntPtrTy},
+      {RoundUp, llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())},
+      nullptr, Ptr->getName() + ".aligned");
+}
+
+Address
+CodeGen::emitVoidPtrDirectVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                llvm::Type *DirectTy, CharUnits DirectSize,
+                                CharUnits DirectAlign, CharUnits SlotSize,
+                                bool AllowHigherAlign, bool ForceRightAdjust) {
+  // Cast the element type to i8* if necessary.  Some platforms define
+  // va_list as a struct containing an i8* instead of just an i8*.
+  if (VAListAddr.getElementType() != CGF.Int8PtrTy)
+    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
+
+  llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
+
+  // If the CC aligns values higher than the slot size, do so if needed.
+  Address Addr = Address::invalid();
+  if (AllowHigherAlign && DirectAlign > SlotSize) {
+    Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
+                   CGF.Int8Ty, DirectAlign);
+  } else {
+    Addr = Address(Ptr, CGF.Int8Ty, SlotSize);
+  }
+
+  // Advance the pointer past the argument, then store that back.
+  CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
+  Address NextPtr =
+      CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
+  CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
+
+  // If the argument is smaller than a slot, and this is a big-endian
+  // target, the argument will be right-adjusted in its slot.
+  if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
+      (!DirectTy->isStructTy() || ForceRightAdjust)) {
+    Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
+  }
+
+  Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
+  return Addr;
+}
+
+Address CodeGen::emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                  QualType ValueTy, bool IsIndirect,
+                                  TypeInfoChars ValueInfo,
+                                  CharUnits SlotSizeAndAlign,
+                                  bool AllowHigherAlign,
+                                  bool ForceRightAdjust) {
+  // The size and alignment of the value that was passed directly.
+  CharUnits DirectSize, DirectAlign;
+  if (IsIndirect) {
+    DirectSize = CGF.getPointerSize();
+    DirectAlign = CGF.getPointerAlign();
+  } else {
+    DirectSize = ValueInfo.Width;
+    DirectAlign = ValueInfo.Align;
+  }
+
+  // Cast the address we've calculated to the right type.
+  llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy;
+  if (IsIndirect) {
+    unsigned AllocaAS = CGF.CGM.getDataLayout().getAllocaAddrSpace();
+    DirectTy = llvm::PointerType::get(CGF.getLLVMContext(), AllocaAS);
+  }
+
+  Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize,
+                                        DirectAlign, SlotSizeAndAlign,
+                                        AllowHigherAlign, ForceRightAdjust);
+
+  if (IsIndirect) {
+    Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align);
+  }
+
+  return Addr;
+}
+
+Address CodeGen::emitMergePHI(CodeGenFunction &CGF, Address Addr1,
+                              llvm::BasicBlock *Block1, Address Addr2,
+                              llvm::BasicBlock *Block2,
+                              const llvm::Twine &Name) {
+  assert(Addr1.getType() == Addr2.getType());
+  llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
+  PHI->addIncoming(Addr1.getPointer(), Block1);
+  PHI->addIncoming(Addr2.getPointer(), Block2);
+  CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
+  return Address(PHI, Addr1.getElementType(), Align);
+}
+
+bool CodeGen::isEmptyField(ASTContext &Context, const FieldDecl *FD,
+                           bool AllowArrays) {
+  if (FD->isUnnamedBitfield())
+    return true;
+
+  QualType FT = FD->getType();
+
+  // Constant arrays of empty records count as empty, strip them off.
+  // Constant arrays of zero length always count as empty.
+  bool WasArray = false;
+  if (AllowArrays)
+    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+      if (AT->getSize() == 0)
+        return true;
+      FT = AT->getElementType();
+      // The [[no_unique_address]] special case below does not apply to
+      // arrays of C++ empty records, so we need to remember this fact.
+      WasArray = true;
+    }
+
+  const RecordType *RT = FT->getAs<RecordType>();
+  if (!RT)
+    return false;
+
+  // C++ record fields are never empty, at least in the Itanium ABI.
+  //
+  // FIXME: We should use a predicate for whether this behavior is true in the
+  // current ABI.
+  //
+  // The exception to the above rule are fields marked with the
+  // [[no_unique_address]] attribute (since C++20).  Those do count as empty
+  // according to the Itanium ABI.  The exception applies only to records,
+  // not arrays of records, so we must also check whether we stripped off an
+  // array type above.
+  if (isa<CXXRecordDecl>(RT->getDecl()) &&
+      (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
+    return false;
+
+  return isEmptyRecord(Context, FT, AllowArrays);
+}
+
+bool CodeGen::isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
+  const RecordType *RT = T->getAs<RecordType>();
+  if (!RT)
+    return false;
+  const RecordDecl *RD = RT->getDecl();
+  if (RD->hasFlexibleArrayMember())
+    return false;
+
+  // If this is a C++ record, check the bases first.
+  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+    for (const auto &I : CXXRD->bases())
+      if (!isEmptyRecord(Context, I.getType(), true))
+        return false;
+
+  for (const auto *I : RD->fields())
+    if (!isEmptyField(Context, I, AllowArrays))
+      return false;
+  return true;
+}
+
+const Type *CodeGen::isSingleElementStruct(QualType T, ASTContext &Context) {
+  const RecordType *RT = T->getAs<RecordType>();
+  if (!RT)
+    return nullptr;
+
+  const RecordDecl *RD = RT->getDecl();
+  if (RD->hasFlexibleArrayMember())
+    return nullptr;
+
+  const Type *Found = nullptr;
+
+  // If this is a C++ record, check the bases first.
+  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+    for (const auto &I : CXXRD->bases()) {
+      // Ignore empty records.
+      if (isEmptyRecord(Context, I.getType(), true))
+        continue;
+
+      // If we already found an element then this isn't a single-element struct.
+      if (Found)
+        return nullptr;
+
+      // If this is non-empty and not a single element struct, the composite
+      // cannot be a single element struct.
+      Found = isSingleElementStruct(I.getType(), Context);
+      if (!Found)
+        return nullptr;
+    }
+  }
+
+  // Check for single element.
+  for (const auto *FD : RD->fields()) {
+    QualType FT = FD->getType();
+
+    // Ignore empty fields.
+    if (isEmptyField(Context, FD, true))
+      continue;
+
+    // If we already found an element then this isn't a single-element
+    // struct.
+    if (Found)
+      return nullptr;
+
+    // Treat single element arrays as the element.
+    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+      if (AT->getSize().getZExtValue() != 1)
+        break;
+      FT = AT->getElementType();
+    }
+
+    if (!isAggregateTypeForABI(FT)) {
+      Found = FT.getTypePtr();
+    } else {
+      Found = isSingleElementStruct(FT, Context);
+      if (!Found)
+        return nullptr;
+    }
+  }
+
+  // We don't consider a struct a single-element struct if it has
+  // padding beyond the element type.
+  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
+    return nullptr;
+
+  return Found;
+}
+
+Address CodeGen::EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr,
+                                QualType Ty, const ABIArgInfo &AI) {
+  // This default implementation defers to the llvm backend's va_arg
+  // instruction. It can handle only passing arguments directly
+  // (typically only handled in the backend for primitive types), or
+  // aggregates passed indirectly by pointer (NOTE: if the "byval"
+  // flag has ABI impact in the callee, this implementation cannot
+  // work.)
+
+  // Only a few cases are covered here at the moment -- those needed
+  // by the default abi.
+  llvm::Value *Val;
+
+  if (AI.isIndirect()) {
+    assert(!AI.getPaddingType() &&
+           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
+    assert(
+        !AI.getIndirectRealign() &&
+        "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
+
+    auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
+    CharUnits TyAlignForABI = TyInfo.Align;
+
+    llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty);
+    llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy);
+    llvm::Value *Addr =
+        CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
+    return Address(Addr, ElementTy, TyAlignForABI);
+  } else {
+    assert((AI.isDirect() || AI.isExtend()) &&
+           "Unexpected ArgInfo Kind in generic VAArg emitter!");
+
+    assert(!AI.getInReg() &&
+           "Unexpected InReg seen in arginfo in generic VAArg emitter!");
+    assert(!AI.getPaddingType() &&
+           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
+    assert(!AI.getDirectOffset() &&
+           "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
+    assert(!AI.getCoerceToType() &&
+           "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
+
+    Address Temp = CGF.CreateMemTemp(Ty, "varet");
+    Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(),
+                                  CGF.ConvertTypeForMem(Ty));
+    CGF.Builder.CreateStore(Val, Temp);
+    return Temp;
+  }
+}
+
+bool CodeGen::isSIMDVectorType(ASTContext &Context, QualType Ty) {
+  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
+}
+
+bool CodeGen::isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (!RT)
+    return false;
+  const RecordDecl *RD = RT->getDecl();
+
+  // If this is a C++ record, check the bases first.
+  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+    for (const auto &I : CXXRD->bases())
+      if (!isRecordWithSIMDVectorType(Context, I.getType()))
+        return false;
+
+  for (const auto *i : RD->fields()) {
+    QualType FT = i->getType();
+
+    if (isSIMDVectorType(Context, FT))
+      return true;
+
+    if (isRecordWithSIMDVectorType(Context, FT))
+      return true;
+  }
+
+  return false;
+}

diff  --git a/clang/lib/CodeGen/ABIInfoImpl.h b/clang/lib/CodeGen/ABIInfoImpl.h
new file mode 100644
index 0000000000000..5f0cc289af68b
--- /dev/null
+++ b/clang/lib/CodeGen/ABIInfoImpl.h
@@ -0,0 +1,152 @@
+//===- ABIInfoImpl.h --------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_ABIINFOIMPL_H
+#define LLVM_CLANG_LIB_CODEGEN_ABIINFOIMPL_H
+
+#include "ABIInfo.h"
+#include "CGCXXABI.h"
+
+namespace clang::CodeGen {
+
+/// DefaultABIInfo - The default implementation for ABI specific
+/// details. This implementation provides information which results in
+/// self-consistent and sensible LLVM IR generation, but does not
+/// conform to any particular ABI.
+class DefaultABIInfo : public ABIInfo {
+public:
+  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+  virtual ~DefaultABIInfo();
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+// Helper for coercing an aggregate argument or return value into an integer
+// array of the same size (including padding) and alignment.  This alternate
+// coercion happens only for the RenderScript ABI and can be removed after
+// runtimes that rely on it are no longer supported.
+//
+// RenderScript assumes that the size of the argument / return value in the IR
+// is the same as the size of the corresponding qualified type. This helper
+// coerces the aggregate type into an array of the same size (including
+// padding).  This coercion is used in lieu of expansion of struct members or
+// other canonical coercions that return a coerced-type of larger size.
+//
+// Ty          - The argument / return value type
+// Context     - The associated ASTContext
+// LLVMContext - The associated LLVMContext
+ABIArgInfo coerceToIntArray(QualType Ty, ASTContext &Context,
+                            llvm::LLVMContext &LLVMContext);
+
+void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array,
+                        llvm::Value *Value, unsigned FirstIndex,
+                        unsigned LastIndex);
+
+bool isAggregateTypeForABI(QualType T);
+
+llvm::Type *getVAListElementType(CodeGenFunction &CGF);
+
+CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI);
+
+CGCXXABI::RecordArgABI getRecordArgABI(QualType T, CGCXXABI &CXXABI);
+
+bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
+                        const ABIInfo &Info);
+
+/// Pass transparent unions as if they were the type of the first element. Sema
+/// should ensure that all elements of the union have the same "machine type".
+QualType useFirstFieldIfTransparentUnion(QualType Ty);
+
+// Dynamically round a pointer up to a multiple of the given alignment.
+llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
+                                           llvm::Value *Ptr, CharUnits Align);
+
+/// Emit va_arg for a platform using the common void* representation,
+/// where arguments are simply emitted in an array of slots on the stack.
+///
+/// This version implements the core direct-value passing rules.
+///
+/// \param SlotSize - The size and alignment of a stack slot.
+///   Each argument will be allocated to a multiple of this number of
+///   slots, and all the slots will be aligned to this value.
+/// \param AllowHigherAlign - The slot alignment is not a cap;
+///   an argument type with an alignment greater than the slot size
+///   will be emitted on a higher-alignment address, potentially
+///   leaving one or more empty slots behind as padding.  If this
+///   is false, the returned address might be less-aligned than
+///   DirectAlign.
+/// \param ForceRightAdjust - Default is false. On big-endian platform and
+///   if the argument is smaller than a slot, set this flag will force
+///   right-adjust the argument in its slot irrespective of the type.
+Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                               llvm::Type *DirectTy, CharUnits DirectSize,
+                               CharUnits DirectAlign, CharUnits SlotSize,
+                               bool AllowHigherAlign,
+                               bool ForceRightAdjust = false);
+
+/// Emit va_arg for a platform using the common void* representation,
+/// where arguments are simply emitted in an array of slots on the stack.
+///
+/// \param IsIndirect - Values of this type are passed indirectly.
+/// \param ValueInfo - The size and alignment of this type, generally
+///   computed with getContext().getTypeInfoInChars(ValueTy).
+/// \param SlotSizeAndAlign - The size and alignment of a stack slot.
+///   Each argument will be allocated to a multiple of this number of
+///   slots, and all the slots will be aligned to this value.
+/// \param AllowHigherAlign - The slot alignment is not a cap;
+///   an argument type with an alignment greater than the slot size
+///   will be emitted on a higher-alignment address, potentially
+///   leaving one or more empty slots behind as padding.
+/// \param ForceRightAdjust - Default is false. On big-endian platform and
+///   if the argument is smaller than a slot, set this flag will force
+///   right-adjust the argument in its slot irrespective of the type.
+Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                         QualType ValueTy, bool IsIndirect,
+                         TypeInfoChars ValueInfo, CharUnits SlotSizeAndAlign,
+                         bool AllowHigherAlign, bool ForceRightAdjust = false);
+
+Address emitMergePHI(CodeGenFunction &CGF, Address Addr1,
+                     llvm::BasicBlock *Block1, Address Addr2,
+                     llvm::BasicBlock *Block2, const llvm::Twine &Name = "");
+
+/// isEmptyField - Return true iff a the field is "empty", that is it
+/// is an unnamed bit-field or an (array of) empty record(s).
+bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays);
+
+/// isEmptyRecord - Return true iff a structure contains only empty
+/// fields. Note that a structure with a flexible array member is not
+/// considered empty.
+bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
+
+/// isSingleElementStruct - Determine if a structure is a "single
+/// element struct", i.e. it has exactly one non-empty field or
+/// exactly one field which is itself a single element
+/// struct. Structures with flexible array members are never
+/// considered single element structs.
+///
+/// \return The field declaration for the single non-empty field, if
+/// it exists.
+const Type *isSingleElementStruct(QualType T, ASTContext &Context);
+
+Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+                       const ABIArgInfo &AI);
+
+bool isSIMDVectorType(ASTContext &Context, QualType Ty);
+
+bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty);
+
+} // namespace clang::CodeGen
+
+#endif // LLVM_CLANG_LIB_CODEGEN_ABIINFOIMPL_H

diff  --git a/clang/lib/CodeGen/CMakeLists.txt b/clang/lib/CodeGen/CMakeLists.txt
index ca71ad9e68e27..f36837e80c27f 100644
--- a/clang/lib/CodeGen/CMakeLists.txt
+++ b/clang/lib/CodeGen/CMakeLists.txt
@@ -31,6 +31,8 @@ set(LLVM_LINK_COMPONENTS
   )
 
 add_clang_library(clangCodeGen
+  ABIInfo.cpp
+  ABIInfoImpl.cpp
   BackendUtil.cpp
   CGAtomic.cpp
   CGBlocks.cpp
@@ -87,6 +89,31 @@ add_clang_library(clangCodeGen
   SanitizerMetadata.cpp
   SwiftCallingConv.cpp
   TargetInfo.cpp
+  Targets/AArch64.cpp
+  Targets/AMDGPU.cpp
+  Targets/ARC.cpp
+  Targets/ARM.cpp
+  Targets/AVR.cpp
+  Targets/BPF.cpp
+  Targets/CSKY.cpp
+  Targets/Hexagon.cpp
+  Targets/Lanai.cpp
+  Targets/LoongArch.cpp
+  Targets/M68k.cpp
+  Targets/MSP430.cpp
+  Targets/Mips.cpp
+  Targets/NVPTX.cpp
+  Targets/PNaCl.cpp
+  Targets/PPC.cpp
+  Targets/RISCV.cpp
+  Targets/SPIR.cpp
+  Targets/Sparc.cpp
+  Targets/SystemZ.cpp
+  Targets/TCE.cpp
+  Targets/VE.cpp
+  Targets/WebAssembly.cpp
+  Targets/X86.cpp
+  Targets/XCore.cpp
   VarBypassDetector.cpp
 
   DEPENDS

diff  --git a/clang/lib/CodeGen/CodeGenModule.cpp b/clang/lib/CodeGen/CodeGenModule.cpp
index 8b2fa5eaf5ba1..7a4b81a48f727 100644
--- a/clang/lib/CodeGen/CodeGenModule.cpp
+++ b/clang/lib/CodeGen/CodeGenModule.cpp
@@ -100,6 +100,228 @@ static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
   llvm_unreachable("invalid C++ ABI kind");
 }
 
+static std::unique_ptr<TargetCodeGenInfo>
+createTargetCodeGenInfo(CodeGenModule &CGM) {
+  const TargetInfo &Target = CGM.getTarget();
+  const llvm::Triple &Triple = Target.getTriple();
+  const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
+
+  switch (Triple.getArch()) {
+  default:
+    return createDefaultTargetCodeGenInfo(CGM);
+
+  case llvm::Triple::le32:
+    return createPNaClTargetCodeGenInfo(CGM);
+  case llvm::Triple::m68k:
+    return createM68kTargetCodeGenInfo(CGM);
+  case llvm::Triple::mips:
+  case llvm::Triple::mipsel:
+    if (Triple.getOS() == llvm::Triple::NaCl)
+      return createPNaClTargetCodeGenInfo(CGM);
+    return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
+
+  case llvm::Triple::mips64:
+  case llvm::Triple::mips64el:
+    return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
+
+  case llvm::Triple::avr: {
+    // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
+    // on avrtiny. For passing return value, R18~R25 are used on avr, and
+    // R22~R25 are used on avrtiny.
+    unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
+    unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
+    return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
+  }
+
+  case llvm::Triple::aarch64:
+  case llvm::Triple::aarch64_32:
+  case llvm::Triple::aarch64_be: {
+    AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
+    if (Target.getABI() == "darwinpcs")
+      Kind = AArch64ABIKind::DarwinPCS;
+    else if (Triple.isOSWindows())
+      return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
+
+    return createAArch64TargetCodeGenInfo(CGM, Kind);
+  }
+
+  case llvm::Triple::wasm32:
+  case llvm::Triple::wasm64: {
+    WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
+    if (Target.getABI() == "experimental-mv")
+      Kind = WebAssemblyABIKind::ExperimentalMV;
+    return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
+  }
+
+  case llvm::Triple::arm:
+  case llvm::Triple::armeb:
+  case llvm::Triple::thumb:
+  case llvm::Triple::thumbeb: {
+    if (Triple.getOS() == llvm::Triple::Win32)
+      return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
+
+    ARMABIKind Kind = ARMABIKind::AAPCS;
+    StringRef ABIStr = Target.getABI();
+    if (ABIStr == "apcs-gnu")
+      Kind = ARMABIKind::APCS;
+    else if (ABIStr == "aapcs16")
+      Kind = ARMABIKind::AAPCS16_VFP;
+    else if (CodeGenOpts.FloatABI == "hard" ||
+             (CodeGenOpts.FloatABI != "soft" &&
+              (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
+               Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
+               Triple.getEnvironment() == llvm::Triple::EABIHF)))
+      Kind = ARMABIKind::AAPCS_VFP;
+
+    return createARMTargetCodeGenInfo(CGM, Kind);
+  }
+
+  case llvm::Triple::ppc: {
+    if (Triple.isOSAIX())
+      return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
+
+    bool IsSoftFloat =
+        CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
+    return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
+  }
+  case llvm::Triple::ppcle: {
+    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
+    return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
+  }
+  case llvm::Triple::ppc64:
+    if (Triple.isOSAIX())
+      return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
+
+    if (Triple.isOSBinFormatELF()) {
+      PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
+      if (Target.getABI() == "elfv2")
+        Kind = PPC64_SVR4_ABIKind::ELFv2;
+      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
+
+      return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
+    }
+    return createPPC64TargetCodeGenInfo(CGM);
+  case llvm::Triple::ppc64le: {
+    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
+    PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
+    if (Target.getABI() == "elfv1")
+      Kind = PPC64_SVR4_ABIKind::ELFv1;
+    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
+
+    return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
+  }
+
+  case llvm::Triple::nvptx:
+  case llvm::Triple::nvptx64:
+    return createNVPTXTargetCodeGenInfo(CGM);
+
+  case llvm::Triple::msp430:
+    return createMSP430TargetCodeGenInfo(CGM);
+
+  case llvm::Triple::riscv32:
+  case llvm::Triple::riscv64: {
+    StringRef ABIStr = Target.getABI();
+    unsigned XLen = Target.getPointerWidth(LangAS::Default);
+    unsigned ABIFLen = 0;
+    if (ABIStr.endswith("f"))
+      ABIFLen = 32;
+    else if (ABIStr.endswith("d"))
+      ABIFLen = 64;
+    return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
+  }
+
+  case llvm::Triple::systemz: {
+    bool SoftFloat = CodeGenOpts.FloatABI == "soft";
+    bool HasVector = !SoftFloat && Target.getABI() == "vector";
+    return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
+  }
+
+  case llvm::Triple::tce:
+  case llvm::Triple::tcele:
+    return createTCETargetCodeGenInfo(CGM);
+
+  case llvm::Triple::x86: {
+    bool IsDarwinVectorABI = Triple.isOSDarwin();
+    bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
+
+    if (Triple.getOS() == llvm::Triple::Win32) {
+      return createWinX86_32TargetCodeGenInfo(
+          CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
+          CodeGenOpts.NumRegisterParameters);
+    }
+    return createX86_32TargetCodeGenInfo(
+        CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
+        CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
+  }
+
+  case llvm::Triple::x86_64: {
+    StringRef ABI = Target.getABI();
+    X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
+                               : ABI == "avx"  ? X86AVXABILevel::AVX
+                                               : X86AVXABILevel::None);
+
+    switch (Triple.getOS()) {
+    case llvm::Triple::Win32:
+      return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
+    default:
+      return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
+    }
+  }
+  case llvm::Triple::hexagon:
+    return createHexagonTargetCodeGenInfo(CGM);
+  case llvm::Triple::lanai:
+    return createLanaiTargetCodeGenInfo(CGM);
+  case llvm::Triple::r600:
+    return createAMDGPUTargetCodeGenInfo(CGM);
+  case llvm::Triple::amdgcn:
+    return createAMDGPUTargetCodeGenInfo(CGM);
+  case llvm::Triple::sparc:
+    return createSparcV8TargetCodeGenInfo(CGM);
+  case llvm::Triple::sparcv9:
+    return createSparcV9TargetCodeGenInfo(CGM);
+  case llvm::Triple::xcore:
+    return createXCoreTargetCodeGenInfo(CGM);
+  case llvm::Triple::arc:
+    return createARCTargetCodeGenInfo(CGM);
+  case llvm::Triple::spir:
+  case llvm::Triple::spir64:
+    return createCommonSPIRTargetCodeGenInfo(CGM);
+  case llvm::Triple::spirv32:
+  case llvm::Triple::spirv64:
+    return createSPIRVTargetCodeGenInfo(CGM);
+  case llvm::Triple::ve:
+    return createVETargetCodeGenInfo(CGM);
+  case llvm::Triple::csky: {
+    bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
+    bool hasFP64 =
+        Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
+    return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
+                                            : hasFP64   ? 64
+                                                        : 32);
+  }
+  case llvm::Triple::bpfeb:
+  case llvm::Triple::bpfel:
+    return createBPFTargetCodeGenInfo(CGM);
+  case llvm::Triple::loongarch32:
+  case llvm::Triple::loongarch64: {
+    StringRef ABIStr = Target.getABI();
+    unsigned ABIFRLen = 0;
+    if (ABIStr.endswith("f"))
+      ABIFRLen = 32;
+    else if (ABIStr.endswith("d"))
+      ABIFRLen = 64;
+    return createLoongArchTargetCodeGenInfo(
+        CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
+  }
+  }
+}
+
+const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
+  if (!TheTargetCodeGenInfo)
+    TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
+  return *TheTargetCodeGenInfo;
+}
+
 CodeGenModule::CodeGenModule(ASTContext &C,
                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
                              const HeaderSearchOptions &HSO,
@@ -4849,6 +5071,10 @@ static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
   llvm_unreachable("No such linkage");
 }
 
+bool CodeGenModule::supportsCOMDAT() const {
+  return getTriple().supportsCOMDAT();
+}
+
 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
                                           llvm::GlobalObject &GO) {
   if (!shouldBeInCOMDAT(*this, D))

diff  --git a/clang/lib/CodeGen/TargetInfo.cpp b/clang/lib/CodeGen/TargetInfo.cpp
index b28d20aca00e1..3d79f92137abc 100644
--- a/clang/lib/CodeGen/TargetInfo.cpp
+++ b/clang/lib/CodeGen/TargetInfo.cpp
@@ -13,247 +13,18 @@
 
 #include "TargetInfo.h"
 #include "ABIInfo.h"
-#include "CGBlocks.h"
-#include "CGCXXABI.h"
-#include "CGValue.h"
+#include "ABIInfoImpl.h"
 #include "CodeGenFunction.h"
-#include "clang/AST/Attr.h"
-#include "clang/AST/RecordLayout.h"
-#include "clang/Basic/Builtins.h"
 #include "clang/Basic/CodeGenOptions.h"
-#include "clang/Basic/DiagnosticFrontend.h"
 #include "clang/CodeGen/CGFunctionInfo.h"
-#include "llvm/ADT/SmallBitVector.h"
 #include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/StringSwitch.h"
 #include "llvm/ADT/Twine.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/IntrinsicsNVPTX.h"
-#include "llvm/IR/IntrinsicsS390.h"
 #include "llvm/IR/Type.h"
-#include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetParser/RISCVTargetParser.h"
-#include "llvm/TargetParser/Triple.h"
-#include <algorithm>
 
 using namespace clang;
 using namespace CodeGen;
 
-// Helper for coercing an aggregate argument or return value into an integer
-// array of the same size (including padding) and alignment.  This alternate
-// coercion happens only for the RenderScript ABI and can be removed after
-// runtimes that rely on it are no longer supported.
-//
-// RenderScript assumes that the size of the argument / return value in the IR
-// is the same as the size of the corresponding qualified type. This helper
-// coerces the aggregate type into an array of the same size (including
-// padding).  This coercion is used in lieu of expansion of struct members or
-// other canonical coercions that return a coerced-type of larger size.
-//
-// Ty          - The argument / return value type
-// Context     - The associated ASTContext
-// LLVMContext - The associated LLVMContext
-static ABIArgInfo coerceToIntArray(QualType Ty,
-                                   ASTContext &Context,
-                                   llvm::LLVMContext &LLVMContext) {
-  // Alignment and Size are measured in bits.
-  const uint64_t Size = Context.getTypeSize(Ty);
-  const uint64_t Alignment = Context.getTypeAlign(Ty);
-  llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
-  const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
-  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
-}
-
-static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
-                               llvm::Value *Array,
-                               llvm::Value *Value,
-                               unsigned FirstIndex,
-                               unsigned LastIndex) {
-  // Alternatively, we could emit this as a loop in the source.
-  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
-    llvm::Value *Cell =
-        Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
-    Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
-  }
-}
-
-static bool isAggregateTypeForABI(QualType T) {
-  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
-         T->isMemberFunctionPointerType();
-}
-
-ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
-                                            bool Realign,
-                                            llvm::Type *Padding) const {
-  return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
-                                 Realign, Padding);
-}
-
-ABIArgInfo
-ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
-  return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
-                                      /*ByVal*/ false, Realign);
-}
-
-Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                             QualType Ty) const {
-  return Address::invalid();
-}
-
-static llvm::Type *getVAListElementType(CodeGenFunction &CGF) {
-  return CGF.ConvertTypeForMem(
-      CGF.getContext().getBuiltinVaListType()->getPointeeType());
-}
-
-bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
-  if (getContext().isPromotableIntegerType(Ty))
-    return true;
-
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
-      return true;
-
-  return false;
-}
-
-ABIInfo::~ABIInfo() = default;
-
-SwiftABIInfo::~SwiftABIInfo() = default;
-
-/// Does the given lowering require more than the given number of
-/// registers when expanded?
-///
-/// This is intended to be the basis of a reasonable basic implementation
-/// of should{Pass,Return}Indirectly.
-///
-/// For most targets, a limit of four total registers is reasonable; this
-/// limits the amount of code required in order to move around the value
-/// in case it wasn't produced immediately prior to the call by the caller
-/// (or wasn't produced in exactly the right registers) or isn't used
-/// immediately within the callee.  But some targets may need to further
-/// limit the register count due to an inability to support that many
-/// return registers.
-bool SwiftABIInfo::occupiesMoreThan(ArrayRef<llvm::Type *> scalarTypes,
-                                    unsigned maxAllRegisters) const {
-  unsigned intCount = 0, fpCount = 0;
-  for (llvm::Type *type : scalarTypes) {
-    if (type->isPointerTy()) {
-      intCount++;
-    } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
-      auto ptrWidth = CGT.getTarget().getPointerWidth(LangAS::Default);
-      intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
-    } else {
-      assert(type->isVectorTy() || type->isFloatingPointTy());
-      fpCount++;
-    }
-  }
-
-  return (intCount + fpCount > maxAllRegisters);
-}
-
-bool SwiftABIInfo::shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
-                                        bool AsReturnValue) const {
-  return occupiesMoreThan(ComponentTys, /*total=*/4);
-}
-
-bool SwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
-                                     unsigned NumElts) const {
-  // The default implementation of this assumes that the target guarantees
-  // 128-bit SIMD support but nothing more.
-  return (VectorSize.getQuantity() > 8 && VectorSize.getQuantity() <= 16);
-}
-
-static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
-                                              CGCXXABI &CXXABI) {
-  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
-  if (!RD) {
-    if (!RT->getDecl()->canPassInRegisters())
-      return CGCXXABI::RAA_Indirect;
-    return CGCXXABI::RAA_Default;
-  }
-  return CXXABI.getRecordArgABI(RD);
-}
-
-static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
-                                              CGCXXABI &CXXABI) {
-  const RecordType *RT = T->getAs<RecordType>();
-  if (!RT)
-    return CGCXXABI::RAA_Default;
-  return getRecordArgABI(RT, CXXABI);
-}
-
-static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
-                               const ABIInfo &Info) {
-  QualType Ty = FI.getReturnType();
-
-  if (const auto *RT = Ty->getAs<RecordType>())
-    if (!isa<CXXRecordDecl>(RT->getDecl()) &&
-        !RT->getDecl()->canPassInRegisters()) {
-      FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
-      return true;
-    }
-
-  return CXXABI.classifyReturnType(FI);
-}
-
-/// Pass transparent unions as if they were the type of the first element. Sema
-/// should ensure that all elements of the union have the same "machine type".
-static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
-  if (const RecordType *UT = Ty->getAsUnionType()) {
-    const RecordDecl *UD = UT->getDecl();
-    if (UD->hasAttr<TransparentUnionAttr>()) {
-      assert(!UD->field_empty() && "sema created an empty transparent union");
-      return UD->field_begin()->getType();
-    }
-  }
-  return Ty;
-}
-
-CGCXXABI &ABIInfo::getCXXABI() const {
-  return CGT.getCXXABI();
-}
-
-ASTContext &ABIInfo::getContext() const {
-  return CGT.getContext();
-}
-
-llvm::LLVMContext &ABIInfo::getVMContext() const {
-  return CGT.getLLVMContext();
-}
-
-const llvm::DataLayout &ABIInfo::getDataLayout() const {
-  return CGT.getDataLayout();
-}
-
-const TargetInfo &ABIInfo::getTarget() const {
-  return CGT.getTarget();
-}
-
-const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
-  return CGT.getCodeGenOpts();
-}
-
-bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
-
-bool ABIInfo::isOHOSFamily() const {
-  return getTarget().getTriple().isOHOSFamily();
-}
-
-bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
-  return false;
-}
-
-bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
-                                                uint64_t Members) const {
-  return false;
-}
-
-bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
-  // For compatibility with GCC, ignore empty bitfields in C++ mode.
-  return getContext().getLangOpts().CPlusPlus;
-}
-
 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
   raw_ostream &OS = llvm::errs();
   OS << "(ABIArgInfo Kind=";
@@ -295,169 +66,6 @@ LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
   OS << ")\n";
 }
 
-// Dynamically round a pointer up to a multiple of the given alignment.
-static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
-                                                  llvm::Value *Ptr,
-                                                  CharUnits Align) {
-  // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
-  llvm::Value *RoundUp = CGF.Builder.CreateConstInBoundsGEP1_32(
-      CGF.Builder.getInt8Ty(), Ptr, Align.getQuantity() - 1);
-  return CGF.Builder.CreateIntrinsic(
-      llvm::Intrinsic::ptrmask, {CGF.AllocaInt8PtrTy, CGF.IntPtrTy},
-      {RoundUp, llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())},
-      nullptr, Ptr->getName() + ".aligned");
-}
-
-/// Emit va_arg for a platform using the common void* representation,
-/// where arguments are simply emitted in an array of slots on the stack.
-///
-/// This version implements the core direct-value passing rules.
-///
-/// \param SlotSize - The size and alignment of a stack slot.
-///   Each argument will be allocated to a multiple of this number of
-///   slots, and all the slots will be aligned to this value.
-/// \param AllowHigherAlign - The slot alignment is not a cap;
-///   an argument type with an alignment greater than the slot size
-///   will be emitted on a higher-alignment address, potentially
-///   leaving one or more empty slots behind as padding.  If this
-///   is false, the returned address might be less-aligned than
-///   DirectAlign.
-/// \param ForceRightAdjust - Default is false. On big-endian platform and
-///   if the argument is smaller than a slot, set this flag will force
-///   right-adjust the argument in its slot irrespective of the type.
-static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
-                                      Address VAListAddr,
-                                      llvm::Type *DirectTy,
-                                      CharUnits DirectSize,
-                                      CharUnits DirectAlign,
-                                      CharUnits SlotSize,
-                                      bool AllowHigherAlign,
-                                      bool ForceRightAdjust = false) {
-  // Cast the element type to i8* if necessary.  Some platforms define
-  // va_list as a struct containing an i8* instead of just an i8*.
-  if (VAListAddr.getElementType() != CGF.Int8PtrTy)
-    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
-
-  llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
-
-  // If the CC aligns values higher than the slot size, do so if needed.
-  Address Addr = Address::invalid();
-  if (AllowHigherAlign && DirectAlign > SlotSize) {
-    Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
-                   CGF.Int8Ty, DirectAlign);
-  } else {
-    Addr = Address(Ptr, CGF.Int8Ty, SlotSize);
-  }
-
-  // Advance the pointer past the argument, then store that back.
-  CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
-  Address NextPtr =
-      CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
-  CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
-
-  // If the argument is smaller than a slot, and this is a big-endian
-  // target, the argument will be right-adjusted in its slot.
-  if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
-      (!DirectTy->isStructTy() || ForceRightAdjust)) {
-    Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
-  }
-
-  Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
-  return Addr;
-}
-
-/// Emit va_arg for a platform using the common void* representation,
-/// where arguments are simply emitted in an array of slots on the stack.
-///
-/// \param IsIndirect - Values of this type are passed indirectly.
-/// \param ValueInfo - The size and alignment of this type, generally
-///   computed with getContext().getTypeInfoInChars(ValueTy).
-/// \param SlotSizeAndAlign - The size and alignment of a stack slot.
-///   Each argument will be allocated to a multiple of this number of
-///   slots, and all the slots will be aligned to this value.
-/// \param AllowHigherAlign - The slot alignment is not a cap;
-///   an argument type with an alignment greater than the slot size
-///   will be emitted on a higher-alignment address, potentially
-///   leaving one or more empty slots behind as padding.
-/// \param ForceRightAdjust - Default is false. On big-endian platform and
-///   if the argument is smaller than a slot, set this flag will force
-///   right-adjust the argument in its slot irrespective of the type.
-static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                QualType ValueTy, bool IsIndirect,
-                                TypeInfoChars ValueInfo,
-                                CharUnits SlotSizeAndAlign,
-                                bool AllowHigherAlign,
-                                bool ForceRightAdjust = false) {
-  // The size and alignment of the value that was passed directly.
-  CharUnits DirectSize, DirectAlign;
-  if (IsIndirect) {
-    DirectSize = CGF.getPointerSize();
-    DirectAlign = CGF.getPointerAlign();
-  } else {
-    DirectSize = ValueInfo.Width;
-    DirectAlign = ValueInfo.Align;
-  }
-
-  // Cast the address we've calculated to the right type.
-  llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy;
-  if (IsIndirect) {
-    unsigned AllocaAS = CGF.CGM.getDataLayout().getAllocaAddrSpace();
-    DirectTy = llvm::PointerType::get(CGF.getLLVMContext(), AllocaAS);
-  }
-
-  Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize,
-                                        DirectAlign, SlotSizeAndAlign,
-                                        AllowHigherAlign, ForceRightAdjust);
-
-  if (IsIndirect) {
-    Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align);
-  }
-
-  return Addr;
-}
-
-static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
-                                    QualType Ty, CharUnits SlotSize,
-                                    CharUnits EltSize, const ComplexType *CTy) {
-  Address Addr =
-      emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
-                             SlotSize, SlotSize, /*AllowHigher*/ true);
-
-  Address RealAddr = Addr;
-  Address ImagAddr = RealAddr;
-  if (CGF.CGM.getDataLayout().isBigEndian()) {
-    RealAddr =
-        CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
-    ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
-                                                      2 * SlotSize - EltSize);
-  } else {
-    ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
-  }
-
-  llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
-  RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
-  ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
-  llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
-  llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
-
-  Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
-  CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
-                         /*init*/ true);
-  return Temp;
-}
-
-static Address emitMergePHI(CodeGenFunction &CGF,
-                            Address Addr1, llvm::BasicBlock *Block1,
-                            Address Addr2, llvm::BasicBlock *Block2,
-                            const llvm::Twine &Name = "") {
-  assert(Addr1.getType() == Addr2.getType());
-  llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
-  PHI->addIncoming(Addr1.getPointer(), Block1);
-  PHI->addIncoming(Addr2.getPointer(), Block2);
-  CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
-  return Address(PHI, Addr1.getElementType(), Align);
-}
-
 TargetCodeGenInfo::TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info)
     : Info(std::move(Info)) {}
 
@@ -550,12262 +158,63 @@ TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
 }
 
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
-
-/// isEmptyField - Return true iff a the field is "empty", that is it
-/// is an unnamed bit-field or an (array of) empty record(s).
-static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
-                         bool AllowArrays) {
-  if (FD->isUnnamedBitfield())
-    return true;
-
-  QualType FT = FD->getType();
-
-  // Constant arrays of empty records count as empty, strip them off.
-  // Constant arrays of zero length always count as empty.
-  bool WasArray = false;
-  if (AllowArrays)
-    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
-      if (AT->getSize() == 0)
-        return true;
-      FT = AT->getElementType();
-      // The [[no_unique_address]] special case below does not apply to
-      // arrays of C++ empty records, so we need to remember this fact.
-      WasArray = true;
-    }
-
-  const RecordType *RT = FT->getAs<RecordType>();
-  if (!RT)
-    return false;
-
-  // C++ record fields are never empty, at least in the Itanium ABI.
-  //
-  // FIXME: We should use a predicate for whether this behavior is true in the
-  // current ABI.
-  //
-  // The exception to the above rule are fields marked with the
-  // [[no_unique_address]] attribute (since C++20).  Those do count as empty
-  // according to the Itanium ABI.  The exception applies only to records,
-  // not arrays of records, so we must also check whether we stripped off an
-  // array type above.
-  if (isa<CXXRecordDecl>(RT->getDecl()) &&
-      (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
-    return false;
-
-  return isEmptyRecord(Context, FT, AllowArrays);
-}
-
-/// isEmptyRecord - Return true iff a structure contains only empty
-/// fields. Note that a structure with a flexible array member is not
-/// considered empty.
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
-  const RecordType *RT = T->getAs<RecordType>();
-  if (!RT)
-    return false;
-  const RecordDecl *RD = RT->getDecl();
-  if (RD->hasFlexibleArrayMember())
-    return false;
-
-  // If this is a C++ record, check the bases first.
-  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
-    for (const auto &I : CXXRD->bases())
-      if (!isEmptyRecord(Context, I.getType(), true))
-        return false;
-
-  for (const auto *I : RD->fields())
-    if (!isEmptyField(Context, I, AllowArrays))
-      return false;
-  return true;
+void TargetCodeGenInfo::addStackProbeTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+  if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
+    if (CGM.getCodeGenOpts().StackProbeSize != 4096)
+      Fn->addFnAttr("stack-probe-size",
+                    llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
+    if (CGM.getCodeGenOpts().NoStackArgProbe)
+      Fn->addFnAttr("no-stack-arg-probe");
+  }
 }
 
-/// isSingleElementStruct - Determine if a structure is a "single
-/// element struct", i.e. it has exactly one non-empty field or
-/// exactly one field which is itself a single element
-/// struct. Structures with flexible array members are never
-/// considered single element structs.
+/// Create an OpenCL kernel for an enqueued block.
 ///
-/// \return The field declaration for the single non-empty field, if
-/// it exists.
-static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
-  const RecordType *RT = T->getAs<RecordType>();
-  if (!RT)
-    return nullptr;
-
-  const RecordDecl *RD = RT->getDecl();
-  if (RD->hasFlexibleArrayMember())
-    return nullptr;
-
-  const Type *Found = nullptr;
-
-  // If this is a C++ record, check the bases first.
-  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-    for (const auto &I : CXXRD->bases()) {
-      // Ignore empty records.
-      if (isEmptyRecord(Context, I.getType(), true))
-        continue;
-
-      // If we already found an element then this isn't a single-element struct.
-      if (Found)
-        return nullptr;
-
-      // If this is non-empty and not a single element struct, the composite
-      // cannot be a single element struct.
-      Found = isSingleElementStruct(I.getType(), Context);
-      if (!Found)
-        return nullptr;
-    }
-  }
-
-  // Check for single element.
-  for (const auto *FD : RD->fields()) {
-    QualType FT = FD->getType();
-
-    // Ignore empty fields.
-    if (isEmptyField(Context, FD, true))
-      continue;
-
-    // If we already found an element then this isn't a single-element
-    // struct.
-    if (Found)
-      return nullptr;
+/// The kernel has the same function type as the block invoke function. Its
+/// name is the name of the block invoke function postfixed with "_kernel".
+/// It simply calls the block invoke function then returns.
+llvm::Value *TargetCodeGenInfo::createEnqueuedBlockKernel(
+    CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
+  auto *InvokeFT = Invoke->getFunctionType();
+  auto &C = CGF.getLLVMContext();
+  std::string Name = Invoke->getName().str() + "_kernel";
+  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C),
+                                     InvokeFT->params(), false);
+  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name,
+                                   &CGF.CGM.getModule());
+  llvm::CallingConv::ID KernelCC =
+      CGF.getTypes().ClangCallConvToLLVMCallConv(CallingConv::CC_OpenCLKernel);
+  F->setCallingConv(KernelCC);
 
-    // Treat single element arrays as the element.
-    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
-      if (AT->getSize().getZExtValue() != 1)
-        break;
-      FT = AT->getElementType();
-    }
+  llvm::AttrBuilder KernelAttrs(C);
 
-    if (!isAggregateTypeForABI(FT)) {
-      Found = FT.getTypePtr();
-    } else {
-      Found = isSingleElementStruct(FT, Context);
-      if (!Found)
-        return nullptr;
-    }
-  }
+  // FIXME: This is missing setTargetAttributes
+  CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
+  F->addFnAttrs(KernelAttrs);
 
-  // We don't consider a struct a single-element struct if it has
-  // padding beyond the element type.
-  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
-    return nullptr;
+  auto IP = CGF.Builder.saveIP();
+  auto *BB = llvm::BasicBlock::Create(C, "entry", F);
+  auto &Builder = CGF.Builder;
+  Builder.SetInsertPoint(BB);
+  llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args()));
+  llvm::CallInst *Call = Builder.CreateCall(Invoke, Args);
+  Call->setCallingConv(Invoke->getCallingConv());
 
-  return Found;
+  Builder.CreateRetVoid();
+  Builder.restoreIP(IP);
+  return F;
 }
 
