[clang] c7562e7 - [OpenMP][NFC] Generalize CGOpenMPRuntimeNVPTX as CGOpenMPRuntimeGPU

Saiyedul Islam via cfe-commits cfe-commits at lists.llvm.org
Fri Jul 17 07:38:46 PDT 2020


Author: Saiyedul Islam
Date: 2020-07-17T14:38:04Z
New Revision: c7562e77b3ace370679398b1325c66cd79418f41

URL: https://github.com/llvm/llvm-project/commit/c7562e77b3ace370679398b1325c66cd79418f41
DIFF: https://github.com/llvm/llvm-project/commit/c7562e77b3ace370679398b1325c66cd79418f41.diff

LOG: [OpenMP][NFC] Generalize CGOpenMPRuntimeNVPTX as CGOpenMPRuntimeGPU

Refactors CGOpenMPRuntimeNVPTX as CGOpenMPRuntimeGPU to make it a
generalization for OpenMP GPU Codegen. Target specific specialized
methods for NVPTX are defined in class CGOpenMPRuntimeNVPTX. This
paves the way for a clean and maintainable extension to more GPU
targets for OpenMP Codegen.

For original author (git blame) list of CGOpenMPRuntimeGPU code,
look in history of CGOpenMPRuntimeNVPTX.cpp and .h, after this commit.

Reviewed By: ABataev

Differential Revision: https://reviews.llvm.org/D83723

Added: 
    clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
    clang/lib/CodeGen/CGOpenMPRuntimeGPU.h

Modified: 
    clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
    clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.h
    clang/lib/CodeGen/CMakeLists.txt

Removed: 
    


################################################################################
diff  --git a/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp b/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
new file mode 100644
index 000000000000..92eca33ee97d
--- /dev/null
+++ b/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
@@ -0,0 +1,5230 @@
+//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a generalized class for OpenMP runtime code generation
+// specialized by GPU target NVPTX.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenMPRuntimeGPU.h"
+#include "CGOpenMPRuntimeNVPTX.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Cuda.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/IR/IntrinsicsNVPTX.h"
+
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm::omp;
+
+namespace {
+enum OpenMPRTLFunctionNVPTX {
+  /// Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
+  /// int16_t RequiresOMPRuntime);
+  OMPRTL_NVPTX__kmpc_kernel_init,
+  /// Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
+  OMPRTL_NVPTX__kmpc_kernel_deinit,
+  /// Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
+  /// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
+  OMPRTL_NVPTX__kmpc_spmd_kernel_init,
+  /// Call to void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
+  OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2,
+  /// Call to void __kmpc_kernel_prepare_parallel(void
+  /// *outlined_function);
+  OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
+  /// Call to bool __kmpc_kernel_parallel(void **outlined_function);
+  OMPRTL_NVPTX__kmpc_kernel_parallel,
+  /// Call to void __kmpc_kernel_end_parallel();
+  OMPRTL_NVPTX__kmpc_kernel_end_parallel,
+  /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+  /// global_tid);
+  OMPRTL_NVPTX__kmpc_serialized_parallel,
+  /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+  /// global_tid);
+  OMPRTL_NVPTX__kmpc_end_serialized_parallel,
+  /// Call to int32_t __kmpc_shuffle_int32(int32_t element,
+  /// int16_t lane_offset, int16_t warp_size);
+  OMPRTL_NVPTX__kmpc_shuffle_int32,
+  /// Call to int64_t __kmpc_shuffle_int64(int64_t element,
+  /// int16_t lane_offset, int16_t warp_size);
+  OMPRTL_NVPTX__kmpc_shuffle_int64,
+  /// Call to __kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc, kmp_int32
+  /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
+  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+  /// lane_offset, int16_t shortCircuit),
+  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
+  OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2,
+  /// Call to __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
+  /// global_tid, void *global_buffer, int32_t num_of_records, void*
+  /// reduce_data,
+  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+  /// lane_offset, int16_t shortCircuit),
+  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
+  /// (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
+  /// void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
+  /// void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
+  /// int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
+  /// *buffer, int idx, void *reduce_data));
+  OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2,
+  /// Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
+  OMPRTL_NVPTX__kmpc_end_reduce_nowait,
+  /// Call to void __kmpc_data_sharing_init_stack();
+  OMPRTL_NVPTX__kmpc_data_sharing_init_stack,
+  /// Call to void __kmpc_data_sharing_init_stack_spmd();
+  OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd,
+  /// Call to void* __kmpc_data_sharing_coalesced_push_stack(size_t size,
+  /// int16_t UseSharedMemory);
+  OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack,
+  /// Call to void* __kmpc_data_sharing_push_stack(size_t size, int16_t
+  /// UseSharedMemory);
+  OMPRTL_NVPTX__kmpc_data_sharing_push_stack,
+  /// Call to void __kmpc_data_sharing_pop_stack(void *a);
+  OMPRTL_NVPTX__kmpc_data_sharing_pop_stack,
+  /// Call to void __kmpc_begin_sharing_variables(void ***args,
+  /// size_t n_args);
+  OMPRTL_NVPTX__kmpc_begin_sharing_variables,
+  /// Call to void __kmpc_end_sharing_variables();
+  OMPRTL_NVPTX__kmpc_end_sharing_variables,
+  /// Call to void __kmpc_get_shared_variables(void ***GlobalArgs)
+  OMPRTL_NVPTX__kmpc_get_shared_variables,
+  /// Call to uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32
+  /// global_tid);
+  OMPRTL_NVPTX__kmpc_parallel_level,
+  /// Call to int8_t __kmpc_is_spmd_exec_mode();
+  OMPRTL_NVPTX__kmpc_is_spmd_exec_mode,
+  /// Call to void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
+  /// const void *buf, size_t size, int16_t is_shared, const void **res);
+  OMPRTL_NVPTX__kmpc_get_team_static_memory,
+  /// Call to void __kmpc_restore_team_static_memory(int16_t
+  /// isSPMDExecutionMode, int16_t is_shared);
+  OMPRTL_NVPTX__kmpc_restore_team_static_memory,
+  /// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+  OMPRTL__kmpc_barrier,
+  /// Call to void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
+  /// global_tid);
+  OMPRTL__kmpc_barrier_simple_spmd,
+  /// Call to int32_t __kmpc_warp_active_thread_mask(void);
+  OMPRTL_NVPTX__kmpc_warp_active_thread_mask,
+  /// Call to void __kmpc_syncwarp(int32_t Mask);
+  OMPRTL_NVPTX__kmpc_syncwarp,
+};
+
+/// Pre(post)-action for 
diff erent OpenMP constructs specialized for NVPTX.