 namespace {
-Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
-                       const ABIArgInfo &AI) {
-  // This default implementation defers to the llvm backend's va_arg
-  // instruction. It can handle only passing arguments directly
-  // (typically only handled in the backend for primitive types), or
-  // aggregates passed indirectly by pointer (NOTE: if the "byval"
-  // flag has ABI impact in the callee, this implementation cannot
-  // work.)
-
-  // Only a few cases are covered here at the moment -- those needed
-  // by the default abi.
-  llvm::Value *Val;
-
-  if (AI.isIndirect()) {
-    assert(!AI.getPaddingType() &&
-           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
-    assert(
-        !AI.getIndirectRealign() &&
-        "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
-
-    auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
-    CharUnits TyAlignForABI = TyInfo.Align;
-
-    llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty);
-    llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy);
-    llvm::Value *Addr =
-        CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
-    return Address(Addr, ElementTy, TyAlignForABI);
-  } else {
-    assert((AI.isDirect() || AI.isExtend()) &&
-           "Unexpected ArgInfo Kind in generic VAArg emitter!");
-
-    assert(!AI.getInReg() &&
-           "Unexpected InReg seen in arginfo in generic VAArg emitter!");
-    assert(!AI.getPaddingType() &&
-           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
-    assert(!AI.getDirectOffset() &&
-           "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
-    assert(!AI.getCoerceToType() &&
-           "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
-
-    Address Temp = CGF.CreateMemTemp(Ty, "varet");
-    Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(),
-                                  CGF.ConvertTypeForMem(Ty));
-    CGF.Builder.CreateStore(Val, Temp);
-    return Temp;
-  }
-}
-
-/// DefaultABIInfo - The default implementation for ABI specific
-/// details. This implementation provides information which results in
-/// self-consistent and sensible LLVM IR generation, but does not
-/// conform to any particular ABI.
-class DefaultABIInfo : public ABIInfo {
-public:
-  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type);
-  }
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override {
-    return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
-  }
-};
-
 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
 public:
   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
 };
-
-ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Records with non-trivial destructors/copy-constructors should not be
-    // passed by value.
-    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-    return getNaturalAlignIndirect(Ty);
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  ASTContext &Context = getContext();
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() >
-        Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
-                                ? Context.Int128Ty
-                                : Context.LongLongTy))
-      return getNaturalAlignIndirect(Ty);
-
-  return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                            : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (isAggregateTypeForABI(RetTy))
-    return getNaturalAlignIndirect(RetTy);
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-    RetTy = EnumTy->getDecl()->getIntegerType();
-
-  if (const auto *EIT = RetTy->getAs<BitIntType>())
-    if (EIT->getNumBits() >
-        getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
-                                     ? getContext().Int128Ty
-                                     : getContext().LongLongTy))
-      return getNaturalAlignIndirect(RetTy);
-
-  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                               : ABIArgInfo::getDirect());
-}
-
-//===----------------------------------------------------------------------===//
-// WebAssembly ABI Implementation
-//
-// This is a very simple ABI that relies a lot on DefaultABIInfo.
-//===----------------------------------------------------------------------===//
-
-class WebAssemblyABIInfo final : public ABIInfo {
-  DefaultABIInfo defaultInfo;
-  WebAssemblyABIKind Kind;
-
-public:
-  explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT,
-                              WebAssemblyABIKind Kind)
-      : ABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
-
-private:
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType Ty) const;
-
-  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
-  // non-virtual, but computeInfo and EmitVAArg are virtual, so we
-  // overload them.
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &Arg : FI.arguments())
-      Arg.info = classifyArgumentType(Arg.type);
-  }
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
-public:
-  explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
-                                        WebAssemblyABIKind K)
-      : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {
-    SwiftInfo =
-        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
-    if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-      if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
-        llvm::Function *Fn = cast<llvm::Function>(GV);
-        llvm::AttrBuilder B(GV->getContext());
-        B.addAttribute("wasm-import-module", Attr->getImportModule());
-        Fn->addFnAttrs(B);
-      }
-      if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
-        llvm::Function *Fn = cast<llvm::Function>(GV);
-        llvm::AttrBuilder B(GV->getContext());
-        B.addAttribute("wasm-import-name", Attr->getImportName());
-        Fn->addFnAttrs(B);
-      }
-      if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
-        llvm::Function *Fn = cast<llvm::Function>(GV);
-        llvm::AttrBuilder B(GV->getContext());
-        B.addAttribute("wasm-export-name", Attr->getExportName());
-        Fn->addFnAttrs(B);
-      }
-    }
-
-    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-      llvm::Function *Fn = cast<llvm::Function>(GV);
-      if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
-        Fn->addFnAttr("no-prototype");
-    }
-  }
-
-  /// Return the WebAssembly externref reference type.
-  virtual llvm::Type *getWasmExternrefReferenceType() const override {
-    return llvm::Type::getWasm_ExternrefTy(getABIInfo().getVMContext());
-  }
-  /// Return the WebAssembly funcref reference type.
-  virtual llvm::Type *getWasmFuncrefReferenceType() const override {
-    return llvm::Type::getWasm_FuncrefTy(getABIInfo().getVMContext());
-  }
-};
-
-/// Classify argument of given type \p Ty.
-ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Records with non-trivial destructors/copy-constructors should not be
-    // passed by value.
-    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-    // Ignore empty structs/unions.
-    if (isEmptyRecord(getContext(), Ty, true))
-      return ABIArgInfo::getIgnore();
-    // Lower single-element structs to just pass a regular value. TODO: We
-    // could do reasonable-size multiple-element structs too, using getExpand(),
-    // though watch out for things like bitfields.
-    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
-      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
-    // For the experimental multivalue ABI, fully expand all other aggregates
-    if (Kind == WebAssemblyABIKind::ExperimentalMV) {
-      const RecordType *RT = Ty->getAs<RecordType>();
-      assert(RT);
-      bool HasBitField = false;
-      for (auto *Field : RT->getDecl()->fields()) {
-        if (Field->isBitField()) {
-          HasBitField = true;
-          break;
-        }
-      }
-      if (!HasBitField)
-        return ABIArgInfo::getExpand();
-    }
-  }
-
-  // Otherwise just do the default thing.
-  return defaultInfo.classifyArgumentType(Ty);
-}
-
-ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
-  if (isAggregateTypeForABI(RetTy)) {
-    // Records with non-trivial destructors/copy-constructors should not be
-    // returned by value.
-    if (!getRecordArgABI(RetTy, getCXXABI())) {
-      // Ignore empty structs/unions.
-      if (isEmptyRecord(getContext(), RetTy, true))
-        return ABIArgInfo::getIgnore();
-      // Lower single-element structs to just return a regular value. TODO: We
-      // could do reasonable-size multiple-element structs too, using
-      // ABIArgInfo::getDirect().
-      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
-        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
-      // For the experimental multivalue ABI, return all other aggregates
-      if (Kind == WebAssemblyABIKind::ExperimentalMV)
-        return ABIArgInfo::getDirect();
-    }
-  }
-
-  // Otherwise just do the default thing.
-  return defaultInfo.classifyReturnType(RetTy);
-}
-
-Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                      QualType Ty) const {
-  bool IsIndirect = isAggregateTypeForABI(Ty) &&
-                    !isEmptyRecord(getContext(), Ty, true) &&
-                    !isSingleElementStruct(Ty, getContext());
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
-                          getContext().getTypeInfoInChars(Ty),
-                          CharUnits::fromQuantity(4),
-                          /*AllowHigherAlign=*/true);
-}
-
-//===----------------------------------------------------------------------===//
-// le32/PNaCl bitcode ABI Implementation
-//
-// This is a simplified version of the x86_32 ABI.  Arguments and return values
-// are always passed on the stack.
-//===----------------------------------------------------------------------===//
-
-class PNaClABIInfo : public ABIInfo {
- public:
-  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF,
-                    Address VAListAddr, QualType Ty) const override;
-};
-
-class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
-   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
-       : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
-};
-
-void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-
-  for (auto &I : FI.arguments())
-    I.info = classifyArgumentType(I.type);
-}
-
-Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                QualType Ty) const {
-  // The PNaCL ABI is a bit odd, in that varargs don't use normal
-  // function classification. Structs get passed directly for varargs
-  // functions, through a rewriting transform in
-  // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
-  // this target to actually support a va_arg instructions with an
-  // aggregate type, unlike other targets.
-  return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
-}
-
-/// Classify argument of given type \p Ty.
-ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
-  if (isAggregateTypeForABI(Ty)) {
-    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-    return getNaturalAlignIndirect(Ty);
-  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
-    // Treat an enum type as its underlying type.
-    Ty = EnumTy->getDecl()->getIntegerType();
-  } else if (Ty->isFloatingType()) {
-    // Floating-point types don't go inreg.
-    return ABIArgInfo::getDirect();
-  } else if (const auto *EIT = Ty->getAs<BitIntType>()) {
-    // Treat bit-precise integers as integers if <= 64, otherwise pass
-    // indirectly.
-    if (EIT->getNumBits() > 64)
-      return getNaturalAlignIndirect(Ty);
-    return ABIArgInfo::getDirect();
-  }
-
-  return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                            : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  // In the PNaCl ABI we always return records/structures on the stack.
-  if (isAggregateTypeForABI(RetTy))
-    return getNaturalAlignIndirect(RetTy);
-
-  // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly.
-  if (const auto *EIT = RetTy->getAs<BitIntType>()) {
-    if (EIT->getNumBits() > 64)
-      return getNaturalAlignIndirect(RetTy);
-    return ABIArgInfo::getDirect();
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-    RetTy = EnumTy->getDecl()->getIntegerType();
-
-  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                               : ABIArgInfo::getDirect());
-}
-
-/// IsX86_MMXType - Return true if this is an MMX type.
-bool IsX86_MMXType(llvm::Type *IRType) {
-  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
-  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
-    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
-    IRType->getScalarSizeInBits() != 64;
-}
-
-static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
-                                          StringRef Constraint,
-                                          llvm::Type* Ty) {
-  bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
-                     .Cases("y", "&y", "^Ym", true)
-                     .Default(false);
-  if (IsMMXCons && Ty->isVectorTy()) {
-    if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
-        64) {
-      // Invalid MMX constraint
-      return nullptr;
-    }
-
-    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
-  }
-
-  // No operation needed
-  return Ty;
-}
-
-/// Returns true if this type can be passed in SSE registers with the
-/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
-static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
-      if (BT->getKind() == BuiltinType::LongDouble) {
-        if (&Context.getTargetInfo().getLongDoubleFormat() ==
-            &llvm::APFloat::x87DoubleExtended())
-          return false;
-      }
-      return true;
-    }
-  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
-    // registers specially.
-    unsigned VecSize = Context.getTypeSize(VT);
-    if (VecSize == 128 || VecSize == 256 || VecSize == 512)
-      return true;
-  }
-  return false;
-}
-
-/// Returns true if this aggregate is small enough to be passed in SSE registers
-/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
-static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
-  return NumMembers <= 4;
-}
-
-/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
-static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
-  auto AI = ABIArgInfo::getDirect(T);
-  AI.setInReg(true);
-  AI.setCanBeFlattened(false);
-  return AI;
-}
-
-//===----------------------------------------------------------------------===//
-// X86-32 ABI Implementation
-//===----------------------------------------------------------------------===//
-
-/// Similar to llvm::CCState, but for Clang.
-struct CCState {
-  CCState(CGFunctionInfo &FI)
-      : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
-
-  llvm::SmallBitVector IsPreassigned;
-  unsigned CC = CallingConv::CC_C;
-  unsigned FreeRegs = 0;
-  unsigned FreeSSERegs = 0;
-};
-
-/// X86_32ABIInfo - The X86-32 ABI information.
-class X86_32ABIInfo : public ABIInfo {
-  enum Class {
-    Integer,
-    Float
-  };
-
-  static const unsigned MinABIStackAlignInBytes = 4;
-
-  bool IsDarwinVectorABI;
-  bool IsRetSmallStructInRegABI;
-  bool IsWin32StructABI;
-  bool IsSoftFloatABI;
-  bool IsMCUABI;
-  bool IsLinuxABI;
-  unsigned DefaultNumRegisterParameters;
-
-  static bool isRegisterSize(unsigned Size) {
-    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
-  }
-
-  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
-    // FIXME: Assumes vectorcall is in use.
-    return isX86VectorTypeForVectorCall(getContext(), Ty);
-  }
-
-  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
-                                         uint64_t NumMembers) const override {
-    // FIXME: Assumes vectorcall is in use.
-    return isX86VectorCallAggregateSmallEnough(NumMembers);
-  }
-
-  bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
-
-  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
-  /// such that the argument will be passed in memory.
-  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
-
-  ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
-
-  /// Return the alignment to use for the given type on the stack.
-  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
-
-  Class classify(QualType Ty) const;
-  ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
-
-  /// Updates the number of available free registers, returns
-  /// true if any registers were allocated.
-  bool updateFreeRegs(QualType Ty, CCState &State) const;
-
-  bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
-                                bool &NeedsPadding) const;
-  bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
-
-  bool canExpandIndirectArgument(QualType Ty) const;
-
-  /// Rewrite the function info so that all memory arguments use
-  /// inalloca.
-  void rewriteWithInAlloca(CGFunctionInfo &FI) const;
-
-  void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
-                           CharUnits &StackOffset, ABIArgInfo &Info,
-                           QualType Type) const;
-  void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
-
-public:
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
-                bool RetSmallStructInRegABI, bool Win32StructABI,
-                unsigned NumRegisterParameters, bool SoftFloatABI)
-      : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
-        IsRetSmallStructInRegABI(RetSmallStructInRegABI),
-        IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
-        IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
-        IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
-                   CGT.getTarget().getTriple().isOSCygMing()),
-        DefaultNumRegisterParameters(NumRegisterParameters) {}
-};
-
-class X86_32SwiftABIInfo : public SwiftABIInfo {
-public:
-  explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
-      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
-
-  bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
-                            bool AsReturnValue) const override {
-    // LLVM's x86-32 lowering currently only assigns up to three
-    // integer registers and three fp registers.  Oddly, it'll use up to
-    // four vector registers for vectors, but those can overlap with the
-    // scalar registers.
-    return occupiesMoreThan(ComponentTys, /*total=*/3);
-  }
-};
-
-class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
-                          bool RetSmallStructInRegABI, bool Win32StructABI,
-                          unsigned NumRegisterParameters, bool SoftFloatABI)
-      : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
-            CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
-            NumRegisterParameters, SoftFloatABI)) {
-    SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
-  }
-
-  static bool isStructReturnInRegABI(
-      const llvm::Triple &Triple, const CodeGenOptions &Opts);
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override;
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
-    // Darwin uses 
diff erent dwarf register numbers for EH.
-    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
-    return 4;
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-
-  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
-                                  StringRef Constraint,
-                                  llvm::Type* Ty) const override {
-    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
-  }
-
-  void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
-                                std::string &Constraints,
-                                std::vector<llvm::Type *> &ResultRegTypes,
-                                std::vector<llvm::Type *> &ResultTruncRegTypes,
-                                std::vector<LValue> &ResultRegDests,
-                                std::string &AsmString,
-                                unsigned NumOutputs) const override;
-
-  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
-    return "movl\t%ebp, %ebp"
-           "\t\t// marker for objc_retainAutoreleaseReturnValue";
-  }
-};
-
-}
-
-/// Rewrite input constraint references after adding some output constraints.
-/// In the case where there is one output and one input and we add one output,
-/// we need to replace all operand references greater than or equal to 1:
-///     mov $0, $1
-///     mov eax, $1
-/// The result will be:
-///     mov $0, $2
-///     mov eax, $2
-static void rewriteInputConstraintReferences(unsigned FirstIn,
-                                             unsigned NumNewOuts,
-                                             std::string &AsmString) {
-  std::string Buf;
-  llvm::raw_string_ostream OS(Buf);
-  size_t Pos = 0;
-  while (Pos < AsmString.size()) {
-    size_t DollarStart = AsmString.find('$', Pos);
-    if (DollarStart == std::string::npos)
-      DollarStart = AsmString.size();
-    size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
-    if (DollarEnd == std::string::npos)
-      DollarEnd = AsmString.size();
-    OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
-    Pos = DollarEnd;
-    size_t NumDollars = DollarEnd - DollarStart;
-    if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
-      // We have an operand reference.
-      size_t DigitStart = Pos;
-      if (AsmString[DigitStart] == '{') {
-        OS << '{';
-        ++DigitStart;
-      }
-      size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
-      if (DigitEnd == std::string::npos)
-        DigitEnd = AsmString.size();
-      StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
-      unsigned OperandIndex;
-      if (!OperandStr.getAsInteger(10, OperandIndex)) {
-        if (OperandIndex >= FirstIn)
-          OperandIndex += NumNewOuts;
-        OS << OperandIndex;
-      } else {
-        OS << OperandStr;
-      }
-      Pos = DigitEnd;
-    }
-  }
-  AsmString = std::move(OS.str());
-}
-
-/// Add output constraints for EAX:EDX because they are return registers.
-void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
-    CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
-    std::vector<llvm::Type *> &ResultRegTypes,
-    std::vector<llvm::Type *> &ResultTruncRegTypes,
-    std::vector<LValue> &ResultRegDests, std::string &AsmString,
-    unsigned NumOutputs) const {
-  uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
-
-  // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
-  // larger.
-  if (!Constraints.empty())
-    Constraints += ',';
-  if (RetWidth <= 32) {
-    Constraints += "={eax}";
-    ResultRegTypes.push_back(CGF.Int32Ty);
-  } else {
-    // Use the 'A' constraint for EAX:EDX.
-    Constraints += "=A";
-    ResultRegTypes.push_back(CGF.Int64Ty);
-  }
-
-  // Truncate EAX or EAX:EDX to an integer of the appropriate size.
-  llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
-  ResultTruncRegTypes.push_back(CoerceTy);
-
-  // Coerce the integer by bitcasting the return slot pointer.
-  ReturnSlot.setAddress(
-      CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy));
-  ResultRegDests.push_back(ReturnSlot);
-
-  rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
-}
-
-/// shouldReturnTypeInRegister - Determine if the given type should be
-/// returned in a register (for the Darwin and MCU ABI).
-bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
-                                               ASTContext &Context) const {
-  uint64_t Size = Context.getTypeSize(Ty);
-
-  // For i386, type must be register sized.
-  // For the MCU ABI, it only needs to be <= 8-byte
-  if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
-   return false;
-
-  if (Ty->isVectorType()) {
-    // 64- and 128- bit vectors inside structures are not returned in
-    // registers.
-    if (Size == 64 || Size == 128)
-      return false;
-
-    return true;
-  }
-
-  // If this is a builtin, pointer, enum, complex type, member pointer, or
-  // member function pointer it is ok.
-  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
-      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
-      Ty->isBlockPointerType() || Ty->isMemberPointerType())
-    return true;
-
-  // Arrays are treated like records.
-  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
-    return shouldReturnTypeInRegister(AT->getElementType(), Context);
-
-  // Otherwise, it must be a record type.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT) return false;
-
-  // FIXME: Traverse bases here too.
-
-  // Structure types are passed in register if all fields would be
-  // passed in a register.
-  for (const auto *FD : RT->getDecl()->fields()) {
-    // Empty fields are ignored.
-    if (isEmptyField(Context, FD, true))
-      continue;
-
-    // Check fields recursively.
-    if (!shouldReturnTypeInRegister(FD->getType(), Context))
-      return false;
-  }
-  return true;
-}
-
-static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
-  // Treat complex types as the element type.
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
-    Ty = CTy->getElementType();
-
-  // Check for a type which we know has a simple scalar argument-passing
-  // convention without any padding.  (We're specifically looking for 32
-  // and 64-bit integer and integer-equivalents, float, and double.)
-  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
-      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
-    return false;
-
-  uint64_t Size = Context.getTypeSize(Ty);
-  return Size == 32 || Size == 64;
-}
-
-static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
-                          uint64_t &Size) {
-  for (const auto *FD : RD->fields()) {
-    // Scalar arguments on the stack get 4 byte alignment on x86. If the
-    // argument is smaller than 32-bits, expanding the struct will create
-    // alignment padding.
-    if (!is32Or64BitBasicType(FD->getType(), Context))
-      return false;
-
-    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
-    // how to expand them yet, and the predicate for telling if a bitfield still
-    // counts as "basic" is more complicated than what we were doing previously.
-    if (FD->isBitField())
-      return false;
-
-    Size += Context.getTypeSize(FD->getType());
-  }
-  return true;
-}
-
-static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
-                                 uint64_t &Size) {
-  // Don't do this if there are any non-empty bases.
-  for (const CXXBaseSpecifier &Base : RD->bases()) {
-    if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
-                              Size))
-      return false;
-  }
-  if (!addFieldSizes(Context, RD, Size))
-    return false;
-  return true;
-}
-
-/// Test whether an argument type which is to be passed indirectly (on the
-/// stack) would have the equivalent layout if it was expanded into separate
-/// arguments. If so, we prefer to do the latter to avoid inhibiting
-/// optimizations.
-bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
-  // We can only expand structure types.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT)
-    return false;
-  const RecordDecl *RD = RT->getDecl();
-  uint64_t Size = 0;
-  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-    if (!IsWin32StructABI) {
-      // On non-Windows, we have to conservatively match our old bitcode
-      // prototypes in order to be ABI-compatible at the bitcode level.
-      if (!CXXRD->isCLike())
-        return false;
-    } else {
-      // Don't do this for dynamic classes.
-      if (CXXRD->isDynamicClass())
-        return false;
-    }
-    if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
-      return false;
-  } else {
-    if (!addFieldSizes(getContext(), RD, Size))
-      return false;
-  }
-
-  // We can do this if there was no alignment padding.
-  return Size == getContext().getTypeSize(Ty);
-}
-
-ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
-  // If the return value is indirect, then the hidden argument is consuming one
-  // integer register.
-  if (State.FreeRegs) {
-    --State.FreeRegs;
-    if (!IsMCUABI)
-      return getNaturalAlignIndirectInReg(RetTy);
-  }
-  return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
-}
-
-ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
-                                             CCState &State) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  const Type *Base = nullptr;
-  uint64_t NumElts = 0;
-  if ((State.CC == llvm::CallingConv::X86_VectorCall ||
-       State.CC == llvm::CallingConv::X86_RegCall) &&
-      isHomogeneousAggregate(RetTy, Base, NumElts)) {
-    // The LLVM struct type for such an aggregate should lower properly.
-    return ABIArgInfo::getDirect();
-  }
-
-  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
-    // On Darwin, some vectors are returned in registers.
-    if (IsDarwinVectorABI) {
-      uint64_t Size = getContext().getTypeSize(RetTy);
-
-      // 128-bit vectors are a special case; they are returned in
-      // registers and we need to make sure to pick a type the LLVM
-      // backend will like.
-      if (Size == 128)
-        return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
-            llvm::Type::getInt64Ty(getVMContext()), 2));
-
-      // Always return in register if it fits in a general purpose
-      // register, or if it is 64 bits and has a single element.
-      if ((Size == 8 || Size == 16 || Size == 32) ||
-          (Size == 64 && VT->getNumElements() == 1))
-        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
-                                                            Size));
-
-      return getIndirectReturnResult(RetTy, State);
-    }
-
-    return ABIArgInfo::getDirect();
-  }
-
-  if (isAggregateTypeForABI(RetTy)) {
-    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
-      // Structures with flexible arrays are always indirect.
-      if (RT->getDecl()->hasFlexibleArrayMember())
-        return getIndirectReturnResult(RetTy, State);
-    }
-
-    // If specified, structs and unions are always indirect.
-    if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
-      return getIndirectReturnResult(RetTy, State);
-
-    // Ignore empty structs/unions.
-    if (isEmptyRecord(getContext(), RetTy, true))
-      return ABIArgInfo::getIgnore();
-
-    // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
-    if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
-      QualType ET = getContext().getCanonicalType(CT->getElementType());
-      if (ET->isFloat16Type())
-        return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
-            llvm::Type::getHalfTy(getVMContext()), 2));
-    }
-
-    // Small structures which are register sized are generally returned
-    // in a register.
-    if (shouldReturnTypeInRegister(RetTy, getContext())) {
-      uint64_t Size = getContext().getTypeSize(RetTy);
-
-      // As a special-case, if the struct is a "single-element" struct, and
-      // the field is of type "float" or "double", return it in a
-      // floating-point register. (MSVC does not apply this special case.)
-      // We apply a similar transformation for pointer types to improve the
-      // quality of the generated IR.
-      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
-        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
-            || SeltTy->hasPointerRepresentation())
-          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
-
-      // FIXME: We should be able to narrow this integer in cases with dead
-      // padding.
-      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
-    }
-
-    return getIndirectReturnResult(RetTy, State);
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-    RetTy = EnumTy->getDecl()->getIntegerType();
-
-  if (const auto *EIT = RetTy->getAs<BitIntType>())
-    if (EIT->getNumBits() > 64)
-      return getIndirectReturnResult(RetTy, State);
-
-  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                               : ABIArgInfo::getDirect());
-}
-
-static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
-  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
-}
-
-static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT)
-    return false;
-  const RecordDecl *RD = RT->getDecl();
-
-  // If this is a C++ record, check the bases first.
-  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
-    for (const auto &I : CXXRD->bases())
-      if (!isRecordWithSIMDVectorType(Context, I.getType()))
-        return false;
-
-  for (const auto *i : RD->fields()) {
-    QualType FT = i->getType();
-
-    if (isSIMDVectorType(Context, FT))
-      return true;
-
-    if (isRecordWithSIMDVectorType(Context, FT))
-      return true;
-  }
-
-  return false;
-}
-
-unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
-                                                 unsigned Align) const {
-  // Otherwise, if the alignment is less than or equal to the minimum ABI
-  // alignment, just use the default; the backend will handle this.
-  if (Align <= MinABIStackAlignInBytes)
-    return 0; // Use default alignment.
-
-  if (IsLinuxABI) {
-    // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
-    // want to spend any effort dealing with the ramifications of ABI breaks.
-    //
-    // If the vector type is __m128/__m256/__m512, return the default alignment.
-    if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
-      return Align;
-  }
-  // On non-Darwin, the stack type alignment is always 4.
-  if (!IsDarwinVectorABI) {
-    // Set explicit alignment, since we may need to realign the top.
-    return MinABIStackAlignInBytes;
-  }
-
-  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
-  if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
-                      isRecordWithSIMDVectorType(getContext(), Ty)))
-    return 16;
-
-  return MinABIStackAlignInBytes;
-}
-
-ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
-                                            CCState &State) const {
-  if (!ByVal) {
-    if (State.FreeRegs) {
-      --State.FreeRegs; // Non-byval indirects just use one pointer.
-      if (!IsMCUABI)
-        return getNaturalAlignIndirectInReg(Ty);
-    }
-    return getNaturalAlignIndirect(Ty, false);
-  }
-
-  // Compute the byval alignment.
-  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
-  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
-  if (StackAlign == 0)
-    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
-
-  // If the stack alignment is less than the type alignment, realign the
-  // argument.
-  bool Realign = TypeAlign > StackAlign;
-  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
-                                 /*ByVal=*/true, Realign);
-}
-
-X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
-  const Type *T = isSingleElementStruct(Ty, getContext());
-  if (!T)
-    T = Ty.getTypePtr();
-
-  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
-    BuiltinType::Kind K = BT->getKind();
-    if (K == BuiltinType::Float || K == BuiltinType::Double)
-      return Float;
-  }
-  return Integer;
-}
-
-bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
-  if (!IsSoftFloatABI) {
-    Class C = classify(Ty);
-    if (C == Float)
-      return false;
-  }
-
-  unsigned Size = getContext().getTypeSize(Ty);
-  unsigned SizeInRegs = (Size + 31) / 32;
-
-  if (SizeInRegs == 0)
-    return false;
-
-  if (!IsMCUABI) {
-    if (SizeInRegs > State.FreeRegs) {
-      State.FreeRegs = 0;
-      return false;
-    }
-  } else {
-    // The MCU psABI allows passing parameters in-reg even if there are
-    // earlier parameters that are passed on the stack. Also,
-    // it does not allow passing >8-byte structs in-register,
-    // even if there are 3 free registers available.
-    if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
-      return false;
-  }
-
-  State.FreeRegs -= SizeInRegs;
-  return true;
-}
-
-bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
-                                             bool &InReg,
-                                             bool &NeedsPadding) const {
-  // On Windows, aggregates other than HFAs are never passed in registers, and
-  // they do not consume register slots. Homogenous floating-point aggregates
-  // (HFAs) have already been dealt with at this point.
-  if (IsWin32StructABI && isAggregateTypeForABI(Ty))
-    return false;
-
-  NeedsPadding = false;
-  InReg = !IsMCUABI;
-
-  if (!updateFreeRegs(Ty, State))
-    return false;
-
-  if (IsMCUABI)
-    return true;
-
-  if (State.CC == llvm::CallingConv::X86_FastCall ||
-      State.CC == llvm::CallingConv::X86_VectorCall ||
-      State.CC == llvm::CallingConv::X86_RegCall) {
-    if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
-      NeedsPadding = true;
-
-    return false;
-  }
-
-  return true;
-}
-
-bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
-  bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
-                    (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
-                     Ty->isReferenceType());
-
-  if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
-                      State.CC == llvm::CallingConv::X86_VectorCall))
-    return false;
-
-  if (!updateFreeRegs(Ty, State))
-    return false;
-
-  if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
-    return false;
-
-  // Return true to apply inreg to all legal parameters except for MCU targets.
-  return !IsMCUABI;
-}
-
-void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
-  // Vectorcall x86 works subtly 
diff erent than in x64, so the format is
-  // a bit 
diff erent than the x64 version.  First, all vector types (not HVAs)
-  // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
-  // This 
diff ers from the x64 implementation, where the first 6 by INDEX get
-  // registers.
-  // In the second pass over the arguments, HVAs are passed in the remaining
-  // vector registers if possible, or indirectly by address. The address will be
-  // passed in ECX/EDX if available. Any other arguments are passed according to
-  // the usual fastcall rules.
-  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
-  for (int I = 0, E = Args.size(); I < E; ++I) {
-    const Type *Base = nullptr;
-    uint64_t NumElts = 0;
-    const QualType &Ty = Args[I].type;
-    if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
-        isHomogeneousAggregate(Ty, Base, NumElts)) {
-      if (State.FreeSSERegs >= NumElts) {
-        State.FreeSSERegs -= NumElts;
-        Args[I].info = ABIArgInfo::getDirectInReg();
-        State.IsPreassigned.set(I);
-      }
-    }
-  }
-}
-
-ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
-                                               CCState &State) const {
-  // FIXME: Set alignment on indirect arguments.
-  bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
-  bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
-  bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
-
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-  TypeInfo TI = getContext().getTypeInfo(Ty);
-
-  // Check with the C++ ABI first.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (RT) {
-    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
-    if (RAA == CGCXXABI::RAA_Indirect) {
-      return getIndirectResult(Ty, false, State);
-    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
-      // The field index doesn't matter, we'll fix it up later.
-      return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
-    }
-  }
-
-  // Regcall uses the concept of a homogenous vector aggregate, similar
-  // to other targets.
-  const Type *Base = nullptr;
-  uint64_t NumElts = 0;
-  if ((IsRegCall || IsVectorCall) &&
-      isHomogeneousAggregate(Ty, Base, NumElts)) {
-    if (State.FreeSSERegs >= NumElts) {
-      State.FreeSSERegs -= NumElts;
-
-      // Vectorcall passes HVAs directly and does not flatten them, but regcall
-      // does.
-      if (IsVectorCall)
-        return getDirectX86Hva();
-
-      if (Ty->isBuiltinType() || Ty->isVectorType())
-        return ABIArgInfo::getDirect();
-      return ABIArgInfo::getExpand();
-    }
-    return getIndirectResult(Ty, /*ByVal=*/false, State);
-  }
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Structures with flexible arrays are always indirect.
-    // FIXME: This should not be byval!
-    if (RT && RT->getDecl()->hasFlexibleArrayMember())
-      return getIndirectResult(Ty, true, State);
-
-    // Ignore empty structs/unions on non-Windows.
-    if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
-      return ABIArgInfo::getIgnore();
-
-    llvm::LLVMContext &LLVMContext = getVMContext();
-    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
-    bool NeedsPadding = false;
-    bool InReg;
-    if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
-      unsigned SizeInRegs = (TI.Width + 31) / 32;
-      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
-      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
-      if (InReg)
-        return ABIArgInfo::getDirectInReg(Result);
-      else
-        return ABIArgInfo::getDirect(Result);
-    }
-    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
-
-    // Pass over-aligned aggregates on Windows indirectly. This behavior was
-    // added in MSVC 2015. Use the required alignment from the record layout,
-    // since that may be less than the regular type alignment, and types with
-    // required alignment of less than 4 bytes are not passed indirectly.
-    if (IsWin32StructABI) {
-      unsigned AlignInBits = 0;
-      if (RT) {
-        const ASTRecordLayout &Layout =
-          getContext().getASTRecordLayout(RT->getDecl());
-        AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
-      } else if (TI.isAlignRequired()) {
-        AlignInBits = TI.Align;
-      }
-      if (AlignInBits > 32)
-        return getIndirectResult(Ty, /*ByVal=*/false, State);
-    }
-
-    // Expand small (<= 128-bit) record types when we know that the stack layout
-    // of those arguments will match the struct. This is important because the
-    // LLVM backend isn't smart enough to remove byval, which inhibits many
-    // optimizations.
-    // Don't do this for the MCU if there are still free integer registers
-    // (see X86_64 ABI for full explanation).
-    if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
-        canExpandIndirectArgument(Ty))
-      return ABIArgInfo::getExpandWithPadding(
-          IsFastCall || IsVectorCall || IsRegCall, PaddingType);
-
-    return getIndirectResult(Ty, true, State);
-  }
-
-  if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    // On Windows, vectors are passed directly if registers are available, or
-    // indirectly if not. This avoids the need to align argument memory. Pass
-    // user-defined vector types larger than 512 bits indirectly for simplicity.
-    if (IsWin32StructABI) {
-      if (TI.Width <= 512 && State.FreeSSERegs > 0) {
-        --State.FreeSSERegs;
-        return ABIArgInfo::getDirectInReg();
-      }
-      return getIndirectResult(Ty, /*ByVal=*/false, State);
-    }
-
-    // On Darwin, some vectors are passed in memory, we handle this by passing
-    // it as an i8/i16/i32/i64.
-    if (IsDarwinVectorABI) {
-      if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
-          (TI.Width == 64 && VT->getNumElements() == 1))
-        return ABIArgInfo::getDirect(
-            llvm::IntegerType::get(getVMContext(), TI.Width));
-    }
-
-    if (IsX86_MMXType(CGT.ConvertType(Ty)))
-      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
-
-    return ABIArgInfo::getDirect();
-  }
-
-
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  bool InReg = shouldPrimitiveUseInReg(Ty, State);
-
-  if (isPromotableIntegerTypeForABI(Ty)) {
-    if (InReg)
-      return ABIArgInfo::getExtendInReg(Ty);
-    return ABIArgInfo::getExtend(Ty);
-  }
-
-  if (const auto *EIT = Ty->getAs<BitIntType>()) {
-    if (EIT->getNumBits() <= 64) {
-      if (InReg)
-        return ABIArgInfo::getDirectInReg();
-      return ABIArgInfo::getDirect();
-    }
-    return getIndirectResult(Ty, /*ByVal=*/false, State);
-  }
-
-  if (InReg)
-    return ABIArgInfo::getDirectInReg();
-  return ABIArgInfo::getDirect();
-}
-
-void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  CCState State(FI);
-  if (IsMCUABI)
-    State.FreeRegs = 3;
-  else if (State.CC == llvm::CallingConv::X86_FastCall) {
-    State.FreeRegs = 2;
-    State.FreeSSERegs = 3;
-  } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
-    State.FreeRegs = 2;
-    State.FreeSSERegs = 6;
-  } else if (FI.getHasRegParm())
-    State.FreeRegs = FI.getRegParm();
-  else if (State.CC == llvm::CallingConv::X86_RegCall) {
-    State.FreeRegs = 5;
-    State.FreeSSERegs = 8;
-  } else if (IsWin32StructABI) {
-    // Since MSVC 2015, the first three SSE vectors have been passed in
-    // registers. The rest are passed indirectly.
-    State.FreeRegs = DefaultNumRegisterParameters;
-    State.FreeSSERegs = 3;
-  } else
-    State.FreeRegs = DefaultNumRegisterParameters;
-
-  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
-  } else if (FI.getReturnInfo().isIndirect()) {
-    // The C++ ABI is not aware of register usage, so we have to check if the
-    // return value was sret and put it in a register ourselves if appropriate.
-    if (State.FreeRegs) {
-      --State.FreeRegs;  // The sret parameter consumes a register.
-      if (!IsMCUABI)
-        FI.getReturnInfo().setInReg(true);
-    }
-  }
-
-  // The chain argument effectively gives us another free register.
-  if (FI.isChainCall())
-    ++State.FreeRegs;
-
-  // For vectorcall, do a first pass over the arguments, assigning FP and vector
-  // arguments to XMM registers as available.
-  if (State.CC == llvm::CallingConv::X86_VectorCall)
-    runVectorCallFirstPass(FI, State);
-
-  bool UsedInAlloca = false;
-  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
-  for (int I = 0, E = Args.size(); I < E; ++I) {
-    // Skip arguments that have already been assigned.
-    if (State.IsPreassigned.test(I))
-      continue;
-
-    Args[I].info = classifyArgumentType(Args[I].type, State);
-    UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
-  }
-
-  // If we needed to use inalloca for any argument, do a second pass and rewrite
-  // all the memory arguments to use inalloca.
-  if (UsedInAlloca)
-    rewriteWithInAlloca(FI);
-}
-
-void
-X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
-                                   CharUnits &StackOffset, ABIArgInfo &Info,
-                                   QualType Type) const {
-  // Arguments are always 4-byte-aligned.
-  CharUnits WordSize = CharUnits::fromQuantity(4);
-  assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
-
-  // sret pointers and indirect things will require an extra pointer
-  // indirection, unless they are byval. Most things are byval, and will not
-  // require this indirection.
-  bool IsIndirect = false;
-  if (Info.isIndirect() && !Info.getIndirectByVal())
-    IsIndirect = true;
-  Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
-  llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
-  if (IsIndirect)
-    LLTy = llvm::PointerType::getUnqual(getVMContext());
-  FrameFields.push_back(LLTy);
-  StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
-
-  // Insert padding bytes to respect alignment.
-  CharUnits FieldEnd = StackOffset;
-  StackOffset = FieldEnd.alignTo(WordSize);
-  if (StackOffset != FieldEnd) {
-    CharUnits NumBytes = StackOffset - FieldEnd;
-    llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
-    Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
-    FrameFields.push_back(Ty);
-  }
-}
-
-static bool isArgInAlloca(const ABIArgInfo &Info) {
-  // Leave ignored and inreg arguments alone.
-  switch (Info.getKind()) {
-  case ABIArgInfo::InAlloca:
-    return true;
-  case ABIArgInfo::Ignore:
-  case ABIArgInfo::IndirectAliased:
-    return false;
-  case ABIArgInfo::Indirect:
-  case ABIArgInfo::Direct:
-  case ABIArgInfo::Extend:
-    return !Info.getInReg();
-  case ABIArgInfo::Expand:
-  case ABIArgInfo::CoerceAndExpand:
-    // These are aggregate types which are never passed in registers when
-    // inalloca is involved.
-    return true;
-  }
-  llvm_unreachable("invalid enum");
-}
-
-void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
-  assert(IsWin32StructABI && "inalloca only supported on win32");
-
-  // Build a packed struct type for all of the arguments in memory.
-  SmallVector<llvm::Type *, 6> FrameFields;
-
-  // The stack alignment is always 4.
-  CharUnits StackAlign = CharUnits::fromQuantity(4);
-
-  CharUnits StackOffset;
-  CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
-
-  // Put 'this' into the struct before 'sret', if necessary.
-  bool IsThisCall =
-      FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
-  ABIArgInfo &Ret = FI.getReturnInfo();
-  if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
-      isArgInAlloca(I->info)) {
-    addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
-    ++I;
-  }
-
-  // Put the sret parameter into the inalloca struct if it's in memory.
-  if (Ret.isIndirect() && !Ret.getInReg()) {
-    addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
-    // On Windows, the hidden sret parameter is always returned in eax.
-    Ret.setInAllocaSRet(IsWin32StructABI);
-  }
-
-  // Skip the 'this' parameter in ecx.
-  if (IsThisCall)
-    ++I;
-
-  // Put arguments passed in memory into the struct.
-  for (; I != E; ++I) {
-    if (isArgInAlloca(I->info))
-      addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
-  }
-
-  FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
-                                        /*isPacked=*/true),
-                  StackAlign);
-}
-
-Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
-                                 Address VAListAddr, QualType Ty) const {
-
-  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
-
-  // x86-32 changes the alignment of certain arguments on the stack.
-  //
-  // Just messing with TypeInfo like this works because we never pass
-  // anything indirectly.
-  TypeInfo.Align = CharUnits::fromQuantity(
-                getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
-                          TypeInfo, CharUnits::fromQuantity(4),
-                          /*AllowHigherAlign*/ true);
-}
-
-bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
-    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
-  assert(Triple.getArch() == llvm::Triple::x86);
-
-  switch (Opts.getStructReturnConvention()) {
-  case CodeGenOptions::SRCK_Default:
-    break;
-  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
-    return false;
-  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
-    return true;
-  }
-
-  if (Triple.isOSDarwin() || Triple.isOSIAMCU())
-    return true;
-
-  switch (Triple.getOS()) {
-  case llvm::Triple::DragonFly:
-  case llvm::Triple::FreeBSD:
-  case llvm::Triple::OpenBSD:
-  case llvm::Triple::Win32:
-    return true;
-  default:
-    return false;
-  }
-}
-
-static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
-                                 CodeGen::CodeGenModule &CGM) {
-  if (!FD->hasAttr<AnyX86InterruptAttr>())
-    return;
-
-  llvm::Function *Fn = cast<llvm::Function>(GV);
-  Fn->setCallingConv(llvm::CallingConv::X86_INTR);
-  if (FD->getNumParams() == 0)
-    return;
-
-  auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
-  llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
-  llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
-    Fn->getContext(), ByValTy);
-  Fn->addParamAttr(0, NewAttr);
-}
-
-void X86_32TargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
-  if (GV->isDeclaration())
-    return;
-  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
-      llvm::Function *Fn = cast<llvm::Function>(GV);
-      Fn->addFnAttr("stackrealign");
-    }
-
-    addX86InterruptAttrs(FD, GV, CGM);
-  }
-}
-
-bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
-                                               CodeGen::CodeGenFunction &CGF,
-                                               llvm::Value *Address) const {
-  CodeGen::CGBuilderTy &Builder = CGF.Builder;
-
-  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
-
-  // 0-7 are the eight integer registers;  the order is 
diff erent
-  //   on Darwin (for EH), but the range is the same.
-  // 8 is %eip.
-  AssignToArrayRange(Builder, Address, Four8, 0, 8);
-
-  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
-    // 12-16 are st(0..4).  Not sure why we stop at 4.
-    // These have size 16, which is sizeof(long double) on
-    // platforms with 8-byte alignment for that type.
-    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
-    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
-
-  } else {
-    // 9 is %eflags, which doesn't get a size on Darwin for some
-    // reason.
-    Builder.CreateAlignedStore(
-        Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
-                               CharUnits::One());
-
-    // 11-16 are st(0..5).  Not sure why we stop at 5.
-    // These have size 12, which is sizeof(long double) on
-    // platforms with 4-byte alignment for that type.
-    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
-    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
-  }
-
-  return false;
-}
-
-//===----------------------------------------------------------------------===//
-// X86-64 ABI Implementation
-//===----------------------------------------------------------------------===//
-
-
-namespace {
-
-/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
-static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
-  switch (AVXLevel) {
-  case X86AVXABILevel::AVX512:
-    return 512;
-  case X86AVXABILevel::AVX:
-    return 256;
-  case X86AVXABILevel::None:
-    return 128;
-  }
-  llvm_unreachable("Unknown AVXLevel");
-}
-
-/// X86_64ABIInfo - The X86_64 ABI information.
-class X86_64ABIInfo : public ABIInfo {
-  enum Class {
-    Integer = 0,
-    SSE,
-    SSEUp,
-    X87,
-    X87Up,
-    ComplexX87,
-    NoClass,
-    Memory
-  };
-
-  /// merge - Implement the X86_64 ABI merging algorithm.
-  ///
-  /// Merge an accumulating classification \arg Accum with a field
-  /// classification \arg Field.
-  ///
-  /// \param Accum - The accumulating classification. This should
-  /// always be either NoClass or the result of a previous merge
-  /// call. In addition, this should never be Memory (the caller
-  /// should just return Memory for the aggregate).
-  static Class merge(Class Accum, Class Field);
-
-  /// postMerge - Implement the X86_64 ABI post merging algorithm.
-  ///
-  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
-  /// final MEMORY or SSE classes when necessary.
-  ///
-  /// \param AggregateSize - The size of the current aggregate in
-  /// the classification process.
-  ///
-  /// \param Lo - The classification for the parts of the type
-  /// residing in the low word of the containing object.
-  ///
-  /// \param Hi - The classification for the parts of the type
-  /// residing in the higher words of the containing object.
-  ///
-  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
-
-  /// classify - Determine the x86_64 register classes in which the
-  /// given type T should be passed.
-  ///
-  /// \param Lo - The classification for the parts of the type
-  /// residing in the low word of the containing object.
-  ///
-  /// \param Hi - The classification for the parts of the type
-  /// residing in the high word of the containing object.
-  ///
-  /// \param OffsetBase - The bit offset of this type in the
-  /// containing object.  Some parameters are classified 
diff erent
-  /// depending on whether they straddle an eightbyte boundary.
-  ///
-  /// \param isNamedArg - Whether the argument in question is a "named"
-  /// argument, as used in AMD64-ABI 3.5.7.
-  ///
-  /// \param IsRegCall - Whether the calling conversion is regcall.
-  ///
-  /// If a word is unused its result will be NoClass; if a type should
-  /// be passed in Memory then at least the classification of \arg Lo
-  /// will be Memory.
-  ///
-  /// The \arg Lo class will be NoClass iff the argument is ignored.
-  ///
-  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
-  /// also be ComplexX87.
-  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
-                bool isNamedArg, bool IsRegCall = false) const;
-
-  llvm::Type *GetByteVectorType(QualType Ty) const;
-  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
-                                 unsigned IROffset, QualType SourceTy,
-                                 unsigned SourceOffset) const;
-  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
-                                     unsigned IROffset, QualType SourceTy,
-                                     unsigned SourceOffset) const;
-
-  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
-  /// such that the argument will be returned in memory.
-  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
-
-  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
-  /// such that the argument will be passed in memory.
-  ///
-  /// \param freeIntRegs - The number of free integer registers remaining
-  /// available.
-  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-
-  ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
-                                  unsigned &neededInt, unsigned &neededSSE,
-                                  bool isNamedArg,
-                                  bool IsRegCall = false) const;
-
-  ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
-                                       unsigned &NeededSSE,
-                                       unsigned &MaxVectorWidth) const;
-
-  ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
-                                           unsigned &NeededSSE,
-                                           unsigned &MaxVectorWidth) const;
-
-  bool IsIllegalVectorType(QualType Ty) const;
-
-  /// The 0.98 ABI revision clarified a lot of ambiguities,
-  /// unfortunately in ways that were not always consistent with
-  /// certain previous compilers.  In particular, platforms which
-  /// required strict binary compatibility with older versions of GCC
-  /// may need to exempt themselves.
-  bool honorsRevision0_98() const {
-    return !getTarget().getTriple().isOSDarwin();
-  }
-
-  /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
-  /// classify it as INTEGER (for compatibility with older clang compilers).
-  bool classifyIntegerMMXAsSSE() const {
-    // Clang <= 3.8 did not do this.
-    if (getContext().getLangOpts().getClangABICompat() <=
-        LangOptions::ClangABI::Ver3_8)
-      return false;
-
-    const llvm::Triple &Triple = getTarget().getTriple();
-    if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
-      return false;
-    return true;
-  }
-
-  // GCC classifies vectors of __int128 as memory.
-  bool passInt128VectorsInMem() const {
-    // Clang <= 9.0 did not do this.
-    if (getContext().getLangOpts().getClangABICompat() <=
-        LangOptions::ClangABI::Ver9)
-      return false;
-
-    const llvm::Triple &T = getTarget().getTriple();
-    return T.isOSLinux() || T.isOSNetBSD();
-  }
-
-  X86AVXABILevel AVXLevel;
-  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
-  // 64-bit hardware.
-  bool Has64BitPointers;
-
-public:
-  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
-      : ABIInfo(CGT), AVXLevel(AVXLevel),
-        Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
-
-  bool isPassedUsingAVXType(QualType type) const {
-    unsigned neededInt, neededSSE;
-    // The freeIntRegs argument doesn't matter here.
-    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
-                                           /*isNamedArg*/true);
-    if (info.isDirect()) {
-      llvm::Type *ty = info.getCoerceToType();
-      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
-        return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
-    }
-    return false;
-  }
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                      QualType Ty) const override;
-
-  bool has64BitPointers() const {
-    return Has64BitPointers;
-  }
-};
-
-/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
-class WinX86_64ABIInfo : public ABIInfo {
-public:
-  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
-      : ABIInfo(CGT), AVXLevel(AVXLevel),
-        IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
-    // FIXME: Assumes vectorcall is in use.
-    return isX86VectorTypeForVectorCall(getContext(), Ty);
-  }
-
-  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
-                                         uint64_t NumMembers) const override {
-    // FIXME: Assumes vectorcall is in use.
-    return isX86VectorCallAggregateSmallEnough(NumMembers);
-  }
-
-private:
-  ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
-                      bool IsVectorCall, bool IsRegCall) const;
-  ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
-                                           const ABIArgInfo &current) const;
-
-  X86AVXABILevel AVXLevel;
-
-  bool IsMingw64;
-};
-
-class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
-      : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
-    SwiftInfo =
-        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
-  }
-
-  /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
-  /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
-  bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
-    return 7;
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override {
-    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
-
-    // 0-15 are the 16 integer registers.
-    // 16 is %rip.
-    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
-    return false;
-  }
-
-  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
-                                  StringRef Constraint,
-                                  llvm::Type* Ty) const override {
-    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
-  }
-
-  bool isNoProtoCallVariadic(const CallArgList &args,
-                             const FunctionNoProtoType *fnType) const override {
-    // The default CC on x86-64 sets %al to the number of SSA
-    // registers used, and GCC sets this when calling an unprototyped
-    // function, so we override the default behavior.  However, don't do
-    // that when AVX types are involved: the ABI explicitly states it is
-    // undefined, and it doesn't work in practice because of how the ABI
-    // defines varargs anyway.
-    if (fnType->getCallConv() == CC_C) {
-      bool HasAVXType = false;
-      for (CallArgList::const_iterator
-             it = args.begin(), ie = args.end(); it != ie; ++it) {
-        if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
-          HasAVXType = true;
-          break;
-        }
-      }
-
-      if (!HasAVXType)
-        return true;
-    }
-
-    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    if (GV->isDeclaration())
-      return;
-    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-      if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
-        llvm::Function *Fn = cast<llvm::Function>(GV);
-        Fn->addFnAttr("stackrealign");
-      }
-
-      addX86InterruptAttrs(FD, GV, CGM);
-    }
-  }
-
-  void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
-                            const FunctionDecl *Caller,
-                            const FunctionDecl *Callee,
-                            const CallArgList &Args) const override;
-};
-} // namespace
-
-static void initFeatureMaps(const ASTContext &Ctx,
-                            llvm::StringMap<bool> &CallerMap,
-                            const FunctionDecl *Caller,
-                            llvm::StringMap<bool> &CalleeMap,
-                            const FunctionDecl *Callee) {
-  if (CalleeMap.empty() && CallerMap.empty()) {
-    // The caller is potentially nullptr in the case where the call isn't in a
-    // function.  In this case, the getFunctionFeatureMap ensures we just get
-    // the TU level setting (since it cannot be modified by 'target'..
-    Ctx.getFunctionFeatureMap(CallerMap, Caller);
-    Ctx.getFunctionFeatureMap(CalleeMap, Callee);
-  }
-}
-
-static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
-                                 SourceLocation CallLoc,
-                                 const llvm::StringMap<bool> &CallerMap,
-                                 const llvm::StringMap<bool> &CalleeMap,
-                                 QualType Ty, StringRef Feature,
-                                 bool IsArgument) {
-  bool CallerHasFeat = CallerMap.lookup(Feature);
-  bool CalleeHasFeat = CalleeMap.lookup(Feature);
-  if (!CallerHasFeat && !CalleeHasFeat)
-    return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
-           << IsArgument << Ty << Feature;
-
-  // Mixing calling conventions here is very clearly an error.
-  if (!CallerHasFeat || !CalleeHasFeat)
-    return Diag.Report(CallLoc, diag::err_avx_calling_convention)
-           << IsArgument << Ty << Feature;
-
-  // Else, both caller and callee have the required feature, so there is no need
-  // to diagnose.
-  return false;
-}
-
-static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
-                          SourceLocation CallLoc,
-                          const llvm::StringMap<bool> &CallerMap,
-                          const llvm::StringMap<bool> &CalleeMap, QualType Ty,
-                          bool IsArgument) {
-  uint64_t Size = Ctx.getTypeSize(Ty);
-  if (Size > 256)
-    return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
-                                "avx512f", IsArgument);
-
-  if (Size > 128)
-    return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
-                                IsArgument);
-
-  return false;
-}
-
-void X86_64TargetCodeGenInfo::checkFunctionCallABI(
-    CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
-    const FunctionDecl *Callee, const CallArgList &Args) const {
-  llvm::StringMap<bool> CallerMap;
-  llvm::StringMap<bool> CalleeMap;
-  unsigned ArgIndex = 0;
-
-  // We need to loop through the actual call arguments rather than the
-  // function's parameters, in case this variadic.
-  for (const CallArg &Arg : Args) {
-    // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
-    // additionally changes how vectors >256 in size are passed. Like GCC, we
-    // warn when a function is called with an argument where this will change.
-    // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
-    // the caller and callee features are mismatched.
-    // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
-    // change its ABI with attribute-target after this call.
-    if (Arg.getType()->isVectorType() &&
-        CGM.getContext().getTypeSize(Arg.getType()) > 128) {
-      initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
-      QualType Ty = Arg.getType();
-      // The CallArg seems to have desugared the type already, so for clearer
-      // diagnostics, replace it with the type in the FunctionDecl if possible.
-      if (ArgIndex < Callee->getNumParams())
-        Ty = Callee->getParamDecl(ArgIndex)->getType();
-
-      if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
-                        CalleeMap, Ty, /*IsArgument*/ true))
-        return;
-    }
-    ++ArgIndex;
-  }
-
-  // Check return always, as we don't have a good way of knowing in codegen
-  // whether this value is used, tail-called, etc.
-  if (Callee->getReturnType()->isVectorType() &&
-      CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
-    initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
-    checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
-                  CalleeMap, Callee->getReturnType(),
-                  /*IsArgument*/ false);
-  }
-}
-
-std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
-  // If the argument does not end in .lib, automatically add the suffix.
-  // If the argument contains a space, enclose it in quotes.
-  // This matches the behavior of MSVC.
-  bool Quote = Lib.contains(' ');
-  std::string ArgStr = Quote ? "\"" : "";
-  ArgStr += Lib;
-  if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
-    ArgStr += ".lib";
-  ArgStr += Quote ? "\"" : "";
-  return ArgStr;
-}
-
-namespace {
-class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
-public:
-  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
-        bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
-        unsigned NumRegisterParameters)
-    : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
-        Win32StructABI, NumRegisterParameters, false) {}
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override;
-
-  void getDependentLibraryOption(llvm::StringRef Lib,
-                                 llvm::SmallString<24> &Opt) const override {
-    Opt = "/DEFAULTLIB:";
-    Opt += qualifyWindowsLibrary(Lib);
-  }
-
-  void getDetectMismatchOption(llvm::StringRef Name,
-                               llvm::StringRef Value,
-                               llvm::SmallString<32> &Opt) const override {
-    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
-  }
-};
-} // namespace
-
-void TargetCodeGenInfo::addStackProbeTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
-  if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
-    if (CGM.getCodeGenOpts().StackProbeSize != 4096)
-      Fn->addFnAttr("stack-probe-size",
-                    llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
-    if (CGM.getCodeGenOpts().NoStackArgProbe)
-      Fn->addFnAttr("no-stack-arg-probe");
-  }
-}
-
-void WinX86_32TargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
-  X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
-  if (GV->isDeclaration())
-    return;
-  addStackProbeTargetAttributes(D, GV, CGM);
-}
-
-namespace {
-class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
-                             X86AVXABILevel AVXLevel)
-      : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
-    SwiftInfo =
-        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override;
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
-    return 7;
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override {
-    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
-
-    // 0-15 are the 16 integer registers.
-    // 16 is %rip.
-    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
-    return false;
-  }
-
-  void getDependentLibraryOption(llvm::StringRef Lib,
-                                 llvm::SmallString<24> &Opt) const override {
-    Opt = "/DEFAULTLIB:";
-    Opt += qualifyWindowsLibrary(Lib);
-  }
-
-  void getDetectMismatchOption(llvm::StringRef Name,
-                               llvm::StringRef Value,
-                               llvm::SmallString<32> &Opt) const override {
-    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
-  }
-};
-} // namespace
-
-void WinX86_64TargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
-  TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
-  if (GV->isDeclaration())
-    return;
-  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
-      llvm::Function *Fn = cast<llvm::Function>(GV);
-      Fn->addFnAttr("stackrealign");
-    }
-
-    addX86InterruptAttrs(FD, GV, CGM);
-  }
-
-  addStackProbeTargetAttributes(D, GV, CGM);
-}
-
-void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
-                              Class &Hi) const {
-  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
-  //
-  // (a) If one of the classes is Memory, the whole argument is passed in
-  //     memory.
-  //
-  // (b) If X87UP is not preceded by X87, the whole argument is passed in
-  //     memory.
-  //
-  // (c) If the size of the aggregate exceeds two eightbytes and the first
-  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
-  //     argument is passed in memory. NOTE: This is necessary to keep the
-  //     ABI working for processors that don't support the __m256 type.
-  //
-  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
-  //
-  // Some of these are enforced by the merging logic.  Others can arise
-  // only with unions; for example:
-  //   union { _Complex double; unsigned; }
-  //
-  // Note that clauses (b) and (c) were added in 0.98.
-  //
-  if (Hi == Memory)
-    Lo = Memory;
-  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
-    Lo = Memory;
-  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
-    Lo = Memory;
-  if (Hi == SSEUp && Lo != SSE)
-    Hi = SSE;
-}
-
-X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
-  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
-  // classified recursively so that always two fields are
-  // considered. The resulting class is calculated according to
-  // the classes of the fields in the eightbyte:
-  //
-  // (a) If both classes are equal, this is the resulting class.
-  //
-  // (b) If one of the classes is NO_CLASS, the resulting class is
-  // the other class.
-  //
-  // (c) If one of the classes is MEMORY, the result is the MEMORY
-  // class.
-  //
-  // (d) If one of the classes is INTEGER, the result is the
-  // INTEGER.
-  //
-  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
-  // MEMORY is used as class.
-  //
-  // (f) Otherwise class SSE is used.
-
-  // Accum should never be memory (we should have returned) or
-  // ComplexX87 (because this cannot be passed in a structure).
-  assert((Accum != Memory && Accum != ComplexX87) &&
-         "Invalid accumulated classification during merge.");
-  if (Accum == Field || Field == NoClass)
-    return Accum;
-  if (Field == Memory)
-    return Memory;
-  if (Accum == NoClass)
-    return Field;
-  if (Accum == Integer || Field == Integer)
-    return Integer;
-  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
-      Accum == X87 || Accum == X87Up)
-    return Memory;
-  return SSE;
-}
-
-void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
-                             Class &Hi, bool isNamedArg, bool IsRegCall) const {
-  // FIXME: This code can be simplified by introducing a simple value class for
-  // Class pairs with appropriate constructor methods for the various
-  // situations.
-
-  // FIXME: Some of the split computations are wrong; unaligned vectors
-  // shouldn't be passed in registers for example, so there is no chance they
-  // can straddle an eightbyte. Verify & simplify.
-
-  Lo = Hi = NoClass;
-
-  Class &Current = OffsetBase < 64 ? Lo : Hi;
-  Current = Memory;
-
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    BuiltinType::Kind k = BT->getKind();
-
-    if (k == BuiltinType::Void) {
-      Current = NoClass;
-    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
-      Lo = Integer;
-      Hi = Integer;
-    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
-      Current = Integer;
-    } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
-               k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
-      Current = SSE;
-    } else if (k == BuiltinType::LongDouble) {
-      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
-      if (LDF == &llvm::APFloat::IEEEquad()) {
-        Lo = SSE;
-        Hi = SSEUp;
-      } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
-        Lo = X87;
-        Hi = X87Up;
-      } else if (LDF == &llvm::APFloat::IEEEdouble()) {
-        Current = SSE;
-      } else
-        llvm_unreachable("unexpected long double representation!");
-    }
-    // FIXME: _Decimal32 and _Decimal64 are SSE.
-    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
-    return;
-  }
-
-  if (const EnumType *ET = Ty->getAs<EnumType>()) {
-    // Classify the underlying integer type.
-    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
-    return;
-  }
-
-  if (Ty->hasPointerRepresentation()) {
-    Current = Integer;
-    return;
-  }
-
-  if (Ty->isMemberPointerType()) {
-    if (Ty->isMemberFunctionPointerType()) {
-      if (Has64BitPointers) {
-        // If Has64BitPointers, this is an {i64, i64}, so classify both
-        // Lo and Hi now.
-        Lo = Hi = Integer;
-      } else {
-        // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
-        // straddles an eightbyte boundary, Hi should be classified as well.
-        uint64_t EB_FuncPtr = (OffsetBase) / 64;
-        uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
-        if (EB_FuncPtr != EB_ThisAdj) {
-          Lo = Hi = Integer;
-        } else {
-          Current = Integer;
-        }
-      }
-    } else {
-      Current = Integer;
-    }
-    return;
-  }
-
-  if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    uint64_t Size = getContext().getTypeSize(VT);
-    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
-      // gcc passes the following as integer:
-      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
-      // 2 bytes - <2 x char>, <1 x short>
-      // 1 byte  - <1 x char>
-      Current = Integer;
-
-      // If this type crosses an eightbyte boundary, it should be
-      // split.
-      uint64_t EB_Lo = (OffsetBase) / 64;
-      uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
-      if (EB_Lo != EB_Hi)
-        Hi = Lo;
-    } else if (Size == 64) {
-      QualType ElementType = VT->getElementType();
-
-      // gcc passes <1 x double> in memory. :(
-      if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
-        return;
-
-      // gcc passes <1 x long long> as SSE but clang used to unconditionally
-      // pass them as integer.  For platforms where clang is the de facto
-      // platform compiler, we must continue to use integer.
-      if (!classifyIntegerMMXAsSSE() &&
-          (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
-           ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
-           ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
-           ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
-        Current = Integer;
-      else
-        Current = SSE;
-
-      // If this type crosses an eightbyte boundary, it should be
-      // split.
-      if (OffsetBase && OffsetBase != 64)
-        Hi = Lo;
-    } else if (Size == 128 ||
-               (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
-      QualType ElementType = VT->getElementType();
-
-      // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
-      if (passInt128VectorsInMem() && Size != 128 &&
-          (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
-           ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
-        return;
-
-      // Arguments of 256-bits are split into four eightbyte chunks. The
-      // least significant one belongs to class SSE and all the others to class
-      // SSEUP. The original Lo and Hi design considers that types can't be
-      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
-      // This design isn't correct for 256-bits, but since there're no cases
-      // where the upper parts would need to be inspected, avoid adding
-      // complexity and just consider Hi to match the 64-256 part.
-      //
-      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
-      // registers if they are "named", i.e. not part of the "..." of a
-      // variadic function.
-      //
-      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
-      // split into eight eightbyte chunks, one SSE and seven SSEUP.
-      Lo = SSE;
-      Hi = SSEUp;
-    }
-    return;
-  }
-
-  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
-    QualType ET = getContext().getCanonicalType(CT->getElementType());
-
-    uint64_t Size = getContext().getTypeSize(Ty);
-    if (ET->isIntegralOrEnumerationType()) {
-      if (Size <= 64)
-        Current = Integer;
-      else if (Size <= 128)
-        Lo = Hi = Integer;
-    } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
-               ET->isBFloat16Type()) {
-      Current = SSE;
-    } else if (ET == getContext().DoubleTy) {
-      Lo = Hi = SSE;
-    } else if (ET == getContext().LongDoubleTy) {
-      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
-      if (LDF == &llvm::APFloat::IEEEquad())
-        Current = Memory;
-      else if (LDF == &llvm::APFloat::x87DoubleExtended())
-        Current = ComplexX87;
-      else if (LDF == &llvm::APFloat::IEEEdouble())
-        Lo = Hi = SSE;
-      else
-        llvm_unreachable("unexpected long double representation!");
-    }
-
-    // If this complex type crosses an eightbyte boundary then it
-    // should be split.
-    uint64_t EB_Real = (OffsetBase) / 64;
-    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
-    if (Hi == NoClass && EB_Real != EB_Imag)
-      Hi = Lo;
-
-    return;
-  }
-
-  if (const auto *EITy = Ty->getAs<BitIntType>()) {
-    if (EITy->getNumBits() <= 64)
-      Current = Integer;
-    else if (EITy->getNumBits() <= 128)
-      Lo = Hi = Integer;
-    // Larger values need to get passed in memory.
-    return;
-  }
-
-  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
-    // Arrays are treated like structures.
-
-    uint64_t Size = getContext().getTypeSize(Ty);
-
-    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
-    // than eight eightbytes, ..., it has class MEMORY.
-    // regcall ABI doesn't have limitation to an object. The only limitation
-    // is the free registers, which will be checked in computeInfo.
-    if (!IsRegCall && Size > 512)
-      return;
-
-    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
-    // fields, it has class MEMORY.
-    //
-    // Only need to check alignment of array base.
-    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
-      return;
-
-    // Otherwise implement simplified merge. We could be smarter about
-    // this, but it isn't worth it and would be harder to verify.
-    Current = NoClass;
-    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
-    uint64_t ArraySize = AT->getSize().getZExtValue();
-
-    // The only case a 256-bit wide vector could be used is when the array
-    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
-    // to work for sizes wider than 128, early check and fallback to memory.
-    //
-    if (Size > 128 &&
-        (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
-      return;
-
-    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
-      Class FieldLo, FieldHi;
-      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
-      Lo = merge(Lo, FieldLo);
-      Hi = merge(Hi, FieldHi);
-      if (Lo == Memory || Hi == Memory)
-        break;
-    }
-
-    postMerge(Size, Lo, Hi);
-    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
-    return;
-  }
-
-  if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    uint64_t Size = getContext().getTypeSize(Ty);
-
-    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
-    // than eight eightbytes, ..., it has class MEMORY.
-    if (Size > 512)
-      return;
-
-    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
-    // copy constructor or a non-trivial destructor, it is passed by invisible
-    // reference.
-    if (getRecordArgABI(RT, getCXXABI()))
-      return;
-
-    const RecordDecl *RD = RT->getDecl();
-
-    // Assume variable sized types are passed in memory.
-    if (RD->hasFlexibleArrayMember())
-      return;
-
-    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
-
-    // Reset Lo class, this will be recomputed.
-    Current = NoClass;
-
-    // If this is a C++ record, classify the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-      for (const auto &I : CXXRD->bases()) {
-        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
-               "Unexpected base class!");
-        const auto *Base =
-            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
-
-        // Classify this field.
-        //
-        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
-        // single eightbyte, each is classified separately. Each eightbyte gets
-        // initialized to class NO_CLASS.
-        Class FieldLo, FieldHi;
-        uint64_t Offset =
-          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
-        classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
-        Lo = merge(Lo, FieldLo);
-        Hi = merge(Hi, FieldHi);
-        if (Lo == Memory || Hi == Memory) {
-          postMerge(Size, Lo, Hi);
-          return;
-        }
-      }
-    }
-
-    // Classify the fields one at a time, merging the results.
-    unsigned idx = 0;
-    bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
-                                LangOptions::ClangABI::Ver11 ||
-                            getContext().getTargetInfo().getTriple().isPS();
-    bool IsUnion = RT->isUnionType() && !UseClang11Compat;
-
-    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-           i != e; ++i, ++idx) {
-      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
-      bool BitField = i->isBitField();
-
-      // Ignore padding bit-fields.
-      if (BitField && i->isUnnamedBitfield())
-        continue;
-
-      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
-      // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
-      //
-      // The only case a 256-bit or a 512-bit wide vector could be used is when
-      // the struct contains a single 256-bit or 512-bit element. Early check
-      // and fallback to memory.
-      //
-      // FIXME: Extended the Lo and Hi logic properly to work for size wider
-      // than 128.
-      if (Size > 128 &&
-          ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
-           Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
-        Lo = Memory;
-        postMerge(Size, Lo, Hi);
-        return;
-      }
-      // Note, skip this test for bit-fields, see below.
-      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
-        Lo = Memory;
-        postMerge(Size, Lo, Hi);
-        return;
-      }
-
-      // Classify this field.
-      //
-      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
-      // exceeds a single eightbyte, each is classified
-      // separately. Each eightbyte gets initialized to class
-      // NO_CLASS.
-      Class FieldLo, FieldHi;
-
-      // Bit-fields require special handling, they do not force the
-      // structure to be passed in memory even if unaligned, and
-      // therefore they can straddle an eightbyte.
-      if (BitField) {
-        assert(!i->isUnnamedBitfield());
-        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
-        uint64_t Size = i->getBitWidthValue(getContext());
-
-        uint64_t EB_Lo = Offset / 64;
-        uint64_t EB_Hi = (Offset + Size - 1) / 64;
-
-        if (EB_Lo) {
-          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
-          FieldLo = NoClass;
-          FieldHi = Integer;
-        } else {
-          FieldLo = Integer;
-          FieldHi = EB_Hi ? Integer : NoClass;
-        }
-      } else
-        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
-      Lo = merge(Lo, FieldLo);
-      Hi = merge(Hi, FieldHi);
-      if (Lo == Memory || Hi == Memory)
-        break;
-    }
-
-    postMerge(Size, Lo, Hi);
-  }
-}
-
-ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
-  // If this is a scalar LLVM value then assume LLVM will pass it in the right
-  // place naturally.
-  if (!isAggregateTypeForABI(Ty)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    if (Ty->isBitIntType())
-      return getNaturalAlignIndirect(Ty);
-
-    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                              : ABIArgInfo::getDirect());
-  }
-
-  return getNaturalAlignIndirect(Ty);
-}
-
-bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
-  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
-    uint64_t Size = getContext().getTypeSize(VecTy);
-    unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
-    if (Size <= 64 || Size > LargestVector)
-      return true;
-    QualType EltTy = VecTy->getElementType();
-    if (passInt128VectorsInMem() &&
-        (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
-         EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
-      return true;
-  }
-
-  return false;
-}
-
-ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
-                                            unsigned freeIntRegs) const {
-  // If this is a scalar LLVM value then assume LLVM will pass it in the right
-  // place naturally.
-  //
-  // This assumption is optimistic, as there could be free registers available
-  // when we need to pass this argument in memory, and LLVM could try to pass
-  // the argument in the free register. This does not seem to happen currently,
-  // but this code would be much safer if we could mark the argument with
-  // 'onstack'. See PR12193.
-  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
-      !Ty->isBitIntType()) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                              : ABIArgInfo::getDirect());
-  }
-
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-  // Compute the byval alignment. We specify the alignment of the byval in all
-  // cases so that the mid-level optimizer knows the alignment of the byval.
-  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
-
-  // Attempt to avoid passing indirect results using byval when possible. This
-  // is important for good codegen.
-  //
-  // We do this by coercing the value into a scalar type which the backend can
-  // handle naturally (i.e., without using byval).
-  //
-  // For simplicity, we currently only do this when we have exhausted all of the
-  // free integer registers. Doing this when there are free integer registers
-  // would require more care, as we would have to ensure that the coerced value
-  // did not claim the unused register. That would require either reording the
-  // arguments to the function (so that any subsequent inreg values came first),
-  // or only doing this optimization when there were no following arguments that
-  // might be inreg.
-  //
-  // We currently expect it to be rare (particularly in well written code) for
-  // arguments to be passed on the stack when there are still free integer
-  // registers available (this would typically imply large structs being passed
-  // by value), so this seems like a fair tradeoff for now.
-  //
-  // We can revisit this if the backend grows support for 'onstack' parameter
-  // attributes. See PR12193.
-  if (freeIntRegs == 0) {
-    uint64_t Size = getContext().getTypeSize(Ty);
-
-    // If this type fits in an eightbyte, coerce it into the matching integral
-    // type, which will end up on the stack (with alignment 8).
-    if (Align == 8 && Size <= 64)
-      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
-                                                          Size));
-  }
-
-  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
-}
-
-/// The ABI specifies that a value should be passed in a full vector XMM/YMM
-/// register. Pick an LLVM IR type that will be passed as a vector register.
-llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
-  // Wrapper structs/arrays that only contain vectors are passed just like
-  // vectors; strip them off if present.
-  if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
-    Ty = QualType(InnerTy, 0);
-
-  llvm::Type *IRType = CGT.ConvertType(Ty);
-  if (isa<llvm::VectorType>(IRType)) {
-    // Don't pass vXi128 vectors in their native type, the backend can't
-    // legalize them.
-    if (passInt128VectorsInMem() &&
-        cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
-      // Use a vXi64 vector.
-      uint64_t Size = getContext().getTypeSize(Ty);
-      return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
-                                        Size / 64);
-    }
-
-    return IRType;
-  }
-
-  if (IRType->getTypeID() == llvm::Type::FP128TyID)
-    return IRType;
-
-  // We couldn't find the preferred IR vector type for 'Ty'.
-  uint64_t Size = getContext().getTypeSize(Ty);
-  assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
-
-
-  // Return a LLVM IR vector type based on the size of 'Ty'.
-  return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
-                                    Size / 64);
-}
-
-/// BitsContainNoUserData - Return true if the specified [start,end) bit range
-/// is known to either be off the end of the specified type or being in
-/// alignment padding.  The user type specified is known to be at most 128 bits
-/// in size, and have passed through X86_64ABIInfo::classify with a successful
-/// classification that put one of the two halves in the INTEGER class.
-///
-/// It is conservatively correct to return false.
-static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
-                                  unsigned EndBit, ASTContext &Context) {
-  // If the bytes being queried are off the end of the type, there is no user
-  // data hiding here.  This handles analysis of builtins, vectors and other
-  // types that don't contain interesting padding.
-  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
-  if (TySize <= StartBit)
-    return true;
-
-  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
-    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
-    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
-
-    // Check each element to see if the element overlaps with the queried range.
-    for (unsigned i = 0; i != NumElts; ++i) {
-      // If the element is after the span we care about, then we're done..
-      unsigned EltOffset = i*EltSize;
-      if (EltOffset >= EndBit) break;
-
-      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
-      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
-                                 EndBit-EltOffset, Context))
-        return false;
-    }
-    // If it overlaps no elements, then it is safe to process as padding.
-    return true;
-  }
-
-  if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    const RecordDecl *RD = RT->getDecl();
-    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
-    // If this is a C++ record, check the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-      for (const auto &I : CXXRD->bases()) {
-        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
-               "Unexpected base class!");
-        const auto *Base =
-            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
-
-        // If the base is after the span we care about, ignore it.
-        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
-        if (BaseOffset >= EndBit) continue;
-
-        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
-        if (!BitsContainNoUserData(I.getType(), BaseStart,
-                                   EndBit-BaseOffset, Context))
-          return false;
-      }
-    }
-
-    // Verify that no field has data that overlaps the region of interest.  Yes
-    // this could be sped up a lot by being smarter about queried fields,
-    // however we're only looking at structs up to 16 bytes, so we don't care
-    // much.
-    unsigned idx = 0;
-    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-         i != e; ++i, ++idx) {
-      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
-
-      // If we found a field after the region we care about, then we're done.
-      if (FieldOffset >= EndBit) break;
-
-      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
-      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
-                                 Context))
-        return false;
-    }
-
-    // If nothing in this record overlapped the area of interest, then we're
-    // clean.
-    return true;
-  }
-
-  return false;
-}
-
-/// getFPTypeAtOffset - Return a floating point type at the specified offset.
-static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
-                                     const llvm::DataLayout &TD) {
-  if (IROffset == 0 && IRType->isFloatingPointTy())
-    return IRType;
-
-  // If this is a struct, recurse into the field at the specified offset.
-  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
-    if (!STy->getNumContainedTypes())
-      return nullptr;
-
-    const llvm::StructLayout *SL = TD.getStructLayout(STy);
-    unsigned Elt = SL->getElementContainingOffset(IROffset);
-    IROffset -= SL->getElementOffset(Elt);
-    return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
-  }
-
-  // If this is an array, recurse into the field at the specified offset.
-  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
-    llvm::Type *EltTy = ATy->getElementType();
-    unsigned EltSize = TD.getTypeAllocSize(EltTy);
-    IROffset -= IROffset / EltSize * EltSize;
-    return getFPTypeAtOffset(EltTy, IROffset, TD);
-  }
-
-  return nullptr;
-}
-
-/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
-/// low 8 bytes of an XMM register, corresponding to the SSE class.
-llvm::Type *X86_64ABIInfo::
-GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
-                   QualType SourceTy, unsigned SourceOffset) const {
-  const llvm::DataLayout &TD = getDataLayout();
-  unsigned SourceSize =
-      (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
-  llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
-  if (!T0 || T0->isDoubleTy())
-    return llvm::Type::getDoubleTy(getVMContext());
-
-  // Get the adjacent FP type.
-  llvm::Type *T1 = nullptr;
-  unsigned T0Size = TD.getTypeAllocSize(T0);
-  if (SourceSize > T0Size)
-      T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
-  if (T1 == nullptr) {
-    // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
-    // to its alignment.
-    if (T0->is16bitFPTy() && SourceSize > 4)
-      T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
-    // If we can't get a second FP type, return a simple half or float.
-    // avx512fp16-abi.c:pr51813_2 shows it works to return float for
-    // {float, i8} too.
-    if (T1 == nullptr)
-      return T0;
-  }
-
-  if (T0->isFloatTy() && T1->isFloatTy())
-    return llvm::FixedVectorType::get(T0, 2);
-
-  if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
-    llvm::Type *T2 = nullptr;
-    if (SourceSize > 4)
-      T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
-    if (T2 == nullptr)
-      return llvm::FixedVectorType::get(T0, 2);
-    return llvm::FixedVectorType::get(T0, 4);
-  }
-
-  if (T0->is16bitFPTy() || T1->is16bitFPTy())
-    return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
-
-  return llvm::Type::getDoubleTy(getVMContext());
-}
-
-
-/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
-/// an 8-byte GPR.  This means that we either have a scalar or we are talking
-/// about the high or low part of an up-to-16-byte struct.  This routine picks
-/// the best LLVM IR type to represent this, which may be i64 or may be anything
-/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
-/// etc).
-///
-/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
-/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
-/// the 8-byte value references.  PrefType may be null.
-///
-/// SourceTy is the source-level type for the entire argument.  SourceOffset is
-/// an offset into this that we're processing (which is always either 0 or 8).
-///
-llvm::Type *X86_64ABIInfo::
-GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
-                       QualType SourceTy, unsigned SourceOffset) const {
-  // If we're dealing with an un-offset LLVM IR type, then it means that we're
-  // returning an 8-byte unit starting with it.  See if we can safely use it.
-  if (IROffset == 0) {
-    // Pointers and int64's always fill the 8-byte unit.
-    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
-        IRType->isIntegerTy(64))
-      return IRType;
-
-    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
-    // goodness in the source type is just tail padding.  This is allowed to
-    // kick in for struct {double,int} on the int, but not on
-    // struct{double,int,int} because we wouldn't return the second int.  We
-    // have to do this analysis on the source type because we can't depend on
-    // unions being lowered a specific way etc.
-    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
-        IRType->isIntegerTy(32) ||
-        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
-      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
-          cast<llvm::IntegerType>(IRType)->getBitWidth();
-
-      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
-                                SourceOffset*8+64, getContext()))
-        return IRType;
-    }
-  }
-
-  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
-    // If this is a struct, recurse into the field at the specified offset.
-    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
-    if (IROffset < SL->getSizeInBytes()) {
-      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
-      IROffset -= SL->getElementOffset(FieldIdx);
-
-      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
-                                    SourceTy, SourceOffset);
-    }
-  }
-
-  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
-    llvm::Type *EltTy = ATy->getElementType();
-    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
-    unsigned EltOffset = IROffset/EltSize*EltSize;
-    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
-                                  SourceOffset);
-  }
-
-  // Okay, we don't have any better idea of what to pass, so we pass this in an
-  // integer register that isn't too big to fit the rest of the struct.
-  unsigned TySizeInBytes =
-    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
-
-  assert(TySizeInBytes != SourceOffset && "Empty field?");
-
-  // It is always safe to classify this as an integer type up to i64 that
-  // isn't larger than the structure.
-  return llvm::IntegerType::get(getVMContext(),
-                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
-}
-
-
-/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
-/// be used as elements of a two register pair to pass or return, return a
-/// first class aggregate to represent them.  For example, if the low part of
-/// a by-value argument should be passed as i32* and the high part as float,
-/// return {i32*, float}.
-static llvm::Type *
-GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
-                           const llvm::DataLayout &TD) {
-  // In order to correctly satisfy the ABI, we need to the high part to start
-  // at offset 8.  If the high and low parts we inferred are both 4-byte types
-  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
-  // the second element at offset 8.  Check for this:
-  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
-  llvm::Align HiAlign = TD.getABITypeAlign(Hi);
-  unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
-  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
-
-  // To handle this, we have to increase the size of the low part so that the
-  // second element will start at an 8 byte offset.  We can't increase the size
-  // of the second element because it might make us access off the end of the
-  // struct.
-  if (HiStart != 8) {
-    // There are usually two sorts of types the ABI generation code can produce
-    // for the low part of a pair that aren't 8 bytes in size: half, float or
-    // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
-    // NaCl).
-    // Promote these to a larger type.
-    if (Lo->isHalfTy() || Lo->isFloatTy())
-      Lo = llvm::Type::getDoubleTy(Lo->getContext());
-    else {
-      assert((Lo->isIntegerTy() || Lo->isPointerTy())
-             && "Invalid/unknown lo type");
-      Lo = llvm::Type::getInt64Ty(Lo->getContext());
-    }
-  }
-
-  llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
-
-  // Verify that the second element is at an 8-byte offset.
-  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
-         "Invalid x86-64 argument pair!");
-  return Result;
-}
-
-ABIArgInfo X86_64ABIInfo::
-classifyReturnType(QualType RetTy) const {
-  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
-  // classification algorithm.
-  X86_64ABIInfo::Class Lo, Hi;
-  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
-
-  // Check some invariants.
-  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
-  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
-  llvm::Type *ResType = nullptr;
-  switch (Lo) {
-  case NoClass:
-    if (Hi == NoClass)
-      return ABIArgInfo::getIgnore();
-    // If the low part is just padding, it takes no register, leave ResType
-    // null.
-    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
-           "Unknown missing lo part");
-    break;
-
-  case SSEUp:
-  case X87Up:
-    llvm_unreachable("Invalid classification for lo word.");
-
-    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
-    // hidden argument.
-  case Memory:
-    return getIndirectReturnResult(RetTy);
-
-    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
-    // available register of the sequence %rax, %rdx is used.
-  case Integer:
-    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
-
-    // If we have a sign or zero extended integer, make sure to return Extend
-    // so that the parameter gets the right LLVM IR attributes.
-    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
-      // Treat an enum type as its underlying type.
-      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-        RetTy = EnumTy->getDecl()->getIntegerType();
-
-      if (RetTy->isIntegralOrEnumerationType() &&
-          isPromotableIntegerTypeForABI(RetTy))
-        return ABIArgInfo::getExtend(RetTy);
-    }
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
-    // available SSE register of the sequence %xmm0, %xmm1 is used.
-  case SSE:
-    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
-    // returned on the X87 stack in %st0 as 80-bit x87 number.
-  case X87:
-    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
-    // part of the value is returned in %st0 and the imaginary part in
-    // %st1.
-  case ComplexX87:
-    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
-    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
-                                    llvm::Type::getX86_FP80Ty(getVMContext()));
-    break;
-  }
-
-  llvm::Type *HighPart = nullptr;
-  switch (Hi) {
-    // Memory was handled previously and X87 should
-    // never occur as a hi class.
-  case Memory:
-  case X87:
-    llvm_unreachable("Invalid classification for hi word.");
-
-  case ComplexX87: // Previously handled.
-  case NoClass:
-    break;
-
-  case Integer:
-    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
-    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
-      return ABIArgInfo::getDirect(HighPart, 8);
-    break;
-  case SSE:
-    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
-    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
-      return ABIArgInfo::getDirect(HighPart, 8);
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
-    // is passed in the next available eightbyte chunk if the last used
-    // vector register.
-    //
-    // SSEUP should always be preceded by SSE, just widen.
-  case SSEUp:
-    assert(Lo == SSE && "Unexpected SSEUp classification.");
-    ResType = GetByteVectorType(RetTy);
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
-    // returned together with the previous X87 value in %st0.
-  case X87Up:
-    // If X87Up is preceded by X87, we don't need to do
-    // anything. However, in some cases with unions it may not be
-    // preceded by X87. In such situations we follow gcc and pass the
-    // extra bits in an SSE reg.
-    if (Lo != X87) {
-      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
-      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
-        return ABIArgInfo::getDirect(HighPart, 8);
-    }
-    break;
-  }
-
-  // If a high part was specified, merge it together with the low part.  It is
-  // known to pass in the high eightbyte of the result.  We do this by forming a
-  // first class struct aggregate with the high and low part: {low, high}
-  if (HighPart)
-    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
-
-  return ABIArgInfo::getDirect(ResType);
-}
-
-ABIArgInfo
-X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
-                                    unsigned &neededInt, unsigned &neededSSE,
-                                    bool isNamedArg, bool IsRegCall) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  X86_64ABIInfo::Class Lo, Hi;
-  classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
-
-  // Check some invariants.
-  // FIXME: Enforce these by construction.
-  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
-  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
-  neededInt = 0;
-  neededSSE = 0;
-  llvm::Type *ResType = nullptr;
-  switch (Lo) {
-  case NoClass:
-    if (Hi == NoClass)
-      return ABIArgInfo::getIgnore();
-    // If the low part is just padding, it takes no register, leave ResType
-    // null.
-    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
-           "Unknown missing lo part");
-    break;
-
-    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
-    // on the stack.
-  case Memory:
-
-    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
-    // COMPLEX_X87, it is passed in memory.
-  case X87:
-  case ComplexX87:
-    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
-      ++neededInt;
-    return getIndirectResult(Ty, freeIntRegs);
-
-  case SSEUp:
-  case X87Up:
-    llvm_unreachable("Invalid classification for lo word.");
-
-    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
-    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
-    // and %r9 is used.
-  case Integer:
-    ++neededInt;
-
-    // Pick an 8-byte type based on the preferred type.
-    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
-
-    // If we have a sign or zero extended integer, make sure to return Extend
-    // so that the parameter gets the right LLVM IR attributes.
-    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
-      // Treat an enum type as its underlying type.
-      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-        Ty = EnumTy->getDecl()->getIntegerType();
-
-      if (Ty->isIntegralOrEnumerationType() &&
-          isPromotableIntegerTypeForABI(Ty))
-        return ABIArgInfo::getExtend(Ty);
-    }
-
-    break;
-
-    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
-    // available SSE register is used, the registers are taken in the
-    // order from %xmm0 to %xmm7.
-  case SSE: {
-    llvm::Type *IRType = CGT.ConvertType(Ty);
-    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
-    ++neededSSE;
-    break;
-  }
-  }
-
-  llvm::Type *HighPart = nullptr;
-  switch (Hi) {
-    // Memory was handled previously, ComplexX87 and X87 should
-    // never occur as hi classes, and X87Up must be preceded by X87,
-    // which is passed in memory.
-  case Memory:
-  case X87:
-  case ComplexX87:
-    llvm_unreachable("Invalid classification for hi word.");
-
-  case NoClass: break;
-
-  case Integer:
-    ++neededInt;
-    // Pick an 8-byte type based on the preferred type.
-    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
-
-    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
-      return ABIArgInfo::getDirect(HighPart, 8);
-    break;
-
-    // X87Up generally doesn't occur here (long double is passed in
-    // memory), except in situations involving unions.
-  case X87Up:
-  case SSE:
-    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
-
-    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
-      return ABIArgInfo::getDirect(HighPart, 8);
-
-    ++neededSSE;
-    break;
-
-    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
-    // eightbyte is passed in the upper half of the last used SSE
-    // register.  This only happens when 128-bit vectors are passed.
-  case SSEUp:
-    assert(Lo == SSE && "Unexpected SSEUp classification");
-    ResType = GetByteVectorType(Ty);
-    break;
-  }
-
-  // If a high part was specified, merge it together with the low part.  It is
-  // known to pass in the high eightbyte of the result.  We do this by forming a
-  // first class struct aggregate with the high and low part: {low, high}
-  if (HighPart)
-    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
-
-  return ABIArgInfo::getDirect(ResType);
-}
-
-ABIArgInfo
-X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
-                                             unsigned &NeededSSE,
-                                             unsigned &MaxVectorWidth) const {
-  auto RT = Ty->getAs<RecordType>();
-  assert(RT && "classifyRegCallStructType only valid with struct types");
-
-  if (RT->getDecl()->hasFlexibleArrayMember())
-    return getIndirectReturnResult(Ty);
-
-  // Sum up bases
-  if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
-    if (CXXRD->isDynamicClass()) {
-      NeededInt = NeededSSE = 0;
-      return getIndirectReturnResult(Ty);
-    }
-
-    for (const auto &I : CXXRD->bases())
-      if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
-                                        MaxVectorWidth)
-              .isIndirect()) {
-        NeededInt = NeededSSE = 0;
-        return getIndirectReturnResult(Ty);
-      }
-  }
-
-  // Sum up members
-  for (const auto *FD : RT->getDecl()->fields()) {
-    QualType MTy = FD->getType();
-    if (MTy->isRecordType() && !MTy->isUnionType()) {
-      if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
-                                        MaxVectorWidth)
-              .isIndirect()) {
-        NeededInt = NeededSSE = 0;
-        return getIndirectReturnResult(Ty);
-      }
-    } else {
-      unsigned LocalNeededInt, LocalNeededSSE;
-      if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
-                               true, true)
-              .isIndirect()) {
-        NeededInt = NeededSSE = 0;
-        return getIndirectReturnResult(Ty);
-      }
-      if (const auto *AT = getContext().getAsConstantArrayType(MTy))
-        MTy = AT->getElementType();
-      if (const auto *VT = MTy->getAs<VectorType>())
-        if (getContext().getTypeSize(VT) > MaxVectorWidth)
-          MaxVectorWidth = getContext().getTypeSize(VT);
-      NeededInt += LocalNeededInt;
-      NeededSSE += LocalNeededSSE;
-    }
-  }
-
-  return ABIArgInfo::getDirect();
-}
-
-ABIArgInfo
-X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
-                                         unsigned &NeededSSE,
-                                         unsigned &MaxVectorWidth) const {
-
-  NeededInt = 0;
-  NeededSSE = 0;
-  MaxVectorWidth = 0;
-
-  return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
-                                       MaxVectorWidth);
-}
-
-void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
-
-  const unsigned CallingConv = FI.getCallingConvention();
-  // It is possible to force Win64 calling convention on any x86_64 target by
-  // using __attribute__((ms_abi)). In such case to correctly emit Win64
-  // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
-  if (CallingConv == llvm::CallingConv::Win64) {
-    WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
-    Win64ABIInfo.computeInfo(FI);
-    return;
-  }
-
-  bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
-
-  // Keep track of the number of assigned registers.
-  unsigned FreeIntRegs = IsRegCall ? 11 : 6;
-  unsigned FreeSSERegs = IsRegCall ? 16 : 8;
-  unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
-
-  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
-    if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
-        !FI.getReturnType()->getTypePtr()->isUnionType()) {
-      FI.getReturnInfo() = classifyRegCallStructType(
-          FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
-      if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
-        FreeIntRegs -= NeededInt;
-        FreeSSERegs -= NeededSSE;
-      } else {
-        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
-      }
-    } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
-               getContext().getCanonicalType(FI.getReturnType()
-                                                 ->getAs<ComplexType>()
-                                                 ->getElementType()) ==
-                   getContext().LongDoubleTy)
-      // Complex Long Double Type is passed in Memory when Regcall
-      // calling convention is used.
-      FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
-    else
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-  }
-
-  // If the return value is indirect, then the hidden argument is consuming one
-  // integer register.
-  if (FI.getReturnInfo().isIndirect())
-    --FreeIntRegs;
-  else if (NeededSSE && MaxVectorWidth > 0)
-    FI.setMaxVectorWidth(MaxVectorWidth);
-
-  // The chain argument effectively gives us another free register.
-  if (FI.isChainCall())
-    ++FreeIntRegs;
-
-  unsigned NumRequiredArgs = FI.getNumRequiredArgs();
-  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
-  // get assigned (in left-to-right order) for passing as follows...
-  unsigned ArgNo = 0;
-  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-       it != ie; ++it, ++ArgNo) {
-    bool IsNamedArg = ArgNo < NumRequiredArgs;
-
-    if (IsRegCall && it->type->isStructureOrClassType())
-      it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
-                                           MaxVectorWidth);
-    else
-      it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
-                                      NeededSSE, IsNamedArg);
-
-    // AMD64-ABI 3.2.3p3: If there are no registers available for any
-    // eightbyte of an argument, the whole argument is passed on the
-    // stack. If registers have already been assigned for some
-    // eightbytes of such an argument, the assignments get reverted.
-    if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
-      FreeIntRegs -= NeededInt;
-      FreeSSERegs -= NeededSSE;
-      if (MaxVectorWidth > FI.getMaxVectorWidth())
-        FI.setMaxVectorWidth(MaxVectorWidth);
-    } else {
-      it->info = getIndirectResult(it->type, FreeIntRegs);
-    }
-  }
-}
-
-static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
-                                         Address VAListAddr, QualType Ty) {
-  Address overflow_arg_area_p =
-      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
-  llvm::Value *overflow_arg_area =
-    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
-
-  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
-  // byte boundary if alignment needed by type exceeds 8 byte boundary.
-  // It isn't stated explicitly in the standard, but in practice we use
-  // alignment greater than 16 where necessary.
-  CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
-  if (Align > CharUnits::fromQuantity(8)) {
-    overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
-                                                      Align);
-  }
-
-  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
-  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Value *Res =
-    CGF.Builder.CreateBitCast(overflow_arg_area,
-                              llvm::PointerType::getUnqual(LTy));
-
-  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
-  // l->overflow_arg_area + sizeof(type).
-  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
-  // an 8 byte boundary.
-
-  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
-  llvm::Value *Offset =
-      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
-  overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
-                                            Offset, "overflow_arg_area.next");
-  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
-
-  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
-  return Address(Res, LTy, Align);
-}
-
-Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                 QualType Ty) const {
-  // Assume that va_list type is correct; should be pointer to LLVM type:
-  // struct {
-  //   i32 gp_offset;
-  //   i32 fp_offset;
-  //   i8* overflow_arg_area;
-  //   i8* reg_save_area;
-  // };
-  unsigned neededInt, neededSSE;
-
-  Ty = getContext().getCanonicalType(Ty);
-  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
-                                       /*isNamedArg*/false);
-
-  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
-  // in the registers. If not go to step 7.
-  if (!neededInt && !neededSSE)
-    return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
-
-  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
-  // general purpose registers needed to pass type and num_fp to hold
-  // the number of floating point registers needed.
-
-  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
-  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
-  // l->fp_offset > 304 - num_fp * 16 go to step 7.
-  //
-  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
-  // register save space).
-
-  llvm::Value *InRegs = nullptr;
-  Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
-  llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
-  if (neededInt) {
-    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
-    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
-    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
-    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
-  }
-
-  if (neededSSE) {
-    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
-    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
-    llvm::Value *FitsInFP =
-      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
-    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
-    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
-  }
-
-  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
-  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
-  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
-
-  // Emit code to load the value if it was passed in registers.
-
-  CGF.EmitBlock(InRegBlock);
-
-  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
-  // an offset of l->gp_offset and/or l->fp_offset. This may require
-  // copying to a temporary location in case the parameter is passed
-  // in 
diff erent register classes or requires an alignment greater
-  // than 8 for general purpose registers and 16 for XMM registers.
-  //
-  // FIXME: This really results in shameful code when we end up needing to
-  // collect arguments from 
diff erent places; often what should result in a
-  // simple assembling of a structure from scattered addresses has many more
-  // loads than necessary. Can we clean this up?
-  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
-      CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
-
-  Address RegAddr = Address::invalid();
-  if (neededInt && neededSSE) {
-    // FIXME: Cleanup.
-    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
-    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
-    Address Tmp = CGF.CreateMemTemp(Ty);
-    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
-    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
-    llvm::Type *TyLo = ST->getElementType(0);
-    llvm::Type *TyHi = ST->getElementType(1);
-    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
-           "Unexpected ABI info for mixed regs");
-    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
-    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
-    llvm::Value *GPAddr =
-        CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
-    llvm::Value *FPAddr =
-        CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
-    llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
-    llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
-
-    // Copy the first element.
-    // FIXME: Our choice of alignment here and below is probably pessimistic.
-    llvm::Value *V = CGF.Builder.CreateAlignedLoad(
-        TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
-        CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
-    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
-
-    // Copy the second element.
-    V = CGF.Builder.CreateAlignedLoad(
-        TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
-        CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
-    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
-
-    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
-  } else if (neededInt) {
-    RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
-                      CGF.Int8Ty, CharUnits::fromQuantity(8));
-    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
-
-    // Copy to a temporary if necessary to ensure the appropriate alignment.
-    auto TInfo = getContext().getTypeInfoInChars(Ty);
-    uint64_t TySize = TInfo.Width.getQuantity();
-    CharUnits TyAlign = TInfo.Align;
-
-    // Copy into a temporary if the type is more aligned than the
-    // register save area.
-    if (TyAlign.getQuantity() > 8) {
-      Address Tmp = CGF.CreateMemTemp(Ty);
-      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
-      RegAddr = Tmp;
-    }
-
-  } else if (neededSSE == 1) {
-    RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
-                      CGF.Int8Ty, CharUnits::fromQuantity(16));
-    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
-  } else {
-    assert(neededSSE == 2 && "Invalid number of needed registers!");
-    // SSE registers are spaced 16 bytes apart in the register save
-    // area, we need to collect the two eightbytes together.
-    // The ABI isn't explicit about this, but it seems reasonable
-    // to assume that the slots are 16-byte aligned, since the stack is
-    // naturally 16-byte aligned and the prologue is expected to store
-    // all the SSE registers to the RSA.
-    Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
-                                                      fp_offset),
-                                CGF.Int8Ty, CharUnits::fromQuantity(16));
-    Address RegAddrHi =
-      CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
-                                             CharUnits::fromQuantity(16));
-    llvm::Type *ST = AI.canHaveCoerceToType()
-                         ? AI.getCoerceToType()
-                         : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
-    llvm::Value *V;
-    Address Tmp = CGF.CreateMemTemp(Ty);
-    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
-    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
-        RegAddrLo, ST->getStructElementType(0)));
-    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
-    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
-        RegAddrHi, ST->getStructElementType(1)));
-    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
-
-    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
-  }
-
-  // AMD64-ABI 3.5.7p5: Step 5. Set:
-  // l->gp_offset = l->gp_offset + num_gp * 8
-  // l->fp_offset = l->fp_offset + num_fp * 16.
-  if (neededInt) {
-    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
-    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
-                            gp_offset_p);
-  }
-  if (neededSSE) {
-    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
-    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
-                            fp_offset_p);
-  }
-  CGF.EmitBranch(ContBlock);
-
-  // Emit code to load the value if it was passed in memory.
-
-  CGF.EmitBlock(InMemBlock);
-  Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
-
-  // Return the appropriate result.
-
-  CGF.EmitBlock(ContBlock);
-  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
-                                 "vaarg.addr");
-  return ResAddr;
-}
-
-Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                   QualType Ty) const {
-  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
-  // not 1, 2, 4, or 8 bytes, must be passed by reference."
-  uint64_t Width = getContext().getTypeSize(Ty);
-  bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
-                          CGF.getContext().getTypeInfoInChars(Ty),
-                          CharUnits::fromQuantity(8),
-                          /*allowHigherAlign*/ false);
-}
-
-ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
-    QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
-  const Type *Base = nullptr;
-  uint64_t NumElts = 0;
-
-  if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
-      isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
-    FreeSSERegs -= NumElts;
-    return getDirectX86Hva();
-  }
-  return current;
-}
-
-ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
-                                      bool IsReturnType, bool IsVectorCall,
-                                      bool IsRegCall) const {
-
-  if (Ty->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  TypeInfo Info = getContext().getTypeInfo(Ty);
-  uint64_t Width = Info.Width;
-  CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
-
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (RT) {
-    if (!IsReturnType) {
-      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
-        return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-    }
-
-    if (RT->getDecl()->hasFlexibleArrayMember())
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-
-  }
-
-  const Type *Base = nullptr;
-  uint64_t NumElts = 0;
-  // vectorcall adds the concept of a homogenous vector aggregate, similar to
-  // other targets.
-  if ((IsVectorCall || IsRegCall) &&
-      isHomogeneousAggregate(Ty, Base, NumElts)) {
-    if (IsRegCall) {
-      if (FreeSSERegs >= NumElts) {
-        FreeSSERegs -= NumElts;
-        if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
-          return ABIArgInfo::getDirect();
-        return ABIArgInfo::getExpand();
-      }
-      return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
-    } else if (IsVectorCall) {
-      if (FreeSSERegs >= NumElts &&
-          (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
-        FreeSSERegs -= NumElts;
-        return ABIArgInfo::getDirect();
-      } else if (IsReturnType) {
-        return ABIArgInfo::getExpand();
-      } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
-        // HVAs are delayed and reclassified in the 2nd step.
-        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
-      }
-    }
-  }
-
-  if (Ty->isMemberPointerType()) {
-    // If the member pointer is represented by an LLVM int or ptr, pass it
-    // directly.
-    llvm::Type *LLTy = CGT.ConvertType(Ty);
-    if (LLTy->isPointerTy() || LLTy->isIntegerTy())
-      return ABIArgInfo::getDirect();
-  }
-
-  if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
-    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
-    // not 1, 2, 4, or 8 bytes, must be passed by reference."
-    if (Width > 64 || !llvm::isPowerOf2_64(Width))
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-
-    // Otherwise, coerce it to a small integer.
-    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
-  }
-
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    switch (BT->getKind()) {
-    case BuiltinType::Bool:
-      // Bool type is always extended to the ABI, other builtin types are not
-      // extended.
-      return ABIArgInfo::getExtend(Ty);
-
-    case BuiltinType::LongDouble:
-      // Mingw64 GCC uses the old 80 bit extended precision floating point
-      // unit. It passes them indirectly through memory.
-      if (IsMingw64) {
-        const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
-        if (LDF == &llvm::APFloat::x87DoubleExtended())
-          return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
-      }
-      break;
-
-    case BuiltinType::Int128:
-    case BuiltinType::UInt128:
-      // If it's a parameter type, the normal ABI rule is that arguments larger
-      // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
-      // even though it isn't particularly efficient.
-      if (!IsReturnType)
-        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
-
-      // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
-      // Clang matches them for compatibility.
-      return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
-          llvm::Type::getInt64Ty(getVMContext()), 2));
-
-    default:
-      break;
-    }
-  }
-
-  if (Ty->isBitIntType()) {
-    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
-    // not 1, 2, 4, or 8 bytes, must be passed by reference."
-    // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
-    // or 8 bytes anyway as long is it fits in them, so we don't have to check
-    // the power of 2.
-    if (Width <= 64)
-      return ABIArgInfo::getDirect();
-    return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
-  }
-
-  return ABIArgInfo::getDirect();
-}
-
-void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  const unsigned CC = FI.getCallingConvention();
-  bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
-  bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
-
-  // If __attribute__((sysv_abi)) is in use, use the SysV argument
-  // classification rules.
-  if (CC == llvm::CallingConv::X86_64_SysV) {
-    X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
-    SysVABIInfo.computeInfo(FI);
-    return;
-  }
-
-  unsigned FreeSSERegs = 0;
-  if (IsVectorCall) {
-    // We can use up to 4 SSE return registers with vectorcall.
-    FreeSSERegs = 4;
-  } else if (IsRegCall) {
-    // RegCall gives us 16 SSE registers.
-    FreeSSERegs = 16;
-  }
-
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
-                                  IsVectorCall, IsRegCall);
-
-  if (IsVectorCall) {
-    // We can use up to 6 SSE register parameters with vectorcall.
-    FreeSSERegs = 6;
-  } else if (IsRegCall) {
-    // RegCall gives us 16 SSE registers, we can reuse the return registers.
-    FreeSSERegs = 16;
-  }
-
-  unsigned ArgNum = 0;
-  unsigned ZeroSSERegs = 0;
-  for (auto &I : FI.arguments()) {
-    // Vectorcall in x64 only permits the first 6 arguments to be passed as
-    // XMM/YMM registers. After the sixth argument, pretend no vector
-    // registers are left.
-    unsigned *MaybeFreeSSERegs =
-        (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
-    I.info =
-        classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
-    ++ArgNum;
-  }
-
-  if (IsVectorCall) {
-    // For vectorcall, assign aggregate HVAs to any free vector registers in a
-    // second pass.
-    for (auto &I : FI.arguments())
-      I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
-  }
-}
-
-Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                    QualType Ty) const {
-  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
-  // not 1, 2, 4, or 8 bytes, must be passed by reference."
-  uint64_t Width = getContext().getTypeSize(Ty);
-  bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
-                          CGF.getContext().getTypeInfoInChars(Ty),
-                          CharUnits::fromQuantity(8),
-                          /*allowHigherAlign*/ false);
-}
-
-static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                                        llvm::Value *Address, bool Is64Bit,
-                                        bool IsAIX) {
-  // This is calculated from the LLVM and GCC tables and verified
-  // against gcc output.  AFAIK all PPC ABIs use the same encoding.
-
-  CodeGen::CGBuilderTy &Builder = CGF.Builder;
-
-  llvm::IntegerType *i8 = CGF.Int8Ty;
-  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
-  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
-  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
-
-  // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
-  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
-
-  // 32-63: fp0-31, the 8-byte floating-point registers
-  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
-
-  // 64-67 are various 4-byte or 8-byte special-purpose registers:
-  // 64: mq
-  // 65: lr
-  // 66: ctr
-  // 67: ap
-  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
-
-  // 68-76 are various 4-byte special-purpose registers:
-  // 68-75 cr0-7
-  // 76: xer
-  AssignToArrayRange(Builder, Address, Four8, 68, 76);
-
-  // 77-108: v0-31, the 16-byte vector registers
-  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
-
-  // 109: vrsave
-  // 110: vscr
-  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
-
-  // AIX does not utilize the rest of the registers.
-  if (IsAIX)
-    return false;
-
-  // 111: spe_acc
-  // 112: spefscr
-  // 113: sfp
-  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
-
-  if (!Is64Bit)
-    return false;
-
-  // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
-  // or above CPU.
-  // 64-bit only registers:
-  // 114: tfhar
-  // 115: tfiar
-  // 116: texasr
-  AssignToArrayRange(Builder, Address, Eight8, 114, 116);
-
-  return false;
-}
-
-// AIX
-namespace {
-/// AIXABIInfo - The AIX XCOFF ABI information.
-class AIXABIInfo : public ABIInfo {
-  const bool Is64Bit;
-  const unsigned PtrByteSize;
-  CharUnits getParamTypeAlignment(QualType Ty) const;
-
-public:
-  AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
-      : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
-
-  bool isPromotableTypeForABI(QualType Ty) const;
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType Ty) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type);
-  }
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
-  const bool Is64Bit;
-
-public:
-  AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
-      : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
-        Is64Bit(Is64Bit) {}
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    return 1; // r1 is the dedicated stack pointer
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-};
-} // namespace
-
-// Return true if the ABI requires Ty to be passed sign- or zero-
-// extended to 32/64 bits.
-bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  // Promotable integer types are required to be promoted by the ABI.
-  if (getContext().isPromotableIntegerType(Ty))
-    return true;
-
-  if (!Is64Bit)
-    return false;
-
-  // For 64 bit mode, in addition to the usual promotable integer types, we also
-  // need to extend all 32-bit types, since the ABI requires promotion to 64
-  // bits.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
-    switch (BT->getKind()) {
-    case BuiltinType::Int:
-    case BuiltinType::UInt:
-      return true;
-    default:
-      break;
-    }
-
-  return false;
-}
-
-ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isAnyComplexType())
-    return ABIArgInfo::getDirect();
-
-  if (RetTy->isVectorType())
-    return ABIArgInfo::getDirect();
-
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (isAggregateTypeForABI(RetTy))
-    return getNaturalAlignIndirect(RetTy);
-
-  return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                        : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  if (Ty->isAnyComplexType())
-    return ABIArgInfo::getDirect();
-
-  if (Ty->isVectorType())
-    return ABIArgInfo::getDirect();
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Records with non-trivial destructors/copy-constructors should not be
-    // passed by value.
-    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-    CharUnits CCAlign = getParamTypeAlignment(Ty);
-    CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
-
-    return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
-                                   /*Realign*/ TyAlign > CCAlign);
-  }
-
-  return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                     : ABIArgInfo::getDirect());
-}
-
-CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
-  // Complex types are passed just like their elements.
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
-    Ty = CTy->getElementType();
-
-  if (Ty->isVectorType())
-    return CharUnits::fromQuantity(16);
-
-  // If the structure contains a vector type, the alignment is 16.
-  if (isRecordWithSIMDVectorType(getContext(), Ty))
-    return CharUnits::fromQuantity(16);
-
-  return CharUnits::fromQuantity(PtrByteSize);
-}
-
-Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                              QualType Ty) const {
-
-  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
-  TypeInfo.Align = getParamTypeAlignment(Ty);
-
-  CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
-
-  // If we have a complex type and the base type is smaller than the register
-  // size, the ABI calls for the real and imaginary parts to be right-adjusted
-  // in separate words in 32bit mode or doublewords in 64bit mode. However,
-  // Clang expects us to produce a pointer to a structure with the two parts
-  // packed tightly. So generate loads of the real and imaginary parts relative
-  // to the va_list pointer, and store them to a temporary structure. We do the
-  // same as the PPC64ABI here.
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
-    CharUnits EltSize = TypeInfo.Width / 2;
-    if (EltSize < SlotSize)
-      return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
-  }
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
-                          SlotSize, /*AllowHigher*/ true);
-}
-
-bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
-    CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
-  return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
-}
-
-// PowerPC-32
-namespace {
-/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
-class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
-  bool IsSoftFloatABI;
-  bool IsRetSmallStructInRegABI;
-
-  CharUnits getParamTypeAlignment(QualType Ty) const;
-
-public:
-  PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
-                     bool RetSmallStructInRegABI)
-      : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
-        IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type);
-  }
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
-                         bool RetSmallStructInRegABI)
-      : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
-            CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
-
-  static bool isStructReturnInRegABI(const llvm::Triple &Triple,
-                                     const CodeGenOptions &Opts);
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    // This is recovered from gcc output.
-    return 1; // r1 is the dedicated stack pointer
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-};
-}
-
-CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
-  // Complex types are passed just like their elements.
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
-    Ty = CTy->getElementType();
-
-  if (Ty->isVectorType())
-    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
-                                                                       : 4);
-
-  // For single-element float/vector structs, we consider the whole type
-  // to have the same alignment requirements as its single element.
-  const Type *AlignTy = nullptr;
-  if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
-    const BuiltinType *BT = EltType->getAs<BuiltinType>();
-    if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
-        (BT && BT->isFloatingPoint()))
-      AlignTy = EltType;
-  }
-
-  if (AlignTy)
-    return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
-  return CharUnits::fromQuantity(4);
-}
-
-ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
-  uint64_t Size;
-
-  // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
-  if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
-      (Size = getContext().getTypeSize(RetTy)) <= 64) {
-    // System V ABI (1995), page 3-22, specified:
-    // > A structure or union whose size is less than or equal to 8 bytes
-    // > shall be returned in r3 and r4, as if it were first stored in the
-    // > 8-byte aligned memory area and then the low addressed word were
-    // > loaded into r3 and the high-addressed word into r4.  Bits beyond
-    // > the last member of the structure or union are not defined.
-    //
-    // GCC for big-endian PPC32 inserts the pad before the first member,
-    // not "beyond the last member" of the struct.  To stay compatible
-    // with GCC, we coerce the struct to an integer of the same size.
-    // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
-    if (Size == 0)
-      return ABIArgInfo::getIgnore();
-    else {
-      llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-  }
-
-  return DefaultABIInfo::classifyReturnType(RetTy);
-}
-
-// TODO: this implementation is now likely redundant with
-// DefaultABIInfo::EmitVAArg.
-Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
-                                      QualType Ty) const {
-  if (getTarget().getTriple().isOSDarwin()) {
-    auto TI = getContext().getTypeInfoInChars(Ty);
-    TI.Align = getParamTypeAlignment(Ty);
-
-    CharUnits SlotSize = CharUnits::fromQuantity(4);
-    return emitVoidPtrVAArg(CGF, VAList, Ty,
-                            classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
-                            /*AllowHigherAlign=*/true);
-  }
-
-  const unsigned OverflowLimit = 8;
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
-    // TODO: Implement this. For now ignore.
-    (void)CTy;
-    return Address::invalid(); // FIXME?
-  }
-
-  // struct __va_list_tag {
-  //   unsigned char gpr;
-  //   unsigned char fpr;
-  //   unsigned short reserved;
-  //   void *overflow_arg_area;
-  //   void *reg_save_area;
-  // };
-
-  bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
-  bool isInt = !Ty->isFloatingType();
-  bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
-
-  // All aggregates are passed indirectly?  That doesn't seem consistent
-  // with the argument-lowering code.
-  bool isIndirect = isAggregateTypeForABI(Ty);
-
-  CGBuilderTy &Builder = CGF.Builder;
-
-  // The calling convention either uses 1-2 GPRs or 1 FPR.
-  Address NumRegsAddr = Address::invalid();
-  if (isInt || IsSoftFloatABI) {
-    NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
-  } else {
-    NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
-  }
-
-  llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
-
-  // "Align" the register count when TY is i64.
-  if (isI64 || (isF64 && IsSoftFloatABI)) {
-    NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
-    NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
-  }
-
-  llvm::Value *CC =
-      Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
-
-  llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
-  llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
-  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
-
-  Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
-
-  llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy;
-  if (isIndirect)
-    DirectTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
-
-  // Case 1: consume registers.
-  Address RegAddr = Address::invalid();
-  {
-    CGF.EmitBlock(UsingRegs);
-
-    Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
-    RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty,
-                      CharUnits::fromQuantity(8));
-    assert(RegAddr.getElementType() == CGF.Int8Ty);
-
-    // Floating-point registers start after the general-purpose registers.
-    if (!(isInt || IsSoftFloatABI)) {
-      RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
-                                                   CharUnits::fromQuantity(32));
-    }
-
-    // Get the address of the saved value by scaling the number of
-    // registers we've used by the number of
-    CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
-    llvm::Value *RegOffset =
-        Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
-    RegAddr = Address(
-        Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset),
-        CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
-    RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
-
-    // Increase the used-register count.
-    NumRegs =
-      Builder.CreateAdd(NumRegs,
-                        Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
-    Builder.CreateStore(NumRegs, NumRegsAddr);
-
-    CGF.EmitBranch(Cont);
-  }
-
-  // Case 2: consume space in the overflow area.
-  Address MemAddr = Address::invalid();
-  {
-    CGF.EmitBlock(UsingOverflow);
-
-    Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
-
-    // Everything in the overflow area is rounded up to a size of at least 4.
-    CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
-
-    CharUnits Size;
-    if (!isIndirect) {
-      auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
-      Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
-    } else {
-      Size = CGF.getPointerSize();
-    }
-
-    Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
-    Address OverflowArea =
-        Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty,
-                OverflowAreaAlign);
-    // Round up address of argument to alignment
-    CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
-    if (Align > OverflowAreaAlign) {
-      llvm::Value *Ptr = OverflowArea.getPointer();
-      OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
-                             OverflowArea.getElementType(), Align);
-    }
-
-    MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
-
-    // Increase the overflow area.
-    OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
-    Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
-    CGF.EmitBranch(Cont);
-  }
-
-  CGF.EmitBlock(Cont);
-
-  // Merge the cases with a phi.
-  Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
-                                "vaarg.addr");
-
-  // Load the pointer if the argument was passed indirectly.
-  if (isIndirect) {
-    Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy,
-                     getContext().getTypeAlignInChars(Ty));
-  }
-
-  return Result;
-}
-
-bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
-    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
-  assert(Triple.isPPC32());
-
-  switch (Opts.getStructReturnConvention()) {
-  case CodeGenOptions::SRCK_Default:
-    break;
-  case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
-    return false;
-  case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
-    return true;
-  }
-
-  if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
-    return true;
-
-  return false;
-}
-
-bool
-PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                                                llvm::Value *Address) const {
-  return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
-                                     /*IsAIX*/ false);
-}
-
-// PowerPC-64
-
-namespace {
-
-/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
-class PPC64_SVR4_ABIInfo : public ABIInfo {
-  static const unsigned GPRBits = 64;
-  PPC64_SVR4_ABIKind Kind;
-  bool IsSoftFloatABI;
-
-public:
-  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind,
-                     bool SoftFloatABI)
-      : ABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
-
-  bool isPromotableTypeForABI(QualType Ty) const;
-  CharUnits getParamTypeAlignment(QualType Ty) const;
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType Ty) const;
-
-  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
-  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
-                                         uint64_t Members) const override;
-
-  // TODO: We can add more logic to computeInfo to improve performance.
-  // Example: For aggregate arguments that fit in a register, we could
-  // use getDirectInReg (as is done below for structs containing a single
-  // floating-point value) to avoid pushing them to memory on function
-  // entry.  This would require changing the logic in PPCISelLowering
-  // when lowering the parameters in the caller and args in the callee.
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &I : FI.arguments()) {
-      // We rely on the default argument classification for the most part.
-      // One exception:  An aggregate containing a single floating-point
-      // or vector item must be passed in a register if one is available.
-      const Type *T = isSingleElementStruct(I.type, getContext());
-      if (T) {
-        const BuiltinType *BT = T->getAs<BuiltinType>();
-        if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
-            (BT && BT->isFloatingPoint())) {
-          QualType QT(T, 0);
-          I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
-          continue;
-        }
-      }
-      I.info = classifyArgumentType(I.type);
-    }
-  }
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
-
-public:
-  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind,
-                               bool SoftFloatABI)
-      : TargetCodeGenInfo(
-            std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {
-    SwiftInfo =
-        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
-  }
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    // This is recovered from gcc output.
-    return 1; // r1 is the dedicated stack pointer
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-};
-
-class PPC64TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  PPC64TargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    // This is recovered from gcc output.
-    return 1; // r1 is the dedicated stack pointer
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-};
-}
-
-// Return true if the ABI requires Ty to be passed sign- or zero-
-// extended to 64 bits.
-bool
-PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  // Promotable integer types are required to be promoted by the ABI.
-  if (isPromotableIntegerTypeForABI(Ty))
-    return true;
-
-  // In addition to the usual promotable integer types, we also need to
-  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
-    switch (BT->getKind()) {
-    case BuiltinType::Int:
-    case BuiltinType::UInt:
-      return true;
-    default:
-      break;
-    }
-
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() < 64)
-      return true;
-
-  return false;
-}
-
-/// isAlignedParamType - Determine whether a type requires 16-byte or
-/// higher alignment in the parameter area.  Always returns at least 8.
-CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
-  // Complex types are passed just like their elements.
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
-    Ty = CTy->getElementType();
-
-  auto FloatUsesVector = [this](QualType Ty){
-    return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics(
-                                           Ty) == &llvm::APFloat::IEEEquad();
-  };
-
-  // Only vector types of size 16 bytes need alignment (larger types are
-  // passed via reference, smaller types are not aligned).
-  if (Ty->isVectorType()) {
-    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
-  } else if (FloatUsesVector(Ty)) {
-    // According to ABI document section 'Optional Save Areas': If extended
-    // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
-    // format are supported, map them to a single quadword, quadword aligned.
-    return CharUnits::fromQuantity(16);
-  }
-
-  // For single-element float/vector structs, we consider the whole type
-  // to have the same alignment requirements as its single element.
-  const Type *AlignAsType = nullptr;
-  const Type *EltType = isSingleElementStruct(Ty, getContext());
-  if (EltType) {
-    const BuiltinType *BT = EltType->getAs<BuiltinType>();
-    if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
-        (BT && BT->isFloatingPoint()))
-      AlignAsType = EltType;
-  }
-
-  // Likewise for ELFv2 homogeneous aggregates.
-  const Type *Base = nullptr;
-  uint64_t Members = 0;
-  if (!AlignAsType && Kind == PPC64_SVR4_ABIKind::ELFv2 &&
-      isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
-    AlignAsType = Base;
-
-  // With special case aggregates, only vector base types need alignment.
-  if (AlignAsType) {
-    bool UsesVector = AlignAsType->isVectorType() ||
-                      FloatUsesVector(QualType(AlignAsType, 0));
-    return CharUnits::fromQuantity(UsesVector ? 16 : 8);
-  }
-
-  // Otherwise, we only need alignment for any aggregate type that
-  // has an alignment requirement of >= 16 bytes.
-  if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
-    return CharUnits::fromQuantity(16);
-  }
-
-  return CharUnits::fromQuantity(8);
-}
-
-/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
-/// aggregate.  Base is set to the base element type, and Members is set
-/// to the number of base elements.
-bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
-                                     uint64_t &Members) const {
-  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
-    uint64_t NElements = AT->getSize().getZExtValue();
-    if (NElements == 0)
-      return false;
-    if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
-      return false;
-    Members *= NElements;
-  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    const RecordDecl *RD = RT->getDecl();
-    if (RD->hasFlexibleArrayMember())
-      return false;
-
-    Members = 0;
-
-    // If this is a C++ record, check the properties of the record such as
-    // bases and ABI specific restrictions
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-      if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
-        return false;
-
-      for (const auto &I : CXXRD->bases()) {
-        // Ignore empty records.
-        if (isEmptyRecord(getContext(), I.getType(), true))
-          continue;
-
-        uint64_t FldMembers;
-        if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
-          return false;
-
-        Members += FldMembers;
-      }
-    }
-
-    for (const auto *FD : RD->fields()) {
-      // Ignore (non-zero arrays of) empty records.
-      QualType FT = FD->getType();
-      while (const ConstantArrayType *AT =
-             getContext().getAsConstantArrayType(FT)) {
-        if (AT->getSize().getZExtValue() == 0)
-          return false;
-        FT = AT->getElementType();
-      }
-      if (isEmptyRecord(getContext(), FT, true))
-        continue;
-
-      if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() &&
-          FD->isZeroLengthBitField(getContext()))
-        continue;
-
-      uint64_t FldMembers;
-      if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
-        return false;
-
-      Members = (RD->isUnion() ?
-                 std::max(Members, FldMembers) : Members + FldMembers);
-    }
-
-    if (!Base)
-      return false;
-
-    // Ensure there is no padding.
-    if (getContext().getTypeSize(Base) * Members !=
-        getContext().getTypeSize(Ty))
-      return false;
-  } else {
-    Members = 1;
-    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
-      Members = 2;
-      Ty = CT->getElementType();
-    }
-
-    // Most ABIs only support float, double, and some vector type widths.
-    if (!isHomogeneousAggregateBaseType(Ty))
-      return false;
-
-    // The base type must be the same for all members.  Types that
-    // agree in both total size and mode (float vs. vector) are
-    // treated as being equivalent here.
-    const Type *TyPtr = Ty.getTypePtr();
-    if (!Base) {
-      Base = TyPtr;
-      // If it's a non-power-of-2 vector, its size is already a power-of-2,
-      // so make sure to widen it explicitly.
-      if (const VectorType *VT = Base->getAs<VectorType>()) {
-        QualType EltTy = VT->getElementType();
-        unsigned NumElements =
-            getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
-        Base = getContext()
-                   .getVectorType(EltTy, NumElements, VT->getVectorKind())
-                   .getTypePtr();
-      }
-    }
-
-    if (Base->isVectorType() != TyPtr->isVectorType() ||
-        getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
-      return false;
-  }
-  return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
-}
-
-bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
-  // Homogeneous aggregates for ELFv2 must have base types of float,
-  // double, long double, or 128-bit vectors.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    if (BT->getKind() == BuiltinType::Float ||
-        BT->getKind() == BuiltinType::Double ||
-        BT->getKind() == BuiltinType::LongDouble ||
-        BT->getKind() == BuiltinType::Ibm128 ||
-        (getContext().getTargetInfo().hasFloat128Type() &&
-         (BT->getKind() == BuiltinType::Float128))) {
-      if (IsSoftFloatABI)
-        return false;
-      return true;
-    }
-  }
-  if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    if (getContext().getTypeSize(VT) == 128)
-      return true;
-  }
-  return false;
-}
-
-bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
-    const Type *Base, uint64_t Members) const {
-  // Vector and fp128 types require one register, other floating point types
-  // require one or two registers depending on their size.
-  uint32_t NumRegs =
-      ((getContext().getTargetInfo().hasFloat128Type() &&
-          Base->isFloat128Type()) ||
-        Base->isVectorType()) ? 1
-                              : (getContext().getTypeSize(Base) + 63) / 64;
-
-  // Homogeneous Aggregates may occupy at most 8 registers.
-  return Members * NumRegs <= 8;
-}
-
-ABIArgInfo
-PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  if (Ty->isAnyComplexType())
-    return ABIArgInfo::getDirect();
-
-  // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
-  // or via reference (larger than 16 bytes).
-  if (Ty->isVectorType()) {
-    uint64_t Size = getContext().getTypeSize(Ty);
-    if (Size > 128)
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-    else if (Size < 128) {
-      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-  }
-
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() > 128)
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
-
-  if (isAggregateTypeForABI(Ty)) {
-    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-    uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
-    uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
-
-    // ELFv2 homogeneous aggregates are passed as array types.
-    const Type *Base = nullptr;
-    uint64_t Members = 0;
-    if (Kind == PPC64_SVR4_ABIKind::ELFv2 &&
-        isHomogeneousAggregate(Ty, Base, Members)) {
-      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
-      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-
-    // If an aggregate may end up fully in registers, we do not
-    // use the ByVal method, but pass the aggregate as array.
-    // This is usually beneficial since we avoid forcing the
-    // back-end to store the argument to memory.
-    uint64_t Bits = getContext().getTypeSize(Ty);
-    if (Bits > 0 && Bits <= 8 * GPRBits) {
-      llvm::Type *CoerceTy;
-
-      // Types up to 8 bytes are passed as integer type (which will be
-      // properly aligned in the argument save area doubleword).
-      if (Bits <= GPRBits)
-        CoerceTy =
-            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
-      // Larger types are passed as arrays, with the base type selected
-      // according to the required alignment in the save area.
-      else {
-        uint64_t RegBits = ABIAlign * 8;
-        uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
-        llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
-        CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
-      }
-
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-
-    // All other aggregates are passed ByVal.
-    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
-                                   /*ByVal=*/true,
-                                   /*Realign=*/TyAlign > ABIAlign);
-  }
-
-  return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                     : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo
-PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (RetTy->isAnyComplexType())
-    return ABIArgInfo::getDirect();
-
-  // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
-  // or via reference (larger than 16 bytes).
-  if (RetTy->isVectorType()) {
-    uint64_t Size = getContext().getTypeSize(RetTy);
-    if (Size > 128)
-      return getNaturalAlignIndirect(RetTy);
-    else if (Size < 128) {
-      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-  }
-
-  if (const auto *EIT = RetTy->getAs<BitIntType>())
-    if (EIT->getNumBits() > 128)
-      return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
-
-  if (isAggregateTypeForABI(RetTy)) {
-    // ELFv2 homogeneous aggregates are returned as array types.
-    const Type *Base = nullptr;
-    uint64_t Members = 0;
-    if (Kind == PPC64_SVR4_ABIKind::ELFv2 &&
-        isHomogeneousAggregate(RetTy, Base, Members)) {
-      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
-      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-
-    // ELFv2 small aggregates are returned in up to two registers.
-    uint64_t Bits = getContext().getTypeSize(RetTy);
-    if (Kind == PPC64_SVR4_ABIKind::ELFv2 && Bits <= 2 * GPRBits) {
-      if (Bits == 0)
-        return ABIArgInfo::getIgnore();
-
-      llvm::Type *CoerceTy;
-      if (Bits > GPRBits) {
-        CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
-        CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
-      } else
-        CoerceTy =
-            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
-      return ABIArgInfo::getDirect(CoerceTy);
-    }
-
-    // All other aggregates are returned indirectly.
-    return getNaturalAlignIndirect(RetTy);
-  }
-
-  return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                        : ABIArgInfo::getDirect());
-}
-
-// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
-Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                      QualType Ty) const {
-  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
-  TypeInfo.Align = getParamTypeAlignment(Ty);
-
-  CharUnits SlotSize = CharUnits::fromQuantity(8);
-
-  // If we have a complex type and the base type is smaller than 8 bytes,
-  // the ABI calls for the real and imaginary parts to be right-adjusted
-  // in separate doublewords.  However, Clang expects us to produce a
-  // pointer to a structure with the two parts packed tightly.  So generate
-  // loads of the real and imaginary parts relative to the va_list pointer,
-  // and store them to a temporary structure.
-  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
-    CharUnits EltSize = TypeInfo.Width / 2;
-    if (EltSize < SlotSize)
-      return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
-  }
-
-  // Otherwise, just use the general rule.
-  //
-  // The PPC64 ABI passes some arguments in integer registers, even to variadic
-  // functions. To allow va_list to use the simple "void*" representation,
-  // variadic calls allocate space in the argument area for the integer argument
-  // registers, and variadic functions spill their integer argument registers to
-  // this area in their prologues. When aggregates smaller than a register are
-  // passed this way, they are passed in the least significant bits of the
-  // register, which means that after spilling on big-endian targets they will
-  // be right-aligned in their argument slot. This is uncommon; for a variety of
-  // reasons, other big-endian targets don't end up right-aligning aggregate
-  // types this way, and so right-alignment only applies to fundamental types.
-  // So on PPC64, we must force the use of right-alignment even for aggregates.
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
-                          SlotSize, /*AllowHigher*/ true,
-                          /*ForceRightAdjust*/ true);
-}
-
-bool
-PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
-  CodeGen::CodeGenFunction &CGF,
-  llvm::Value *Address) const {
-  return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
-                                     /*IsAIX*/ false);
-}
-
-bool
-PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                                                llvm::Value *Address) const {
-  return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
-                                     /*IsAIX*/ false);
-}
-
-//===----------------------------------------------------------------------===//
-// AArch64 ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class AArch64ABIInfo : public ABIInfo {
-  AArch64ABIKind Kind;
-
-public:
-  AArch64ABIInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
-      : ABIInfo(CGT), Kind(Kind) {}
-
-private:
-  AArch64ABIKind getABIKind() const { return Kind; }
-  bool isDarwinPCS() const { return Kind == AArch64ABIKind::DarwinPCS; }
-
-  ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
-                                  unsigned CallingConvention) const;
-  ABIArgInfo coerceIllegalVector(QualType Ty) const;
-  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
-  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
-                                         uint64_t Members) const override;
-  bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
-
-  bool isIllegalVectorType(QualType Ty) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!::classifyReturnType(getCXXABI(), FI, *this))
-      FI.getReturnInfo() =
-          classifyReturnType(FI.getReturnType(), FI.isVariadic());
-
-    for (auto &it : FI.arguments())
-      it.info = classifyArgumentType(it.type, FI.isVariadic(),
-                                     FI.getCallingConvention());
-  }
-
-  Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
-                          CodeGenFunction &CGF) const;
-
-  Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
-                         CodeGenFunction &CGF) const;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override {
-    llvm::Type *BaseTy = CGF.ConvertType(Ty);
-    if (isa<llvm::ScalableVectorType>(BaseTy))
-      llvm::report_fatal_error("Passing SVE types to variadic functions is "
-                               "currently not supported");
-
-    return Kind == AArch64ABIKind::Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
-           : isDarwinPCS()               ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
-                                         : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
-  }
-
-  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                      QualType Ty) const override;
-
-  bool allowBFloatArgsAndRet() const override {
-    return getTarget().hasBFloat16Type();
-  }
-};
-
-class AArch64SwiftABIInfo : public SwiftABIInfo {
-public:
-  explicit AArch64SwiftABIInfo(CodeGenTypes &CGT)
-      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
-
-  bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
-                         unsigned NumElts) const override;
-};
-
-class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
-      : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {
-    SwiftInfo = std::make_unique<AArch64SwiftABIInfo>(CGT);
-  }
-
-  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
-    return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
-  }
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    return 31;
-  }
-
-  bool doesReturnSlotInterfereWithArgs() const override { return false; }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-    if (!FD)
-      return;
-
-    const auto *TA = FD->getAttr<TargetAttr>();
-    if (TA == nullptr)
-      return;
-
-    ParsedTargetAttr Attr =
-        CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
-    if (Attr.BranchProtection.empty())
-      return;
-
-    TargetInfo::BranchProtectionInfo BPI;
-    StringRef Error;
-    (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
-                                                   Attr.CPU, BPI, Error);
-    assert(Error.empty());
-
-    auto *Fn = cast<llvm::Function>(GV);
-    static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
-    Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
-
-    if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
-      Fn->addFnAttr("sign-return-address-key",
-                    BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
-                        ? "a_key"
-                        : "b_key");
-    }
-
-    Fn->addFnAttr("branch-target-enforcement",
-                  BPI.BranchTargetEnforcement ? "true" : "false");
-  }
-
-  bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
-                                llvm::Type *Ty) const override {
-    if (CGF.getTarget().hasFeature("ls64")) {
-      auto *ST = dyn_cast<llvm::StructType>(Ty);
-      if (ST && ST->getNumElements() == 1) {
-        auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
-        if (AT && AT->getNumElements() == 8 &&
-            AT->getElementType()->isIntegerTy(64))
-          return true;
-      }
-    }
-    return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
-  }
-};
-
-class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
-public:
-  WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind K)
-      : AArch64TargetCodeGenInfo(CGT, K) {}
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override;
-
-  void getDependentLibraryOption(llvm::StringRef Lib,
-                                 llvm::SmallString<24> &Opt) const override {
-    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
-  }
-
-  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
-                               llvm::SmallString<32> &Opt) const override {
-    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
-  }
-};
-
-void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
-  AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
-  if (GV->isDeclaration())
-    return;
-  addStackProbeTargetAttributes(D, GV, CGM);
-}
-}
-
-ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
-  assert(Ty->isVectorType() && "expected vector type!");
-
-  const auto *VT = Ty->castAs<VectorType>();
-  if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
-    assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
-    assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
-               BuiltinType::UChar &&
-           "unexpected builtin type for SVE predicate!");
-    return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
-        llvm::Type::getInt1Ty(getVMContext()), 16));
-  }
-
-  if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
-    assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
-
-    const auto *BT = VT->getElementType()->castAs<BuiltinType>();
-    llvm::ScalableVectorType *ResType = nullptr;
-    switch (BT->getKind()) {
-    default:
-      llvm_unreachable("unexpected builtin type for SVE vector!");
-    case BuiltinType::SChar:
-    case BuiltinType::UChar:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getInt8Ty(getVMContext()), 16);
-      break;
-    case BuiltinType::Short:
-    case BuiltinType::UShort:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getInt16Ty(getVMContext()), 8);
-      break;
-    case BuiltinType::Int:
-    case BuiltinType::UInt:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getInt32Ty(getVMContext()), 4);
-      break;
-    case BuiltinType::Long:
-    case BuiltinType::ULong:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getInt64Ty(getVMContext()), 2);
-      break;
-    case BuiltinType::Half:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getHalfTy(getVMContext()), 8);
-      break;
-    case BuiltinType::Float:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getFloatTy(getVMContext()), 4);
-      break;
-    case BuiltinType::Double:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getDoubleTy(getVMContext()), 2);
-      break;
-    case BuiltinType::BFloat16:
-      ResType = llvm::ScalableVectorType::get(
-          llvm::Type::getBFloatTy(getVMContext()), 8);
-      break;
-    }
-    return ABIArgInfo::getDirect(ResType);
-  }
-
-  uint64_t Size = getContext().getTypeSize(Ty);
-  // Android promotes <2 x i8> to i16, not i32
-  if ((isAndroid() || isOHOSFamily()) && (Size <= 16)) {
-    llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
-    return ABIArgInfo::getDirect(ResType);
-  }
-  if (Size <= 32) {
-    llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
-    return ABIArgInfo::getDirect(ResType);
-  }
-  if (Size == 64) {
-    auto *ResType =
-        llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
-    return ABIArgInfo::getDirect(ResType);
-  }
-  if (Size == 128) {
-    auto *ResType =
-        llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
-    return ABIArgInfo::getDirect(ResType);
-  }
-  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-}
-
-ABIArgInfo
-AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
-                                     unsigned CallingConvention) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  // Handle illegal vector types here.
-  if (isIllegalVectorType(Ty))
-    return coerceIllegalVector(Ty);
-
-  if (!isAggregateTypeForABI(Ty)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    if (const auto *EIT = Ty->getAs<BitIntType>())
-      if (EIT->getNumBits() > 128)
-        return getNaturalAlignIndirect(Ty);
-
-    return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
-                ? ABIArgInfo::getExtend(Ty)
-                : ABIArgInfo::getDirect());
-  }
-
-  // Structures with either a non-trivial destructor or a non-trivial
-  // copy constructor are always indirect.
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
-                                     CGCXXABI::RAA_DirectInMemory);
-  }
-
-  // Empty records are always ignored on Darwin, but actually passed in C++ mode
-  // elsewhere for GNU compatibility.
-  uint64_t Size = getContext().getTypeSize(Ty);
-  bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
-  if (IsEmpty || Size == 0) {
-    if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
-      return ABIArgInfo::getIgnore();
-
-    // GNU C mode. The only argument that gets ignored is an empty one with size
-    // 0.
-    if (IsEmpty && Size == 0)
-      return ABIArgInfo::getIgnore();
-    return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
-  }
-
-  // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
-  const Type *Base = nullptr;
-  uint64_t Members = 0;
-  bool IsWin64 = Kind == AArch64ABIKind::Win64 ||
-                 CallingConvention == llvm::CallingConv::Win64;
-  bool IsWinVariadic = IsWin64 && IsVariadic;
-  // In variadic functions on Windows, all composite types are treated alike,
-  // no special handling of HFAs/HVAs.
-  if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
-    if (Kind != AArch64ABIKind::AAPCS)
-      return ABIArgInfo::getDirect(
-          llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
-
-    // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
-    // default otherwise.
-    unsigned Align =
-        getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
-    unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
-    Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
-    return ABIArgInfo::getDirect(
-        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
-        nullptr, true, Align);
-  }
-
-  // Aggregates <= 16 bytes are passed directly in registers or on the stack.
-  if (Size <= 128) {
-    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
-    // same size and alignment.
-    if (getTarget().isRenderScriptTarget()) {
-      return coerceToIntArray(Ty, getContext(), getVMContext());
-    }
-    unsigned Alignment;
-    if (Kind == AArch64ABIKind::AAPCS) {
-      Alignment = getContext().getTypeUnadjustedAlign(Ty);
-      Alignment = Alignment < 128 ? 64 : 128;
-    } else {
-      Alignment =
-          std::max(getContext().getTypeAlign(Ty),
-                   (unsigned)getTarget().getPointerWidth(LangAS::Default));
-    }
-    Size = llvm::alignTo(Size, Alignment);
-
-    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
-    // For aggregates with 16-byte alignment, we use i128.
-    llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
-    return ABIArgInfo::getDirect(
-        Size == Alignment ? BaseTy
-                          : llvm::ArrayType::get(BaseTy, Size / Alignment));
-  }
-
-  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-}
-
-ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
-                                              bool IsVariadic) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (const auto *VT = RetTy->getAs<VectorType>()) {
-    if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
-        VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
-      return coerceIllegalVector(RetTy);
-  }
-
-  // Large vector types should be returned via memory.
-  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
-    return getNaturalAlignIndirect(RetTy);
-
-  if (!isAggregateTypeForABI(RetTy)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-      RetTy = EnumTy->getDecl()->getIntegerType();
-
-    if (const auto *EIT = RetTy->getAs<BitIntType>())
-      if (EIT->getNumBits() > 128)
-        return getNaturalAlignIndirect(RetTy);
-
-    return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
-                ? ABIArgInfo::getExtend(RetTy)
-                : ABIArgInfo::getDirect());
-  }
-
-  uint64_t Size = getContext().getTypeSize(RetTy);
-  if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
-    return ABIArgInfo::getIgnore();
-
-  const Type *Base = nullptr;
-  uint64_t Members = 0;
-  if (isHomogeneousAggregate(RetTy, Base, Members) &&
-      !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
-        IsVariadic))
-    // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
-    return ABIArgInfo::getDirect();
-
-  // Aggregates <= 16 bytes are returned directly in registers or on the stack.
-  if (Size <= 128) {
-    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
-    // same size and alignment.
-    if (getTarget().isRenderScriptTarget()) {
-      return coerceToIntArray(RetTy, getContext(), getVMContext());
-    }
-
-    if (Size <= 64 && getDataLayout().isLittleEndian()) {
-      // Composite types are returned in lower bits of a 64-bit register for LE,
-      // and in higher bits for BE. However, integer types are always returned
-      // in lower bits for both LE and BE, and they are not rounded up to
-      // 64-bits. We can skip rounding up of composite types for LE, but not for
-      // BE, otherwise composite types will be indistinguishable from integer
-      // types.
-      return ABIArgInfo::getDirect(
-          llvm::IntegerType::get(getVMContext(), Size));
-    }
-
-    unsigned Alignment = getContext().getTypeAlign(RetTy);
-    Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
-
-    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
-    // For aggregates with 16-byte alignment, we use i128.
-    if (Alignment < 128 && Size == 128) {
-      llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
-      return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
-    }
-    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
-  }
-
-  return getNaturalAlignIndirect(RetTy);
-}
-
-/// isIllegalVectorType - check whether the vector type is legal for AArch64.
-bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
-  if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    // Check whether VT is a fixed-length SVE vector. These types are
-    // represented as scalable vectors in function args/return and must be
-    // coerced from fixed vectors.
-    if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
-        VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
-      return true;
-
-    // Check whether VT is legal.
-    unsigned NumElements = VT->getNumElements();
-    uint64_t Size = getContext().getTypeSize(VT);
-    // NumElements should be power of 2.
-    if (!llvm::isPowerOf2_32(NumElements))
-      return true;
-
-    // arm64_32 has to be compatible with the ARM logic here, which allows huge
-    // vectors for some reason.
-    llvm::Triple Triple = getTarget().getTriple();
-    if (Triple.getArch() == llvm::Triple::aarch64_32 &&
-        Triple.isOSBinFormatMachO())
-      return Size <= 32;
-
-    return Size != 64 && (Size != 128 || NumElements == 1);
-  }
-  return false;
-}
-
-bool AArch64SwiftABIInfo::isLegalVectorType(CharUnits VectorSize,
-                                            llvm::Type *EltTy,
-                                            unsigned NumElts) const {
-  if (!llvm::isPowerOf2_32(NumElts))
-    return false;
-  if (VectorSize.getQuantity() != 8 &&
-      (VectorSize.getQuantity() != 16 || NumElts == 1))
-    return false;
-  return true;
-}
-
-bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
-  // Homogeneous aggregates for AAPCS64 must have base types of a floating
-  // point type or a short-vector type. This is the same as the 32-bit ABI,
-  // but with the 
diff erence that any floating-point type is allowed,
-  // including __fp16.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    if (BT->isFloatingPoint())
-      return true;
-  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    unsigned VecSize = getContext().getTypeSize(VT);
-    if (VecSize == 64 || VecSize == 128)
-      return true;
-  }
-  return false;
-}
-
-bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
-                                                       uint64_t Members) const {
-  return Members <= 4;
-}
-
-bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
-    const {
-  // AAPCS64 says that the rule for whether something is a homogeneous
-  // aggregate is applied to the output of the data layout decision. So
-  // anything that doesn't affect the data layout also does not affect
-  // homogeneity. In particular, zero-length bitfields don't stop a struct
-  // being homogeneous.
-  return true;
-}
-
-Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
-                                       CodeGenFunction &CGF) const {
-  ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
-                                       CGF.CurFnInfo->getCallingConvention());
-  // Empty records are ignored for parameter passing purposes.
-  if (AI.isIgnore()) {
-    uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
-    CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
-    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
-    auto *Load = CGF.Builder.CreateLoad(VAListAddr);
-    Address Addr = Address(Load, CGF.Int8Ty, SlotSize);
-    return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
-  }
-
-  bool IsIndirect = AI.isIndirect();
-
-  llvm::Type *BaseTy = CGF.ConvertType(Ty);
-  if (IsIndirect)
-    BaseTy = llvm::PointerType::getUnqual(BaseTy);
-  else if (AI.getCoerceToType())
-    BaseTy = AI.getCoerceToType();
-
-  unsigned NumRegs = 1;
-  if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
-    BaseTy = ArrTy->getElementType();
-    NumRegs = ArrTy->getNumElements();
-  }
-  bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
-
-  // The AArch64 va_list type and handling is specified in the Procedure Call
-  // Standard, section B.4:
-  //
-  // struct {
-  //   void *__stack;
-  //   void *__gr_top;
-  //   void *__vr_top;
-  //   int __gr_offs;
-  //   int __vr_offs;
-  // };
-
-  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
-  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
-  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
-
-  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
-  CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
-
-  Address reg_offs_p = Address::invalid();
-  llvm::Value *reg_offs = nullptr;
-  int reg_top_index;
-  int RegSize = IsIndirect ? 8 : TySize.getQuantity();
-  if (!IsFPR) {
-    // 3 is the field number of __gr_offs
-    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
-    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
-    reg_top_index = 1; // field number for __gr_top
-    RegSize = llvm::alignTo(RegSize, 8);
-  } else {
-    // 4 is the field number of __vr_offs.
-    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
-    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
-    reg_top_index = 2; // field number for __vr_top
-    RegSize = 16 * NumRegs;
-  }
-
-  //=======================================
-  // Find out where argument was passed
-  //=======================================
-
-  // If reg_offs >= 0 we're already using the stack for this type of
-  // argument. We don't want to keep updating reg_offs (in case it overflows,
-  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
-  // whatever they get).
-  llvm::Value *UsingStack = nullptr;
-  UsingStack = CGF.Builder.CreateICmpSGE(
-      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
-
-  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
-
-  // Otherwise, at least some kind of argument could go in these registers, the
-  // question is whether this particular type is too big.
-  CGF.EmitBlock(MaybeRegBlock);
-
-  // Integer arguments may need to correct register alignment (for example a
-  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
-  // align __gr_offs to calculate the potential address.
-  if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
-    int Align = TyAlign.getQuantity();
-
-    reg_offs = CGF.Builder.CreateAdd(
-        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
-        "align_regoffs");
-    reg_offs = CGF.Builder.CreateAnd(
-        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
-        "aligned_regoffs");
-  }
-
-  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
-  // The fact that this is done unconditionally reflects the fact that
-  // allocating an argument to the stack also uses up all the remaining
-  // registers of the appropriate kind.
-  llvm::Value *NewOffset = nullptr;
-  NewOffset = CGF.Builder.CreateAdd(
-      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
-  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
-
-  // Now we're in a position to decide whether this argument really was in
-  // registers or not.
-  llvm::Value *InRegs = nullptr;
-  InRegs = CGF.Builder.CreateICmpSLE(
-      NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
-
-  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
-
-  //=======================================
-  // Argument was in registers
-  //=======================================
-
-  // Now we emit the code for if the argument was originally passed in
-  // registers. First start the appropriate block:
-  CGF.EmitBlock(InRegBlock);
-
-  llvm::Value *reg_top = nullptr;
-  Address reg_top_p =
-      CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
-  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
-  Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
-                   CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
-  Address RegAddr = Address::invalid();
-  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;
-
-  if (IsIndirect) {
-    // If it's been passed indirectly (actually a struct), whatever we find from
-    // stored registers or on the stack will actually be a struct **.
-    MemTy = llvm::PointerType::getUnqual(MemTy);
-  }
-
-  const Type *Base = nullptr;
-  uint64_t NumMembers = 0;
-  bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
-  if (IsHFA && NumMembers > 1) {
-    // Homogeneous aggregates passed in registers will have their elements split
-    // and stored 16-bytes apart regardless of size (they're notionally in qN,
-    // qN+1, ...). We reload and store into a temporary local variable
-    // contiguously.
-    assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
-    auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
-    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
-    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
-    Address Tmp = CGF.CreateTempAlloca(HFATy,
-                                       std::max(TyAlign, BaseTyInfo.Align));
-
-    // On big-endian platforms, the value will be right-aligned in its slot.
-    int Offset = 0;
-    if (CGF.CGM.getDataLayout().isBigEndian() &&
-        BaseTyInfo.Width.getQuantity() < 16)
-      Offset = 16 - BaseTyInfo.Width.getQuantity();
-
-    for (unsigned i = 0; i < NumMembers; ++i) {
-      CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
-      Address LoadAddr =
-        CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
-      LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
-
-      Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
-
-      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
-      CGF.Builder.CreateStore(Elem, StoreAddr);
-    }
-
-    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
-  } else {
-    // Otherwise the object is contiguous in memory.
-
-    // It might be right-aligned in its slot.
-    CharUnits SlotSize = BaseAddr.getAlignment();
-    if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
-        (IsHFA || !isAggregateTypeForABI(Ty)) &&
-        TySize < SlotSize) {
-      CharUnits Offset = SlotSize - TySize;
-      BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
-    }
-
-    RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
-  }
-
-  CGF.EmitBranch(ContBlock);
-
-  //=======================================
-  // Argument was on the stack
-  //=======================================
-  CGF.EmitBlock(OnStackBlock);
-
-  Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
-  llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
-
-  // Again, stack arguments may need realignment. In this case both integer and
-  // floating-point ones might be affected.
-  if (!IsIndirect && TyAlign.getQuantity() > 8) {
-    int Align = TyAlign.getQuantity();
-
-    OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
-
-    OnStackPtr = CGF.Builder.CreateAdd(
-        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
-        "align_stack");
-    OnStackPtr = CGF.Builder.CreateAnd(
-        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
-        "align_stack");
-
-    OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
-  }
-  Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
-                                std::max(CharUnits::fromQuantity(8), TyAlign));
-
-  // All stack slots are multiples of 8 bytes.
-  CharUnits StackSlotSize = CharUnits::fromQuantity(8);
-  CharUnits StackSize;
-  if (IsIndirect)
-    StackSize = StackSlotSize;
-  else
-    StackSize = TySize.alignTo(StackSlotSize);
-
-  llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
-  llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
-      CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
-
-  // Write the new value of __stack for the next call to va_arg
-  CGF.Builder.CreateStore(NewStack, stack_p);
-
-  if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
-      TySize < StackSlotSize) {
-    CharUnits Offset = StackSlotSize - TySize;
-    OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
-  }
-
-  OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
-
-  CGF.EmitBranch(ContBlock);
-
-  //=======================================
-  // Tidy up
-  //=======================================
-  CGF.EmitBlock(ContBlock);
-
-  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
-                                 OnStackBlock, "vaargs.addr");
-
-  if (IsIndirect)
-    return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
-                   TyAlign);
-
-  return ResAddr;
-}
-
-Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
-                                        CodeGenFunction &CGF) const {
-  // The backend's lowering doesn't support va_arg for aggregates or
-  // illegal vector types.  Lower VAArg here for these cases and use
-  // the LLVM va_arg instruction for everything else.
-  if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
-    return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
-
-  uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
-  CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
-
-  // Empty records are ignored for parameter passing purposes.
-  if (isEmptyRecord(getContext(), Ty, true)) {
-    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"),
-                           getVAListElementType(CGF), SlotSize);
-    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
-    return Addr;
-  }
-
-  // The size of the actual thing passed, which might end up just
-  // being a pointer for indirect types.
-  auto TyInfo = getContext().getTypeInfoInChars(Ty);
-
-  // Arguments bigger than 16 bytes which aren't homogeneous
-  // aggregates should be passed indirectly.
-  bool IsIndirect = false;
-  if (TyInfo.Width.getQuantity() > 16) {
-    const Type *Base = nullptr;
-    uint64_t Members = 0;
-    IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
-  }
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
-                          TyInfo, SlotSize, /*AllowHigherAlign*/ true);
-}
-
-Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                    QualType Ty) const {
-  bool IsIndirect = false;
-
-  // Composites larger than 16 bytes are passed by reference.
-  if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
-    IsIndirect = true;
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
-                          CGF.getContext().getTypeInfoInChars(Ty),
-                          CharUnits::fromQuantity(8),
-                          /*allowHigherAlign*/ false);
-}
-
-//===----------------------------------------------------------------------===//
-// ARM ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class ARMABIInfo : public ABIInfo {
-  ARMABIKind Kind;
-  bool IsFloatABISoftFP;
-
-public:
-  ARMABIInfo(CodeGenTypes &CGT, ARMABIKind Kind) : ABIInfo(CGT), Kind(Kind) {
-    setCCs();
-    IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
-        CGT.getCodeGenOpts().FloatABI == ""; // default
-  }
-
-  bool isEABI() const {
-    switch (getTarget().getTriple().getEnvironment()) {
-    case llvm::Triple::Android:
-    case llvm::Triple::EABI:
-    case llvm::Triple::EABIHF:
-    case llvm::Triple::GNUEABI:
-    case llvm::Triple::GNUEABIHF:
-    case llvm::Triple::MuslEABI:
-    case llvm::Triple::MuslEABIHF:
-      return true;
-    default:
-      return getTarget().getTriple().isOHOSFamily();
-    }
-  }
-
-  bool isEABIHF() const {
-    switch (getTarget().getTriple().getEnvironment()) {
-    case llvm::Triple::EABIHF:
-    case llvm::Triple::GNUEABIHF:
-    case llvm::Triple::MuslEABIHF:
-      return true;
-    default:
-      return false;
-    }
-  }
-
-  ARMABIKind getABIKind() const { return Kind; }
-
-  bool allowBFloatArgsAndRet() const override {
-    return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
-  }
-
-private:
-  ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
-                                unsigned functionCallConv) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
-                                  unsigned functionCallConv) const;
-  ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
-                                          uint64_t Members) const;
-  ABIArgInfo coerceIllegalVector(QualType Ty) const;
-  bool isIllegalVectorType(QualType Ty) const;
-  bool containsAnyFP16Vectors(QualType Ty) const;
-
-  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
-  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
-                                         uint64_t Members) const override;
-  bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
-
-  bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  llvm::CallingConv::ID getLLVMDefaultCC() const;
-  llvm::CallingConv::ID getABIDefaultCC() const;
-  void setCCs();
-};
-
-class ARMSwiftABIInfo : public SwiftABIInfo {
-public:
-  explicit ARMSwiftABIInfo(CodeGenTypes &CGT)
-      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
-
-  bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
-                         unsigned NumElts) const override;
-};
-
-class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
-      : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {
-    SwiftInfo = std::make_unique<ARMSwiftABIInfo>(CGT);
-  }
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    return 13;
-  }
-
-  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
-    return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override {
-    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
-
-    // 0-15 are the 16 integer registers.
-    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
-    return false;
-  }
-
-  unsigned getSizeOfUnwindException() const override {
-    if (getABIInfo<ARMABIInfo>().isEABI())
-      return 88;
-    return TargetCodeGenInfo::getSizeOfUnwindException();
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    if (GV->isDeclaration())
-      return;
-    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-    if (!FD)
-      return;
-    auto *Fn = cast<llvm::Function>(GV);
-
-    if (const auto *TA = FD->getAttr<TargetAttr>()) {
-      ParsedTargetAttr Attr =
-          CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
-      if (!Attr.BranchProtection.empty()) {
-        TargetInfo::BranchProtectionInfo BPI;
-        StringRef DiagMsg;
-        StringRef Arch =
-            Attr.CPU.empty() ? CGM.getTarget().getTargetOpts().CPU : Attr.CPU;
-        if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
-                                                      Arch, BPI, DiagMsg)) {
-          CGM.getDiags().Report(
-              D->getLocation(),
-              diag::warn_target_unsupported_branch_protection_attribute)
-              << Arch;
-        } else {
-          static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
-          assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 &&
-                 "Unexpected SignReturnAddressScopeKind");
-          Fn->addFnAttr(
-              "sign-return-address",
-              SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
-
-          Fn->addFnAttr("branch-target-enforcement",
-                        BPI.BranchTargetEnforcement ? "true" : "false");
-        }
-      } else if (CGM.getLangOpts().BranchTargetEnforcement ||
-                 CGM.getLangOpts().hasSignReturnAddress()) {
-        // If the Branch Protection attribute is missing, validate the target
-        // Architecture attribute against Branch Protection command line
-        // settings.
-        if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.CPU))
-          CGM.getDiags().Report(
-              D->getLocation(),
-              diag::warn_target_unsupported_branch_protection_attribute)
-              << Attr.CPU;
-      }
-    }
-
-    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
-    if (!Attr)
-      return;
-
-    const char *Kind;
-    switch (Attr->getInterrupt()) {
-    case ARMInterruptAttr::Generic: Kind = ""; break;
-    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
-    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
-    case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
-    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
-    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
-    }
-
-    Fn->addFnAttr("interrupt", Kind);
-
-    ARMABIKind ABI = getABIInfo<ARMABIInfo>().getABIKind();
-    if (ABI == ARMABIKind::APCS)
-      return;
-
-    // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
-    // however this is not necessarily true on taking any interrupt. Instruct
-    // the backend to perform a realignment as part of the function prologue.
-    llvm::AttrBuilder B(Fn->getContext());
-    B.addStackAlignmentAttr(8);
-    Fn->addFnAttrs(B);
-  }
-};
-
-class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
-public:
-  WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
-      : ARMTargetCodeGenInfo(CGT, K) {}
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override;
-
-  void getDependentLibraryOption(llvm::StringRef Lib,
-                                 llvm::SmallString<24> &Opt) const override {
-    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
-  }
-
-  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
-                               llvm::SmallString<32> &Opt) const override {
-    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
-  }
-};
-
-void WindowsARMTargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
-  ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
-  if (GV->isDeclaration())
-    return;
-  addStackProbeTargetAttributes(D, GV, CGM);
-}
-}
-
-void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  if (!::classifyReturnType(getCXXABI(), FI, *this))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
-                                            FI.getCallingConvention());
-
-  for (auto &I : FI.arguments())
-    I.info = classifyArgumentType(I.type, FI.isVariadic(),
-                                  FI.getCallingConvention());
-
-
-  // Always honor user-specified calling convention.
-  if (FI.getCallingConvention() != llvm::CallingConv::C)
-    return;
-
-  llvm::CallingConv::ID cc = getRuntimeCC();
-  if (cc != llvm::CallingConv::C)
-    FI.setEffectiveCallingConvention(cc);
-}
-
-/// Return the default calling convention that LLVM will use.
-llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
-  // The default calling convention that LLVM will infer.
-  if (isEABIHF() || getTarget().getTriple().isWatchABI())
-    return llvm::CallingConv::ARM_AAPCS_VFP;
-  else if (isEABI())
-    return llvm::CallingConv::ARM_AAPCS;
-  else
-    return llvm::CallingConv::ARM_APCS;
-}
-
-/// Return the calling convention that our ABI would like us to use
-/// as the C calling convention.
-llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
-  switch (getABIKind()) {
-  case ARMABIKind::APCS:
-    return llvm::CallingConv::ARM_APCS;
-  case ARMABIKind::AAPCS:
-    return llvm::CallingConv::ARM_AAPCS;
-  case ARMABIKind::AAPCS_VFP:
-    return llvm::CallingConv::ARM_AAPCS_VFP;
-  case ARMABIKind::AAPCS16_VFP:
-    return llvm::CallingConv::ARM_AAPCS_VFP;
-  }
-  llvm_unreachable("bad ABI kind");
-}
-
-void ARMABIInfo::setCCs() {
-  assert(getRuntimeCC() == llvm::CallingConv::C);
-
-  // Don't muddy up the IR with a ton of explicit annotations if
-  // they'd just match what LLVM will infer from the triple.
-  llvm::CallingConv::ID abiCC = getABIDefaultCC();
-  if (abiCC != getLLVMDefaultCC())
-    RuntimeCC = abiCC;
-}
-
-ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
-  uint64_t Size = getContext().getTypeSize(Ty);
-  if (Size <= 32) {
-    llvm::Type *ResType =
-        llvm::Type::getInt32Ty(getVMContext());
-    return ABIArgInfo::getDirect(ResType);
-  }
-  if (Size == 64 || Size == 128) {
-    auto *ResType = llvm::FixedVectorType::get(
-        llvm::Type::getInt32Ty(getVMContext()), Size / 32);
-    return ABIArgInfo::getDirect(ResType);
-  }
-  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-}
-
-ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
-                                                    const Type *Base,
-                                                    uint64_t Members) const {
-  assert(Base && "Base class should be set for homogeneous aggregate");
-  // Base can be a floating-point or a vector.
-  if (const VectorType *VT = Base->getAs<VectorType>()) {
-    // FP16 vectors should be converted to integer vectors
-    if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
-      uint64_t Size = getContext().getTypeSize(VT);
-      auto *NewVecTy = llvm::FixedVectorType::get(
-          llvm::Type::getInt32Ty(getVMContext()), Size / 32);
-      llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
-      return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
-    }
-  }
-  unsigned Align = 0;
-  if (getABIKind() == ARMABIKind::AAPCS ||
-      getABIKind() == ARMABIKind::AAPCS_VFP) {
-    // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
-    // default otherwise.
-    Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
-    unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
-    Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
-  }
-  return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
-}
-
-ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
-                                            unsigned functionCallConv) const {
-  // 6.1.2.1 The following argument types are VFP CPRCs:
-  //   A single-precision floating-point type (including promoted
-  //   half-precision types); A double-precision floating-point type;
-  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
-  //   with a Base Type of a single- or double-precision floating-point type,
-  //   64-bit containerized vectors or 128-bit containerized vectors with one
-  //   to four Elements.
-  // Variadic functions should always marshal to the base standard.
-  bool IsAAPCS_VFP =
-      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
-
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  // Handle illegal vector types here.
-  if (isIllegalVectorType(Ty))
-    return coerceIllegalVector(Ty);
-
-  if (!isAggregateTypeForABI(Ty)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
-      Ty = EnumTy->getDecl()->getIntegerType();
-    }
-
-    if (const auto *EIT = Ty->getAs<BitIntType>())
-      if (EIT->getNumBits() > 64)
-        return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
-
-    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                              : ABIArgInfo::getDirect());
-  }
-
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
-    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-  }
-
-  // Ignore empty records.
-  if (isEmptyRecord(getContext(), Ty, true))
-    return ABIArgInfo::getIgnore();
-
-  if (IsAAPCS_VFP) {
-    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
-    // into VFP registers.
-    const Type *Base = nullptr;
-    uint64_t Members = 0;
-    if (isHomogeneousAggregate(Ty, Base, Members))
-      return classifyHomogeneousAggregate(Ty, Base, Members);
-  } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
-    // WatchOS does have homogeneous aggregates. Note that we intentionally use
-    // this convention even for a variadic function: the backend will use GPRs
-    // if needed.
-    const Type *Base = nullptr;
-    uint64_t Members = 0;
-    if (isHomogeneousAggregate(Ty, Base, Members)) {
-      assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
-      llvm::Type *Ty =
-        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
-      return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
-    }
-  }
-
-  if (getABIKind() == ARMABIKind::AAPCS16_VFP &&
-      getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
-    // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
-    // bigger than 128-bits, they get placed in space allocated by the caller,
-    // and a pointer is passed.
-    return ABIArgInfo::getIndirect(
-        CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
-  }
-
-  // Support byval for ARM.
-  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
-  // most 8-byte. We realign the indirect argument if type alignment is bigger
-  // than ABI alignment.
-  uint64_t ABIAlign = 4;
-  uint64_t TyAlign;
-  if (getABIKind() == ARMABIKind::AAPCS_VFP ||
-      getABIKind() == ARMABIKind::AAPCS) {
-    TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
-    ABIAlign = std::clamp(TyAlign, (uint64_t)4, (uint64_t)8);
-  } else {
-    TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
-  }
-  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
-    assert(getABIKind() != ARMABIKind::AAPCS16_VFP && "unexpected byval");
-    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
-                                   /*ByVal=*/true,
-                                   /*Realign=*/TyAlign > ABIAlign);
-  }
-
-  // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
-  // same size and alignment.
-  if (getTarget().isRenderScriptTarget()) {
-    return coerceToIntArray(Ty, getContext(), getVMContext());
-  }
-
-  // Otherwise, pass by coercing to a structure of the appropriate size.
-  llvm::Type* ElemTy;
-  unsigned SizeRegs;
-  // FIXME: Try to match the types of the arguments more accurately where
-  // we can.
-  if (TyAlign <= 4) {
-    ElemTy = llvm::Type::getInt32Ty(getVMContext());
-    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
-  } else {
-    ElemTy = llvm::Type::getInt64Ty(getVMContext());
-    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
-  }
-
-  return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
-}
-
-static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
-                              llvm::LLVMContext &VMContext) {
-  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
-  // is called integer-like if its size is less than or equal to one word, and
-  // the offset of each of its addressable sub-fields is zero.
-
-  uint64_t Size = Context.getTypeSize(Ty);
-
-  // Check that the type fits in a word.
-  if (Size > 32)
-    return false;
-
-  // FIXME: Handle vector types!
-  if (Ty->isVectorType())
-    return false;
-
-  // Float types are never treated as "integer like".
-  if (Ty->isRealFloatingType())
-    return false;
-
-  // If this is a builtin or pointer type then it is ok.
-  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
-    return true;
-
-  // Small complex integer types are "integer like".
-  if (const ComplexType *CT = Ty->getAs<ComplexType>())
-    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
-
-  // Single element and zero sized arrays should be allowed, by the definition
-  // above, but they are not.
-
-  // Otherwise, it must be a record type.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT) return false;
-
-  // Ignore records with flexible arrays.
-  const RecordDecl *RD = RT->getDecl();
-  if (RD->hasFlexibleArrayMember())
-    return false;
-
-  // Check that all sub-fields are at offset 0, and are themselves "integer
-  // like".
-  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
-  bool HadField = false;
-  unsigned idx = 0;
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-       i != e; ++i, ++idx) {
-    const FieldDecl *FD = *i;
-
-    // Bit-fields are not addressable, we only need to verify they are "integer
-    // like". We still have to disallow a subsequent non-bitfield, for example:
-    //   struct { int : 0; int x }
-    // is non-integer like according to gcc.
-    if (FD->isBitField()) {
-      if (!RD->isUnion())
-        HadField = true;
-
-      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
-        return false;
-
-      continue;
-    }
-
-    // Check if this field is at offset 0.
-    if (Layout.getFieldOffset(idx) != 0)
-      return false;
-
-    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
-      return false;
-
-    // Only allow at most one field in a structure. This doesn't match the
-    // wording above, but follows gcc in situations with a field following an
-    // empty structure.
-    if (!RD->isUnion()) {
-      if (HadField)
-        return false;
-
-      HadField = true;
-    }
-  }
-
-  return true;
-}
-
-ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
-                                          unsigned functionCallConv) const {
-
-  // Variadic functions should always marshal to the base standard.
-  bool IsAAPCS_VFP =
-      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
-
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
-    // Large vector types should be returned via memory.
-    if (getContext().getTypeSize(RetTy) > 128)
-      return getNaturalAlignIndirect(RetTy);
-    // TODO: FP16/BF16 vectors should be converted to integer vectors
-    // This check is similar  to isIllegalVectorType - refactor?
-    if ((!getTarget().hasLegalHalfType() &&
-        (VT->getElementType()->isFloat16Type() ||
-         VT->getElementType()->isHalfType())) ||
-        (IsFloatABISoftFP &&
-         VT->getElementType()->isBFloat16Type()))
-      return coerceIllegalVector(RetTy);
-  }
-
-  if (!isAggregateTypeForABI(RetTy)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-      RetTy = EnumTy->getDecl()->getIntegerType();
-
-    if (const auto *EIT = RetTy->getAs<BitIntType>())
-      if (EIT->getNumBits() > 64)
-        return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
-
-    return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                                : ABIArgInfo::getDirect();
-  }
-
-  // Are we following APCS?
-  if (getABIKind() == ARMABIKind::APCS) {
-    if (isEmptyRecord(getContext(), RetTy, false))
-      return ABIArgInfo::getIgnore();
-
-    // Complex types are all returned as packed integers.
-    //
-    // FIXME: Consider using 2 x vector types if the back end handles them
-    // correctly.
-    if (RetTy->isAnyComplexType())
-      return ABIArgInfo::getDirect(llvm::IntegerType::get(
-          getVMContext(), getContext().getTypeSize(RetTy)));
-
-    // Integer like structures are returned in r0.
-    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
-      // Return in the smallest viable integer type.
-      uint64_t Size = getContext().getTypeSize(RetTy);
-      if (Size <= 8)
-        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
-      if (Size <= 16)
-        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
-      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
-    }
-
-    // Otherwise return in memory.
-    return getNaturalAlignIndirect(RetTy);
-  }
-
-  // Otherwise this is an AAPCS variant.
-
-  if (isEmptyRecord(getContext(), RetTy, true))
-    return ABIArgInfo::getIgnore();
-
-  // Check for homogeneous aggregates with AAPCS-VFP.
-  if (IsAAPCS_VFP) {
-    const Type *Base = nullptr;
-    uint64_t Members = 0;
-    if (isHomogeneousAggregate(RetTy, Base, Members))
-      return classifyHomogeneousAggregate(RetTy, Base, Members);
-  }
-
-  // Aggregates <= 4 bytes are returned in r0; other aggregates
-  // are returned indirectly.
-  uint64_t Size = getContext().getTypeSize(RetTy);
-  if (Size <= 32) {
-    // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
-    // same size and alignment.
-    if (getTarget().isRenderScriptTarget()) {
-      return coerceToIntArray(RetTy, getContext(), getVMContext());
-    }
-    if (getDataLayout().isBigEndian())
-      // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
-      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
-
-    // Return in the smallest viable integer type.
-    if (Size <= 8)
-      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
-    if (Size <= 16)
-      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
-    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
-  } else if (Size <= 128 && getABIKind() == ARMABIKind::AAPCS16_VFP) {
-    llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
-    llvm::Type *CoerceTy =
-        llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
-    return ABIArgInfo::getDirect(CoerceTy);
-  }
-
-  return getNaturalAlignIndirect(RetTy);
-}
-
-/// isIllegalVector - check whether Ty is an illegal vector type.
-bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
-  if (const VectorType *VT = Ty->getAs<VectorType> ()) {
-    // On targets that don't support half, fp16 or bfloat, they are expanded
-    // into float, and we don't want the ABI to depend on whether or not they
-    // are supported in hardware. Thus return false to coerce vectors of these
-    // types into integer vectors.
-    // We do not depend on hasLegalHalfType for bfloat as it is a
-    // separate IR type.
-    if ((!getTarget().hasLegalHalfType() &&
-        (VT->getElementType()->isFloat16Type() ||
-         VT->getElementType()->isHalfType())) ||
-        (IsFloatABISoftFP &&
-         VT->getElementType()->isBFloat16Type()))
-      return true;
-    if (isAndroid()) {
-      // Android shipped using Clang 3.1, which supported a slightly 
diff erent
-      // vector ABI. The primary 
diff erences were that 3-element vector types
-      // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
-      // accepts that legacy behavior for Android only.
-      // Check whether VT is legal.
-      unsigned NumElements = VT->getNumElements();
-      // NumElements should be power of 2 or equal to 3.
-      if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
-        return true;
-    } else {
-      // Check whether VT is legal.
-      unsigned NumElements = VT->getNumElements();
-      uint64_t Size = getContext().getTypeSize(VT);
-      // NumElements should be power of 2.
-      if (!llvm::isPowerOf2_32(NumElements))
-        return true;
-      // Size should be greater than 32 bits.
-      return Size <= 32;
-    }
-  }
-  return false;
-}
-
-/// Return true if a type contains any 16-bit floating point vectors
-bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
-  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
-    uint64_t NElements = AT->getSize().getZExtValue();
-    if (NElements == 0)
-      return false;
-    return containsAnyFP16Vectors(AT->getElementType());
-  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    const RecordDecl *RD = RT->getDecl();
-
-    // If this is a C++ record, check the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
-      if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
-            return containsAnyFP16Vectors(B.getType());
-          }))
-        return true;
-
-    if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
-          return FD && containsAnyFP16Vectors(FD->getType());
-        }))
-      return true;
-
-    return false;
-  } else {
-    if (const VectorType *VT = Ty->getAs<VectorType>())
-      return (VT->getElementType()->isFloat16Type() ||
-              VT->getElementType()->isBFloat16Type() ||
-              VT->getElementType()->isHalfType());
-    return false;
-  }
-}
-
-bool ARMSwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
-                                        unsigned NumElts) const {
-  if (!llvm::isPowerOf2_32(NumElts))
-    return false;
-  unsigned size = CGT.getDataLayout().getTypeStoreSizeInBits(EltTy);
-  if (size > 64)
-    return false;
-  if (VectorSize.getQuantity() != 8 &&
-      (VectorSize.getQuantity() != 16 || NumElts == 1))
-    return false;
-  return true;
-}
-
-bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
-  // Homogeneous aggregates for AAPCS-VFP must have base types of float,
-  // double, or 64-bit or 128-bit vectors.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    if (BT->getKind() == BuiltinType::Float ||
-        BT->getKind() == BuiltinType::Double ||
-        BT->getKind() == BuiltinType::LongDouble)
-      return true;
-  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    unsigned VecSize = getContext().getTypeSize(VT);
-    if (VecSize == 64 || VecSize == 128)
-      return true;
-  }
-  return false;
-}
-
-bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
-                                                   uint64_t Members) const {
-  return Members <= 4;
-}
-
-bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
-  // AAPCS32 says that the rule for whether something is a homogeneous
-  // aggregate is applied to the output of the data layout decision. So
-  // anything that doesn't affect the data layout also does not affect
-  // homogeneity. In particular, zero-length bitfields don't stop a struct
-  // being homogeneous.
-  return true;
-}
-
-bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
-                                        bool acceptHalf) const {
-  // Give precedence to user-specified calling conventions.
-  if (callConvention != llvm::CallingConv::C)
-    return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
-  else
-    return (getABIKind() == ARMABIKind::AAPCS_VFP) ||
-           (acceptHalf && (getABIKind() == ARMABIKind::AAPCS16_VFP));
-}
-
-Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                              QualType Ty) const {
-  CharUnits SlotSize = CharUnits::fromQuantity(4);
-
-  // Empty records are ignored for parameter passing purposes.
-  if (isEmptyRecord(getContext(), Ty, true)) {
-    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
-    auto *Load = CGF.Builder.CreateLoad(VAListAddr);
-    Address Addr = Address(Load, CGF.Int8Ty, SlotSize);
-    return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
-  }
-
-  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
-  CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
-
-  // Use indirect if size of the illegal vector is bigger than 16 bytes.
-  bool IsIndirect = false;
-  const Type *Base = nullptr;
-  uint64_t Members = 0;
-  if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
-    IsIndirect = true;
-
-  // ARMv7k passes structs bigger than 16 bytes indirectly, in space
-  // allocated by the caller.
-  } else if (TySize > CharUnits::fromQuantity(16) &&
-             getABIKind() == ARMABIKind::AAPCS16_VFP &&
-             !isHomogeneousAggregate(Ty, Base, Members)) {
-    IsIndirect = true;
-
-  // Otherwise, bound the type's ABI alignment.
-  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
-  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
-  // Our callers should be prepared to handle an under-aligned address.
-  } else if (getABIKind() == ARMABIKind::AAPCS_VFP ||
-             getABIKind() == ARMABIKind::AAPCS) {
-    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
-    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
-  } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
-    // ARMv7k allows type alignment up to 16 bytes.
-    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
-    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
-  } else {
-    TyAlignForABI = CharUnits::fromQuantity(4);
-  }
-
-  TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
-                          SlotSize, /*AllowHigherAlign*/ true);
-}
-
-//===----------------------------------------------------------------------===//
-// NVPTX ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class NVPTXTargetCodeGenInfo;
-
-class NVPTXABIInfo : public ABIInfo {
-  NVPTXTargetCodeGenInfo &CGInfo;
-
-public:
-  NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
-      : ABIInfo(CGT), CGInfo(Info) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType Ty) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-  bool isUnsupportedType(QualType T) const;
-  ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
-};
-
-class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &M) const override;
-  bool shouldEmitStaticExternCAliases() const override;
-
-  llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
-    // On the device side, surface reference is represented as an object handle
-    // in 64-bit integer.
-    return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
-  }
-
-  llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
-    // On the device side, texture reference is represented as an object handle
-    // in 64-bit integer.
-    return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
-  }
-
-  bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
-                                              LValue Src) const override {
-    emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
-    return true;
-  }
-
-  bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
-                                              LValue Src) const override {
-    emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
-    return true;
-  }
-
-private:
-  // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
-  // resulting MDNode to the nvvm.annotations MDNode.
-  static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
-                              int Operand);
-
-  static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
-                                           LValue Src) {
-    llvm::Value *Handle = nullptr;
-    llvm::Constant *C =
-        llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
-    // Lookup `addrspacecast` through the constant pointer if any.
-    if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
-      C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
-    if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
-      // Load the handle from the specific global variable using
-      // `nvvm.texsurf.handle.internal` intrinsic.
-      Handle = CGF.EmitRuntimeCall(
-          CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
-                               {GV->getType()}),
-          {GV}, "texsurf_handle");
-    } else
-      Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
-    CGF.EmitStoreOfScalar(Handle, Dst);
-  }
-};
-
-/// Checks if the type is unsupported directly by the current target.
-bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
-  ASTContext &Context = getContext();
-  if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
-    return true;
-  if (!Context.getTargetInfo().hasFloat128Type() &&
-      (T->isFloat128Type() ||
-       (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
-    return true;
-  if (const auto *EIT = T->getAs<BitIntType>())
-    return EIT->getNumBits() >
-           (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
-  if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
-      Context.getTypeSize(T) > 64U)
-    return true;
-  if (const auto *AT = T->getAsArrayTypeUnsafe())
-    return isUnsupportedType(AT->getElementType());
-  const auto *RT = T->getAs<RecordType>();
-  if (!RT)
-    return false;
-  const RecordDecl *RD = RT->getDecl();
-
-  // If this is a C++ record, check the bases first.
-  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
-    for (const CXXBaseSpecifier &I : CXXRD->bases())
-      if (isUnsupportedType(I.getType()))
-        return true;
-
-  for (const FieldDecl *I : RD->fields())
-    if (isUnsupportedType(I->getType()))
-      return true;
-  return false;
-}
-
-/// Coerce the given type into an array with maximum allowed size of elements.
-ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
-                                                   unsigned MaxSize) const {
-  // Alignment and Size are measured in bits.
-  const uint64_t Size = getContext().getTypeSize(Ty);
-  const uint64_t Alignment = getContext().getTypeAlign(Ty);
-  const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
-  llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
-  const uint64_t NumElements = (Size + Div - 1) / Div;
-  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
-}
-
-ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (getContext().getLangOpts().OpenMP &&
-      getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
-    return coerceToIntArrayWithLimit(RetTy, 64);
-
-  // note: this is 
diff erent from default ABI
-  if (!RetTy->isScalarType())
-    return ABIArgInfo::getDirect();
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-    RetTy = EnumTy->getDecl()->getIntegerType();
-
-  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                               : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  // Return aggregates type as indirect by value
-  if (isAggregateTypeForABI(Ty)) {
-    // Under CUDA device compilation, tex/surf builtin types are replaced with
-    // object types and passed directly.
-    if (getContext().getLangOpts().CUDAIsDevice) {
-      if (Ty->isCUDADeviceBuiltinSurfaceType())
-        return ABIArgInfo::getDirect(
-            CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
-      if (Ty->isCUDADeviceBuiltinTextureType())
-        return ABIArgInfo::getDirect(
-            CGInfo.getCUDADeviceBuiltinTextureDeviceType());
-    }
-    return getNaturalAlignIndirect(Ty, /* byval */ true);
-  }
-
-  if (const auto *EIT = Ty->getAs<BitIntType>()) {
-    if ((EIT->getNumBits() > 128) ||
-        (!getContext().getTargetInfo().hasInt128Type() &&
-         EIT->getNumBits() > 64))
-      return getNaturalAlignIndirect(Ty, /* byval */ true);
-  }
-
-  return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                            : ABIArgInfo::getDirect());
-}
-
-void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-  for (auto &I : FI.arguments())
-    I.info = classifyArgumentType(I.type);
-
-  // Always honor user-specified calling convention.
-  if (FI.getCallingConvention() != llvm::CallingConv::C)
-    return;
-
-  FI.setEffectiveCallingConvention(getRuntimeCC());
-}
-
-Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                QualType Ty) const {
-  llvm_unreachable("NVPTX does not support varargs");
-}
-
-void NVPTXTargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
-  if (GV->isDeclaration())
-    return;
-  const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
-  if (VD) {
-    if (M.getLangOpts().CUDA) {
-      if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
-        addNVVMMetadata(GV, "surface", 1);
-      else if (VD->getType()->isCUDADeviceBuiltinTextureType())
-        addNVVMMetadata(GV, "texture", 1);
-      return;
-    }
-  }
-
-  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-  if (!FD) return;
-
-  llvm::Function *F = cast<llvm::Function>(GV);
-
-  // Perform special handling in OpenCL mode
-  if (M.getLangOpts().OpenCL) {
-    // Use OpenCL function attributes to check for kernel functions
-    // By default, all functions are device functions
-    if (FD->hasAttr<OpenCLKernelAttr>()) {
-      // OpenCL __kernel functions get kernel metadata
-      // Create !{<func-ref>, metadata !"kernel", i32 1} node
-      addNVVMMetadata(F, "kernel", 1);
-      // And kernel functions are not subject to inlining
-      F->addFnAttr(llvm::Attribute::NoInline);
-    }
-  }
-
-  // Perform special handling in CUDA mode.
-  if (M.getLangOpts().CUDA) {
-    // CUDA __global__ functions get a kernel metadata entry.  Since
-    // __global__ functions cannot be called from the device, we do not
-    // need to set the noinline attribute.
-    if (FD->hasAttr<CUDAGlobalAttr>()) {
-      // Create !{<func-ref>, metadata !"kernel", i32 1} node
-      addNVVMMetadata(F, "kernel", 1);
-    }
-    if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
-      // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
-      llvm::APSInt MaxThreads(32);
-      MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
-      if (MaxThreads > 0)
-        addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
-
-      // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
-      // not specified in __launch_bounds__ or if the user specified a 0 value,
-      // we don't have to add a PTX directive.
-      if (Attr->getMinBlocks()) {
-        llvm::APSInt MinBlocks(32);
-        MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
-        if (MinBlocks > 0)
-          // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
-          addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
-      }
-    }
-  }
-
-  // Attach kernel metadata directly if compiling for NVPTX.
-  if (FD->hasAttr<NVPTXKernelAttr>()) {
-    addNVVMMetadata(F, "kernel", 1);
-  }
-}
-
-void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
-                                             StringRef Name, int Operand) {
-  llvm::Module *M = GV->getParent();
-  llvm::LLVMContext &Ctx = M->getContext();
-
-  // Get "nvvm.annotations" metadata node
-  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
-
-  llvm::Metadata *MDVals[] = {
-      llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
-      llvm::ConstantAsMetadata::get(
-          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
-  // Append metadata to nvvm.annotations
-  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
-}
-
-bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
-  return false;
-}
-}
-
-//===----------------------------------------------------------------------===//
-// SystemZ ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class SystemZABIInfo : public ABIInfo {
-  bool HasVector;
-  bool IsSoftFloatABI;
-
-public:
-  SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
-      : ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
-
-  bool isPromotableIntegerTypeForABI(QualType Ty) const;
-  bool isCompoundType(QualType Ty) const;
-  bool isVectorArgumentType(QualType Ty) const;
-  bool isFPArgumentType(QualType Ty) const;
-  QualType GetSingleElementType(QualType Ty) const;
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
-  ASTContext &Ctx;
-
-  // These are used for speeding up the search for a visible vector ABI.
-  mutable bool HasVisibleVecABIFlag = false;
-  mutable std::set<const Type *> SeenTypes;
-
-  // Returns true (the first time) if Ty is, or is found to include, a vector
-  // type that exposes the vector ABI. This is any vector >=16 bytes which
-  // with vector support are aligned to only 8 bytes. When IsParam is true,
-  // the type belongs to a value as passed between functions. If it is a
-  // vector <=16 bytes it will be passed in a vector register (if supported).
-  bool isVectorTypeBased(const Type *Ty, bool IsParam) const;
-
-public:
-  SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
-      : TargetCodeGenInfo(
-            std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)),
-            Ctx(CGT.getContext()) {
-    SwiftInfo =
-        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
-  }
-
-  // The vector ABI is 
diff erent when the vector facility is present and when
-  // a module e.g. defines an externally visible vector variable, a flag
-  // indicating a visible vector ABI is added. Eventually this will result in
-  // a GNU attribute indicating the vector ABI of the module.  Ty is the type
-  // of a variable or function parameter that is globally visible.
-  void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M,
-                                     bool IsParam) const {
-    if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) {
-      M.getModule().addModuleFlag(llvm::Module::Warning,
-                                  "s390x-visible-vector-ABI", 1);
-      HasVisibleVecABIFlag = true;
-    }
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &M) const override {
-    if (!D)
-      return;
-
-    // Check if the vector ABI becomes visible by an externally visible
-    // variable or function.
-    if (const auto *VD = dyn_cast<VarDecl>(D)) {
-      if (VD->isExternallyVisible())
-        handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M,
-                                      /*IsParam*/false);
-    }
-    else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
-      if (FD->isExternallyVisible())
-        handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M,
-                                      /*IsParam*/false);
-    }
-  }
-
-  llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
-                          CGBuilderTy &Builder,
-                          CodeGenModule &CGM) const override {
-    assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
-    // Only use TDC in constrained FP mode.
-    if (!Builder.getIsFPConstrained())
-      return nullptr;
-
-    llvm::Type *Ty = V->getType();
-    if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
-      llvm::Module &M = CGM.getModule();
-      auto &Ctx = M.getContext();
-      llvm::Function *TDCFunc =
-          llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
-      unsigned TDCBits = 0;
-      switch (BuiltinID) {
-      case Builtin::BI__builtin_isnan:
-        TDCBits = 0xf;
-        break;
-      case Builtin::BIfinite:
-      case Builtin::BI__finite:
-      case Builtin::BIfinitef:
-      case Builtin::BI__finitef:
-      case Builtin::BIfinitel:
-      case Builtin::BI__finitel:
-      case Builtin::BI__builtin_isfinite:
-        TDCBits = 0xfc0;
-        break;
-      case Builtin::BI__builtin_isinf:
-        TDCBits = 0x30;
-        break;
-      default:
-        break;
-      }
-      if (TDCBits)
-        return Builder.CreateCall(
-            TDCFunc,
-            {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
-    }
-    return nullptr;
-  }
-};
-}
-
-bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  // Promotable integer types are required to be promoted by the ABI.
-  if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
-    return true;
-
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() < 64)
-      return true;
-
-  // 32-bit values must also be promoted.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
-    switch (BT->getKind()) {
-    case BuiltinType::Int:
-    case BuiltinType::UInt:
-      return true;
-    default:
-      return false;
-    }
-  return false;
-}
-
-bool SystemZABIInfo::isCompoundType(QualType Ty) const {
-  return (Ty->isAnyComplexType() ||
-          Ty->isVectorType() ||
-          isAggregateTypeForABI(Ty));
-}
-
-bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
-  return (HasVector &&
-          Ty->isVectorType() &&
-          getContext().getTypeSize(Ty) <= 128);
-}
-
-bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
-  if (IsSoftFloatABI)
-    return false;
-
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
-    switch (BT->getKind()) {
-    case BuiltinType::Float:
-    case BuiltinType::Double:
-      return true;
-    default:
-      return false;
-    }
-
-  return false;
-}
-
-QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
-  const RecordType *RT = Ty->getAs<RecordType>();
-
-  if (RT && RT->isStructureOrClassType()) {
-    const RecordDecl *RD = RT->getDecl();
-    QualType Found;
-
-    // If this is a C++ record, check the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
-      if (CXXRD->hasDefinition())
-        for (const auto &I : CXXRD->bases()) {
-          QualType Base = I.getType();
-
-          // Empty bases don't affect things either way.
-          if (isEmptyRecord(getContext(), Base, true))
-            continue;
-
-          if (!Found.isNull())
-            return Ty;
-          Found = GetSingleElementType(Base);
-        }
-
-    // Check the fields.
-    for (const auto *FD : RD->fields()) {
-      // Unlike isSingleElementStruct(), empty structure and array fields
-      // do count.  So do anonymous bitfields that aren't zero-sized.
-
-      // Like isSingleElementStruct(), ignore C++20 empty data members.
-      if (FD->hasAttr<NoUniqueAddressAttr>() &&
-          isEmptyRecord(getContext(), FD->getType(), true))
-        continue;
-
-      // Unlike isSingleElementStruct(), arrays do not count.
-      // Nested structures still do though.
-      if (!Found.isNull())
-        return Ty;
-      Found = GetSingleElementType(FD->getType());
-    }
-
-    // Unlike isSingleElementStruct(), trailing padding is allowed.
-    // An 8-byte aligned struct s { float f; } is passed as a double.
-    if (!Found.isNull())
-      return Found;
-  }
-
-  return Ty;
-}
-
-Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                  QualType Ty) const {
-  // Assume that va_list type is correct; should be pointer to LLVM type:
-  // struct {
-  //   i64 __gpr;
-  //   i64 __fpr;
-  //   i8 *__overflow_arg_area;
-  //   i8 *__reg_save_area;
-  // };
-
-  // Every non-vector argument occupies 8 bytes and is passed by preference
-  // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
-  // always passed on the stack.
-  const SystemZTargetCodeGenInfo &SZCGI =
-      static_cast<const SystemZTargetCodeGenInfo &>(
-          CGT.getCGM().getTargetCodeGenInfo());
-  Ty = getContext().getCanonicalType(Ty);
-  auto TyInfo = getContext().getTypeInfoInChars(Ty);
-  llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Type *DirectTy = ArgTy;
-  ABIArgInfo AI = classifyArgumentType(Ty);
-  bool IsIndirect = AI.isIndirect();
-  bool InFPRs = false;
-  bool IsVector = false;
-  CharUnits UnpaddedSize;
-  CharUnits DirectAlign;
-  SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(),
-                                      /*IsParam*/true);
-  if (IsIndirect) {
-    DirectTy = llvm::PointerType::getUnqual(DirectTy);
-    UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
-  } else {
-    if (AI.getCoerceToType())
-      ArgTy = AI.getCoerceToType();
-    InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
-    IsVector = ArgTy->isVectorTy();
-    UnpaddedSize = TyInfo.Width;
-    DirectAlign = TyInfo.Align;
-  }
-  CharUnits PaddedSize = CharUnits::fromQuantity(8);
-  if (IsVector && UnpaddedSize > PaddedSize)
-    PaddedSize = CharUnits::fromQuantity(16);
-  assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
-
-  CharUnits Padding = (PaddedSize - UnpaddedSize);
-
-  llvm::Type *IndexTy = CGF.Int64Ty;
-  llvm::Value *PaddedSizeV =
-    llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
-
-  if (IsVector) {
-    // Work out the address of a vector argument on the stack.
-    // Vector arguments are always passed in the high bits of a
-    // single (8 byte) or double (16 byte) stack slot.
-    Address OverflowArgAreaPtr =
-        CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
-    Address OverflowArgArea =
-        Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
-                CGF.Int8Ty, TyInfo.Align);
-    Address MemAddr =
-        CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
-
-    // Update overflow_arg_area_ptr pointer
-    llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
-        OverflowArgArea.getElementType(), OverflowArgArea.getPointer(),
-        PaddedSizeV, "overflow_arg_area");
-    CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
-
-    return MemAddr;
-  }
-
-  assert(PaddedSize.getQuantity() == 8);
-
-  unsigned MaxRegs, RegCountField, RegSaveIndex;
-  CharUnits RegPadding;
-  if (InFPRs) {
-    MaxRegs = 4; // Maximum of 4 FPR arguments
-    RegCountField = 1; // __fpr
-    RegSaveIndex = 16; // save offset for f0
-    RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
-  } else {
-    MaxRegs = 5; // Maximum of 5 GPR arguments
-    RegCountField = 0; // __gpr
-    RegSaveIndex = 2; // save offset for r2
-    RegPadding = Padding; // values are passed in the low bits of a GPR
-  }
-
-  Address RegCountPtr =
-      CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
-  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
-  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
-  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
-                                                 "fits_in_regs");
-
-  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
-  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
-  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
-
-  // Emit code to load the value if it was passed in registers.
-  CGF.EmitBlock(InRegBlock);
-
-  // Work out the address of an argument register.
-  llvm::Value *ScaledRegCount =
-    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
-  llvm::Value *RegBase =
-    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
-                                      + RegPadding.getQuantity());
-  llvm::Value *RegOffset =
-    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
-  Address RegSaveAreaPtr =
-      CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
-  llvm::Value *RegSaveArea =
-      CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
-  Address RawRegAddr(
-      CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
-      CGF.Int8Ty, PaddedSize);
-  Address RegAddr =
-      CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
-
-  // Update the register count
-  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
-  llvm::Value *NewRegCount =
-    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
-  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
-  CGF.EmitBranch(ContBlock);
-
-  // Emit code to load the value if it was passed in memory.
-  CGF.EmitBlock(InMemBlock);
-
-  // Work out the address of a stack argument.
-  Address OverflowArgAreaPtr =
-      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
-  Address OverflowArgArea =
-      Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
-              CGF.Int8Ty, PaddedSize);
-  Address RawMemAddr =
-      CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
-  Address MemAddr =
-    CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
-
-  // Update overflow_arg_area_ptr pointer
-  llvm::Value *NewOverflowArgArea =
-    CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
-                          OverflowArgArea.getPointer(), PaddedSizeV,
-                          "overflow_arg_area");
-  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
-  CGF.EmitBranch(ContBlock);
-
-  // Return the appropriate result.
-  CGF.EmitBlock(ContBlock);
-  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
-                                 "va_arg.addr");
-
-  if (IsIndirect)
-    ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
-                      TyInfo.Align);
-
-  return ResAddr;
-}
-
-ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-  if (isVectorArgumentType(RetTy))
-    return ABIArgInfo::getDirect();
-  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
-    return getNaturalAlignIndirect(RetTy);
-  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                               : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
-  // Handle the generic C++ ABI.
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-  // Integers and enums are extended to full register width.
-  if (isPromotableIntegerTypeForABI(Ty))
-    return ABIArgInfo::getExtend(Ty);
-
-  // Handle vector types and vector-like structure types.  Note that
-  // as opposed to float-like structure types, we do not allow any
-  // padding for vector-like structures, so verify the sizes match.
-  uint64_t Size = getContext().getTypeSize(Ty);
-  QualType SingleElementTy = GetSingleElementType(Ty);
-  if (isVectorArgumentType(SingleElementTy) &&
-      getContext().getTypeSize(SingleElementTy) == Size)
-    return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
-
-  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
-  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-
-  // Handle small structures.
-  if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    // Structures with flexible arrays have variable length, so really
-    // fail the size test above.
-    const RecordDecl *RD = RT->getDecl();
-    if (RD->hasFlexibleArrayMember())
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-
-    // The structure is passed as an unextended integer, a float, or a double.
-    llvm::Type *PassTy;
-    if (isFPArgumentType(SingleElementTy)) {
-      assert(Size == 32 || Size == 64);
-      if (Size == 32)
-        PassTy = llvm::Type::getFloatTy(getVMContext());
-      else
-        PassTy = llvm::Type::getDoubleTy(getVMContext());
-    } else
-      PassTy = llvm::IntegerType::get(getVMContext(), Size);
-    return ABIArgInfo::getDirect(PassTy);
-  }
-
-  // Non-structure compounds are passed indirectly.
-  if (isCompoundType(Ty))
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-
-  return ABIArgInfo::getDirect(nullptr);
-}
-
-void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  const SystemZTargetCodeGenInfo &SZCGI =
-      static_cast<const SystemZTargetCodeGenInfo &>(
-          CGT.getCGM().getTargetCodeGenInfo());
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-  unsigned Idx = 0;
-  for (auto &I : FI.arguments()) {
-    I.info = classifyArgumentType(I.type);
-    if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs())
-      // Check if a vararg vector argument is passed, in which case the
-      // vector ABI becomes visible as the va_list could be passed on to
-      // other functions.
-      SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(),
-                                          /*IsParam*/true);
-  }
-}
-
-bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
-                                                 bool IsParam) const {
-  if (!SeenTypes.insert(Ty).second)
-    return false;
-
-  if (IsParam) {
-    // A narrow (<16 bytes) vector will as a parameter also expose the ABI as
-    // it will be passed in a vector register. A wide (>16 bytes) vector will
-    // be passed via "hidden" pointer where any extra alignment is not
-    // required (per GCC).
-    const Type *SingleEltTy = getABIInfo<SystemZABIInfo>()
-                                  .GetSingleElementType(QualType(Ty, 0))
-                                  .getTypePtr();
-    bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() &&
-      Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty);
-    if (Ty->isVectorType() || SingleVecEltStruct)
-      return Ctx.getTypeSize(Ty) / 8 <= 16;
-  }
-
-  // Assume pointers are dereferenced.
-  while (Ty->isPointerType() || Ty->isArrayType())
-    Ty = Ty->getPointeeOrArrayElementType();
-
-  // Vectors >= 16 bytes expose the ABI through alignment requirements.
-  if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16)
-      return true;
-
-  if (const auto *RecordTy = Ty->getAs<RecordType>()) {
-    const RecordDecl *RD = RecordTy->getDecl();
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
-      if (CXXRD->hasDefinition())
-        for (const auto &I : CXXRD->bases())
-          if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false))
-            return true;
-    for (const auto *FD : RD->fields())
-      if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false))
-        return true;
-  }
-
-  if (const auto *FT = Ty->getAs<FunctionType>())
-    if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true))
-      return true;
-  if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>())
-    for (const auto &ParamType : Proto->getParamTypes())
-      if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true))
-        return true;
-
-  return false;
-}
-
-//===----------------------------------------------------------------------===//
-// MSP430 ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class MSP430ABIInfo : public DefaultABIInfo {
-  static ABIArgInfo complexArgInfo() {
-    ABIArgInfo Info = ABIArgInfo::getDirect();
-    Info.setCanBeFlattened(false);
-    return Info;
-  }
-
-public:
-  MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const {
-    if (RetTy->isAnyComplexType())
-      return complexArgInfo();
-
-    return DefaultABIInfo::classifyReturnType(RetTy);
-  }
-
-  ABIArgInfo classifyArgumentType(QualType RetTy) const {
-    if (RetTy->isAnyComplexType())
-      return complexArgInfo();
-
-    return DefaultABIInfo::classifyArgumentType(RetTy);
-  }
-
-  // Just copy the original implementations because
-  // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
-  void computeInfo(CGFunctionInfo &FI) const override {
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type);
-  }
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override {
-    return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
-  }
-};
-
-class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &M) const override;
-};
-
-}
-
-void MSP430TargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
-  if (GV->isDeclaration())
-    return;
-  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-    const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
-    if (!InterruptAttr)
-      return;
-
-    // Handle 'interrupt' attribute:
-    llvm::Function *F = cast<llvm::Function>(GV);
-
-    // Step 1: Set ISR calling convention.
-    F->setCallingConv(llvm::CallingConv::MSP430_INTR);
-
-    // Step 2: Add attributes goodness.
-    F->addFnAttr(llvm::Attribute::NoInline);
-    F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// MIPS ABI Implementation.  This works for both little-endian and
-// big-endian variants.
-//===----------------------------------------------------------------------===//
-
-namespace {
-class MipsABIInfo : public ABIInfo {
-  bool IsO32;
-  const unsigned MinABIStackAlignInBytes, StackAlignInBytes;
-  void CoerceToIntArgs(uint64_t TySize,
-                       SmallVectorImpl<llvm::Type *> &ArgList) const;
-  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
-  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
-  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
-public:
-  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
-    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
-    StackAlignInBytes(IsO32 ? 8 : 16) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-  ABIArgInfo extendType(QualType Ty) const;
-};
-
-class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
-  unsigned SizeOfUnwindException;
-public:
-  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
-      : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
-        SizeOfUnwindException(IsO32 ? 24 : 32) {}
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
-    return 29;
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-    if (!FD) return;
-    llvm::Function *Fn = cast<llvm::Function>(GV);
-
-    if (FD->hasAttr<MipsLongCallAttr>())
-      Fn->addFnAttr("long-call");
-    else if (FD->hasAttr<MipsShortCallAttr>())
-      Fn->addFnAttr("short-call");
-
-    // Other attributes do not have a meaning for declarations.
-    if (GV->isDeclaration())
-      return;
-
-    if (FD->hasAttr<Mips16Attr>()) {
-      Fn->addFnAttr("mips16");
-    }
-    else if (FD->hasAttr<NoMips16Attr>()) {
-      Fn->addFnAttr("nomips16");
-    }
-
-    if (FD->hasAttr<MicroMipsAttr>())
-      Fn->addFnAttr("micromips");
-    else if (FD->hasAttr<NoMicroMipsAttr>())
-      Fn->addFnAttr("nomicromips");
-
-    const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
-    if (!Attr)
-      return;
-
-    const char *Kind;
-    switch (Attr->getInterrupt()) {
-    case MipsInterruptAttr::eic:     Kind = "eic"; break;
-    case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
-    case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
-    case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
-    case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
-    case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
-    case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
-    case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
-    case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
-    }
-
-    Fn->addFnAttr("interrupt", Kind);
-
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-
-  unsigned getSizeOfUnwindException() const override {
-    return SizeOfUnwindException;
-  }
-};
-}
-
-void MipsABIInfo::CoerceToIntArgs(
-    uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
-  llvm::IntegerType *IntTy =
-    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
-
-  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
-  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
-    ArgList.push_back(IntTy);
-
-  // If necessary, add one more integer type to ArgList.
-  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
-
-  if (R)
-    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
-}
-
-// In N32/64, an aligned double precision floating point field is passed in
-// a register.
-llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
-  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
-
-  if (IsO32) {
-    CoerceToIntArgs(TySize, ArgList);
-    return llvm::StructType::get(getVMContext(), ArgList);
-  }
-
-  if (Ty->isComplexType())
-    return CGT.ConvertType(Ty);
-
-  const RecordType *RT = Ty->getAs<RecordType>();
-
-  // Unions/vectors are passed in integer registers.
-  if (!RT || !RT->isStructureOrClassType()) {
-    CoerceToIntArgs(TySize, ArgList);
-    return llvm::StructType::get(getVMContext(), ArgList);
-  }
-
-  const RecordDecl *RD = RT->getDecl();
-  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
-  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
-
-  uint64_t LastOffset = 0;
-  unsigned idx = 0;
-  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
-
-  // Iterate over fields in the struct/class and check if there are any aligned
-  // double fields.
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-       i != e; ++i, ++idx) {
-    const QualType Ty = i->getType();
-    const BuiltinType *BT = Ty->getAs<BuiltinType>();
-
-    if (!BT || BT->getKind() != BuiltinType::Double)
-      continue;
-
-    uint64_t Offset = Layout.getFieldOffset(idx);
-    if (Offset % 64) // Ignore doubles that are not aligned.
-      continue;
-
-    // Add ((Offset - LastOffset) / 64) args of type i64.
-    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
-      ArgList.push_back(I64);
-
-    // Add double type.
-    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
-    LastOffset = Offset + 64;
-  }
-
-  CoerceToIntArgs(TySize - LastOffset, IntArgList);
-  ArgList.append(IntArgList.begin(), IntArgList.end());
-
-  return llvm::StructType::get(getVMContext(), ArgList);
-}
-
-llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
-                                        uint64_t Offset) const {
-  if (OrigOffset + MinABIStackAlignInBytes > Offset)
-    return nullptr;
-
-  return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
-}
-
-ABIArgInfo
-MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  uint64_t OrigOffset = Offset;
-  uint64_t TySize = getContext().getTypeSize(Ty);
-  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
-
-  Align = std::clamp(Align, (uint64_t)MinABIStackAlignInBytes,
-                     (uint64_t)StackAlignInBytes);
-  unsigned CurrOffset = llvm::alignTo(Offset, Align);
-  Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
-
-  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
-    // Ignore empty aggregates.
-    if (TySize == 0)
-      return ABIArgInfo::getIgnore();
-
-    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
-      Offset = OrigOffset + MinABIStackAlignInBytes;
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-    }
-
-    // If we have reached here, aggregates are passed directly by coercing to
-    // another structure type. Padding is inserted if the offset of the
-    // aggregate is unaligned.
-    ABIArgInfo ArgInfo =
-        ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
-                              getPaddingType(OrigOffset, CurrOffset));
-    ArgInfo.setInReg(true);
-    return ArgInfo;
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  // Make sure we pass indirectly things that are too large.
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() > 128 ||
-        (EIT->getNumBits() > 64 &&
-         !getContext().getTargetInfo().hasInt128Type()))
-      return getNaturalAlignIndirect(Ty);
-
-  // All integral types are promoted to the GPR width.
-  if (Ty->isIntegralOrEnumerationType())
-    return extendType(Ty);
-
-  return ABIArgInfo::getDirect(
-      nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
-}
-
-llvm::Type*
-MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
-  const RecordType *RT = RetTy->getAs<RecordType>();
-  SmallVector<llvm::Type*, 8> RTList;
-
-  if (RT && RT->isStructureOrClassType()) {
-    const RecordDecl *RD = RT->getDecl();
-    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
-    unsigned FieldCnt = Layout.getFieldCount();
-
-    // N32/64 returns struct/classes in floating point registers if the
-    // following conditions are met:
-    // 1. The size of the struct/class is no larger than 128-bit.
-    // 2. The struct/class has one or two fields all of which are floating
-    //    point types.
-    // 3. The offset of the first field is zero (this follows what gcc does).
-    //
-    // Any other composite results are returned in integer registers.
-    //
-    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
-      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
-      for (; b != e; ++b) {
-        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
-
-        if (!BT || !BT->isFloatingPoint())
-          break;
-
-        RTList.push_back(CGT.ConvertType(b->getType()));
-      }
-
-      if (b == e)
-        return llvm::StructType::get(getVMContext(), RTList,
-                                     RD->hasAttr<PackedAttr>());
-
-      RTList.clear();
-    }
-  }
-
-  CoerceToIntArgs(Size, RTList);
-  return llvm::StructType::get(getVMContext(), RTList);
-}
-
-ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
-  uint64_t Size = getContext().getTypeSize(RetTy);
-
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  // O32 doesn't treat zero-sized structs 
diff erently from other structs.
-  // However, N32/N64 ignores zero sized return values.
-  if (!IsO32 && Size == 0)
-    return ABIArgInfo::getIgnore();
-
-  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
-    if (Size <= 128) {
-      if (RetTy->isAnyComplexType())
-        return ABIArgInfo::getDirect();
-
-      // O32 returns integer vectors in registers and N32/N64 returns all small
-      // aggregates in registers.
-      if (!IsO32 ||
-          (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
-        ABIArgInfo ArgInfo =
-            ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
-        ArgInfo.setInReg(true);
-        return ArgInfo;
-      }
-    }
-
-    return getNaturalAlignIndirect(RetTy);
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-    RetTy = EnumTy->getDecl()->getIntegerType();
-
-  // Make sure we pass indirectly things that are too large.
-  if (const auto *EIT = RetTy->getAs<BitIntType>())
-    if (EIT->getNumBits() > 128 ||
-        (EIT->getNumBits() > 64 &&
-         !getContext().getTargetInfo().hasInt128Type()))
-      return getNaturalAlignIndirect(RetTy);
-
-  if (isPromotableIntegerTypeForABI(RetTy))
-    return ABIArgInfo::getExtend(RetTy);
-
-  if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
-      RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
-    return ABIArgInfo::getSignExtend(RetTy);
-
-  return ABIArgInfo::getDirect();
-}
-
-void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  ABIArgInfo &RetInfo = FI.getReturnInfo();
-  if (!getCXXABI().classifyReturnType(FI))
-    RetInfo = classifyReturnType(FI.getReturnType());
-
-  // Check if a pointer to an aggregate is passed as a hidden argument.
-  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
-
-  for (auto &I : FI.arguments())
-    I.info = classifyArgumentType(I.type, Offset);
-}
-
-Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                               QualType OrigTy) const {
-  QualType Ty = OrigTy;
-
-  // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
-  // Pointers are also promoted in the same way but this only matters for N32.
-  unsigned SlotSizeInBits = IsO32 ? 32 : 64;
-  unsigned PtrWidth = getTarget().getPointerWidth(LangAS::Default);
-  bool DidPromote = false;
-  if ((Ty->isIntegerType() &&
-          getContext().getIntWidth(Ty) < SlotSizeInBits) ||
-      (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
-    DidPromote = true;
-    Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
-                                            Ty->isSignedIntegerType());
-  }
-
-  auto TyInfo = getContext().getTypeInfoInChars(Ty);
-
-  // The alignment of things in the argument area is never larger than
-  // StackAlignInBytes.
-  TyInfo.Align =
-    std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
-
-  // MinABIStackAlignInBytes is the size of argument slots on the stack.
-  CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
-
-  Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
-                          TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
-
-
-  // If there was a promotion, "unpromote" into a temporary.
-  // TODO: can we just use a pointer into a subset of the original slot?
-  if (DidPromote) {
-    Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
-    llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
-
-    // Truncate down to the right width.
-    llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
-                                                 : CGF.IntPtrTy);
-    llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
-    if (OrigTy->isPointerType())
-      V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
-
-    CGF.Builder.CreateStore(V, Temp);
-    Addr = Temp;
-  }
-
-  return Addr;
-}
-
-ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
-  int TySize = getContext().getTypeSize(Ty);
-
-  // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
-  if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
-    return ABIArgInfo::getSignExtend(Ty);
-
-  return ABIArgInfo::getExtend(Ty);
-}
-
-bool
-MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                                               llvm::Value *Address) const {
-  // This information comes from gcc's implementation, which seems to
-  // as canonical as it gets.
-
-  // Everything on MIPS is 4 bytes.  Double-precision FP registers
-  // are aliased to pairs of single-precision FP registers.
-  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
-
-  // 0-31 are the general purpose registers, $0 - $31.
-  // 32-63 are the floating-point registers, $f0 - $f31.
-  // 64 and 65 are the multiply/divide registers, $hi and $lo.
-  // 66 is the (notional, I think) register for signal-handler return.
-  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
-
-  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
-  // They are one bit wide and ignored here.
-
-  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
-  // (coprocessor 1 is the FP unit)
-  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
-  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
-  // 176-181 are the DSP accumulator registers.
-  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
-  return false;
-}
-
-//===----------------------------------------------------------------------===//
-// M68k ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  M68kTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &M) const override;
-};
-
-} // namespace
-
-void M68kTargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
-  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
-    if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
-      // Handle 'interrupt' attribute:
-      llvm::Function *F = cast<llvm::Function>(GV);
-
-      // Step 1: Set ISR calling convention.
-      F->setCallingConv(llvm::CallingConv::M68k_INTR);
-
-      // Step 2: Add attributes goodness.
-      F->addFnAttr(llvm::Attribute::NoInline);
-
-      // Step 3: Emit ISR vector alias.
-      unsigned Num = attr->getNumber() / 2;
-      llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
-                                "__isr_" + Twine(Num), F);
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// AVR ABI Implementation. Documented at
-// https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
-// https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
-//===----------------------------------------------------------------------===//
-
-namespace {
-class AVRABIInfo : public DefaultABIInfo {
-private:
-  // The total amount of registers can be used to pass parameters. It is 18 on
-  // AVR, or 6 on AVRTiny.
-  const unsigned ParamRegs;
-  // The total amount of registers can be used to pass return value. It is 8 on
-  // AVR, or 4 on AVRTiny.
-  const unsigned RetRegs;
-
-public:
-  AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
-      : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {}
-
-  ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const {
-    // On AVR, a return struct with size less than or equals to 8 bytes is
-    // returned directly via registers R18-R25. On AVRTiny, a return struct
-    // with size less than or equals to 4 bytes is returned directly via
-    // registers R22-R25.
-    if (isAggregateTypeForABI(Ty) &&
-        getContext().getTypeSize(Ty) <= RetRegs * 8)
-      return ABIArgInfo::getDirect();
-    // A return value (struct or scalar) with larger size is returned via a
-    // stack slot, along with a pointer as the function's implicit argument.
-    if (getContext().getTypeSize(Ty) > RetRegs * 8) {
-      LargeRet = true;
-      return getNaturalAlignIndirect(Ty);
-    }
-    // An i8 return value should not be extended to i16, since AVR has 8-bit
-    // registers.
-    if (Ty->isIntegralOrEnumerationType() && getContext().getTypeSize(Ty) <= 8)
-      return ABIArgInfo::getDirect();
-    // Otherwise we follow the default way which is compatible.
-    return DefaultABIInfo::classifyReturnType(Ty);
-  }
-
-  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const {
-    unsigned TySize = getContext().getTypeSize(Ty);
-
-    // An int8 type argument always costs two registers like an int16.
-    if (TySize == 8 && NumRegs >= 2) {
-      NumRegs -= 2;
-      return ABIArgInfo::getExtend(Ty);
-    }
-
-    // If the argument size is an odd number of bytes, round up the size
-    // to the next even number.
-    TySize = llvm::alignTo(TySize, 16);
-
-    // Any type including an array/struct type can be passed in rgisters,
-    // if there are enough registers left.
-    if (TySize <= NumRegs * 8) {
-      NumRegs -= TySize / 8;
-      return ABIArgInfo::getDirect();
-    }
-
-    // An argument is passed either completely in registers or completely in
-    // memory. Since there are not enough registers left, current argument
-    // and all other unprocessed arguments should be passed in memory.
-    // However we still need to return `ABIArgInfo::getDirect()` other than
-    // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot
-    // will be allocated, so the stack frame layout will be incompatible with
-    // avr-gcc.
-    NumRegs = 0;
-    return ABIArgInfo::getDirect();
-  }
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    // Decide the return type.
-    bool LargeRet = false;
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet);
-
-    // Decide each argument type. The total number of registers can be used for
-    // arguments depends on several factors:
-    // 1. Arguments of varargs functions are passed on the stack. This applies
-    //    even to the named arguments. So no register can be used.
-    // 2. Total 18 registers can be used on avr and 6 ones on avrtiny.
-    // 3. If the return type is a struct with too large size, two registers
-    //    (out of 18/6) will be cost as an implicit pointer argument.
-    unsigned NumRegs = ParamRegs;
-    if (FI.isVariadic())
-      NumRegs = 0;
-    else if (LargeRet)
-      NumRegs -= 2;
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type, NumRegs);
-  }
-};
-
-class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
-      : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {}
-
-  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
-                                  const VarDecl *D) const override {
-    // Check if global/static variable is defined in address space
-    // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5)
-    // but not constant.
-    if (D) {
-      LangAS AS = D->getType().getAddressSpace();
-      if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) &&
-          toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified())
-        CGM.getDiags().Report(D->getLocation(),
-                              diag::err_verify_nonconst_addrspace)
-            << "__flash*";
-    }
-    return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    if (GV->isDeclaration())
-      return;
-    const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
-    if (!FD) return;
-    auto *Fn = cast<llvm::Function>(GV);
-
-    if (FD->getAttr<AVRInterruptAttr>())
-      Fn->addFnAttr("interrupt");
-
-    if (FD->getAttr<AVRSignalAttr>())
-      Fn->addFnAttr("signal");
-  }
-};
-}
-
-//===----------------------------------------------------------------------===//
-// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
-// Currently subclassed only to implement custom OpenCL C function attribute
-// handling.
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class TCETargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  TCETargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &M) const override;
-};
-
-void TCETargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
-  if (GV->isDeclaration())
-    return;
-  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-  if (!FD) return;
-
-  llvm::Function *F = cast<llvm::Function>(GV);
-
-  if (M.getLangOpts().OpenCL) {
-    if (FD->hasAttr<OpenCLKernelAttr>()) {
-      // OpenCL C Kernel functions are not subject to inlining
-      F->addFnAttr(llvm::Attribute::NoInline);
-      const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
-      if (Attr) {
-        // Convert the reqd_work_group_size() attributes to metadata.
-        llvm::LLVMContext &Context = F->getContext();
-        llvm::NamedMDNode *OpenCLMetadata =
-            M.getModule().getOrInsertNamedMetadata(
-                "opencl.kernel_wg_size_info");
-
-        SmallVector<llvm::Metadata *, 5> Operands;
-        Operands.push_back(llvm::ConstantAsMetadata::get(F));
-
-        Operands.push_back(
-            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
-                M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
-        Operands.push_back(
-            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
-                M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
-        Operands.push_back(
-            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
-                M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
-
-        // Add a boolean constant operand for "required" (true) or "hint"
-        // (false) for implementing the work_group_size_hint attr later.
-        // Currently always true as the hint is not yet implemented.
-        Operands.push_back(
-            llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
-        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
-      }
-    }
-  }
-}
-
-}
-
-//===----------------------------------------------------------------------===//
-// Hexagon ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class HexagonABIInfo : public DefaultABIInfo {
-public:
-  HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-
-private:
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-  Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
-                              QualType Ty) const;
-  Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
-                              QualType Ty) const;
-  Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
-                                   QualType Ty) const;
-};
-
-class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    return 29;
-  }
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &GCM) const override {
-    if (GV->isDeclaration())
-      return;
-    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-    if (!FD)
-      return;
-  }
-};
-
-} // namespace
-
-void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  unsigned RegsLeft = 6;
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-  for (auto &I : FI.arguments())
-    I.info = classifyArgumentType(I.type, &RegsLeft);
-}
-
-static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
-  assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
-                       " through registers");
-
-  if (*RegsLeft == 0)
-    return false;
-
-  if (Size <= 32) {
-    (*RegsLeft)--;
-    return true;
-  }
-
-  if (2 <= (*RegsLeft & (~1U))) {
-    *RegsLeft = (*RegsLeft & (~1U)) - 2;
-    return true;
-  }
-
-  // Next available register was r5 but candidate was greater than 32-bits so it
-  // has to go on the stack. However we still consume r5
-  if (*RegsLeft == 1)
-    *RegsLeft = 0;
-
-  return false;
-}
-
-ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
-                                                unsigned *RegsLeft) const {
-  if (!isAggregateTypeForABI(Ty)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    uint64_t Size = getContext().getTypeSize(Ty);
-    if (Size <= 64)
-      HexagonAdjustRegsLeft(Size, RegsLeft);
-
-    if (Size > 64 && Ty->isBitIntType())
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
-
-    return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                             : ABIArgInfo::getDirect();
-  }
-
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-  // Ignore empty records.
-  if (isEmptyRecord(getContext(), Ty, true))
-    return ABIArgInfo::getIgnore();
-
-  uint64_t Size = getContext().getTypeSize(Ty);
-  unsigned Align = getContext().getTypeAlign(Ty);
-
-  if (Size > 64)
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
-
-  if (HexagonAdjustRegsLeft(Size, RegsLeft))
-    Align = Size <= 32 ? 32 : 64;
-  if (Size <= Align) {
-    // Pass in the smallest viable integer type.
-    Size = llvm::bit_ceil(Size);
-    return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
-  }
-  return DefaultABIInfo::classifyArgumentType(Ty);
-}
-
-ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  const TargetInfo &T = CGT.getTarget();
-  uint64_t Size = getContext().getTypeSize(RetTy);
-
-  if (RetTy->getAs<VectorType>()) {
-    // HVX vectors are returned in vector registers or register pairs.
-    if (T.hasFeature("hvx")) {
-      assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
-      uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
-      if (Size == VecSize || Size == 2*VecSize)
-        return ABIArgInfo::getDirectInReg();
-    }
-    // Large vector types should be returned via memory.
-    if (Size > 64)
-      return getNaturalAlignIndirect(RetTy);
-  }
-
-  if (!isAggregateTypeForABI(RetTy)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-      RetTy = EnumTy->getDecl()->getIntegerType();
-
-    if (Size > 64 && RetTy->isBitIntType())
-      return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
-
-    return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
-                                                : ABIArgInfo::getDirect();
-  }
-
-  if (isEmptyRecord(getContext(), RetTy, true))
-    return ABIArgInfo::getIgnore();
-
-  // Aggregates <= 8 bytes are returned in registers, other aggregates
-  // are returned indirectly.
-  if (Size <= 64) {
-    // Return in the smallest viable integer type.
-    Size = llvm::bit_ceil(Size);
-    return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
-  }
-  return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
-}
-
-Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
-                                            Address VAListAddr,
-                                            QualType Ty) const {
-  // Load the overflow area pointer.
-  Address __overflow_area_pointer_p =
-      CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
-  llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
-      __overflow_area_pointer_p, "__overflow_area_pointer");
-
-  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
-  if (Align > 4) {
-    // Alignment should be a power of 2.
-    assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
-
-    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
-    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
-
-    // Add offset to the current pointer to access the argument.
-    __overflow_area_pointer =
-        CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
-    llvm::Value *AsInt =
-        CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
-
-    // Create a mask which should be "AND"ed
-    // with (overflow_arg_area + align - 1)
-    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
-    __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
-        CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
-        "__overflow_area_pointer.align");
-  }
-
-  // Get the type of the argument from memory and bitcast
-  // overflow area pointer to the argument type.
-  llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
-  Address AddrTyped = CGF.Builder.CreateElementBitCast(
-      Address(__overflow_area_pointer, CGF.Int8Ty,
-              CharUnits::fromQuantity(Align)),
-      PTy);
-
-  // Round up to the minimum stack alignment for varargs which is 4 bytes.
-  uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
-
-  __overflow_area_pointer = CGF.Builder.CreateGEP(
-      CGF.Int8Ty, __overflow_area_pointer,
-      llvm::ConstantInt::get(CGF.Int32Ty, Offset),
-      "__overflow_area_pointer.next");
-  CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
-
-  return AddrTyped;
-}
-
-Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
-                                            Address VAListAddr,
-                                            QualType Ty) const {
-  // FIXME: Need to handle alignment
-  llvm::Type *BP = CGF.Int8PtrTy;
-  CGBuilderTy &Builder = CGF.Builder;
-  Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap");
-  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
-  // Handle address alignment for type alignment > 32 bits
-  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
-  if (TyAlign > 4) {
-    assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
-    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
-    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
-    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
-    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
-  }
-  Address AddrTyped = Builder.CreateElementBitCast(
-      Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)),
-      CGF.ConvertType(Ty));
-
-  uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
-  llvm::Value *NextAddr = Builder.CreateGEP(
-      CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
-  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
-  return AddrTyped;
-}
-
-Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
-                                                 Address VAListAddr,
-                                                 QualType Ty) const {
-  int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
-
-  if (ArgSize > 8)
-    return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
-
-  // Here we have check if the argument is in register area or
-  // in overflow area.
-  // If the saved register area pointer + argsize rounded up to alignment >
-  // saved register area end pointer, argument is in overflow area.
-  unsigned RegsLeft = 6;
-  Ty = CGF.getContext().getCanonicalType(Ty);
-  (void)classifyArgumentType(Ty, &RegsLeft);
-
-  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
-  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
-  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
-
-  // Get rounded size of the argument.GCC does not allow vararg of
-  // size < 4 bytes. We follow the same logic here.
-  ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
-  int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
-
-  // Argument may be in saved register area
-  CGF.EmitBlock(MaybeRegBlock);
-
-  // Load the current saved register area pointer.
-  Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
-      VAListAddr, 0, "__current_saved_reg_area_pointer_p");
-  llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
-      __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
-
-  // Load the saved register area end pointer.
-  Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
-      VAListAddr, 1, "__saved_reg_area_end_pointer_p");
-  llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
-      __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
-
-  // If the size of argument is > 4 bytes, check if the stack
-  // location is aligned to 8 bytes
-  if (ArgAlign > 4) {
-
-    llvm::Value *__current_saved_reg_area_pointer_int =
-        CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
-                                   CGF.Int32Ty);
-
-    __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
-        __current_saved_reg_area_pointer_int,
-        llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
-        "align_current_saved_reg_area_pointer");
-
-    __current_saved_reg_area_pointer_int =
-        CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
-                              llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
-                              "align_current_saved_reg_area_pointer");
-
-    __current_saved_reg_area_pointer =
-        CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
-                                   __current_saved_reg_area_pointer->getType(),
-                                   "align_current_saved_reg_area_pointer");
-  }
-
-  llvm::Value *__new_saved_reg_area_pointer =
-      CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
-                            llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
-                            "__new_saved_reg_area_pointer");
-
-  llvm::Value *UsingStack = nullptr;
-  UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
-                                         __saved_reg_area_end_pointer);
-
-  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
-
-  // Argument in saved register area
-  // Implement the block where argument is in register saved area
-  CGF.EmitBlock(InRegBlock);
-
-  llvm::Type *PTy = CGF.ConvertType(Ty);
-  llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
-      __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
-
-  CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
-                          __current_saved_reg_area_pointer_p);
-
-  CGF.EmitBranch(ContBlock);
-
-  // Argument in overflow area
-  // Implement the block where the argument is in overflow area.
-  CGF.EmitBlock(OnStackBlock);
-
-  // Load the overflow area pointer
-  Address __overflow_area_pointer_p =
-      CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
-  llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
-      __overflow_area_pointer_p, "__overflow_area_pointer");
-
-  // Align the overflow area pointer according to the alignment of the argument
-  if (ArgAlign > 4) {
-    llvm::Value *__overflow_area_pointer_int =
-        CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
-
-    __overflow_area_pointer_int =
-        CGF.Builder.CreateAdd(__overflow_area_pointer_int,
-                              llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
-                              "align_overflow_area_pointer");
-
-    __overflow_area_pointer_int =
-        CGF.Builder.CreateAnd(__overflow_area_pointer_int,
-                              llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
-                              "align_overflow_area_pointer");
-
-    __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
-        __overflow_area_pointer_int, __overflow_area_pointer->getType(),
-        "align_overflow_area_pointer");
-  }
-
-  // Get the pointer for next argument in overflow area and store it
-  // to overflow area pointer.
-  llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
-      CGF.Int8Ty, __overflow_area_pointer,
-      llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
-      "__overflow_area_pointer.next");
-
-  CGF.Builder.CreateStore(__new_overflow_area_pointer,
-                          __overflow_area_pointer_p);
-
-  CGF.Builder.CreateStore(__new_overflow_area_pointer,
-                          __current_saved_reg_area_pointer_p);
-
-  // Bitcast the overflow area pointer to the type of argument.
-  llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
-      __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
-
-  CGF.EmitBranch(ContBlock);
-
-  // Get the correct pointer to load the variable argument
-  // Implement the ContBlock
-  CGF.EmitBlock(ContBlock);
-
-  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy);
-  llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
-  ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
-  ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
-
-  return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign));
-}
-
-Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                  QualType Ty) const {
-
-  if (getTarget().getTriple().isMusl())
-    return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
-
-  return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
-}
-
-//===----------------------------------------------------------------------===//
-// Lanai ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-class LanaiABIInfo : public DefaultABIInfo {
-  struct CCState {
-    unsigned FreeRegs;
-  };
-
-public:
-  LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-
-  bool shouldUseInReg(QualType Ty, CCState &State) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    CCState State;
-    // Lanai uses 4 registers to pass arguments unless the function has the
-    // regparm attribute set.
-    if (FI.getHasRegParm()) {
-      State.FreeRegs = FI.getRegParm();
-    } else {
-      State.FreeRegs = 4;
-    }
-
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type, State);
-  }
-
-  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
-};
-} // end anonymous namespace
-
-bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
-  unsigned Size = getContext().getTypeSize(Ty);
-  unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
-
-  if (SizeInRegs == 0)
-    return false;
-
-  if (SizeInRegs > State.FreeRegs) {
-    State.FreeRegs = 0;
-    return false;
-  }
-
-  State.FreeRegs -= SizeInRegs;
-
-  return true;
-}
-
-ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
-                                           CCState &State) const {
-  if (!ByVal) {
-    if (State.FreeRegs) {
-      --State.FreeRegs; // Non-byval indirects just use one pointer.
-      return getNaturalAlignIndirectInReg(Ty);
-    }
-    return getNaturalAlignIndirect(Ty, false);
-  }
-
-  // Compute the byval alignment.
-  const unsigned MinABIStackAlignInBytes = 4;
-  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
-  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
-                                 /*Realign=*/TypeAlign >
-                                     MinABIStackAlignInBytes);
-}
-
-ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
-                                              CCState &State) const {
-  // Check with the C++ ABI first.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (RT) {
-    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
-    if (RAA == CGCXXABI::RAA_Indirect) {
-      return getIndirectResult(Ty, /*ByVal=*/false, State);
-    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
-      return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
-    }
-  }
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Structures with flexible arrays are always indirect.
-    if (RT && RT->getDecl()->hasFlexibleArrayMember())
-      return getIndirectResult(Ty, /*ByVal=*/true, State);
-
-    // Ignore empty structs/unions.
-    if (isEmptyRecord(getContext(), Ty, true))
-      return ABIArgInfo::getIgnore();
-
-    llvm::LLVMContext &LLVMContext = getVMContext();
-    unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
-    if (SizeInRegs <= State.FreeRegs) {
-      llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
-      SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
-      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
-      State.FreeRegs -= SizeInRegs;
-      return ABIArgInfo::getDirectInReg(Result);
-    } else {
-      State.FreeRegs = 0;
-    }
-    return getIndirectResult(Ty, true, State);
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const auto *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  bool InReg = shouldUseInReg(Ty, State);
-
-  // Don't pass >64 bit integers in registers.
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() > 64)
-      return getIndirectResult(Ty, /*ByVal=*/true, State);
-
-  if (isPromotableIntegerTypeForABI(Ty)) {
-    if (InReg)
-      return ABIArgInfo::getDirectInReg();
-    return ABIArgInfo::getExtend(Ty);
-  }
-  if (InReg)
-    return ABIArgInfo::getDirectInReg();
-  return ABIArgInfo::getDirect();
-}
-
-namespace {
-class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
-};
-}
-
-//===----------------------------------------------------------------------===//
-// AMDGPU ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class AMDGPUABIInfo final : public DefaultABIInfo {
-private:
-  static const unsigned MaxNumRegsForArgsRet = 16;
-
-  unsigned numRegsForType(QualType Ty) const;
-
-  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
-  bool isHomogeneousAggregateSmallEnough(const Type *Base,
-                                         uint64_t Members) const override;
-
-  // Coerce HIP scalar pointer arguments from generic pointers to global ones.
-  llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
-                                       unsigned ToAS) const {
-    // Single value types.
-    auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty);
-    if (PtrTy && PtrTy->getAddressSpace() == FromAS)
-      return llvm::PointerType::get(Ty->getContext(), ToAS);
-    return Ty;
-  }
-
-public:
-  explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
-    DefaultABIInfo(CGT) {}
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
-  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
-  return true;
-}
-
-bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
-  const Type *Base, uint64_t Members) const {
-  uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
-
-  // Homogeneous Aggregates may occupy at most 16 registers.
-  return Members * NumRegs <= MaxNumRegsForArgsRet;
-}
-
-/// Estimate number of registers the type will use when passed in registers.
-unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
-  unsigned NumRegs = 0;
-
-  if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    // Compute from the number of elements. The reported size is based on the
-    // in-memory size, which includes the padding 4th element for 3-vectors.
-    QualType EltTy = VT->getElementType();
-    unsigned EltSize = getContext().getTypeSize(EltTy);
-
-    // 16-bit element vectors should be passed as packed.
-    if (EltSize == 16)
-      return (VT->getNumElements() + 1) / 2;
-
-    unsigned EltNumRegs = (EltSize + 31) / 32;
-    return EltNumRegs * VT->getNumElements();
-  }
-
-  if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    const RecordDecl *RD = RT->getDecl();
-    assert(!RD->hasFlexibleArrayMember());
-
-    for (const FieldDecl *Field : RD->fields()) {
-      QualType FieldTy = Field->getType();
-      NumRegs += numRegsForType(FieldTy);
-    }
-
-    return NumRegs;
-  }
-
-  return (getContext().getTypeSize(Ty) + 31) / 32;
-}
-
-void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  llvm::CallingConv::ID CC = FI.getCallingConvention();
-
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-
-  unsigned NumRegsLeft = MaxNumRegsForArgsRet;
-  for (auto &Arg : FI.arguments()) {
-    if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
-      Arg.info = classifyKernelArgumentType(Arg.type);
-    } else {
-      Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
-    }
-  }
-}
-
-Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                 QualType Ty) const {
-  llvm_unreachable("AMDGPU does not support varargs");
-}
-
-ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
-  if (isAggregateTypeForABI(RetTy)) {
-    // Records with non-trivial destructors/copy-constructors should not be
-    // returned by value.
-    if (!getRecordArgABI(RetTy, getCXXABI())) {
-      // Ignore empty structs/unions.
-      if (isEmptyRecord(getContext(), RetTy, true))
-        return ABIArgInfo::getIgnore();
-
-      // Lower single-element structs to just return a regular value.
-      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
-        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
-
-      if (const RecordType *RT = RetTy->getAs<RecordType>()) {
-        const RecordDecl *RD = RT->getDecl();
-        if (RD->hasFlexibleArrayMember())
-          return DefaultABIInfo::classifyReturnType(RetTy);
-      }
-
-      // Pack aggregates <= 4 bytes into single VGPR or pair.
-      uint64_t Size = getContext().getTypeSize(RetTy);
-      if (Size <= 16)
-        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
-
-      if (Size <= 32)
-        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
-
-      if (Size <= 64) {
-        llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
-        return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
-      }
-
-      if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
-        return ABIArgInfo::getDirect();
-    }
-  }
-
-  // Otherwise just do the default thing.
-  return DefaultABIInfo::classifyReturnType(RetTy);
-}
-
-/// For kernels all parameters are really passed in a special buffer. It doesn't
-/// make sense to pass anything byval, so everything must be direct.
-ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  // TODO: Can we omit empty structs?
-
-  if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
-    Ty = QualType(SeltTy, 0);
-
-  llvm::Type *OrigLTy = CGT.ConvertType(Ty);
-  llvm::Type *LTy = OrigLTy;
-  if (getContext().getLangOpts().HIP) {
-    LTy = coerceKernelArgumentType(
-        OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
-        /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
-  }
-
-  // FIXME: Should also use this for OpenCL, but it requires addressing the
-  // problem of kernels being called.
-  //
-  // FIXME: This doesn't apply the optimization of coercing pointers in structs
-  // to global address space when using byref. This would require implementing a
-  // new kind of coercion of the in-memory type when for indirect arguments.
-  if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
-      isAggregateTypeForABI(Ty)) {
-    return ABIArgInfo::getIndirectAliased(
-        getContext().getTypeAlignInChars(Ty),
-        getContext().getTargetAddressSpace(LangAS::opencl_constant),
-        false /*Realign*/, nullptr /*Padding*/);
-  }
-
-  // If we set CanBeFlattened to true, CodeGen will expand the struct to its
-  // individual elements, which confuses the Clover OpenCL backend; therefore we
-  // have to set it to false here. Other args of getDirect() are just defaults.
-  return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
-}
-
-ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
-                                               unsigned &NumRegsLeft) const {
-  assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
-
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Records with non-trivial destructors/copy-constructors should not be
-    // passed by value.
-    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
-      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-    // Ignore empty structs/unions.
-    if (isEmptyRecord(getContext(), Ty, true))
-      return ABIArgInfo::getIgnore();
-
-    // Lower single-element structs to just pass a regular value. TODO: We
-    // could do reasonable-size multiple-element structs too, using getExpand(),
-    // though watch out for things like bitfields.
-    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
-      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
-
-    if (const RecordType *RT = Ty->getAs<RecordType>()) {
-      const RecordDecl *RD = RT->getDecl();
-      if (RD->hasFlexibleArrayMember())
-        return DefaultABIInfo::classifyArgumentType(Ty);
-    }
-
-    // Pack aggregates <= 8 bytes into single VGPR or pair.
-    uint64_t Size = getContext().getTypeSize(Ty);
-    if (Size <= 64) {
-      unsigned NumRegs = (Size + 31) / 32;
-      NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
-
-      if (Size <= 16)
-        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
-
-      if (Size <= 32)
-        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
-
-      // XXX: Should this be i64 instead, and should the limit increase?
-      llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
-      return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
-    }
-
-    if (NumRegsLeft > 0) {
-      unsigned NumRegs = numRegsForType(Ty);
-      if (NumRegsLeft >= NumRegs) {
-        NumRegsLeft -= NumRegs;
-        return ABIArgInfo::getDirect();
-      }
-    }
-  }
-
-  // Otherwise just do the default thing.
-  ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
-  if (!ArgInfo.isIndirect()) {
-    unsigned NumRegs = numRegsForType(Ty);
-    NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
-  }
-
-  return ArgInfo;
-}
-
-class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
-
-  void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F,
-                                 CodeGenModule &CGM) const;
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &M) const override;
-  unsigned getOpenCLKernelCallingConv() const override;
-
-  llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
-      llvm::PointerType *T, QualType QT) const override;
-
-  LangAS getASTAllocaAddressSpace() const override {
-    return getLangASFromTargetAS(
-        getABIInfo().getDataLayout().getAllocaAddrSpace());
-  }
-  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
-                                  const VarDecl *D) const override;
-  llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
-                                         SyncScope Scope,
-                                         llvm::AtomicOrdering Ordering,
-                                         llvm::LLVMContext &Ctx) const override;
-  llvm::Value *createEnqueuedBlockKernel(CodeGenFunction &CGF,
-                                         llvm::Function *BlockInvokeFunc,
-                                         llvm::Type *BlockTy) const override;
-  bool shouldEmitStaticExternCAliases() const override;
-  bool shouldEmitDWARFBitFieldSeparators() const override;
-  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
-};
-}
-
-static bool requiresAMDGPUProtectedVisibility(const Decl *D,
-                                              llvm::GlobalValue *GV) {
-  if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
-    return false;
-
-  return D->hasAttr<OpenCLKernelAttr>() ||
-         (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
-         (isa<VarDecl>(D) &&
-          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
-           cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
-           cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
-}
-
-void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes(
-    const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const {
-  const auto *ReqdWGS =
-      M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
-  const bool IsOpenCLKernel =
-      M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>();
-  const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>();
-
-  const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
-  if (ReqdWGS || FlatWGS) {
-    unsigned Min = 0;
-    unsigned Max = 0;
-    if (FlatWGS) {
-      Min = FlatWGS->getMin()
-                ->EvaluateKnownConstInt(M.getContext())
-                .getExtValue();
-      Max = FlatWGS->getMax()
-                ->EvaluateKnownConstInt(M.getContext())
-                .getExtValue();
-    }
-    if (ReqdWGS && Min == 0 && Max == 0)
-      Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
-
-    if (Min != 0) {
-      assert(Min <= Max && "Min must be less than or equal Max");
-
-      std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
-      F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
-    } else
-      assert(Max == 0 && "Max must be zero");
-  } else if (IsOpenCLKernel || IsHIPKernel) {
-    // By default, restrict the maximum size to a value specified by
-    // --gpu-max-threads-per-block=n or its default value for HIP.
-    const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
-    const unsigned DefaultMaxWorkGroupSize =
-        IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
-                       : M.getLangOpts().GPUMaxThreadsPerBlock;
-    std::string AttrVal =
-        std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
-    F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
-  }
-
-  if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
-    unsigned Min =
-        Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
-    unsigned Max = Attr->getMax() ? Attr->getMax()
-                                        ->EvaluateKnownConstInt(M.getContext())
-                                        .getExtValue()
-                                  : 0;
-
-    if (Min != 0) {
-      assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
-
-      std::string AttrVal = llvm::utostr(Min);
-      if (Max != 0)
-        AttrVal = AttrVal + "," + llvm::utostr(Max);
-      F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
-    } else
-      assert(Max == 0 && "Max must be zero");
-  }
-
-  if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
-    unsigned NumSGPR = Attr->getNumSGPR();
-
-    if (NumSGPR != 0)
-      F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
-  }
-
-  if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
-    uint32_t NumVGPR = Attr->getNumVGPR();
-
-    if (NumVGPR != 0)
-      F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
-  }
-}
-
-void AMDGPUTargetCodeGenInfo::setTargetAttributes(
-    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
-  if (requiresAMDGPUProtectedVisibility(D, GV)) {
-    GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
-    GV->setDSOLocal(true);
-  }
-
-  if (GV->isDeclaration())
-    return;
-
-  llvm::Function *F = dyn_cast<llvm::Function>(GV);
-  if (!F)
-    return;
-
-  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
-  if (FD)
-    setFunctionDeclAttributes(FD, F, M);
-
-  const bool IsHIPKernel =
-      M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>();
-
-  // TODO: This should be moved to language specific attributes instead.
-  if (IsHIPKernel)
-    F->addFnAttr("uniform-work-group-size", "true");
-
-  if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
-    F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
-
-  if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
-    F->addFnAttr("amdgpu-ieee", "false");
-}
-
-unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
-  return llvm::CallingConv::AMDGPU_KERNEL;
-}
-
-// Currently LLVM assumes null pointers always have value 0,
-// which results in incorrectly transformed IR. Therefore, instead of
-// emitting null pointers in private and local address spaces, a null
-// pointer in generic address space is emitted which is casted to a
-// pointer in local or private address space.
-llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
-    const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
-    QualType QT) const {
-  if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
-    return llvm::ConstantPointerNull::get(PT);
-
-  auto &Ctx = CGM.getContext();
-  auto NPT = llvm::PointerType::get(
-      PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
-  return llvm::ConstantExpr::getAddrSpaceCast(
-      llvm::ConstantPointerNull::get(NPT), PT);
-}
-
-LangAS
-AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
-                                                  const VarDecl *D) const {
-  assert(!CGM.getLangOpts().OpenCL &&
-         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
-         "Address space agnostic languages only");
-  LangAS DefaultGlobalAS = getLangASFromTargetAS(
-      CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
-  if (!D)
-    return DefaultGlobalAS;
-
-  LangAS AddrSpace = D->getType().getAddressSpace();
-  assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
-  if (AddrSpace != LangAS::Default)
-    return AddrSpace;
-
-  // Only promote to address space 4 if VarDecl has constant initialization.
-  if (CGM.isTypeConstant(D->getType(), false, false) &&
-      D->hasConstantInitialization()) {
-    if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
-      return *ConstAS;
-  }
-  return DefaultGlobalAS;
-}
-
-llvm::SyncScope::ID
-AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
-                                            SyncScope Scope,
-                                            llvm::AtomicOrdering Ordering,
-                                            llvm::LLVMContext &Ctx) const {
-  std::string Name;
-  switch (Scope) {
-  case SyncScope::HIPSingleThread:
-    Name = "singlethread";
-    break;
-  case SyncScope::HIPWavefront:
-  case SyncScope::OpenCLSubGroup:
-    Name = "wavefront";
-    break;
-  case SyncScope::HIPWorkgroup:
-  case SyncScope::OpenCLWorkGroup:
-    Name = "workgroup";
-    break;
-  case SyncScope::HIPAgent:
-  case SyncScope::OpenCLDevice:
-    Name = "agent";
-    break;
-  case SyncScope::HIPSystem:
-  case SyncScope::OpenCLAllSVMDevices:
-    Name = "";
-    break;
-  }
-
-  if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
-    if (!Name.empty())
-      Name = Twine(Twine(Name) + Twine("-")).str();
-
-    Name = Twine(Twine(Name) + Twine("one-as")).str();
-  }
-
-  return Ctx.getOrInsertSyncScopeID(Name);
-}
-
-bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
-  return false;
-}
-
-bool AMDGPUTargetCodeGenInfo::shouldEmitDWARFBitFieldSeparators() const {
-  return true;
-}
-
-void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
-    const FunctionType *&FT) const {
-  FT = getABIInfo().getContext().adjustFunctionType(
-      FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
-}
-
-//===----------------------------------------------------------------------===//
-// SPARC v8 ABI Implementation.
-// Based on the SPARC Compliance Definition version 2.4.1.
-//
-// Ensures that complex values are passed in registers.
-//
-namespace {
-class SparcV8ABIInfo : public DefaultABIInfo {
-public:
-  SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-
-private:
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  void computeInfo(CGFunctionInfo &FI) const override;
-};
-} // end anonymous namespace
-
-
-ABIArgInfo
-SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
-  if (Ty->isAnyComplexType()) {
-    return ABIArgInfo::getDirect();
-  }
-  else {
-    return DefaultABIInfo::classifyReturnType(Ty);
-  }
-}
-
-void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
-
-  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-  for (auto &Arg : FI.arguments())
-    Arg.info = classifyArgumentType(Arg.type);
-}
-
-namespace {
-class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
-
-  llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
-                                   llvm::Value *Address) const override {
-    int Offset;
-    if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
-      Offset = 12;
-    else
-      Offset = 8;
-    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
-                                 llvm::ConstantInt::get(CGF.Int32Ty, Offset));
-  }
-
-  llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
-                                   llvm::Value *Address) const override {
-    int Offset;
-    if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
-      Offset = -12;
-    else
-      Offset = -8;
-    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
-                                 llvm::ConstantInt::get(CGF.Int32Ty, Offset));
-  }
-};
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// SPARC v9 ABI Implementation.
-// Based on the SPARC Compliance Definition version 2.4.1.
-//
-// Function arguments a mapped to a nominal "parameter array" and promoted to
-// registers depending on their type. Each argument occupies 8 or 16 bytes in
-// the array, structs larger than 16 bytes are passed indirectly.
-//
-// One case requires special care:
-//
-//   struct mixed {
-//     int i;
-//     float f;
-//   };
-//
-// When a struct mixed is passed by value, it only occupies 8 bytes in the
-// parameter array, but the int is passed in an integer register, and the float
-// is passed in a floating point register. This is represented as two arguments
-// with the LLVM IR inreg attribute:
-//
-//   declare void f(i32 inreg %i, float inreg %f)
-//
-// The code generator will only allocate 4 bytes from the parameter array for
-// the inreg arguments. All other arguments are allocated a multiple of 8
-// bytes.
-//
-namespace {
-class SparcV9ABIInfo : public ABIInfo {
-public:
-  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
-
-private:
-  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
-  void computeInfo(CGFunctionInfo &FI) const override;
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  // Coercion type builder for structs passed in registers. The coercion type
-  // serves two purposes:
-  //
-  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
-  //    in registers.
-  // 2. Expose aligned floating point elements as first-level elements, so the
-  //    code generator knows to pass them in floating point registers.
-  //
-  // We also compute the InReg flag which indicates that the struct contains
-  // aligned 32-bit floats.
-  //
-  struct CoerceBuilder {
-    llvm::LLVMContext &Context;
-    const llvm::DataLayout &DL;
-    SmallVector<llvm::Type*, 8> Elems;
-    uint64_t Size;
-    bool InReg;
-
-    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
-      : Context(c), DL(dl), Size(0), InReg(false) {}
-
-    // Pad Elems with integers until Size is ToSize.
-    void pad(uint64_t ToSize) {
-      assert(ToSize >= Size && "Cannot remove elements");
-      if (ToSize == Size)
-        return;
-
-      // Finish the current 64-bit word.
-      uint64_t Aligned = llvm::alignTo(Size, 64);
-      if (Aligned > Size && Aligned <= ToSize) {
-        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
-        Size = Aligned;
-      }
-
-      // Add whole 64-bit words.
-      while (Size + 64 <= ToSize) {
-        Elems.push_back(llvm::Type::getInt64Ty(Context));
-        Size += 64;
-      }
-
-      // Final in-word padding.
-      if (Size < ToSize) {
-        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
-        Size = ToSize;
-      }
-    }
-
-    // Add a floating point element at Offset.
-    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
-      // Unaligned floats are treated as integers.
-      if (Offset % Bits)
-        return;
-      // The InReg flag is only required if there are any floats < 64 bits.
-      if (Bits < 64)
-        InReg = true;
-      pad(Offset);
-      Elems.push_back(Ty);
-      Size = Offset + Bits;
-    }
-
-    // Add a struct type to the coercion type, starting at Offset (in bits).
-    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
-      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
-      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
-        llvm::Type *ElemTy = StrTy->getElementType(i);
-        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
-        switch (ElemTy->getTypeID()) {
-        case llvm::Type::StructTyID:
-          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
-          break;
-        case llvm::Type::FloatTyID:
-          addFloat(ElemOffset, ElemTy, 32);
-          break;
-        case llvm::Type::DoubleTyID:
-          addFloat(ElemOffset, ElemTy, 64);
-          break;
-        case llvm::Type::FP128TyID:
-          addFloat(ElemOffset, ElemTy, 128);
-          break;
-        case llvm::Type::PointerTyID:
-          if (ElemOffset % 64 == 0) {
-            pad(ElemOffset);
-            Elems.push_back(ElemTy);
-            Size += 64;
-          }
-          break;
-        default:
-          break;
-        }
-      }
-    }
-
-    // Check if Ty is a usable substitute for the coercion type.
-    bool isUsableType(llvm::StructType *Ty) const {
-      return llvm::ArrayRef(Elems) == Ty->elements();
-    }
-
-    // Get the coercion type as a literal struct type.
-    llvm::Type *getType() const {
-      if (Elems.size() == 1)
-        return Elems.front();
-      else
-        return llvm::StructType::get(Context, Elems);
-    }
-  };
-};
-} // end anonymous namespace
-
-ABIArgInfo
-SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
-  if (Ty->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  uint64_t Size = getContext().getTypeSize(Ty);
-
-  // Anything too big to fit in registers is passed with an explicit indirect
-  // pointer / sret pointer.
-  if (Size > SizeLimit)
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  // Integer types smaller than a register are extended.
-  if (Size < 64 && Ty->isIntegerType())
-    return ABIArgInfo::getExtend(Ty);
-
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() < 64)
-      return ABIArgInfo::getExtend(Ty);
-
-  // Other non-aggregates go in registers.
-  if (!isAggregateTypeForABI(Ty))
-    return ABIArgInfo::getDirect();
-
-  // If a C++ object has either a non-trivial copy constructor or a non-trivial
-  // destructor, it is passed with an explicit indirect pointer / sret pointer.
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
-    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
-
-  // This is a small aggregate type that should be passed in registers.
-  // Build a coercion type from the LLVM struct type.
-  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
-  if (!StrTy)
-    return ABIArgInfo::getDirect();
-
-  CoerceBuilder CB(getVMContext(), getDataLayout());
-  CB.addStruct(0, StrTy);
-  CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
-
-  // Try to use the original type for coercion.
-  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
-
-  if (CB.InReg)
-    return ABIArgInfo::getDirectInReg(CoerceTy);
-  else
-    return ABIArgInfo::getDirect(CoerceTy);
-}
-
-Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                  QualType Ty) const {
-  ABIArgInfo AI = classifyType(Ty, 16 * 8);
-  llvm::Type *ArgTy = CGT.ConvertType(Ty);
-  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
-    AI.setCoerceToType(ArgTy);
-
-  CharUnits SlotSize = CharUnits::fromQuantity(8);
-
-  CGBuilderTy &Builder = CGF.Builder;
-  Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
-                         getVAListElementType(CGF), SlotSize);
-  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
-
-  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
-
-  Address ArgAddr = Address::invalid();
-  CharUnits Stride;
-  switch (AI.getKind()) {
-  case ABIArgInfo::Expand:
-  case ABIArgInfo::CoerceAndExpand:
-  case ABIArgInfo::InAlloca:
-    llvm_unreachable("Unsupported ABI kind for va_arg");
-
-  case ABIArgInfo::Extend: {
-    Stride = SlotSize;
-    CharUnits Offset = SlotSize - TypeInfo.Width;
-    ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
-    break;
-  }
-
-  case ABIArgInfo::Direct: {
-    auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
-    Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
-    ArgAddr = Addr;
-    break;
-  }
-
-  case ABIArgInfo::Indirect:
-  case ABIArgInfo::IndirectAliased:
-    Stride = SlotSize;
-    ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
-    ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
-                      TypeInfo.Align);
-    break;
-
-  case ABIArgInfo::Ignore:
-    return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align);
-  }
-
-  // Update VAList.
-  Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
-  Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
-
-  return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr");
-}
-
-void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
-  for (auto &I : FI.arguments())
-    I.info = classifyType(I.type, 16 * 8);
-}
-
-namespace {
-class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
-
-  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
-    return 14;
-  }
-
-  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                               llvm::Value *Address) const override;
-
-  llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
-                                   llvm::Value *Address) const override {
-    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
-                                 llvm::ConstantInt::get(CGF.Int32Ty, 8));
-  }
-
-  llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
-                                   llvm::Value *Address) const override {
-    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
-                                 llvm::ConstantInt::get(CGF.Int32Ty, -8));
-  }
-};
-} // end anonymous namespace
-
-bool
-SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
-                                                llvm::Value *Address) const {
-  // This is calculated from the LLVM and GCC tables and verified
-  // against gcc output.  AFAIK all ABIs use the same encoding.
-
-  CodeGen::CGBuilderTy &Builder = CGF.Builder;
-
-  llvm::IntegerType *i8 = CGF.Int8Ty;
-  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
-  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
-
-  // 0-31: the 8-byte general-purpose registers
-  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
-
-  // 32-63: f0-31, the 4-byte floating-point registers
-  AssignToArrayRange(Builder, Address, Four8, 32, 63);
-
-  //   Y   = 64
-  //   PSR = 65
-  //   WIM = 66
-  //   TBR = 67
-  //   PC  = 68
-  //   NPC = 69
-  //   FSR = 70
-  //   CSR = 71
-  AssignToArrayRange(Builder, Address, Eight8, 64, 71);
-
-  // 72-87: d0-15, the 8-byte floating-point registers
-  AssignToArrayRange(Builder, Address, Eight8, 72, 87);
-
-  return false;
-}
-
-// ARC ABI implementation.
-namespace {
-
-class ARCABIInfo : public DefaultABIInfo {
-  struct CCState {
-    unsigned FreeRegs;
-  };
-
-public:
-  using DefaultABIInfo::DefaultABIInfo;
-
-private:
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
-    if (!State.FreeRegs)
-      return;
-    if (Info.isIndirect() && Info.getInReg())
-      State.FreeRegs--;
-    else if (Info.isDirect() && Info.getInReg()) {
-      unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
-      if (sz < State.FreeRegs)
-        State.FreeRegs -= sz;
-      else
-        State.FreeRegs = 0;
-    }
-  }
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    CCState State;
-    // ARC uses 8 registers to pass arguments.
-    State.FreeRegs = 8;
-
-    if (!getCXXABI().classifyReturnType(FI))
-      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    updateState(FI.getReturnInfo(), FI.getReturnType(), State);
-    for (auto &I : FI.arguments()) {
-      I.info = classifyArgumentType(I.type, State.FreeRegs);
-      updateState(I.info, I.type, State);
-    }
-  }
-
-  ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
-  ABIArgInfo getIndirectByValue(QualType Ty) const;
-  ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-};
-
-class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  ARCTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
-};
-
-
-ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
-  return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
-                       getNaturalAlignIndirect(Ty, false);
-}
-
-ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
-  // Compute the byval alignment.
-  const unsigned MinABIStackAlignInBytes = 4;
-  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
-  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
-                                 TypeAlign > MinABIStackAlignInBytes);
-}
-
-Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                              QualType Ty) const {
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
-                          getContext().getTypeInfoInChars(Ty),
-                          CharUnits::fromQuantity(4), true);
-}
-
-ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
-                                            uint8_t FreeRegs) const {
-  // Handle the generic C++ ABI.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (RT) {
-    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
-    if (RAA == CGCXXABI::RAA_Indirect)
-      return getIndirectByRef(Ty, FreeRegs > 0);
-
-    if (RAA == CGCXXABI::RAA_DirectInMemory)
-      return getIndirectByValue(Ty);
-  }
-
-  // Treat an enum type as its underlying type.
-  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-    Ty = EnumTy->getDecl()->getIntegerType();
-
-  auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
-
-  if (isAggregateTypeForABI(Ty)) {
-    // Structures with flexible arrays are always indirect.
-    if (RT && RT->getDecl()->hasFlexibleArrayMember())
-      return getIndirectByValue(Ty);
-
-    // Ignore empty structs/unions.
-    if (isEmptyRecord(getContext(), Ty, true))
-      return ABIArgInfo::getIgnore();
-
-    llvm::LLVMContext &LLVMContext = getVMContext();
-
-    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
-    SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
-    llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
-
-    return FreeRegs >= SizeInRegs ?
-        ABIArgInfo::getDirectInReg(Result) :
-        ABIArgInfo::getDirect(Result, 0, nullptr, false);
-  }
-
-  if (const auto *EIT = Ty->getAs<BitIntType>())
-    if (EIT->getNumBits() > 64)
-      return getIndirectByValue(Ty);
-
-  return isPromotableIntegerTypeForABI(Ty)
-             ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
-                                       : ABIArgInfo::getExtend(Ty))
-             : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
-                                       : ABIArgInfo::getDirect());
-}
-
-ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isAnyComplexType())
-    return ABIArgInfo::getDirectInReg();
-
-  // Arguments of size > 4 registers are indirect.
-  auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
-  if (RetSize > 4)
-    return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
-
-  return DefaultABIInfo::classifyReturnType(RetTy);
-}
-
-} // End anonymous namespace.
-
-//===----------------------------------------------------------------------===//
-// XCore ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-/// A SmallStringEnc instance is used to build up the TypeString by passing
-/// it by reference between functions that append to it.
-typedef llvm::SmallString<128> SmallStringEnc;
-
-/// TypeStringCache caches the meta encodings of Types.
-///
-/// The reason for caching TypeStrings is two fold:
-///   1. To cache a type's encoding for later uses;
-///   2. As a means to break recursive member type inclusion.
-///
-/// A cache Entry can have a Status of:
-///   NonRecursive:   The type encoding is not recursive;
-///   Recursive:      The type encoding is recursive;
-///   Incomplete:     An incomplete TypeString;
-///   IncompleteUsed: An incomplete TypeString that has been used in a
-///                   Recursive type encoding.
-///
-/// A NonRecursive entry will have all of its sub-members expanded as fully
-/// as possible. Whilst it may contain types which are recursive, the type
-/// itself is not recursive and thus its encoding may be safely used whenever
-/// the type is encountered.
-///
-/// A Recursive entry will have all of its sub-members expanded as fully as
-/// possible. The type itself is recursive and it may contain other types which
-/// are recursive. The Recursive encoding must not be used during the expansion
-/// of a recursive type's recursive branch. For simplicity the code uses
-/// IncompleteCount to reject all usage of Recursive encodings for member types.
-///
-/// An Incomplete entry is always a RecordType and only encodes its
-/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
-/// are placed into the cache during type expansion as a means to identify and
-/// handle recursive inclusion of types as sub-members. If there is recursion
-/// the entry becomes IncompleteUsed.
-///
-/// During the expansion of a RecordType's members:
-///
-///   If the cache contains a NonRecursive encoding for the member type, the
-///   cached encoding is used;
-///
-///   If the cache contains a Recursive encoding for the member type, the
-///   cached encoding is 'Swapped' out, as it may be incorrect, and...
-///
-///   If the member is a RecordType, an Incomplete encoding is placed into the
-///   cache to break potential recursive inclusion of itself as a sub-member;
-///
-///   Once a member RecordType has been expanded, its temporary incomplete
-///   entry is removed from the cache. If a Recursive encoding was swapped out
-///   it is swapped back in;
-///
-///   If an incomplete entry is used to expand a sub-member, the incomplete
-///   entry is marked as IncompleteUsed. The cache keeps count of how many
-///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
-///
-///   If a member's encoding is found to be a NonRecursive or Recursive viz:
-///   IncompleteUsedCount==0, the member's encoding is added to the cache.
-///   Else the member is part of a recursive type and thus the recursion has
-///   been exited too soon for the encoding to be correct for the member.
-///
-class TypeStringCache {
-  enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
-  struct Entry {
-    std::string Str;     // The encoded TypeString for the type.
-    enum Status State;   // Information about the encoding in 'Str'.
-    std::string Swapped; // A temporary place holder for a Recursive encoding
-                         // during the expansion of RecordType's members.
-  };
-  std::map<const IdentifierInfo *, struct Entry> Map;
-  unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
-  unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
-public:
-  TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
-  void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
-  bool removeIncomplete(const IdentifierInfo *ID);
-  void addIfComplete(const IdentifierInfo *ID, StringRef Str,
-                     bool IsRecursive);
-  StringRef lookupStr(const IdentifierInfo *ID);
-};
-
-/// TypeString encodings for enum & union fields must be order.
-/// FieldEncoding is a helper for this ordering process.
-class FieldEncoding {
-  bool HasName;
-  std::string Enc;
-public:
-  FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
-  StringRef str() { return Enc; }
-  bool operator<(const FieldEncoding &rhs) const {
-    if (HasName != rhs.HasName) return HasName;
-    return Enc < rhs.Enc;
-  }
-};
-
-class XCoreABIInfo : public DefaultABIInfo {
-public:
-  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
-  mutable TypeStringCache TSC;
-  void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
-                    const CodeGen::CodeGenModule &M) const;
-
-public:
-  XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
-  void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
-                          const llvm::MapVector<GlobalDecl, StringRef>
-                              &MangledDeclNames) const override;
-};
-
-} // End anonymous namespace.
-
-// TODO: this implementation is likely now redundant with the default
-// EmitVAArg.
-Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                QualType Ty) const {
-  CGBuilderTy &Builder = CGF.Builder;
-
-  // Get the VAList.
-  CharUnits SlotSize = CharUnits::fromQuantity(4);
-  Address AP = Address(Builder.CreateLoad(VAListAddr),
-                       getVAListElementType(CGF), SlotSize);
-
-  // Handle the argument.
-  ABIArgInfo AI = classifyArgumentType(Ty);
-  CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
-  llvm::Type *ArgTy = CGT.ConvertType(Ty);
-  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
-    AI.setCoerceToType(ArgTy);
-  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
-
-  Address Val = Address::invalid();
-  CharUnits ArgSize = CharUnits::Zero();
-  switch (AI.getKind()) {
-  case ABIArgInfo::Expand:
-  case ABIArgInfo::CoerceAndExpand:
-  case ABIArgInfo::InAlloca:
-    llvm_unreachable("Unsupported ABI kind for va_arg");
-  case ABIArgInfo::Ignore:
-    Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign);
-    ArgSize = CharUnits::Zero();
-    break;
-  case ABIArgInfo::Extend:
-  case ABIArgInfo::Direct:
-    Val = Builder.CreateElementBitCast(AP, ArgTy);
-    ArgSize = CharUnits::fromQuantity(
-        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
-    ArgSize = ArgSize.alignTo(SlotSize);
-    break;
-  case ABIArgInfo::Indirect:
-  case ABIArgInfo::IndirectAliased:
-    Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
-    Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign);
-    ArgSize = SlotSize;
-    break;
-  }
-
-  // Increment the VAList.
-  if (!ArgSize.isZero()) {
-    Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
-    Builder.CreateStore(APN.getPointer(), VAListAddr);
-  }
-
-  return Val;
-}
-
-/// During the expansion of a RecordType, an incomplete TypeString is placed
-/// into the cache as a means to identify and break recursion.
-/// If there is a Recursive encoding in the cache, it is swapped out and will
-/// be reinserted by removeIncomplete().
-/// All other types of encoding should have been used rather than arriving here.
-void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
-                                    std::string StubEnc) {
-  if (!ID)
-    return;
-  Entry &E = Map[ID];
-  assert( (E.Str.empty() || E.State == Recursive) &&
-         "Incorrectly use of addIncomplete");
-  assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
-  E.Swapped.swap(E.Str); // swap out the Recursive
-  E.Str.swap(StubEnc);
-  E.State = Incomplete;
-  ++IncompleteCount;
-}
-
-/// Once the RecordType has been expanded, the temporary incomplete TypeString
-/// must be removed from the cache.
-/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
-/// Returns true if the RecordType was defined recursively.
-bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
-  if (!ID)
-    return false;
-  auto I = Map.find(ID);
-  assert(I != Map.end() && "Entry not present");
-  Entry &E = I->second;
-  assert( (E.State == Incomplete ||
-           E.State == IncompleteUsed) &&
-         "Entry must be an incomplete type");
-  bool IsRecursive = false;
-  if (E.State == IncompleteUsed) {
-    // We made use of our Incomplete encoding, thus we are recursive.
-    IsRecursive = true;
-    --IncompleteUsedCount;
-  }
-  if (E.Swapped.empty())
-    Map.erase(I);
-  else {
-    // Swap the Recursive back.
-    E.Swapped.swap(E.Str);
-    E.Swapped.clear();
-    E.State = Recursive;
-  }
-  --IncompleteCount;
-  return IsRecursive;
-}
-
-/// Add the encoded TypeString to the cache only if it is NonRecursive or
-/// Recursive (viz: all sub-members were expanded as fully as possible).
-void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
-                                    bool IsRecursive) {
-  if (!ID || IncompleteUsedCount)
-    return; // No key or it is an incomplete sub-type so don't add.
-  Entry &E = Map[ID];
-  if (IsRecursive && !E.Str.empty()) {
-    assert(E.State==Recursive && E.Str.size() == Str.size() &&
-           "This is not the same Recursive entry");
-    // The parent container was not recursive after all, so we could have used
-    // this Recursive sub-member entry after all, but we assumed the worse when
-    // we started viz: IncompleteCount!=0.
-    return;
-  }
-  assert(E.Str.empty() && "Entry already present");
-  E.Str = Str.str();
-  E.State = IsRecursive? Recursive : NonRecursive;
-}
-
-/// Return a cached TypeString encoding for the ID. If there isn't one, or we
-/// are recursively expanding a type (IncompleteCount != 0) and the cached
-/// encoding is Recursive, return an empty StringRef.
-StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
-  if (!ID)
-    return StringRef();   // We have no key.
-  auto I = Map.find(ID);
-  if (I == Map.end())
-    return StringRef();   // We have no encoding.
-  Entry &E = I->second;
-  if (E.State == Recursive && IncompleteCount)
-    return StringRef();   // We don't use Recursive encodings for member types.
-
-  if (E.State == Incomplete) {
-    // The incomplete type is being used to break out of recursion.
-    E.State = IncompleteUsed;
-    ++IncompleteUsedCount;
-  }
-  return E.Str;
-}
-
-/// The XCore ABI includes a type information section that communicates symbol
-/// type information to the linker. The linker uses this information to verify
-/// safety/correctness of things such as array bound and pointers et al.
-/// The ABI only requires C (and XC) language modules to emit TypeStrings.
-/// This type information (TypeString) is emitted into meta data for all global
-/// symbols: definitions, declarations, functions & variables.
-///
-/// The TypeString carries type, qualifier, name, size & value details.
-/// Please see 'Tools Development Guide' section 2.16.2 for format details:
-/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
-/// The output is tested by test/CodeGen/xcore-stringtype.c.
-///
-static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
-                          const CodeGen::CodeGenModule &CGM,
-                          TypeStringCache &TSC);
-
-/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
-void XCoreTargetCodeGenInfo::emitTargetMD(
-    const Decl *D, llvm::GlobalValue *GV,
-    const CodeGen::CodeGenModule &CGM) const {
-  SmallStringEnc Enc;
-  if (getTypeString(Enc, D, CGM, TSC)) {
-    llvm::LLVMContext &Ctx = CGM.getModule().getContext();
-    llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
-                                llvm::MDString::get(Ctx, Enc.str())};
-    llvm::NamedMDNode *MD =
-      CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
-    MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
-  }
-}
-
-void XCoreTargetCodeGenInfo::emitTargetMetadata(
-    CodeGen::CodeGenModule &CGM,
-    const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
-  // Warning, new MangledDeclNames may be appended within this loop.
-  // We rely on MapVector insertions adding new elements to the end
-  // of the container.
-  for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
-    auto Val = *(MangledDeclNames.begin() + I);
-    llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
-    if (GV) {
-      const Decl *D = Val.first.getDecl()->getMostRecentDecl();
-      emitTargetMD(D, GV, CGM);
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// Base ABI and target codegen info implementation common between SPIR and
-// SPIR-V.
-//===----------------------------------------------------------------------===//
-
-namespace {
-class CommonSPIRABIInfo : public DefaultABIInfo {
-public:
-  CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
-
-private:
-  void setCCs();
-};
-
-class SPIRVABIInfo : public CommonSPIRABIInfo {
-public:
-  SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-private:
-  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
-};
-} // end anonymous namespace
-namespace {
-class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
-  CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
-      : TargetCodeGenInfo(std::move(ABIInfo)) {}
-
-  LangAS getASTAllocaAddressSpace() const override {
-    return getLangASFromTargetAS(
-        getABIInfo().getDataLayout().getAllocaAddrSpace());
-  }
-
-  unsigned getOpenCLKernelCallingConv() const override;
-  llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const override;
-};
-class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
-public:
-  SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
-      : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
-  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
-};
-} // End anonymous namespace.
-
-void CommonSPIRABIInfo::setCCs() {
-  assert(getRuntimeCC() == llvm::CallingConv::C);
-  RuntimeCC = llvm::CallingConv::SPIR_FUNC;
-}
-
-ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
-  if (getContext().getLangOpts().CUDAIsDevice) {
-    // Coerce pointer arguments with default address space to CrossWorkGroup
-    // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
-    // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
-    llvm::Type *LTy = CGT.ConvertType(Ty);
-    auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
-    auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
-    auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
-    if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
-      LTy = llvm::PointerType::get(PtrTy->getContext(), GlobalAS);
-      return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
-    }
-
-    // Force copying aggregate type in kernel arguments by value when
-    // compiling CUDA targeting SPIR-V. This is required for the object
-    // copied to be valid on the device.
-    // This behavior follows the CUDA spec
-    // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
-    // and matches the NVPTX implementation.
-    if (isAggregateTypeForABI(Ty))
-      return getNaturalAlignIndirect(Ty, /* byval */ true);
-  }
-  return classifyArgumentType(Ty);
-}
-
-void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  // The logic is same as in DefaultABIInfo with an exception on the kernel
-  // arguments handling.
-  llvm::CallingConv::ID CC = FI.getCallingConvention();
-
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-
-  for (auto &I : FI.arguments()) {
-    if (CC == llvm::CallingConv::SPIR_KERNEL) {
-      I.info = classifyKernelArgumentType(I.type);
-    } else {
-      I.info = classifyArgumentType(I.type);
-    }
-  }
-}
-
-namespace clang {
-namespace CodeGen {
-void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
-  if (CGM.getTarget().getTriple().isSPIRV())
-    SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
-  else
-    CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
-}
-}
-}
-
-unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
-  return llvm::CallingConv::SPIR_KERNEL;
-}
-
-void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
-    const FunctionType *&FT) const {
-  // Convert HIP kernels to SPIR-V kernels.
-  if (getABIInfo().getContext().getLangOpts().HIP) {
-    FT = getABIInfo().getContext().adjustFunctionType(
-        FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
-    return;
-  }
-}
-
-static bool appendType(SmallStringEnc &Enc, QualType QType,
-                       const CodeGen::CodeGenModule &CGM,
-                       TypeStringCache &TSC);
-
-/// Helper function for appendRecordType().
-/// Builds a SmallVector containing the encoded field types in declaration
-/// order.
-static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
-                             const RecordDecl *RD,
-                             const CodeGen::CodeGenModule &CGM,
-                             TypeStringCache &TSC) {
-  for (const auto *Field : RD->fields()) {
-    SmallStringEnc Enc;
-    Enc += "m(";
-    Enc += Field->getName();
-    Enc += "){";
-    if (Field->isBitField()) {
-      Enc += "b(";
-      llvm::raw_svector_ostream OS(Enc);
-      OS << Field->getBitWidthValue(CGM.getContext());
-      Enc += ':';
-    }
-    if (!appendType(Enc, Field->getType(), CGM, TSC))
-      return false;
-    if (Field->isBitField())
-      Enc += ')';
-    Enc += '}';
-    FE.emplace_back(!Field->getName().empty(), Enc);
-  }
-  return true;
-}
-
-/// Appends structure and union types to Enc and adds encoding to cache.
-/// Recursively calls appendType (via extractFieldType) for each field.
-/// Union types have their fields ordered according to the ABI.
-static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
-                             const CodeGen::CodeGenModule &CGM,
-                             TypeStringCache &TSC, const IdentifierInfo *ID) {
-  // Append the cached TypeString if we have one.
-  StringRef TypeString = TSC.lookupStr(ID);
-  if (!TypeString.empty()) {
-    Enc += TypeString;
-    return true;
-  }
-
-  // Start to emit an incomplete TypeString.
-  size_t Start = Enc.size();
-  Enc += (RT->isUnionType()? 'u' : 's');
-  Enc += '(';
-  if (ID)
-    Enc += ID->getName();
-  Enc += "){";
-
-  // We collect all encoded fields and order as necessary.
-  bool IsRecursive = false;
-  const RecordDecl *RD = RT->getDecl()->getDefinition();
-  if (RD && !RD->field_empty()) {
-    // An incomplete TypeString stub is placed in the cache for this RecordType
-    // so that recursive calls to this RecordType will use it whilst building a
-    // complete TypeString for this RecordType.
-    SmallVector<FieldEncoding, 16> FE;
-    std::string StubEnc(Enc.substr(Start).str());
-    StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
-    TSC.addIncomplete(ID, std::move(StubEnc));
-    if (!extractFieldType(FE, RD, CGM, TSC)) {
-      (void) TSC.removeIncomplete(ID);
-      return false;
-    }
-    IsRecursive = TSC.removeIncomplete(ID);
-    // The ABI requires unions to be sorted but not structures.
-    // See FieldEncoding::operator< for sort algorithm.
-    if (RT->isUnionType())
-      llvm::sort(FE);
-    // We can now complete the TypeString.
-    unsigned E = FE.size();
-    for (unsigned I = 0; I != E; ++I) {
-      if (I)
-        Enc += ',';
-      Enc += FE[I].str();
-    }
-  }
-  Enc += '}';
-  TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
-  return true;
-}
-
-/// Appends enum types to Enc and adds the encoding to the cache.
-static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
-                           TypeStringCache &TSC,
-                           const IdentifierInfo *ID) {
-  // Append the cached TypeString if we have one.
-  StringRef TypeString = TSC.lookupStr(ID);
-  if (!TypeString.empty()) {
-    Enc += TypeString;
-    return true;
-  }
-
-  size_t Start = Enc.size();
-  Enc += "e(";
-  if (ID)
-    Enc += ID->getName();
-  Enc += "){";
-
-  // We collect all encoded enumerations and order them alphanumerically.
-  if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
-    SmallVector<FieldEncoding, 16> FE;
-    for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
-         ++I) {
-      SmallStringEnc EnumEnc;
-      EnumEnc += "m(";
-      EnumEnc += I->getName();
-      EnumEnc += "){";
-      I->getInitVal().toString(EnumEnc);
-      EnumEnc += '}';
-      FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
-    }
-    llvm::sort(FE);
-    unsigned E = FE.size();
-    for (unsigned I = 0; I != E; ++I) {
-      if (I)
-        Enc += ',';
-      Enc += FE[I].str();
-    }
-  }
-  Enc += '}';
-  TSC.addIfComplete(ID, Enc.substr(Start), false);
-  return true;
-}
-
-/// Appends type's qualifier to Enc.
-/// This is done prior to appending the type's encoding.
-static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
-  // Qualifiers are emitted in alphabetical order.
-  static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
-  int Lookup = 0;
-  if (QT.isConstQualified())
-    Lookup += 1<<0;
-  if (QT.isRestrictQualified())
-    Lookup += 1<<1;
-  if (QT.isVolatileQualified())
-    Lookup += 1<<2;
-  Enc += Table[Lookup];
-}
-
-/// Appends built-in types to Enc.
-static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
-  const char *EncType;
-  switch (BT->getKind()) {
-    case BuiltinType::Void:
-      EncType = "0";
-      break;
-    case BuiltinType::Bool:
-      EncType = "b";
-      break;
-    case BuiltinType::Char_U:
-      EncType = "uc";
-      break;
-    case BuiltinType::UChar:
-      EncType = "uc";
-      break;
-    case BuiltinType::SChar:
-      EncType = "sc";
-      break;
-    case BuiltinType::UShort:
-      EncType = "us";
-      break;
-    case BuiltinType::Short:
-      EncType = "ss";
-      break;
-    case BuiltinType::UInt:
-      EncType = "ui";
-      break;
-    case BuiltinType::Int:
-      EncType = "si";
-      break;
-    case BuiltinType::ULong:
-      EncType = "ul";
-      break;
-    case BuiltinType::Long:
-      EncType = "sl";
-      break;
-    case BuiltinType::ULongLong:
-      EncType = "ull";
-      break;
-    case BuiltinType::LongLong:
-      EncType = "sll";
-      break;
-    case BuiltinType::Float:
-      EncType = "ft";
-      break;
-    case BuiltinType::Double:
-      EncType = "d";
-      break;
-    case BuiltinType::LongDouble:
-      EncType = "ld";
-      break;
-    default:
-      return false;
-  }
-  Enc += EncType;
-  return true;
-}
-
-/// Appends a pointer encoding to Enc before calling appendType for the pointee.
-static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
-                              const CodeGen::CodeGenModule &CGM,
-                              TypeStringCache &TSC) {
-  Enc += "p(";
-  if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
-    return false;
-  Enc += ')';
-  return true;
-}
-
-/// Appends array encoding to Enc before calling appendType for the element.
-static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
-                            const ArrayType *AT,
-                            const CodeGen::CodeGenModule &CGM,
-                            TypeStringCache &TSC, StringRef NoSizeEnc) {
-  if (AT->getSizeModifier() != ArrayType::Normal)
-    return false;
-  Enc += "a(";
-  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
-    CAT->getSize().toStringUnsigned(Enc);
-  else
-    Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
-  Enc += ':';
-  // The Qualifiers should be attached to the type rather than the array.
-  appendQualifier(Enc, QT);
-  if (!appendType(Enc, AT->getElementType(), CGM, TSC))
-    return false;
-  Enc += ')';
-  return true;
-}
-
-/// Appends a function encoding to Enc, calling appendType for the return type
-/// and the arguments.
-static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
-                             const CodeGen::CodeGenModule &CGM,
-                             TypeStringCache &TSC) {
-  Enc += "f{";
-  if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
-    return false;
-  Enc += "}(";
-  if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
-    // N.B. we are only interested in the adjusted param types.
-    auto I = FPT->param_type_begin();
-    auto E = FPT->param_type_end();
-    if (I != E) {
-      do {
-        if (!appendType(Enc, *I, CGM, TSC))
-          return false;
-        ++I;
-        if (I != E)
-          Enc += ',';
-      } while (I != E);
-      if (FPT->isVariadic())
-        Enc += ",va";
-    } else {
-      if (FPT->isVariadic())
-        Enc += "va";
-      else
-        Enc += '0';
-    }
-  }
-  Enc += ')';
-  return true;
-}
-
-/// Handles the type's qualifier before dispatching a call to handle specific
-/// type encodings.
-static bool appendType(SmallStringEnc &Enc, QualType QType,
-                       const CodeGen::CodeGenModule &CGM,
-                       TypeStringCache &TSC) {
-
-  QualType QT = QType.getCanonicalType();
-
-  if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
-    // The Qualifiers should be attached to the type rather than the array.
-    // Thus we don't call appendQualifier() here.
-    return appendArrayType(Enc, QT, AT, CGM, TSC, "");
-
-  appendQualifier(Enc, QT);
-
-  if (const BuiltinType *BT = QT->getAs<BuiltinType>())
-    return appendBuiltinType(Enc, BT);
-
-  if (const PointerType *PT = QT->getAs<PointerType>())
-    return appendPointerType(Enc, PT, CGM, TSC);
-
-  if (const EnumType *ET = QT->getAs<EnumType>())
-    return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
-
-  if (const RecordType *RT = QT->getAsStructureType())
-    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
-
-  if (const RecordType *RT = QT->getAsUnionType())
-    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
-
-  if (const FunctionType *FT = QT->getAs<FunctionType>())
-    return appendFunctionType(Enc, FT, CGM, TSC);
-
-  return false;
-}
-
-static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
-                          const CodeGen::CodeGenModule &CGM,
-                          TypeStringCache &TSC) {
-  if (!D)
-    return false;
-
-  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
-    if (FD->getLanguageLinkage() != CLanguageLinkage)
-      return false;
-    return appendType(Enc, FD->getType(), CGM, TSC);
-  }
-
-  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
-    if (VD->getLanguageLinkage() != CLanguageLinkage)
-      return false;
-    QualType QT = VD->getType().getCanonicalType();
-    if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
-      // Global ArrayTypes are given a size of '*' if the size is unknown.
-      // The Qualifiers should be attached to the type rather than the array.
-      // Thus we don't call appendQualifier() here.
-      return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
-    }
-    return appendType(Enc, QT, CGM, TSC);
-  }
-  return false;
-}
-
-/// Construct a SPIR-V target extension type for the given OpenCL image type.
-static llvm::Type *getSPIRVImageType(llvm::LLVMContext &Ctx, StringRef BaseType,
-                                     StringRef OpenCLName,
-                                     unsigned AccessQualifier) {
-  // These parameters compare to the operands of OpTypeImage (see
-  // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage
-  // for more details). The first 6 integer parameters all default to 0, and
-  // will be changed to 1 only for the image type(s) that set the parameter to
-  // one. The 7th integer parameter is the access qualifier, which is tacked on
-  // at the end.
-  SmallVector<unsigned, 7> IntParams = {0, 0, 0, 0, 0, 0};
-
-  // Choose the dimension of the image--this corresponds to the Dim enum in
-  // SPIR-V (first integer parameter of OpTypeImage).
-  if (OpenCLName.startswith("image2d"))
-    IntParams[0] = 1; // 1D
-  else if (OpenCLName.startswith("image3d"))
-    IntParams[0] = 2; // 2D
-  else if (OpenCLName == "image1d_buffer")
-    IntParams[0] = 5; // Buffer
-  else
-    assert(OpenCLName.startswith("image1d") && "Unknown image type");
-
-  // Set the other integer parameters of OpTypeImage if necessary. Note that the
-  // OpenCL image types don't provide any information for the Sampled or
-  // Image Format parameters.
-  if (OpenCLName.contains("_depth"))
-    IntParams[1] = 1;
-  if (OpenCLName.contains("_array"))
-    IntParams[2] = 1;
-  if (OpenCLName.contains("_msaa"))
-    IntParams[3] = 1;
-
-  // Access qualifier
-  IntParams.push_back(AccessQualifier);
-
-  return llvm::TargetExtType::get(Ctx, BaseType, {llvm::Type::getVoidTy(Ctx)},
-                                  IntParams);
-}
-
-llvm::Type *CommonSPIRTargetCodeGenInfo::getOpenCLType(CodeGenModule &CGM,
-                                                       const Type *Ty) const {
-  llvm::LLVMContext &Ctx = CGM.getLLVMContext();
-  if (auto *PipeTy = dyn_cast<PipeType>(Ty))
-    return llvm::TargetExtType::get(Ctx, "spirv.Pipe", {},
-                                    {!PipeTy->isReadOnly()});
-  if (auto *BuiltinTy = dyn_cast<BuiltinType>(Ty)) {
-    enum AccessQualifier : unsigned { AQ_ro = 0, AQ_wo = 1, AQ_rw = 2 };
-    switch (BuiltinTy->getKind()) {
-#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
-    case BuiltinType::Id:                                                      \
-      return getSPIRVImageType(Ctx, "spirv.Image", #ImgType, AQ_##Suffix);
-#include "clang/Basic/OpenCLImageTypes.def"
-    case BuiltinType::OCLSampler:
-      return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
-    case BuiltinType::OCLEvent:
-      return llvm::TargetExtType::get(Ctx, "spirv.Event");
-    case BuiltinType::OCLClkEvent:
-      return llvm::TargetExtType::get(Ctx, "spirv.DeviceEvent");
-    case BuiltinType::OCLQueue:
-      return llvm::TargetExtType::get(Ctx, "spirv.Queue");
-    case BuiltinType::OCLReserveID:
-      return llvm::TargetExtType::get(Ctx, "spirv.ReserveId");
-#define INTEL_SUBGROUP_AVC_TYPE(Name, Id)                                      \
-    case BuiltinType::OCLIntelSubgroupAVC##Id:                                 \
-      return llvm::TargetExtType::get(Ctx, "spirv.Avc" #Id "INTEL");
-#include "clang/Basic/OpenCLExtensionTypes.def"
-    default:
-      return nullptr;
-    }
-  }
-
-  return nullptr;
-}
-//===----------------------------------------------------------------------===//
-// RISC-V ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-class RISCVABIInfo : public DefaultABIInfo {
-private:
-  // Size of the integer ('x') registers in bits.
-  unsigned XLen;
-  // Size of the floating point ('f') registers in bits. Note that the target
-  // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
-  // with soft float ABI has FLen==0).
-  unsigned FLen;
-  static const int NumArgGPRs = 8;
-  static const int NumArgFPRs = 8;
-  bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
-                                      llvm::Type *&Field1Ty,
-                                      CharUnits &Field1Off,
-                                      llvm::Type *&Field2Ty,
-                                      CharUnits &Field2Off) const;
-
-public:
-  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
-      : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
-
-  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
-  // non-virtual, but computeInfo is virtual, so we overload it.
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
-                                  int &ArgFPRsLeft) const;
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  ABIArgInfo extendType(QualType Ty) const;
-
-  bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
-                                CharUnits &Field1Off, llvm::Type *&Field2Ty,
-                                CharUnits &Field2Off, int &NeededArgGPRs,
-                                int &NeededArgFPRs) const;
-  ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
-                                               CharUnits Field1Off,
-                                               llvm::Type *Field2Ty,
-                                               CharUnits Field2Off) const;
-
-  ABIArgInfo coerceVLSVector(QualType Ty) const;
-};
-} // end anonymous namespace
-
-void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  QualType RetTy = FI.getReturnType();
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(RetTy);
-
-  // IsRetIndirect is true if classifyArgumentType indicated the value should
-  // be passed indirect, or if the type size is a scalar greater than 2*XLen
-  // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
-  // in LLVM IR, relying on the backend lowering code to rewrite the argument
-  // list and pass indirectly on RV32.
-  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
-  if (!IsRetIndirect && RetTy->isScalarType() &&
-      getContext().getTypeSize(RetTy) > (2 * XLen)) {
-    if (RetTy->isComplexType() && FLen) {
-      QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
-      IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
-    } else {
-      // This is a normal scalar > 2*XLen, such as fp128 on RV32.
-      IsRetIndirect = true;
-    }
-  }
-
-  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
-  int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
-  int NumFixedArgs = FI.getNumRequiredArgs();
-
-  int ArgNum = 0;
-  for (auto &ArgInfo : FI.arguments()) {
-    bool IsFixed = ArgNum < NumFixedArgs;
-    ArgInfo.info =
-        classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
-    ArgNum++;
-  }
-}
-
-// Returns true if the struct is a potential candidate for the floating point
-// calling convention. If this function returns true, the caller is
-// responsible for checking that if there is only a single field then that
-// field is a float.
-bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
-                                                  llvm::Type *&Field1Ty,
-                                                  CharUnits &Field1Off,
-                                                  llvm::Type *&Field2Ty,
-                                                  CharUnits &Field2Off) const {
-  bool IsInt = Ty->isIntegralOrEnumerationType();
-  bool IsFloat = Ty->isRealFloatingType();
-
-  if (IsInt || IsFloat) {
-    uint64_t Size = getContext().getTypeSize(Ty);
-    if (IsInt && Size > XLen)
-      return false;
-    // Can't be eligible if larger than the FP registers. Handling of half
-    // precision values has been specified in the ABI, so don't block those.
-    if (IsFloat && Size > FLen)
-      return false;
-    // Can't be eligible if an integer type was already found (int+int pairs
-    // are not eligible).
-    if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
-      return false;
-    if (!Field1Ty) {
-      Field1Ty = CGT.ConvertType(Ty);
-      Field1Off = CurOff;
-      return true;
-    }
-    if (!Field2Ty) {
-      Field2Ty = CGT.ConvertType(Ty);
-      Field2Off = CurOff;
-      return true;
-    }
-    return false;
-  }
-
-  if (auto CTy = Ty->getAs<ComplexType>()) {
-    if (Field1Ty)
-      return false;
-    QualType EltTy = CTy->getElementType();
-    if (getContext().getTypeSize(EltTy) > FLen)
-      return false;
-    Field1Ty = CGT.ConvertType(EltTy);
-    Field1Off = CurOff;
-    Field2Ty = Field1Ty;
-    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
-    return true;
-  }
-
-  if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
-    uint64_t ArraySize = ATy->getSize().getZExtValue();
-    QualType EltTy = ATy->getElementType();
-    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
-    for (uint64_t i = 0; i < ArraySize; ++i) {
-      bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
-                                                Field1Off, Field2Ty, Field2Off);
-      if (!Ret)
-        return false;
-      CurOff += EltSize;
-    }
-    return true;
-  }
-
-  if (const auto *RTy = Ty->getAs<RecordType>()) {
-    // Structures with either a non-trivial destructor or a non-trivial
-    // copy constructor are not eligible for the FP calling convention.
-    if (getRecordArgABI(Ty, CGT.getCXXABI()))
-      return false;
-    if (isEmptyRecord(getContext(), Ty, true))
-      return true;
-    const RecordDecl *RD = RTy->getDecl();
-    // Unions aren't eligible unless they're empty (which is caught above).
-    if (RD->isUnion())
-      return false;
-    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
-    // If this is a C++ record, check the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-      for (const CXXBaseSpecifier &B : CXXRD->bases()) {
-        const auto *BDecl =
-            cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
-        CharUnits BaseOff = Layout.getBaseClassOffset(BDecl);
-        bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff,
-                                                  Field1Ty, Field1Off, Field2Ty,
-                                                  Field2Off);
-        if (!Ret)
-          return false;
-      }
-    }
-    int ZeroWidthBitFieldCount = 0;
-    for (const FieldDecl *FD : RD->fields()) {
-      uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
-      QualType QTy = FD->getType();
-      if (FD->isBitField()) {
-        unsigned BitWidth = FD->getBitWidthValue(getContext());
-        // Allow a bitfield with a type greater than XLen as long as the
-        // bitwidth is XLen or less.
-        if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
-          QTy = getContext().getIntTypeForBitwidth(XLen, false);
-        if (BitWidth == 0) {
-          ZeroWidthBitFieldCount++;
-          continue;
-        }
-      }
-
-      bool Ret = detectFPCCEligibleStructHelper(
-          QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
-          Field1Ty, Field1Off, Field2Ty, Field2Off);
-      if (!Ret)
-        return false;
-
-      // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
-      // or int+fp structs, but are ignored for a struct with an fp field and
-      // any number of zero-width bitfields.
-      if (Field2Ty && ZeroWidthBitFieldCount > 0)
-        return false;
-    }
-    return Field1Ty != nullptr;
-  }
-
-  return false;
-}
-
-// Determine if a struct is eligible for passing according to the floating
-// point calling convention (i.e., when flattened it contains a single fp
-// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
-// NeededArgGPRs are incremented appropriately.
-bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
-                                            CharUnits &Field1Off,
-                                            llvm::Type *&Field2Ty,
-                                            CharUnits &Field2Off,
-                                            int &NeededArgGPRs,
-                                            int &NeededArgFPRs) const {
-  Field1Ty = nullptr;
-  Field2Ty = nullptr;
-  NeededArgGPRs = 0;
-  NeededArgFPRs = 0;
-  bool IsCandidate = detectFPCCEligibleStructHelper(
-      Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
-  // Not really a candidate if we have a single int but no float.
-  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
-    return false;
-  if (!IsCandidate)
-    return false;
-  if (Field1Ty && Field1Ty->isFloatingPointTy())
-    NeededArgFPRs++;
-  else if (Field1Ty)
-    NeededArgGPRs++;
-  if (Field2Ty && Field2Ty->isFloatingPointTy())
-    NeededArgFPRs++;
-  else if (Field2Ty)
-    NeededArgGPRs++;
-  return true;
-}
-
-// Call getCoerceAndExpand for the two-element flattened struct described by
-// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
-// appropriate coerceToType and unpaddedCoerceToType.
-ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
-    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
-    CharUnits Field2Off) const {
-  SmallVector<llvm::Type *, 3> CoerceElts;
-  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
-  if (!Field1Off.isZero())
-    CoerceElts.push_back(llvm::ArrayType::get(
-        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
-
-  CoerceElts.push_back(Field1Ty);
-  UnpaddedCoerceElts.push_back(Field1Ty);
-
-  if (!Field2Ty) {
-    return ABIArgInfo::getCoerceAndExpand(
-        llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
-        UnpaddedCoerceElts[0]);
-  }
-
-  CharUnits Field2Align =
-      CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
-  CharUnits Field1End = Field1Off +
-      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
-  CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
-
-  CharUnits Padding = CharUnits::Zero();
-  if (Field2Off > Field2OffNoPadNoPack)
-    Padding = Field2Off - Field2OffNoPadNoPack;
-  else if (Field2Off != Field2Align && Field2Off > Field1End)
-    Padding = Field2Off - Field1End;
-
-  bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
-
-  if (!Padding.isZero())
-    CoerceElts.push_back(llvm::ArrayType::get(
-        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
-
-  CoerceElts.push_back(Field2Ty);
-  UnpaddedCoerceElts.push_back(Field2Ty);
-
-  auto CoerceToType =
-      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
-  auto UnpaddedCoerceToType =
-      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
-
-  return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
-}
-
-// Fixed-length RVV vectors are represented as scalable vectors in function
-// args/return and must be coerced from fixed vectors.
-ABIArgInfo RISCVABIInfo::coerceVLSVector(QualType Ty) const {
-  assert(Ty->isVectorType() && "expected vector type!");
-
-  const auto *VT = Ty->castAs<VectorType>();
-  assert(VT->getVectorKind() == VectorType::RVVFixedLengthDataVector &&
-         "Unexpected vector kind");
-
-  assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
-
-  const auto *BT = VT->getElementType()->castAs<BuiltinType>();
-  unsigned EltSize = getContext().getTypeSize(BT);
-  llvm::ScalableVectorType *ResType =
-        llvm::ScalableVectorType::get(CGT.ConvertType(VT->getElementType()),
-                                      llvm::RISCV::RVVBitsPerBlock / EltSize);
-  return ABIArgInfo::getDirect(ResType);
-}
-
-ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
-                                              int &ArgGPRsLeft,
-                                              int &ArgFPRsLeft) const {
-  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  // Structures with either a non-trivial destructor or a non-trivial
-  // copy constructor are always passed indirectly.
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
-    if (ArgGPRsLeft)
-      ArgGPRsLeft -= 1;
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
-                                           CGCXXABI::RAA_DirectInMemory);
-  }
-
-  // Ignore empty structs/unions.
-  if (isEmptyRecord(getContext(), Ty, true))
-    return ABIArgInfo::getIgnore();
-
-  uint64_t Size = getContext().getTypeSize(Ty);
-
-  // Pass floating point values via FPRs if possible.
-  if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
-      FLen >= Size && ArgFPRsLeft) {
-    ArgFPRsLeft--;
-    return ABIArgInfo::getDirect();
-  }
-
-  // Complex types for the hard float ABI must be passed direct rather than
-  // using CoerceAndExpand.
-  if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
-    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
-    if (getContext().getTypeSize(EltTy) <= FLen) {
-      ArgFPRsLeft -= 2;
-      return ABIArgInfo::getDirect();
-    }
-  }
-
-  if (IsFixed && FLen && Ty->isStructureOrClassType()) {
-    llvm::Type *Field1Ty = nullptr;
-    llvm::Type *Field2Ty = nullptr;
-    CharUnits Field1Off = CharUnits::Zero();
-    CharUnits Field2Off = CharUnits::Zero();
-    int NeededArgGPRs = 0;
-    int NeededArgFPRs = 0;
-    bool IsCandidate =
-        detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
-                                 NeededArgGPRs, NeededArgFPRs);
-    if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
-        NeededArgFPRs <= ArgFPRsLeft) {
-      ArgGPRsLeft -= NeededArgGPRs;
-      ArgFPRsLeft -= NeededArgFPRs;
-      return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
-                                               Field2Off);
-    }
-  }
-
-  uint64_t NeededAlign = getContext().getTypeAlign(Ty);
-  // Determine the number of GPRs needed to pass the current argument
-  // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
-  // register pairs, so may consume 3 registers.
-  int NeededArgGPRs = 1;
-  if (!IsFixed && NeededAlign == 2 * XLen)
-    NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
-  else if (Size > XLen && Size <= 2 * XLen)
-    NeededArgGPRs = 2;
-
-  if (NeededArgGPRs > ArgGPRsLeft) {
-    NeededArgGPRs = ArgGPRsLeft;
-  }
-
-  ArgGPRsLeft -= NeededArgGPRs;
-
-  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    // All integral types are promoted to XLen width
-    if (Size < XLen && Ty->isIntegralOrEnumerationType()) {
-      return extendType(Ty);
-    }
-
-    if (const auto *EIT = Ty->getAs<BitIntType>()) {
-      if (EIT->getNumBits() < XLen)
-        return extendType(Ty);
-      if (EIT->getNumBits() > 128 ||
-          (!getContext().getTargetInfo().hasInt128Type() &&
-           EIT->getNumBits() > 64))
-        return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-    }
-
-    return ABIArgInfo::getDirect();
-  }
-
-  if (const VectorType *VT = Ty->getAs<VectorType>())
-    if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector)
-      return coerceVLSVector(Ty);
-
-  // Aggregates which are <= 2*XLen will be passed in registers if possible,
-  // so coerce to integers.
-  if (Size <= 2 * XLen) {
-    unsigned Alignment = getContext().getTypeAlign(Ty);
-
-    // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
-    // required, and a 2-element XLen array if only XLen alignment is required.
-    if (Size <= XLen) {
-      return ABIArgInfo::getDirect(
-          llvm::IntegerType::get(getVMContext(), XLen));
-    } else if (Alignment == 2 * XLen) {
-      return ABIArgInfo::getDirect(
-          llvm::IntegerType::get(getVMContext(), 2 * XLen));
-    } else {
-      return ABIArgInfo::getDirect(llvm::ArrayType::get(
-          llvm::IntegerType::get(getVMContext(), XLen), 2));
-    }
-  }
-  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-}
-
-ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  int ArgGPRsLeft = 2;
-  int ArgFPRsLeft = FLen ? 2 : 0;
-
-  // The rules for return and argument types are the same, so defer to
-  // classifyArgumentType.
-  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
-                              ArgFPRsLeft);
-}
-
-Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                QualType Ty) const {
-  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
-
-  // Empty records are ignored for parameter passing purposes.
-  if (isEmptyRecord(getContext(), Ty, true)) {
-    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
-                           getVAListElementType(CGF), SlotSize);
-    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
-    return Addr;
-  }
-
-  auto TInfo = getContext().getTypeInfoInChars(Ty);
-
-  // Arguments bigger than 2*Xlen bytes are passed indirectly.
-  bool IsIndirect = TInfo.Width > 2 * SlotSize;
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
-                          SlotSize, /*AllowHigherAlign=*/true);
-}
-
-ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
-  int TySize = getContext().getTypeSize(Ty);
-  // RV64 ABI requires unsigned 32 bit integers to be sign extended.
-  if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
-    return ABIArgInfo::getSignExtend(Ty);
-  return ABIArgInfo::getExtend(Ty);
-}
-
-namespace {
-class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
-                         unsigned FLen)
-      : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
-
-  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
-                           CodeGen::CodeGenModule &CGM) const override {
-    const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
-    if (!FD) return;
-
-    const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
-    if (!Attr)
-      return;
-
-    const char *Kind;
-    switch (Attr->getInterrupt()) {
-    case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
-    case RISCVInterruptAttr::machine: Kind = "machine"; break;
-    }
-
-    auto *Fn = cast<llvm::Function>(GV);
-
-    Fn->addFnAttr("interrupt", Kind);
-  }
-};
-} // namespace
-
-//===----------------------------------------------------------------------===//
-// VE ABI Implementation.
-//
-namespace {
-class VEABIInfo : public DefaultABIInfo {
-public:
-  VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-
-private:
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-  ABIArgInfo classifyArgumentType(QualType RetTy) const;
-  void computeInfo(CGFunctionInfo &FI) const override;
-};
-} // end anonymous namespace
-
-ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
-  if (Ty->isAnyComplexType())
-    return ABIArgInfo::getDirect();
-  uint64_t Size = getContext().getTypeSize(Ty);
-  if (Size < 64 && Ty->isIntegerType())
-    return ABIArgInfo::getExtend(Ty);
-  return DefaultABIInfo::classifyReturnType(Ty);
-}
-
-ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
-  if (Ty->isAnyComplexType())
-    return ABIArgInfo::getDirect();
-  uint64_t Size = getContext().getTypeSize(Ty);
-  if (Size < 64 && Ty->isIntegerType())
-    return ABIArgInfo::getExtend(Ty);
-  return DefaultABIInfo::classifyArgumentType(Ty);
-}
-
-void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-  for (auto &Arg : FI.arguments())
-    Arg.info = classifyArgumentType(Arg.type);
-}
-
-namespace {
-class VETargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  VETargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
-  // VE ABI requires the arguments of variadic and prototype-less functions
-  // are passed in both registers and memory.
-  bool isNoProtoCallVariadic(const CallArgList &args,
-                             const FunctionNoProtoType *fnType) const override {
-    return true;
-  }
-};
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// CSKY ABI Implementation
-//===----------------------------------------------------------------------===//
-namespace {
-class CSKYABIInfo : public DefaultABIInfo {
-  static const int NumArgGPRs = 4;
-  static const int NumArgFPRs = 4;
-
-  static const unsigned XLen = 32;
-  unsigned FLen;
-
-public:
-  CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
-      : DefaultABIInfo(CGT), FLen(FLen) {}
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-  ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
-                                  int &ArgFPRsLeft,
-                                  bool isReturnType = false) const;
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-};
-
-} // end anonymous namespace
-
-void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  QualType RetTy = FI.getReturnType();
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(RetTy);
-
-  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
-
-  // We must track the number of GPRs used in order to conform to the CSKY
-  // ABI, as integer scalars passed in registers should have signext/zeroext
-  // when promoted.
-  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
-  int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
-
-  for (auto &ArgInfo : FI.arguments()) {
-    ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft);
-  }
-}
-
-Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                               QualType Ty) const {
-  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
-
-  // Empty records are ignored for parameter passing purposes.
-  if (isEmptyRecord(getContext(), Ty, true)) {
-    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
-                           getVAListElementType(CGF), SlotSize);
-    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
-    return Addr;
-  }
-
-  auto TInfo = getContext().getTypeInfoInChars(Ty);
-
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize,
-                          /*AllowHigherAlign=*/true);
-}
-
-ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
-                                             int &ArgFPRsLeft,
-                                             bool isReturnType) const {
-  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  // Structures with either a non-trivial destructor or a non-trivial
-  // copy constructor are always passed indirectly.
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
-    if (ArgGPRsLeft)
-      ArgGPRsLeft -= 1;
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
-                                           CGCXXABI::RAA_DirectInMemory);
-  }
-
-  // Ignore empty structs/unions.
-  if (isEmptyRecord(getContext(), Ty, true))
-    return ABIArgInfo::getIgnore();
-
-  if (!Ty->getAsUnionType())
-    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
-      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
-
-  uint64_t Size = getContext().getTypeSize(Ty);
-  // Pass floating point values via FPRs if possible.
-  if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size &&
-      ArgFPRsLeft) {
-    ArgFPRsLeft--;
-    return ABIArgInfo::getDirect();
-  }
-
-  // Complex types for the hard float ABI must be passed direct rather than
-  // using CoerceAndExpand.
-  if (Ty->isComplexType() && FLen && !isReturnType) {
-    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
-    if (getContext().getTypeSize(EltTy) <= FLen) {
-      ArgFPRsLeft -= 2;
-      return ABIArgInfo::getDirect();
-    }
-  }
-
-  if (!isAggregateTypeForABI(Ty)) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    // All integral types are promoted to XLen width, unless passed on the
-    // stack.
-    if (Size < XLen && Ty->isIntegralOrEnumerationType())
-      return ABIArgInfo::getExtend(Ty);
-
-    if (const auto *EIT = Ty->getAs<BitIntType>()) {
-      if (EIT->getNumBits() < XLen)
-        return ABIArgInfo::getExtend(Ty);
-    }
-
-    return ABIArgInfo::getDirect();
-  }
-
-  // For argument type, the first 4*XLen parts of aggregate will be passed
-  // in registers, and the rest will be passed in stack.
-  // So we can coerce to integers directly and let backend handle it correctly.
-  // For return type, aggregate which <= 2*XLen will be returned in registers.
-  // Otherwise, aggregate will be returned indirectly.
-  if (!isReturnType || (isReturnType && Size <= 2 * XLen)) {
-    if (Size <= XLen) {
-      return ABIArgInfo::getDirect(
-          llvm::IntegerType::get(getVMContext(), XLen));
-    } else {
-      return ABIArgInfo::getDirect(llvm::ArrayType::get(
-          llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen));
-    }
-  }
-  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-}
-
-ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  int ArgGPRsLeft = 2;
-  int ArgFPRsLeft = FLen ? 1 : 0;
-
-  // The rules for return and argument types are the same, so defer to
-  // classifyArgumentType.
-  return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true);
-}
-
-namespace {
-class CSKYTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
-      : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {}
-};
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// BPF ABI Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class BPFABIInfo : public DefaultABIInfo {
-public:
-  BPFABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
-
-  ABIArgInfo classifyArgumentType(QualType Ty) const {
-    Ty = useFirstFieldIfTransparentUnion(Ty);
-
-    if (isAggregateTypeForABI(Ty)) {
-      uint64_t Bits = getContext().getTypeSize(Ty);
-      if (Bits == 0)
-        return ABIArgInfo::getIgnore();
-
-      // If the aggregate needs 1 or 2 registers, do not use reference.
-      if (Bits <= 128) {
-        llvm::Type *CoerceTy;
-        if (Bits <= 64) {
-          CoerceTy =
-              llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
-        } else {
-          llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), 64);
-          CoerceTy = llvm::ArrayType::get(RegTy, 2);
-        }
-        return ABIArgInfo::getDirect(CoerceTy);
-      } else {
-        return getNaturalAlignIndirect(Ty);
-      }
-    }
-
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    ASTContext &Context = getContext();
-    if (const auto *EIT = Ty->getAs<BitIntType>())
-      if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty))
-        return getNaturalAlignIndirect(Ty);
-
-    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
-                                              : ABIArgInfo::getDirect());
-  }
-
-  ABIArgInfo classifyReturnType(QualType RetTy) const {
-    if (RetTy->isVoidType())
-      return ABIArgInfo::getIgnore();
-
-    if (isAggregateTypeForABI(RetTy))
-      return getNaturalAlignIndirect(RetTy);
-
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
-      RetTy = EnumTy->getDecl()->getIntegerType();
-
-    ASTContext &Context = getContext();
-    if (const auto *EIT = RetTy->getAs<BitIntType>())
-      if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty))
-        return getNaturalAlignIndirect(RetTy);
-
-    // Caller will do necessary sign/zero extension.
-    return ABIArgInfo::getDirect();
-  }
-
-  void computeInfo(CGFunctionInfo &FI) const override {
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
-    for (auto &I : FI.arguments())
-      I.info = classifyArgumentType(I.type);
-  }
-
-};
-
-class BPFTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  BPFTargetCodeGenInfo(CodeGenTypes &CGT)
-      : TargetCodeGenInfo(std::make_unique<BPFABIInfo>(CGT)) {}
-};
-
-}
-
-// LoongArch ABI Implementation. Documented at
-// https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
-//
-//===----------------------------------------------------------------------===//
-
-namespace {
-class LoongArchABIInfo : public DefaultABIInfo {
-private:
-  // Size of the integer ('r') registers in bits.
-  unsigned GRLen;
-  // Size of the floating point ('f') registers in bits.
-  unsigned FRLen;
-  // Number of general-purpose argument registers.
-  static const int NumGARs = 8;
-  // Number of floating-point argument registers.
-  static const int NumFARs = 8;
-  bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff,
-                                      llvm::Type *&Field1Ty,
-                                      CharUnits &Field1Off,
-                                      llvm::Type *&Field2Ty,
-                                      CharUnits &Field2Off) const;
-
-public:
-  LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen)
-      : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {}
-
-  void computeInfo(CGFunctionInfo &FI) const override;
-
-  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft,
-                                  int &FARsLeft) const;
-  ABIArgInfo classifyReturnType(QualType RetTy) const;
-
-  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                    QualType Ty) const override;
-
-  ABIArgInfo extendType(QualType Ty) const;
-
-  bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
-                                CharUnits &Field1Off, llvm::Type *&Field2Ty,
-                                CharUnits &Field2Off, int &NeededArgGPRs,
-                                int &NeededArgFPRs) const;
-  ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty,
-                                               CharUnits Field1Off,
-                                               llvm::Type *Field2Ty,
-                                               CharUnits Field2Off) const;
-};
-} // end anonymous namespace
-
-void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const {
-  QualType RetTy = FI.getReturnType();
-  if (!getCXXABI().classifyReturnType(FI))
-    FI.getReturnInfo() = classifyReturnType(RetTy);
-
-  // IsRetIndirect is true if classifyArgumentType indicated the value should
-  // be passed indirect, or if the type size is a scalar greater than 2*GRLen
-  // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct
-  // in LLVM IR, relying on the backend lowering code to rewrite the argument
-  // list and pass indirectly on LA32.
-  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
-  if (!IsRetIndirect && RetTy->isScalarType() &&
-      getContext().getTypeSize(RetTy) > (2 * GRLen)) {
-    if (RetTy->isComplexType() && FRLen) {
-      QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
-      IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen;
-    } else {
-      // This is a normal scalar > 2*GRLen, such as fp128 on LA32.
-      IsRetIndirect = true;
-    }
-  }
-
-  // We must track the number of GARs and FARs used in order to conform to the
-  // LoongArch ABI. As GAR usage is 
diff erent for variadic arguments, we must
-  // also track whether we are examining a vararg or not.
-  int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs;
-  int FARsLeft = FRLen ? NumFARs : 0;
-  int NumFixedArgs = FI.getNumRequiredArgs();
-
-  int ArgNum = 0;
-  for (auto &ArgInfo : FI.arguments()) {
-    ArgInfo.info = classifyArgumentType(
-        ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft);
-    ArgNum++;
-  }
-}
-
-// Returns true if the struct is a potential candidate to be passed in FARs (and
-// GARs). If this function returns true, the caller is responsible for checking
-// that if there is only a single field then that field is a float.
-bool LoongArchABIInfo::detectFARsEligibleStructHelper(
-    QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off,
-    llvm::Type *&Field2Ty, CharUnits &Field2Off) const {
-  bool IsInt = Ty->isIntegralOrEnumerationType();
-  bool IsFloat = Ty->isRealFloatingType();
-
-  if (IsInt || IsFloat) {
-    uint64_t Size = getContext().getTypeSize(Ty);
-    if (IsInt && Size > GRLen)
-      return false;
-    // Can't be eligible if larger than the FP registers. Half precision isn't
-    // currently supported on LoongArch and the ABI hasn't been confirmed, so
-    // default to the integer ABI in that case.
-    if (IsFloat && (Size > FRLen || Size < 32))
-      return false;
-    // Can't be eligible if an integer type was already found (int+int pairs
-    // are not eligible).
-    if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
-      return false;
-    if (!Field1Ty) {
-      Field1Ty = CGT.ConvertType(Ty);
-      Field1Off = CurOff;
-      return true;
-    }
-    if (!Field2Ty) {
-      Field2Ty = CGT.ConvertType(Ty);
-      Field2Off = CurOff;
-      return true;
-    }
-    return false;
-  }
-
-  if (auto CTy = Ty->getAs<ComplexType>()) {
-    if (Field1Ty)
-      return false;
-    QualType EltTy = CTy->getElementType();
-    if (getContext().getTypeSize(EltTy) > FRLen)
-      return false;
-    Field1Ty = CGT.ConvertType(EltTy);
-    Field1Off = CurOff;
-    Field2Ty = Field1Ty;
-    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
-    return true;
-  }
-
-  if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
-    uint64_t ArraySize = ATy->getSize().getZExtValue();
-    QualType EltTy = ATy->getElementType();
-    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
-    for (uint64_t i = 0; i < ArraySize; ++i) {
-      if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off,
-                                          Field2Ty, Field2Off))
-        return false;
-      CurOff += EltSize;
-    }
-    return true;
-  }
-
-  if (const auto *RTy = Ty->getAs<RecordType>()) {
-    // Structures with either a non-trivial destructor or a non-trivial
-    // copy constructor are not eligible for the FP calling convention.
-    if (getRecordArgABI(Ty, CGT.getCXXABI()))
-      return false;
-    if (isEmptyRecord(getContext(), Ty, true))
-      return true;
-    const RecordDecl *RD = RTy->getDecl();
-    // Unions aren't eligible unless they're empty (which is caught above).
-    if (RD->isUnion())
-      return false;
-    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
-    // If this is a C++ record, check the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-      for (const CXXBaseSpecifier &B : CXXRD->bases()) {
-        const auto *BDecl =
-            cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
-        if (!detectFARsEligibleStructHelper(
-                B.getType(), CurOff + Layout.getBaseClassOffset(BDecl),
-                Field1Ty, Field1Off, Field2Ty, Field2Off))
-          return false;
-      }
-    }
-    for (const FieldDecl *FD : RD->fields()) {
-      QualType QTy = FD->getType();
-      if (FD->isBitField()) {
-        unsigned BitWidth = FD->getBitWidthValue(getContext());
-        // Zero-width bitfields are ignored.
-        if (BitWidth == 0)
-          continue;
-        // Allow a bitfield with a type greater than GRLen as long as the
-        // bitwidth is GRLen or less.
-        if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) {
-          QTy = getContext().getIntTypeForBitwidth(GRLen, false);
-        }
-      }
-
-      if (!detectFARsEligibleStructHelper(
-              QTy,
-              CurOff + getContext().toCharUnitsFromBits(
-                           Layout.getFieldOffset(FD->getFieldIndex())),
-              Field1Ty, Field1Off, Field2Ty, Field2Off))
-        return false;
-    }
-    return Field1Ty != nullptr;
-  }
-
-  return false;
-}
-
-// Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when
-// flattened it contains a single fp value, fp+fp, or int+fp of appropriate
-// size). If so, NeededFARs and NeededGARs are incremented appropriately.
-bool LoongArchABIInfo::detectFARsEligibleStruct(
-    QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off,
-    llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs,
-    int &NeededFARs) const {
-  Field1Ty = nullptr;
-  Field2Ty = nullptr;
-  NeededGARs = 0;
-  NeededFARs = 0;
-  if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty,
-                                      Field1Off, Field2Ty, Field2Off))
-    return false;
-  // Not really a candidate if we have a single int but no float.
-  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
-    return false;
-  if (Field1Ty && Field1Ty->isFloatingPointTy())
-    NeededFARs++;
-  else if (Field1Ty)
-    NeededGARs++;
-  if (Field2Ty && Field2Ty->isFloatingPointTy())
-    NeededFARs++;
-  else if (Field2Ty)
-    NeededGARs++;
-  return true;
-}
-
-// Call getCoerceAndExpand for the two-element flattened struct described by
-// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
-// appropriate coerceToType and unpaddedCoerceToType.
-ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct(
-    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
-    CharUnits Field2Off) const {
-  SmallVector<llvm::Type *, 3> CoerceElts;
-  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
-  if (!Field1Off.isZero())
-    CoerceElts.push_back(llvm::ArrayType::get(
-        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
-
-  CoerceElts.push_back(Field1Ty);
-  UnpaddedCoerceElts.push_back(Field1Ty);
-
-  if (!Field2Ty) {
-    return ABIArgInfo::getCoerceAndExpand(
-        llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
-        UnpaddedCoerceElts[0]);
-  }
-
-  CharUnits Field2Align =
-      CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
-  CharUnits Field1End =
-      Field1Off +
-      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
-  CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
-
-  CharUnits Padding = CharUnits::Zero();
-  if (Field2Off > Field2OffNoPadNoPack)
-    Padding = Field2Off - Field2OffNoPadNoPack;
-  else if (Field2Off != Field2Align && Field2Off > Field1End)
-    Padding = Field2Off - Field1End;
-
-  bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
-
-  if (!Padding.isZero())
-    CoerceElts.push_back(llvm::ArrayType::get(
-        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
-
-  CoerceElts.push_back(Field2Ty);
-  UnpaddedCoerceElts.push_back(Field2Ty);
-
-  return ABIArgInfo::getCoerceAndExpand(
-      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked),
-      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked));
-}
-
-ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
-                                                  int &GARsLeft,
-                                                  int &FARsLeft) const {
-  assert(GARsLeft <= NumGARs && "GAR tracking underflow");
-  Ty = useFirstFieldIfTransparentUnion(Ty);
-
-  // Structures with either a non-trivial destructor or a non-trivial
-  // copy constructor are always passed indirectly.
-  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
-    if (GARsLeft)
-      GARsLeft -= 1;
-    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
-                                           CGCXXABI::RAA_DirectInMemory);
-  }
-
-  // Ignore empty structs/unions.
-  if (isEmptyRecord(getContext(), Ty, true))
-    return ABIArgInfo::getIgnore();
-
-  uint64_t Size = getContext().getTypeSize(Ty);
-
-  // Pass floating point values via FARs if possible.
-  if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
-      FRLen >= Size && FARsLeft) {
-    FARsLeft--;
-    return ABIArgInfo::getDirect();
-  }
-
-  // Complex types for the *f or *d ABI must be passed directly rather than
-  // using CoerceAndExpand.
-  if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) {
-    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
-    if (getContext().getTypeSize(EltTy) <= FRLen) {
-      FARsLeft -= 2;
-      return ABIArgInfo::getDirect();
-    }
-  }
-
-  if (IsFixed && FRLen && Ty->isStructureOrClassType()) {
-    llvm::Type *Field1Ty = nullptr;
-    llvm::Type *Field2Ty = nullptr;
-    CharUnits Field1Off = CharUnits::Zero();
-    CharUnits Field2Off = CharUnits::Zero();
-    int NeededGARs = 0;
-    int NeededFARs = 0;
-    bool IsCandidate = detectFARsEligibleStruct(
-        Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs);
-    if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) {
-      GARsLeft -= NeededGARs;
-      FARsLeft -= NeededFARs;
-      return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty,
-                                               Field2Off);
-    }
-  }
-
-  uint64_t NeededAlign = getContext().getTypeAlign(Ty);
-  // Determine the number of GARs needed to pass the current argument
-  // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned"
-  // register pairs, so may consume 3 registers.
-  int NeededGARs = 1;
-  if (!IsFixed && NeededAlign == 2 * GRLen)
-    NeededGARs = 2 + (GARsLeft % 2);
-  else if (Size > GRLen && Size <= 2 * GRLen)
-    NeededGARs = 2;
-
-  if (NeededGARs > GARsLeft)
-    NeededGARs = GARsLeft;
-
-  GARsLeft -= NeededGARs;
-
-  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
-    // Treat an enum type as its underlying type.
-    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
-      Ty = EnumTy->getDecl()->getIntegerType();
-
-    // All integral types are promoted to GRLen width.
-    if (Size < GRLen && Ty->isIntegralOrEnumerationType())
-      return extendType(Ty);
-
-    if (const auto *EIT = Ty->getAs<BitIntType>()) {
-      if (EIT->getNumBits() < GRLen)
-        return extendType(Ty);
-      if (EIT->getNumBits() > 128 ||
-          (!getContext().getTargetInfo().hasInt128Type() &&
-           EIT->getNumBits() > 64))
-        return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-    }
-
-    return ABIArgInfo::getDirect();
-  }
-
-  // Aggregates which are <= 2*GRLen will be passed in registers if possible,
-  // so coerce to integers.
-  if (Size <= 2 * GRLen) {
-    // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is
-    // required, and a 2-element GRLen array if only GRLen alignment is
-    // required.
-    if (Size <= GRLen) {
-      return ABIArgInfo::getDirect(
-          llvm::IntegerType::get(getVMContext(), GRLen));
-    }
-    if (getContext().getTypeAlign(Ty) == 2 * GRLen) {
-      return ABIArgInfo::getDirect(
-          llvm::IntegerType::get(getVMContext(), 2 * GRLen));
-    }
-    return ABIArgInfo::getDirect(
-        llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2));
-  }
-  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
-}
-
-ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-  // The rules for return and argument types are the same, so defer to
-  // classifyArgumentType.
-  int GARsLeft = 2;
-  int FARsLeft = FRLen ? 2 : 0;
-  return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft);
-}
-
-Address LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
-                                    QualType Ty) const {
-  CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8);
-
-  // Empty records are ignored for parameter passing purposes.
-  if (isEmptyRecord(getContext(), Ty, true)) {
-    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
-                           getVAListElementType(CGF), SlotSize);
-    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
-    return Addr;
-  }
-
-  auto TInfo = getContext().getTypeInfoInChars(Ty);
-
-  // Arguments bigger than 2*GRLen bytes are passed indirectly.
-  return emitVoidPtrVAArg(CGF, VAListAddr, Ty,
-                          /*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo,
-                          SlotSize,
-                          /*AllowHigherAlign=*/true);
-}
-
-ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const {
-  int TySize = getContext().getTypeSize(Ty);
-  // LA64 ABI requires unsigned 32 bit integers to be sign extended.
-  if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
-    return ABIArgInfo::getSignExtend(Ty);
-  return ABIArgInfo::getExtend(Ty);
-}
-
-namespace {
-class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo {
-public:
-  LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen,
-                             unsigned FRLen)
-      : TargetCodeGenInfo(
-            std::make_unique<LoongArchABIInfo>(CGT, GRLen, FRLen)) {}
-};
-} // namespace
-
-//===----------------------------------------------------------------------===//
-// Driver code
-//===----------------------------------------------------------------------===//
-
-// TODO: Move to CodeGenModule.cpp.
-bool CodeGenModule::supportsCOMDAT() const {
-  return getTriple().supportsCOMDAT();
-}
-
-// TODO: Move to CodeGenModule.cpp.
-static std::unique_ptr<TargetCodeGenInfo>
-createTargetCodeGenInfo(CodeGenModule &CGM) {
-  const TargetInfo &Target = CGM.getTarget();
-  const llvm::Triple &Triple = Target.getTriple();
-  const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
-
-  switch (Triple.getArch()) {
-  default:
-    return createDefaultTargetCodeGenInfo(CGM);
-
-  case llvm::Triple::le32:
-    return createPNaClTargetCodeGenInfo(CGM);
-  case llvm::Triple::m68k:
-    return createM68kTargetCodeGenInfo(CGM);
-  case llvm::Triple::mips:
-  case llvm::Triple::mipsel:
-    if (Triple.getOS() == llvm::Triple::NaCl)
-      return createPNaClTargetCodeGenInfo(CGM);
-    return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
-
-  case llvm::Triple::mips64:
-  case llvm::Triple::mips64el:
-    return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
-
-  case llvm::Triple::avr: {
-    // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
-    // on avrtiny. For passing return value, R18~R25 are used on avr, and
-    // R22~R25 are used on avrtiny.
-    unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
-    unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
-    return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
-  }
-
-  case llvm::Triple::aarch64:
-  case llvm::Triple::aarch64_32:
-  case llvm::Triple::aarch64_be: {
-    AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
-    if (Target.getABI() == "darwinpcs")
-      Kind = AArch64ABIKind::DarwinPCS;
-    else if (Triple.isOSWindows())
-      return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
-
-    return createAArch64TargetCodeGenInfo(CGM, Kind);
-  }
-
-  case llvm::Triple::wasm32:
-  case llvm::Triple::wasm64: {
-    WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
-    if (Target.getABI() == "experimental-mv")
-      Kind = WebAssemblyABIKind::ExperimentalMV;
-    return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
-  }
-
-  case llvm::Triple::arm:
-  case llvm::Triple::armeb:
-  case llvm::Triple::thumb:
-  case llvm::Triple::thumbeb: {
-    if (Triple.getOS() == llvm::Triple::Win32)
-      return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
-
-    ARMABIKind Kind = ARMABIKind::AAPCS;
-    StringRef ABIStr = Target.getABI();
-    if (ABIStr == "apcs-gnu")
-      Kind = ARMABIKind::APCS;
-    else if (ABIStr == "aapcs16")
-      Kind = ARMABIKind::AAPCS16_VFP;
-    else if (CodeGenOpts.FloatABI == "hard" ||
-             (CodeGenOpts.FloatABI != "soft" &&
-              (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
-               Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
-               Triple.getEnvironment() == llvm::Triple::EABIHF)))
-      Kind = ARMABIKind::AAPCS_VFP;
-
-    return createARMTargetCodeGenInfo(CGM, Kind);
-  }
-
-  case llvm::Triple::ppc: {
-    if (Triple.isOSAIX())
-      return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
-
-    bool IsSoftFloat =
-        CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
-    return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
-  }
-  case llvm::Triple::ppcle: {
-    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
-    return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
-  }
-  case llvm::Triple::ppc64:
-    if (Triple.isOSAIX())
-      return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
-
-    if (Triple.isOSBinFormatELF()) {
-      PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
-      if (Target.getABI() == "elfv2")
-        Kind = PPC64_SVR4_ABIKind::ELFv2;
-      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
-
-      return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
-    }
-    return createPPC64TargetCodeGenInfo(CGM);
-  case llvm::Triple::ppc64le: {
-    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
-    PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
-    if (Target.getABI() == "elfv1")
-      Kind = PPC64_SVR4_ABIKind::ELFv1;
-    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
-
-    return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
-  }
-
-  case llvm::Triple::nvptx:
-  case llvm::Triple::nvptx64:
-    return createNVPTXTargetCodeGenInfo(CGM);
-
-  case llvm::Triple::msp430:
-    return createMSP430TargetCodeGenInfo(CGM);
-
-  case llvm::Triple::riscv32:
-  case llvm::Triple::riscv64: {
-    StringRef ABIStr = Target.getABI();
-    unsigned XLen = Target.getPointerWidth(LangAS::Default);
-    unsigned ABIFLen = 0;
-    if (ABIStr.endswith("f"))
-      ABIFLen = 32;
-    else if (ABIStr.endswith("d"))
-      ABIFLen = 64;
-    return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
-  }
-
-  case llvm::Triple::systemz: {
-    bool SoftFloat = CodeGenOpts.FloatABI == "soft";
-    bool HasVector = !SoftFloat && Target.getABI() == "vector";
-    return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
-  }
-
-  case llvm::Triple::tce:
-  case llvm::Triple::tcele:
-    return createTCETargetCodeGenInfo(CGM);
-
-  case llvm::Triple::x86: {
-    bool IsDarwinVectorABI = Triple.isOSDarwin();
-    bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
-
-    if (Triple.getOS() == llvm::Triple::Win32) {
-      return createWinX86_32TargetCodeGenInfo(
-          CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
-          CodeGenOpts.NumRegisterParameters);
-    }
-    return createX86_32TargetCodeGenInfo(
-        CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
-        CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
-  }
-
-  case llvm::Triple::x86_64: {
-    StringRef ABI = Target.getABI();
-    X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
-                               : ABI == "avx"  ? X86AVXABILevel::AVX
-                                               : X86AVXABILevel::None);
-
-    switch (Triple.getOS()) {
-    case llvm::Triple::Win32:
-      return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
-    default:
-      return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
-    }
-  }
-  case llvm::Triple::hexagon:
-    return createHexagonTargetCodeGenInfo(CGM);
-  case llvm::Triple::lanai:
-    return createLanaiTargetCodeGenInfo(CGM);
-  case llvm::Triple::r600:
-    return createAMDGPUTargetCodeGenInfo(CGM);
-  case llvm::Triple::amdgcn:
-    return createAMDGPUTargetCodeGenInfo(CGM);
-  case llvm::Triple::sparc:
-    return createSparcV8TargetCodeGenInfo(CGM);
-  case llvm::Triple::sparcv9:
-    return createSparcV9TargetCodeGenInfo(CGM);
-  case llvm::Triple::xcore:
-    return createXCoreTargetCodeGenInfo(CGM);
-  case llvm::Triple::arc:
-    return createARCTargetCodeGenInfo(CGM);
-  case llvm::Triple::spir:
-  case llvm::Triple::spir64:
-    return createCommonSPIRTargetCodeGenInfo(CGM);
-  case llvm::Triple::spirv32:
-  case llvm::Triple::spirv64:
-    return createSPIRVTargetCodeGenInfo(CGM);
-  case llvm::Triple::ve:
-    return createVETargetCodeGenInfo(CGM);
-  case llvm::Triple::csky: {
-    bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
-    bool hasFP64 =
-        Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
-    return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
-                                            : hasFP64   ? 64
-                                                        : 32);
-  }
-  case llvm::Triple::bpfeb:
-  case llvm::Triple::bpfel:
-    return createBPFTargetCodeGenInfo(CGM);
-  case llvm::Triple::loongarch32:
-  case llvm::Triple::loongarch64: {
-    StringRef ABIStr = Target.getABI();
-    unsigned ABIFRLen = 0;
-    if (ABIStr.endswith("f"))
-      ABIFRLen = 32;
-    else if (ABIStr.endswith("d"))
-      ABIFRLen = 64;
-    return createLoongArchTargetCodeGenInfo(
-        CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
-  }
-  }
-}
-
-// TODO: Move to CodeGenModule.cpp.
-const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
-  if (!TheTargetCodeGenInfo)
-    TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
-  return *TheTargetCodeGenInfo;
-}
-
-/// Create an OpenCL kernel for an enqueued block.
-///
-/// The kernel has the same function type as the block invoke function. Its
-/// name is the name of the block invoke function postfixed with "_kernel".
-/// It simply calls the block invoke function then returns.
-llvm::Value *TargetCodeGenInfo::createEnqueuedBlockKernel(
-    CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
-  auto *InvokeFT = Invoke->getFunctionType();
-  auto &C = CGF.getLLVMContext();
-  std::string Name = Invoke->getName().str() + "_kernel";
-  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C),
-                                     InvokeFT->params(), false);
-  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name,
-                                   &CGF.CGM.getModule());
-  llvm::CallingConv::ID KernelCC =
-      CGF.getTypes().ClangCallConvToLLVMCallConv(CallingConv::CC_OpenCLKernel);
-  F->setCallingConv(KernelCC);
-
-  llvm::AttrBuilder KernelAttrs(C);
-
-  // FIXME: This is missing setTargetAttributes
-  CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
-  F->addFnAttrs(KernelAttrs);
-
-  auto IP = CGF.Builder.saveIP();
-  auto *BB = llvm::BasicBlock::Create(C, "entry", F);
-  auto &Builder = CGF.Builder;
-  Builder.SetInsertPoint(BB);
-  llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args()));
-  llvm::CallInst *Call = Builder.CreateCall(Invoke, Args);
-  Call->setCallingConv(Invoke->getCallingConv());
-
-  Builder.CreateRetVoid();
-  Builder.restoreIP(IP);
-  return F;
-}
-
-/// Create an OpenCL kernel for an enqueued block.
-///
-/// The type of the first argument (the block literal) is the struct type
-/// of the block literal instead of a pointer type. The first argument
-/// (block literal) is passed directly by value to the kernel. The kernel
-/// allocates the same type of struct on stack and stores the block literal
-/// to it and passes its pointer to the block invoke function. The kernel
-/// has "enqueued-block" function attribute and kernel argument metadata.
-llvm::Value *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
-    CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
-  auto &Builder = CGF.Builder;
-  auto &C = CGF.getLLVMContext();
-
-  auto *InvokeFT = Invoke->getFunctionType();
-  llvm::SmallVector<llvm::Type *, 2> ArgTys;
-  llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
-  llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
-  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
-  llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
-  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
-  llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
-
-  ArgTys.push_back(BlockTy);
-  ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
-  AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
-  ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
-  ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
-  AccessQuals.push_back(llvm::MDString::get(C, "none"));
-  ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
-  for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
-    ArgTys.push_back(InvokeFT->getParamType(I));
-    ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
-    AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
-    AccessQuals.push_back(llvm::MDString::get(C, "none"));
-    ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
-    ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
-    ArgNames.push_back(
-        llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
-  }
-  std::string Name = Invoke->getName().str() + "_kernel";
-  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
-  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
-                                   &CGF.CGM.getModule());
-  F->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
-
-  llvm::AttrBuilder KernelAttrs(C);
-  // FIXME: The invoke isn't applying the right attributes either
-  // FIXME: This is missing setTargetAttributes
-  CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
-  KernelAttrs.addAttribute("enqueued-block");
-  F->addFnAttrs(KernelAttrs);
-
-  auto IP = CGF.Builder.saveIP();
-  auto *BB = llvm::BasicBlock::Create(C, "entry", F);
-  Builder.SetInsertPoint(BB);
-  const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
-  auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
-  BlockPtr->setAlignment(BlockAlign);
-  Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
-  auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
-  llvm::SmallVector<llvm::Value *, 2> Args;
-  Args.push_back(Cast);
-  for (llvm::Argument &A : llvm::drop_begin(F->args()))
-    Args.push_back(&A);
-  llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
-  call->setCallingConv(Invoke->getCallingConv());
-  Builder.CreateRetVoid();
-  Builder.restoreIP(IP);
-
-  F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
-  F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
-  F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
-  F->setMetadata("kernel_arg_base_type",
-                 llvm::MDNode::get(C, ArgBaseTypeNames));
-  F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
-  if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
-    F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
-
-  return F;
-}
+} // namespace
 
 std::unique_ptr<TargetCodeGenInfo>
 CodeGen::createDefaultTargetCodeGenInfo(CodeGenModule &CGM) {
   return std::make_unique<DefaultTargetCodeGenInfo>(CGM.getTypes());
 }
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createAArch64TargetCodeGenInfo(CodeGenModule &CGM,
-                                        AArch64ABIKind Kind) {
-  return std::make_unique<AArch64TargetCodeGenInfo>(CGM.getTypes(), Kind);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM,
-                                               AArch64ABIKind K) {
-  return std::make_unique<WindowsAArch64TargetCodeGenInfo>(CGM.getTypes(), K);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<AMDGPUTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createARCTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<ARCTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind) {
-  return std::make_unique<ARMTargetCodeGenInfo>(CGM.getTypes(), Kind);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K) {
-  return std::make_unique<WindowsARMTargetCodeGenInfo>(CGM.getTypes(), K);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR,
-                                    unsigned NRR) {
-  return std::make_unique<AVRTargetCodeGenInfo>(CGM.getTypes(), NPR, NRR);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createBPFTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<BPFTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen) {
-  return std::make_unique<CSKYTargetCodeGenInfo>(CGM.getTypes(), FLen);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createHexagonTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<HexagonTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createLanaiTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<LanaiTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen,
-                                          unsigned FLen) {
-  return std::make_unique<LoongArchTargetCodeGenInfo>(CGM.getTypes(), GRLen,
-                                                      FLen);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createM68kTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<M68kTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32) {
-  return std::make_unique<MIPSTargetCodeGenInfo>(CGM.getTypes(), IsOS32);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createMSP430TargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<MSP430TargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createNVPTXTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<NVPTXTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createPNaClTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<PNaClTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit) {
-  return std::make_unique<AIXTargetCodeGenInfo>(CGM.getTypes(), Is64Bit);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI) {
-  bool RetSmallStructInRegABI = PPC32TargetCodeGenInfo::isStructReturnInRegABI(
-      CGM.getTriple(), CGM.getCodeGenOpts());
-  return std::make_unique<PPC32TargetCodeGenInfo>(CGM.getTypes(), SoftFloatABI,
-                                                  RetSmallStructInRegABI);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createPPC64TargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<PPC64TargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo> CodeGen::createPPC64_SVR4_TargetCodeGenInfo(
-    CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind, bool SoftFloatABI) {
-  return std::make_unique<PPC64_SVR4_TargetCodeGenInfo>(CGM.getTypes(), Kind,
-                                                        SoftFloatABI);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen,
-                                      unsigned FLen) {
-  return std::make_unique<RISCVTargetCodeGenInfo>(CGM.getTypes(), XLen, FLen);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<CommonSPIRTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createSPIRVTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<SPIRVTargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<SparcV8TargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<SparcV9TargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
-                                        bool SoftFloatABI) {
-  return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
-                                                    SoftFloatABI);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createTCETargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<TCETargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createVETargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<VETargetCodeGenInfo>(CGM.getTypes());
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM,
-                                            WebAssemblyABIKind K) {
-  return std::make_unique<WebAssemblyTargetCodeGenInfo>(CGM.getTypes(), K);
-}
-
-std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
-    CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
-    unsigned NumRegisterParameters, bool SoftFloatABI) {
-  bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
-      CGM.getTriple(), CGM.getCodeGenOpts());
-  return std::make_unique<X86_32TargetCodeGenInfo>(
-      CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
-      NumRegisterParameters, SoftFloatABI);
-}
-
-std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
-    CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
-    unsigned NumRegisterParameters) {
-  bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
-      CGM.getTriple(), CGM.getCodeGenOpts());
-  return std::make_unique<WinX86_32TargetCodeGenInfo>(
-      CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
-      NumRegisterParameters);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
-                                       X86AVXABILevel AVXLevel) {
-  return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
-                                          X86AVXABILevel AVXLevel) {
-  return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
-}
-
-std::unique_ptr<TargetCodeGenInfo>
-CodeGen::createXCoreTargetCodeGenInfo(CodeGenModule &CGM) {
-  return std::make_unique<XCoreTargetCodeGenInfo>(CGM.getTypes());
-}