+class NVPTXActionTy final : public PrePostActionTy {
+  llvm::FunctionCallee EnterCallee = nullptr;
+  ArrayRef<llvm::Value *> EnterArgs;
+  llvm::FunctionCallee ExitCallee = nullptr;
+  ArrayRef<llvm::Value *> ExitArgs;
+  bool Conditional = false;
+  llvm::BasicBlock *ContBlock = nullptr;
+
+public:
+  NVPTXActionTy(llvm::FunctionCallee EnterCallee,
+                ArrayRef<llvm::Value *> EnterArgs,
+                llvm::FunctionCallee ExitCallee,
+                ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
+      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
+        ExitArgs(ExitArgs), Conditional(Conditional) {}
+  void Enter(CodeGenFunction &CGF) override {
+    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
+    if (Conditional) {
+      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
+      auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+      ContBlock = CGF.createBasicBlock("omp_if.end");
+      // Generate the branch (If-stmt)
+      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+      CGF.EmitBlock(ThenBlock);
+    }
+  }
+  void Done(CodeGenFunction &CGF) {
+    // Emit the rest of blocks/branches
+    CGF.EmitBranch(ContBlock);
+    CGF.EmitBlock(ContBlock, true);
+  }
+  void Exit(CodeGenFunction &CGF) override {
+    CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
+  }
+};
+
+/// A class to track the execution mode when codegening directives within
+/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
+/// to the target region and used by containing directives such as 'parallel'
+/// to emit optimized code.
+class ExecutionRuntimeModesRAII {
+private:
+  CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
+      CGOpenMPRuntimeGPU::EM_Unknown;
+  CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
+  bool SavedRuntimeMode = false;
+  bool *RuntimeMode = nullptr;
+
+public:
+  /// Constructor for Non-SPMD mode.
+  ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
+      : ExecMode(ExecMode) {
+    SavedExecMode = ExecMode;
+    ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
+  }
+  /// Constructor for SPMD mode.
+  ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
+                            bool &RuntimeMode, bool FullRuntimeMode)
+      : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
+    SavedExecMode = ExecMode;
+    SavedRuntimeMode = RuntimeMode;
+    ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
+    RuntimeMode = FullRuntimeMode;
+  }
+  ~ExecutionRuntimeModesRAII() {
+    ExecMode = SavedExecMode;
+    if (RuntimeMode)
+      *RuntimeMode = SavedRuntimeMode;
+  }
+};
+
+/// GPU Configuration:  This information can be derived from cuda registers,
+/// however, providing compile time constants helps generate more efficient
+/// code.  For all practical purposes this is fine because the configuration
+/// is the same for all known NVPTX architectures.
+enum MachineConfiguration : unsigned {
+  WarpSize = 32,
+  /// Number of bits required to represent a lane identifier, which is
+  /// computed as log_2(WarpSize).
+  LaneIDBits = 5,
+  LaneIDMask = WarpSize - 1,
+
+  /// Global memory alignment for performance.
+  GlobalMemoryAlignment = 128,
+
+  /// Maximal size of the shared memory buffer.
+  SharedMemorySize = 128,
+};
+
+static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
+  RefExpr = RefExpr->IgnoreParens();
+  if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
+    const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
+    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+      Base = TempASE->getBase()->IgnoreParenImpCasts();
+    RefExpr = Base;
+  } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
+    const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
+    while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
+      Base = TempOASE->getBase()->IgnoreParenImpCasts();
+    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+      Base = TempASE->getBase()->IgnoreParenImpCasts();
+    RefExpr = Base;
+  }
+  RefExpr = RefExpr->IgnoreParenImpCasts();
+  if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
+    return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
+  const auto *ME = cast<MemberExpr>(RefExpr);
+  return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
+}
+
+
+static RecordDecl *buildRecordForGlobalizedVars(
+    ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
+    ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
+    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+        &MappedDeclsFields, int BufSize) {
+  using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
+  if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
+    return nullptr;
+  SmallVector<VarsDataTy, 4> GlobalizedVars;
+  for (const ValueDecl *D : EscapedDecls)
+    GlobalizedVars.emplace_back(
+        CharUnits::fromQuantity(std::max(
+            C.getDeclAlign(D).getQuantity(),
+            static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
+        D);
+  for (const ValueDecl *D : EscapedDeclsForTeams)
+    GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
+  llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
+    return L.first > R.first;
+  });
+
+  // Build struct _globalized_locals_ty {
+  //         /*  globalized vars  */[WarSize] align (max(decl_align,
+  //         GlobalMemoryAlignment))
+  //         /*  globalized vars  */ for EscapedDeclsForTeams
+  //       };
+  RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
+  GlobalizedRD->startDefinition();
+  llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
+      EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
+  for (const auto &Pair : GlobalizedVars) {
+    const ValueDecl *VD = Pair.second;
+    QualType Type = VD->getType();
+    if (Type->isLValueReferenceType())
+      Type = C.getPointerType(Type.getNonReferenceType());
+    else
+      Type = Type.getNonReferenceType();
+    SourceLocation Loc = VD->getLocation();
+    FieldDecl *Field;
+    if (SingleEscaped.count(VD)) {
+      Field = FieldDecl::Create(
+          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
+          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
+          /*BW=*/nullptr, /*Mutable=*/false,
+          /*InitStyle=*/ICIS_NoInit);
+      Field->setAccess(AS_public);
+      if (VD->hasAttrs()) {
+        for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
+             E(VD->getAttrs().end());
+             I != E; ++I)
+          Field->addAttr(*I);
+      }
+    } else {
+      llvm::APInt ArraySize(32, BufSize);
+      Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
+                                    0);
+      Field = FieldDecl::Create(
+          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
+          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
+          /*BW=*/nullptr, /*Mutable=*/false,
+          /*InitStyle=*/ICIS_NoInit);
+      Field->setAccess(AS_public);
+      llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
+                                     static_cast<CharUnits::QuantityType>(
+                                         GlobalMemoryAlignment)));
+      Field->addAttr(AlignedAttr::CreateImplicit(
+          C, /*IsAlignmentExpr=*/true,
+          IntegerLiteral::Create(C, Align,
+                                 C.getIntTypeForBitwidth(32, /*Signed=*/0),
+                                 SourceLocation()),
+          {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
+    }
+    GlobalizedRD->addDecl(Field);
+    MappedDeclsFields.try_emplace(VD, Field);
+  }
+  GlobalizedRD->completeDefinition();
+  return GlobalizedRD;
+}
+
+/// Get the list of variables that can escape their declaration context.