diff  --git a/clang/lib/CodeGen/Targets/AArch64.cpp b/clang/lib/CodeGen/Targets/AArch64.cpp
new file mode 100644
index 0000000000000..f244c00715150
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/AArch64.cpp
@@ -0,0 +1,828 @@
+//===- AArch64.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// AArch64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AArch64ABIInfo : public ABIInfo {
+  AArch64ABIKind Kind;
+
+public:
+  AArch64ABIInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
+      : ABIInfo(CGT), Kind(Kind) {}
+
+private:
+  AArch64ABIKind getABIKind() const { return Kind; }
+  bool isDarwinPCS() const { return Kind == AArch64ABIKind::DarwinPCS; }
+
+  ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
+                                  unsigned CallingConvention) const;
+  ABIArgInfo coerceIllegalVector(QualType Ty) const;
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+                                         uint64_t Members) const override;
+  bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
+
+  bool isIllegalVectorType(QualType Ty) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!::classifyReturnType(getCXXABI(), FI, *this))
+      FI.getReturnInfo() =
+          classifyReturnType(FI.getReturnType(), FI.isVariadic());
+
+    for (auto &it : FI.arguments())
+      it.info = classifyArgumentType(it.type, FI.isVariadic(),
+                                     FI.getCallingConvention());
+  }
+
+  Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
+                          CodeGenFunction &CGF) const;
+
+  Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
+                         CodeGenFunction &CGF) const;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override {
+    llvm::Type *BaseTy = CGF.ConvertType(Ty);
+    if (isa<llvm::ScalableVectorType>(BaseTy))
+      llvm::report_fatal_error("Passing SVE types to variadic functions is "
+                               "currently not supported");
+
+    return Kind == AArch64ABIKind::Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
+           : isDarwinPCS()               ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
+                                         : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
+  }
+
+  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                      QualType Ty) const override;
+
+  bool allowBFloatArgsAndRet() const override {
+    return getTarget().hasBFloat16Type();
+  }
+};
+
+class AArch64SwiftABIInfo : public SwiftABIInfo {
+public:
+  explicit AArch64SwiftABIInfo(CodeGenTypes &CGT)
+      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
+
+  bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+                         unsigned NumElts) const override;
+};
+
+class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
+      : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {
+    SwiftInfo = std::make_unique<AArch64SwiftABIInfo>(CGT);
+  }
+
+  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+    return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
+  }
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    return 31;
+  }
+
+  bool doesReturnSlotInterfereWithArgs() const override { return false; }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+    if (!FD)
+      return;
+
+    const auto *TA = FD->getAttr<TargetAttr>();
+    if (TA == nullptr)
+      return;
+
+    ParsedTargetAttr Attr =
+        CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
+    if (Attr.BranchProtection.empty())
+      return;
+
+    TargetInfo::BranchProtectionInfo BPI;
+    StringRef Error;
+    (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
+                                                   Attr.CPU, BPI, Error);
+    assert(Error.empty());
+
+    auto *Fn = cast<llvm::Function>(GV);
+    static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
+    Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
+
+    if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
+      Fn->addFnAttr("sign-return-address-key",
+                    BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
+                        ? "a_key"
+                        : "b_key");
+    }
+
+    Fn->addFnAttr("branch-target-enforcement",
+                  BPI.BranchTargetEnforcement ? "true" : "false");
+  }
+
+  bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
+                                llvm::Type *Ty) const override {
+    if (CGF.getTarget().hasFeature("ls64")) {
+      auto *ST = dyn_cast<llvm::StructType>(Ty);
+      if (ST && ST->getNumElements() == 1) {
+        auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
+        if (AT && AT->getNumElements() == 8 &&
+            AT->getElementType()->isIntegerTy(64))
+          return true;
+      }
+    }
+    return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
+  }
+};
+
+class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
+public:
+  WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind K)
+      : AArch64TargetCodeGenInfo(CGT, K) {}
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override;
+
+  void getDependentLibraryOption(llvm::StringRef Lib,
+                                 llvm::SmallString<24> &Opt) const override {
+    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
+  }
+
+  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
+                               llvm::SmallString<32> &Opt) const override {
+    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+  }
+};
+
+void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+  AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+  if (GV->isDeclaration())
+    return;
+  addStackProbeTargetAttributes(D, GV, CGM);
+}
+}
+
+ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
+  assert(Ty->isVectorType() && "expected vector type!");
+
+  const auto *VT = Ty->castAs<VectorType>();
+  if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
+    assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
+    assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
+               BuiltinType::UChar &&
+           "unexpected builtin type for SVE predicate!");
+    return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
+        llvm::Type::getInt1Ty(getVMContext()), 16));
+  }
+
+  if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
+    assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
+
+    const auto *BT = VT->getElementType()->castAs<BuiltinType>();
+    llvm::ScalableVectorType *ResType = nullptr;
+    switch (BT->getKind()) {
+    default:
+      llvm_unreachable("unexpected builtin type for SVE vector!");
+    case BuiltinType::SChar:
+    case BuiltinType::UChar:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getInt8Ty(getVMContext()), 16);
+      break;
+    case BuiltinType::Short:
+    case BuiltinType::UShort:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getInt16Ty(getVMContext()), 8);
+      break;
+    case BuiltinType::Int:
+    case BuiltinType::UInt:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getInt32Ty(getVMContext()), 4);
+      break;
+    case BuiltinType::Long:
+    case BuiltinType::ULong:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getInt64Ty(getVMContext()), 2);
+      break;
+    case BuiltinType::Half:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getHalfTy(getVMContext()), 8);
+      break;
+    case BuiltinType::Float:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getFloatTy(getVMContext()), 4);
+      break;
+    case BuiltinType::Double:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getDoubleTy(getVMContext()), 2);
+      break;
+    case BuiltinType::BFloat16:
+      ResType = llvm::ScalableVectorType::get(
+          llvm::Type::getBFloatTy(getVMContext()), 8);
+      break;
+    }
+    return ABIArgInfo::getDirect(ResType);
+  }
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+  // Android promotes <2 x i8> to i16, not i32
+  if ((isAndroid() || isOHOSFamily()) && (Size <= 16)) {
+    llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
+    return ABIArgInfo::getDirect(ResType);
+  }
+  if (Size <= 32) {
+    llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
+    return ABIArgInfo::getDirect(ResType);
+  }
+  if (Size == 64) {
+    auto *ResType =
+        llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
+    return ABIArgInfo::getDirect(ResType);
+  }
+  if (Size == 128) {
+    auto *ResType =
+        llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
+    return ABIArgInfo::getDirect(ResType);
+  }
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo
+AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
+                                     unsigned CallingConvention) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // Handle illegal vector types here.
+  if (isIllegalVectorType(Ty))
+    return coerceIllegalVector(Ty);
+
+  if (!isAggregateTypeForABI(Ty)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    if (const auto *EIT = Ty->getAs<BitIntType>())
+      if (EIT->getNumBits() > 128)
+        return getNaturalAlignIndirect(Ty);
+
+    return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
+                ? ABIArgInfo::getExtend(Ty)
+                : ABIArgInfo::getDirect());
+  }
+
+  // Structures with either a non-trivial destructor or a non-trivial
+  // copy constructor are always indirect.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+                                     CGCXXABI::RAA_DirectInMemory);
+  }
+
+  // Empty records are always ignored on Darwin, but actually passed in C++ mode
+  // elsewhere for GNU compatibility.
+  uint64_t Size = getContext().getTypeSize(Ty);
+  bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
+  if (IsEmpty || Size == 0) {
+    if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
+      return ABIArgInfo::getIgnore();
+
+    // GNU C mode. The only argument that gets ignored is an empty one with size
+    // 0.
+    if (IsEmpty && Size == 0)
+      return ABIArgInfo::getIgnore();
+    return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+  }
+
+  // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
+  const Type *Base = nullptr;
+  uint64_t Members = 0;
+  bool IsWin64 = Kind == AArch64ABIKind::Win64 ||
+                 CallingConvention == llvm::CallingConv::Win64;
+  bool IsWinVariadic = IsWin64 && IsVariadic;
+  // In variadic functions on Windows, all composite types are treated alike,
+  // no special handling of HFAs/HVAs.
+  if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
+    if (Kind != AArch64ABIKind::AAPCS)
+      return ABIArgInfo::getDirect(
+          llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
+
+    // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
+    // default otherwise.
+    unsigned Align =
+        getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
+    unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
+    Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
+    return ABIArgInfo::getDirect(
+        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
+        nullptr, true, Align);
+  }
+
+  // Aggregates <= 16 bytes are passed directly in registers or on the stack.
+  if (Size <= 128) {
+    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
+    // same size and alignment.
+    if (getTarget().isRenderScriptTarget()) {
+      return coerceToIntArray(Ty, getContext(), getVMContext());
+    }
+    unsigned Alignment;
+    if (Kind == AArch64ABIKind::AAPCS) {
+      Alignment = getContext().getTypeUnadjustedAlign(Ty);
+      Alignment = Alignment < 128 ? 64 : 128;
+    } else {
+      Alignment =
+          std::max(getContext().getTypeAlign(Ty),
+                   (unsigned)getTarget().getPointerWidth(LangAS::Default));
+    }
+    Size = llvm::alignTo(Size, Alignment);
+
+    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+    // For aggregates with 16-byte alignment, we use i128.
+    llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
+    return ABIArgInfo::getDirect(
+        Size == Alignment ? BaseTy
+                          : llvm::ArrayType::get(BaseTy, Size / Alignment));
+  }
+
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
+                                              bool IsVariadic) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (const auto *VT = RetTy->getAs<VectorType>()) {
+    if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
+        VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
+      return coerceIllegalVector(RetTy);
+  }
+
+  // Large vector types should be returned via memory.
+  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
+    return getNaturalAlignIndirect(RetTy);
+
+  if (!isAggregateTypeForABI(RetTy)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+      RetTy = EnumTy->getDecl()->getIntegerType();
+
+    if (const auto *EIT = RetTy->getAs<BitIntType>())
+      if (EIT->getNumBits() > 128)
+        return getNaturalAlignIndirect(RetTy);
+
+    return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
+                ? ABIArgInfo::getExtend(RetTy)
+                : ABIArgInfo::getDirect());
+  }
+
+  uint64_t Size = getContext().getTypeSize(RetTy);
+  if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
+    return ABIArgInfo::getIgnore();
+
+  const Type *Base = nullptr;
+  uint64_t Members = 0;
+  if (isHomogeneousAggregate(RetTy, Base, Members) &&
+      !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
+        IsVariadic))
+    // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
+    return ABIArgInfo::getDirect();
+
+  // Aggregates <= 16 bytes are returned directly in registers or on the stack.
+  if (Size <= 128) {
+    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
+    // same size and alignment.
+    if (getTarget().isRenderScriptTarget()) {
+      return coerceToIntArray(RetTy, getContext(), getVMContext());
+    }
+
+    if (Size <= 64 && getDataLayout().isLittleEndian()) {
+      // Composite types are returned in lower bits of a 64-bit register for LE,
+      // and in higher bits for BE. However, integer types are always returned
+      // in lower bits for both LE and BE, and they are not rounded up to
+      // 64-bits. We can skip rounding up of composite types for LE, but not for
+      // BE, otherwise composite types will be indistinguishable from integer
+      // types.
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), Size));
+    }
+
+    unsigned Alignment = getContext().getTypeAlign(RetTy);
+    Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
+
+    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+    // For aggregates with 16-byte alignment, we use i128.
+    if (Alignment < 128 && Size == 128) {
+      llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
+      return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+    }
+    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+  }
+
+  return getNaturalAlignIndirect(RetTy);
+}
+
+/// isIllegalVectorType - check whether the vector type is legal for AArch64.
+bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
+  if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    // Check whether VT is a fixed-length SVE vector. These types are
+    // represented as scalable vectors in function args/return and must be
+    // coerced from fixed vectors.
+    if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
+        VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
+      return true;
+
+    // Check whether VT is legal.
+    unsigned NumElements = VT->getNumElements();
+    uint64_t Size = getContext().getTypeSize(VT);
+    // NumElements should be power of 2.
+    if (!llvm::isPowerOf2_32(NumElements))
+      return true;
+
+    // arm64_32 has to be compatible with the ARM logic here, which allows huge
+    // vectors for some reason.
+    llvm::Triple Triple = getTarget().getTriple();
+    if (Triple.getArch() == llvm::Triple::aarch64_32 &&
+        Triple.isOSBinFormatMachO())
+      return Size <= 32;
+
+    return Size != 64 && (Size != 128 || NumElements == 1);
+  }
+  return false;
+}
+
+bool AArch64SwiftABIInfo::isLegalVectorType(CharUnits VectorSize,
+                                            llvm::Type *EltTy,
+                                            unsigned NumElts) const {
+  if (!llvm::isPowerOf2_32(NumElts))
+    return false;
+  if (VectorSize.getQuantity() != 8 &&
+      (VectorSize.getQuantity() != 16 || NumElts == 1))
+    return false;
+  return true;
+}
+
+bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+  // Homogeneous aggregates for AAPCS64 must have base types of a floating
+  // point type or a short-vector type. This is the same as the 32-bit ABI,
+  // but with the 
diff erence that any floating-point type is allowed,
+  // including __fp16.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+    if (BT->isFloatingPoint())
+      return true;
+  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    unsigned VecSize = getContext().getTypeSize(VT);
+    if (VecSize == 64 || VecSize == 128)
+      return true;
+  }
+  return false;
+}
+
+bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+                                                       uint64_t Members) const {
+  return Members <= 4;
+}
+
+bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
+    const {
+  // AAPCS64 says that the rule for whether something is a homogeneous
+  // aggregate is applied to the output of the data layout decision. So
+  // anything that doesn't affect the data layout also does not affect
+  // homogeneity. In particular, zero-length bitfields don't stop a struct
+  // being homogeneous.
+  return true;
+}
+
+Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
+                                       CodeGenFunction &CGF) const {
+  ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
+                                       CGF.CurFnInfo->getCallingConvention());
+  // Empty records are ignored for parameter passing purposes.
+  if (AI.isIgnore()) {
+    uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
+    CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
+    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
+    auto *Load = CGF.Builder.CreateLoad(VAListAddr);
+    Address Addr = Address(Load, CGF.Int8Ty, SlotSize);
+    return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+  }
+
+  bool IsIndirect = AI.isIndirect();
+
+  llvm::Type *BaseTy = CGF.ConvertType(Ty);
+  if (IsIndirect)
+    BaseTy = llvm::PointerType::getUnqual(BaseTy);
+  else if (AI.getCoerceToType())
+    BaseTy = AI.getCoerceToType();
+
+  unsigned NumRegs = 1;
+  if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
+    BaseTy = ArrTy->getElementType();
+    NumRegs = ArrTy->getNumElements();
+  }
+  bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
+
+  // The AArch64 va_list type and handling is specified in the Procedure Call
+  // Standard, section B.4:
+  //
+  // struct {
+  //   void *__stack;
+  //   void *__gr_top;
+  //   void *__vr_top;
+  //   int __gr_offs;
+  //   int __vr_offs;
+  // };
+
+  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+
+  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
+  CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
+
+  Address reg_offs_p = Address::invalid();
+  llvm::Value *reg_offs = nullptr;
+  int reg_top_index;
+  int RegSize = IsIndirect ? 8 : TySize.getQuantity();
+  if (!IsFPR) {
+    // 3 is the field number of __gr_offs
+    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
+    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
+    reg_top_index = 1; // field number for __gr_top
+    RegSize = llvm::alignTo(RegSize, 8);
+  } else {
+    // 4 is the field number of __vr_offs.
+    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
+    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
+    reg_top_index = 2; // field number for __vr_top
+    RegSize = 16 * NumRegs;
+  }
+
+  //=======================================
+  // Find out where argument was passed
+  //=======================================
+
+  // If reg_offs >= 0 we're already using the stack for this type of
+  // argument. We don't want to keep updating reg_offs (in case it overflows,
+  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
+  // whatever they get).
+  llvm::Value *UsingStack = nullptr;
+  UsingStack = CGF.Builder.CreateICmpSGE(
+      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
+
+  // Otherwise, at least some kind of argument could go in these registers, the
+  // question is whether this particular type is too big.
+  CGF.EmitBlock(MaybeRegBlock);
+
+  // Integer arguments may need to correct register alignment (for example a
+  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
+  // align __gr_offs to calculate the potential address.
+  if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
+    int Align = TyAlign.getQuantity();
+
+    reg_offs = CGF.Builder.CreateAdd(
+        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
+        "align_regoffs");
+    reg_offs = CGF.Builder.CreateAnd(
+        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
+        "aligned_regoffs");
+  }
+
+  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
+  // The fact that this is done unconditionally reflects the fact that
+  // allocating an argument to the stack also uses up all the remaining
+  // registers of the appropriate kind.
+  llvm::Value *NewOffset = nullptr;
+  NewOffset = CGF.Builder.CreateAdd(
+      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
+  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
+
+  // Now we're in a position to decide whether this argument really was in
+  // registers or not.
+  llvm::Value *InRegs = nullptr;
+  InRegs = CGF.Builder.CreateICmpSLE(
+      NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
+
+  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
+
+  //=======================================
+  // Argument was in registers
+  //=======================================
+
+  // Now we emit the code for if the argument was originally passed in
+  // registers. First start the appropriate block:
+  CGF.EmitBlock(InRegBlock);
+
+  llvm::Value *reg_top = nullptr;
+  Address reg_top_p =
+      CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
+  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
+  Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
+                   CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
+  Address RegAddr = Address::invalid();
+  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;
+
+  if (IsIndirect) {
+    // If it's been passed indirectly (actually a struct), whatever we find from
+    // stored registers or on the stack will actually be a struct **.
+    MemTy = llvm::PointerType::getUnqual(MemTy);
+  }
+
+  const Type *Base = nullptr;
+  uint64_t NumMembers = 0;
+  bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
+  if (IsHFA && NumMembers > 1) {
+    // Homogeneous aggregates passed in registers will have their elements split
+    // and stored 16-bytes apart regardless of size (they're notionally in qN,
+    // qN+1, ...). We reload and store into a temporary local variable
+    // contiguously.
+    assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
+    auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
+    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
+    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
+    Address Tmp = CGF.CreateTempAlloca(HFATy,
+                                       std::max(TyAlign, BaseTyInfo.Align));
+
+    // On big-endian platforms, the value will be right-aligned in its slot.
+    int Offset = 0;
+    if (CGF.CGM.getDataLayout().isBigEndian() &&
+        BaseTyInfo.Width.getQuantity() < 16)
+      Offset = 16 - BaseTyInfo.Width.getQuantity();
+
+    for (unsigned i = 0; i < NumMembers; ++i) {
+      CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
+      Address LoadAddr =
+        CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
+      LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
+
+      Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
+
+      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
+      CGF.Builder.CreateStore(Elem, StoreAddr);
+    }
+
+    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
+  } else {
+    // Otherwise the object is contiguous in memory.
+
+    // It might be right-aligned in its slot.
+    CharUnits SlotSize = BaseAddr.getAlignment();
+    if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
+        (IsHFA || !isAggregateTypeForABI(Ty)) &&
+        TySize < SlotSize) {
+      CharUnits Offset = SlotSize - TySize;
+      BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
+    }
+
+    RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
+  }
+
+  CGF.EmitBranch(ContBlock);
+
+  //=======================================
+  // Argument was on the stack
+  //=======================================
+  CGF.EmitBlock(OnStackBlock);
+
+  Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
+  llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
+
+  // Again, stack arguments may need realignment. In this case both integer and
+  // floating-point ones might be affected.
+  if (!IsIndirect && TyAlign.getQuantity() > 8) {
+    int Align = TyAlign.getQuantity();
+
+    OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
+
+    OnStackPtr = CGF.Builder.CreateAdd(
+        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
+        "align_stack");
+    OnStackPtr = CGF.Builder.CreateAnd(
+        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
+        "align_stack");
+
+    OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
+  }
+  Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
+                                std::max(CharUnits::fromQuantity(8), TyAlign));
+
+  // All stack slots are multiples of 8 bytes.
+  CharUnits StackSlotSize = CharUnits::fromQuantity(8);
+  CharUnits StackSize;
+  if (IsIndirect)
+    StackSize = StackSlotSize;
+  else
+    StackSize = TySize.alignTo(StackSlotSize);
+
+  llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
+  llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
+      CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
+
+  // Write the new value of __stack for the next call to va_arg
+  CGF.Builder.CreateStore(NewStack, stack_p);
+
+  if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
+      TySize < StackSlotSize) {
+    CharUnits Offset = StackSlotSize - TySize;
+    OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
+  }
+
+  OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
+
+  CGF.EmitBranch(ContBlock);
+
+  //=======================================
+  // Tidy up
+  //=======================================
+  CGF.EmitBlock(ContBlock);
+
+  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
+                                 OnStackBlock, "vaargs.addr");
+
+  if (IsIndirect)
+    return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
+                   TyAlign);
+
+  return ResAddr;
+}
+
+Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
+                                        CodeGenFunction &CGF) const {
+  // The backend's lowering doesn't support va_arg for aggregates or
+  // illegal vector types.  Lower VAArg here for these cases and use
+  // the LLVM va_arg instruction for everything else.
+  if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
+    return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
+
+  uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
+  CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
+
+  // Empty records are ignored for parameter passing purposes.
+  if (isEmptyRecord(getContext(), Ty, true)) {
+    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"),
+                           getVAListElementType(CGF), SlotSize);
+    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+    return Addr;
+  }
+
+  // The size of the actual thing passed, which might end up just
+  // being a pointer for indirect types.
+  auto TyInfo = getContext().getTypeInfoInChars(Ty);
+
+  // Arguments bigger than 16 bytes which aren't homogeneous
+  // aggregates should be passed indirectly.
+  bool IsIndirect = false;
+  if (TyInfo.Width.getQuantity() > 16) {
+    const Type *Base = nullptr;
+    uint64_t Members = 0;
+    IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
+  }
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+                          TyInfo, SlotSize, /*AllowHigherAlign*/ true);
+}
+
+Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                    QualType Ty) const {
+  bool IsIndirect = false;
+
+  // Composites larger than 16 bytes are passed by reference.
+  if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
+    IsIndirect = true;
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+                          CGF.getContext().getTypeInfoInChars(Ty),
+                          CharUnits::fromQuantity(8),
+                          /*allowHigherAlign*/ false);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAArch64TargetCodeGenInfo(CodeGenModule &CGM,
+                                        AArch64ABIKind Kind) {
+  return std::make_unique<AArch64TargetCodeGenInfo>(CGM.getTypes(), Kind);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM,
+                                               AArch64ABIKind K) {
+  return std::make_unique<WindowsAArch64TargetCodeGenInfo>(CGM.getTypes(), K);
+}

diff  --git a/clang/lib/CodeGen/Targets/AMDGPU.cpp b/clang/lib/CodeGen/Targets/AMDGPU.cpp
new file mode 100644
index 0000000000000..796a2be81a09c
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/AMDGPU.cpp
@@ -0,0 +1,601 @@
+//===- AMDGPU.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// AMDGPU ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AMDGPUABIInfo final : public DefaultABIInfo {
+private:
+  static const unsigned MaxNumRegsForArgsRet = 16;
+
+  unsigned numRegsForType(QualType Ty) const;
+
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+  bool isHomogeneousAggregateSmallEnough(const Type *Base,
+                                         uint64_t Members) const override;
+
+  // Coerce HIP scalar pointer arguments from generic pointers to global ones.
+  llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
+                                       unsigned ToAS) const {
+    // Single value types.
+    auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty);
+    if (PtrTy && PtrTy->getAddressSpace() == FromAS)
+      return llvm::PointerType::get(Ty->getContext(), ToAS);
+    return Ty;
+  }
+
+public:
+  explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
+    DefaultABIInfo(CGT) {}
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
+  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+  return true;
+}
+
+bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
+  const Type *Base, uint64_t Members) const {
+  uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
+
+  // Homogeneous Aggregates may occupy at most 16 registers.
+  return Members * NumRegs <= MaxNumRegsForArgsRet;
+}
+
+/// Estimate number of registers the type will use when passed in registers.
+unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
+  unsigned NumRegs = 0;
+
+  if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    // Compute from the number of elements. The reported size is based on the
+    // in-memory size, which includes the padding 4th element for 3-vectors.
+    QualType EltTy = VT->getElementType();
+    unsigned EltSize = getContext().getTypeSize(EltTy);
+
+    // 16-bit element vectors should be passed as packed.
+    if (EltSize == 16)
+      return (VT->getNumElements() + 1) / 2;
+
+    unsigned EltNumRegs = (EltSize + 31) / 32;
+    return EltNumRegs * VT->getNumElements();
+  }
+
+  if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    const RecordDecl *RD = RT->getDecl();
+    assert(!RD->hasFlexibleArrayMember());
+
+    for (const FieldDecl *Field : RD->fields()) {
+      QualType FieldTy = Field->getType();
+      NumRegs += numRegsForType(FieldTy);
+    }
+
+    return NumRegs;
+  }
+
+  return (getContext().getTypeSize(Ty) + 31) / 32;
+}
+
+void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  llvm::CallingConv::ID CC = FI.getCallingConvention();
+
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+  unsigned NumRegsLeft = MaxNumRegsForArgsRet;
+  for (auto &Arg : FI.arguments()) {
+    if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
+      Arg.info = classifyKernelArgumentType(Arg.type);
+    } else {
+      Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
+    }
+  }
+}
+
+Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                 QualType Ty) const {
+  llvm_unreachable("AMDGPU does not support varargs");
+}
+
+ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
+  if (isAggregateTypeForABI(RetTy)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // returned by value.
+    if (!getRecordArgABI(RetTy, getCXXABI())) {
+      // Ignore empty structs/unions.
+      if (isEmptyRecord(getContext(), RetTy, true))
+        return ABIArgInfo::getIgnore();
+
+      // Lower single-element structs to just return a regular value.
+      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+      if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+        const RecordDecl *RD = RT->getDecl();
+        if (RD->hasFlexibleArrayMember())
+          return DefaultABIInfo::classifyReturnType(RetTy);
+      }
+
+      // Pack aggregates <= 4 bytes into single VGPR or pair.
+      uint64_t Size = getContext().getTypeSize(RetTy);
+      if (Size <= 16)
+        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+
+      if (Size <= 32)
+        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+      if (Size <= 64) {
+        llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
+        return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
+      }
+
+      if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
+        return ABIArgInfo::getDirect();
+    }
+  }
+
+  // Otherwise just do the default thing.
+  return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+/// For kernels all parameters are really passed in a special buffer. It doesn't
+/// make sense to pass anything byval, so everything must be direct.
+ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // TODO: Can we omit empty structs?
+
+  if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+    Ty = QualType(SeltTy, 0);
+
+  llvm::Type *OrigLTy = CGT.ConvertType(Ty);
+  llvm::Type *LTy = OrigLTy;
+  if (getContext().getLangOpts().HIP) {
+    LTy = coerceKernelArgumentType(
+        OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
+        /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
+  }
+
+  // FIXME: Should also use this for OpenCL, but it requires addressing the
+  // problem of kernels being called.
+  //
+  // FIXME: This doesn't apply the optimization of coercing pointers in structs
+  // to global address space when using byref. This would require implementing a
+  // new kind of coercion of the in-memory type when for indirect arguments.
+  if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
+      isAggregateTypeForABI(Ty)) {
+    return ABIArgInfo::getIndirectAliased(
+        getContext().getTypeAlignInChars(Ty),
+        getContext().getTargetAddressSpace(LangAS::opencl_constant),
+        false /*Realign*/, nullptr /*Padding*/);
+  }
+
+  // If we set CanBeFlattened to true, CodeGen will expand the struct to its
+  // individual elements, which confuses the Clover OpenCL backend; therefore we
+  // have to set it to false here. Other args of getDirect() are just defaults.
+  return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
+}
+
+ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
+                                               unsigned &NumRegsLeft) const {
+  assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
+
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // passed by value.
+    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+    // Ignore empty structs/unions.
+    if (isEmptyRecord(getContext(), Ty, true))
+      return ABIArgInfo::getIgnore();
+
+    // Lower single-element structs to just pass a regular value. TODO: We
+    // could do reasonable-size multiple-element structs too, using getExpand(),
+    // though watch out for things like bitfields.
+    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+    if (const RecordType *RT = Ty->getAs<RecordType>()) {
+      const RecordDecl *RD = RT->getDecl();
+      if (RD->hasFlexibleArrayMember())
+        return DefaultABIInfo::classifyArgumentType(Ty);
+    }
+
+    // Pack aggregates <= 8 bytes into single VGPR or pair.
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (Size <= 64) {
+      unsigned NumRegs = (Size + 31) / 32;
+      NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
+
+      if (Size <= 16)
+        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+
+      if (Size <= 32)
+        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+      // XXX: Should this be i64 instead, and should the limit increase?
+      llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
+      return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
+    }
+
+    if (NumRegsLeft > 0) {
+      unsigned NumRegs = numRegsForType(Ty);
+      if (NumRegsLeft >= NumRegs) {
+        NumRegsLeft -= NumRegs;
+        return ABIArgInfo::getDirect();
+      }
+    }
+  }
+
+  // Otherwise just do the default thing.
+  ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
+  if (!ArgInfo.isIndirect()) {
+    unsigned NumRegs = numRegsForType(Ty);
+    NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
+  }
+
+  return ArgInfo;
+}
+
+class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
+
+  void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F,
+                                 CodeGenModule &CGM) const;
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &M) const override;
+  unsigned getOpenCLKernelCallingConv() const override;
+
+  llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
+      llvm::PointerType *T, QualType QT) const override;
+
+  LangAS getASTAllocaAddressSpace() const override {
+    return getLangASFromTargetAS(
+        getABIInfo().getDataLayout().getAllocaAddrSpace());
+  }
+  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
+                                  const VarDecl *D) const override;
+  llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
+                                         SyncScope Scope,
+                                         llvm::AtomicOrdering Ordering,
+                                         llvm::LLVMContext &Ctx) const override;
+  llvm::Value *createEnqueuedBlockKernel(CodeGenFunction &CGF,
+                                         llvm::Function *BlockInvokeFunc,
+                                         llvm::Type *BlockTy) const override;
+  bool shouldEmitStaticExternCAliases() const override;
+  bool shouldEmitDWARFBitFieldSeparators() const override;
+  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
+};
+}
+
+static bool requiresAMDGPUProtectedVisibility(const Decl *D,
+                                              llvm::GlobalValue *GV) {
+  if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
+    return false;
+
+  return D->hasAttr<OpenCLKernelAttr>() ||
+         (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
+         (isa<VarDecl>(D) &&
+          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
+           cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
+           cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
+}
+
+void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes(
+    const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const {
+  const auto *ReqdWGS =
+      M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
+  const bool IsOpenCLKernel =
+      M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>();
+  const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>();
+
+  const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
+  if (ReqdWGS || FlatWGS) {
+    unsigned Min = 0;
+    unsigned Max = 0;
+    if (FlatWGS) {
+      Min = FlatWGS->getMin()
+                ->EvaluateKnownConstInt(M.getContext())
+                .getExtValue();
+      Max = FlatWGS->getMax()
+                ->EvaluateKnownConstInt(M.getContext())
+                .getExtValue();
+    }
+    if (ReqdWGS && Min == 0 && Max == 0)
+      Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
+
+    if (Min != 0) {
+      assert(Min <= Max && "Min must be less than or equal Max");
+
+      std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
+      F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
+    } else
+      assert(Max == 0 && "Max must be zero");
+  } else if (IsOpenCLKernel || IsHIPKernel) {
+    // By default, restrict the maximum size to a value specified by
+    // --gpu-max-threads-per-block=n or its default value for HIP.
+    const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
+    const unsigned DefaultMaxWorkGroupSize =
+        IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
+                       : M.getLangOpts().GPUMaxThreadsPerBlock;
+    std::string AttrVal =
+        std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
+    F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
+  }
+
+  if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
+    unsigned Min =
+        Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
+    unsigned Max = Attr->getMax() ? Attr->getMax()
+                                        ->EvaluateKnownConstInt(M.getContext())
+                                        .getExtValue()
+                                  : 0;
+
+    if (Min != 0) {
+      assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
+
+      std::string AttrVal = llvm::utostr(Min);
+      if (Max != 0)
+        AttrVal = AttrVal + "," + llvm::utostr(Max);
+      F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
+    } else
+      assert(Max == 0 && "Max must be zero");
+  }
+
+  if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
+    unsigned NumSGPR = Attr->getNumSGPR();
+
+    if (NumSGPR != 0)
+      F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
+  }
+
+  if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
+    uint32_t NumVGPR = Attr->getNumVGPR();
+
+    if (NumVGPR != 0)
+      F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
+  }
+}
+
+void AMDGPUTargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+  if (requiresAMDGPUProtectedVisibility(D, GV)) {
+    GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
+    GV->setDSOLocal(true);
+  }
+
+  if (GV->isDeclaration())
+    return;
+
+  llvm::Function *F = dyn_cast<llvm::Function>(GV);
+  if (!F)
+    return;
+
+  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+  if (FD)
+    setFunctionDeclAttributes(FD, F, M);
+
+  const bool IsHIPKernel =
+      M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>();
+
+  // TODO: This should be moved to language specific attributes instead.
+  if (IsHIPKernel)
+    F->addFnAttr("uniform-work-group-size", "true");
+
+  if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
+    F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
+
+  if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
+    F->addFnAttr("amdgpu-ieee", "false");
+}
+
+unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
+  return llvm::CallingConv::AMDGPU_KERNEL;
+}
+
+// Currently LLVM assumes null pointers always have value 0,
+// which results in incorrectly transformed IR. Therefore, instead of
+// emitting null pointers in private and local address spaces, a null
+// pointer in generic address space is emitted which is casted to a
+// pointer in local or private address space.
+llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
+    const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
+    QualType QT) const {
+  if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
+    return llvm::ConstantPointerNull::get(PT);
+
+  auto &Ctx = CGM.getContext();
+  auto NPT = llvm::PointerType::get(
+      PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
+  return llvm::ConstantExpr::getAddrSpaceCast(
+      llvm::ConstantPointerNull::get(NPT), PT);
+}
+
+LangAS
+AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
+                                                  const VarDecl *D) const {
+  assert(!CGM.getLangOpts().OpenCL &&
+         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
+         "Address space agnostic languages only");
+  LangAS DefaultGlobalAS = getLangASFromTargetAS(
+      CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
+  if (!D)
+    return DefaultGlobalAS;
+
+  LangAS AddrSpace = D->getType().getAddressSpace();
+  assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
+  if (AddrSpace != LangAS::Default)
+    return AddrSpace;
+
+  // Only promote to address space 4 if VarDecl has constant initialization.
+  if (CGM.isTypeConstant(D->getType(), false, false) &&
+      D->hasConstantInitialization()) {
+    if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
+      return *ConstAS;
+  }
+  return DefaultGlobalAS;
+}
+
+llvm::SyncScope::ID
+AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
+                                            SyncScope Scope,
+                                            llvm::AtomicOrdering Ordering,
+                                            llvm::LLVMContext &Ctx) const {
+  std::string Name;
+  switch (Scope) {
+  case SyncScope::HIPSingleThread:
+    Name = "singlethread";
+    break;
+  case SyncScope::HIPWavefront:
+  case SyncScope::OpenCLSubGroup:
+    Name = "wavefront";
+    break;
+  case SyncScope::HIPWorkgroup:
+  case SyncScope::OpenCLWorkGroup:
+    Name = "workgroup";
+    break;
+  case SyncScope::HIPAgent:
+  case SyncScope::OpenCLDevice:
+    Name = "agent";
+    break;
+  case SyncScope::HIPSystem:
+  case SyncScope::OpenCLAllSVMDevices:
+    Name = "";
+    break;
+  }
+
+  if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
+    if (!Name.empty())
+      Name = Twine(Twine(Name) + Twine("-")).str();
+
+    Name = Twine(Twine(Name) + Twine("one-as")).str();
+  }
+
+  return Ctx.getOrInsertSyncScopeID(Name);
+}
+
+bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
+  return false;
+}
+
+bool AMDGPUTargetCodeGenInfo::shouldEmitDWARFBitFieldSeparators() const {
+  return true;
+}
+
+void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
+    const FunctionType *&FT) const {
+  FT = getABIInfo().getContext().adjustFunctionType(
+      FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
+}
+
+/// Create an OpenCL kernel for an enqueued block.
+///
+/// The type of the first argument (the block literal) is the struct type
+/// of the block literal instead of a pointer type. The first argument
+/// (block literal) is passed directly by value to the kernel. The kernel
+/// allocates the same type of struct on stack and stores the block literal
+/// to it and passes its pointer to the block invoke function. The kernel
+/// has "enqueued-block" function attribute and kernel argument metadata.
+llvm::Value *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
+    CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
+  auto &Builder = CGF.Builder;
+  auto &C = CGF.getLLVMContext();
+
+  auto *InvokeFT = Invoke->getFunctionType();
+  llvm::SmallVector<llvm::Type *, 2> ArgTys;
+  llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
+  llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
+  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
+  llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
+  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
+  llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
+
+  ArgTys.push_back(BlockTy);
+  ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
+  AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
+  ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
+  ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
+  AccessQuals.push_back(llvm::MDString::get(C, "none"));
+  ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
+  for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
+    ArgTys.push_back(InvokeFT->getParamType(I));
+    ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
+    AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
+    AccessQuals.push_back(llvm::MDString::get(C, "none"));
+    ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
+    ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
+    ArgNames.push_back(
+        llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
+  }
+  std::string Name = Invoke->getName().str() + "_kernel";
+  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
+  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
+                                   &CGF.CGM.getModule());
+  F->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
+
+  llvm::AttrBuilder KernelAttrs(C);
+  // FIXME: The invoke isn't applying the right attributes either
+  // FIXME: This is missing setTargetAttributes
+  CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
+  KernelAttrs.addAttribute("enqueued-block");
+  F->addFnAttrs(KernelAttrs);
+
+  auto IP = CGF.Builder.saveIP();
+  auto *BB = llvm::BasicBlock::Create(C, "entry", F);
+  Builder.SetInsertPoint(BB);
+  const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
+  auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
+  BlockPtr->setAlignment(BlockAlign);
+  Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
+  auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
+  llvm::SmallVector<llvm::Value *, 2> Args;
+  Args.push_back(Cast);
+  for (llvm::Argument &A : llvm::drop_begin(F->args()))
+    Args.push_back(&A);
+  llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
+  call->setCallingConv(Invoke->getCallingConv());
+  Builder.CreateRetVoid();
+  Builder.restoreIP(IP);
+
+  F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
+  F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
+  F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
+  F->setMetadata("kernel_arg_base_type",
+                 llvm::MDNode::get(C, ArgBaseTypeNames));
+  F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
+  if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
+    F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
+
+  return F;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<AMDGPUTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/ARC.cpp b/clang/lib/CodeGen/Targets/ARC.cpp
new file mode 100644
index 0000000000000..550eb4068f25f
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/ARC.cpp
@@ -0,0 +1,158 @@
+//===- ARC.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+// ARC ABI implementation.
+namespace {
+
+class ARCABIInfo : public DefaultABIInfo {
+  struct CCState {
+    unsigned FreeRegs;
+  };
+
+public:
+  using DefaultABIInfo::DefaultABIInfo;
+
+private:
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
+    if (!State.FreeRegs)
+      return;
+    if (Info.isIndirect() && Info.getInReg())
+      State.FreeRegs--;
+    else if (Info.isDirect() && Info.getInReg()) {
+      unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
+      if (sz < State.FreeRegs)
+        State.FreeRegs -= sz;
+      else
+        State.FreeRegs = 0;
+    }
+  }
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    CCState State;
+    // ARC uses 8 registers to pass arguments.
+    State.FreeRegs = 8;
+
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    updateState(FI.getReturnInfo(), FI.getReturnType(), State);
+    for (auto &I : FI.arguments()) {
+      I.info = classifyArgumentType(I.type, State.FreeRegs);
+      updateState(I.info, I.type, State);
+    }
+  }
+
+  ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
+  ABIArgInfo getIndirectByValue(QualType Ty) const;
+  ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+};
+
+class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  ARCTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
+};
+
+
+ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
+  return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
+                       getNaturalAlignIndirect(Ty, false);
+}
+
+ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
+  // Compute the byval alignment.
+  const unsigned MinABIStackAlignInBytes = 4;
+  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
+                                 TypeAlign > MinABIStackAlignInBytes);
+}
+
+Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                              QualType Ty) const {
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
+                          getContext().getTypeInfoInChars(Ty),
+                          CharUnits::fromQuantity(4), true);
+}
+
+ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
+                                            uint8_t FreeRegs) const {
+  // Handle the generic C++ ABI.
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (RT) {
+    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+    if (RAA == CGCXXABI::RAA_Indirect)
+      return getIndirectByRef(Ty, FreeRegs > 0);
+
+    if (RAA == CGCXXABI::RAA_DirectInMemory)
+      return getIndirectByValue(Ty);
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Structures with flexible arrays are always indirect.
+    if (RT && RT->getDecl()->hasFlexibleArrayMember())
+      return getIndirectByValue(Ty);
+
+    // Ignore empty structs/unions.
+    if (isEmptyRecord(getContext(), Ty, true))
+      return ABIArgInfo::getIgnore();
+
+    llvm::LLVMContext &LLVMContext = getVMContext();
+
+    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+    SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
+    llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+
+    return FreeRegs >= SizeInRegs ?
+        ABIArgInfo::getDirectInReg(Result) :
+        ABIArgInfo::getDirect(Result, 0, nullptr, false);
+  }
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() > 64)
+      return getIndirectByValue(Ty);
+
+  return isPromotableIntegerTypeForABI(Ty)
+             ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
+                                       : ABIArgInfo::getExtend(Ty))
+             : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
+                                       : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isAnyComplexType())
+    return ABIArgInfo::getDirectInReg();
+
+  // Arguments of size > 4 registers are indirect.
+  auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
+  if (RetSize > 4)
+    return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
+
+  return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+} // End anonymous namespace.
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createARCTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<ARCTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/ARM.cpp b/clang/lib/CodeGen/Targets/ARM.cpp
new file mode 100644
index 0000000000000..7a7be3cd7c9de
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/ARM.cpp
@@ -0,0 +1,820 @@
+//===- ARM.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// ARM ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ARMABIInfo : public ABIInfo {
+  ARMABIKind Kind;
+  bool IsFloatABISoftFP;
+
+public:
+  ARMABIInfo(CodeGenTypes &CGT, ARMABIKind Kind) : ABIInfo(CGT), Kind(Kind) {
+    setCCs();
+    IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
+        CGT.getCodeGenOpts().FloatABI == ""; // default
+  }
+
+  bool isEABI() const {
+    switch (getTarget().getTriple().getEnvironment()) {
+    case llvm::Triple::Android:
+    case llvm::Triple::EABI:
+    case llvm::Triple::EABIHF:
+    case llvm::Triple::GNUEABI:
+    case llvm::Triple::GNUEABIHF:
+    case llvm::Triple::MuslEABI:
+    case llvm::Triple::MuslEABIHF:
+      return true;
+    default:
+      return getTarget().getTriple().isOHOSFamily();
+    }
+  }
+
+  bool isEABIHF() const {
+    switch (getTarget().getTriple().getEnvironment()) {
+    case llvm::Triple::EABIHF:
+    case llvm::Triple::GNUEABIHF:
+    case llvm::Triple::MuslEABIHF:
+      return true;
+    default:
+      return false;
+    }
+  }
+
+  ARMABIKind getABIKind() const { return Kind; }
+
+  bool allowBFloatArgsAndRet() const override {
+    return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
+  }
+
+private:
+  ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
+                                unsigned functionCallConv) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
+                                  unsigned functionCallConv) const;
+  ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
+                                          uint64_t Members) const;
+  ABIArgInfo coerceIllegalVector(QualType Ty) const;
+  bool isIllegalVectorType(QualType Ty) const;
+  bool containsAnyFP16Vectors(QualType Ty) const;
+
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+                                         uint64_t Members) const override;
+  bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
+
+  bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  llvm::CallingConv::ID getLLVMDefaultCC() const;
+  llvm::CallingConv::ID getABIDefaultCC() const;
+  void setCCs();
+};
+
+class ARMSwiftABIInfo : public SwiftABIInfo {
+public:
+  explicit ARMSwiftABIInfo(CodeGenTypes &CGT)
+      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
+
+  bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+                         unsigned NumElts) const override;
+};
+
+class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
+      : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {
+    SwiftInfo = std::make_unique<ARMSwiftABIInfo>(CGT);
+  }
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    return 13;
+  }
+
+  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+    return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override {
+    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+    // 0-15 are the 16 integer registers.
+    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
+    return false;
+  }
+
+  unsigned getSizeOfUnwindException() const override {
+    if (getABIInfo<ARMABIInfo>().isEABI())
+      return 88;
+    return TargetCodeGenInfo::getSizeOfUnwindException();
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    if (GV->isDeclaration())
+      return;
+    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+    if (!FD)
+      return;
+    auto *Fn = cast<llvm::Function>(GV);
+
+    if (const auto *TA = FD->getAttr<TargetAttr>()) {
+      ParsedTargetAttr Attr =
+          CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
+      if (!Attr.BranchProtection.empty()) {
+        TargetInfo::BranchProtectionInfo BPI;
+        StringRef DiagMsg;
+        StringRef Arch =
+            Attr.CPU.empty() ? CGM.getTarget().getTargetOpts().CPU : Attr.CPU;
+        if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
+                                                      Arch, BPI, DiagMsg)) {
+          CGM.getDiags().Report(
+              D->getLocation(),
+              diag::warn_target_unsupported_branch_protection_attribute)
+              << Arch;
+        } else {
+          static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
+          assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 &&
+                 "Unexpected SignReturnAddressScopeKind");
+          Fn->addFnAttr(
+              "sign-return-address",
+              SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
+
+          Fn->addFnAttr("branch-target-enforcement",
+                        BPI.BranchTargetEnforcement ? "true" : "false");
+        }
+      } else if (CGM.getLangOpts().BranchTargetEnforcement ||
+                 CGM.getLangOpts().hasSignReturnAddress()) {
+        // If the Branch Protection attribute is missing, validate the target
+        // Architecture attribute against Branch Protection command line
+        // settings.
+        if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.CPU))
+          CGM.getDiags().Report(
+              D->getLocation(),
+              diag::warn_target_unsupported_branch_protection_attribute)
+              << Attr.CPU;
+      }
+    }
+
+    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
+    if (!Attr)
+      return;
+
+    const char *Kind;
+    switch (Attr->getInterrupt()) {
+    case ARMInterruptAttr::Generic: Kind = ""; break;
+    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
+    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
+    case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
+    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
+    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
+    }
+
+    Fn->addFnAttr("interrupt", Kind);
+
+    ARMABIKind ABI = getABIInfo<ARMABIInfo>().getABIKind();
+    if (ABI == ARMABIKind::APCS)
+      return;
+
+    // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
+    // however this is not necessarily true on taking any interrupt. Instruct
+    // the backend to perform a realignment as part of the function prologue.
+    llvm::AttrBuilder B(Fn->getContext());
+    B.addStackAlignmentAttr(8);
+    Fn->addFnAttrs(B);
+  }
+};
+
+class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
+public:
+  WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
+      : ARMTargetCodeGenInfo(CGT, K) {}
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override;
+
+  void getDependentLibraryOption(llvm::StringRef Lib,
+                                 llvm::SmallString<24> &Opt) const override {
+    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
+  }
+
+  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
+                               llvm::SmallString<32> &Opt) const override {
+    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+  }
+};
+
+void WindowsARMTargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+  ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+  if (GV->isDeclaration())
+    return;
+  addStackProbeTargetAttributes(D, GV, CGM);
+}
+}
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  if (!::classifyReturnType(getCXXABI(), FI, *this))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
+                                            FI.getCallingConvention());
+
+  for (auto &I : FI.arguments())
+    I.info = classifyArgumentType(I.type, FI.isVariadic(),
+                                  FI.getCallingConvention());
+
+
+  // Always honor user-specified calling convention.
+  if (FI.getCallingConvention() != llvm::CallingConv::C)
+    return;
+
+  llvm::CallingConv::ID cc = getRuntimeCC();
+  if (cc != llvm::CallingConv::C)
+    FI.setEffectiveCallingConvention(cc);
+}
+
+/// Return the default calling convention that LLVM will use.
+llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
+  // The default calling convention that LLVM will infer.
+  if (isEABIHF() || getTarget().getTriple().isWatchABI())
+    return llvm::CallingConv::ARM_AAPCS_VFP;
+  else if (isEABI())
+    return llvm::CallingConv::ARM_AAPCS;
+  else
+    return llvm::CallingConv::ARM_APCS;
+}
+
+/// Return the calling convention that our ABI would like us to use
+/// as the C calling convention.
+llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
+  switch (getABIKind()) {
+  case ARMABIKind::APCS:
+    return llvm::CallingConv::ARM_APCS;
+  case ARMABIKind::AAPCS:
+    return llvm::CallingConv::ARM_AAPCS;
+  case ARMABIKind::AAPCS_VFP:
+    return llvm::CallingConv::ARM_AAPCS_VFP;
+  case ARMABIKind::AAPCS16_VFP:
+    return llvm::CallingConv::ARM_AAPCS_VFP;
+  }
+  llvm_unreachable("bad ABI kind");
+}
+
+void ARMABIInfo::setCCs() {
+  assert(getRuntimeCC() == llvm::CallingConv::C);
+
+  // Don't muddy up the IR with a ton of explicit annotations if
+  // they'd just match what LLVM will infer from the triple.
+  llvm::CallingConv::ID abiCC = getABIDefaultCC();
+  if (abiCC != getLLVMDefaultCC())
+    RuntimeCC = abiCC;
+}
+
+ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
+  uint64_t Size = getContext().getTypeSize(Ty);
+  if (Size <= 32) {
+    llvm::Type *ResType =
+        llvm::Type::getInt32Ty(getVMContext());
+    return ABIArgInfo::getDirect(ResType);
+  }
+  if (Size == 64 || Size == 128) {
+    auto *ResType = llvm::FixedVectorType::get(
+        llvm::Type::getInt32Ty(getVMContext()), Size / 32);
+    return ABIArgInfo::getDirect(ResType);
+  }
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
+                                                    const Type *Base,
+                                                    uint64_t Members) const {
+  assert(Base && "Base class should be set for homogeneous aggregate");
+  // Base can be a floating-point or a vector.
+  if (const VectorType *VT = Base->getAs<VectorType>()) {
+    // FP16 vectors should be converted to integer vectors
+    if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
+      uint64_t Size = getContext().getTypeSize(VT);
+      auto *NewVecTy = llvm::FixedVectorType::get(
+          llvm::Type::getInt32Ty(getVMContext()), Size / 32);
+      llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
+      return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
+    }
+  }
+  unsigned Align = 0;
+  if (getABIKind() == ARMABIKind::AAPCS ||
+      getABIKind() == ARMABIKind::AAPCS_VFP) {
+    // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
+    // default otherwise.
+    Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
+    unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
+    Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
+  }
+  return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
+                                            unsigned functionCallConv) const {
+  // 6.1.2.1 The following argument types are VFP CPRCs:
+  //   A single-precision floating-point type (including promoted
+  //   half-precision types); A double-precision floating-point type;
+  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
+  //   with a Base Type of a single- or double-precision floating-point type,
+  //   64-bit containerized vectors or 128-bit containerized vectors with one
+  //   to four Elements.
+  // Variadic functions should always marshal to the base standard.
+  bool IsAAPCS_VFP =
+      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
+
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // Handle illegal vector types here.
+  if (isIllegalVectorType(Ty))
+    return coerceIllegalVector(Ty);
+
+  if (!isAggregateTypeForABI(Ty)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+      Ty = EnumTy->getDecl()->getIntegerType();
+    }
+
+    if (const auto *EIT = Ty->getAs<BitIntType>())
+      if (EIT->getNumBits() > 64)
+        return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                              : ABIArgInfo::getDirect());
+  }
+
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+  }
+
+  // Ignore empty records.
+  if (isEmptyRecord(getContext(), Ty, true))
+    return ABIArgInfo::getIgnore();
+
+  if (IsAAPCS_VFP) {
+    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
+    // into VFP registers.
+    const Type *Base = nullptr;
+    uint64_t Members = 0;
+    if (isHomogeneousAggregate(Ty, Base, Members))
+      return classifyHomogeneousAggregate(Ty, Base, Members);
+  } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
+    // WatchOS does have homogeneous aggregates. Note that we intentionally use
+    // this convention even for a variadic function: the backend will use GPRs
+    // if needed.
+    const Type *Base = nullptr;
+    uint64_t Members = 0;
+    if (isHomogeneousAggregate(Ty, Base, Members)) {
+      assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
+      llvm::Type *Ty =
+        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
+      return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
+    }
+  }
+
+  if (getABIKind() == ARMABIKind::AAPCS16_VFP &&
+      getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
+    // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
+    // bigger than 128-bits, they get placed in space allocated by the caller,
+    // and a pointer is passed.
+    return ABIArgInfo::getIndirect(
+        CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
+  }
+
+  // Support byval for ARM.
+  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
+  // most 8-byte. We realign the indirect argument if type alignment is bigger
+  // than ABI alignment.
+  uint64_t ABIAlign = 4;
+  uint64_t TyAlign;
+  if (getABIKind() == ARMABIKind::AAPCS_VFP ||
+      getABIKind() == ARMABIKind::AAPCS) {
+    TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
+    ABIAlign = std::clamp(TyAlign, (uint64_t)4, (uint64_t)8);
+  } else {
+    TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
+  }
+  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
+    assert(getABIKind() != ARMABIKind::AAPCS16_VFP && "unexpected byval");
+    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
+                                   /*ByVal=*/true,
+                                   /*Realign=*/TyAlign > ABIAlign);
+  }
+
+  // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
+  // same size and alignment.
+  if (getTarget().isRenderScriptTarget()) {
+    return coerceToIntArray(Ty, getContext(), getVMContext());
+  }
+
+  // Otherwise, pass by coercing to a structure of the appropriate size.
+  llvm::Type* ElemTy;
+  unsigned SizeRegs;
+  // FIXME: Try to match the types of the arguments more accurately where
+  // we can.
+  if (TyAlign <= 4) {
+    ElemTy = llvm::Type::getInt32Ty(getVMContext());
+    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+  } else {
+    ElemTy = llvm::Type::getInt64Ty(getVMContext());
+    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
+  }
+
+  return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
+}
+
+static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
+                              llvm::LLVMContext &VMContext) {
+  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
+  // is called integer-like if its size is less than or equal to one word, and
+  // the offset of each of its addressable sub-fields is zero.
+
+  uint64_t Size = Context.getTypeSize(Ty);
+
+  // Check that the type fits in a word.
+  if (Size > 32)
+    return false;
+
+  // FIXME: Handle vector types!
+  if (Ty->isVectorType())
+    return false;
+
+  // Float types are never treated as "integer like".
+  if (Ty->isRealFloatingType())
+    return false;
+
+  // If this is a builtin or pointer type then it is ok.
+  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
+    return true;
+
+  // Small complex integer types are "integer like".
+  if (const ComplexType *CT = Ty->getAs<ComplexType>())
+    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
+
+  // Single element and zero sized arrays should be allowed, by the definition
+  // above, but they are not.
+
+  // Otherwise, it must be a record type.
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (!RT) return false;
+
+  // Ignore records with flexible arrays.
+  const RecordDecl *RD = RT->getDecl();
+  if (RD->hasFlexibleArrayMember())
+    return false;
+
+  // Check that all sub-fields are at offset 0, and are themselves "integer
+  // like".
+  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+  bool HadField = false;
+  unsigned idx = 0;
+  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+       i != e; ++i, ++idx) {
+    const FieldDecl *FD = *i;
+
+    // Bit-fields are not addressable, we only need to verify they are "integer
+    // like". We still have to disallow a subsequent non-bitfield, for example:
+    //   struct { int : 0; int x }
+    // is non-integer like according to gcc.
+    if (FD->isBitField()) {
+      if (!RD->isUnion())
+        HadField = true;
+
+      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+        return false;
+
+      continue;
+    }
+
+    // Check if this field is at offset 0.
+    if (Layout.getFieldOffset(idx) != 0)
+      return false;
+
+    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+      return false;
+
+    // Only allow at most one field in a structure. This doesn't match the
+    // wording above, but follows gcc in situations with a field following an
+    // empty structure.
+    if (!RD->isUnion()) {
+      if (HadField)
+        return false;
+
+      HadField = true;
+    }
+  }
+
+  return true;
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
+                                          unsigned functionCallConv) const {
+
+  // Variadic functions should always marshal to the base standard.
+  bool IsAAPCS_VFP =
+      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
+
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+    // Large vector types should be returned via memory.
+    if (getContext().getTypeSize(RetTy) > 128)
+      return getNaturalAlignIndirect(RetTy);
+    // TODO: FP16/BF16 vectors should be converted to integer vectors
+    // This check is similar  to isIllegalVectorType - refactor?
+    if ((!getTarget().hasLegalHalfType() &&
+        (VT->getElementType()->isFloat16Type() ||
+         VT->getElementType()->isHalfType())) ||
+        (IsFloatABISoftFP &&
+         VT->getElementType()->isBFloat16Type()))
+      return coerceIllegalVector(RetTy);
+  }
+
+  if (!isAggregateTypeForABI(RetTy)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+      RetTy = EnumTy->getDecl()->getIntegerType();
+
+    if (const auto *EIT = RetTy->getAs<BitIntType>())
+      if (EIT->getNumBits() > 64)
+        return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+
+    return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                                : ABIArgInfo::getDirect();
+  }
+
+  // Are we following APCS?
+  if (getABIKind() == ARMABIKind::APCS) {
+    if (isEmptyRecord(getContext(), RetTy, false))
+      return ABIArgInfo::getIgnore();
+
+    // Complex types are all returned as packed integers.
+    //
+    // FIXME: Consider using 2 x vector types if the back end handles them
+    // correctly.
+    if (RetTy->isAnyComplexType())
+      return ABIArgInfo::getDirect(llvm::IntegerType::get(
+          getVMContext(), getContext().getTypeSize(RetTy)));
+
+    // Integer like structures are returned in r0.
+    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
+      // Return in the smallest viable integer type.
+      uint64_t Size = getContext().getTypeSize(RetTy);
+      if (Size <= 8)
+        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+      if (Size <= 16)
+        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+    }
+
+    // Otherwise return in memory.
+    return getNaturalAlignIndirect(RetTy);
+  }
+
+  // Otherwise this is an AAPCS variant.
+
+  if (isEmptyRecord(getContext(), RetTy, true))
+    return ABIArgInfo::getIgnore();
+
+  // Check for homogeneous aggregates with AAPCS-VFP.
+  if (IsAAPCS_VFP) {
+    const Type *Base = nullptr;
+    uint64_t Members = 0;
+    if (isHomogeneousAggregate(RetTy, Base, Members))
+      return classifyHomogeneousAggregate(RetTy, Base, Members);
+  }
+
+  // Aggregates <= 4 bytes are returned in r0; other aggregates
+  // are returned indirectly.
+  uint64_t Size = getContext().getTypeSize(RetTy);
+  if (Size <= 32) {
+    // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
+    // same size and alignment.
+    if (getTarget().isRenderScriptTarget()) {
+      return coerceToIntArray(RetTy, getContext(), getVMContext());
+    }
+    if (getDataLayout().isBigEndian())
+      // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
+      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+    // Return in the smallest viable integer type.
+    if (Size <= 8)
+      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+    if (Size <= 16)
+      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+  } else if (Size <= 128 && getABIKind() == ARMABIKind::AAPCS16_VFP) {
+    llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
+    llvm::Type *CoerceTy =
+        llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
+    return ABIArgInfo::getDirect(CoerceTy);
+  }
+
+  return getNaturalAlignIndirect(RetTy);
+}
+
+/// isIllegalVector - check whether Ty is an illegal vector type.
+bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
+  if (const VectorType *VT = Ty->getAs<VectorType> ()) {
+    // On targets that don't support half, fp16 or bfloat, they are expanded
+    // into float, and we don't want the ABI to depend on whether or not they
+    // are supported in hardware. Thus return false to coerce vectors of these
+    // types into integer vectors.
+    // We do not depend on hasLegalHalfType for bfloat as it is a
+    // separate IR type.
+    if ((!getTarget().hasLegalHalfType() &&
+        (VT->getElementType()->isFloat16Type() ||
+         VT->getElementType()->isHalfType())) ||
+        (IsFloatABISoftFP &&
+         VT->getElementType()->isBFloat16Type()))
+      return true;
+    if (isAndroid()) {
+      // Android shipped using Clang 3.1, which supported a slightly 
diff erent
+      // vector ABI. The primary 
diff erences were that 3-element vector types
+      // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
+      // accepts that legacy behavior for Android only.
+      // Check whether VT is legal.
+      unsigned NumElements = VT->getNumElements();
+      // NumElements should be power of 2 or equal to 3.
+      if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
+        return true;
+    } else {
+      // Check whether VT is legal.
+      unsigned NumElements = VT->getNumElements();
+      uint64_t Size = getContext().getTypeSize(VT);
+      // NumElements should be power of 2.
+      if (!llvm::isPowerOf2_32(NumElements))
+        return true;
+      // Size should be greater than 32 bits.
+      return Size <= 32;
+    }
+  }
+  return false;
+}
+
+/// Return true if a type contains any 16-bit floating point vectors
+bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
+  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+    uint64_t NElements = AT->getSize().getZExtValue();
+    if (NElements == 0)
+      return false;
+    return containsAnyFP16Vectors(AT->getElementType());
+  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    const RecordDecl *RD = RT->getDecl();
+
+    // If this is a C++ record, check the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+      if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
+            return containsAnyFP16Vectors(B.getType());
+          }))
+        return true;
+
+    if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
+          return FD && containsAnyFP16Vectors(FD->getType());
+        }))
+      return true;
+
+    return false;
+  } else {
+    if (const VectorType *VT = Ty->getAs<VectorType>())
+      return (VT->getElementType()->isFloat16Type() ||
+              VT->getElementType()->isBFloat16Type() ||
+              VT->getElementType()->isHalfType());
+    return false;
+  }
+}
+
+bool ARMSwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+                                        unsigned NumElts) const {
+  if (!llvm::isPowerOf2_32(NumElts))
+    return false;
+  unsigned size = CGT.getDataLayout().getTypeStoreSizeInBits(EltTy);
+  if (size > 64)
+    return false;
+  if (VectorSize.getQuantity() != 8 &&
+      (VectorSize.getQuantity() != 16 || NumElts == 1))
+    return false;
+  return true;
+}
+
+bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+  // Homogeneous aggregates for AAPCS-VFP must have base types of float,
+  // double, or 64-bit or 128-bit vectors.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+    if (BT->getKind() == BuiltinType::Float ||
+        BT->getKind() == BuiltinType::Double ||
+        BT->getKind() == BuiltinType::LongDouble)
+      return true;
+  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    unsigned VecSize = getContext().getTypeSize(VT);
+    if (VecSize == 64 || VecSize == 128)
+      return true;
+  }
+  return false;
+}
+
+bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+                                                   uint64_t Members) const {
+  return Members <= 4;
+}
+
+bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
+  // AAPCS32 says that the rule for whether something is a homogeneous
+  // aggregate is applied to the output of the data layout decision. So
+  // anything that doesn't affect the data layout also does not affect
+  // homogeneity. In particular, zero-length bitfields don't stop a struct
+  // being homogeneous.
+  return true;
+}
+
+bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
+                                        bool acceptHalf) const {
+  // Give precedence to user-specified calling conventions.
+  if (callConvention != llvm::CallingConv::C)
+    return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
+  else
+    return (getABIKind() == ARMABIKind::AAPCS_VFP) ||
+           (acceptHalf && (getABIKind() == ARMABIKind::AAPCS16_VFP));
+}
+
+Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                              QualType Ty) const {
+  CharUnits SlotSize = CharUnits::fromQuantity(4);
+
+  // Empty records are ignored for parameter passing purposes.
+  if (isEmptyRecord(getContext(), Ty, true)) {
+    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
+    auto *Load = CGF.Builder.CreateLoad(VAListAddr);
+    Address Addr = Address(Load, CGF.Int8Ty, SlotSize);
+    return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+  }
+
+  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
+  CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
+
+  // Use indirect if size of the illegal vector is bigger than 16 bytes.
+  bool IsIndirect = false;
+  const Type *Base = nullptr;
+  uint64_t Members = 0;
+  if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
+    IsIndirect = true;
+
+  // ARMv7k passes structs bigger than 16 bytes indirectly, in space
+  // allocated by the caller.
+  } else if (TySize > CharUnits::fromQuantity(16) &&
+             getABIKind() == ARMABIKind::AAPCS16_VFP &&
+             !isHomogeneousAggregate(Ty, Base, Members)) {
+    IsIndirect = true;
+
+  // Otherwise, bound the type's ABI alignment.
+  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
+  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
+  // Our callers should be prepared to handle an under-aligned address.
+  } else if (getABIKind() == ARMABIKind::AAPCS_VFP ||
+             getABIKind() == ARMABIKind::AAPCS) {
+    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
+    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
+  } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
+    // ARMv7k allows type alignment up to 16 bytes.
+    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
+    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
+  } else {
+    TyAlignForABI = CharUnits::fromQuantity(4);
+  }
+
+  TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
+                          SlotSize, /*AllowHigherAlign*/ true);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind) {
+  return std::make_unique<ARMTargetCodeGenInfo>(CGM.getTypes(), Kind);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K) {
+  return std::make_unique<WindowsARMTargetCodeGenInfo>(CGM.getTypes(), K);
+}