+class CheckVarsEscapingDeclContext final
+    : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
+  CodeGenFunction &CGF;
+  llvm::SetVector<const ValueDecl *> EscapedDecls;
+  llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
+  llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
+  RecordDecl *GlobalizedRD = nullptr;
+  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
+  bool AllEscaped = false;
+  bool IsForCombinedParallelRegion = false;
+
+  void markAsEscaped(const ValueDecl *VD) {
+    // Do not globalize declare target variables.
+    if (!isa<VarDecl>(VD) ||
+        OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
+      return;
+    VD = cast<ValueDecl>(VD->getCanonicalDecl());
+    // Use user-specified allocation.
+    if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
+      return;
+    // Variables captured by value must be globalized.
+    if (auto *CSI = CGF.CapturedStmtInfo) {
+      if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
+        // Check if need to capture the variable that was already captured by
+        // value in the outer region.
+        if (!IsForCombinedParallelRegion) {
+          if (!FD->hasAttrs())
+            return;
+          const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
+          if (!Attr)
+            return;
+          if (((Attr->getCaptureKind() != OMPC_map) &&
+               !isOpenMPPrivate(Attr->getCaptureKind())) ||
+              ((Attr->getCaptureKind() == OMPC_map) &&
+               !FD->getType()->isAnyPointerType()))
+            return;
+        }
+        if (!FD->getType()->isReferenceType()) {
+          assert(!VD->getType()->isVariablyModifiedType() &&
+                 "Parameter captured by value with variably modified type");
+          EscapedParameters.insert(VD);
+        } else if (!IsForCombinedParallelRegion) {
+          return;
+        }
+      }
+    }
+    if ((!CGF.CapturedStmtInfo ||
+         (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
+        VD->getType()->isReferenceType())
+      // Do not globalize variables with reference type.
+      return;
+    if (VD->getType()->isVariablyModifiedType())
+      EscapedVariableLengthDecls.insert(VD);
+    else
+      EscapedDecls.insert(VD);
+  }
+
+  void VisitValueDecl(const ValueDecl *VD) {
+    if (VD->getType()->isLValueReferenceType())
+      markAsEscaped(VD);
+    if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
+      if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
+        const bool SavedAllEscaped = AllEscaped;
+        AllEscaped = VD->getType()->isLValueReferenceType();
+        Visit(VarD->getInit());
+        AllEscaped = SavedAllEscaped;
+      }
+    }
+  }
+  void VisitOpenMPCapturedStmt(const CapturedStmt *S,
+                               ArrayRef<OMPClause *> Clauses,
+                               bool IsCombinedParallelRegion) {
+    if (!S)
+      return;
+    for (const CapturedStmt::Capture &C : S->captures()) {
+      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
+        const ValueDecl *VD = C.getCapturedVar();
+        bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
+        if (IsCombinedParallelRegion) {
+          // Check if the variable is privatized in the combined construct and
+          // those private copies must be shared in the inner parallel
+          // directive.
+          IsForCombinedParallelRegion = false;
+          for (const OMPClause *C : Clauses) {
+            if (!isOpenMPPrivate(C->getClauseKind()) ||
+                C->getClauseKind() == OMPC_reduction ||
+                C->getClauseKind() == OMPC_linear ||
+                C->getClauseKind() == OMPC_private)
+              continue;
+            ArrayRef<const Expr *> Vars;
+            if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
+              Vars = PC->getVarRefs();
+            else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
+              Vars = PC->getVarRefs();
+            else
+              llvm_unreachable("Unexpected clause.");
+            for (const auto *E : Vars) {
+              const Decl *D =
+                  cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
+              if (D == VD->getCanonicalDecl()) {
+                IsForCombinedParallelRegion = true;
+                break;
+              }
+            }
+            if (IsForCombinedParallelRegion)
+              break;
+          }
+        }
+        markAsEscaped(VD);
+        if (isa<OMPCapturedExprDecl>(VD))
+          VisitValueDecl(VD);
+        IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
+      }
+    }
+  }
+
+  void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
+    assert(!GlobalizedRD &&
+           "Record for globalized variables is built already.");
+    ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
+    if (IsInTTDRegion)
+      EscapedDeclsForTeams = EscapedDecls.getArrayRef();
+    else
+      EscapedDeclsForParallel = EscapedDecls.getArrayRef();
+    GlobalizedRD = ::buildRecordForGlobalizedVars(
+        CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
+        MappedDeclsFields, WarpSize);
+  }
+
+public:
+  CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
+                               ArrayRef<const ValueDecl *> TeamsReductions)
+      : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
+  }
+  virtual ~CheckVarsEscapingDeclContext() = default;
+  void VisitDeclStmt(const DeclStmt *S) {
+    if (!S)
+      return;
+    for (const Decl *D : S->decls())
+      if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
+        VisitValueDecl(VD);
+  }
+  void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
+    if (!D)
+      return;
+    if (!D->hasAssociatedStmt())
+      return;
+    if (const auto *S =
+            dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
+      // Do not analyze directives that do not actually require capturing,
+      // like `omp for` or `omp simd` directives.