diff  --git a/clang/lib/CodeGen/Targets/AVR.cpp b/clang/lib/CodeGen/Targets/AVR.cpp
new file mode 100644
index 0000000000000..50547dd6dec5e
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/AVR.cpp
@@ -0,0 +1,154 @@
+//===- AVR.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// AVR ABI Implementation. Documented at
+// https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
+// https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AVRABIInfo : public DefaultABIInfo {
+private:
+  // The total amount of registers can be used to pass parameters. It is 18 on
+  // AVR, or 6 on AVRTiny.
+  const unsigned ParamRegs;
+  // The total amount of registers can be used to pass return value. It is 8 on
+  // AVR, or 4 on AVRTiny.
+  const unsigned RetRegs;
+
+public:
+  AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
+      : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {}
+
+  ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const {
+    // On AVR, a return struct with size less than or equals to 8 bytes is
+    // returned directly via registers R18-R25. On AVRTiny, a return struct
+    // with size less than or equals to 4 bytes is returned directly via
+    // registers R22-R25.
+    if (isAggregateTypeForABI(Ty) &&
+        getContext().getTypeSize(Ty) <= RetRegs * 8)
+      return ABIArgInfo::getDirect();
+    // A return value (struct or scalar) with larger size is returned via a
+    // stack slot, along with a pointer as the function's implicit argument.
+    if (getContext().getTypeSize(Ty) > RetRegs * 8) {
+      LargeRet = true;
+      return getNaturalAlignIndirect(Ty);
+    }
+    // An i8 return value should not be extended to i16, since AVR has 8-bit
+    // registers.
+    if (Ty->isIntegralOrEnumerationType() && getContext().getTypeSize(Ty) <= 8)
+      return ABIArgInfo::getDirect();
+    // Otherwise we follow the default way which is compatible.
+    return DefaultABIInfo::classifyReturnType(Ty);
+  }
+
+  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const {
+    unsigned TySize = getContext().getTypeSize(Ty);
+
+    // An int8 type argument always costs two registers like an int16.
+    if (TySize == 8 && NumRegs >= 2) {
+      NumRegs -= 2;
+      return ABIArgInfo::getExtend(Ty);
+    }
+
+    // If the argument size is an odd number of bytes, round up the size
+    // to the next even number.
+    TySize = llvm::alignTo(TySize, 16);
+
+    // Any type including an array/struct type can be passed in rgisters,
+    // if there are enough registers left.
+    if (TySize <= NumRegs * 8) {
+      NumRegs -= TySize / 8;
+      return ABIArgInfo::getDirect();
+    }
+
+    // An argument is passed either completely in registers or completely in
+    // memory. Since there are not enough registers left, current argument
+    // and all other unprocessed arguments should be passed in memory.
+    // However we still need to return `ABIArgInfo::getDirect()` other than
+    // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot
+    // will be allocated, so the stack frame layout will be incompatible with
+    // avr-gcc.
+    NumRegs = 0;
+    return ABIArgInfo::getDirect();
+  }
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    // Decide the return type.
+    bool LargeRet = false;
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet);
+
+    // Decide each argument type. The total number of registers can be used for
+    // arguments depends on several factors:
+    // 1. Arguments of varargs functions are passed on the stack. This applies
+    //    even to the named arguments. So no register can be used.
+    // 2. Total 18 registers can be used on avr and 6 ones on avrtiny.
+    // 3. If the return type is a struct with too large size, two registers
+    //    (out of 18/6) will be cost as an implicit pointer argument.
+    unsigned NumRegs = ParamRegs;
+    if (FI.isVariadic())
+      NumRegs = 0;
+    else if (LargeRet)
+      NumRegs -= 2;
+    for (auto &I : FI.arguments())
+      I.info = classifyArgumentType(I.type, NumRegs);
+  }
+};
+
+class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
+      : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {}
+
+  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
+                                  const VarDecl *D) const override {
+    // Check if global/static variable is defined in address space
+    // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5)
+    // but not constant.
+    if (D) {
+      LangAS AS = D->getType().getAddressSpace();
+      if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) &&
+          toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified())
+        CGM.getDiags().Report(D->getLocation(),
+                              diag::err_verify_nonconst_addrspace)
+            << "__flash*";
+    }
+    return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    if (GV->isDeclaration())
+      return;
+    const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
+    if (!FD) return;
+    auto *Fn = cast<llvm::Function>(GV);
+
+    if (FD->getAttr<AVRInterruptAttr>())
+      Fn->addFnAttr("interrupt");
+
+    if (FD->getAttr<AVRSignalAttr>())
+      Fn->addFnAttr("signal");
+  }
+};
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR,
+                                    unsigned NRR) {
+  return std::make_unique<AVRTargetCodeGenInfo>(CGM.getTypes(), NPR, NRR);
+}

diff  --git a/clang/lib/CodeGen/Targets/BPF.cpp b/clang/lib/CodeGen/Targets/BPF.cpp
new file mode 100644
index 0000000000000..2849222f7a186
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/BPF.cpp
@@ -0,0 +1,100 @@
+//===- BPF.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// BPF ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class BPFABIInfo : public DefaultABIInfo {
+public:
+  BPFABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+  ABIArgInfo classifyArgumentType(QualType Ty) const {
+    Ty = useFirstFieldIfTransparentUnion(Ty);
+
+    if (isAggregateTypeForABI(Ty)) {
+      uint64_t Bits = getContext().getTypeSize(Ty);
+      if (Bits == 0)
+        return ABIArgInfo::getIgnore();
+
+      // If the aggregate needs 1 or 2 registers, do not use reference.
+      if (Bits <= 128) {
+        llvm::Type *CoerceTy;
+        if (Bits <= 64) {
+          CoerceTy =
+              llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
+        } else {
+          llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), 64);
+          CoerceTy = llvm::ArrayType::get(RegTy, 2);
+        }
+        return ABIArgInfo::getDirect(CoerceTy);
+      } else {
+        return getNaturalAlignIndirect(Ty);
+      }
+    }
+
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    ASTContext &Context = getContext();
+    if (const auto *EIT = Ty->getAs<BitIntType>())
+      if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty))
+        return getNaturalAlignIndirect(Ty);
+
+    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                              : ABIArgInfo::getDirect());
+  }
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const {
+    if (RetTy->isVoidType())
+      return ABIArgInfo::getIgnore();
+
+    if (isAggregateTypeForABI(RetTy))
+      return getNaturalAlignIndirect(RetTy);
+
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+      RetTy = EnumTy->getDecl()->getIntegerType();
+
+    ASTContext &Context = getContext();
+    if (const auto *EIT = RetTy->getAs<BitIntType>())
+      if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty))
+        return getNaturalAlignIndirect(RetTy);
+
+    // Caller will do necessary sign/zero extension.
+    return ABIArgInfo::getDirect();
+  }
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    for (auto &I : FI.arguments())
+      I.info = classifyArgumentType(I.type);
+  }
+
+};
+
+class BPFTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  BPFTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<BPFABIInfo>(CGT)) {}
+};
+
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createBPFTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<BPFTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/CSKY.cpp b/clang/lib/CodeGen/Targets/CSKY.cpp
new file mode 100644
index 0000000000000..269b966f57a9e
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/CSKY.cpp
@@ -0,0 +1,177 @@
+//===- CSKY.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// CSKY ABI Implementation
+//===----------------------------------------------------------------------===//
+namespace {
+class CSKYABIInfo : public DefaultABIInfo {
+  static const int NumArgGPRs = 4;
+  static const int NumArgFPRs = 4;
+
+  static const unsigned XLen = 32;
+  unsigned FLen;
+
+public:
+  CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
+      : DefaultABIInfo(CGT), FLen(FLen) {}
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+  ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
+                                  int &ArgFPRsLeft,
+                                  bool isReturnType = false) const;
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+} // end anonymous namespace
+
+void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  QualType RetTy = FI.getReturnType();
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(RetTy);
+
+  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
+
+  // We must track the number of GPRs used in order to conform to the CSKY
+  // ABI, as integer scalars passed in registers should have signext/zeroext
+  // when promoted.
+  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
+  int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
+
+  for (auto &ArgInfo : FI.arguments()) {
+    ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft);
+  }
+}
+
+Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                               QualType Ty) const {
+  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
+
+  // Empty records are ignored for parameter passing purposes.
+  if (isEmptyRecord(getContext(), Ty, true)) {
+    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
+                           getVAListElementType(CGF), SlotSize);
+    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+    return Addr;
+  }
+
+  auto TInfo = getContext().getTypeInfoInChars(Ty);
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize,
+                          /*AllowHigherAlign=*/true);
+}
+
+ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
+                                             int &ArgFPRsLeft,
+                                             bool isReturnType) const {
+  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // Structures with either a non-trivial destructor or a non-trivial
+  // copy constructor are always passed indirectly.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+    if (ArgGPRsLeft)
+      ArgGPRsLeft -= 1;
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+                                           CGCXXABI::RAA_DirectInMemory);
+  }
+
+  // Ignore empty structs/unions.
+  if (isEmptyRecord(getContext(), Ty, true))
+    return ABIArgInfo::getIgnore();
+
+  if (!Ty->getAsUnionType())
+    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+  // Pass floating point values via FPRs if possible.
+  if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size &&
+      ArgFPRsLeft) {
+    ArgFPRsLeft--;
+    return ABIArgInfo::getDirect();
+  }
+
+  // Complex types for the hard float ABI must be passed direct rather than
+  // using CoerceAndExpand.
+  if (Ty->isComplexType() && FLen && !isReturnType) {
+    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
+    if (getContext().getTypeSize(EltTy) <= FLen) {
+      ArgFPRsLeft -= 2;
+      return ABIArgInfo::getDirect();
+    }
+  }
+
+  if (!isAggregateTypeForABI(Ty)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    // All integral types are promoted to XLen width, unless passed on the
+    // stack.
+    if (Size < XLen && Ty->isIntegralOrEnumerationType())
+      return ABIArgInfo::getExtend(Ty);
+
+    if (const auto *EIT = Ty->getAs<BitIntType>()) {
+      if (EIT->getNumBits() < XLen)
+        return ABIArgInfo::getExtend(Ty);
+    }
+
+    return ABIArgInfo::getDirect();
+  }
+
+  // For argument type, the first 4*XLen parts of aggregate will be passed
+  // in registers, and the rest will be passed in stack.
+  // So we can coerce to integers directly and let backend handle it correctly.
+  // For return type, aggregate which <= 2*XLen will be returned in registers.
+  // Otherwise, aggregate will be returned indirectly.
+  if (!isReturnType || (isReturnType && Size <= 2 * XLen)) {
+    if (Size <= XLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), XLen));
+    } else {
+      return ABIArgInfo::getDirect(llvm::ArrayType::get(
+          llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen));
+    }
+  }
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  int ArgGPRsLeft = 2;
+  int ArgFPRsLeft = FLen ? 1 : 0;
+
+  // The rules for return and argument types are the same, so defer to
+  // classifyArgumentType.
+  return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true);
+}
+
+namespace {
+class CSKYTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
+      : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {}
+};
+} // end anonymous namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen) {
+  return std::make_unique<CSKYTargetCodeGenInfo>(CGM.getTypes(), FLen);
+}

diff  --git a/clang/lib/CodeGen/Targets/Hexagon.cpp b/clang/lib/CodeGen/Targets/Hexagon.cpp
new file mode 100644
index 0000000000000..8f098c1ca9177
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/Hexagon.cpp
@@ -0,0 +1,426 @@
+//===- Hexagon.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Hexagon ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class HexagonABIInfo : public DefaultABIInfo {
+public:
+  HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+private:
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+  Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
+                              QualType Ty) const;
+  Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
+                              QualType Ty) const;
+  Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
+                                   QualType Ty) const;
+};
+
+class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    return 29;
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &GCM) const override {
+    if (GV->isDeclaration())
+      return;
+    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+    if (!FD)
+      return;
+  }
+};
+
+} // namespace
+
+void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  unsigned RegsLeft = 6;
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  for (auto &I : FI.arguments())
+    I.info = classifyArgumentType(I.type, &RegsLeft);
+}
+
+static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
+  assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
+                       " through registers");
+
+  if (*RegsLeft == 0)
+    return false;
+
+  if (Size <= 32) {
+    (*RegsLeft)--;
+    return true;
+  }
+
+  if (2 <= (*RegsLeft & (~1U))) {
+    *RegsLeft = (*RegsLeft & (~1U)) - 2;
+    return true;
+  }
+
+  // Next available register was r5 but candidate was greater than 32-bits so it
+  // has to go on the stack. However we still consume r5
+  if (*RegsLeft == 1)
+    *RegsLeft = 0;
+
+  return false;
+}
+
+ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
+                                                unsigned *RegsLeft) const {
+  if (!isAggregateTypeForABI(Ty)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (Size <= 64)
+      HexagonAdjustRegsLeft(Size, RegsLeft);
+
+    if (Size > 64 && Ty->isBitIntType())
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+    return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                             : ABIArgInfo::getDirect();
+  }
+
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+  // Ignore empty records.
+  if (isEmptyRecord(getContext(), Ty, true))
+    return ABIArgInfo::getIgnore();
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+  unsigned Align = getContext().getTypeAlign(Ty);
+
+  if (Size > 64)
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+  if (HexagonAdjustRegsLeft(Size, RegsLeft))
+    Align = Size <= 32 ? 32 : 64;
+  if (Size <= Align) {
+    // Pass in the smallest viable integer type.
+    Size = llvm::bit_ceil(Size);
+    return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
+  }
+  return DefaultABIInfo::classifyArgumentType(Ty);
+}
+
+ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  const TargetInfo &T = CGT.getTarget();
+  uint64_t Size = getContext().getTypeSize(RetTy);
+
+  if (RetTy->getAs<VectorType>()) {
+    // HVX vectors are returned in vector registers or register pairs.
+    if (T.hasFeature("hvx")) {
+      assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
+      uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
+      if (Size == VecSize || Size == 2*VecSize)
+        return ABIArgInfo::getDirectInReg();
+    }
+    // Large vector types should be returned via memory.
+    if (Size > 64)
+      return getNaturalAlignIndirect(RetTy);
+  }
+
+  if (!isAggregateTypeForABI(RetTy)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+      RetTy = EnumTy->getDecl()->getIntegerType();
+
+    if (Size > 64 && RetTy->isBitIntType())
+      return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+
+    return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                                : ABIArgInfo::getDirect();
+  }
+
+  if (isEmptyRecord(getContext(), RetTy, true))
+    return ABIArgInfo::getIgnore();
+
+  // Aggregates <= 8 bytes are returned in registers, other aggregates
+  // are returned indirectly.
+  if (Size <= 64) {
+    // Return in the smallest viable integer type.
+    Size = llvm::bit_ceil(Size);
+    return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
+  }
+  return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
+}
+
+Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
+                                            Address VAListAddr,
+                                            QualType Ty) const {
+  // Load the overflow area pointer.
+  Address __overflow_area_pointer_p =
+      CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
+  llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
+      __overflow_area_pointer_p, "__overflow_area_pointer");
+
+  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+  if (Align > 4) {
+    // Alignment should be a power of 2.
+    assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
+
+    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
+    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
+
+    // Add offset to the current pointer to access the argument.
+    __overflow_area_pointer =
+        CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
+    llvm::Value *AsInt =
+        CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
+
+    // Create a mask which should be "AND"ed
+    // with (overflow_arg_area + align - 1)
+    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
+    __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
+        CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
+        "__overflow_area_pointer.align");
+  }
+
+  // Get the type of the argument from memory and bitcast
+  // overflow area pointer to the argument type.
+  llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
+  Address AddrTyped = CGF.Builder.CreateElementBitCast(
+      Address(__overflow_area_pointer, CGF.Int8Ty,
+              CharUnits::fromQuantity(Align)),
+      PTy);
+
+  // Round up to the minimum stack alignment for varargs which is 4 bytes.
+  uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
+
+  __overflow_area_pointer = CGF.Builder.CreateGEP(
+      CGF.Int8Ty, __overflow_area_pointer,
+      llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+      "__overflow_area_pointer.next");
+  CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
+
+  return AddrTyped;
+}
+
+Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
+                                            Address VAListAddr,
+                                            QualType Ty) const {
+  // FIXME: Need to handle alignment
+  llvm::Type *BP = CGF.Int8PtrTy;
+  CGBuilderTy &Builder = CGF.Builder;
+  Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap");
+  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+  // Handle address alignment for type alignment > 32 bits
+  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
+  if (TyAlign > 4) {
+    assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
+    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
+    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
+    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
+    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
+  }
+  Address AddrTyped = Builder.CreateElementBitCast(
+      Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)),
+      CGF.ConvertType(Ty));
+
+  uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
+  llvm::Value *NextAddr = Builder.CreateGEP(
+      CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
+  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+  return AddrTyped;
+}
+
+Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
+                                                 Address VAListAddr,
+                                                 QualType Ty) const {
+  int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
+
+  if (ArgSize > 8)
+    return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
+
+  // Here we have check if the argument is in register area or
+  // in overflow area.
+  // If the saved register area pointer + argsize rounded up to alignment >
+  // saved register area end pointer, argument is in overflow area.
+  unsigned RegsLeft = 6;
+  Ty = CGF.getContext().getCanonicalType(Ty);
+  (void)classifyArgumentType(Ty, &RegsLeft);
+
+  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+
+  // Get rounded size of the argument.GCC does not allow vararg of
+  // size < 4 bytes. We follow the same logic here.
+  ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
+  int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
+
+  // Argument may be in saved register area
+  CGF.EmitBlock(MaybeRegBlock);
+
+  // Load the current saved register area pointer.
+  Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
+      VAListAddr, 0, "__current_saved_reg_area_pointer_p");
+  llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
+      __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
+
+  // Load the saved register area end pointer.
+  Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
+      VAListAddr, 1, "__saved_reg_area_end_pointer_p");
+  llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
+      __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
+
+  // If the size of argument is > 4 bytes, check if the stack
+  // location is aligned to 8 bytes
+  if (ArgAlign > 4) {
+
+    llvm::Value *__current_saved_reg_area_pointer_int =
+        CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
+                                   CGF.Int32Ty);
+
+    __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
+        __current_saved_reg_area_pointer_int,
+        llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
+        "align_current_saved_reg_area_pointer");
+
+    __current_saved_reg_area_pointer_int =
+        CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
+                              llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
+                              "align_current_saved_reg_area_pointer");
+
+    __current_saved_reg_area_pointer =
+        CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
+                                   __current_saved_reg_area_pointer->getType(),
+                                   "align_current_saved_reg_area_pointer");
+  }
+
+  llvm::Value *__new_saved_reg_area_pointer =
+      CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
+                            llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
+                            "__new_saved_reg_area_pointer");
+
+  llvm::Value *UsingStack = nullptr;
+  UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
+                                         __saved_reg_area_end_pointer);
+
+  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
+
+  // Argument in saved register area
+  // Implement the block where argument is in register saved area
+  CGF.EmitBlock(InRegBlock);
+
+  llvm::Type *PTy = CGF.ConvertType(Ty);
+  llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
+      __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
+
+  CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
+                          __current_saved_reg_area_pointer_p);
+
+  CGF.EmitBranch(ContBlock);
+
+  // Argument in overflow area
+  // Implement the block where the argument is in overflow area.
+  CGF.EmitBlock(OnStackBlock);
+
+  // Load the overflow area pointer
+  Address __overflow_area_pointer_p =
+      CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
+  llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
+      __overflow_area_pointer_p, "__overflow_area_pointer");
+
+  // Align the overflow area pointer according to the alignment of the argument
+  if (ArgAlign > 4) {
+    llvm::Value *__overflow_area_pointer_int =
+        CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
+
+    __overflow_area_pointer_int =
+        CGF.Builder.CreateAdd(__overflow_area_pointer_int,
+                              llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
+                              "align_overflow_area_pointer");
+
+    __overflow_area_pointer_int =
+        CGF.Builder.CreateAnd(__overflow_area_pointer_int,
+                              llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
+                              "align_overflow_area_pointer");
+
+    __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
+        __overflow_area_pointer_int, __overflow_area_pointer->getType(),
+        "align_overflow_area_pointer");
+  }
+
+  // Get the pointer for next argument in overflow area and store it
+  // to overflow area pointer.
+  llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
+      CGF.Int8Ty, __overflow_area_pointer,
+      llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
+      "__overflow_area_pointer.next");
+
+  CGF.Builder.CreateStore(__new_overflow_area_pointer,
+                          __overflow_area_pointer_p);
+
+  CGF.Builder.CreateStore(__new_overflow_area_pointer,
+                          __current_saved_reg_area_pointer_p);
+
+  // Bitcast the overflow area pointer to the type of argument.
+  llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
+      __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
+
+  CGF.EmitBranch(ContBlock);
+
+  // Get the correct pointer to load the variable argument
+  // Implement the ContBlock
+  CGF.EmitBlock(ContBlock);
+
+  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy);
+  llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
+  ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
+  ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
+
+  return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign));
+}
+
+Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                  QualType Ty) const {
+
+  if (getTarget().getTriple().isMusl())
+    return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
+
+  return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createHexagonTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<HexagonTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/Lanai.cpp b/clang/lib/CodeGen/Targets/Lanai.cpp
new file mode 100644
index 0000000000000..2578fc0291e76
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/Lanai.cpp
@@ -0,0 +1,154 @@
+//===- Lanai.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Lanai ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class LanaiABIInfo : public DefaultABIInfo {
+  struct CCState {
+    unsigned FreeRegs;
+  };
+
+public:
+  LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+  bool shouldUseInReg(QualType Ty, CCState &State) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    CCState State;
+    // Lanai uses 4 registers to pass arguments unless the function has the
+    // regparm attribute set.
+    if (FI.getHasRegParm()) {
+      State.FreeRegs = FI.getRegParm();
+    } else {
+      State.FreeRegs = 4;
+    }
+
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    for (auto &I : FI.arguments())
+      I.info = classifyArgumentType(I.type, State);
+  }
+
+  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
+};
+} // end anonymous namespace
+
+bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
+  unsigned Size = getContext().getTypeSize(Ty);
+  unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
+
+  if (SizeInRegs == 0)
+    return false;
+
+  if (SizeInRegs > State.FreeRegs) {
+    State.FreeRegs = 0;
+    return false;
+  }
+
+  State.FreeRegs -= SizeInRegs;
+
+  return true;
+}
+
+ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+                                           CCState &State) const {
+  if (!ByVal) {
+    if (State.FreeRegs) {
+      --State.FreeRegs; // Non-byval indirects just use one pointer.
+      return getNaturalAlignIndirectInReg(Ty);
+    }
+    return getNaturalAlignIndirect(Ty, false);
+  }
+
+  // Compute the byval alignment.
+  const unsigned MinABIStackAlignInBytes = 4;
+  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
+                                 /*Realign=*/TypeAlign >
+                                     MinABIStackAlignInBytes);
+}
+
+ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
+                                              CCState &State) const {
+  // Check with the C++ ABI first.
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (RT) {
+    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+    if (RAA == CGCXXABI::RAA_Indirect) {
+      return getIndirectResult(Ty, /*ByVal=*/false, State);
+    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+    }
+  }
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Structures with flexible arrays are always indirect.
+    if (RT && RT->getDecl()->hasFlexibleArrayMember())
+      return getIndirectResult(Ty, /*ByVal=*/true, State);
+
+    // Ignore empty structs/unions.
+    if (isEmptyRecord(getContext(), Ty, true))
+      return ABIArgInfo::getIgnore();
+
+    llvm::LLVMContext &LLVMContext = getVMContext();
+    unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+    if (SizeInRegs <= State.FreeRegs) {
+      llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+      SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
+      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+      State.FreeRegs -= SizeInRegs;
+      return ABIArgInfo::getDirectInReg(Result);
+    } else {
+      State.FreeRegs = 0;
+    }
+    return getIndirectResult(Ty, true, State);
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const auto *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  bool InReg = shouldUseInReg(Ty, State);
+
+  // Don't pass >64 bit integers in registers.
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() > 64)
+      return getIndirectResult(Ty, /*ByVal=*/true, State);
+
+  if (isPromotableIntegerTypeForABI(Ty)) {
+    if (InReg)
+      return ABIArgInfo::getDirectInReg();
+    return ABIArgInfo::getExtend(Ty);
+  }
+  if (InReg)
+    return ABIArgInfo::getDirectInReg();
+  return ABIArgInfo::getDirect();
+}
+
+namespace {
+class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
+};
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createLanaiTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<LanaiTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/LoongArch.cpp b/clang/lib/CodeGen/Targets/LoongArch.cpp
new file mode 100644
index 0000000000000..4abf281c54d99
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/LoongArch.cpp
@@ -0,0 +1,452 @@
+//===- LoongArch.cpp ------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+// LoongArch ABI Implementation. Documented at
+// https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
+//
+//===----------------------------------------------------------------------===//
+
+namespace {
+class LoongArchABIInfo : public DefaultABIInfo {
+private:
+  // Size of the integer ('r') registers in bits.
+  unsigned GRLen;
+  // Size of the floating point ('f') registers in bits.
+  unsigned FRLen;
+  // Number of general-purpose argument registers.
+  static const int NumGARs = 8;
+  // Number of floating-point argument registers.
+  static const int NumFARs = 8;
+  bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff,
+                                      llvm::Type *&Field1Ty,
+                                      CharUnits &Field1Off,
+                                      llvm::Type *&Field2Ty,
+                                      CharUnits &Field2Off) const;
+
+public:
+  LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen)
+      : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {}
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft,
+                                  int &FARsLeft) const;
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  ABIArgInfo extendType(QualType Ty) const;
+
+  bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
+                                CharUnits &Field1Off, llvm::Type *&Field2Ty,
+                                CharUnits &Field2Off, int &NeededArgGPRs,
+                                int &NeededArgFPRs) const;
+  ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty,
+                                               CharUnits Field1Off,
+                                               llvm::Type *Field2Ty,
+                                               CharUnits Field2Off) const;
+};
+} // end anonymous namespace
+
+void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  QualType RetTy = FI.getReturnType();
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(RetTy);
+
+  // IsRetIndirect is true if classifyArgumentType indicated the value should
+  // be passed indirect, or if the type size is a scalar greater than 2*GRLen
+  // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct
+  // in LLVM IR, relying on the backend lowering code to rewrite the argument
+  // list and pass indirectly on LA32.
+  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
+  if (!IsRetIndirect && RetTy->isScalarType() &&
+      getContext().getTypeSize(RetTy) > (2 * GRLen)) {
+    if (RetTy->isComplexType() && FRLen) {
+      QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
+      IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen;
+    } else {
+      // This is a normal scalar > 2*GRLen, such as fp128 on LA32.
+      IsRetIndirect = true;
+    }
+  }
+
+  // We must track the number of GARs and FARs used in order to conform to the
+  // LoongArch ABI. As GAR usage is 
diff erent for variadic arguments, we must
+  // also track whether we are examining a vararg or not.
+  int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs;
+  int FARsLeft = FRLen ? NumFARs : 0;
+  int NumFixedArgs = FI.getNumRequiredArgs();
+
+  int ArgNum = 0;
+  for (auto &ArgInfo : FI.arguments()) {
+    ArgInfo.info = classifyArgumentType(
+        ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft);
+    ArgNum++;
+  }
+}
+
+// Returns true if the struct is a potential candidate to be passed in FARs (and
+// GARs). If this function returns true, the caller is responsible for checking
+// that if there is only a single field then that field is a float.
+bool LoongArchABIInfo::detectFARsEligibleStructHelper(
+    QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off,
+    llvm::Type *&Field2Ty, CharUnits &Field2Off) const {
+  bool IsInt = Ty->isIntegralOrEnumerationType();
+  bool IsFloat = Ty->isRealFloatingType();
+
+  if (IsInt || IsFloat) {
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (IsInt && Size > GRLen)
+      return false;
+    // Can't be eligible if larger than the FP registers. Half precision isn't
+    // currently supported on LoongArch and the ABI hasn't been confirmed, so
+    // default to the integer ABI in that case.
+    if (IsFloat && (Size > FRLen || Size < 32))
+      return false;
+    // Can't be eligible if an integer type was already found (int+int pairs
+    // are not eligible).
+    if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
+      return false;
+    if (!Field1Ty) {
+      Field1Ty = CGT.ConvertType(Ty);
+      Field1Off = CurOff;
+      return true;
+    }
+    if (!Field2Ty) {
+      Field2Ty = CGT.ConvertType(Ty);
+      Field2Off = CurOff;
+      return true;
+    }
+    return false;
+  }
+
+  if (auto CTy = Ty->getAs<ComplexType>()) {
+    if (Field1Ty)
+      return false;
+    QualType EltTy = CTy->getElementType();
+    if (getContext().getTypeSize(EltTy) > FRLen)
+      return false;
+    Field1Ty = CGT.ConvertType(EltTy);
+    Field1Off = CurOff;
+    Field2Ty = Field1Ty;
+    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
+    return true;
+  }
+
+  if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
+    uint64_t ArraySize = ATy->getSize().getZExtValue();
+    QualType EltTy = ATy->getElementType();
+    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
+    for (uint64_t i = 0; i < ArraySize; ++i) {
+      if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off,
+                                          Field2Ty, Field2Off))
+        return false;
+      CurOff += EltSize;
+    }
+    return true;
+  }
+
+  if (const auto *RTy = Ty->getAs<RecordType>()) {
+    // Structures with either a non-trivial destructor or a non-trivial
+    // copy constructor are not eligible for the FP calling convention.
+    if (getRecordArgABI(Ty, CGT.getCXXABI()))
+      return false;
+    if (isEmptyRecord(getContext(), Ty, true))
+      return true;
+    const RecordDecl *RD = RTy->getDecl();
+    // Unions aren't eligible unless they're empty (which is caught above).
+    if (RD->isUnion())
+      return false;
+    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+    // If this is a C++ record, check the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+      for (const CXXBaseSpecifier &B : CXXRD->bases()) {
+        const auto *BDecl =
+            cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
+        if (!detectFARsEligibleStructHelper(
+                B.getType(), CurOff + Layout.getBaseClassOffset(BDecl),
+                Field1Ty, Field1Off, Field2Ty, Field2Off))
+          return false;
+      }
+    }
+    for (const FieldDecl *FD : RD->fields()) {
+      QualType QTy = FD->getType();
+      if (FD->isBitField()) {
+        unsigned BitWidth = FD->getBitWidthValue(getContext());
+        // Zero-width bitfields are ignored.
+        if (BitWidth == 0)
+          continue;
+        // Allow a bitfield with a type greater than GRLen as long as the
+        // bitwidth is GRLen or less.
+        if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) {
+          QTy = getContext().getIntTypeForBitwidth(GRLen, false);
+        }
+      }
+
+      if (!detectFARsEligibleStructHelper(
+              QTy,
+              CurOff + getContext().toCharUnitsFromBits(
+                           Layout.getFieldOffset(FD->getFieldIndex())),
+              Field1Ty, Field1Off, Field2Ty, Field2Off))
+        return false;
+    }
+    return Field1Ty != nullptr;
+  }
+
+  return false;
+}
+
+// Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when
+// flattened it contains a single fp value, fp+fp, or int+fp of appropriate
+// size). If so, NeededFARs and NeededGARs are incremented appropriately.
+bool LoongArchABIInfo::detectFARsEligibleStruct(
+    QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off,
+    llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs,
+    int &NeededFARs) const {
+  Field1Ty = nullptr;
+  Field2Ty = nullptr;
+  NeededGARs = 0;
+  NeededFARs = 0;
+  if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty,
+                                      Field1Off, Field2Ty, Field2Off))
+    return false;
+  // Not really a candidate if we have a single int but no float.
+  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
+    return false;
+  if (Field1Ty && Field1Ty->isFloatingPointTy())
+    NeededFARs++;
+  else if (Field1Ty)
+    NeededGARs++;
+  if (Field2Ty && Field2Ty->isFloatingPointTy())
+    NeededFARs++;
+  else if (Field2Ty)
+    NeededGARs++;
+  return true;
+}
+
+// Call getCoerceAndExpand for the two-element flattened struct described by
+// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
+// appropriate coerceToType and unpaddedCoerceToType.
+ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct(
+    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
+    CharUnits Field2Off) const {
+  SmallVector<llvm::Type *, 3> CoerceElts;
+  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
+  if (!Field1Off.isZero())
+    CoerceElts.push_back(llvm::ArrayType::get(
+        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
+
+  CoerceElts.push_back(Field1Ty);
+  UnpaddedCoerceElts.push_back(Field1Ty);
+
+  if (!Field2Ty) {
+    return ABIArgInfo::getCoerceAndExpand(
+        llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
+        UnpaddedCoerceElts[0]);
+  }
+
+  CharUnits Field2Align =
+      CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
+  CharUnits Field1End =
+      Field1Off +
+      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
+  CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
+
+  CharUnits Padding = CharUnits::Zero();
+  if (Field2Off > Field2OffNoPadNoPack)
+    Padding = Field2Off - Field2OffNoPadNoPack;
+  else if (Field2Off != Field2Align && Field2Off > Field1End)
+    Padding = Field2Off - Field1End;
+
+  bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
+
+  if (!Padding.isZero())
+    CoerceElts.push_back(llvm::ArrayType::get(
+        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
+
+  CoerceElts.push_back(Field2Ty);
+  UnpaddedCoerceElts.push_back(Field2Ty);
+
+  return ABIArgInfo::getCoerceAndExpand(
+      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked),
+      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked));
+}
+
+ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
+                                                  int &GARsLeft,
+                                                  int &FARsLeft) const {
+  assert(GARsLeft <= NumGARs && "GAR tracking underflow");
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // Structures with either a non-trivial destructor or a non-trivial
+  // copy constructor are always passed indirectly.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+    if (GARsLeft)
+      GARsLeft -= 1;
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+                                           CGCXXABI::RAA_DirectInMemory);
+  }
+
+  // Ignore empty structs/unions.
+  if (isEmptyRecord(getContext(), Ty, true))
+    return ABIArgInfo::getIgnore();
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+
+  // Pass floating point values via FARs if possible.
+  if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
+      FRLen >= Size && FARsLeft) {
+    FARsLeft--;
+    return ABIArgInfo::getDirect();
+  }
+
+  // Complex types for the *f or *d ABI must be passed directly rather than
+  // using CoerceAndExpand.
+  if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) {
+    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
+    if (getContext().getTypeSize(EltTy) <= FRLen) {
+      FARsLeft -= 2;
+      return ABIArgInfo::getDirect();
+    }
+  }
+
+  if (IsFixed && FRLen && Ty->isStructureOrClassType()) {
+    llvm::Type *Field1Ty = nullptr;
+    llvm::Type *Field2Ty = nullptr;
+    CharUnits Field1Off = CharUnits::Zero();
+    CharUnits Field2Off = CharUnits::Zero();
+    int NeededGARs = 0;
+    int NeededFARs = 0;
+    bool IsCandidate = detectFARsEligibleStruct(
+        Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs);
+    if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) {
+      GARsLeft -= NeededGARs;
+      FARsLeft -= NeededFARs;
+      return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty,
+                                               Field2Off);
+    }
+  }
+
+  uint64_t NeededAlign = getContext().getTypeAlign(Ty);
+  // Determine the number of GARs needed to pass the current argument
+  // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned"
+  // register pairs, so may consume 3 registers.
+  int NeededGARs = 1;
+  if (!IsFixed && NeededAlign == 2 * GRLen)
+    NeededGARs = 2 + (GARsLeft % 2);
+  else if (Size > GRLen && Size <= 2 * GRLen)
+    NeededGARs = 2;
+
+  if (NeededGARs > GARsLeft)
+    NeededGARs = GARsLeft;
+
+  GARsLeft -= NeededGARs;
+
+  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    // All integral types are promoted to GRLen width.
+    if (Size < GRLen && Ty->isIntegralOrEnumerationType())
+      return extendType(Ty);
+
+    if (const auto *EIT = Ty->getAs<BitIntType>()) {
+      if (EIT->getNumBits() < GRLen)
+        return extendType(Ty);
+      if (EIT->getNumBits() > 128 ||
+          (!getContext().getTargetInfo().hasInt128Type() &&
+           EIT->getNumBits() > 64))
+        return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+    }
+
+    return ABIArgInfo::getDirect();
+  }
+
+  // Aggregates which are <= 2*GRLen will be passed in registers if possible,
+  // so coerce to integers.
+  if (Size <= 2 * GRLen) {
+    // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is
+    // required, and a 2-element GRLen array if only GRLen alignment is
+    // required.
+    if (Size <= GRLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), GRLen));
+    }
+    if (getContext().getTypeAlign(Ty) == 2 * GRLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), 2 * GRLen));
+    }
+    return ABIArgInfo::getDirect(
+        llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2));
+  }
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+  // The rules for return and argument types are the same, so defer to
+  // classifyArgumentType.
+  int GARsLeft = 2;
+  int FARsLeft = FRLen ? 2 : 0;
+  return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft);
+}
+
+Address LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                    QualType Ty) const {
+  CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8);
+
+  // Empty records are ignored for parameter passing purposes.
+  if (isEmptyRecord(getContext(), Ty, true)) {
+    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
+                           getVAListElementType(CGF), SlotSize);
+    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+    return Addr;
+  }
+
+  auto TInfo = getContext().getTypeInfoInChars(Ty);
+
+  // Arguments bigger than 2*GRLen bytes are passed indirectly.
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty,
+                          /*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo,
+                          SlotSize,
+                          /*AllowHigherAlign=*/true);
+}
+
+ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const {
+  int TySize = getContext().getTypeSize(Ty);
+  // LA64 ABI requires unsigned 32 bit integers to be sign extended.
+  if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+    return ABIArgInfo::getSignExtend(Ty);
+  return ABIArgInfo::getExtend(Ty);
+}
+
+namespace {
+class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen,
+                             unsigned FRLen)
+      : TargetCodeGenInfo(
+            std::make_unique<LoongArchABIInfo>(CGT, GRLen, FRLen)) {}
+};
+} // namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen,
+                                          unsigned FLen) {
+  return std::make_unique<LoongArchTargetCodeGenInfo>(CGM.getTypes(), GRLen,
+                                                      FLen);
+}

diff  --git a/clang/lib/CodeGen/Targets/M68k.cpp b/clang/lib/CodeGen/Targets/M68k.cpp
new file mode 100644
index 0000000000000..120022105f341
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/M68k.cpp
@@ -0,0 +1,55 @@
+//===- M68k.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// M68k ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  M68kTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &M) const override;
+};
+
+} // namespace
+
+void M68kTargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+    if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
+      // Handle 'interrupt' attribute:
+      llvm::Function *F = cast<llvm::Function>(GV);
+
+      // Step 1: Set ISR calling convention.
+      F->setCallingConv(llvm::CallingConv::M68k_INTR);
+
+      // Step 2: Add attributes goodness.
+      F->addFnAttr(llvm::Attribute::NoInline);
+
+      // Step 3: Emit ISR vector alias.
+      unsigned Num = attr->getNumber() / 2;
+      llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
+                                "__isr_" + Twine(Num), F);
+    }
+  }
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createM68kTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<M68kTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/MSP430.cpp b/clang/lib/CodeGen/Targets/MSP430.cpp
new file mode 100644
index 0000000000000..bb67d97f44217
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/MSP430.cpp
@@ -0,0 +1,94 @@
+//===- MSP430.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// MSP430 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class MSP430ABIInfo : public DefaultABIInfo {
+  static ABIArgInfo complexArgInfo() {
+    ABIArgInfo Info = ABIArgInfo::getDirect();
+    Info.setCanBeFlattened(false);
+    return Info;
+  }
+
+public:
+  MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const {
+    if (RetTy->isAnyComplexType())
+      return complexArgInfo();
+
+    return DefaultABIInfo::classifyReturnType(RetTy);
+  }
+
+  ABIArgInfo classifyArgumentType(QualType RetTy) const {
+    if (RetTy->isAnyComplexType())
+      return complexArgInfo();
+
+    return DefaultABIInfo::classifyArgumentType(RetTy);
+  }
+
+  // Just copy the original implementations because
+  // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    for (auto &I : FI.arguments())
+      I.info = classifyArgumentType(I.type);
+  }
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override {
+    return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
+  }
+};
+
+class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &M) const override;
+};
+
+}
+
+void MSP430TargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+  if (GV->isDeclaration())
+    return;
+  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+    const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
+    if (!InterruptAttr)
+      return;
+
+    // Handle 'interrupt' attribute:
+    llvm::Function *F = cast<llvm::Function>(GV);
+
+    // Step 1: Set ISR calling convention.
+    F->setCallingConv(llvm::CallingConv::MSP430_INTR);
+
+    // Step 2: Add attributes goodness.
+    F->addFnAttr(llvm::Attribute::NoInline);
+    F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
+  }
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createMSP430TargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<MSP430TargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/Mips.cpp b/clang/lib/CodeGen/Targets/Mips.cpp
new file mode 100644
index 0000000000000..8f11c63dcd85d
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/Mips.cpp
@@ -0,0 +1,441 @@
+//===- Mips.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// MIPS ABI Implementation.  This works for both little-endian and
+// big-endian variants.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MipsABIInfo : public ABIInfo {
+  bool IsO32;
+  const unsigned MinABIStackAlignInBytes, StackAlignInBytes;
+  void CoerceToIntArgs(uint64_t TySize,
+                       SmallVectorImpl<llvm::Type *> &ArgList) const;
+  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
+  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
+  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
+public:
+  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
+    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
+    StackAlignInBytes(IsO32 ? 8 : 16) {}
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+  ABIArgInfo extendType(QualType Ty) const;
+};
+
+class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
+  unsigned SizeOfUnwindException;
+public:
+  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
+      : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
+        SizeOfUnwindException(IsO32 ? 24 : 32) {}
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+    return 29;
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+    if (!FD) return;
+    llvm::Function *Fn = cast<llvm::Function>(GV);
+
+    if (FD->hasAttr<MipsLongCallAttr>())
+      Fn->addFnAttr("long-call");
+    else if (FD->hasAttr<MipsShortCallAttr>())
+      Fn->addFnAttr("short-call");
+
+    // Other attributes do not have a meaning for declarations.
+    if (GV->isDeclaration())
+      return;
+
+    if (FD->hasAttr<Mips16Attr>()) {
+      Fn->addFnAttr("mips16");
+    }
+    else if (FD->hasAttr<NoMips16Attr>()) {
+      Fn->addFnAttr("nomips16");
+    }
+
+    if (FD->hasAttr<MicroMipsAttr>())
+      Fn->addFnAttr("micromips");
+    else if (FD->hasAttr<NoMicroMipsAttr>())
+      Fn->addFnAttr("nomicromips");
+
+    const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
+    if (!Attr)
+      return;
+
+    const char *Kind;
+    switch (Attr->getInterrupt()) {
+    case MipsInterruptAttr::eic:     Kind = "eic"; break;
+    case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
+    case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
+    case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
+    case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
+    case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
+    case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
+    case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
+    case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
+    }
+
+    Fn->addFnAttr("interrupt", Kind);
+
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+
+  unsigned getSizeOfUnwindException() const override {
+    return SizeOfUnwindException;
+  }
+};
+}
+
+void MipsABIInfo::CoerceToIntArgs(
+    uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
+  llvm::IntegerType *IntTy =
+    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
+
+  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
+  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
+    ArgList.push_back(IntTy);
+
+  // If necessary, add one more integer type to ArgList.
+  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
+
+  if (R)
+    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
+}
+
+// In N32/64, an aligned double precision floating point field is passed in
+// a register.
+llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
+  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
+
+  if (IsO32) {
+    CoerceToIntArgs(TySize, ArgList);
+    return llvm::StructType::get(getVMContext(), ArgList);
+  }
+
+  if (Ty->isComplexType())
+    return CGT.ConvertType(Ty);
+
+  const RecordType *RT = Ty->getAs<RecordType>();
+
+  // Unions/vectors are passed in integer registers.
+  if (!RT || !RT->isStructureOrClassType()) {
+    CoerceToIntArgs(TySize, ArgList);
+    return llvm::StructType::get(getVMContext(), ArgList);
+  }
+
+  const RecordDecl *RD = RT->getDecl();
+  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
+
+  uint64_t LastOffset = 0;
+  unsigned idx = 0;
+  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
+
+  // Iterate over fields in the struct/class and check if there are any aligned
+  // double fields.
+  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+       i != e; ++i, ++idx) {
+    const QualType Ty = i->getType();
+    const BuiltinType *BT = Ty->getAs<BuiltinType>();
+
+    if (!BT || BT->getKind() != BuiltinType::Double)
+      continue;
+
+    uint64_t Offset = Layout.getFieldOffset(idx);
+    if (Offset % 64) // Ignore doubles that are not aligned.
+      continue;
+
+    // Add ((Offset - LastOffset) / 64) args of type i64.
+    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
+      ArgList.push_back(I64);
+
+    // Add double type.
+    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
+    LastOffset = Offset + 64;
+  }
+
+  CoerceToIntArgs(TySize - LastOffset, IntArgList);
+  ArgList.append(IntArgList.begin(), IntArgList.end());
+
+  return llvm::StructType::get(getVMContext(), ArgList);
+}
+
+llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
+                                        uint64_t Offset) const {
+  if (OrigOffset + MinABIStackAlignInBytes > Offset)
+    return nullptr;
+
+  return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
+}
+
+ABIArgInfo
+MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  uint64_t OrigOffset = Offset;
+  uint64_t TySize = getContext().getTypeSize(Ty);
+  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
+
+  Align = std::clamp(Align, (uint64_t)MinABIStackAlignInBytes,
+                     (uint64_t)StackAlignInBytes);
+  unsigned CurrOffset = llvm::alignTo(Offset, Align);
+  Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
+
+  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
+    // Ignore empty aggregates.
+    if (TySize == 0)
+      return ABIArgInfo::getIgnore();
+
+    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+      Offset = OrigOffset + MinABIStackAlignInBytes;
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+    }
+
+    // If we have reached here, aggregates are passed directly by coercing to
+    // another structure type. Padding is inserted if the offset of the
+    // aggregate is unaligned.
+    ABIArgInfo ArgInfo =
+        ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
+                              getPaddingType(OrigOffset, CurrOffset));
+    ArgInfo.setInReg(true);
+    return ArgInfo;
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Make sure we pass indirectly things that are too large.
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() > 128 ||
+        (EIT->getNumBits() > 64 &&
+         !getContext().getTargetInfo().hasInt128Type()))
+      return getNaturalAlignIndirect(Ty);
+
+  // All integral types are promoted to the GPR width.
+  if (Ty->isIntegralOrEnumerationType())
+    return extendType(Ty);
+
+  return ABIArgInfo::getDirect(
+      nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
+}
+
+llvm::Type*
+MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
+  const RecordType *RT = RetTy->getAs<RecordType>();
+  SmallVector<llvm::Type*, 8> RTList;
+
+  if (RT && RT->isStructureOrClassType()) {
+    const RecordDecl *RD = RT->getDecl();
+    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+    unsigned FieldCnt = Layout.getFieldCount();
+
+    // N32/64 returns struct/classes in floating point registers if the
+    // following conditions are met:
+    // 1. The size of the struct/class is no larger than 128-bit.
+    // 2. The struct/class has one or two fields all of which are floating
+    //    point types.
+    // 3. The offset of the first field is zero (this follows what gcc does).
+    //
+    // Any other composite results are returned in integer registers.
+    //
+    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
+      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
+      for (; b != e; ++b) {
+        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
+
+        if (!BT || !BT->isFloatingPoint())
+          break;
+
+        RTList.push_back(CGT.ConvertType(b->getType()));
+      }
+
+      if (b == e)
+        return llvm::StructType::get(getVMContext(), RTList,
+                                     RD->hasAttr<PackedAttr>());
+
+      RTList.clear();
+    }
+  }
+
+  CoerceToIntArgs(Size, RTList);
+  return llvm::StructType::get(getVMContext(), RTList);
+}
+
+ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
+  uint64_t Size = getContext().getTypeSize(RetTy);
+
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  // O32 doesn't treat zero-sized structs 
diff erently from other structs.
+  // However, N32/N64 ignores zero sized return values.
+  if (!IsO32 && Size == 0)
+    return ABIArgInfo::getIgnore();
+
+  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
+    if (Size <= 128) {
+      if (RetTy->isAnyComplexType())
+        return ABIArgInfo::getDirect();
+
+      // O32 returns integer vectors in registers and N32/N64 returns all small
+      // aggregates in registers.
+      if (!IsO32 ||
+          (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
+        ABIArgInfo ArgInfo =
+            ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
+        ArgInfo.setInReg(true);
+        return ArgInfo;
+      }
+    }
+
+    return getNaturalAlignIndirect(RetTy);
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+    RetTy = EnumTy->getDecl()->getIntegerType();
+
+  // Make sure we pass indirectly things that are too large.
+  if (const auto *EIT = RetTy->getAs<BitIntType>())
+    if (EIT->getNumBits() > 128 ||
+        (EIT->getNumBits() > 64 &&
+         !getContext().getTargetInfo().hasInt128Type()))
+      return getNaturalAlignIndirect(RetTy);
+
+  if (isPromotableIntegerTypeForABI(RetTy))
+    return ABIArgInfo::getExtend(RetTy);
+
+  if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
+      RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
+    return ABIArgInfo::getSignExtend(RetTy);
+
+  return ABIArgInfo::getDirect();
+}
+
+void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  ABIArgInfo &RetInfo = FI.getReturnInfo();
+  if (!getCXXABI().classifyReturnType(FI))
+    RetInfo = classifyReturnType(FI.getReturnType());
+
+  // Check if a pointer to an aggregate is passed as a hidden argument.
+  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
+
+  for (auto &I : FI.arguments())
+    I.info = classifyArgumentType(I.type, Offset);
+}
+
+Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                               QualType OrigTy) const {
+  QualType Ty = OrigTy;
+
+  // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
+  // Pointers are also promoted in the same way but this only matters for N32.
+  unsigned SlotSizeInBits = IsO32 ? 32 : 64;
+  unsigned PtrWidth = getTarget().getPointerWidth(LangAS::Default);
+  bool DidPromote = false;
+  if ((Ty->isIntegerType() &&
+          getContext().getIntWidth(Ty) < SlotSizeInBits) ||
+      (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
+    DidPromote = true;
+    Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
+                                            Ty->isSignedIntegerType());
+  }
+
+  auto TyInfo = getContext().getTypeInfoInChars(Ty);
+
+  // The alignment of things in the argument area is never larger than
+  // StackAlignInBytes.
+  TyInfo.Align =
+    std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
+
+  // MinABIStackAlignInBytes is the size of argument slots on the stack.
+  CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
+
+  Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
+                          TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
+
+
+  // If there was a promotion, "unpromote" into a temporary.
+  // TODO: can we just use a pointer into a subset of the original slot?
+  if (DidPromote) {
+    Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
+    llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
+
+    // Truncate down to the right width.
+    llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
+                                                 : CGF.IntPtrTy);
+    llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
+    if (OrigTy->isPointerType())
+      V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
+
+    CGF.Builder.CreateStore(V, Temp);
+    Addr = Temp;
+  }
+
+  return Addr;
+}
+
+ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
+  int TySize = getContext().getTypeSize(Ty);
+
+  // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
+  if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+    return ABIArgInfo::getSignExtend(Ty);
+
+  return ABIArgInfo::getExtend(Ty);
+}
+
+bool
+MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                                               llvm::Value *Address) const {
+  // This information comes from gcc's implementation, which seems to
+  // as canonical as it gets.
+
+  // Everything on MIPS is 4 bytes.  Double-precision FP registers
+  // are aliased to pairs of single-precision FP registers.
+  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+  // 0-31 are the general purpose registers, $0 - $31.
+  // 32-63 are the floating-point registers, $f0 - $f31.
+  // 64 and 65 are the multiply/divide registers, $hi and $lo.
+  // 66 is the (notional, I think) register for signal-handler return.
+  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
+
+  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
+  // They are one bit wide and ignored here.
+
+  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
+  // (coprocessor 1 is the FP unit)
+  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
+  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
+  // 176-181 are the DSP accumulator registers.
+  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
+  return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32) {
+  return std::make_unique<MIPSTargetCodeGenInfo>(CGM.getTypes(), IsOS32);
+}

diff  --git a/clang/lib/CodeGen/Targets/NVPTX.cpp b/clang/lib/CodeGen/Targets/NVPTX.cpp
new file mode 100644
index 0000000000000..75fda51ba49bb
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/NVPTX.cpp
@@ -0,0 +1,308 @@
+//===- NVPTX.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "llvm/IR/IntrinsicsNVPTX.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// NVPTX ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class NVPTXTargetCodeGenInfo;
+
+class NVPTXABIInfo : public ABIInfo {
+  NVPTXTargetCodeGenInfo &CGInfo;
+
+public:
+  NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
+      : ABIInfo(CGT), CGInfo(Info) {}
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+  bool isUnsupportedType(QualType T) const;
+  ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
+};
+
+class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &M) const override;
+  bool shouldEmitStaticExternCAliases() const override;
+
+  llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
+    // On the device side, surface reference is represented as an object handle
+    // in 64-bit integer.
+    return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
+  }
+
+  llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
+    // On the device side, texture reference is represented as an object handle
+    // in 64-bit integer.
+    return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
+  }
+
+  bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
+                                              LValue Src) const override {
+    emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
+    return true;
+  }
+
+  bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
+                                              LValue Src) const override {
+    emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
+    return true;
+  }
+
+private:
+  // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
+  // resulting MDNode to the nvvm.annotations MDNode.
+  static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
+                              int Operand);
+
+  static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
+                                           LValue Src) {
+    llvm::Value *Handle = nullptr;
+    llvm::Constant *C =
+        llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
+    // Lookup `addrspacecast` through the constant pointer if any.
+    if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
+      C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
+    if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
+      // Load the handle from the specific global variable using
+      // `nvvm.texsurf.handle.internal` intrinsic.
+      Handle = CGF.EmitRuntimeCall(
+          CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
+                               {GV->getType()}),
+          {GV}, "texsurf_handle");
+    } else
+      Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
+    CGF.EmitStoreOfScalar(Handle, Dst);
+  }
+};
+
+/// Checks if the type is unsupported directly by the current target.
+bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
+  ASTContext &Context = getContext();
+  if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
+    return true;
+  if (!Context.getTargetInfo().hasFloat128Type() &&
+      (T->isFloat128Type() ||
+       (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
+    return true;
+  if (const auto *EIT = T->getAs<BitIntType>())
+    return EIT->getNumBits() >
+           (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
+  if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
+      Context.getTypeSize(T) > 64U)
+    return true;
+  if (const auto *AT = T->getAsArrayTypeUnsafe())
+    return isUnsupportedType(AT->getElementType());
+  const auto *RT = T->getAs<RecordType>();
+  if (!RT)
+    return false;
+  const RecordDecl *RD = RT->getDecl();
+
+  // If this is a C++ record, check the bases first.
+  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+    for (const CXXBaseSpecifier &I : CXXRD->bases())
+      if (isUnsupportedType(I.getType()))
+        return true;
+
+  for (const FieldDecl *I : RD->fields())
+    if (isUnsupportedType(I->getType()))
+      return true;
+  return false;
+}
+
+/// Coerce the given type into an array with maximum allowed size of elements.
+ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
+                                                   unsigned MaxSize) const {
+  // Alignment and Size are measured in bits.
+  const uint64_t Size = getContext().getTypeSize(Ty);
+  const uint64_t Alignment = getContext().getTypeAlign(Ty);
+  const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
+  llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
+  const uint64_t NumElements = (Size + Div - 1) / Div;
+  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
+}
+
+ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (getContext().getLangOpts().OpenMP &&
+      getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
+    return coerceToIntArrayWithLimit(RetTy, 64);
+
+  // note: this is 
diff erent from default ABI
+  if (!RetTy->isScalarType())
+    return ABIArgInfo::getDirect();
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+    RetTy = EnumTy->getDecl()->getIntegerType();
+
+  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                               : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Return aggregates type as indirect by value
+  if (isAggregateTypeForABI(Ty)) {
+    // Under CUDA device compilation, tex/surf builtin types are replaced with
+    // object types and passed directly.
+    if (getContext().getLangOpts().CUDAIsDevice) {
+      if (Ty->isCUDADeviceBuiltinSurfaceType())
+        return ABIArgInfo::getDirect(
+            CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
+      if (Ty->isCUDADeviceBuiltinTextureType())
+        return ABIArgInfo::getDirect(
+            CGInfo.getCUDADeviceBuiltinTextureDeviceType());
+    }
+    return getNaturalAlignIndirect(Ty, /* byval */ true);
+  }
+
+  if (const auto *EIT = Ty->getAs<BitIntType>()) {
+    if ((EIT->getNumBits() > 128) ||
+        (!getContext().getTargetInfo().hasInt128Type() &&
+         EIT->getNumBits() > 64))
+      return getNaturalAlignIndirect(Ty, /* byval */ true);
+  }
+
+  return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                            : ABIArgInfo::getDirect());
+}
+
+void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  for (auto &I : FI.arguments())
+    I.info = classifyArgumentType(I.type);
+
+  // Always honor user-specified calling convention.
+  if (FI.getCallingConvention() != llvm::CallingConv::C)
+    return;
+
+  FI.setEffectiveCallingConvention(getRuntimeCC());
+}
+
+Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                QualType Ty) const {
+  llvm_unreachable("NVPTX does not support varargs");
+}
+
+void NVPTXTargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+  if (GV->isDeclaration())
+    return;
+  const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
+  if (VD) {
+    if (M.getLangOpts().CUDA) {
+      if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
+        addNVVMMetadata(GV, "surface", 1);
+      else if (VD->getType()->isCUDADeviceBuiltinTextureType())
+        addNVVMMetadata(GV, "texture", 1);
+      return;
+    }
+  }
+
+  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+  if (!FD) return;
+
+  llvm::Function *F = cast<llvm::Function>(GV);
+
+  // Perform special handling in OpenCL mode
+  if (M.getLangOpts().OpenCL) {
+    // Use OpenCL function attributes to check for kernel functions
+    // By default, all functions are device functions
+    if (FD->hasAttr<OpenCLKernelAttr>()) {
+      // OpenCL __kernel functions get kernel metadata
+      // Create !{<func-ref>, metadata !"kernel", i32 1} node
+      addNVVMMetadata(F, "kernel", 1);
+      // And kernel functions are not subject to inlining
+      F->addFnAttr(llvm::Attribute::NoInline);
+    }
+  }
+
+  // Perform special handling in CUDA mode.
+  if (M.getLangOpts().CUDA) {
+    // CUDA __global__ functions get a kernel metadata entry.  Since
+    // __global__ functions cannot be called from the device, we do not
+    // need to set the noinline attribute.
+    if (FD->hasAttr<CUDAGlobalAttr>()) {
+      // Create !{<func-ref>, metadata !"kernel", i32 1} node
+      addNVVMMetadata(F, "kernel", 1);
+    }
+    if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
+      // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
+      llvm::APSInt MaxThreads(32);
+      MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
+      if (MaxThreads > 0)
+        addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
+
+      // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
+      // not specified in __launch_bounds__ or if the user specified a 0 value,
+      // we don't have to add a PTX directive.
+      if (Attr->getMinBlocks()) {
+        llvm::APSInt MinBlocks(32);
+        MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
+        if (MinBlocks > 0)
+          // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
+          addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
+      }
+    }
+  }
+
+  // Attach kernel metadata directly if compiling for NVPTX.
+  if (FD->hasAttr<NVPTXKernelAttr>()) {
+    addNVVMMetadata(F, "kernel", 1);
+  }
+}
+
+void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
+                                             StringRef Name, int Operand) {
+  llvm::Module *M = GV->getParent();
+  llvm::LLVMContext &Ctx = M->getContext();
+
+  // Get "nvvm.annotations" metadata node
+  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
+
+  llvm::Metadata *MDVals[] = {
+      llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
+      llvm::ConstantAsMetadata::get(
+          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
+  // Append metadata to nvvm.annotations
+  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+
+bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
+  return false;
+}
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createNVPTXTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<NVPTXTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/PNaCl.cpp b/clang/lib/CodeGen/Targets/PNaCl.cpp
new file mode 100644
index 0000000000000..771aa7469da27
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/PNaCl.cpp
@@ -0,0 +1,109 @@
+//===- PNaCl.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// le32/PNaCl bitcode ABI Implementation
+//
+// This is a simplified version of the x86_32 ABI.  Arguments and return values
+// are always passed on the stack.
+//===----------------------------------------------------------------------===//
+
+class PNaClABIInfo : public ABIInfo {
+ public:
+  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF,
+                    Address VAListAddr, QualType Ty) const override;
+};
+
+class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
+ public:
+   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+       : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
+};
+
+void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+  for (auto &I : FI.arguments())
+    I.info = classifyArgumentType(I.type);
+}
+
+Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                QualType Ty) const {
+  // The PNaCL ABI is a bit odd, in that varargs don't use normal
+  // function classification. Structs get passed directly for varargs
+  // functions, through a rewriting transform in
+  // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
+  // this target to actually support a va_arg instructions with an
+  // aggregate type, unlike other targets.
+  return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
+}
+
+/// Classify argument of given type \p Ty.
+ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
+  if (isAggregateTypeForABI(Ty)) {
+    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+    return getNaturalAlignIndirect(Ty);
+  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+    // Treat an enum type as its underlying type.
+    Ty = EnumTy->getDecl()->getIntegerType();
+  } else if (Ty->isFloatingType()) {
+    // Floating-point types don't go inreg.
+    return ABIArgInfo::getDirect();
+  } else if (const auto *EIT = Ty->getAs<BitIntType>()) {
+    // Treat bit-precise integers as integers if <= 64, otherwise pass
+    // indirectly.
+    if (EIT->getNumBits() > 64)
+      return getNaturalAlignIndirect(Ty);
+    return ABIArgInfo::getDirect();
+  }
+
+  return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                            : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  // In the PNaCl ABI we always return records/structures on the stack.
+  if (isAggregateTypeForABI(RetTy))
+    return getNaturalAlignIndirect(RetTy);
+
+  // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly.
+  if (const auto *EIT = RetTy->getAs<BitIntType>()) {
+    if (EIT->getNumBits() > 64)
+      return getNaturalAlignIndirect(RetTy);
+    return ABIArgInfo::getDirect();
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+    RetTy = EnumTy->getDecl()->getIntegerType();
+
+  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                               : ABIArgInfo::getDirect());
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createPNaClTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<PNaClTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/PPC.cpp b/clang/lib/CodeGen/Targets/PPC.cpp
new file mode 100644
index 0000000000000..1fea52fbaa4e2
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/PPC.cpp
@@ -0,0 +1,973 @@
+//===- PPC.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
+                                    QualType Ty, CharUnits SlotSize,
+                                    CharUnits EltSize, const ComplexType *CTy) {
+  Address Addr =
+      emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
+                             SlotSize, SlotSize, /*AllowHigher*/ true);
+
+  Address RealAddr = Addr;
+  Address ImagAddr = RealAddr;
+  if (CGF.CGM.getDataLayout().isBigEndian()) {
+    RealAddr =
+        CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
+    ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
+                                                      2 * SlotSize - EltSize);
+  } else {
+    ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
+  }
+
+  llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
+  RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
+  ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
+  llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
+  llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
+
+  Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
+  CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
+                         /*init*/ true);
+  return Temp;
+}
+
+static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                                        llvm::Value *Address, bool Is64Bit,
+                                        bool IsAIX) {
+  // This is calculated from the LLVM and GCC tables and verified
+  // against gcc output.  AFAIK all PPC ABIs use the same encoding.
+
+  CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+  llvm::IntegerType *i8 = CGF.Int8Ty;
+  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
+
+  // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
+  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
+
+  // 32-63: fp0-31, the 8-byte floating-point registers
+  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
+
+  // 64-67 are various 4-byte or 8-byte special-purpose registers:
+  // 64: mq
+  // 65: lr
+  // 66: ctr
+  // 67: ap
+  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
+
+  // 68-76 are various 4-byte special-purpose registers:
+  // 68-75 cr0-7
+  // 76: xer
+  AssignToArrayRange(Builder, Address, Four8, 68, 76);
+
+  // 77-108: v0-31, the 16-byte vector registers
+  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
+
+  // 109: vrsave
+  // 110: vscr
+  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
+
+  // AIX does not utilize the rest of the registers.
+  if (IsAIX)
+    return false;
+
+  // 111: spe_acc
+  // 112: spefscr
+  // 113: sfp
+  AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
+
+  if (!Is64Bit)
+    return false;
+
+  // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
+  // or above CPU.
+  // 64-bit only registers:
+  // 114: tfhar
+  // 115: tfiar
+  // 116: texasr
+  AssignToArrayRange(Builder, Address, Eight8, 114, 116);
+
+  return false;
+}
+
+// AIX
+namespace {
+/// AIXABIInfo - The AIX XCOFF ABI information.
+class AIXABIInfo : public ABIInfo {
+  const bool Is64Bit;
+  const unsigned PtrByteSize;
+  CharUnits getParamTypeAlignment(QualType Ty) const;
+
+public:
+  AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
+      : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
+
+  bool isPromotableTypeForABI(QualType Ty) const;
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+    for (auto &I : FI.arguments())
+      I.info = classifyArgumentType(I.type);
+  }
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
+  const bool Is64Bit;
+
+public:
+  AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
+      : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
+        Is64Bit(Is64Bit) {}
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    return 1; // r1 is the dedicated stack pointer
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+};
+} // namespace
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 32/64 bits.
+bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Promotable integer types are required to be promoted by the ABI.
+  if (getContext().isPromotableIntegerType(Ty))
+    return true;
+
+  if (!Is64Bit)
+    return false;
+
+  // For 64 bit mode, in addition to the usual promotable integer types, we also
+  // need to extend all 32-bit types, since the ABI requires promotion to 64
+  // bits.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+    switch (BT->getKind()) {
+    case BuiltinType::Int:
+    case BuiltinType::UInt:
+      return true;
+    default:
+      break;
+    }
+
+  return false;
+}
+
+ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+
+  if (RetTy->isVectorType())
+    return ABIArgInfo::getDirect();
+
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (isAggregateTypeForABI(RetTy))
+    return getNaturalAlignIndirect(RetTy);
+
+  return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                        : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  if (Ty->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+
+  if (Ty->isVectorType())
+    return ABIArgInfo::getDirect();
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // passed by value.
+    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+    CharUnits CCAlign = getParamTypeAlignment(Ty);
+    CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
+
+    return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
+                                   /*Realign*/ TyAlign > CCAlign);
+  }
+
+  return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                     : ABIArgInfo::getDirect());
+}
+
+CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
+  // Complex types are passed just like their elements.
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+    Ty = CTy->getElementType();
+
+  if (Ty->isVectorType())
+    return CharUnits::fromQuantity(16);
+
+  // If the structure contains a vector type, the alignment is 16.
+  if (isRecordWithSIMDVectorType(getContext(), Ty))
+    return CharUnits::fromQuantity(16);
+
+  return CharUnits::fromQuantity(PtrByteSize);
+}
+
+Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                              QualType Ty) const {
+
+  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+  TypeInfo.Align = getParamTypeAlignment(Ty);
+
+  CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
+
+  // If we have a complex type and the base type is smaller than the register
+  // size, the ABI calls for the real and imaginary parts to be right-adjusted
+  // in separate words in 32bit mode or doublewords in 64bit mode. However,
+  // Clang expects us to produce a pointer to a structure with the two parts
+  // packed tightly. So generate loads of the real and imaginary parts relative
+  // to the va_list pointer, and store them to a temporary structure. We do the
+  // same as the PPC64ABI here.
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+    CharUnits EltSize = TypeInfo.Width / 2;
+    if (EltSize < SlotSize)
+      return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
+  }
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
+                          SlotSize, /*AllowHigher*/ true);
+}
+
+bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
+    CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
+  return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
+}
+
+// PowerPC-32
+namespace {
+/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
+class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
+  bool IsSoftFloatABI;
+  bool IsRetSmallStructInRegABI;
+
+  CharUnits getParamTypeAlignment(QualType Ty) const;
+
+public:
+  PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
+                     bool RetSmallStructInRegABI)
+      : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
+        IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    for (auto &I : FI.arguments())
+      I.info = classifyArgumentType(I.type);
+  }
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
+                         bool RetSmallStructInRegABI)
+      : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
+            CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
+
+  static bool isStructReturnInRegABI(const llvm::Triple &Triple,
+                                     const CodeGenOptions &Opts);
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    // This is recovered from gcc output.
+    return 1; // r1 is the dedicated stack pointer
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+};
+}
+
+CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
+  // Complex types are passed just like their elements.
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+    Ty = CTy->getElementType();
+
+  if (Ty->isVectorType())
+    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
+                                                                       : 4);
+
+  // For single-element float/vector structs, we consider the whole type
+  // to have the same alignment requirements as its single element.
+  const Type *AlignTy = nullptr;
+  if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
+    const BuiltinType *BT = EltType->getAs<BuiltinType>();
+    if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
+        (BT && BT->isFloatingPoint()))
+      AlignTy = EltType;
+  }
+
+  if (AlignTy)
+    return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
+  return CharUnits::fromQuantity(4);
+}
+
+ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
+  uint64_t Size;
+
+  // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
+  if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
+      (Size = getContext().getTypeSize(RetTy)) <= 64) {
+    // System V ABI (1995), page 3-22, specified:
+    // > A structure or union whose size is less than or equal to 8 bytes
+    // > shall be returned in r3 and r4, as if it were first stored in the
+    // > 8-byte aligned memory area and then the low addressed word were
+    // > loaded into r3 and the high-addressed word into r4.  Bits beyond
+    // > the last member of the structure or union are not defined.
+    //
+    // GCC for big-endian PPC32 inserts the pad before the first member,
+    // not "beyond the last member" of the struct.  To stay compatible
+    // with GCC, we coerce the struct to an integer of the same size.
+    // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
+    if (Size == 0)
+      return ABIArgInfo::getIgnore();
+    else {
+      llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+  }
+
+  return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+// TODO: this implementation is now likely redundant with
+// DefaultABIInfo::EmitVAArg.
+Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
+                                      QualType Ty) const {
+  if (getTarget().getTriple().isOSDarwin()) {
+    auto TI = getContext().getTypeInfoInChars(Ty);
+    TI.Align = getParamTypeAlignment(Ty);
+
+    CharUnits SlotSize = CharUnits::fromQuantity(4);
+    return emitVoidPtrVAArg(CGF, VAList, Ty,
+                            classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
+                            /*AllowHigherAlign=*/true);
+  }
+
+  const unsigned OverflowLimit = 8;
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+    // TODO: Implement this. For now ignore.
+    (void)CTy;
+    return Address::invalid(); // FIXME?
+  }
+
+  // struct __va_list_tag {
+  //   unsigned char gpr;
+  //   unsigned char fpr;
+  //   unsigned short reserved;
+  //   void *overflow_arg_area;
+  //   void *reg_save_area;
+  // };
+
+  bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
+  bool isInt = !Ty->isFloatingType();
+  bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
+
+  // All aggregates are passed indirectly?  That doesn't seem consistent
+  // with the argument-lowering code.
+  bool isIndirect = isAggregateTypeForABI(Ty);
+
+  CGBuilderTy &Builder = CGF.Builder;
+
+  // The calling convention either uses 1-2 GPRs or 1 FPR.
+  Address NumRegsAddr = Address::invalid();
+  if (isInt || IsSoftFloatABI) {
+    NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
+  } else {
+    NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
+  }
+
+  llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
+
+  // "Align" the register count when TY is i64.
+  if (isI64 || (isF64 && IsSoftFloatABI)) {
+    NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
+    NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
+  }
+
+  llvm::Value *CC =
+      Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
+
+  llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
+  llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
+  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+
+  Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
+
+  llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy;
+  if (isIndirect)
+    DirectTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
+
+  // Case 1: consume registers.
+  Address RegAddr = Address::invalid();
+  {
+    CGF.EmitBlock(UsingRegs);
+
+    Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
+    RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty,
+                      CharUnits::fromQuantity(8));
+    assert(RegAddr.getElementType() == CGF.Int8Ty);
+
+    // Floating-point registers start after the general-purpose registers.
+    if (!(isInt || IsSoftFloatABI)) {
+      RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
+                                                   CharUnits::fromQuantity(32));
+    }
+
+    // Get the address of the saved value by scaling the number of
+    // registers we've used by the number of
+    CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
+    llvm::Value *RegOffset =
+        Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
+    RegAddr = Address(
+        Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset),
+        CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
+    RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
+
+    // Increase the used-register count.
+    NumRegs =
+      Builder.CreateAdd(NumRegs,
+                        Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
+    Builder.CreateStore(NumRegs, NumRegsAddr);
+
+    CGF.EmitBranch(Cont);
+  }
+
+  // Case 2: consume space in the overflow area.
+  Address MemAddr = Address::invalid();
+  {
+    CGF.EmitBlock(UsingOverflow);
+
+    Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
+
+    // Everything in the overflow area is rounded up to a size of at least 4.
+    CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
+
+    CharUnits Size;
+    if (!isIndirect) {
+      auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
+      Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
+    } else {
+      Size = CGF.getPointerSize();
+    }
+
+    Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
+    Address OverflowArea =
+        Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty,
+                OverflowAreaAlign);
+    // Round up address of argument to alignment
+    CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
+    if (Align > OverflowAreaAlign) {
+      llvm::Value *Ptr = OverflowArea.getPointer();
+      OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
+                             OverflowArea.getElementType(), Align);
+    }
+
+    MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
+
+    // Increase the overflow area.
+    OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
+    Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
+    CGF.EmitBranch(Cont);
+  }
+
+  CGF.EmitBlock(Cont);
+
+  // Merge the cases with a phi.
+  Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
+                                "vaarg.addr");
+
+  // Load the pointer if the argument was passed indirectly.
+  if (isIndirect) {
+    Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy,
+                     getContext().getTypeAlignInChars(Ty));
+  }
+
+  return Result;
+}
+
+bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
+    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+  assert(Triple.isPPC32());
+
+  switch (Opts.getStructReturnConvention()) {
+  case CodeGenOptions::SRCK_Default:
+    break;
+  case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
+    return false;
+  case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
+    return true;
+  }
+
+  if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
+    return true;
+
+  return false;
+}
+
+bool
+PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                                                llvm::Value *Address) const {
+  return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
+                                     /*IsAIX*/ false);
+}
+
+// PowerPC-64
+
+namespace {
+
+/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
+class PPC64_SVR4_ABIInfo : public ABIInfo {
+  static const unsigned GPRBits = 64;
+  PPC64_SVR4_ABIKind Kind;
+  bool IsSoftFloatABI;
+
+public:
+  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind,
+                     bool SoftFloatABI)
+      : ABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
+
+  bool isPromotableTypeForABI(QualType Ty) const;
+  CharUnits getParamTypeAlignment(QualType Ty) const;
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+                                         uint64_t Members) const override;
+
+  // TODO: We can add more logic to computeInfo to improve performance.
+  // Example: For aggregate arguments that fit in a register, we could
+  // use getDirectInReg (as is done below for structs containing a single
+  // floating-point value) to avoid pushing them to memory on function
+  // entry.  This would require changing the logic in PPCISelLowering
+  // when lowering the parameters in the caller and args in the callee.
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    for (auto &I : FI.arguments()) {
+      // We rely on the default argument classification for the most part.
+      // One exception:  An aggregate containing a single floating-point
+      // or vector item must be passed in a register if one is available.
+      const Type *T = isSingleElementStruct(I.type, getContext());
+      if (T) {
+        const BuiltinType *BT = T->getAs<BuiltinType>();
+        if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
+            (BT && BT->isFloatingPoint())) {
+          QualType QT(T, 0);
+          I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
+          continue;
+        }
+      }
+      I.info = classifyArgumentType(I.type);
+    }
+  }
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
+
+public:
+  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind,
+                               bool SoftFloatABI)
+      : TargetCodeGenInfo(
+            std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {
+    SwiftInfo =
+        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+  }
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    // This is recovered from gcc output.
+    return 1; // r1 is the dedicated stack pointer
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+};
+
+class PPC64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  PPC64TargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    // This is recovered from gcc output.
+    return 1; // r1 is the dedicated stack pointer
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+};
+}
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 64 bits.
+bool
+PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Promotable integer types are required to be promoted by the ABI.
+  if (isPromotableIntegerTypeForABI(Ty))
+    return true;
+
+  // In addition to the usual promotable integer types, we also need to
+  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+    switch (BT->getKind()) {
+    case BuiltinType::Int:
+    case BuiltinType::UInt:
+      return true;
+    default:
+      break;
+    }
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() < 64)
+      return true;
+
+  return false;
+}
+
+/// isAlignedParamType - Determine whether a type requires 16-byte or
+/// higher alignment in the parameter area.  Always returns at least 8.
+CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
+  // Complex types are passed just like their elements.
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+    Ty = CTy->getElementType();
+
+  auto FloatUsesVector = [this](QualType Ty){
+    return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics(
+                                           Ty) == &llvm::APFloat::IEEEquad();
+  };
+
+  // Only vector types of size 16 bytes need alignment (larger types are
+  // passed via reference, smaller types are not aligned).
+  if (Ty->isVectorType()) {
+    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
+  } else if (FloatUsesVector(Ty)) {
+    // According to ABI document section 'Optional Save Areas': If extended
+    // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
+    // format are supported, map them to a single quadword, quadword aligned.
+    return CharUnits::fromQuantity(16);
+  }
+
+  // For single-element float/vector structs, we consider the whole type
+  // to have the same alignment requirements as its single element.
+  const Type *AlignAsType = nullptr;
+  const Type *EltType = isSingleElementStruct(Ty, getContext());
+  if (EltType) {
+    const BuiltinType *BT = EltType->getAs<BuiltinType>();
+    if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
+        (BT && BT->isFloatingPoint()))
+      AlignAsType = EltType;
+  }
+
+  // Likewise for ELFv2 homogeneous aggregates.
+  const Type *Base = nullptr;
+  uint64_t Members = 0;
+  if (!AlignAsType && Kind == PPC64_SVR4_ABIKind::ELFv2 &&
+      isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
+    AlignAsType = Base;
+
+  // With special case aggregates, only vector base types need alignment.
+  if (AlignAsType) {
+    bool UsesVector = AlignAsType->isVectorType() ||
+                      FloatUsesVector(QualType(AlignAsType, 0));
+    return CharUnits::fromQuantity(UsesVector ? 16 : 8);
+  }
+
+  // Otherwise, we only need alignment for any aggregate type that
+  // has an alignment requirement of >= 16 bytes.
+  if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
+    return CharUnits::fromQuantity(16);
+  }
+
+  return CharUnits::fromQuantity(8);
+}
+
+bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+  // Homogeneous aggregates for ELFv2 must have base types of float,
+  // double, long double, or 128-bit vectors.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+    if (BT->getKind() == BuiltinType::Float ||
+        BT->getKind() == BuiltinType::Double ||
+        BT->getKind() == BuiltinType::LongDouble ||
+        BT->getKind() == BuiltinType::Ibm128 ||
+        (getContext().getTargetInfo().hasFloat128Type() &&
+         (BT->getKind() == BuiltinType::Float128))) {
+      if (IsSoftFloatABI)
+        return false;
+      return true;
+    }
+  }
+  if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    if (getContext().getTypeSize(VT) == 128)
+      return true;
+  }
+  return false;
+}
+
+bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
+    const Type *Base, uint64_t Members) const {
+  // Vector and fp128 types require one register, other floating point types
+  // require one or two registers depending on their size.
+  uint32_t NumRegs =
+      ((getContext().getTargetInfo().hasFloat128Type() &&
+          Base->isFloat128Type()) ||
+        Base->isVectorType()) ? 1
+                              : (getContext().getTypeSize(Base) + 63) / 64;
+
+  // Homogeneous Aggregates may occupy at most 8 registers.
+  return Members * NumRegs <= 8;
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  if (Ty->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+
+  // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
+  // or via reference (larger than 16 bytes).
+  if (Ty->isVectorType()) {
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (Size > 128)
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+    else if (Size < 128) {
+      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+  }
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() > 128)
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+  if (isAggregateTypeForABI(Ty)) {
+    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+    uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
+    uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
+
+    // ELFv2 homogeneous aggregates are passed as array types.
+    const Type *Base = nullptr;
+    uint64_t Members = 0;
+    if (Kind == PPC64_SVR4_ABIKind::ELFv2 &&
+        isHomogeneousAggregate(Ty, Base, Members)) {
+      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+
+    // If an aggregate may end up fully in registers, we do not
+    // use the ByVal method, but pass the aggregate as array.
+    // This is usually beneficial since we avoid forcing the
+    // back-end to store the argument to memory.
+    uint64_t Bits = getContext().getTypeSize(Ty);
+    if (Bits > 0 && Bits <= 8 * GPRBits) {
+      llvm::Type *CoerceTy;
+
+      // Types up to 8 bytes are passed as integer type (which will be
+      // properly aligned in the argument save area doubleword).
+      if (Bits <= GPRBits)
+        CoerceTy =
+            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
+      // Larger types are passed as arrays, with the base type selected
+      // according to the required alignment in the save area.
+      else {
+        uint64_t RegBits = ABIAlign * 8;
+        uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
+        llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
+        CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
+      }
+
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+
+    // All other aggregates are passed ByVal.
+    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
+                                   /*ByVal=*/true,
+                                   /*Realign=*/TyAlign > ABIAlign);
+  }
+
+  return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                     : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (RetTy->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+
+  // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
+  // or via reference (larger than 16 bytes).
+  if (RetTy->isVectorType()) {
+    uint64_t Size = getContext().getTypeSize(RetTy);
+    if (Size > 128)
+      return getNaturalAlignIndirect(RetTy);
+    else if (Size < 128) {
+      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+  }
+
+  if (const auto *EIT = RetTy->getAs<BitIntType>())
+    if (EIT->getNumBits() > 128)
+      return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+
+  if (isAggregateTypeForABI(RetTy)) {
+    // ELFv2 homogeneous aggregates are returned as array types.
+    const Type *Base = nullptr;
+    uint64_t Members = 0;
+    if (Kind == PPC64_SVR4_ABIKind::ELFv2 &&
+        isHomogeneousAggregate(RetTy, Base, Members)) {
+      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+
+    // ELFv2 small aggregates are returned in up to two registers.
+    uint64_t Bits = getContext().getTypeSize(RetTy);
+    if (Kind == PPC64_SVR4_ABIKind::ELFv2 && Bits <= 2 * GPRBits) {
+      if (Bits == 0)
+        return ABIArgInfo::getIgnore();
+
+      llvm::Type *CoerceTy;
+      if (Bits > GPRBits) {
+        CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+        CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
+      } else
+        CoerceTy =
+            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
+      return ABIArgInfo::getDirect(CoerceTy);
+    }
+
+    // All other aggregates are returned indirectly.
+    return getNaturalAlignIndirect(RetTy);
+  }
+
+  return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                        : ABIArgInfo::getDirect());
+}
+
+// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
+Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                      QualType Ty) const {
+  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+  TypeInfo.Align = getParamTypeAlignment(Ty);
+
+  CharUnits SlotSize = CharUnits::fromQuantity(8);
+
+  // If we have a complex type and the base type is smaller than 8 bytes,
+  // the ABI calls for the real and imaginary parts to be right-adjusted
+  // in separate doublewords.  However, Clang expects us to produce a
+  // pointer to a structure with the two parts packed tightly.  So generate
+  // loads of the real and imaginary parts relative to the va_list pointer,
+  // and store them to a temporary structure.
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+    CharUnits EltSize = TypeInfo.Width / 2;
+    if (EltSize < SlotSize)
+      return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
+  }
+
+  // Otherwise, just use the general rule.
+  //
+  // The PPC64 ABI passes some arguments in integer registers, even to variadic
+  // functions. To allow va_list to use the simple "void*" representation,
+  // variadic calls allocate space in the argument area for the integer argument
+  // registers, and variadic functions spill their integer argument registers to
+  // this area in their prologues. When aggregates smaller than a register are
+  // passed this way, they are passed in the least significant bits of the
+  // register, which means that after spilling on big-endian targets they will
+  // be right-aligned in their argument slot. This is uncommon; for a variety of
+  // reasons, other big-endian targets don't end up right-aligning aggregate
+  // types this way, and so right-alignment only applies to fundamental types.
+  // So on PPC64, we must force the use of right-alignment even for aggregates.
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
+                          SlotSize, /*AllowHigher*/ true,
+                          /*ForceRightAdjust*/ true);
+}
+
+bool
+PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
+  CodeGen::CodeGenFunction &CGF,
+  llvm::Value *Address) const {
+  return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
+                                     /*IsAIX*/ false);
+}
+
+bool
+PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                                                llvm::Value *Address) const {
+  return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
+                                     /*IsAIX*/ false);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit) {
+  return std::make_unique<AIXTargetCodeGenInfo>(CGM.getTypes(), Is64Bit);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI) {
+  bool RetSmallStructInRegABI = PPC32TargetCodeGenInfo::isStructReturnInRegABI(
+      CGM.getTriple(), CGM.getCodeGenOpts());
+  return std::make_unique<PPC32TargetCodeGenInfo>(CGM.getTypes(), SoftFloatABI,
+                                                  RetSmallStructInRegABI);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createPPC64TargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<PPC64TargetCodeGenInfo>(CGM.getTypes());
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createPPC64_SVR4_TargetCodeGenInfo(
+    CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind, bool SoftFloatABI) {
+  return std::make_unique<PPC64_SVR4_TargetCodeGenInfo>(CGM.getTypes(), Kind,
+                                                        SoftFloatABI);
+}

diff  --git a/clang/lib/CodeGen/Targets/RISCV.cpp b/clang/lib/CodeGen/Targets/RISCV.cpp
new file mode 100644
index 0000000000000..eae2d91ba3f04
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/RISCV.cpp
@@ -0,0 +1,521 @@
+//===- RISCV.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "llvm/TargetParser/RISCVTargetParser.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// RISC-V ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RISCVABIInfo : public DefaultABIInfo {
+private:
+  // Size of the integer ('x') registers in bits.
+  unsigned XLen;
+  // Size of the floating point ('f') registers in bits. Note that the target
+  // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
+  // with soft float ABI has FLen==0).
+  unsigned FLen;
+  static const int NumArgGPRs = 8;
+  static const int NumArgFPRs = 8;
+  bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
+                                      llvm::Type *&Field1Ty,
+                                      CharUnits &Field1Off,
+                                      llvm::Type *&Field2Ty,
+                                      CharUnits &Field2Off) const;
+
+public:
+  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
+      : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
+
+  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
+  // non-virtual, but computeInfo is virtual, so we overload it.
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
+                                  int &ArgFPRsLeft) const;
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  ABIArgInfo extendType(QualType Ty) const;
+
+  bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
+                                CharUnits &Field1Off, llvm::Type *&Field2Ty,
+                                CharUnits &Field2Off, int &NeededArgGPRs,
+                                int &NeededArgFPRs) const;
+  ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
+                                               CharUnits Field1Off,
+                                               llvm::Type *Field2Ty,
+                                               CharUnits Field2Off) const;
+
+  ABIArgInfo coerceVLSVector(QualType Ty) const;
+};
+} // end anonymous namespace
+
+void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  QualType RetTy = FI.getReturnType();
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(RetTy);
+
+  // IsRetIndirect is true if classifyArgumentType indicated the value should
+  // be passed indirect, or if the type size is a scalar greater than 2*XLen
+  // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
+  // in LLVM IR, relying on the backend lowering code to rewrite the argument
+  // list and pass indirectly on RV32.
+  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
+  if (!IsRetIndirect && RetTy->isScalarType() &&
+      getContext().getTypeSize(RetTy) > (2 * XLen)) {
+    if (RetTy->isComplexType() && FLen) {
+      QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
+      IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
+    } else {
+      // This is a normal scalar > 2*XLen, such as fp128 on RV32.
+      IsRetIndirect = true;
+    }
+  }
+
+  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
+  int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
+  int NumFixedArgs = FI.getNumRequiredArgs();
+
+  int ArgNum = 0;
+  for (auto &ArgInfo : FI.arguments()) {
+    bool IsFixed = ArgNum < NumFixedArgs;
+    ArgInfo.info =
+        classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
+    ArgNum++;
+  }
+}
+
+// Returns true if the struct is a potential candidate for the floating point
+// calling convention. If this function returns true, the caller is
+// responsible for checking that if there is only a single field then that
+// field is a float.
+bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
+                                                  llvm::Type *&Field1Ty,
+                                                  CharUnits &Field1Off,
+                                                  llvm::Type *&Field2Ty,
+                                                  CharUnits &Field2Off) const {
+  bool IsInt = Ty->isIntegralOrEnumerationType();
+  bool IsFloat = Ty->isRealFloatingType();
+
+  if (IsInt || IsFloat) {
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (IsInt && Size > XLen)
+      return false;
+    // Can't be eligible if larger than the FP registers. Handling of half
+    // precision values has been specified in the ABI, so don't block those.
+    if (IsFloat && Size > FLen)
+      return false;
+    // Can't be eligible if an integer type was already found (int+int pairs
+    // are not eligible).
+    if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
+      return false;
+    if (!Field1Ty) {
+      Field1Ty = CGT.ConvertType(Ty);
+      Field1Off = CurOff;
+      return true;
+    }
+    if (!Field2Ty) {
+      Field2Ty = CGT.ConvertType(Ty);
+      Field2Off = CurOff;
+      return true;
+    }
+    return false;
+  }
+
+  if (auto CTy = Ty->getAs<ComplexType>()) {
+    if (Field1Ty)
+      return false;
+    QualType EltTy = CTy->getElementType();
+    if (getContext().getTypeSize(EltTy) > FLen)
+      return false;
+    Field1Ty = CGT.ConvertType(EltTy);
+    Field1Off = CurOff;
+    Field2Ty = Field1Ty;
+    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
+    return true;
+  }
+
+  if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
+    uint64_t ArraySize = ATy->getSize().getZExtValue();
+    QualType EltTy = ATy->getElementType();
+    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
+    for (uint64_t i = 0; i < ArraySize; ++i) {
+      bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
+                                                Field1Off, Field2Ty, Field2Off);
+      if (!Ret)
+        return false;
+      CurOff += EltSize;
+    }
+    return true;
+  }
+
+  if (const auto *RTy = Ty->getAs<RecordType>()) {
+    // Structures with either a non-trivial destructor or a non-trivial
+    // copy constructor are not eligible for the FP calling convention.
+    if (getRecordArgABI(Ty, CGT.getCXXABI()))
+      return false;
+    if (isEmptyRecord(getContext(), Ty, true))
+      return true;
+    const RecordDecl *RD = RTy->getDecl();
+    // Unions aren't eligible unless they're empty (which is caught above).
+    if (RD->isUnion())
+      return false;
+    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+    // If this is a C++ record, check the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+      for (const CXXBaseSpecifier &B : CXXRD->bases()) {
+        const auto *BDecl =
+            cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
+        CharUnits BaseOff = Layout.getBaseClassOffset(BDecl);
+        bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff,
+                                                  Field1Ty, Field1Off, Field2Ty,
+                                                  Field2Off);
+        if (!Ret)
+          return false;
+      }
+    }
+    int ZeroWidthBitFieldCount = 0;
+    for (const FieldDecl *FD : RD->fields()) {
+      uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
+      QualType QTy = FD->getType();
+      if (FD->isBitField()) {
+        unsigned BitWidth = FD->getBitWidthValue(getContext());
+        // Allow a bitfield with a type greater than XLen as long as the
+        // bitwidth is XLen or less.
+        if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
+          QTy = getContext().getIntTypeForBitwidth(XLen, false);
+        if (BitWidth == 0) {
+          ZeroWidthBitFieldCount++;
+          continue;
+        }
+      }
+
+      bool Ret = detectFPCCEligibleStructHelper(
+          QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
+          Field1Ty, Field1Off, Field2Ty, Field2Off);
+      if (!Ret)
+        return false;
+
+      // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
+      // or int+fp structs, but are ignored for a struct with an fp field and
+      // any number of zero-width bitfields.
+      if (Field2Ty && ZeroWidthBitFieldCount > 0)
+        return false;
+    }
+    return Field1Ty != nullptr;
+  }
+
+  return false;
+}
+
+// Determine if a struct is eligible for passing according to the floating
+// point calling convention (i.e., when flattened it contains a single fp
+// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
+// NeededArgGPRs are incremented appropriately.
+bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
+                                            CharUnits &Field1Off,
+                                            llvm::Type *&Field2Ty,
+                                            CharUnits &Field2Off,
+                                            int &NeededArgGPRs,
+                                            int &NeededArgFPRs) const {
+  Field1Ty = nullptr;
+  Field2Ty = nullptr;
+  NeededArgGPRs = 0;
+  NeededArgFPRs = 0;
+  bool IsCandidate = detectFPCCEligibleStructHelper(
+      Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
+  // Not really a candidate if we have a single int but no float.
+  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
+    return false;
+  if (!IsCandidate)
+    return false;
+  if (Field1Ty && Field1Ty->isFloatingPointTy())
+    NeededArgFPRs++;
+  else if (Field1Ty)
+    NeededArgGPRs++;
+  if (Field2Ty && Field2Ty->isFloatingPointTy())
+    NeededArgFPRs++;
+  else if (Field2Ty)
+    NeededArgGPRs++;
+  return true;
+}
+
+// Call getCoerceAndExpand for the two-element flattened struct described by
+// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
+// appropriate coerceToType and unpaddedCoerceToType.
+ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
+    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
+    CharUnits Field2Off) const {
+  SmallVector<llvm::Type *, 3> CoerceElts;
+  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
+  if (!Field1Off.isZero())
+    CoerceElts.push_back(llvm::ArrayType::get(
+        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
+
+  CoerceElts.push_back(Field1Ty);
+  UnpaddedCoerceElts.push_back(Field1Ty);
+
+  if (!Field2Ty) {
+    return ABIArgInfo::getCoerceAndExpand(
+        llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
+        UnpaddedCoerceElts[0]);
+  }
+
+  CharUnits Field2Align =
+      CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
+  CharUnits Field1End = Field1Off +
+      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
+  CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
+
+  CharUnits Padding = CharUnits::Zero();
+  if (Field2Off > Field2OffNoPadNoPack)
+    Padding = Field2Off - Field2OffNoPadNoPack;
+  else if (Field2Off != Field2Align && Field2Off > Field1End)
+    Padding = Field2Off - Field1End;
+
+  bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
+
+  if (!Padding.isZero())
+    CoerceElts.push_back(llvm::ArrayType::get(
+        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
+
+  CoerceElts.push_back(Field2Ty);
+  UnpaddedCoerceElts.push_back(Field2Ty);
+
+  auto CoerceToType =
+      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
+  auto UnpaddedCoerceToType =
+      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
+
+  return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
+}
+
+// Fixed-length RVV vectors are represented as scalable vectors in function
+// args/return and must be coerced from fixed vectors.
+ABIArgInfo RISCVABIInfo::coerceVLSVector(QualType Ty) const {
+  assert(Ty->isVectorType() && "expected vector type!");
+
+  const auto *VT = Ty->castAs<VectorType>();
+  assert(VT->getVectorKind() == VectorType::RVVFixedLengthDataVector &&
+         "Unexpected vector kind");
+
+  assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
+
+  const auto *BT = VT->getElementType()->castAs<BuiltinType>();
+  unsigned EltSize = getContext().getTypeSize(BT);
+  llvm::ScalableVectorType *ResType =
+        llvm::ScalableVectorType::get(CGT.ConvertType(VT->getElementType()),
+                                      llvm::RISCV::RVVBitsPerBlock / EltSize);
+  return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
+                                              int &ArgGPRsLeft,
+                                              int &ArgFPRsLeft) const {
+  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // Structures with either a non-trivial destructor or a non-trivial
+  // copy constructor are always passed indirectly.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+    if (ArgGPRsLeft)
+      ArgGPRsLeft -= 1;
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+                                           CGCXXABI::RAA_DirectInMemory);
+  }
+
+  // Ignore empty structs/unions.
+  if (isEmptyRecord(getContext(), Ty, true))
+    return ABIArgInfo::getIgnore();
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+
+  // Pass floating point values via FPRs if possible.
+  if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
+      FLen >= Size && ArgFPRsLeft) {
+    ArgFPRsLeft--;
+    return ABIArgInfo::getDirect();
+  }
+
+  // Complex types for the hard float ABI must be passed direct rather than
+  // using CoerceAndExpand.
+  if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
+    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
+    if (getContext().getTypeSize(EltTy) <= FLen) {
+      ArgFPRsLeft -= 2;
+      return ABIArgInfo::getDirect();
+    }
+  }
+
+  if (IsFixed && FLen && Ty->isStructureOrClassType()) {
+    llvm::Type *Field1Ty = nullptr;
+    llvm::Type *Field2Ty = nullptr;
+    CharUnits Field1Off = CharUnits::Zero();
+    CharUnits Field2Off = CharUnits::Zero();
+    int NeededArgGPRs = 0;
+    int NeededArgFPRs = 0;
+    bool IsCandidate =
+        detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
+                                 NeededArgGPRs, NeededArgFPRs);
+    if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
+        NeededArgFPRs <= ArgFPRsLeft) {
+      ArgGPRsLeft -= NeededArgGPRs;
+      ArgFPRsLeft -= NeededArgFPRs;
+      return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
+                                               Field2Off);
+    }
+  }
+
+  uint64_t NeededAlign = getContext().getTypeAlign(Ty);
+  // Determine the number of GPRs needed to pass the current argument
+  // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
+  // register pairs, so may consume 3 registers.
+  int NeededArgGPRs = 1;
+  if (!IsFixed && NeededAlign == 2 * XLen)
+    NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
+  else if (Size > XLen && Size <= 2 * XLen)
+    NeededArgGPRs = 2;
+
+  if (NeededArgGPRs > ArgGPRsLeft) {
+    NeededArgGPRs = ArgGPRsLeft;
+  }
+
+  ArgGPRsLeft -= NeededArgGPRs;
+
+  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    // All integral types are promoted to XLen width
+    if (Size < XLen && Ty->isIntegralOrEnumerationType()) {
+      return extendType(Ty);
+    }
+
+    if (const auto *EIT = Ty->getAs<BitIntType>()) {
+      if (EIT->getNumBits() < XLen)
+        return extendType(Ty);
+      if (EIT->getNumBits() > 128 ||
+          (!getContext().getTargetInfo().hasInt128Type() &&
+           EIT->getNumBits() > 64))
+        return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+    }
+
+    return ABIArgInfo::getDirect();
+  }
+
+  if (const VectorType *VT = Ty->getAs<VectorType>())
+    if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector)
+      return coerceVLSVector(Ty);
+
+  // Aggregates which are <= 2*XLen will be passed in registers if possible,
+  // so coerce to integers.
+  if (Size <= 2 * XLen) {
+    unsigned Alignment = getContext().getTypeAlign(Ty);
+
+    // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
+    // required, and a 2-element XLen array if only XLen alignment is required.
+    if (Size <= XLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), XLen));
+    } else if (Alignment == 2 * XLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), 2 * XLen));
+    } else {
+      return ABIArgInfo::getDirect(llvm::ArrayType::get(
+          llvm::IntegerType::get(getVMContext(), XLen), 2));
+    }
+  }
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  int ArgGPRsLeft = 2;
+  int ArgFPRsLeft = FLen ? 2 : 0;
+
+  // The rules for return and argument types are the same, so defer to
+  // classifyArgumentType.
+  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
+                              ArgFPRsLeft);
+}
+
+Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                QualType Ty) const {
+  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
+
+  // Empty records are ignored for parameter passing purposes.
+  if (isEmptyRecord(getContext(), Ty, true)) {
+    Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
+                           getVAListElementType(CGF), SlotSize);
+    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+    return Addr;
+  }
+
+  auto TInfo = getContext().getTypeInfoInChars(Ty);
+
+  // Arguments bigger than 2*Xlen bytes are passed indirectly.
+  bool IsIndirect = TInfo.Width > 2 * SlotSize;
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
+                          SlotSize, /*AllowHigherAlign=*/true);
+}
+
+ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
+  int TySize = getContext().getTypeSize(Ty);
+  // RV64 ABI requires unsigned 32 bit integers to be sign extended.
+  if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+    return ABIArgInfo::getSignExtend(Ty);
+  return ABIArgInfo::getExtend(Ty);
+}
+
+namespace {
+class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
+                         unsigned FLen)
+      : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
+    if (!FD) return;
+
+    const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
+    if (!Attr)
+      return;
+
+    const char *Kind;
+    switch (Attr->getInterrupt()) {
+    case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
+    case RISCVInterruptAttr::machine: Kind = "machine"; break;
+    }
+
+    auto *Fn = cast<llvm::Function>(GV);
+
+    Fn->addFnAttr("interrupt", Kind);
+  }
+};
+} // namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen,
+                                      unsigned FLen) {
+  return std::make_unique<RISCVTargetCodeGenInfo>(CGM.getTypes(), XLen, FLen);
+}

diff  --git a/clang/lib/CodeGen/Targets/SPIR.cpp b/clang/lib/CodeGen/Targets/SPIR.cpp
new file mode 100644
index 0000000000000..8bacba65617e4
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/SPIR.cpp
@@ -0,0 +1,218 @@
+//===- SPIR.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Base ABI and target codegen info implementation common between SPIR and
+// SPIR-V.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CommonSPIRABIInfo : public DefaultABIInfo {
+public:
+  CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
+
+private:
+  void setCCs();
+};
+
+class SPIRVABIInfo : public CommonSPIRABIInfo {
+public:
+  SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+private:
+  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
+};
+} // end anonymous namespace
+namespace {
+class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
+  CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
+      : TargetCodeGenInfo(std::move(ABIInfo)) {}
+
+  LangAS getASTAllocaAddressSpace() const override {
+    return getLangASFromTargetAS(
+        getABIInfo().getDataLayout().getAllocaAddrSpace());
+  }
+
+  unsigned getOpenCLKernelCallingConv() const override;
+  llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const override;
+};
+class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
+public:
+  SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+      : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
+  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
+};
+} // End anonymous namespace.
+
+void CommonSPIRABIInfo::setCCs() {
+  assert(getRuntimeCC() == llvm::CallingConv::C);
+  RuntimeCC = llvm::CallingConv::SPIR_FUNC;
+}
+
+ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
+  if (getContext().getLangOpts().CUDAIsDevice) {
+    // Coerce pointer arguments with default address space to CrossWorkGroup
+    // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
+    // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
+    llvm::Type *LTy = CGT.ConvertType(Ty);
+    auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
+    auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
+    auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
+    if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
+      LTy = llvm::PointerType::get(PtrTy->getContext(), GlobalAS);
+      return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
+    }
+
+    // Force copying aggregate type in kernel arguments by value when
+    // compiling CUDA targeting SPIR-V. This is required for the object
+    // copied to be valid on the device.
+    // This behavior follows the CUDA spec
+    // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
+    // and matches the NVPTX implementation.
+    if (isAggregateTypeForABI(Ty))
+      return getNaturalAlignIndirect(Ty, /* byval */ true);
+  }
+  return classifyArgumentType(Ty);
+}
+
+void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  // The logic is same as in DefaultABIInfo with an exception on the kernel
+  // arguments handling.
+  llvm::CallingConv::ID CC = FI.getCallingConvention();
+
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+  for (auto &I : FI.arguments()) {
+    if (CC == llvm::CallingConv::SPIR_KERNEL) {
+      I.info = classifyKernelArgumentType(I.type);
+    } else {
+      I.info = classifyArgumentType(I.type);
+    }
+  }
+}
+
+namespace clang {
+namespace CodeGen {
+void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
+  if (CGM.getTarget().getTriple().isSPIRV())
+    SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
+  else
+    CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
+}
+}
+}
+
+unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
+  return llvm::CallingConv::SPIR_KERNEL;
+}
+
+void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
+    const FunctionType *&FT) const {
+  // Convert HIP kernels to SPIR-V kernels.
+  if (getABIInfo().getContext().getLangOpts().HIP) {
+    FT = getABIInfo().getContext().adjustFunctionType(
+        FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
+    return;
+  }
+}
+
+/// Construct a SPIR-V target extension type for the given OpenCL image type.
+static llvm::Type *getSPIRVImageType(llvm::LLVMContext &Ctx, StringRef BaseType,
+                                     StringRef OpenCLName,
+                                     unsigned AccessQualifier) {
+  // These parameters compare to the operands of OpTypeImage (see
+  // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage
+  // for more details). The first 6 integer parameters all default to 0, and
+  // will be changed to 1 only for the image type(s) that set the parameter to
+  // one. The 7th integer parameter is the access qualifier, which is tacked on
+  // at the end.
+  SmallVector<unsigned, 7> IntParams = {0, 0, 0, 0, 0, 0};
+
+  // Choose the dimension of the image--this corresponds to the Dim enum in
+  // SPIR-V (first integer parameter of OpTypeImage).
+  if (OpenCLName.startswith("image2d"))
+    IntParams[0] = 1; // 1D
+  else if (OpenCLName.startswith("image3d"))
+    IntParams[0] = 2; // 2D
+  else if (OpenCLName == "image1d_buffer")
+    IntParams[0] = 5; // Buffer
+  else
+    assert(OpenCLName.startswith("image1d") && "Unknown image type");
+
+  // Set the other integer parameters of OpTypeImage if necessary. Note that the
+  // OpenCL image types don't provide any information for the Sampled or
+  // Image Format parameters.
+  if (OpenCLName.contains("_depth"))
+    IntParams[1] = 1;
+  if (OpenCLName.contains("_array"))
+    IntParams[2] = 1;
+  if (OpenCLName.contains("_msaa"))
+    IntParams[3] = 1;
+
+  // Access qualifier
+  IntParams.push_back(AccessQualifier);
+
+  return llvm::TargetExtType::get(Ctx, BaseType, {llvm::Type::getVoidTy(Ctx)},
+                                  IntParams);
+}
+
+llvm::Type *CommonSPIRTargetCodeGenInfo::getOpenCLType(CodeGenModule &CGM,
+                                                       const Type *Ty) const {
+  llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+  if (auto *PipeTy = dyn_cast<PipeType>(Ty))
+    return llvm::TargetExtType::get(Ctx, "spirv.Pipe", {},
+                                    {!PipeTy->isReadOnly()});
+  if (auto *BuiltinTy = dyn_cast<BuiltinType>(Ty)) {
+    enum AccessQualifier : unsigned { AQ_ro = 0, AQ_wo = 1, AQ_rw = 2 };
+    switch (BuiltinTy->getKind()) {
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
+    case BuiltinType::Id:                                                      \
+      return getSPIRVImageType(Ctx, "spirv.Image", #ImgType, AQ_##Suffix);
+#include "clang/Basic/OpenCLImageTypes.def"
+    case BuiltinType::OCLSampler:
+      return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
+    case BuiltinType::OCLEvent:
+      return llvm::TargetExtType::get(Ctx, "spirv.Event");
+    case BuiltinType::OCLClkEvent:
+      return llvm::TargetExtType::get(Ctx, "spirv.DeviceEvent");
+    case BuiltinType::OCLQueue:
+      return llvm::TargetExtType::get(Ctx, "spirv.Queue");
+    case BuiltinType::OCLReserveID:
+      return llvm::TargetExtType::get(Ctx, "spirv.ReserveId");
+#define INTEL_SUBGROUP_AVC_TYPE(Name, Id)                                      \
+    case BuiltinType::OCLIntelSubgroupAVC##Id:                                 \
+      return llvm::TargetExtType::get(Ctx, "spirv.Avc" #Id "INTEL");
+#include "clang/Basic/OpenCLExtensionTypes.def"
+    default:
+      return nullptr;
+    }
+  }
+
+  return nullptr;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<CommonSPIRTargetCodeGenInfo>(CGM.getTypes());
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSPIRVTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<SPIRVTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/Sparc.cpp b/clang/lib/CodeGen/Targets/Sparc.cpp
new file mode 100644
index 0000000000000..d0de5f2f3d184
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/Sparc.cpp
@@ -0,0 +1,409 @@
+//===- Sparc.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// SPARC v8 ABI Implementation.
+// Based on the SPARC Compliance Definition version 2.4.1.
+//
+// Ensures that complex values are passed in registers.
+//
+namespace {
+class SparcV8ABIInfo : public DefaultABIInfo {
+public:
+  SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+private:
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  void computeInfo(CGFunctionInfo &FI) const override;
+};
+} // end anonymous namespace
+
+
+ABIArgInfo
+SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
+  if (Ty->isAnyComplexType()) {
+    return ABIArgInfo::getDirect();
+  }
+  else {
+    return DefaultABIInfo::classifyReturnType(Ty);
+  }
+}
+
+void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  for (auto &Arg : FI.arguments())
+    Arg.info = classifyArgumentType(Arg.type);
+}
+
+namespace {
+class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
+
+  llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+                                   llvm::Value *Address) const override {
+    int Offset;
+    if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
+      Offset = 12;
+    else
+      Offset = 8;
+    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+                                 llvm::ConstantInt::get(CGF.Int32Ty, Offset));
+  }
+
+  llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+                                   llvm::Value *Address) const override {
+    int Offset;
+    if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
+      Offset = -12;
+    else
+      Offset = -8;
+    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+                                 llvm::ConstantInt::get(CGF.Int32Ty, Offset));
+  }
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// SPARC v9 ABI Implementation.
+// Based on the SPARC Compliance Definition version 2.4.1.
+//
+// Function arguments a mapped to a nominal "parameter array" and promoted to
+// registers depending on their type. Each argument occupies 8 or 16 bytes in
+// the array, structs larger than 16 bytes are passed indirectly.
+//
+// One case requires special care:
+//
+//   struct mixed {
+//     int i;
+//     float f;
+//   };
+//
+// When a struct mixed is passed by value, it only occupies 8 bytes in the
+// parameter array, but the int is passed in an integer register, and the float
+// is passed in a floating point register. This is represented as two arguments
+// with the LLVM IR inreg attribute:
+//
+//   declare void f(i32 inreg %i, float inreg %f)
+//
+// The code generator will only allocate 4 bytes from the parameter array for
+// the inreg arguments. All other arguments are allocated a multiple of 8
+// bytes.
+//
+namespace {
+class SparcV9ABIInfo : public ABIInfo {
+public:
+  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+private:
+  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  // Coercion type builder for structs passed in registers. The coercion type
+  // serves two purposes:
+  //
+  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
+  //    in registers.
+  // 2. Expose aligned floating point elements as first-level elements, so the
+  //    code generator knows to pass them in floating point registers.
+  //
+  // We also compute the InReg flag which indicates that the struct contains
+  // aligned 32-bit floats.
+  //
+  struct CoerceBuilder {
+    llvm::LLVMContext &Context;
+    const llvm::DataLayout &DL;
+    SmallVector<llvm::Type*, 8> Elems;
+    uint64_t Size;
+    bool InReg;
+
+    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
+      : Context(c), DL(dl), Size(0), InReg(false) {}
+
+    // Pad Elems with integers until Size is ToSize.
+    void pad(uint64_t ToSize) {
+      assert(ToSize >= Size && "Cannot remove elements");
+      if (ToSize == Size)
+        return;
+
+      // Finish the current 64-bit word.
+      uint64_t Aligned = llvm::alignTo(Size, 64);
+      if (Aligned > Size && Aligned <= ToSize) {
+        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
+        Size = Aligned;
+      }
+
+      // Add whole 64-bit words.
+      while (Size + 64 <= ToSize) {
+        Elems.push_back(llvm::Type::getInt64Ty(Context));
+        Size += 64;
+      }
+
+      // Final in-word padding.
+      if (Size < ToSize) {
+        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
+        Size = ToSize;
+      }
+    }
+
+    // Add a floating point element at Offset.
+    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
+      // Unaligned floats are treated as integers.
+      if (Offset % Bits)
+        return;
+      // The InReg flag is only required if there are any floats < 64 bits.
+      if (Bits < 64)
+        InReg = true;
+      pad(Offset);
+      Elems.push_back(Ty);
+      Size = Offset + Bits;
+    }
+
+    // Add a struct type to the coercion type, starting at Offset (in bits).
+    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
+      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
+      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
+        llvm::Type *ElemTy = StrTy->getElementType(i);
+        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
+        switch (ElemTy->getTypeID()) {
+        case llvm::Type::StructTyID:
+          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
+          break;
+        case llvm::Type::FloatTyID:
+          addFloat(ElemOffset, ElemTy, 32);
+          break;
+        case llvm::Type::DoubleTyID:
+          addFloat(ElemOffset, ElemTy, 64);
+          break;
+        case llvm::Type::FP128TyID:
+          addFloat(ElemOffset, ElemTy, 128);
+          break;
+        case llvm::Type::PointerTyID:
+          if (ElemOffset % 64 == 0) {
+            pad(ElemOffset);
+            Elems.push_back(ElemTy);
+            Size += 64;
+          }
+          break;
+        default:
+          break;
+        }
+      }
+    }
+
+    // Check if Ty is a usable substitute for the coercion type.
+    bool isUsableType(llvm::StructType *Ty) const {
+      return llvm::ArrayRef(Elems) == Ty->elements();
+    }
+
+    // Get the coercion type as a literal struct type.
+    llvm::Type *getType() const {
+      if (Elems.size() == 1)
+        return Elems.front();
+      else
+        return llvm::StructType::get(Context, Elems);
+    }
+  };
+};
+} // end anonymous namespace
+
+ABIArgInfo
+SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
+  if (Ty->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+
+  // Anything too big to fit in registers is passed with an explicit indirect
+  // pointer / sret pointer.
+  if (Size > SizeLimit)
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Integer types smaller than a register are extended.
+  if (Size < 64 && Ty->isIntegerType())
+    return ABIArgInfo::getExtend(Ty);
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() < 64)
+      return ABIArgInfo::getExtend(Ty);
+
+  // Other non-aggregates go in registers.
+  if (!isAggregateTypeForABI(Ty))
+    return ABIArgInfo::getDirect();
+
+  // If a C++ object has either a non-trivial copy constructor or a non-trivial
+  // destructor, it is passed with an explicit indirect pointer / sret pointer.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+  // This is a small aggregate type that should be passed in registers.
+  // Build a coercion type from the LLVM struct type.
+  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
+  if (!StrTy)
+    return ABIArgInfo::getDirect();
+
+  CoerceBuilder CB(getVMContext(), getDataLayout());
+  CB.addStruct(0, StrTy);
+  CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
+
+  // Try to use the original type for coercion.
+  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
+
+  if (CB.InReg)
+    return ABIArgInfo::getDirectInReg(CoerceTy);
+  else
+    return ABIArgInfo::getDirect(CoerceTy);
+}
+
+Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                  QualType Ty) const {
+  ABIArgInfo AI = classifyType(Ty, 16 * 8);
+  llvm::Type *ArgTy = CGT.ConvertType(Ty);
+  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+    AI.setCoerceToType(ArgTy);
+
+  CharUnits SlotSize = CharUnits::fromQuantity(8);
+
+  CGBuilderTy &Builder = CGF.Builder;
+  Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
+                         getVAListElementType(CGF), SlotSize);
+  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+
+  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+
+  Address ArgAddr = Address::invalid();
+  CharUnits Stride;
+  switch (AI.getKind()) {
+  case ABIArgInfo::Expand:
+  case ABIArgInfo::CoerceAndExpand:
+  case ABIArgInfo::InAlloca:
+    llvm_unreachable("Unsupported ABI kind for va_arg");
+
+  case ABIArgInfo::Extend: {
+    Stride = SlotSize;
+    CharUnits Offset = SlotSize - TypeInfo.Width;
+    ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
+    break;
+  }
+
+  case ABIArgInfo::Direct: {
+    auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
+    Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
+    ArgAddr = Addr;
+    break;
+  }
+
+  case ABIArgInfo::Indirect:
+  case ABIArgInfo::IndirectAliased:
+    Stride = SlotSize;
+    ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
+    ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
+                      TypeInfo.Align);
+    break;
+
+  case ABIArgInfo::Ignore:
+    return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align);
+  }
+
+  // Update VAList.
+  Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
+  Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
+
+  return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr");
+}
+
+void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
+  for (auto &I : FI.arguments())
+    I.info = classifyType(I.type, 16 * 8);
+}
+
+namespace {
+class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+    return 14;
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+
+  llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+                                   llvm::Value *Address) const override {
+    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+                                 llvm::ConstantInt::get(CGF.Int32Ty, 8));
+  }
+
+  llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+                                   llvm::Value *Address) const override {
+    return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+                                 llvm::ConstantInt::get(CGF.Int32Ty, -8));
+  }
+};
+} // end anonymous namespace
+
+bool
+SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                                                llvm::Value *Address) const {
+  // This is calculated from the LLVM and GCC tables and verified
+  // against gcc output.  AFAIK all ABIs use the same encoding.
+
+  CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+  llvm::IntegerType *i8 = CGF.Int8Ty;
+  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+
+  // 0-31: the 8-byte general-purpose registers
+  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
+
+  // 32-63: f0-31, the 4-byte floating-point registers
+  AssignToArrayRange(Builder, Address, Four8, 32, 63);
+
+  //   Y   = 64
+  //   PSR = 65
+  //   WIM = 66
+  //   TBR = 67
+  //   PC  = 68
+  //   NPC = 69
+  //   FSR = 70
+  //   CSR = 71
+  AssignToArrayRange(Builder, Address, Eight8, 64, 71);
+
+  // 72-87: d0-15, the 8-byte floating-point registers
+  AssignToArrayRange(Builder, Address, Eight8, 72, 87);
+
+  return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<SparcV8TargetCodeGenInfo>(CGM.getTypes());
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<SparcV9TargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/SystemZ.cpp b/clang/lib/CodeGen/Targets/SystemZ.cpp
new file mode 100644
index 0000000000000..a4f2ec9cb46c1
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/SystemZ.cpp
@@ -0,0 +1,541 @@
+//===- SystemZ.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/Builtins.h"
+#include "llvm/IR/IntrinsicsS390.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// SystemZ ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class SystemZABIInfo : public ABIInfo {
+  bool HasVector;
+  bool IsSoftFloatABI;
+
+public:
+  SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
+      : ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
+
+  bool isPromotableIntegerTypeForABI(QualType Ty) const;
+  bool isCompoundType(QualType Ty) const;
+  bool isVectorArgumentType(QualType Ty) const;
+  bool isFPArgumentType(QualType Ty) const;
+  QualType GetSingleElementType(QualType Ty) const;
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
+  ASTContext &Ctx;
+
+  // These are used for speeding up the search for a visible vector ABI.
+  mutable bool HasVisibleVecABIFlag = false;
+  mutable std::set<const Type *> SeenTypes;
+
+  // Returns true (the first time) if Ty is, or is found to include, a vector
+  // type that exposes the vector ABI. This is any vector >=16 bytes which
+  // with vector support are aligned to only 8 bytes. When IsParam is true,
+  // the type belongs to a value as passed between functions. If it is a
+  // vector <=16 bytes it will be passed in a vector register (if supported).
+  bool isVectorTypeBased(const Type *Ty, bool IsParam) const;
+
+public:
+  SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
+      : TargetCodeGenInfo(
+            std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)),
+            Ctx(CGT.getContext()) {
+    SwiftInfo =
+        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+  }
+
+  // The vector ABI is 
diff erent when the vector facility is present and when
+  // a module e.g. defines an externally visible vector variable, a flag
+  // indicating a visible vector ABI is added. Eventually this will result in
+  // a GNU attribute indicating the vector ABI of the module.  Ty is the type
+  // of a variable or function parameter that is globally visible.
+  void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M,
+                                     bool IsParam) const {
+    if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) {
+      M.getModule().addModuleFlag(llvm::Module::Warning,
+                                  "s390x-visible-vector-ABI", 1);
+      HasVisibleVecABIFlag = true;
+    }
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &M) const override {
+    if (!D)
+      return;
+
+    // Check if the vector ABI becomes visible by an externally visible
+    // variable or function.
+    if (const auto *VD = dyn_cast<VarDecl>(D)) {
+      if (VD->isExternallyVisible())
+        handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M,
+                                      /*IsParam*/false);
+    }
+    else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+      if (FD->isExternallyVisible())
+        handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M,
+                                      /*IsParam*/false);
+    }
+  }
+
+  llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
+                          CGBuilderTy &Builder,
+                          CodeGenModule &CGM) const override {
+    assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
+    // Only use TDC in constrained FP mode.
+    if (!Builder.getIsFPConstrained())
+      return nullptr;
+
+    llvm::Type *Ty = V->getType();
+    if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
+      llvm::Module &M = CGM.getModule();
+      auto &Ctx = M.getContext();
+      llvm::Function *TDCFunc =
+          llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
+      unsigned TDCBits = 0;
+      switch (BuiltinID) {
+      case Builtin::BI__builtin_isnan:
+        TDCBits = 0xf;
+        break;
+      case Builtin::BIfinite:
+      case Builtin::BI__finite:
+      case Builtin::BIfinitef:
+      case Builtin::BI__finitef:
+      case Builtin::BIfinitel:
+      case Builtin::BI__finitel:
+      case Builtin::BI__builtin_isfinite:
+        TDCBits = 0xfc0;
+        break;
+      case Builtin::BI__builtin_isinf:
+        TDCBits = 0x30;
+        break;
+      default:
+        break;
+      }
+      if (TDCBits)
+        return Builder.CreateCall(
+            TDCFunc,
+            {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
+    }
+    return nullptr;
+  }
+};
+}
+
+bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  // Promotable integer types are required to be promoted by the ABI.
+  if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
+    return true;
+
+  if (const auto *EIT = Ty->getAs<BitIntType>())
+    if (EIT->getNumBits() < 64)
+      return true;
+
+  // 32-bit values must also be promoted.
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+    switch (BT->getKind()) {
+    case BuiltinType::Int:
+    case BuiltinType::UInt:
+      return true;
+    default:
+      return false;
+    }
+  return false;
+}
+
+bool SystemZABIInfo::isCompoundType(QualType Ty) const {
+  return (Ty->isAnyComplexType() ||
+          Ty->isVectorType() ||
+          isAggregateTypeForABI(Ty));
+}
+
+bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
+  return (HasVector &&
+          Ty->isVectorType() &&
+          getContext().getTypeSize(Ty) <= 128);
+}
+
+bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
+  if (IsSoftFloatABI)
+    return false;
+
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+    switch (BT->getKind()) {
+    case BuiltinType::Float:
+    case BuiltinType::Double:
+      return true;
+    default:
+      return false;
+    }
+
+  return false;
+}
+
+QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
+  const RecordType *RT = Ty->getAs<RecordType>();
+
+  if (RT && RT->isStructureOrClassType()) {
+    const RecordDecl *RD = RT->getDecl();
+    QualType Found;
+
+    // If this is a C++ record, check the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+      if (CXXRD->hasDefinition())
+        for (const auto &I : CXXRD->bases()) {
+          QualType Base = I.getType();
+
+          // Empty bases don't affect things either way.
+          if (isEmptyRecord(getContext(), Base, true))
+            continue;
+
+          if (!Found.isNull())
+            return Ty;
+          Found = GetSingleElementType(Base);
+        }
+
+    // Check the fields.
+    for (const auto *FD : RD->fields()) {
+      // Unlike isSingleElementStruct(), empty structure and array fields
+      // do count.  So do anonymous bitfields that aren't zero-sized.
+
+      // Like isSingleElementStruct(), ignore C++20 empty data members.
+      if (FD->hasAttr<NoUniqueAddressAttr>() &&
+          isEmptyRecord(getContext(), FD->getType(), true))
+        continue;
+
+      // Unlike isSingleElementStruct(), arrays do not count.
+      // Nested structures still do though.
+      if (!Found.isNull())
+        return Ty;
+      Found = GetSingleElementType(FD->getType());
+    }
+
+    // Unlike isSingleElementStruct(), trailing padding is allowed.
+    // An 8-byte aligned struct s { float f; } is passed as a double.
+    if (!Found.isNull())
+      return Found;
+  }
+
+  return Ty;
+}
+
+Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                  QualType Ty) const {
+  // Assume that va_list type is correct; should be pointer to LLVM type:
+  // struct {
+  //   i64 __gpr;
+  //   i64 __fpr;
+  //   i8 *__overflow_arg_area;
+  //   i8 *__reg_save_area;
+  // };
+
+  // Every non-vector argument occupies 8 bytes and is passed by preference
+  // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
+  // always passed on the stack.
+  const SystemZTargetCodeGenInfo &SZCGI =
+      static_cast<const SystemZTargetCodeGenInfo &>(
+          CGT.getCGM().getTargetCodeGenInfo());
+  Ty = getContext().getCanonicalType(Ty);
+  auto TyInfo = getContext().getTypeInfoInChars(Ty);
+  llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Type *DirectTy = ArgTy;
+  ABIArgInfo AI = classifyArgumentType(Ty);
+  bool IsIndirect = AI.isIndirect();
+  bool InFPRs = false;
+  bool IsVector = false;
+  CharUnits UnpaddedSize;
+  CharUnits DirectAlign;
+  SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(),
+                                      /*IsParam*/true);
+  if (IsIndirect) {
+    DirectTy = llvm::PointerType::getUnqual(DirectTy);
+    UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
+  } else {
+    if (AI.getCoerceToType())
+      ArgTy = AI.getCoerceToType();
+    InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
+    IsVector = ArgTy->isVectorTy();
+    UnpaddedSize = TyInfo.Width;
+    DirectAlign = TyInfo.Align;
+  }
+  CharUnits PaddedSize = CharUnits::fromQuantity(8);
+  if (IsVector && UnpaddedSize > PaddedSize)
+    PaddedSize = CharUnits::fromQuantity(16);
+  assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
+
+  CharUnits Padding = (PaddedSize - UnpaddedSize);
+
+  llvm::Type *IndexTy = CGF.Int64Ty;
+  llvm::Value *PaddedSizeV =
+    llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
+
+  if (IsVector) {
+    // Work out the address of a vector argument on the stack.
+    // Vector arguments are always passed in the high bits of a
+    // single (8 byte) or double (16 byte) stack slot.
+    Address OverflowArgAreaPtr =
+        CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
+    Address OverflowArgArea =
+        Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
+                CGF.Int8Ty, TyInfo.Align);
+    Address MemAddr =
+        CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
+
+    // Update overflow_arg_area_ptr pointer
+    llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
+        OverflowArgArea.getElementType(), OverflowArgArea.getPointer(),
+        PaddedSizeV, "overflow_arg_area");
+    CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+
+    return MemAddr;
+  }
+
+  assert(PaddedSize.getQuantity() == 8);
+
+  unsigned MaxRegs, RegCountField, RegSaveIndex;
+  CharUnits RegPadding;
+  if (InFPRs) {
+    MaxRegs = 4; // Maximum of 4 FPR arguments
+    RegCountField = 1; // __fpr
+    RegSaveIndex = 16; // save offset for f0
+    RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
+  } else {
+    MaxRegs = 5; // Maximum of 5 GPR arguments
+    RegCountField = 0; // __gpr
+    RegSaveIndex = 2; // save offset for r2
+    RegPadding = Padding; // values are passed in the low bits of a GPR
+  }
+
+  Address RegCountPtr =
+      CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
+  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
+  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
+  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
+                                                 "fits_in_regs");
+
+  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+  // Emit code to load the value if it was passed in registers.
+  CGF.EmitBlock(InRegBlock);
+
+  // Work out the address of an argument register.
+  llvm::Value *ScaledRegCount =
+    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
+  llvm::Value *RegBase =
+    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
+                                      + RegPadding.getQuantity());
+  llvm::Value *RegOffset =
+    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
+  Address RegSaveAreaPtr =
+      CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
+  llvm::Value *RegSaveArea =
+      CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
+  Address RawRegAddr(
+      CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
+      CGF.Int8Ty, PaddedSize);
+  Address RegAddr =
+      CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
+
+  // Update the register count
+  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
+  llvm::Value *NewRegCount =
+    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
+  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
+  CGF.EmitBranch(ContBlock);
+
+  // Emit code to load the value if it was passed in memory.
+  CGF.EmitBlock(InMemBlock);
+
+  // Work out the address of a stack argument.
+  Address OverflowArgAreaPtr =
+      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
+  Address OverflowArgArea =
+      Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
+              CGF.Int8Ty, PaddedSize);
+  Address RawMemAddr =
+      CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
+  Address MemAddr =
+    CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
+
+  // Update overflow_arg_area_ptr pointer
+  llvm::Value *NewOverflowArgArea =
+    CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
+                          OverflowArgArea.getPointer(), PaddedSizeV,
+                          "overflow_arg_area");
+  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+  CGF.EmitBranch(ContBlock);
+
+  // Return the appropriate result.
+  CGF.EmitBlock(ContBlock);
+  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
+                                 "va_arg.addr");
+
+  if (IsIndirect)
+    ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
+                      TyInfo.Align);
+
+  return ResAddr;
+}
+
+ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+  if (isVectorArgumentType(RetTy))
+    return ABIArgInfo::getDirect();
+  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
+    return getNaturalAlignIndirect(RetTy);
+  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                               : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
+  // Handle the generic C++ ABI.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+  // Integers and enums are extended to full register width.
+  if (isPromotableIntegerTypeForABI(Ty))
+    return ABIArgInfo::getExtend(Ty);
+
+  // Handle vector types and vector-like structure types.  Note that
+  // as opposed to float-like structure types, we do not allow any
+  // padding for vector-like structures, so verify the sizes match.
+  uint64_t Size = getContext().getTypeSize(Ty);
+  QualType SingleElementTy = GetSingleElementType(Ty);
+  if (isVectorArgumentType(SingleElementTy) &&
+      getContext().getTypeSize(SingleElementTy) == Size)
+    return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
+
+  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
+  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+  // Handle small structures.
+  if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    // Structures with flexible arrays have variable length, so really
+    // fail the size test above.
+    const RecordDecl *RD = RT->getDecl();
+    if (RD->hasFlexibleArrayMember())
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+    // The structure is passed as an unextended integer, a float, or a double.
+    llvm::Type *PassTy;
+    if (isFPArgumentType(SingleElementTy)) {
+      assert(Size == 32 || Size == 64);
+      if (Size == 32)
+        PassTy = llvm::Type::getFloatTy(getVMContext());
+      else
+        PassTy = llvm::Type::getDoubleTy(getVMContext());
+    } else
+      PassTy = llvm::IntegerType::get(getVMContext(), Size);
+    return ABIArgInfo::getDirect(PassTy);
+  }
+
+  // Non-structure compounds are passed indirectly.
+  if (isCompoundType(Ty))
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+  return ABIArgInfo::getDirect(nullptr);
+}
+
+void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  const SystemZTargetCodeGenInfo &SZCGI =
+      static_cast<const SystemZTargetCodeGenInfo &>(
+          CGT.getCGM().getTargetCodeGenInfo());
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  unsigned Idx = 0;
+  for (auto &I : FI.arguments()) {
+    I.info = classifyArgumentType(I.type);
+    if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs())
+      // Check if a vararg vector argument is passed, in which case the
+      // vector ABI becomes visible as the va_list could be passed on to
+      // other functions.
+      SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(),
+                                          /*IsParam*/true);
+  }
+}
+
+bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
+                                                 bool IsParam) const {
+  if (!SeenTypes.insert(Ty).second)
+    return false;
+
+  if (IsParam) {
+    // A narrow (<16 bytes) vector will as a parameter also expose the ABI as
+    // it will be passed in a vector register. A wide (>16 bytes) vector will
+    // be passed via "hidden" pointer where any extra alignment is not
+    // required (per GCC).
+    const Type *SingleEltTy = getABIInfo<SystemZABIInfo>()
+                                  .GetSingleElementType(QualType(Ty, 0))
+                                  .getTypePtr();
+    bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() &&
+      Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty);
+    if (Ty->isVectorType() || SingleVecEltStruct)
+      return Ctx.getTypeSize(Ty) / 8 <= 16;
+  }
+
+  // Assume pointers are dereferenced.
+  while (Ty->isPointerType() || Ty->isArrayType())
+    Ty = Ty->getPointeeOrArrayElementType();
+
+  // Vectors >= 16 bytes expose the ABI through alignment requirements.
+  if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16)
+      return true;
+
+  if (const auto *RecordTy = Ty->getAs<RecordType>()) {
+    const RecordDecl *RD = RecordTy->getDecl();
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+      if (CXXRD->hasDefinition())
+        for (const auto &I : CXXRD->bases())
+          if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false))
+            return true;
+    for (const auto *FD : RD->fields())
+      if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false))
+        return true;
+  }
+
+  if (const auto *FT = Ty->getAs<FunctionType>())
+    if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true))
+      return true;
+  if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>())
+    for (const auto &ParamType : Proto->getParamTypes())
+      if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true))
+        return true;
+
+  return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
+                                        bool SoftFloatABI) {
+  return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
+                                                    SoftFloatABI);
+}

diff  --git a/clang/lib/CodeGen/Targets/TCE.cpp b/clang/lib/CodeGen/Targets/TCE.cpp
new file mode 100644
index 0000000000000..d7178b4b8a949
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/TCE.cpp
@@ -0,0 +1,82 @@
+//===- TCE.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
+// Currently subclassed only to implement custom OpenCL C function attribute
+// handling.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class TCETargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  TCETargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &M) const override;
+};
+
+void TCETargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+  if (GV->isDeclaration())
+    return;
+  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+  if (!FD) return;
+
+  llvm::Function *F = cast<llvm::Function>(GV);
+
+  if (M.getLangOpts().OpenCL) {
+    if (FD->hasAttr<OpenCLKernelAttr>()) {
+      // OpenCL C Kernel functions are not subject to inlining
+      F->addFnAttr(llvm::Attribute::NoInline);
+      const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
+      if (Attr) {
+        // Convert the reqd_work_group_size() attributes to metadata.
+        llvm::LLVMContext &Context = F->getContext();
+        llvm::NamedMDNode *OpenCLMetadata =
+            M.getModule().getOrInsertNamedMetadata(
+                "opencl.kernel_wg_size_info");
+
+        SmallVector<llvm::Metadata *, 5> Operands;
+        Operands.push_back(llvm::ConstantAsMetadata::get(F));
+
+        Operands.push_back(
+            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+                M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
+        Operands.push_back(
+            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+                M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
+        Operands.push_back(
+            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+                M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
+
+        // Add a boolean constant operand for "required" (true) or "hint"
+        // (false) for implementing the work_group_size_hint attr later.
+        // Currently always true as the hint is not yet implemented.
+        Operands.push_back(
+            llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
+        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
+      }
+    }
+  }
+}
+
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createTCETargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<TCETargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/VE.cpp b/clang/lib/CodeGen/Targets/VE.cpp
new file mode 100644
index 0000000000000..a7acc249cc2bf
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/VE.cpp
@@ -0,0 +1,71 @@
+//===- VE.cpp -------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// VE ABI Implementation.
+//
+namespace {
+class VEABIInfo : public DefaultABIInfo {
+public:
+  VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+private:
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy) const;
+  void computeInfo(CGFunctionInfo &FI) const override;
+};
+} // end anonymous namespace
+
+ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
+  if (Ty->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+  uint64_t Size = getContext().getTypeSize(Ty);
+  if (Size < 64 && Ty->isIntegerType())
+    return ABIArgInfo::getExtend(Ty);
+  return DefaultABIInfo::classifyReturnType(Ty);
+}
+
+ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
+  if (Ty->isAnyComplexType())
+    return ABIArgInfo::getDirect();
+  uint64_t Size = getContext().getTypeSize(Ty);
+  if (Size < 64 && Ty->isIntegerType())
+    return ABIArgInfo::getExtend(Ty);
+  return DefaultABIInfo::classifyArgumentType(Ty);
+}
+
+void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  for (auto &Arg : FI.arguments())
+    Arg.info = classifyArgumentType(Arg.type);
+}
+
+namespace {
+class VETargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  VETargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
+  // VE ABI requires the arguments of variadic and prototype-less functions
+  // are passed in both registers and memory.
+  bool isNoProtoCallVariadic(const CallArgList &args,
+                             const FunctionNoProtoType *fnType) const override {
+    return true;
+  }
+};
+} // end anonymous namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createVETargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<VETargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/lib/CodeGen/Targets/WebAssembly.cpp b/clang/lib/CodeGen/Targets/WebAssembly.cpp
new file mode 100644
index 0000000000000..bd332228ce5bb
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/WebAssembly.cpp
@@ -0,0 +1,173 @@
+//===- WebAssembly.cpp ----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// WebAssembly ABI Implementation
+//
+// This is a very simple ABI that relies a lot on DefaultABIInfo.
+//===----------------------------------------------------------------------===//
+
+class WebAssemblyABIInfo final : public ABIInfo {
+  DefaultABIInfo defaultInfo;
+  WebAssemblyABIKind Kind;
+
+public:
+  explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT,
+                              WebAssemblyABIKind Kind)
+      : ABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
+
+private:
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
+  // non-virtual, but computeInfo and EmitVAArg are virtual, so we
+  // overload them.
+  void computeInfo(CGFunctionInfo &FI) const override {
+    if (!getCXXABI().classifyReturnType(FI))
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+    for (auto &Arg : FI.arguments())
+      Arg.info = classifyArgumentType(Arg.type);
+  }
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
+public:
+  explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+                                        WebAssemblyABIKind K)
+      : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {
+    SwiftInfo =
+        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+    if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+      if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
+        llvm::Function *Fn = cast<llvm::Function>(GV);
+        llvm::AttrBuilder B(GV->getContext());
+        B.addAttribute("wasm-import-module", Attr->getImportModule());
+        Fn->addFnAttrs(B);
+      }
+      if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
+        llvm::Function *Fn = cast<llvm::Function>(GV);
+        llvm::AttrBuilder B(GV->getContext());
+        B.addAttribute("wasm-import-name", Attr->getImportName());
+        Fn->addFnAttrs(B);
+      }
+      if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
+        llvm::Function *Fn = cast<llvm::Function>(GV);
+        llvm::AttrBuilder B(GV->getContext());
+        B.addAttribute("wasm-export-name", Attr->getExportName());
+        Fn->addFnAttrs(B);
+      }
+    }
+
+    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+      llvm::Function *Fn = cast<llvm::Function>(GV);
+      if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
+        Fn->addFnAttr("no-prototype");
+    }
+  }
+
+  /// Return the WebAssembly externref reference type.
+  virtual llvm::Type *getWasmExternrefReferenceType() const override {
+    return llvm::Type::getWasm_ExternrefTy(getABIInfo().getVMContext());
+  }
+  /// Return the WebAssembly funcref reference type.
+  virtual llvm::Type *getWasmFuncrefReferenceType() const override {
+    return llvm::Type::getWasm_FuncrefTy(getABIInfo().getVMContext());
+  }
+};
+
+/// Classify argument of given type \p Ty.
+ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // passed by value.
+    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+    // Ignore empty structs/unions.
+    if (isEmptyRecord(getContext(), Ty, true))
+      return ABIArgInfo::getIgnore();
+    // Lower single-element structs to just pass a regular value. TODO: We
+    // could do reasonable-size multiple-element structs too, using getExpand(),
+    // though watch out for things like bitfields.
+    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+    // For the experimental multivalue ABI, fully expand all other aggregates
+    if (Kind == WebAssemblyABIKind::ExperimentalMV) {
+      const RecordType *RT = Ty->getAs<RecordType>();
+      assert(RT);
+      bool HasBitField = false;
+      for (auto *Field : RT->getDecl()->fields()) {
+        if (Field->isBitField()) {
+          HasBitField = true;
+          break;
+        }
+      }
+      if (!HasBitField)
+        return ABIArgInfo::getExpand();
+    }
+  }
+
+  // Otherwise just do the default thing.
+  return defaultInfo.classifyArgumentType(Ty);
+}
+
+ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
+  if (isAggregateTypeForABI(RetTy)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // returned by value.
+    if (!getRecordArgABI(RetTy, getCXXABI())) {
+      // Ignore empty structs/unions.
+      if (isEmptyRecord(getContext(), RetTy, true))
+        return ABIArgInfo::getIgnore();
+      // Lower single-element structs to just return a regular value. TODO: We
+      // could do reasonable-size multiple-element structs too, using
+      // ABIArgInfo::getDirect().
+      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+      // For the experimental multivalue ABI, return all other aggregates
+      if (Kind == WebAssemblyABIKind::ExperimentalMV)
+        return ABIArgInfo::getDirect();
+    }
+  }
+
+  // Otherwise just do the default thing.
+  return defaultInfo.classifyReturnType(RetTy);
+}
+
+Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                      QualType Ty) const {
+  bool IsIndirect = isAggregateTypeForABI(Ty) &&
+                    !isEmptyRecord(getContext(), Ty, true) &&
+                    !isSingleElementStruct(Ty, getContext());
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+                          getContext().getTypeInfoInChars(Ty),
+                          CharUnits::fromQuantity(4),
+                          /*AllowHigherAlign=*/true);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM,
+                                            WebAssemblyABIKind K) {
+  return std::make_unique<WebAssemblyTargetCodeGenInfo>(CGM.getTypes(), K);
+}