+      llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
+      getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
+      if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
+        VisitStmt(S->getCapturedStmt());
+        return;
+      }
+      VisitOpenMPCapturedStmt(
+          S, D->clauses(),
+          CaptureRegions.back() == OMPD_parallel &&
+              isOpenMPDistributeDirective(D->getDirectiveKind()));
+    }
+  }
+  void VisitCapturedStmt(const CapturedStmt *S) {
+    if (!S)
+      return;
+    for (const CapturedStmt::Capture &C : S->captures()) {
+      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
+        const ValueDecl *VD = C.getCapturedVar();
+        markAsEscaped(VD);
+        if (isa<OMPCapturedExprDecl>(VD))
+          VisitValueDecl(VD);
+      }
+    }
+  }
+  void VisitLambdaExpr(const LambdaExpr *E) {
+    if (!E)
+      return;
+    for (const LambdaCapture &C : E->captures()) {
+      if (C.capturesVariable()) {
+        if (C.getCaptureKind() == LCK_ByRef) {
+          const ValueDecl *VD = C.getCapturedVar();
+          markAsEscaped(VD);
+          if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
+            VisitValueDecl(VD);
+        }
+      }
+    }
+  }
+  void VisitBlockExpr(const BlockExpr *E) {
+    if (!E)
+      return;
+    for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
+      if (C.isByRef()) {
+        const VarDecl *VD = C.getVariable();
+        markAsEscaped(VD);
+        if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
+          VisitValueDecl(VD);
+      }
+    }
+  }
+  void VisitCallExpr(const CallExpr *E) {
+    if (!E)
+      return;
+    for (const Expr *Arg : E->arguments()) {
+      if (!Arg)
+        continue;
+      if (Arg->isLValue()) {
+        const bool SavedAllEscaped = AllEscaped;
+        AllEscaped = true;
+        Visit(Arg);
+        AllEscaped = SavedAllEscaped;
+      } else {
+        Visit(Arg);
+      }
+    }
+    Visit(E->getCallee());
+  }
+  void VisitDeclRefExpr(const DeclRefExpr *E) {
+    if (!E)
+      return;
+    const ValueDecl *VD = E->getDecl();
+    if (AllEscaped)
+      markAsEscaped(VD);
+    if (isa<OMPCapturedExprDecl>(VD))
+      VisitValueDecl(VD);
+    else if (const auto *VarD = dyn_cast<VarDecl>(VD))
+      if (VarD->isInitCapture())
+        VisitValueDecl(VD);
+  }
+  void VisitUnaryOperator(const UnaryOperator *E) {
+    if (!E)
+      return;
+    if (E->getOpcode() == UO_AddrOf) {
+      const bool SavedAllEscaped = AllEscaped;
+      AllEscaped = true;
+      Visit(E->getSubExpr());
+      AllEscaped = SavedAllEscaped;
+    } else {
+      Visit(E->getSubExpr());
+    }
+  }
+  void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
+    if (!E)
+      return;
+    if (E->getCastKind() == CK_ArrayToPointerDecay) {
+      const bool SavedAllEscaped = AllEscaped;
+      AllEscaped = true;
+      Visit(E->getSubExpr());
+      AllEscaped = SavedAllEscaped;
+    } else {
+      Visit(E->getSubExpr());
+    }
+  }
+  void VisitExpr(const Expr *E) {
+    if (!E)
+      return;
+    bool SavedAllEscaped = AllEscaped;
+    if (!E->isLValue())
+      AllEscaped = false;
+    for (const Stmt *Child : E->children())
+      if (Child)
+        Visit(Child);
+    AllEscaped = SavedAllEscaped;
+  }
+  void VisitStmt(const Stmt *S) {
+    if (!S)
+      return;
+    for (const Stmt *Child : S->children())
+      if (Child)
+        Visit(Child);
+  }
+
+  /// Returns the record that handles all the escaped local variables and used
+  /// instead of their original storage.
+  const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
+    if (!GlobalizedRD)
+      buildRecordForGlobalizedVars(IsInTTDRegion);
+    return GlobalizedRD;
+  }
+
+  /// Returns the field in the globalized record for the escaped variable.
+  const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
+    assert(GlobalizedRD &&
+           "Record for globalized variables must be generated already.");
+    auto I = MappedDeclsFields.find(VD);
+    if (I == MappedDeclsFields.end())
+      return nullptr;
+    return I->getSecond();
+  }
+
+  /// Returns the list of the escaped local variables/parameters.
+  ArrayRef<const ValueDecl *> getEscapedDecls() const {
+    return EscapedDecls.getArrayRef();
+  }
+
+  /// Checks if the escaped local variable is actually a parameter passed by
+  /// value.
+  const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
+    return EscapedParameters;
+  }
+
+  /// Returns the list of the escaped variables with the variably modified
+  /// types.
+  ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
+    return EscapedVariableLengthDecls.getArrayRef();
+  }
+};
+} // anonymous namespace
+
+/// Get the id of the current thread on the GPU.