diff  --git a/clang/lib/CodeGen/Targets/X86.cpp b/clang/lib/CodeGen/Targets/X86.cpp
new file mode 100644
index 0000000000000..d08e7cef5bce4
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/X86.cpp
@@ -0,0 +1,3405 @@
+//===- X86.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+#include "llvm/ADT/SmallBitVector.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+namespace {
+
+/// IsX86_MMXType - Return true if this is an MMX type.
+bool IsX86_MMXType(llvm::Type *IRType) {
+  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
+  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
+    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
+    IRType->getScalarSizeInBits() != 64;
+}
+
+static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+                                          StringRef Constraint,
+                                          llvm::Type* Ty) {
+  bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
+                     .Cases("y", "&y", "^Ym", true)
+                     .Default(false);
+  if (IsMMXCons && Ty->isVectorTy()) {
+    if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
+        64) {
+      // Invalid MMX constraint
+      return nullptr;
+    }
+
+    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
+  }
+
+  // No operation needed
+  return Ty;
+}
+
+/// Returns true if this type can be passed in SSE registers with the
+/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+    if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
+      if (BT->getKind() == BuiltinType::LongDouble) {
+        if (&Context.getTargetInfo().getLongDoubleFormat() ==
+            &llvm::APFloat::x87DoubleExtended())
+          return false;
+      }
+      return true;
+    }
+  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
+    // registers specially.
+    unsigned VecSize = Context.getTypeSize(VT);
+    if (VecSize == 128 || VecSize == 256 || VecSize == 512)
+      return true;
+  }
+  return false;
+}
+
+/// Returns true if this aggregate is small enough to be passed in SSE registers
+/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
+  return NumMembers <= 4;
+}
+
+/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
+static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
+  auto AI = ABIArgInfo::getDirect(T);
+  AI.setInReg(true);
+  AI.setCanBeFlattened(false);
+  return AI;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-32 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+/// Similar to llvm::CCState, but for Clang.
+struct CCState {
+  CCState(CGFunctionInfo &FI)
+      : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
+
+  llvm::SmallBitVector IsPreassigned;
+  unsigned CC = CallingConv::CC_C;
+  unsigned FreeRegs = 0;
+  unsigned FreeSSERegs = 0;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+  enum Class {
+    Integer,
+    Float
+  };
+
+  static const unsigned MinABIStackAlignInBytes = 4;
+
+  bool IsDarwinVectorABI;
+  bool IsRetSmallStructInRegABI;
+  bool IsWin32StructABI;
+  bool IsSoftFloatABI;
+  bool IsMCUABI;
+  bool IsLinuxABI;
+  unsigned DefaultNumRegisterParameters;
+
+  static bool isRegisterSize(unsigned Size) {
+    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+  }
+
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+    // FIXME: Assumes vectorcall is in use.
+    return isX86VectorTypeForVectorCall(getContext(), Ty);
+  }
+
+  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+                                         uint64_t NumMembers) const override {
+    // FIXME: Assumes vectorcall is in use.
+    return isX86VectorCallAggregateSmallEnough(NumMembers);
+  }
+
+  bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
+
+  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+  /// such that the argument will be passed in memory.
+  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+
+  ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
+
+  /// Return the alignment to use for the given type on the stack.
+  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
+
+  Class classify(QualType Ty) const;
+  ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
+  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
+
+  /// Updates the number of available free registers, returns
+  /// true if any registers were allocated.
+  bool updateFreeRegs(QualType Ty, CCState &State) const;
+
+  bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
+                                bool &NeedsPadding) const;
+  bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
+
+  bool canExpandIndirectArgument(QualType Ty) const;
+
+  /// Rewrite the function info so that all memory arguments use
+  /// inalloca.
+  void rewriteWithInAlloca(CGFunctionInfo &FI) const;
+
+  void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+                           CharUnits &StackOffset, ABIArgInfo &Info,
+                           QualType Type) const;
+  void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
+
+public:
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
+                bool RetSmallStructInRegABI, bool Win32StructABI,
+                unsigned NumRegisterParameters, bool SoftFloatABI)
+      : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
+        IsRetSmallStructInRegABI(RetSmallStructInRegABI),
+        IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
+        IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
+        IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
+                   CGT.getTarget().getTriple().isOSCygMing()),
+        DefaultNumRegisterParameters(NumRegisterParameters) {}
+};
+
+class X86_32SwiftABIInfo : public SwiftABIInfo {
+public:
+  explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
+      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
+
+  bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
+                            bool AsReturnValue) const override {
+    // LLVM's x86-32 lowering currently only assigns up to three
+    // integer registers and three fp registers.  Oddly, it'll use up to
+    // four vector registers for vectors, but those can overlap with the
+    // scalar registers.
+    return occupiesMoreThan(ComponentTys, /*total=*/3);
+  }
+};
+
+class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
+                          bool RetSmallStructInRegABI, bool Win32StructABI,
+                          unsigned NumRegisterParameters, bool SoftFloatABI)
+      : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
+            CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+            NumRegisterParameters, SoftFloatABI)) {
+    SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
+  }
+
+  static bool isStructReturnInRegABI(
+      const llvm::Triple &Triple, const CodeGenOptions &Opts);
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override;
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+    // Darwin uses 
diff erent dwarf register numbers for EH.
+    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
+    return 4;
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override;
+
+  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+                                  StringRef Constraint,
+                                  llvm::Type* Ty) const override {
+    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+  }
+
+  void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
+                                std::string &Constraints,
+                                std::vector<llvm::Type *> &ResultRegTypes,
+                                std::vector<llvm::Type *> &ResultTruncRegTypes,
+                                std::vector<LValue> &ResultRegDests,
+                                std::string &AsmString,
+                                unsigned NumOutputs) const override;
+
+  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+    return "movl\t%ebp, %ebp"
+           "\t\t// marker for objc_retainAutoreleaseReturnValue";
+  }
+};
+
+}
+
+/// Rewrite input constraint references after adding some output constraints.
+/// In the case where there is one output and one input and we add one output,
+/// we need to replace all operand references greater than or equal to 1:
+///     mov $0, $1
+///     mov eax, $1
+/// The result will be:
+///     mov $0, $2
+///     mov eax, $2
+static void rewriteInputConstraintReferences(unsigned FirstIn,
+                                             unsigned NumNewOuts,
+                                             std::string &AsmString) {
+  std::string Buf;
+  llvm::raw_string_ostream OS(Buf);
+  size_t Pos = 0;
+  while (Pos < AsmString.size()) {
+    size_t DollarStart = AsmString.find('$', Pos);
+    if (DollarStart == std::string::npos)
+      DollarStart = AsmString.size();
+    size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
+    if (DollarEnd == std::string::npos)
+      DollarEnd = AsmString.size();
+    OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
+    Pos = DollarEnd;
+    size_t NumDollars = DollarEnd - DollarStart;
+    if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
+      // We have an operand reference.
+      size_t DigitStart = Pos;
+      if (AsmString[DigitStart] == '{') {
+        OS << '{';
+        ++DigitStart;
+      }
+      size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
+      if (DigitEnd == std::string::npos)
+        DigitEnd = AsmString.size();
+      StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
+      unsigned OperandIndex;
+      if (!OperandStr.getAsInteger(10, OperandIndex)) {
+        if (OperandIndex >= FirstIn)
+          OperandIndex += NumNewOuts;
+        OS << OperandIndex;
+      } else {
+        OS << OperandStr;
+      }
+      Pos = DigitEnd;
+    }
+  }
+  AsmString = std::move(OS.str());
+}
+
+/// Add output constraints for EAX:EDX because they are return registers.
+void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
+    CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
+    std::vector<llvm::Type *> &ResultRegTypes,
+    std::vector<llvm::Type *> &ResultTruncRegTypes,
+    std::vector<LValue> &ResultRegDests, std::string &AsmString,
+    unsigned NumOutputs) const {
+  uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
+
+  // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
+  // larger.
+  if (!Constraints.empty())
+    Constraints += ',';
+  if (RetWidth <= 32) {
+    Constraints += "={eax}";
+    ResultRegTypes.push_back(CGF.Int32Ty);
+  } else {
+    // Use the 'A' constraint for EAX:EDX.
+    Constraints += "=A";
+    ResultRegTypes.push_back(CGF.Int64Ty);
+  }
+
+  // Truncate EAX or EAX:EDX to an integer of the appropriate size.
+  llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
+  ResultTruncRegTypes.push_back(CoerceTy);
+
+  // Coerce the integer by bitcasting the return slot pointer.
+  ReturnSlot.setAddress(
+      CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy));
+  ResultRegDests.push_back(ReturnSlot);
+
+  rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
+}
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// returned in a register (for the Darwin and MCU ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+                                               ASTContext &Context) const {
+  uint64_t Size = Context.getTypeSize(Ty);
+
+  // For i386, type must be register sized.
+  // For the MCU ABI, it only needs to be <= 8-byte
+  if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
+   return false;
+
+  if (Ty->isVectorType()) {
+    // 64- and 128- bit vectors inside structures are not returned in
+    // registers.
+    if (Size == 64 || Size == 128)
+      return false;
+
+    return true;
+  }
+
+  // If this is a builtin, pointer, enum, complex type, member pointer, or
+  // member function pointer it is ok.
+  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
+      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
+      Ty->isBlockPointerType() || Ty->isMemberPointerType())
+    return true;
+
+  // Arrays are treated like records.
+  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+    return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+  // Otherwise, it must be a record type.
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (!RT) return false;
+
+  // FIXME: Traverse bases here too.
+
+  // Structure types are passed in register if all fields would be
+  // passed in a register.
+  for (const auto *FD : RT->getDecl()->fields()) {
+    // Empty fields are ignored.
+    if (isEmptyField(Context, FD, true))
+      continue;
+
+    // Check fields recursively.
+    if (!shouldReturnTypeInRegister(FD->getType(), Context))
+      return false;
+  }
+  return true;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+  // Treat complex types as the element type.
+  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+    Ty = CTy->getElementType();
+
+  // Check for a type which we know has a simple scalar argument-passing
+  // convention without any padding.  (We're specifically looking for 32
+  // and 64-bit integer and integer-equivalents, float, and double.)
+  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
+      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
+    return false;
+
+  uint64_t Size = Context.getTypeSize(Ty);
+  return Size == 32 || Size == 64;
+}
+
+static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
+                          uint64_t &Size) {
+  for (const auto *FD : RD->fields()) {
+    // Scalar arguments on the stack get 4 byte alignment on x86. If the
+    // argument is smaller than 32-bits, expanding the struct will create
+    // alignment padding.
+    if (!is32Or64BitBasicType(FD->getType(), Context))
+      return false;
+
+    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+    // how to expand them yet, and the predicate for telling if a bitfield still
+    // counts as "basic" is more complicated than what we were doing previously.
+    if (FD->isBitField())
+      return false;
+
+    Size += Context.getTypeSize(FD->getType());
+  }
+  return true;
+}
+
+static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
+                                 uint64_t &Size) {
+  // Don't do this if there are any non-empty bases.
+  for (const CXXBaseSpecifier &Base : RD->bases()) {
+    if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
+                              Size))
+      return false;
+  }
+  if (!addFieldSizes(Context, RD, Size))
+    return false;
+  return true;
+}
+
+/// Test whether an argument type which is to be passed indirectly (on the
+/// stack) would have the equivalent layout if it was expanded into separate
+/// arguments. If so, we prefer to do the latter to avoid inhibiting
+/// optimizations.
+bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
+  // We can only expand structure types.
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (!RT)
+    return false;
+  const RecordDecl *RD = RT->getDecl();
+  uint64_t Size = 0;
+  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+    if (!IsWin32StructABI) {
+      // On non-Windows, we have to conservatively match our old bitcode
+      // prototypes in order to be ABI-compatible at the bitcode level.
+      if (!CXXRD->isCLike())
+        return false;
+    } else {
+      // Don't do this for dynamic classes.
+      if (CXXRD->isDynamicClass())
+        return false;
+    }
+    if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
+      return false;
+  } else {
+    if (!addFieldSizes(getContext(), RD, Size))
+      return false;
+  }
+
+  // We can do this if there was no alignment padding.
+  return Size == getContext().getTypeSize(Ty);
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
+  // If the return value is indirect, then the hidden argument is consuming one
+  // integer register.
+  if (State.FreeRegs) {
+    --State.FreeRegs;
+    if (!IsMCUABI)
+      return getNaturalAlignIndirectInReg(RetTy);
+  }
+  return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
+                                             CCState &State) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  const Type *Base = nullptr;
+  uint64_t NumElts = 0;
+  if ((State.CC == llvm::CallingConv::X86_VectorCall ||
+       State.CC == llvm::CallingConv::X86_RegCall) &&
+      isHomogeneousAggregate(RetTy, Base, NumElts)) {
+    // The LLVM struct type for such an aggregate should lower properly.
+    return ABIArgInfo::getDirect();
+  }
+
+  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+    // On Darwin, some vectors are returned in registers.
+    if (IsDarwinVectorABI) {
+      uint64_t Size = getContext().getTypeSize(RetTy);
+
+      // 128-bit vectors are a special case; they are returned in
+      // registers and we need to make sure to pick a type the LLVM
+      // backend will like.
+      if (Size == 128)
+        return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+            llvm::Type::getInt64Ty(getVMContext()), 2));
+
+      // Always return in register if it fits in a general purpose
+      // register, or if it is 64 bits and has a single element.
+      if ((Size == 8 || Size == 16 || Size == 32) ||
+          (Size == 64 && VT->getNumElements() == 1))
+        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+                                                            Size));
+
+      return getIndirectReturnResult(RetTy, State);
+    }
+
+    return ABIArgInfo::getDirect();
+  }
+
+  if (isAggregateTypeForABI(RetTy)) {
+    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+      // Structures with flexible arrays are always indirect.
+      if (RT->getDecl()->hasFlexibleArrayMember())
+        return getIndirectReturnResult(RetTy, State);
+    }
+
+    // If specified, structs and unions are always indirect.
+    if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
+      return getIndirectReturnResult(RetTy, State);
+
+    // Ignore empty structs/unions.
+    if (isEmptyRecord(getContext(), RetTy, true))
+      return ABIArgInfo::getIgnore();
+
+    // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
+    if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
+      QualType ET = getContext().getCanonicalType(CT->getElementType());
+      if (ET->isFloat16Type())
+        return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+            llvm::Type::getHalfTy(getVMContext()), 2));
+    }
+
+    // Small structures which are register sized are generally returned
+    // in a register.
+    if (shouldReturnTypeInRegister(RetTy, getContext())) {
+      uint64_t Size = getContext().getTypeSize(RetTy);
+
+      // As a special-case, if the struct is a "single-element" struct, and
+      // the field is of type "float" or "double", return it in a
+      // floating-point register. (MSVC does not apply this special case.)
+      // We apply a similar transformation for pointer types to improve the
+      // quality of the generated IR.
+      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
+            || SeltTy->hasPointerRepresentation())
+          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+      // FIXME: We should be able to narrow this integer in cases with dead
+      // padding.
+      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
+    }
+
+    return getIndirectReturnResult(RetTy, State);
+  }
+
+  // Treat an enum type as its underlying type.
+  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+    RetTy = EnumTy->getDecl()->getIntegerType();
+
+  if (const auto *EIT = RetTy->getAs<BitIntType>())
+    if (EIT->getNumBits() > 64)
+      return getIndirectReturnResult(RetTy, State);
+
+  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+                                               : ABIArgInfo::getDirect());
+}
+
+unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
+                                                 unsigned Align) const {
+  // Otherwise, if the alignment is less than or equal to the minimum ABI
+  // alignment, just use the default; the backend will handle this.
+  if (Align <= MinABIStackAlignInBytes)
+    return 0; // Use default alignment.
+
+  if (IsLinuxABI) {
+    // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
+    // want to spend any effort dealing with the ramifications of ABI breaks.
+    //
+    // If the vector type is __m128/__m256/__m512, return the default alignment.
+    if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
+      return Align;
+  }
+  // On non-Darwin, the stack type alignment is always 4.
+  if (!IsDarwinVectorABI) {
+    // Set explicit alignment, since we may need to realign the top.
+    return MinABIStackAlignInBytes;
+  }
+
+  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
+  if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
+                      isRecordWithSIMDVectorType(getContext(), Ty)))
+    return 16;
+
+  return MinABIStackAlignInBytes;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+                                            CCState &State) const {
+  if (!ByVal) {
+    if (State.FreeRegs) {
+      --State.FreeRegs; // Non-byval indirects just use one pointer.
+      if (!IsMCUABI)
+        return getNaturalAlignIndirectInReg(Ty);
+    }
+    return getNaturalAlignIndirect(Ty, false);
+  }
+
+  // Compute the byval alignment.
+  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
+  if (StackAlign == 0)
+    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
+
+  // If the stack alignment is less than the type alignment, realign the
+  // argument.
+  bool Realign = TypeAlign > StackAlign;
+  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
+                                 /*ByVal=*/true, Realign);
+}
+
+X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
+  const Type *T = isSingleElementStruct(Ty, getContext());
+  if (!T)
+    T = Ty.getTypePtr();
+
+  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+    BuiltinType::Kind K = BT->getKind();
+    if (K == BuiltinType::Float || K == BuiltinType::Double)
+      return Float;
+  }
+  return Integer;
+}
+
+bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
+  if (!IsSoftFloatABI) {
+    Class C = classify(Ty);
+    if (C == Float)
+      return false;
+  }
+
+  unsigned Size = getContext().getTypeSize(Ty);
+  unsigned SizeInRegs = (Size + 31) / 32;
+
+  if (SizeInRegs == 0)
+    return false;
+
+  if (!IsMCUABI) {
+    if (SizeInRegs > State.FreeRegs) {
+      State.FreeRegs = 0;
+      return false;
+    }
+  } else {
+    // The MCU psABI allows passing parameters in-reg even if there are
+    // earlier parameters that are passed on the stack. Also,
+    // it does not allow passing >8-byte structs in-register,
+    // even if there are 3 free registers available.
+    if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
+      return false;
+  }
+
+  State.FreeRegs -= SizeInRegs;
+  return true;
+}
+
+bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
+                                             bool &InReg,
+                                             bool &NeedsPadding) const {
+  // On Windows, aggregates other than HFAs are never passed in registers, and
+  // they do not consume register slots. Homogenous floating-point aggregates
+  // (HFAs) have already been dealt with at this point.
+  if (IsWin32StructABI && isAggregateTypeForABI(Ty))
+    return false;
+
+  NeedsPadding = false;
+  InReg = !IsMCUABI;
+
+  if (!updateFreeRegs(Ty, State))
+    return false;
+
+  if (IsMCUABI)
+    return true;
+
+  if (State.CC == llvm::CallingConv::X86_FastCall ||
+      State.CC == llvm::CallingConv::X86_VectorCall ||
+      State.CC == llvm::CallingConv::X86_RegCall) {
+    if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
+      NeedsPadding = true;
+
+    return false;
+  }
+
+  return true;
+}
+
+bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
+  bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
+                    (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
+                     Ty->isReferenceType());
+
+  if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
+                      State.CC == llvm::CallingConv::X86_VectorCall))
+    return false;
+
+  if (!updateFreeRegs(Ty, State))
+    return false;
+
+  if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
+    return false;
+
+  // Return true to apply inreg to all legal parameters except for MCU targets.
+  return !IsMCUABI;
+}
+
+void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
+  // Vectorcall x86 works subtly 
diff erent than in x64, so the format is
+  // a bit 
diff erent than the x64 version.  First, all vector types (not HVAs)
+  // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
+  // This 
diff ers from the x64 implementation, where the first 6 by INDEX get
+  // registers.
+  // In the second pass over the arguments, HVAs are passed in the remaining
+  // vector registers if possible, or indirectly by address. The address will be
+  // passed in ECX/EDX if available. Any other arguments are passed according to
+  // the usual fastcall rules.
+  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
+  for (int I = 0, E = Args.size(); I < E; ++I) {
+    const Type *Base = nullptr;
+    uint64_t NumElts = 0;
+    const QualType &Ty = Args[I].type;
+    if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
+        isHomogeneousAggregate(Ty, Base, NumElts)) {
+      if (State.FreeSSERegs >= NumElts) {
+        State.FreeSSERegs -= NumElts;
+        Args[I].info = ABIArgInfo::getDirectInReg();
+        State.IsPreassigned.set(I);
+      }
+    }
+  }
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
+                                               CCState &State) const {
+  // FIXME: Set alignment on indirect arguments.
+  bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
+  bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
+  bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
+
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+  TypeInfo TI = getContext().getTypeInfo(Ty);
+
+  // Check with the C++ ABI first.
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (RT) {
+    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+    if (RAA == CGCXXABI::RAA_Indirect) {
+      return getIndirectResult(Ty, false, State);
+    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+      // The field index doesn't matter, we'll fix it up later.
+      return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
+    }
+  }
+
+  // Regcall uses the concept of a homogenous vector aggregate, similar
+  // to other targets.
+  const Type *Base = nullptr;
+  uint64_t NumElts = 0;
+  if ((IsRegCall || IsVectorCall) &&
+      isHomogeneousAggregate(Ty, Base, NumElts)) {
+    if (State.FreeSSERegs >= NumElts) {
+      State.FreeSSERegs -= NumElts;
+
+      // Vectorcall passes HVAs directly and does not flatten them, but regcall
+      // does.
+      if (IsVectorCall)
+        return getDirectX86Hva();
+
+      if (Ty->isBuiltinType() || Ty->isVectorType())
+        return ABIArgInfo::getDirect();
+      return ABIArgInfo::getExpand();
+    }
+    return getIndirectResult(Ty, /*ByVal=*/false, State);
+  }
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Structures with flexible arrays are always indirect.
+    // FIXME: This should not be byval!
+    if (RT && RT->getDecl()->hasFlexibleArrayMember())
+      return getIndirectResult(Ty, true, State);
+
+    // Ignore empty structs/unions on non-Windows.
+    if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
+      return ABIArgInfo::getIgnore();
+
+    llvm::LLVMContext &LLVMContext = getVMContext();
+    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+    bool NeedsPadding = false;
+    bool InReg;
+    if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
+      unsigned SizeInRegs = (TI.Width + 31) / 32;
+      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
+      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+      if (InReg)
+        return ABIArgInfo::getDirectInReg(Result);
+      else
+        return ABIArgInfo::getDirect(Result);
+    }
+    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
+
+    // Pass over-aligned aggregates on Windows indirectly. This behavior was
+    // added in MSVC 2015. Use the required alignment from the record layout,
+    // since that may be less than the regular type alignment, and types with
+    // required alignment of less than 4 bytes are not passed indirectly.
+    if (IsWin32StructABI) {
+      unsigned AlignInBits = 0;
+      if (RT) {
+        const ASTRecordLayout &Layout =
+          getContext().getASTRecordLayout(RT->getDecl());
+        AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
+      } else if (TI.isAlignRequired()) {
+        AlignInBits = TI.Align;
+      }
+      if (AlignInBits > 32)
+        return getIndirectResult(Ty, /*ByVal=*/false, State);
+    }
+
+    // Expand small (<= 128-bit) record types when we know that the stack layout
+    // of those arguments will match the struct. This is important because the
+    // LLVM backend isn't smart enough to remove byval, which inhibits many
+    // optimizations.
+    // Don't do this for the MCU if there are still free integer registers
+    // (see X86_64 ABI for full explanation).
+    if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
+        canExpandIndirectArgument(Ty))
+      return ABIArgInfo::getExpandWithPadding(
+          IsFastCall || IsVectorCall || IsRegCall, PaddingType);
+
+    return getIndirectResult(Ty, true, State);
+  }
+
+  if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    // On Windows, vectors are passed directly if registers are available, or
+    // indirectly if not. This avoids the need to align argument memory. Pass
+    // user-defined vector types larger than 512 bits indirectly for simplicity.
+    if (IsWin32StructABI) {
+      if (TI.Width <= 512 && State.FreeSSERegs > 0) {
+        --State.FreeSSERegs;
+        return ABIArgInfo::getDirectInReg();
+      }
+      return getIndirectResult(Ty, /*ByVal=*/false, State);
+    }
+
+    // On Darwin, some vectors are passed in memory, we handle this by passing
+    // it as an i8/i16/i32/i64.
+    if (IsDarwinVectorABI) {
+      if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
+          (TI.Width == 64 && VT->getNumElements() == 1))
+        return ABIArgInfo::getDirect(
+            llvm::IntegerType::get(getVMContext(), TI.Width));
+    }
+
+    if (IsX86_MMXType(CGT.ConvertType(Ty)))
+      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
+
+    return ABIArgInfo::getDirect();
+  }
+
+
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  bool InReg = shouldPrimitiveUseInReg(Ty, State);
+
+  if (isPromotableIntegerTypeForABI(Ty)) {
+    if (InReg)
+      return ABIArgInfo::getExtendInReg(Ty);
+    return ABIArgInfo::getExtend(Ty);
+  }
+
+  if (const auto *EIT = Ty->getAs<BitIntType>()) {
+    if (EIT->getNumBits() <= 64) {
+      if (InReg)
+        return ABIArgInfo::getDirectInReg();
+      return ABIArgInfo::getDirect();
+    }
+    return getIndirectResult(Ty, /*ByVal=*/false, State);
+  }
+
+  if (InReg)
+    return ABIArgInfo::getDirectInReg();
+  return ABIArgInfo::getDirect();
+}
+
+void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  CCState State(FI);
+  if (IsMCUABI)
+    State.FreeRegs = 3;
+  else if (State.CC == llvm::CallingConv::X86_FastCall) {
+    State.FreeRegs = 2;
+    State.FreeSSERegs = 3;
+  } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
+    State.FreeRegs = 2;
+    State.FreeSSERegs = 6;
+  } else if (FI.getHasRegParm())
+    State.FreeRegs = FI.getRegParm();
+  else if (State.CC == llvm::CallingConv::X86_RegCall) {
+    State.FreeRegs = 5;
+    State.FreeSSERegs = 8;
+  } else if (IsWin32StructABI) {
+    // Since MSVC 2015, the first three SSE vectors have been passed in
+    // registers. The rest are passed indirectly.
+    State.FreeRegs = DefaultNumRegisterParameters;
+    State.FreeSSERegs = 3;
+  } else
+    State.FreeRegs = DefaultNumRegisterParameters;
+
+  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
+  } else if (FI.getReturnInfo().isIndirect()) {
+    // The C++ ABI is not aware of register usage, so we have to check if the
+    // return value was sret and put it in a register ourselves if appropriate.
+    if (State.FreeRegs) {
+      --State.FreeRegs;  // The sret parameter consumes a register.
+      if (!IsMCUABI)
+        FI.getReturnInfo().setInReg(true);
+    }
+  }
+
+  // The chain argument effectively gives us another free register.
+  if (FI.isChainCall())
+    ++State.FreeRegs;
+
+  // For vectorcall, do a first pass over the arguments, assigning FP and vector
+  // arguments to XMM registers as available.
+  if (State.CC == llvm::CallingConv::X86_VectorCall)
+    runVectorCallFirstPass(FI, State);
+
+  bool UsedInAlloca = false;
+  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
+  for (int I = 0, E = Args.size(); I < E; ++I) {
+    // Skip arguments that have already been assigned.
+    if (State.IsPreassigned.test(I))
+      continue;
+
+    Args[I].info = classifyArgumentType(Args[I].type, State);
+    UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
+  }
+
+  // If we needed to use inalloca for any argument, do a second pass and rewrite
+  // all the memory arguments to use inalloca.
+  if (UsedInAlloca)
+    rewriteWithInAlloca(FI);
+}
+
+void
+X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+                                   CharUnits &StackOffset, ABIArgInfo &Info,
+                                   QualType Type) const {
+  // Arguments are always 4-byte-aligned.
+  CharUnits WordSize = CharUnits::fromQuantity(4);
+  assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
+
+  // sret pointers and indirect things will require an extra pointer
+  // indirection, unless they are byval. Most things are byval, and will not
+  // require this indirection.
+  bool IsIndirect = false;
+  if (Info.isIndirect() && !Info.getIndirectByVal())
+    IsIndirect = true;
+  Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
+  llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
+  if (IsIndirect)
+    LLTy = llvm::PointerType::getUnqual(getVMContext());
+  FrameFields.push_back(LLTy);
+  StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
+
+  // Insert padding bytes to respect alignment.
+  CharUnits FieldEnd = StackOffset;
+  StackOffset = FieldEnd.alignTo(WordSize);
+  if (StackOffset != FieldEnd) {
+    CharUnits NumBytes = StackOffset - FieldEnd;
+    llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
+    Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
+    FrameFields.push_back(Ty);
+  }
+}
+
+static bool isArgInAlloca(const ABIArgInfo &Info) {
+  // Leave ignored and inreg arguments alone.
+  switch (Info.getKind()) {
+  case ABIArgInfo::InAlloca:
+    return true;
+  case ABIArgInfo::Ignore:
+  case ABIArgInfo::IndirectAliased:
+    return false;
+  case ABIArgInfo::Indirect:
+  case ABIArgInfo::Direct:
+  case ABIArgInfo::Extend:
+    return !Info.getInReg();
+  case ABIArgInfo::Expand:
+  case ABIArgInfo::CoerceAndExpand:
+    // These are aggregate types which are never passed in registers when
+    // inalloca is involved.
+    return true;
+  }
+  llvm_unreachable("invalid enum");
+}
+
+void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
+  assert(IsWin32StructABI && "inalloca only supported on win32");
+
+  // Build a packed struct type for all of the arguments in memory.
+  SmallVector<llvm::Type *, 6> FrameFields;
+
+  // The stack alignment is always 4.
+  CharUnits StackAlign = CharUnits::fromQuantity(4);
+
+  CharUnits StackOffset;
+  CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
+
+  // Put 'this' into the struct before 'sret', if necessary.
+  bool IsThisCall =
+      FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
+  ABIArgInfo &Ret = FI.getReturnInfo();
+  if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
+      isArgInAlloca(I->info)) {
+    addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+    ++I;
+  }
+
+  // Put the sret parameter into the inalloca struct if it's in memory.
+  if (Ret.isIndirect() && !Ret.getInReg()) {
+    addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
+    // On Windows, the hidden sret parameter is always returned in eax.
+    Ret.setInAllocaSRet(IsWin32StructABI);
+  }
+
+  // Skip the 'this' parameter in ecx.
+  if (IsThisCall)
+    ++I;
+
+  // Put arguments passed in memory into the struct.
+  for (; I != E; ++I) {
+    if (isArgInAlloca(I->info))
+      addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+  }
+
+  FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
+                                        /*isPacked=*/true),
+                  StackAlign);
+}
+
+Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
+                                 Address VAListAddr, QualType Ty) const {
+
+  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+
+  // x86-32 changes the alignment of certain arguments on the stack.
+  //
+  // Just messing with TypeInfo like this works because we never pass
+  // anything indirectly.
+  TypeInfo.Align = CharUnits::fromQuantity(
+                getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
+                          TypeInfo, CharUnits::fromQuantity(4),
+                          /*AllowHigherAlign*/ true);
+}
+
+bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+  assert(Triple.getArch() == llvm::Triple::x86);
+
+  switch (Opts.getStructReturnConvention()) {
+  case CodeGenOptions::SRCK_Default:
+    break;
+  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
+    return false;
+  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
+    return true;
+  }
+
+  if (Triple.isOSDarwin() || Triple.isOSIAMCU())
+    return true;
+
+  switch (Triple.getOS()) {
+  case llvm::Triple::DragonFly:
+  case llvm::Triple::FreeBSD:
+  case llvm::Triple::OpenBSD:
+  case llvm::Triple::Win32:
+    return true;
+  default:
+    return false;
+  }
+}
+
+static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
+                                 CodeGen::CodeGenModule &CGM) {
+  if (!FD->hasAttr<AnyX86InterruptAttr>())
+    return;
+
+  llvm::Function *Fn = cast<llvm::Function>(GV);
+  Fn->setCallingConv(llvm::CallingConv::X86_INTR);
+  if (FD->getNumParams() == 0)
+    return;
+
+  auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
+  llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
+  llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
+    Fn->getContext(), ByValTy);
+  Fn->addParamAttr(0, NewAttr);
+}
+
+void X86_32TargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+  if (GV->isDeclaration())
+    return;
+  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+      llvm::Function *Fn = cast<llvm::Function>(GV);
+      Fn->addFnAttr("stackrealign");
+    }
+
+    addX86InterruptAttrs(FD, GV, CGM);
+  }
+}
+
+bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
+                                               CodeGen::CodeGenFunction &CGF,
+                                               llvm::Value *Address) const {
+  CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+  // 0-7 are the eight integer registers;  the order is 
diff erent
+  //   on Darwin (for EH), but the range is the same.
+  // 8 is %eip.
+  AssignToArrayRange(Builder, Address, Four8, 0, 8);
+
+  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
+    // 12-16 are st(0..4).  Not sure why we stop at 4.
+    // These have size 16, which is sizeof(long double) on
+    // platforms with 8-byte alignment for that type.
+    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
+    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
+
+  } else {
+    // 9 is %eflags, which doesn't get a size on Darwin for some
+    // reason.
+    Builder.CreateAlignedStore(
+        Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
+                               CharUnits::One());
+
+    // 11-16 are st(0..5).  Not sure why we stop at 5.
+    // These have size 12, which is sizeof(long double) on
+    // platforms with 4-byte alignment for that type.
+    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
+    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
+  }
+
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+
+namespace {
+
+/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
+static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
+  switch (AVXLevel) {
+  case X86AVXABILevel::AVX512:
+    return 512;
+  case X86AVXABILevel::AVX:
+    return 256;
+  case X86AVXABILevel::None:
+    return 128;
+  }
+  llvm_unreachable("Unknown AVXLevel");
+}
+
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+  enum Class {
+    Integer = 0,
+    SSE,
+    SSEUp,
+    X87,
+    X87Up,
+    ComplexX87,
+    NoClass,
+    Memory
+  };
+
+  /// merge - Implement the X86_64 ABI merging algorithm.
+  ///
+  /// Merge an accumulating classification \arg Accum with a field
+  /// classification \arg Field.
+  ///
+  /// \param Accum - The accumulating classification. This should
+  /// always be either NoClass or the result of a previous merge
+  /// call. In addition, this should never be Memory (the caller
+  /// should just return Memory for the aggregate).
+  static Class merge(Class Accum, Class Field);
+
+  /// postMerge - Implement the X86_64 ABI post merging algorithm.
+  ///
+  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
+  /// final MEMORY or SSE classes when necessary.
+  ///
+  /// \param AggregateSize - The size of the current aggregate in
+  /// the classification process.
+  ///
+  /// \param Lo - The classification for the parts of the type
+  /// residing in the low word of the containing object.
+  ///
+  /// \param Hi - The classification for the parts of the type
+  /// residing in the higher words of the containing object.
+  ///
+  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+  /// classify - Determine the x86_64 register classes in which the
+  /// given type T should be passed.
+  ///
+  /// \param Lo - The classification for the parts of the type
+  /// residing in the low word of the containing object.
+  ///
+  /// \param Hi - The classification for the parts of the type
+  /// residing in the high word of the containing object.
+  ///
+  /// \param OffsetBase - The bit offset of this type in the
+  /// containing object.  Some parameters are classified 
diff erent
+  /// depending on whether they straddle an eightbyte boundary.
+  ///
+  /// \param isNamedArg - Whether the argument in question is a "named"
+  /// argument, as used in AMD64-ABI 3.5.7.
+  ///
+  /// \param IsRegCall - Whether the calling conversion is regcall.
+  ///
+  /// If a word is unused its result will be NoClass; if a type should
+  /// be passed in Memory then at least the classification of \arg Lo
+  /// will be Memory.
+  ///
+  /// The \arg Lo class will be NoClass iff the argument is ignored.
+  ///
+  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+  /// also be ComplexX87.
+  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+                bool isNamedArg, bool IsRegCall = false) const;
+
+  llvm::Type *GetByteVectorType(QualType Ty) const;
+  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
+                                 unsigned IROffset, QualType SourceTy,
+                                 unsigned SourceOffset) const;
+  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
+                                     unsigned IROffset, QualType SourceTy,
+                                     unsigned SourceOffset) const;
+
+  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+  /// such that the argument will be returned in memory.
+  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
+
+  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+  /// such that the argument will be passed in memory.
+  ///
+  /// \param freeIntRegs - The number of free integer registers remaining
+  /// available.
+  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
+
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+  ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
+                                  unsigned &neededInt, unsigned &neededSSE,
+                                  bool isNamedArg,
+                                  bool IsRegCall = false) const;
+
+  ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
+                                       unsigned &NeededSSE,
+                                       unsigned &MaxVectorWidth) const;
+
+  ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
+                                           unsigned &NeededSSE,
+                                           unsigned &MaxVectorWidth) const;
+
+  bool IsIllegalVectorType(QualType Ty) const;
+
+  /// The 0.98 ABI revision clarified a lot of ambiguities,
+  /// unfortunately in ways that were not always consistent with
+  /// certain previous compilers.  In particular, platforms which
+  /// required strict binary compatibility with older versions of GCC
+  /// may need to exempt themselves.
+  bool honorsRevision0_98() const {
+    return !getTarget().getTriple().isOSDarwin();
+  }
+
+  /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
+  /// classify it as INTEGER (for compatibility with older clang compilers).
+  bool classifyIntegerMMXAsSSE() const {
+    // Clang <= 3.8 did not do this.
+    if (getContext().getLangOpts().getClangABICompat() <=
+        LangOptions::ClangABI::Ver3_8)
+      return false;
+
+    const llvm::Triple &Triple = getTarget().getTriple();
+    if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
+      return false;
+    return true;
+  }
+
+  // GCC classifies vectors of __int128 as memory.
+  bool passInt128VectorsInMem() const {
+    // Clang <= 9.0 did not do this.
+    if (getContext().getLangOpts().getClangABICompat() <=
+        LangOptions::ClangABI::Ver9)
+      return false;
+
+    const llvm::Triple &T = getTarget().getTriple();
+    return T.isOSLinux() || T.isOSNetBSD();
+  }
+
+  X86AVXABILevel AVXLevel;
+  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
+  // 64-bit hardware.
+  bool Has64BitPointers;
+
+public:
+  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+      : ABIInfo(CGT), AVXLevel(AVXLevel),
+        Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
+
+  bool isPassedUsingAVXType(QualType type) const {
+    unsigned neededInt, neededSSE;
+    // The freeIntRegs argument doesn't matter here.
+    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
+                                           /*isNamedArg*/true);
+    if (info.isDirect()) {
+      llvm::Type *ty = info.getCoerceToType();
+      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
+        return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
+    }
+    return false;
+  }
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                      QualType Ty) const override;
+
+  bool has64BitPointers() const {
+    return Has64BitPointers;
+  }
+};
+
+/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
+class WinX86_64ABIInfo : public ABIInfo {
+public:
+  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+      : ABIInfo(CGT), AVXLevel(AVXLevel),
+        IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
+
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+    // FIXME: Assumes vectorcall is in use.
+    return isX86VectorTypeForVectorCall(getContext(), Ty);
+  }
+
+  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+                                         uint64_t NumMembers) const override {
+    // FIXME: Assumes vectorcall is in use.
+    return isX86VectorCallAggregateSmallEnough(NumMembers);
+  }
+
+private:
+  ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
+                      bool IsVectorCall, bool IsRegCall) const;
+  ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
+                                           const ABIArgInfo &current) const;
+
+  X86AVXABILevel AVXLevel;
+
+  bool IsMingw64;
+};
+
+class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+      : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
+    SwiftInfo =
+        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
+  }
+
+  /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
+  /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
+  bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+    return 7;
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override {
+    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+    // 0-15 are the 16 integer registers.
+    // 16 is %rip.
+    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+    return false;
+  }
+
+  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+                                  StringRef Constraint,
+                                  llvm::Type* Ty) const override {
+    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+  }
+
+  bool isNoProtoCallVariadic(const CallArgList &args,
+                             const FunctionNoProtoType *fnType) const override {
+    // The default CC on x86-64 sets %al to the number of SSA
+    // registers used, and GCC sets this when calling an unprototyped
+    // function, so we override the default behavior.  However, don't do
+    // that when AVX types are involved: the ABI explicitly states it is
+    // undefined, and it doesn't work in practice because of how the ABI
+    // defines varargs anyway.
+    if (fnType->getCallConv() == CC_C) {
+      bool HasAVXType = false;
+      for (CallArgList::const_iterator
+             it = args.begin(), ie = args.end(); it != ie; ++it) {
+        if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
+          HasAVXType = true;
+          break;
+        }
+      }
+
+      if (!HasAVXType)
+        return true;
+    }
+
+    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override {
+    if (GV->isDeclaration())
+      return;
+    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+      if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+        llvm::Function *Fn = cast<llvm::Function>(GV);
+        Fn->addFnAttr("stackrealign");
+      }
+
+      addX86InterruptAttrs(FD, GV, CGM);
+    }
+  }
+
+  void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
+                            const FunctionDecl *Caller,
+                            const FunctionDecl *Callee,
+                            const CallArgList &Args) const override;
+};
+} // namespace
+
+static void initFeatureMaps(const ASTContext &Ctx,
+                            llvm::StringMap<bool> &CallerMap,
+                            const FunctionDecl *Caller,
+                            llvm::StringMap<bool> &CalleeMap,
+                            const FunctionDecl *Callee) {
+  if (CalleeMap.empty() && CallerMap.empty()) {
+    // The caller is potentially nullptr in the case where the call isn't in a
+    // function.  In this case, the getFunctionFeatureMap ensures we just get
+    // the TU level setting (since it cannot be modified by 'target'..
+    Ctx.getFunctionFeatureMap(CallerMap, Caller);
+    Ctx.getFunctionFeatureMap(CalleeMap, Callee);
+  }
+}
+
+static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
+                                 SourceLocation CallLoc,
+                                 const llvm::StringMap<bool> &CallerMap,
+                                 const llvm::StringMap<bool> &CalleeMap,
+                                 QualType Ty, StringRef Feature,
+                                 bool IsArgument) {
+  bool CallerHasFeat = CallerMap.lookup(Feature);
+  bool CalleeHasFeat = CalleeMap.lookup(Feature);
+  if (!CallerHasFeat && !CalleeHasFeat)
+    return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
+           << IsArgument << Ty << Feature;
+
+  // Mixing calling conventions here is very clearly an error.
+  if (!CallerHasFeat || !CalleeHasFeat)
+    return Diag.Report(CallLoc, diag::err_avx_calling_convention)
+           << IsArgument << Ty << Feature;
+
+  // Else, both caller and callee have the required feature, so there is no need
+  // to diagnose.
+  return false;
+}
+
+static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
+                          SourceLocation CallLoc,
+                          const llvm::StringMap<bool> &CallerMap,
+                          const llvm::StringMap<bool> &CalleeMap, QualType Ty,
+                          bool IsArgument) {
+  uint64_t Size = Ctx.getTypeSize(Ty);
+  if (Size > 256)
+    return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
+                                "avx512f", IsArgument);
+
+  if (Size > 128)
+    return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
+                                IsArgument);
+
+  return false;
+}
+
+void X86_64TargetCodeGenInfo::checkFunctionCallABI(
+    CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
+    const FunctionDecl *Callee, const CallArgList &Args) const {
+  llvm::StringMap<bool> CallerMap;
+  llvm::StringMap<bool> CalleeMap;
+  unsigned ArgIndex = 0;
+
+  // We need to loop through the actual call arguments rather than the
+  // function's parameters, in case this variadic.
+  for (const CallArg &Arg : Args) {
+    // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
+    // additionally changes how vectors >256 in size are passed. Like GCC, we
+    // warn when a function is called with an argument where this will change.
+    // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
+    // the caller and callee features are mismatched.
+    // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
+    // change its ABI with attribute-target after this call.
+    if (Arg.getType()->isVectorType() &&
+        CGM.getContext().getTypeSize(Arg.getType()) > 128) {
+      initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
+      QualType Ty = Arg.getType();
+      // The CallArg seems to have desugared the type already, so for clearer
+      // diagnostics, replace it with the type in the FunctionDecl if possible.
+      if (ArgIndex < Callee->getNumParams())
+        Ty = Callee->getParamDecl(ArgIndex)->getType();
+
+      if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
+                        CalleeMap, Ty, /*IsArgument*/ true))
+        return;
+    }
+    ++ArgIndex;
+  }
+
+  // Check return always, as we don't have a good way of knowing in codegen
+  // whether this value is used, tail-called, etc.
+  if (Callee->getReturnType()->isVectorType() &&
+      CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
+    initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
+    checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
+                  CalleeMap, Callee->getReturnType(),
+                  /*IsArgument*/ false);
+  }
+}
+
+std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
+  // If the argument does not end in .lib, automatically add the suffix.
+  // If the argument contains a space, enclose it in quotes.
+  // This matches the behavior of MSVC.
+  bool Quote = Lib.contains(' ');
+  std::string ArgStr = Quote ? "\"" : "";
+  ArgStr += Lib;
+  if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
+    ArgStr += ".lib";
+  ArgStr += Quote ? "\"" : "";
+  return ArgStr;
+}
+
+namespace {
+class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
+public:
+  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+        bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
+        unsigned NumRegisterParameters)
+    : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
+        Win32StructABI, NumRegisterParameters, false) {}
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override;
+
+  void getDependentLibraryOption(llvm::StringRef Lib,
+                                 llvm::SmallString<24> &Opt) const override {
+    Opt = "/DEFAULTLIB:";
+    Opt += qualifyWindowsLibrary(Lib);
+  }
+
+  void getDetectMismatchOption(llvm::StringRef Name,
+                               llvm::StringRef Value,
+                               llvm::SmallString<32> &Opt) const override {
+    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+  }
+};
+} // namespace
+
+void WinX86_32TargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+  X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+  if (GV->isDeclaration())
+    return;
+  addStackProbeTargetAttributes(D, GV, CGM);
+}
+
+namespace {
+class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+                             X86AVXABILevel AVXLevel)
+      : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
+    SwiftInfo =
+        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
+  }
+
+  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+                           CodeGen::CodeGenModule &CGM) const override;
+
+  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+    return 7;
+  }
+
+  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+                               llvm::Value *Address) const override {
+    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+    // 0-15 are the 16 integer registers.
+    // 16 is %rip.
+    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+    return false;
+  }
+
+  void getDependentLibraryOption(llvm::StringRef Lib,
+                                 llvm::SmallString<24> &Opt) const override {
+    Opt = "/DEFAULTLIB:";
+    Opt += qualifyWindowsLibrary(Lib);
+  }
+
+  void getDetectMismatchOption(llvm::StringRef Name,
+                               llvm::StringRef Value,
+                               llvm::SmallString<32> &Opt) const override {
+    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+  }
+};
+} // namespace
+
+void WinX86_64TargetCodeGenInfo::setTargetAttributes(
+    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+  TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+  if (GV->isDeclaration())
+    return;
+  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+      llvm::Function *Fn = cast<llvm::Function>(GV);
+      Fn->addFnAttr("stackrealign");
+    }
+
+    addX86InterruptAttrs(FD, GV, CGM);
+  }
+
+  addStackProbeTargetAttributes(D, GV, CGM);
+}
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+                              Class &Hi) const {
+  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+  //
+  // (a) If one of the classes is Memory, the whole argument is passed in
+  //     memory.
+  //
+  // (b) If X87UP is not preceded by X87, the whole argument is passed in
+  //     memory.
+  //
+  // (c) If the size of the aggregate exceeds two eightbytes and the first
+  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+  //     argument is passed in memory. NOTE: This is necessary to keep the
+  //     ABI working for processors that don't support the __m256 type.
+  //
+  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+  //
+  // Some of these are enforced by the merging logic.  Others can arise
+  // only with unions; for example:
+  //   union { _Complex double; unsigned; }
+  //
+  // Note that clauses (b) and (c) were added in 0.98.
+  //
+  if (Hi == Memory)
+    Lo = Memory;
+  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
+    Lo = Memory;
+  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+    Lo = Memory;
+  if (Hi == SSEUp && Lo != SSE)
+    Hi = SSE;
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+  // classified recursively so that always two fields are
+  // considered. The resulting class is calculated according to
+  // the classes of the fields in the eightbyte:
+  //
+  // (a) If both classes are equal, this is the resulting class.
+  //
+  // (b) If one of the classes is NO_CLASS, the resulting class is
+  // the other class.
+  //
+  // (c) If one of the classes is MEMORY, the result is the MEMORY
+  // class.
+  //
+  // (d) If one of the classes is INTEGER, the result is the
+  // INTEGER.
+  //
+  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+  // MEMORY is used as class.
+  //
+  // (f) Otherwise class SSE is used.
+
+  // Accum should never be memory (we should have returned) or
+  // ComplexX87 (because this cannot be passed in a structure).
+  assert((Accum != Memory && Accum != ComplexX87) &&
+         "Invalid accumulated classification during merge.");
+  if (Accum == Field || Field == NoClass)
+    return Accum;
+  if (Field == Memory)
+    return Memory;
+  if (Accum == NoClass)
+    return Field;
+  if (Accum == Integer || Field == Integer)
+    return Integer;
+  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+      Accum == X87 || Accum == X87Up)
+    return Memory;
+  return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
+                             Class &Hi, bool isNamedArg, bool IsRegCall) const {
+  // FIXME: This code can be simplified by introducing a simple value class for
+  // Class pairs with appropriate constructor methods for the various
+  // situations.
+
+  // FIXME: Some of the split computations are wrong; unaligned vectors
+  // shouldn't be passed in registers for example, so there is no chance they
+  // can straddle an eightbyte. Verify & simplify.
+
+  Lo = Hi = NoClass;
+
+  Class &Current = OffsetBase < 64 ? Lo : Hi;
+  Current = Memory;
+
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+    BuiltinType::Kind k = BT->getKind();
+
+    if (k == BuiltinType::Void) {
+      Current = NoClass;
+    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+      Lo = Integer;
+      Hi = Integer;
+    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+      Current = Integer;
+    } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
+               k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
+      Current = SSE;
+    } else if (k == BuiltinType::LongDouble) {
+      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+      if (LDF == &llvm::APFloat::IEEEquad()) {
+        Lo = SSE;
+        Hi = SSEUp;
+      } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
+        Lo = X87;
+        Hi = X87Up;
+      } else if (LDF == &llvm::APFloat::IEEEdouble()) {
+        Current = SSE;
+      } else
+        llvm_unreachable("unexpected long double representation!");
+    }
+    // FIXME: _Decimal32 and _Decimal64 are SSE.
+    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+    return;
+  }
+
+  if (const EnumType *ET = Ty->getAs<EnumType>()) {
+    // Classify the underlying integer type.
+    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
+    return;
+  }
+
+  if (Ty->hasPointerRepresentation()) {
+    Current = Integer;
+    return;
+  }
+
+  if (Ty->isMemberPointerType()) {
+    if (Ty->isMemberFunctionPointerType()) {
+      if (Has64BitPointers) {
+        // If Has64BitPointers, this is an {i64, i64}, so classify both
+        // Lo and Hi now.
+        Lo = Hi = Integer;
+      } else {
+        // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
+        // straddles an eightbyte boundary, Hi should be classified as well.
+        uint64_t EB_FuncPtr = (OffsetBase) / 64;
+        uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
+        if (EB_FuncPtr != EB_ThisAdj) {
+          Lo = Hi = Integer;
+        } else {
+          Current = Integer;
+        }
+      }
+    } else {
+      Current = Integer;
+    }
+    return;
+  }
+
+  if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    uint64_t Size = getContext().getTypeSize(VT);
+    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
+      // gcc passes the following as integer:
+      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
+      // 2 bytes - <2 x char>, <1 x short>
+      // 1 byte  - <1 x char>
+      Current = Integer;
+
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      uint64_t EB_Lo = (OffsetBase) / 64;
+      uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
+      if (EB_Lo != EB_Hi)
+        Hi = Lo;
+    } else if (Size == 64) {
+      QualType ElementType = VT->getElementType();
+
+      // gcc passes <1 x double> in memory. :(
+      if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
+        return;
+
+      // gcc passes <1 x long long> as SSE but clang used to unconditionally
+      // pass them as integer.  For platforms where clang is the de facto
+      // platform compiler, we must continue to use integer.
+      if (!classifyIntegerMMXAsSSE() &&
+          (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
+           ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
+           ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
+           ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
+        Current = Integer;
+      else
+        Current = SSE;
+
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      if (OffsetBase && OffsetBase != 64)
+        Hi = Lo;
+    } else if (Size == 128 ||
+               (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
+      QualType ElementType = VT->getElementType();
+
+      // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
+      if (passInt128VectorsInMem() && Size != 128 &&
+          (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
+           ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
+        return;
+
+      // Arguments of 256-bits are split into four eightbyte chunks. The
+      // least significant one belongs to class SSE and all the others to class
+      // SSEUP. The original Lo and Hi design considers that types can't be
+      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+      // This design isn't correct for 256-bits, but since there're no cases
+      // where the upper parts would need to be inspected, avoid adding
+      // complexity and just consider Hi to match the 64-256 part.
+      //
+      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+      // registers if they are "named", i.e. not part of the "..." of a
+      // variadic function.
+      //
+      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
+      // split into eight eightbyte chunks, one SSE and seven SSEUP.
+      Lo = SSE;
+      Hi = SSEUp;
+    }
+    return;
+  }
+
+  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+    QualType ET = getContext().getCanonicalType(CT->getElementType());
+
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (ET->isIntegralOrEnumerationType()) {
+      if (Size <= 64)
+        Current = Integer;
+      else if (Size <= 128)
+        Lo = Hi = Integer;
+    } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
+               ET->isBFloat16Type()) {
+      Current = SSE;
+    } else if (ET == getContext().DoubleTy) {
+      Lo = Hi = SSE;
+    } else if (ET == getContext().LongDoubleTy) {
+      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+      if (LDF == &llvm::APFloat::IEEEquad())
+        Current = Memory;
+      else if (LDF == &llvm::APFloat::x87DoubleExtended())
+        Current = ComplexX87;
+      else if (LDF == &llvm::APFloat::IEEEdouble())
+        Lo = Hi = SSE;
+      else
+        llvm_unreachable("unexpected long double representation!");
+    }
+
+    // If this complex type crosses an eightbyte boundary then it
+    // should be split.
+    uint64_t EB_Real = (OffsetBase) / 64;
+    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
+    if (Hi == NoClass && EB_Real != EB_Imag)
+      Hi = Lo;
+
+    return;
+  }
+
+  if (const auto *EITy = Ty->getAs<BitIntType>()) {
+    if (EITy->getNumBits() <= 64)
+      Current = Integer;
+    else if (EITy->getNumBits() <= 128)
+      Lo = Hi = Integer;
+    // Larger values need to get passed in memory.
+    return;
+  }
+
+  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+    // Arrays are treated like structures.
+
+    uint64_t Size = getContext().getTypeSize(Ty);
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+    // than eight eightbytes, ..., it has class MEMORY.
+    // regcall ABI doesn't have limitation to an object. The only limitation
+    // is the free registers, which will be checked in computeInfo.
+    if (!IsRegCall && Size > 512)
+      return;
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+    // fields, it has class MEMORY.
+    //
+    // Only need to check alignment of array base.
+    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
+      return;
+
+    // Otherwise implement simplified merge. We could be smarter about
+    // this, but it isn't worth it and would be harder to verify.
+    Current = NoClass;
+    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
+    uint64_t ArraySize = AT->getSize().getZExtValue();
+
+    // The only case a 256-bit wide vector could be used is when the array
+    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+    // to work for sizes wider than 128, early check and fallback to memory.
+    //
+    if (Size > 128 &&
+        (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
+      return;
+
+    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+      Class FieldLo, FieldHi;
+      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
+      Lo = merge(Lo, FieldLo);
+      Hi = merge(Hi, FieldHi);
+      if (Lo == Memory || Hi == Memory)
+        break;
+    }
+
+    postMerge(Size, Lo, Hi);
+    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+    return;
+  }
+
+  if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    uint64_t Size = getContext().getTypeSize(Ty);
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+    // than eight eightbytes, ..., it has class MEMORY.
+    if (Size > 512)
+      return;
+
+    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
+    // copy constructor or a non-trivial destructor, it is passed by invisible
+    // reference.
+    if (getRecordArgABI(RT, getCXXABI()))
+      return;
+
+    const RecordDecl *RD = RT->getDecl();
+
+    // Assume variable sized types are passed in memory.
+    if (RD->hasFlexibleArrayMember())
+      return;
+
+    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+    // Reset Lo class, this will be recomputed.
+    Current = NoClass;
+
+    // If this is a C++ record, classify the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+      for (const auto &I : CXXRD->bases()) {
+        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+               "Unexpected base class!");
+        const auto *Base =
+            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+        // Classify this field.
+        //
+        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
+        // single eightbyte, each is classified separately. Each eightbyte gets
+        // initialized to class NO_CLASS.
+        Class FieldLo, FieldHi;
+        uint64_t Offset =
+          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
+        classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
+        Lo = merge(Lo, FieldLo);
+        Hi = merge(Hi, FieldHi);
+        if (Lo == Memory || Hi == Memory) {
+          postMerge(Size, Lo, Hi);
+          return;
+        }
+      }
+    }
+
+    // Classify the fields one at a time, merging the results.
+    unsigned idx = 0;
+    bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
+                                LangOptions::ClangABI::Ver11 ||
+                            getContext().getTargetInfo().getTriple().isPS();
+    bool IsUnion = RT->isUnionType() && !UseClang11Compat;
+
+    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+           i != e; ++i, ++idx) {
+      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+      bool BitField = i->isBitField();
+
+      // Ignore padding bit-fields.
+      if (BitField && i->isUnnamedBitfield())
+        continue;
+
+      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
+      // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
+      //
+      // The only case a 256-bit or a 512-bit wide vector could be used is when
+      // the struct contains a single 256-bit or 512-bit element. Early check
+      // and fallback to memory.
+      //
+      // FIXME: Extended the Lo and Hi logic properly to work for size wider
+      // than 128.
+      if (Size > 128 &&
+          ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
+           Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
+        Lo = Memory;
+        postMerge(Size, Lo, Hi);
+        return;
+      }
+      // Note, skip this test for bit-fields, see below.
+      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
+        Lo = Memory;
+        postMerge(Size, Lo, Hi);
+        return;
+      }
+
+      // Classify this field.
+      //
+      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+      // exceeds a single eightbyte, each is classified
+      // separately. Each eightbyte gets initialized to class
+      // NO_CLASS.
+      Class FieldLo, FieldHi;
+
+      // Bit-fields require special handling, they do not force the
+      // structure to be passed in memory even if unaligned, and
+      // therefore they can straddle an eightbyte.
+      if (BitField) {
+        assert(!i->isUnnamedBitfield());
+        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+        uint64_t Size = i->getBitWidthValue(getContext());
+
+        uint64_t EB_Lo = Offset / 64;
+        uint64_t EB_Hi = (Offset + Size - 1) / 64;
+
+        if (EB_Lo) {
+          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+          FieldLo = NoClass;
+          FieldHi = Integer;
+        } else {
+          FieldLo = Integer;
+          FieldHi = EB_Hi ? Integer : NoClass;
+        }
+      } else
+        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
+      Lo = merge(Lo, FieldLo);
+      Hi = merge(Hi, FieldHi);
+      if (Lo == Memory || Hi == Memory)
+        break;
+    }
+
+    postMerge(Size, Lo, Hi);
+  }
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
+  // If this is a scalar LLVM value then assume LLVM will pass it in the right
+  // place naturally.
+  if (!isAggregateTypeForABI(Ty)) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    if (Ty->isBitIntType())
+      return getNaturalAlignIndirect(Ty);
+
+    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                              : ABIArgInfo::getDirect());
+  }
+
+  return getNaturalAlignIndirect(Ty);
+}
+
+bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
+  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
+    uint64_t Size = getContext().getTypeSize(VecTy);
+    unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
+    if (Size <= 64 || Size > LargestVector)
+      return true;
+    QualType EltTy = VecTy->getElementType();
+    if (passInt128VectorsInMem() &&
+        (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
+         EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
+      return true;
+  }
+
+  return false;
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+                                            unsigned freeIntRegs) const {
+  // If this is a scalar LLVM value then assume LLVM will pass it in the right
+  // place naturally.
+  //
+  // This assumption is optimistic, as there could be free registers available
+  // when we need to pass this argument in memory, and LLVM could try to pass
+  // the argument in the free register. This does not seem to happen currently,
+  // but this code would be much safer if we could mark the argument with
+  // 'onstack'. See PR12193.
+  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
+      !Ty->isBitIntType()) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+                                              : ABIArgInfo::getDirect());
+  }
+
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+  // Compute the byval alignment. We specify the alignment of the byval in all
+  // cases so that the mid-level optimizer knows the alignment of the byval.
+  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
+
+  // Attempt to avoid passing indirect results using byval when possible. This
+  // is important for good codegen.
+  //
+  // We do this by coercing the value into a scalar type which the backend can
+  // handle naturally (i.e., without using byval).
+  //
+  // For simplicity, we currently only do this when we have exhausted all of the
+  // free integer registers. Doing this when there are free integer registers
+  // would require more care, as we would have to ensure that the coerced value
+  // did not claim the unused register. That would require either reording the
+  // arguments to the function (so that any subsequent inreg values came first),
+  // or only doing this optimization when there were no following arguments that
+  // might be inreg.
+  //
+  // We currently expect it to be rare (particularly in well written code) for
+  // arguments to be passed on the stack when there are still free integer
+  // registers available (this would typically imply large structs being passed
+  // by value), so this seems like a fair tradeoff for now.
+  //
+  // We can revisit this if the backend grows support for 'onstack' parameter
+  // attributes. See PR12193.
+  if (freeIntRegs == 0) {
+    uint64_t Size = getContext().getTypeSize(Ty);
+
+    // If this type fits in an eightbyte, coerce it into the matching integral
+    // type, which will end up on the stack (with alignment 8).
+    if (Align == 8 && Size <= 64)
+      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+                                                          Size));
+  }
+
+  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
+}
+
+/// The ABI specifies that a value should be passed in a full vector XMM/YMM
+/// register. Pick an LLVM IR type that will be passed as a vector register.
+llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
+  // Wrapper structs/arrays that only contain vectors are passed just like
+  // vectors; strip them off if present.
+  if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
+    Ty = QualType(InnerTy, 0);
+
+  llvm::Type *IRType = CGT.ConvertType(Ty);
+  if (isa<llvm::VectorType>(IRType)) {
+    // Don't pass vXi128 vectors in their native type, the backend can't
+    // legalize them.
+    if (passInt128VectorsInMem() &&
+        cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
+      // Use a vXi64 vector.
+      uint64_t Size = getContext().getTypeSize(Ty);
+      return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
+                                        Size / 64);
+    }
+
+    return IRType;
+  }
+
+  if (IRType->getTypeID() == llvm::Type::FP128TyID)
+    return IRType;
+
+  // We couldn't find the preferred IR vector type for 'Ty'.
+  uint64_t Size = getContext().getTypeSize(Ty);
+  assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
+
+
+  // Return a LLVM IR vector type based on the size of 'Ty'.
+  return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
+                                    Size / 64);
+}
+
+/// BitsContainNoUserData - Return true if the specified [start,end) bit range
+/// is known to either be off the end of the specified type or being in
+/// alignment padding.  The user type specified is known to be at most 128 bits
+/// in size, and have passed through X86_64ABIInfo::classify with a successful
+/// classification that put one of the two halves in the INTEGER class.
+///
+/// It is conservatively correct to return false.
+static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
+                                  unsigned EndBit, ASTContext &Context) {
+  // If the bytes being queried are off the end of the type, there is no user
+  // data hiding here.  This handles analysis of builtins, vectors and other
+  // types that don't contain interesting padding.
+  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
+  if (TySize <= StartBit)
+    return true;
+
+  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
+    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
+
+    // Check each element to see if the element overlaps with the queried range.
+    for (unsigned i = 0; i != NumElts; ++i) {
+      // If the element is after the span we care about, then we're done..
+      unsigned EltOffset = i*EltSize;
+      if (EltOffset >= EndBit) break;
+
+      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
+      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
+                                 EndBit-EltOffset, Context))
+        return false;
+    }
+    // If it overlaps no elements, then it is safe to process as padding.
+    return true;
+  }
+
+  if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    const RecordDecl *RD = RT->getDecl();
+    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+    // If this is a C++ record, check the bases first.
+    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+      for (const auto &I : CXXRD->bases()) {
+        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+               "Unexpected base class!");
+        const auto *Base =
+            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+        // If the base is after the span we care about, ignore it.
+        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
+        if (BaseOffset >= EndBit) continue;
+
+        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
+        if (!BitsContainNoUserData(I.getType(), BaseStart,
+                                   EndBit-BaseOffset, Context))
+          return false;
+      }
+    }
+
+    // Verify that no field has data that overlaps the region of interest.  Yes
+    // this could be sped up a lot by being smarter about queried fields,
+    // however we're only looking at structs up to 16 bytes, so we don't care
+    // much.
+    unsigned idx = 0;
+    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+         i != e; ++i, ++idx) {
+      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
+
+      // If we found a field after the region we care about, then we're done.
+      if (FieldOffset >= EndBit) break;
+
+      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
+      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
+                                 Context))
+        return false;
+    }
+
+    // If nothing in this record overlapped the area of interest, then we're
+    // clean.
+    return true;
+  }
+
+  return false;
+}
+
+/// getFPTypeAtOffset - Return a floating point type at the specified offset.
+static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+                                     const llvm::DataLayout &TD) {
+  if (IROffset == 0 && IRType->isFloatingPointTy())
+    return IRType;
+
+  // If this is a struct, recurse into the field at the specified offset.
+  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+    if (!STy->getNumContainedTypes())
+      return nullptr;
+
+    const llvm::StructLayout *SL = TD.getStructLayout(STy);
+    unsigned Elt = SL->getElementContainingOffset(IROffset);
+    IROffset -= SL->getElementOffset(Elt);
+    return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
+  }
+
+  // If this is an array, recurse into the field at the specified offset.
+  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+    llvm::Type *EltTy = ATy->getElementType();
+    unsigned EltSize = TD.getTypeAllocSize(EltTy);
+    IROffset -= IROffset / EltSize * EltSize;
+    return getFPTypeAtOffset(EltTy, IROffset, TD);
+  }
+
+  return nullptr;
+}
+
+/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
+/// low 8 bytes of an XMM register, corresponding to the SSE class.
+llvm::Type *X86_64ABIInfo::
+GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+                   QualType SourceTy, unsigned SourceOffset) const {
+  const llvm::DataLayout &TD = getDataLayout();
+  unsigned SourceSize =
+      (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
+  llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
+  if (!T0 || T0->isDoubleTy())
+    return llvm::Type::getDoubleTy(getVMContext());
+
+  // Get the adjacent FP type.
+  llvm::Type *T1 = nullptr;
+  unsigned T0Size = TD.getTypeAllocSize(T0);
+  if (SourceSize > T0Size)
+      T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
+  if (T1 == nullptr) {
+    // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
+    // to its alignment.
+    if (T0->is16bitFPTy() && SourceSize > 4)
+      T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
+    // If we can't get a second FP type, return a simple half or float.
+    // avx512fp16-abi.c:pr51813_2 shows it works to return float for
+    // {float, i8} too.
+    if (T1 == nullptr)
+      return T0;
+  }
+
+  if (T0->isFloatTy() && T1->isFloatTy())
+    return llvm::FixedVectorType::get(T0, 2);
+
+  if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
+    llvm::Type *T2 = nullptr;
+    if (SourceSize > 4)
+      T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
+    if (T2 == nullptr)
+      return llvm::FixedVectorType::get(T0, 2);
+    return llvm::FixedVectorType::get(T0, 4);
+  }
+
+  if (T0->is16bitFPTy() || T1->is16bitFPTy())
+    return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
+
+  return llvm::Type::getDoubleTy(getVMContext());
+}
+
+
+/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
+/// an 8-byte GPR.  This means that we either have a scalar or we are talking
+/// about the high or low part of an up-to-16-byte struct.  This routine picks
+/// the best LLVM IR type to represent this, which may be i64 or may be anything
+/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
+/// etc).
+///
+/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
+/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
+/// the 8-byte value references.  PrefType may be null.
+///
+/// SourceTy is the source-level type for the entire argument.  SourceOffset is
+/// an offset into this that we're processing (which is always either 0 or 8).
+///
+llvm::Type *X86_64ABIInfo::
+GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+                       QualType SourceTy, unsigned SourceOffset) const {
+  // If we're dealing with an un-offset LLVM IR type, then it means that we're
+  // returning an 8-byte unit starting with it.  See if we can safely use it.
+  if (IROffset == 0) {
+    // Pointers and int64's always fill the 8-byte unit.
+    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
+        IRType->isIntegerTy(64))
+      return IRType;
+
+    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
+    // goodness in the source type is just tail padding.  This is allowed to
+    // kick in for struct {double,int} on the int, but not on
+    // struct{double,int,int} because we wouldn't return the second int.  We
+    // have to do this analysis on the source type because we can't depend on
+    // unions being lowered a specific way etc.
+    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
+        IRType->isIntegerTy(32) ||
+        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
+      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
+          cast<llvm::IntegerType>(IRType)->getBitWidth();
+
+      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
+                                SourceOffset*8+64, getContext()))
+        return IRType;
+    }
+  }
+
+  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+    // If this is a struct, recurse into the field at the specified offset.
+    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
+    if (IROffset < SL->getSizeInBytes()) {
+      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
+      IROffset -= SL->getElementOffset(FieldIdx);
+
+      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
+                                    SourceTy, SourceOffset);
+    }
+  }
+
+  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+    llvm::Type *EltTy = ATy->getElementType();
+    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
+    unsigned EltOffset = IROffset/EltSize*EltSize;
+    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
+                                  SourceOffset);
+  }
+
+  // Okay, we don't have any better idea of what to pass, so we pass this in an
+  // integer register that isn't too big to fit the rest of the struct.
+  unsigned TySizeInBytes =
+    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
+
+  assert(TySizeInBytes != SourceOffset && "Empty field?");
+
+  // It is always safe to classify this as an integer type up to i64 that
+  // isn't larger than the structure.
+  return llvm::IntegerType::get(getVMContext(),
+                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
+}
+
+
+/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
+/// be used as elements of a two register pair to pass or return, return a
+/// first class aggregate to represent them.  For example, if the low part of
+/// a by-value argument should be passed as i32* and the high part as float,
+/// return {i32*, float}.
+static llvm::Type *
+GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
+                           const llvm::DataLayout &TD) {
+  // In order to correctly satisfy the ABI, we need to the high part to start
+  // at offset 8.  If the high and low parts we inferred are both 4-byte types
+  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
+  // the second element at offset 8.  Check for this:
+  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
+  llvm::Align HiAlign = TD.getABITypeAlign(Hi);
+  unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
+  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
+
+  // To handle this, we have to increase the size of the low part so that the
+  // second element will start at an 8 byte offset.  We can't increase the size
+  // of the second element because it might make us access off the end of the
+  // struct.
+  if (HiStart != 8) {
+    // There are usually two sorts of types the ABI generation code can produce
+    // for the low part of a pair that aren't 8 bytes in size: half, float or
+    // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
+    // NaCl).
+    // Promote these to a larger type.
+    if (Lo->isHalfTy() || Lo->isFloatTy())
+      Lo = llvm::Type::getDoubleTy(Lo->getContext());
+    else {
+      assert((Lo->isIntegerTy() || Lo->isPointerTy())
+             && "Invalid/unknown lo type");
+      Lo = llvm::Type::getInt64Ty(Lo->getContext());
+    }
+  }
+
+  llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
+
+  // Verify that the second element is at an 8-byte offset.
+  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
+         "Invalid x86-64 argument pair!");
+  return Result;
+}
+
+ABIArgInfo X86_64ABIInfo::
+classifyReturnType(QualType RetTy) const {
+  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+  // classification algorithm.
+  X86_64ABIInfo::Class Lo, Hi;
+  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
+
+  // Check some invariants.
+  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+  llvm::Type *ResType = nullptr;
+  switch (Lo) {
+  case NoClass:
+    if (Hi == NoClass)
+      return ABIArgInfo::getIgnore();
+    // If the low part is just padding, it takes no register, leave ResType
+    // null.
+    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+           "Unknown missing lo part");
+    break;
+
+  case SSEUp:
+  case X87Up:
+    llvm_unreachable("Invalid classification for lo word.");
+
+    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+    // hidden argument.
+  case Memory:
+    return getIndirectReturnResult(RetTy);
+
+    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+    // available register of the sequence %rax, %rdx is used.
+  case Integer:
+    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+
+    // If we have a sign or zero extended integer, make sure to return Extend
+    // so that the parameter gets the right LLVM IR attributes.
+    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+      // Treat an enum type as its underlying type.
+      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+        RetTy = EnumTy->getDecl()->getIntegerType();
+
+      if (RetTy->isIntegralOrEnumerationType() &&
+          isPromotableIntegerTypeForABI(RetTy))
+        return ABIArgInfo::getExtend(RetTy);
+    }
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+    // available SSE register of the sequence %xmm0, %xmm1 is used.
+  case SSE:
+    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+    // returned on the X87 stack in %st0 as 80-bit x87 number.
+  case X87:
+    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+    // part of the value is returned in %st0 and the imaginary part in
+    // %st1.
+  case ComplexX87:
+    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
+                                    llvm::Type::getX86_FP80Ty(getVMContext()));
+    break;
+  }
+
+  llvm::Type *HighPart = nullptr;
+  switch (Hi) {
+    // Memory was handled previously and X87 should
+    // never occur as a hi class.
+  case Memory:
+  case X87:
+    llvm_unreachable("Invalid classification for hi word.");
+
+  case ComplexX87: // Previously handled.
+  case NoClass:
+    break;
+
+  case Integer:
+    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+  case SSE:
+    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+    // is passed in the next available eightbyte chunk if the last used
+    // vector register.
+    //
+    // SSEUP should always be preceded by SSE, just widen.
+  case SSEUp:
+    assert(Lo == SSE && "Unexpected SSEUp classification.");
+    ResType = GetByteVectorType(RetTy);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+    // returned together with the previous X87 value in %st0.
+  case X87Up:
+    // If X87Up is preceded by X87, we don't need to do
+    // anything. However, in some cases with unions it may not be
+    // preceded by X87. In such situations we follow gcc and pass the
+    // extra bits in an SSE reg.
+    if (Lo != X87) {
+      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
+        return ABIArgInfo::getDirect(HighPart, 8);
+    }
+    break;
+  }
+
+  // If a high part was specified, merge it together with the low part.  It is
+  // known to pass in the high eightbyte of the result.  We do this by forming a
+  // first class struct aggregate with the high and low part: {low, high}
+  if (HighPart)
+    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+  return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
+                                    unsigned &neededInt, unsigned &neededSSE,
+                                    bool isNamedArg, bool IsRegCall) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  X86_64ABIInfo::Class Lo, Hi;
+  classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
+
+  // Check some invariants.
+  // FIXME: Enforce these by construction.
+  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+  neededInt = 0;
+  neededSSE = 0;
+  llvm::Type *ResType = nullptr;
+  switch (Lo) {
+  case NoClass:
+    if (Hi == NoClass)
+      return ABIArgInfo::getIgnore();
+    // If the low part is just padding, it takes no register, leave ResType
+    // null.
+    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+           "Unknown missing lo part");
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+    // on the stack.
+  case Memory:
+
+    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+    // COMPLEX_X87, it is passed in memory.
+  case X87:
+  case ComplexX87:
+    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
+      ++neededInt;
+    return getIndirectResult(Ty, freeIntRegs);
+
+  case SSEUp:
+  case X87Up:
+    llvm_unreachable("Invalid classification for lo word.");
+
+    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+    // and %r9 is used.
+  case Integer:
+    ++neededInt;
+
+    // Pick an 8-byte type based on the preferred type.
+    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
+
+    // If we have a sign or zero extended integer, make sure to return Extend
+    // so that the parameter gets the right LLVM IR attributes.
+    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+      // Treat an enum type as its underlying type.
+      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+        Ty = EnumTy->getDecl()->getIntegerType();
+
+      if (Ty->isIntegralOrEnumerationType() &&
+          isPromotableIntegerTypeForABI(Ty))
+        return ABIArgInfo::getExtend(Ty);
+    }
+
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+    // available SSE register is used, the registers are taken in the
+    // order from %xmm0 to %xmm7.
+  case SSE: {
+    llvm::Type *IRType = CGT.ConvertType(Ty);
+    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
+    ++neededSSE;
+    break;
+  }
+  }
+
+  llvm::Type *HighPart = nullptr;
+  switch (Hi) {
+    // Memory was handled previously, ComplexX87 and X87 should
+    // never occur as hi classes, and X87Up must be preceded by X87,
+    // which is passed in memory.
+  case Memory:
+  case X87:
+  case ComplexX87:
+    llvm_unreachable("Invalid classification for hi word.");
+
+  case NoClass: break;
+
+  case Integer:
+    ++neededInt;
+    // Pick an 8-byte type based on the preferred type.
+    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+
+    // X87Up generally doesn't occur here (long double is passed in
+    // memory), except in situations involving unions.
+  case X87Up:
+  case SSE:
+    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
+      return ABIArgInfo::getDirect(HighPart, 8);
+
+    ++neededSSE;
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+    // eightbyte is passed in the upper half of the last used SSE
+    // register.  This only happens when 128-bit vectors are passed.
+  case SSEUp:
+    assert(Lo == SSE && "Unexpected SSEUp classification");
+    ResType = GetByteVectorType(Ty);
+    break;
+  }
+
+  // If a high part was specified, merge it together with the low part.  It is
+  // known to pass in the high eightbyte of the result.  We do this by forming a
+  // first class struct aggregate with the high and low part: {low, high}
+  if (HighPart)
+    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+  return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
+                                             unsigned &NeededSSE,
+                                             unsigned &MaxVectorWidth) const {
+  auto RT = Ty->getAs<RecordType>();
+  assert(RT && "classifyRegCallStructType only valid with struct types");
+
+  if (RT->getDecl()->hasFlexibleArrayMember())
+    return getIndirectReturnResult(Ty);
+
+  // Sum up bases
+  if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+    if (CXXRD->isDynamicClass()) {
+      NeededInt = NeededSSE = 0;
+      return getIndirectReturnResult(Ty);
+    }
+
+    for (const auto &I : CXXRD->bases())
+      if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
+                                        MaxVectorWidth)
+              .isIndirect()) {
+        NeededInt = NeededSSE = 0;
+        return getIndirectReturnResult(Ty);
+      }
+  }
+
+  // Sum up members
+  for (const auto *FD : RT->getDecl()->fields()) {
+    QualType MTy = FD->getType();
+    if (MTy->isRecordType() && !MTy->isUnionType()) {
+      if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
+                                        MaxVectorWidth)
+              .isIndirect()) {
+        NeededInt = NeededSSE = 0;
+        return getIndirectReturnResult(Ty);
+      }
+    } else {
+      unsigned LocalNeededInt, LocalNeededSSE;
+      if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
+                               true, true)
+              .isIndirect()) {
+        NeededInt = NeededSSE = 0;
+        return getIndirectReturnResult(Ty);
+      }
+      if (const auto *AT = getContext().getAsConstantArrayType(MTy))
+        MTy = AT->getElementType();
+      if (const auto *VT = MTy->getAs<VectorType>())
+        if (getContext().getTypeSize(VT) > MaxVectorWidth)
+          MaxVectorWidth = getContext().getTypeSize(VT);
+      NeededInt += LocalNeededInt;
+      NeededSSE += LocalNeededSSE;
+    }
+  }
+
+  return ABIArgInfo::getDirect();
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
+                                         unsigned &NeededSSE,
+                                         unsigned &MaxVectorWidth) const {
+
+  NeededInt = 0;
+  NeededSSE = 0;
+  MaxVectorWidth = 0;
+
+  return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
+                                       MaxVectorWidth);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+  const unsigned CallingConv = FI.getCallingConvention();
+  // It is possible to force Win64 calling convention on any x86_64 target by
+  // using __attribute__((ms_abi)). In such case to correctly emit Win64
+  // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
+  if (CallingConv == llvm::CallingConv::Win64) {
+    WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
+    Win64ABIInfo.computeInfo(FI);
+    return;
+  }
+
+  bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
+
+  // Keep track of the number of assigned registers.
+  unsigned FreeIntRegs = IsRegCall ? 11 : 6;
+  unsigned FreeSSERegs = IsRegCall ? 16 : 8;
+  unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
+
+  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
+    if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
+        !FI.getReturnType()->getTypePtr()->isUnionType()) {
+      FI.getReturnInfo() = classifyRegCallStructType(
+          FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
+      if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
+        FreeIntRegs -= NeededInt;
+        FreeSSERegs -= NeededSSE;
+      } else {
+        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
+      }
+    } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
+               getContext().getCanonicalType(FI.getReturnType()
+                                                 ->getAs<ComplexType>()
+                                                 ->getElementType()) ==
+                   getContext().LongDoubleTy)
+      // Complex Long Double Type is passed in Memory when Regcall
+      // calling convention is used.
+      FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
+    else
+      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+  }
+
+  // If the return value is indirect, then the hidden argument is consuming one
+  // integer register.
+  if (FI.getReturnInfo().isIndirect())
+    --FreeIntRegs;
+  else if (NeededSSE && MaxVectorWidth > 0)
+    FI.setMaxVectorWidth(MaxVectorWidth);
+
+  // The chain argument effectively gives us another free register.
+  if (FI.isChainCall())
+    ++FreeIntRegs;
+
+  unsigned NumRequiredArgs = FI.getNumRequiredArgs();
+  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+  // get assigned (in left-to-right order) for passing as follows...
+  unsigned ArgNo = 0;
+  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+       it != ie; ++it, ++ArgNo) {
+    bool IsNamedArg = ArgNo < NumRequiredArgs;
+
+    if (IsRegCall && it->type->isStructureOrClassType())
+      it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
+                                           MaxVectorWidth);
+    else
+      it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
+                                      NeededSSE, IsNamedArg);
+
+    // AMD64-ABI 3.2.3p3: If there are no registers available for any
+    // eightbyte of an argument, the whole argument is passed on the
+    // stack. If registers have already been assigned for some
+    // eightbytes of such an argument, the assignments get reverted.
+    if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
+      FreeIntRegs -= NeededInt;
+      FreeSSERegs -= NeededSSE;
+      if (MaxVectorWidth > FI.getMaxVectorWidth())
+        FI.setMaxVectorWidth(MaxVectorWidth);
+    } else {
+      it->info = getIndirectResult(it->type, FreeIntRegs);
+    }
+  }
+}
+
+static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
+                                         Address VAListAddr, QualType Ty) {
+  Address overflow_arg_area_p =
+      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+  llvm::Value *overflow_arg_area =
+    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+  // byte boundary if alignment needed by type exceeds 8 byte boundary.
+  // It isn't stated explicitly in the standard, but in practice we use
+  // alignment greater than 16 where necessary.
+  CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
+  if (Align > CharUnits::fromQuantity(8)) {
+    overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
+                                                      Align);
+  }
+
+  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Value *Res =
+    CGF.Builder.CreateBitCast(overflow_arg_area,
+                              llvm::PointerType::getUnqual(LTy));
+
+  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+  // l->overflow_arg_area + sizeof(type).
+  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+  // an 8 byte boundary.
+
+  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+  llvm::Value *Offset =
+      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
+  overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
+                                            Offset, "overflow_arg_area.next");
+  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+  return Address(Res, LTy, Align);
+}
+
+Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                 QualType Ty) const {
+  // Assume that va_list type is correct; should be pointer to LLVM type:
+  // struct {
+  //   i32 gp_offset;
+  //   i32 fp_offset;
+  //   i8* overflow_arg_area;
+  //   i8* reg_save_area;
+  // };
+  unsigned neededInt, neededSSE;
+
+  Ty = getContext().getCanonicalType(Ty);
+  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
+                                       /*isNamedArg*/false);
+
+  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+  // in the registers. If not go to step 7.
+  if (!neededInt && !neededSSE)
+    return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
+
+  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+  // general purpose registers needed to pass type and num_fp to hold
+  // the number of floating point registers needed.
+
+  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+  // l->fp_offset > 304 - num_fp * 16 go to step 7.
+  //
+  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+  // register save space).
+
+  llvm::Value *InRegs = nullptr;
+  Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
+  llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
+  if (neededInt) {
+    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
+    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
+  }
+
+  if (neededSSE) {
+    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+    llvm::Value *FitsInFP =
+      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
+    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
+    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+  }
+
+  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+  // Emit code to load the value if it was passed in registers.
+
+  CGF.EmitBlock(InRegBlock);
+
+  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+  // an offset of l->gp_offset and/or l->fp_offset. This may require
+  // copying to a temporary location in case the parameter is passed
+  // in 
diff erent register classes or requires an alignment greater
+  // than 8 for general purpose registers and 16 for XMM registers.
+  //
+  // FIXME: This really results in shameful code when we end up needing to
+  // collect arguments from 
diff erent places; often what should result in a
+  // simple assembling of a structure from scattered addresses has many more
+  // loads than necessary. Can we clean this up?
+  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
+      CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
+
+  Address RegAddr = Address::invalid();
+  if (neededInt && neededSSE) {
+    // FIXME: Cleanup.
+    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
+    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+    Address Tmp = CGF.CreateMemTemp(Ty);
+    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
+    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+    llvm::Type *TyLo = ST->getElementType(0);
+    llvm::Type *TyHi = ST->getElementType(1);
+    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
+           "Unexpected ABI info for mixed regs");
+    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
+    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
+    llvm::Value *GPAddr =
+        CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
+    llvm::Value *FPAddr =
+        CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
+    llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
+    llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
+
+    // Copy the first element.
+    // FIXME: Our choice of alignment here and below is probably pessimistic.
+    llvm::Value *V = CGF.Builder.CreateAlignedLoad(
+        TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
+        CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
+    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+
+    // Copy the second element.
+    V = CGF.Builder.CreateAlignedLoad(
+        TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
+        CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
+    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
+  } else if (neededInt) {
+    RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
+                      CGF.Int8Ty, CharUnits::fromQuantity(8));
+    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
+
+    // Copy to a temporary if necessary to ensure the appropriate alignment.
+    auto TInfo = getContext().getTypeInfoInChars(Ty);
+    uint64_t TySize = TInfo.Width.getQuantity();
+    CharUnits TyAlign = TInfo.Align;
+
+    // Copy into a temporary if the type is more aligned than the
+    // register save area.
+    if (TyAlign.getQuantity() > 8) {
+      Address Tmp = CGF.CreateMemTemp(Ty);
+      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
+      RegAddr = Tmp;
+    }
+
+  } else if (neededSSE == 1) {
+    RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
+                      CGF.Int8Ty, CharUnits::fromQuantity(16));
+    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
+  } else {
+    assert(neededSSE == 2 && "Invalid number of needed registers!");
+    // SSE registers are spaced 16 bytes apart in the register save
+    // area, we need to collect the two eightbytes together.
+    // The ABI isn't explicit about this, but it seems reasonable
+    // to assume that the slots are 16-byte aligned, since the stack is
+    // naturally 16-byte aligned and the prologue is expected to store
+    // all the SSE registers to the RSA.
+    Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
+                                                      fp_offset),
+                                CGF.Int8Ty, CharUnits::fromQuantity(16));
+    Address RegAddrHi =
+      CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
+                                             CharUnits::fromQuantity(16));
+    llvm::Type *ST = AI.canHaveCoerceToType()
+                         ? AI.getCoerceToType()
+                         : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
+    llvm::Value *V;
+    Address Tmp = CGF.CreateMemTemp(Ty);
+    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
+    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
+        RegAddrLo, ST->getStructElementType(0)));
+    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
+        RegAddrHi, ST->getStructElementType(1)));
+    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
+  }
+
+  // AMD64-ABI 3.5.7p5: Step 5. Set:
+  // l->gp_offset = l->gp_offset + num_gp * 8
+  // l->fp_offset = l->fp_offset + num_fp * 16.
+  if (neededInt) {
+    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
+    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+                            gp_offset_p);
+  }
+  if (neededSSE) {
+    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
+    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+                            fp_offset_p);
+  }
+  CGF.EmitBranch(ContBlock);
+
+  // Emit code to load the value if it was passed in memory.
+
+  CGF.EmitBlock(InMemBlock);
+  Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
+
+  // Return the appropriate result.
+
+  CGF.EmitBlock(ContBlock);
+  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
+                                 "vaarg.addr");
+  return ResAddr;
+}
+
+Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                   QualType Ty) const {
+  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+  // not 1, 2, 4, or 8 bytes, must be passed by reference."
+  uint64_t Width = getContext().getTypeSize(Ty);
+  bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+                          CGF.getContext().getTypeInfoInChars(Ty),
+                          CharUnits::fromQuantity(8),
+                          /*allowHigherAlign*/ false);
+}
+
+ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
+    QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
+  const Type *Base = nullptr;
+  uint64_t NumElts = 0;
+
+  if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
+      isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
+    FreeSSERegs -= NumElts;
+    return getDirectX86Hva();
+  }
+  return current;
+}
+
+ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
+                                      bool IsReturnType, bool IsVectorCall,
+                                      bool IsRegCall) const {
+
+  if (Ty->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+    Ty = EnumTy->getDecl()->getIntegerType();
+
+  TypeInfo Info = getContext().getTypeInfo(Ty);
+  uint64_t Width = Info.Width;
+  CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
+
+  const RecordType *RT = Ty->getAs<RecordType>();
+  if (RT) {
+    if (!IsReturnType) {
+      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
+        return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+    }
+
+    if (RT->getDecl()->hasFlexibleArrayMember())
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+  }
+
+  const Type *Base = nullptr;
+  uint64_t NumElts = 0;
+  // vectorcall adds the concept of a homogenous vector aggregate, similar to
+  // other targets.
+  if ((IsVectorCall || IsRegCall) &&
+      isHomogeneousAggregate(Ty, Base, NumElts)) {
+    if (IsRegCall) {
+      if (FreeSSERegs >= NumElts) {
+        FreeSSERegs -= NumElts;
+        if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
+          return ABIArgInfo::getDirect();
+        return ABIArgInfo::getExpand();
+      }
+      return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+    } else if (IsVectorCall) {
+      if (FreeSSERegs >= NumElts &&
+          (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
+        FreeSSERegs -= NumElts;
+        return ABIArgInfo::getDirect();
+      } else if (IsReturnType) {
+        return ABIArgInfo::getExpand();
+      } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
+        // HVAs are delayed and reclassified in the 2nd step.
+        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+      }
+    }
+  }
+
+  if (Ty->isMemberPointerType()) {
+    // If the member pointer is represented by an LLVM int or ptr, pass it
+    // directly.
+    llvm::Type *LLTy = CGT.ConvertType(Ty);
+    if (LLTy->isPointerTy() || LLTy->isIntegerTy())
+      return ABIArgInfo::getDirect();
+  }
+
+  if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
+    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+    // not 1, 2, 4, or 8 bytes, must be passed by reference."
+    if (Width > 64 || !llvm::isPowerOf2_64(Width))
+      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+    // Otherwise, coerce it to a small integer.
+    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
+  }
+
+  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+    switch (BT->getKind()) {
+    case BuiltinType::Bool:
+      // Bool type is always extended to the ABI, other builtin types are not
+      // extended.
+      return ABIArgInfo::getExtend(Ty);
+
+    case BuiltinType::LongDouble:
+      // Mingw64 GCC uses the old 80 bit extended precision floating point
+      // unit. It passes them indirectly through memory.
+      if (IsMingw64) {
+        const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+        if (LDF == &llvm::APFloat::x87DoubleExtended())
+          return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+      }
+      break;
+
+    case BuiltinType::Int128:
+    case BuiltinType::UInt128:
+      // If it's a parameter type, the normal ABI rule is that arguments larger
+      // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
+      // even though it isn't particularly efficient.
+      if (!IsReturnType)
+        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+
+      // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
+      // Clang matches them for compatibility.
+      return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+          llvm::Type::getInt64Ty(getVMContext()), 2));
+
+    default:
+      break;
+    }
+  }
+
+  if (Ty->isBitIntType()) {
+    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+    // not 1, 2, 4, or 8 bytes, must be passed by reference."
+    // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
+    // or 8 bytes anyway as long is it fits in them, so we don't have to check
+    // the power of 2.
+    if (Width <= 64)
+      return ABIArgInfo::getDirect();
+    return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+  }
+
+  return ABIArgInfo::getDirect();
+}
+
+void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  const unsigned CC = FI.getCallingConvention();
+  bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
+  bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
+
+  // If __attribute__((sysv_abi)) is in use, use the SysV argument
+  // classification rules.
+  if (CC == llvm::CallingConv::X86_64_SysV) {
+    X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
+    SysVABIInfo.computeInfo(FI);
+    return;
+  }
+
+  unsigned FreeSSERegs = 0;
+  if (IsVectorCall) {
+    // We can use up to 4 SSE return registers with vectorcall.
+    FreeSSERegs = 4;
+  } else if (IsRegCall) {
+    // RegCall gives us 16 SSE registers.
+    FreeSSERegs = 16;
+  }
+
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
+                                  IsVectorCall, IsRegCall);
+
+  if (IsVectorCall) {
+    // We can use up to 6 SSE register parameters with vectorcall.
+    FreeSSERegs = 6;
+  } else if (IsRegCall) {
+    // RegCall gives us 16 SSE registers, we can reuse the return registers.
+    FreeSSERegs = 16;
+  }
+
+  unsigned ArgNum = 0;
+  unsigned ZeroSSERegs = 0;
+  for (auto &I : FI.arguments()) {
+    // Vectorcall in x64 only permits the first 6 arguments to be passed as
+    // XMM/YMM registers. After the sixth argument, pretend no vector
+    // registers are left.
+    unsigned *MaybeFreeSSERegs =
+        (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
+    I.info =
+        classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
+    ++ArgNum;
+  }
+
+  if (IsVectorCall) {
+    // For vectorcall, assign aggregate HVAs to any free vector registers in a
+    // second pass.
+    for (auto &I : FI.arguments())
+      I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
+  }
+}
+
+Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                    QualType Ty) const {
+  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+  // not 1, 2, 4, or 8 bytes, must be passed by reference."
+  uint64_t Width = getContext().getTypeSize(Ty);
+  bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+                          CGF.getContext().getTypeInfoInChars(Ty),
+                          CharUnits::fromQuantity(8),
+                          /*allowHigherAlign*/ false);
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
+    CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
+    unsigned NumRegisterParameters, bool SoftFloatABI) {
+  bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+      CGM.getTriple(), CGM.getCodeGenOpts());
+  return std::make_unique<X86_32TargetCodeGenInfo>(
+      CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+      NumRegisterParameters, SoftFloatABI);
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
+    CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
+    unsigned NumRegisterParameters) {
+  bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+      CGM.getTriple(), CGM.getCodeGenOpts());
+  return std::make_unique<WinX86_32TargetCodeGenInfo>(
+      CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+      NumRegisterParameters);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
+                                       X86AVXABILevel AVXLevel) {
+  return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
+                                          X86AVXABILevel AVXLevel) {
+  return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
+}

diff  --git a/clang/lib/CodeGen/Targets/XCore.cpp b/clang/lib/CodeGen/Targets/XCore.cpp
new file mode 100644
index 0000000000000..9a291218b419c
--- /dev/null
+++ b/clang/lib/CodeGen/Targets/XCore.cpp
@@ -0,0 +1,662 @@
+//===- XCore.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// XCore ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// A SmallStringEnc instance is used to build up the TypeString by passing
+/// it by reference between functions that append to it.
+typedef llvm::SmallString<128> SmallStringEnc;
+
+/// TypeStringCache caches the meta encodings of Types.
+///
+/// The reason for caching TypeStrings is two fold:
+///   1. To cache a type's encoding for later uses;
+///   2. As a means to break recursive member type inclusion.
+///
+/// A cache Entry can have a Status of:
+///   NonRecursive:   The type encoding is not recursive;
+///   Recursive:      The type encoding is recursive;
+///   Incomplete:     An incomplete TypeString;
+///   IncompleteUsed: An incomplete TypeString that has been used in a
+///                   Recursive type encoding.
+///
+/// A NonRecursive entry will have all of its sub-members expanded as fully
+/// as possible. Whilst it may contain types which are recursive, the type
+/// itself is not recursive and thus its encoding may be safely used whenever
+/// the type is encountered.
+///
+/// A Recursive entry will have all of its sub-members expanded as fully as
+/// possible. The type itself is recursive and it may contain other types which
+/// are recursive. The Recursive encoding must not be used during the expansion
+/// of a recursive type's recursive branch. For simplicity the code uses
+/// IncompleteCount to reject all usage of Recursive encodings for member types.
+///
+/// An Incomplete entry is always a RecordType and only encodes its
+/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
+/// are placed into the cache during type expansion as a means to identify and
+/// handle recursive inclusion of types as sub-members. If there is recursion
+/// the entry becomes IncompleteUsed.
+///
+/// During the expansion of a RecordType's members:
+///
+///   If the cache contains a NonRecursive encoding for the member type, the
+///   cached encoding is used;
+///
+///   If the cache contains a Recursive encoding for the member type, the
+///   cached encoding is 'Swapped' out, as it may be incorrect, and...
+///
+///   If the member is a RecordType, an Incomplete encoding is placed into the
+///   cache to break potential recursive inclusion of itself as a sub-member;
+///
+///   Once a member RecordType has been expanded, its temporary incomplete
+///   entry is removed from the cache. If a Recursive encoding was swapped out
+///   it is swapped back in;
+///
+///   If an incomplete entry is used to expand a sub-member, the incomplete
+///   entry is marked as IncompleteUsed. The cache keeps count of how many
+///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
+///
+///   If a member's encoding is found to be a NonRecursive or Recursive viz:
+///   IncompleteUsedCount==0, the member's encoding is added to the cache.
+///   Else the member is part of a recursive type and thus the recursion has
+///   been exited too soon for the encoding to be correct for the member.
+///
+class TypeStringCache {
+  enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
+  struct Entry {
+    std::string Str;     // The encoded TypeString for the type.
+    enum Status State;   // Information about the encoding in 'Str'.
+    std::string Swapped; // A temporary place holder for a Recursive encoding
+                         // during the expansion of RecordType's members.
+  };
+  std::map<const IdentifierInfo *, struct Entry> Map;
+  unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
+  unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
+public:
+  TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
+  void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
+  bool removeIncomplete(const IdentifierInfo *ID);
+  void addIfComplete(const IdentifierInfo *ID, StringRef Str,
+                     bool IsRecursive);
+  StringRef lookupStr(const IdentifierInfo *ID);
+};
+
+/// TypeString encodings for enum & union fields must be order.
+/// FieldEncoding is a helper for this ordering process.
+class FieldEncoding {
+  bool HasName;
+  std::string Enc;
+public:
+  FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
+  StringRef str() { return Enc; }
+  bool operator<(const FieldEncoding &rhs) const {
+    if (HasName != rhs.HasName) return HasName;
+    return Enc < rhs.Enc;
+  }
+};
+
+class XCoreABIInfo : public DefaultABIInfo {
+public:
+  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+};
+
+class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
+  mutable TypeStringCache TSC;
+  void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+                    const CodeGen::CodeGenModule &M) const;
+
+public:
+  XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
+      : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
+  void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
+                          const llvm::MapVector<GlobalDecl, StringRef>
+                              &MangledDeclNames) const override;
+};
+
+} // End anonymous namespace.
+
+// TODO: this implementation is likely now redundant with the default
+// EmitVAArg.
+Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                QualType Ty) const {
+  CGBuilderTy &Builder = CGF.Builder;
+
+  // Get the VAList.
+  CharUnits SlotSize = CharUnits::fromQuantity(4);
+  Address AP = Address(Builder.CreateLoad(VAListAddr),
+                       getVAListElementType(CGF), SlotSize);
+
+  // Handle the argument.
+  ABIArgInfo AI = classifyArgumentType(Ty);
+  CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
+  llvm::Type *ArgTy = CGT.ConvertType(Ty);
+  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+    AI.setCoerceToType(ArgTy);
+  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+
+  Address Val = Address::invalid();
+  CharUnits ArgSize = CharUnits::Zero();
+  switch (AI.getKind()) {
+  case ABIArgInfo::Expand:
+  case ABIArgInfo::CoerceAndExpand:
+  case ABIArgInfo::InAlloca:
+    llvm_unreachable("Unsupported ABI kind for va_arg");
+  case ABIArgInfo::Ignore:
+    Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign);
+    ArgSize = CharUnits::Zero();
+    break;
+  case ABIArgInfo::Extend:
+  case ABIArgInfo::Direct:
+    Val = Builder.CreateElementBitCast(AP, ArgTy);
+    ArgSize = CharUnits::fromQuantity(
+        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
+    ArgSize = ArgSize.alignTo(SlotSize);
+    break;
+  case ABIArgInfo::Indirect:
+  case ABIArgInfo::IndirectAliased:
+    Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
+    Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign);
+    ArgSize = SlotSize;
+    break;
+  }
+
+  // Increment the VAList.
+  if (!ArgSize.isZero()) {
+    Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
+    Builder.CreateStore(APN.getPointer(), VAListAddr);
+  }
+
+  return Val;
+}
+
+/// During the expansion of a RecordType, an incomplete TypeString is placed
+/// into the cache as a means to identify and break recursion.
+/// If there is a Recursive encoding in the cache, it is swapped out and will
+/// be reinserted by removeIncomplete().
+/// All other types of encoding should have been used rather than arriving here.
+void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
+                                    std::string StubEnc) {
+  if (!ID)
+    return;
+  Entry &E = Map[ID];
+  assert( (E.Str.empty() || E.State == Recursive) &&
+         "Incorrectly use of addIncomplete");
+  assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
+  E.Swapped.swap(E.Str); // swap out the Recursive
+  E.Str.swap(StubEnc);
+  E.State = Incomplete;
+  ++IncompleteCount;
+}
+
+/// Once the RecordType has been expanded, the temporary incomplete TypeString
+/// must be removed from the cache.
+/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
+/// Returns true if the RecordType was defined recursively.
+bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
+  if (!ID)
+    return false;
+  auto I = Map.find(ID);
+  assert(I != Map.end() && "Entry not present");
+  Entry &E = I->second;
+  assert( (E.State == Incomplete ||
+           E.State == IncompleteUsed) &&
+         "Entry must be an incomplete type");
+  bool IsRecursive = false;
+  if (E.State == IncompleteUsed) {
+    // We made use of our Incomplete encoding, thus we are recursive.
+    IsRecursive = true;
+    --IncompleteUsedCount;
+  }
+  if (E.Swapped.empty())
+    Map.erase(I);
+  else {
+    // Swap the Recursive back.
+    E.Swapped.swap(E.Str);
+    E.Swapped.clear();
+    E.State = Recursive;
+  }
+  --IncompleteCount;
+  return IsRecursive;
+}
+
+/// Add the encoded TypeString to the cache only if it is NonRecursive or
+/// Recursive (viz: all sub-members were expanded as fully as possible).
+void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
+                                    bool IsRecursive) {
+  if (!ID || IncompleteUsedCount)
+    return; // No key or it is an incomplete sub-type so don't add.
+  Entry &E = Map[ID];
+  if (IsRecursive && !E.Str.empty()) {
+    assert(E.State==Recursive && E.Str.size() == Str.size() &&
+           "This is not the same Recursive entry");
+    // The parent container was not recursive after all, so we could have used
+    // this Recursive sub-member entry after all, but we assumed the worse when
+    // we started viz: IncompleteCount!=0.
+    return;
+  }
+  assert(E.Str.empty() && "Entry already present");
+  E.Str = Str.str();
+  E.State = IsRecursive? Recursive : NonRecursive;
+}
+
+/// Return a cached TypeString encoding for the ID. If there isn't one, or we
+/// are recursively expanding a type (IncompleteCount != 0) and the cached
+/// encoding is Recursive, return an empty StringRef.
+StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
+  if (!ID)
+    return StringRef();   // We have no key.
+  auto I = Map.find(ID);
+  if (I == Map.end())
+    return StringRef();   // We have no encoding.
+  Entry &E = I->second;
+  if (E.State == Recursive && IncompleteCount)
+    return StringRef();   // We don't use Recursive encodings for member types.
+
+  if (E.State == Incomplete) {
+    // The incomplete type is being used to break out of recursion.
+    E.State = IncompleteUsed;
+    ++IncompleteUsedCount;
+  }
+  return E.Str;
+}
+
+/// The XCore ABI includes a type information section that communicates symbol
+/// type information to the linker. The linker uses this information to verify
+/// safety/correctness of things such as array bound and pointers et al.
+/// The ABI only requires C (and XC) language modules to emit TypeStrings.
+/// This type information (TypeString) is emitted into meta data for all global
+/// symbols: definitions, declarations, functions & variables.
+///
+/// The TypeString carries type, qualifier, name, size & value details.
+/// Please see 'Tools Development Guide' section 2.16.2 for format details:
+/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
+/// The output is tested by test/CodeGen/xcore-stringtype.c.
+///
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+                          const CodeGen::CodeGenModule &CGM,
+                          TypeStringCache &TSC);
+
+/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
+void XCoreTargetCodeGenInfo::emitTargetMD(
+    const Decl *D, llvm::GlobalValue *GV,
+    const CodeGen::CodeGenModule &CGM) const {
+  SmallStringEnc Enc;
+  if (getTypeString(Enc, D, CGM, TSC)) {
+    llvm::LLVMContext &Ctx = CGM.getModule().getContext();
+    llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
+                                llvm::MDString::get(Ctx, Enc.str())};
+    llvm::NamedMDNode *MD =
+      CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
+    MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+  }
+}
+
+void XCoreTargetCodeGenInfo::emitTargetMetadata(
+    CodeGen::CodeGenModule &CGM,
+    const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
+  // Warning, new MangledDeclNames may be appended within this loop.
+  // We rely on MapVector insertions adding new elements to the end
+  // of the container.
+  for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
+    auto Val = *(MangledDeclNames.begin() + I);
+    llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
+    if (GV) {
+      const Decl *D = Val.first.getDecl()->getMostRecentDecl();
+      emitTargetMD(D, GV, CGM);
+    }
+  }
+}
+
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+                       const CodeGen::CodeGenModule &CGM,
+                       TypeStringCache &TSC);
+
+/// Helper function for appendRecordType().
+/// Builds a SmallVector containing the encoded field types in declaration
+/// order.
+static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
+                             const RecordDecl *RD,
+                             const CodeGen::CodeGenModule &CGM,
+                             TypeStringCache &TSC) {
+  for (const auto *Field : RD->fields()) {
+    SmallStringEnc Enc;
+    Enc += "m(";
+    Enc += Field->getName();
+    Enc += "){";
+    if (Field->isBitField()) {
+      Enc += "b(";
+      llvm::raw_svector_ostream OS(Enc);
+      OS << Field->getBitWidthValue(CGM.getContext());
+      Enc += ':';
+    }
+    if (!appendType(Enc, Field->getType(), CGM, TSC))
+      return false;
+    if (Field->isBitField())
+      Enc += ')';
+    Enc += '}';
+    FE.emplace_back(!Field->getName().empty(), Enc);
+  }
+  return true;
+}
+
+/// Appends structure and union types to Enc and adds encoding to cache.
+/// Recursively calls appendType (via extractFieldType) for each field.
+/// Union types have their fields ordered according to the ABI.
+static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
+                             const CodeGen::CodeGenModule &CGM,
+                             TypeStringCache &TSC, const IdentifierInfo *ID) {
+  // Append the cached TypeString if we have one.
+  StringRef TypeString = TSC.lookupStr(ID);
+  if (!TypeString.empty()) {
+    Enc += TypeString;
+    return true;
+  }
+
+  // Start to emit an incomplete TypeString.
+  size_t Start = Enc.size();
+  Enc += (RT->isUnionType()? 'u' : 's');
+  Enc += '(';
+  if (ID)
+    Enc += ID->getName();
+  Enc += "){";
+
+  // We collect all encoded fields and order as necessary.
+  bool IsRecursive = false;
+  const RecordDecl *RD = RT->getDecl()->getDefinition();
+  if (RD && !RD->field_empty()) {
+    // An incomplete TypeString stub is placed in the cache for this RecordType
+    // so that recursive calls to this RecordType will use it whilst building a
+    // complete TypeString for this RecordType.
+    SmallVector<FieldEncoding, 16> FE;
+    std::string StubEnc(Enc.substr(Start).str());
+    StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
+    TSC.addIncomplete(ID, std::move(StubEnc));
+    if (!extractFieldType(FE, RD, CGM, TSC)) {
+      (void) TSC.removeIncomplete(ID);
+      return false;
+    }
+    IsRecursive = TSC.removeIncomplete(ID);
+    // The ABI requires unions to be sorted but not structures.
+    // See FieldEncoding::operator< for sort algorithm.
+    if (RT->isUnionType())
+      llvm::sort(FE);
+    // We can now complete the TypeString.
+    unsigned E = FE.size();
+    for (unsigned I = 0; I != E; ++I) {
+      if (I)
+        Enc += ',';
+      Enc += FE[I].str();
+    }
+  }
+  Enc += '}';
+  TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
+  return true;
+}
+
+/// Appends enum types to Enc and adds the encoding to the cache.
+static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
+                           TypeStringCache &TSC,
+                           const IdentifierInfo *ID) {
+  // Append the cached TypeString if we have one.
+  StringRef TypeString = TSC.lookupStr(ID);
+  if (!TypeString.empty()) {
+    Enc += TypeString;
+    return true;
+  }
+
+  size_t Start = Enc.size();
+  Enc += "e(";
+  if (ID)
+    Enc += ID->getName();
+  Enc += "){";
+
+  // We collect all encoded enumerations and order them alphanumerically.
+  if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
+    SmallVector<FieldEncoding, 16> FE;
+    for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
+         ++I) {
+      SmallStringEnc EnumEnc;
+      EnumEnc += "m(";
+      EnumEnc += I->getName();
+      EnumEnc += "){";
+      I->getInitVal().toString(EnumEnc);
+      EnumEnc += '}';
+      FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
+    }
+    llvm::sort(FE);
+    unsigned E = FE.size();
+    for (unsigned I = 0; I != E; ++I) {
+      if (I)
+        Enc += ',';
+      Enc += FE[I].str();
+    }
+  }
+  Enc += '}';
+  TSC.addIfComplete(ID, Enc.substr(Start), false);
+  return true;
+}
+
+/// Appends type's qualifier to Enc.
+/// This is done prior to appending the type's encoding.
+static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
+  // Qualifiers are emitted in alphabetical order.
+  static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
+  int Lookup = 0;
+  if (QT.isConstQualified())
+    Lookup += 1<<0;
+  if (QT.isRestrictQualified())
+    Lookup += 1<<1;
+  if (QT.isVolatileQualified())
+    Lookup += 1<<2;
+  Enc += Table[Lookup];
+}
+
+/// Appends built-in types to Enc.
+static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
+  const char *EncType;
+  switch (BT->getKind()) {
+    case BuiltinType::Void:
+      EncType = "0";
+      break;
+    case BuiltinType::Bool:
+      EncType = "b";
+      break;
+    case BuiltinType::Char_U:
+      EncType = "uc";
+      break;
+    case BuiltinType::UChar:
+      EncType = "uc";
+      break;
+    case BuiltinType::SChar:
+      EncType = "sc";
+      break;
+    case BuiltinType::UShort:
+      EncType = "us";
+      break;
+    case BuiltinType::Short:
+      EncType = "ss";
+      break;
+    case BuiltinType::UInt:
+      EncType = "ui";
+      break;
+    case BuiltinType::Int:
+      EncType = "si";
+      break;
+    case BuiltinType::ULong:
+      EncType = "ul";
+      break;
+    case BuiltinType::Long:
+      EncType = "sl";
+      break;
+    case BuiltinType::ULongLong:
+      EncType = "ull";
+      break;
+    case BuiltinType::LongLong:
+      EncType = "sll";
+      break;
+    case BuiltinType::Float:
+      EncType = "ft";
+      break;
+    case BuiltinType::Double:
+      EncType = "d";
+      break;
+    case BuiltinType::LongDouble:
+      EncType = "ld";
+      break;
+    default:
+      return false;
+  }
+  Enc += EncType;
+  return true;
+}
+
+/// Appends a pointer encoding to Enc before calling appendType for the pointee.
+static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
+                              const CodeGen::CodeGenModule &CGM,
+                              TypeStringCache &TSC) {
+  Enc += "p(";
+  if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
+    return false;
+  Enc += ')';
+  return true;
+}
+
+/// Appends array encoding to Enc before calling appendType for the element.
+static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
+                            const ArrayType *AT,
+                            const CodeGen::CodeGenModule &CGM,
+                            TypeStringCache &TSC, StringRef NoSizeEnc) {
+  if (AT->getSizeModifier() != ArrayType::Normal)
+    return false;
+  Enc += "a(";
+  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+    CAT->getSize().toStringUnsigned(Enc);
+  else
+    Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
+  Enc += ':';
+  // The Qualifiers should be attached to the type rather than the array.
+  appendQualifier(Enc, QT);
+  if (!appendType(Enc, AT->getElementType(), CGM, TSC))
+    return false;
+  Enc += ')';
+  return true;
+}
+
+/// Appends a function encoding to Enc, calling appendType for the return type
+/// and the arguments.
+static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
+                             const CodeGen::CodeGenModule &CGM,
+                             TypeStringCache &TSC) {
+  Enc += "f{";
+  if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
+    return false;
+  Enc += "}(";
+  if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
+    // N.B. we are only interested in the adjusted param types.
+    auto I = FPT->param_type_begin();
+    auto E = FPT->param_type_end();
+    if (I != E) {
+      do {
+        if (!appendType(Enc, *I, CGM, TSC))
+          return false;
+        ++I;
+        if (I != E)
+          Enc += ',';
+      } while (I != E);
+      if (FPT->isVariadic())
+        Enc += ",va";
+    } else {
+      if (FPT->isVariadic())
+        Enc += "va";
+      else
+        Enc += '0';
+    }
+  }
+  Enc += ')';
+  return true;
+}
+
+/// Handles the type's qualifier before dispatching a call to handle specific
+/// type encodings.
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+                       const CodeGen::CodeGenModule &CGM,
+                       TypeStringCache &TSC) {
+
+  QualType QT = QType.getCanonicalType();
+
+  if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
+    // The Qualifiers should be attached to the type rather than the array.
+    // Thus we don't call appendQualifier() here.
+    return appendArrayType(Enc, QT, AT, CGM, TSC, "");
+
+  appendQualifier(Enc, QT);
+
+  if (const BuiltinType *BT = QT->getAs<BuiltinType>())
+    return appendBuiltinType(Enc, BT);
+
+  if (const PointerType *PT = QT->getAs<PointerType>())
+    return appendPointerType(Enc, PT, CGM, TSC);
+
+  if (const EnumType *ET = QT->getAs<EnumType>())
+    return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
+
+  if (const RecordType *RT = QT->getAsStructureType())
+    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+  if (const RecordType *RT = QT->getAsUnionType())
+    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+  if (const FunctionType *FT = QT->getAs<FunctionType>())
+    return appendFunctionType(Enc, FT, CGM, TSC);
+
+  return false;
+}
+
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+                          const CodeGen::CodeGenModule &CGM,
+                          TypeStringCache &TSC) {
+  if (!D)
+    return false;
+
+  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+    if (FD->getLanguageLinkage() != CLanguageLinkage)
+      return false;
+    return appendType(Enc, FD->getType(), CGM, TSC);
+  }
+
+  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+    if (VD->getLanguageLinkage() != CLanguageLinkage)
+      return false;
+    QualType QT = VD->getType().getCanonicalType();
+    if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
+      // Global ArrayTypes are given a size of '*' if the size is unknown.
+      // The Qualifiers should be attached to the type rather than the array.
+      // Thus we don't call appendQualifier() here.
+      return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
+    }
+    return appendType(Enc, QT, CGM, TSC);
+  }
+  return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createXCoreTargetCodeGenInfo(CodeGenModule &CGM) {
+  return std::make_unique<XCoreTargetCodeGenInfo>(CGM.getTypes());
+}

diff  --git a/clang/test/CodeGenCXX/microsoft-abi-member-pointers.cpp b/clang/test/CodeGenCXX/microsoft-abi-member-pointers.cpp
index 6e4b7f259727b..04ce29c64d6e3 100644
--- a/clang/test/CodeGenCXX/microsoft-abi-member-pointers.cpp
+++ b/clang/test/CodeGenCXX/microsoft-abi-member-pointers.cpp
@@ -661,7 +661,7 @@ void (B2::*convertMultipleFuncToB2(void (Multiple::*mp)()))() {
   return static_cast<void (B2::*)()>(mp);
 // FIXME: We should return ptr instead of i32 here.  The ptrtoint cast prevents
 // LLVM from optimizing away the branch.  This is likely a bug in
-// lib/CodeGen/TargetInfo.cpp with how we classify memptr types for returns.
+// lib/CodeGen/Targets/X86.cpp with how we classify memptr types for returns.
 //
 // CHECK: define dso_local i32 @"?convertMultipleFuncToB2@@YAP8B2@@AEXXZP8Multiple@@AEXXZ at Z"{{.*}} {
 // CHECK:   store

diff  --git a/llvm/utils/gn/secondary/clang/lib/CodeGen/BUILD.gn b/llvm/utils/gn/secondary/clang/lib/CodeGen/BUILD.gn
index bdd742620e708..cc1b23e36002b 100644
--- a/llvm/utils/gn/secondary/clang/lib/CodeGen/BUILD.gn
+++ b/llvm/utils/gn/secondary/clang/lib/CodeGen/BUILD.gn
@@ -40,6 +40,8 @@ static_library("CodeGen") {
     "//llvm/lib/Transforms/Utils",
   ]
   sources = [
+    "ABIInfo.cpp",
+    "ABIInfoImpl.cpp",
     "BackendUtil.cpp",
     "CGAtomic.cpp",
     "CGBlocks.cpp",
@@ -96,6 +98,31 @@ static_library("CodeGen") {
     "SanitizerMetadata.cpp",
     "SwiftCallingConv.cpp",
     "TargetInfo.cpp",
+    "Targets/AArch64.cpp",
+    "Targets/AMDGPU.cpp",
+    "Targets/ARC.cpp",
+    "Targets/ARM.cpp",
+    "Targets/AVR.cpp",
+    "Targets/BPF.cpp",
+    "Targets/CSKY.cpp",
+    "Targets/Hexagon.cpp",
+    "Targets/Lanai.cpp",
+    "Targets/LoongArch.cpp",
+    "Targets/M68k.cpp",
+    "Targets/MSP430.cpp",
+    "Targets/Mips.cpp",
+    "Targets/NVPTX.cpp",
+    "Targets/PNaCl.cpp",
+    "Targets/PPC.cpp",
+    "Targets/RISCV.cpp",
+    "Targets/SPIR.cpp",
+    "Targets/Sparc.cpp",
+    "Targets/SystemZ.cpp",
+    "Targets/TCE.cpp",
+    "Targets/VE.cpp",
+    "Targets/WebAssembly.cpp",
+    "Targets/X86.cpp",
+    "Targets/XCore.cpp",
     "VarBypassDetector.cpp",
   ]
 }


        


More information about the cfe-commits mailing list