+static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
+  return CGF.EmitRuntimeCall(
+      llvm::Intrinsic::getDeclaration(
+          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
+      "nvptx_tid");
+}
+
+/// Get the id of the warp in the block.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
+}
+
+/// Get the id of the current lane in the Warp.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
+                       "nvptx_lane_id");
+}
+
+/// Get the maximum number of threads in a block of the GPU.
+static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
+  return CGF.EmitRuntimeCall(
+      llvm::Intrinsic::getDeclaration(
+          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
+      "nvptx_num_threads");
+}
+
+/// Get the value of the thread_limit clause in the teams directive.
+/// For the 'generic' execution mode, the runtime encodes thread_limit in
+/// the launch parameters, always starting thread_limit+warpSize threads per
+/// CTA. The threads in the last warp are reserved for master execution.
+/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
+static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
+                                   bool IsInSPMDExecutionMode = false) {
+  CGBuilderTy &Bld = CGF.Builder;
+  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+  return IsInSPMDExecutionMode
+             ? getNVPTXNumThreads(CGF)
+             : Bld.CreateNUWSub(getNVPTXNumThreads(CGF), RT.getGPUWarpSize(CGF),
+                                "thread_limit");
+}
+
+/// Get the thread id of the OMP master thread.
+/// The master thread id is the first thread (lane) of the last warp in the
+/// GPU block.  Warp size is assumed to be some power of 2.
+/// Thread id is 0 indexed.
+/// E.g: If NumThreads is 33, master id is 32.
+///      If NumThreads is 64, master id is 32.
+///      If NumThreads is 1024, master id is 992.
+static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
+  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+  // We assume that the warp size is a power of 2.
+  llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1));
+
+  return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
+                       Bld.CreateNot(Mask), "master_tid");
+}
+
+CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState(
+    CodeGenModule &CGM, SourceLocation Loc)
+    : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
+      Loc(Loc) {
+  createWorkerFunction(CGM);
+}
+
+void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction(
+    CodeGenModule &CGM) {
+  // Create an worker function with no arguments.
+
+  WorkerFn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      /*placeholder=*/"_worker", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
+  WorkerFn->setDoesNotRecurse();
+}
+
+CGOpenMPRuntimeGPU::ExecutionMode
+CGOpenMPRuntimeGPU::getExecutionMode() const {
+  return CurrentExecutionMode;
+}
+
+static CGOpenMPRuntimeGPU::DataSharingMode
+getDataSharingMode(CodeGenModule &CGM) {
+  return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
+                                          : CGOpenMPRuntimeGPU::Generic;
+}
+
+/// Check for inner (nested) SPMD construct, if any
+static bool hasNestedSPMDDirective(ASTContext &Ctx,
+                                   const OMPExecutableDirective &D) {
+  const auto *CS = D.getInnermostCapturedStmt();
+  const auto *Body =
+      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+
+  if (const auto *NestedDir =
+          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+    switch (D.getDirectiveKind()) {
+    case OMPD_target:
+      if (isOpenMPParallelDirective(DKind))
+        return true;
+      if (DKind == OMPD_teams) {
+        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+            /*IgnoreCaptured=*/true);
+        if (!Body)
+          return false;
+        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+        if (const auto *NND =
+                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+          DKind = NND->getDirectiveKind();
+          if (isOpenMPParallelDirective(DKind))
+            return true;
+        }
+      }
+      return false;
+    case OMPD_target_teams:
+      return isOpenMPParallelDirective(DKind);
+    case OMPD_target_simd:
+    case OMPD_target_parallel:
+    case OMPD_target_parallel_for:
+    case OMPD_target_parallel_for_simd:
+    case OMPD_target_teams_distribute:
+    case OMPD_target_teams_distribute_simd:
+    case OMPD_target_teams_distribute_parallel_for:
+    case OMPD_target_teams_distribute_parallel_for_simd:
+    case OMPD_parallel:
+    case OMPD_for:
+    case OMPD_parallel_for:
+    case OMPD_parallel_master:
+    case OMPD_parallel_sections:
+    case OMPD_for_simd:
+    case OMPD_parallel_for_simd:
+    case OMPD_cancel:
+    case OMPD_cancellation_point:
+    case OMPD_ordered:
+    case OMPD_threadprivate:
+    case OMPD_allocate:
+    case OMPD_task:
+    case OMPD_simd:
+    case OMPD_sections:
+    case OMPD_section:
+    case OMPD_single:
+    case OMPD_master:
+    case OMPD_critical:
+    case OMPD_taskyield:
+    case OMPD_barrier:
+    case OMPD_taskwait:
+    case OMPD_taskgroup:
+    case OMPD_atomic:
+    case OMPD_flush:
+    case OMPD_depobj:
+    case OMPD_scan:
+    case OMPD_teams:
+    case OMPD_target_data:
+    case OMPD_target_exit_data:
+    case OMPD_target_enter_data:
+    case OMPD_distribute:
+    case OMPD_distribute_simd:
+    case OMPD_distribute_parallel_for:
+    case OMPD_distribute_parallel_for_simd:
+    case OMPD_teams_distribute:
+    case OMPD_teams_distribute_simd:
+    case OMPD_teams_distribute_parallel_for:
+    case OMPD_teams_distribute_parallel_for_simd:
+    case OMPD_target_update:
+    case OMPD_declare_simd:
+    case OMPD_declare_variant:
+    case OMPD_begin_declare_variant:
+    case OMPD_end_declare_variant:
+    case OMPD_declare_target:
+    case OMPD_end_declare_target:
+    case OMPD_declare_reduction:
+    case OMPD_declare_mapper:
+    case OMPD_taskloop:
+    case OMPD_taskloop_simd:
+    case OMPD_master_taskloop:
+    case OMPD_master_taskloop_simd:
+    case OMPD_parallel_master_taskloop:
+    case OMPD_parallel_master_taskloop_simd:
+    case OMPD_requires:
+    case OMPD_unknown:
+    default:
+      llvm_unreachable("Unexpected directive.");
+    }
+  }
+
+  return false;
+}
+
+static bool supportsSPMDExecutionMode(ASTContext &Ctx,
+                                      const OMPExecutableDirective &D) {
+  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+  switch (DirectiveKind) {
+  case OMPD_target:
+  case OMPD_target_teams:
+    return hasNestedSPMDDirective(Ctx, D);
+  case OMPD_target_parallel:
+  case OMPD_target_parallel_for:
+  case OMPD_target_parallel_for_simd:
+  case OMPD_target_teams_distribute_parallel_for:
+  case OMPD_target_teams_distribute_parallel_for_simd:
+  case OMPD_target_simd:
+  case OMPD_target_teams_distribute_simd:
+    return true;
+  case OMPD_target_teams_distribute:
+    return false;
+  case OMPD_parallel:
+  case OMPD_for:
+  case OMPD_parallel_for:
+  case OMPD_parallel_master:
+  case OMPD_parallel_sections:
+  case OMPD_for_simd:
+  case OMPD_parallel_for_simd:
+  case OMPD_cancel:
+  case OMPD_cancellation_point:
+  case OMPD_ordered:
+  case OMPD_threadprivate:
+  case OMPD_allocate:
+  case OMPD_task:
+  case OMPD_simd:
+  case OMPD_sections:
+  case OMPD_section:
+  case OMPD_single:
+  case OMPD_master:
+  case OMPD_critical:
+  case OMPD_taskyield:
+  case OMPD_barrier:
+  case OMPD_taskwait:
+  case OMPD_taskgroup:
+  case OMPD_atomic:
+  case OMPD_flush:
+  case OMPD_depobj:
+  case OMPD_scan:
+  case OMPD_teams:
+  case OMPD_target_data:
+  case OMPD_target_exit_data:
+  case OMPD_target_enter_data:
+  case OMPD_distribute:
+  case OMPD_distribute_simd:
+  case OMPD_distribute_parallel_for:
+  case OMPD_distribute_parallel_for_simd:
+  case OMPD_teams_distribute:
+  case OMPD_teams_distribute_simd:
+  case OMPD_teams_distribute_parallel_for:
+  case OMPD_teams_distribute_parallel_for_simd:
+  case OMPD_target_update:
+  case OMPD_declare_simd:
+  case OMPD_declare_variant:
+  case OMPD_begin_declare_variant:
+  case OMPD_end_declare_variant:
+  case OMPD_declare_target:
+  case OMPD_end_declare_target:
+  case OMPD_declare_reduction:
+  case OMPD_declare_mapper:
+  case OMPD_taskloop:
+  case OMPD_taskloop_simd:
+  case OMPD_master_taskloop:
+  case OMPD_master_taskloop_simd:
+  case OMPD_parallel_master_taskloop:
+  case OMPD_parallel_master_taskloop_simd:
+  case OMPD_requires:
+  case OMPD_unknown:
+  default:
+    break;
+  }
+  llvm_unreachable(
+      "Unknown programming model for OpenMP directive on NVPTX target.");
+}
+
+/// Check if the directive is loops based and has schedule clause at all or has
+/// static scheduling.
+static bool hasStaticScheduling(const OMPExecutableDirective &D) {
+  assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
+         isOpenMPLoopDirective(D.getDirectiveKind()) &&
+         "Expected loop-based directive.");
+  return !D.hasClausesOfKind<OMPOrderedClause>() &&
+         (!D.hasClausesOfKind<OMPScheduleClause>() ||
+          llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
+                       [](const OMPScheduleClause *C) {
+                         return C->getScheduleKind() == OMPC_SCHEDULE_static;
+                       }));
+}
+
+/// Check for inner (nested) lightweight runtime construct, if any
+static bool hasNestedLightweightDirective(ASTContext &Ctx,
+                                          const OMPExecutableDirective &D) {
+  assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
+  const auto *CS = D.getInnermostCapturedStmt();
+  const auto *Body =
+      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+
+  if (const auto *NestedDir =
+          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+    switch (D.getDirectiveKind()) {
+    case OMPD_target:
+      if (isOpenMPParallelDirective(DKind) &&
+          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
+          hasStaticScheduling(*NestedDir))
+        return true;
+      if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
+        return true;
+      if (DKind == OMPD_parallel) {
+        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+            /*IgnoreCaptured=*/true);
+        if (!Body)
+          return false;
+        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+        if (const auto *NND =
+                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+          DKind = NND->getDirectiveKind();
+          if (isOpenMPWorksharingDirective(DKind) &&
+              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+            return true;
+        }
+      } else if (DKind == OMPD_teams) {
+        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+            /*IgnoreCaptured=*/true);
+        if (!Body)
+          return false;
+        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+        if (const auto *NND =
+                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+          DKind = NND->getDirectiveKind();
+          if (isOpenMPParallelDirective(DKind) &&
+              isOpenMPWorksharingDirective(DKind) &&
+              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+            return true;
+          if (DKind == OMPD_parallel) {
+            Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
+                /*IgnoreCaptured=*/true);
+            if (!Body)
+              return false;
+            ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+            if (const auto *NND =
+                    dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+              DKind = NND->getDirectiveKind();
+              if (isOpenMPWorksharingDirective(DKind) &&
+                  isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+                return true;
+            }
+          }
+        }
+      }
+      return false;
+    case OMPD_target_teams:
+      if (isOpenMPParallelDirective(DKind) &&
+          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
+          hasStaticScheduling(*NestedDir))
+        return true;
+      if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
+        return true;
+      if (DKind == OMPD_parallel) {
+        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+            /*IgnoreCaptured=*/true);
+        if (!Body)
+          return false;
+        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+        if (const auto *NND =
+                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+          DKind = NND->getDirectiveKind();
+          if (isOpenMPWorksharingDirective(DKind) &&
+              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+            return true;
+        }
+      }
+      return false;
+    case OMPD_target_parallel:
+      if (DKind == OMPD_simd)
+        return true;
+      return isOpenMPWorksharingDirective(DKind) &&
+             isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
+    case OMPD_target_teams_distribute:
+    case OMPD_target_simd:
+    case OMPD_target_parallel_for:
+    case OMPD_target_parallel_for_simd:
+    case OMPD_target_teams_distribute_simd:
+    case OMPD_target_teams_distribute_parallel_for:
+    case OMPD_target_teams_distribute_parallel_for_simd:
+    case OMPD_parallel:
+    case OMPD_for:
+    case OMPD_parallel_for:
+    case OMPD_parallel_master:
+    case OMPD_parallel_sections:
+    case OMPD_for_simd:
+    case OMPD_parallel_for_simd:
+    case OMPD_cancel:
+    case OMPD_cancellation_point:
+    case OMPD_ordered:
+    case OMPD_threadprivate:
+    case OMPD_allocate:
+    case OMPD_task:
+    case OMPD_simd:
+    case OMPD_sections:
+    case OMPD_section:
+    case OMPD_single:
+    case OMPD_master:
+    case OMPD_critical:
+    case OMPD_taskyield:
+    case OMPD_barrier:
+    case OMPD_taskwait:
+    case OMPD_taskgroup:
+    case OMPD_atomic:
+    case OMPD_flush:
+    case OMPD_depobj:
+    case OMPD_scan:
+    case OMPD_teams:
+    case OMPD_target_data:
+    case OMPD_target_exit_data:
+    case OMPD_target_enter_data:
+    case OMPD_distribute:
+    case OMPD_distribute_simd:
+    case OMPD_distribute_parallel_for:
+    case OMPD_distribute_parallel_for_simd:
+    case OMPD_teams_distribute:
+    case OMPD_teams_distribute_simd:
+    case OMPD_teams_distribute_parallel_for:
+    case OMPD_teams_distribute_parallel_for_simd:
+    case OMPD_target_update:
+    case OMPD_declare_simd:
+    case OMPD_declare_variant:
+    case OMPD_begin_declare_variant:
+    case OMPD_end_declare_variant:
+    case OMPD_declare_target:
+    case OMPD_end_declare_target:
+    case OMPD_declare_reduction:
+    case OMPD_declare_mapper:
+    case OMPD_taskloop:
+    case OMPD_taskloop_simd:
+    case OMPD_master_taskloop:
+    case OMPD_master_taskloop_simd:
+    case OMPD_parallel_master_taskloop:
+    case OMPD_parallel_master_taskloop_simd:
+    case OMPD_requires:
+    case OMPD_unknown:
+    default:
+      llvm_unreachable("Unexpected directive.");
+    }
+  }
+
+  return false;
+}
+
+/// Checks if the construct supports lightweight runtime. It must be SPMD
+/// construct + inner loop-based construct with static scheduling.
+static bool supportsLightweightRuntime(ASTContext &Ctx,
+                                       const OMPExecutableDirective &D) {
+  if (!supportsSPMDExecutionMode(Ctx, D))
+    return false;
+  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+  switch (DirectiveKind) {
+  case OMPD_target:
+  case OMPD_target_teams:
+  case OMPD_target_parallel:
+    return hasNestedLightweightDirective(Ctx, D);
+  case OMPD_target_parallel_for:
+  case OMPD_target_parallel_for_simd:
+  case OMPD_target_teams_distribute_parallel_for:
+  case OMPD_target_teams_distribute_parallel_for_simd:
+    // (Last|First)-privates must be shared in parallel region.
+    return hasStaticScheduling(D);
+  case OMPD_target_simd:
+  case OMPD_target_teams_distribute_simd:
+    return true;
+  case OMPD_target_teams_distribute:
+    return false;
+  case OMPD_parallel:
+  case OMPD_for:
+  case OMPD_parallel_for:
+  case OMPD_parallel_master:
+  case OMPD_parallel_sections:
+  case OMPD_for_simd:
+  case OMPD_parallel_for_simd:
+  case OMPD_cancel:
+  case OMPD_cancellation_point:
+  case OMPD_ordered:
+  case OMPD_threadprivate:
+  case OMPD_allocate:
+  case OMPD_task:
+  case OMPD_simd:
+  case OMPD_sections:
+  case OMPD_section:
+  case OMPD_single:
+  case OMPD_master:
+  case OMPD_critical:
+  case OMPD_taskyield:
+  case OMPD_barrier:
+  case OMPD_taskwait:
+  case OMPD_taskgroup:
+  case OMPD_atomic:
+  case OMPD_flush:
+  case OMPD_depobj:
+  case OMPD_scan:
+  case OMPD_teams:
+  case OMPD_target_data:
+  case OMPD_target_exit_data:
+  case OMPD_target_enter_data:
+  case OMPD_distribute:
+  case OMPD_distribute_simd:
+  case OMPD_distribute_parallel_for:
+  case OMPD_distribute_parallel_for_simd:
+  case OMPD_teams_distribute:
+  case OMPD_teams_distribute_simd:
+  case OMPD_teams_distribute_parallel_for:
+  case OMPD_teams_distribute_parallel_for_simd:
+  case OMPD_target_update:
+  case OMPD_declare_simd:
+  case OMPD_declare_variant:
+  case OMPD_begin_declare_variant:
+  case OMPD_end_declare_variant:
+  case OMPD_declare_target:
+  case OMPD_end_declare_target:
+  case OMPD_declare_reduction:
+  case OMPD_declare_mapper:
+  case OMPD_taskloop:
+  case OMPD_taskloop_simd:
+  case OMPD_master_taskloop:
+  case OMPD_master_taskloop_simd:
+  case OMPD_parallel_master_taskloop:
+  case OMPD_parallel_master_taskloop_simd:
+  case OMPD_requires:
+  case OMPD_unknown:
+  default:
+    break;
+  }
+  llvm_unreachable(
+      "Unknown programming model for OpenMP directive on NVPTX target.");
+}
+
+void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
+                                             StringRef ParentName,
+                                             llvm::Function *&OutlinedFn,
+                                             llvm::Constant *&OutlinedFnID,
+                                             bool IsOffloadEntry,
+                                             const RegionCodeGenTy &CodeGen) {
+  ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
+  EntryFunctionState EST;
+  WorkerFunctionState WST(CGM, D.getBeginLoc());
+  Work.clear();
+  WrapperFunctionsMap.clear();
+
+  // Emit target region as a standalone region.
+  class NVPTXPrePostActionTy : public PrePostActionTy {
+    CGOpenMPRuntimeGPU::EntryFunctionState &EST;
+    CGOpenMPRuntimeGPU::WorkerFunctionState &WST;
+
+  public:
+    NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
+                         CGOpenMPRuntimeGPU::WorkerFunctionState &WST)
+        : EST(EST), WST(WST) {}
+    void Enter(CodeGenFunction &CGF) override {
+      auto &RT =
+          static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+      RT.emitNonSPMDEntryHeader(CGF, EST, WST);
+      // Skip target region initialization.
+      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+    }
+    void Exit(CodeGenFunction &CGF) override {
+      auto &RT =
+          static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+      RT.clearLocThreadIdInsertPt(CGF);
+      RT.emitNonSPMDEntryFooter(CGF, EST);
+    }
+  } Action(EST, WST);
+  CodeGen.setAction(Action);
+  IsInTTDRegion = true;
+  // Reserve place for the globalized memory.
+  GlobalizedRecords.emplace_back();
+  if (!KernelStaticGlobalized) {
+    KernelStaticGlobalized = new llvm::GlobalVariable(
+        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
+        llvm::GlobalValue::InternalLinkage,
+        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
+        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
+        llvm::GlobalValue::NotThreadLocal,
+        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
+  }
+  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+                                   IsOffloadEntry, CodeGen);
+  IsInTTDRegion = false;
+
+  // Now change the name of the worker function to correspond to this target
+  // region's entry function.
+  WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
+
+  // Create the worker function
+  emitWorkerFunction(WST);
+}
+
+// Setup NVPTX threads for master-worker OpenMP scheme.
+void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
+                                                  EntryFunctionState &EST,
+                                                  WorkerFunctionState &WST) {
+  CGBuilderTy &Bld = CGF.Builder;
+
+  llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
+  llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
+  llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
+  EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  llvm::Value *IsWorker =
+      Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
+  Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
+
+  CGF.EmitBlock(WorkerBB);
+  emitCall(CGF, WST.Loc, WST.WorkerFn);
+  CGF.EmitBranch(EST.ExitBB);
+
+  CGF.EmitBlock(MasterCheckBB);
+  llvm::Value *IsMaster =
+      Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
+  Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
+
+  CGF.EmitBlock(MasterBB);
+  IsInTargetMasterThreadRegion = true;
+  // SEQUENTIAL (MASTER) REGION START
+  // First action in sequential region:
+  // Initialize the state of the OpenMP runtime library on the GPU.
+  // TODO: Optimize runtime initialization and pass in correct value.
+  llvm::Value *Args[] = {getThreadLimit(CGF),
+                         Bld.getInt16(/*RequiresOMPRuntime=*/1)};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
+
+  // For data sharing, we need to initialize the stack.
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(
+          OMPRTL_NVPTX__kmpc_data_sharing_init_stack));
+
+  emitGenericVarsProlog(CGF, WST.Loc);
+}
+
+void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
+                                                  EntryFunctionState &EST) {
+  IsInTargetMasterThreadRegion = false;
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  emitGenericVarsEpilog(CGF);
+
+  if (!EST.ExitBB)
+    EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
+  CGF.EmitBranch(TerminateBB);
+
+  CGF.EmitBlock(TerminateBB);
+  // Signal termination condition.
+  // TODO: Optimize runtime initialization and pass in correct value.
+  llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
+  // Barrier to terminate worker threads.
+  syncCTAThreads(CGF);
+  // Master thread jumps to exit point.
+  CGF.EmitBranch(EST.ExitBB);
+
+  CGF.EmitBlock(EST.ExitBB);
+  EST.ExitBB = nullptr;
+}
+
+void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
+                                          StringRef ParentName,
+                                          llvm::Function *&OutlinedFn,
+                                          llvm::Constant *&OutlinedFnID,
+                                          bool IsOffloadEntry,
+                                          const RegionCodeGenTy &CodeGen) {
+  ExecutionRuntimeModesRAII ModeRAII(
+      CurrentExecutionMode, RequiresFullRuntime,
+      CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
+          !supportsLightweightRuntime(CGM.getContext(), D));
+  EntryFunctionState EST;
+
+  // Emit target region as a standalone region.
+  class NVPTXPrePostActionTy : public PrePostActionTy {
+    CGOpenMPRuntimeGPU &RT;
+    CGOpenMPRuntimeGPU::EntryFunctionState &EST;
+    const OMPExecutableDirective &D;
+
+  public:
+    NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
+                         CGOpenMPRuntimeGPU::EntryFunctionState &EST,
+                         const OMPExecutableDirective &D)
+        : RT(RT), EST(EST), D(D) {}
+    void Enter(CodeGenFunction &CGF) override {
+      RT.emitSPMDEntryHeader(CGF, EST, D);
+      // Skip target region initialization.
+      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+    }
+    void Exit(CodeGenFunction &CGF) override {
+      RT.clearLocThreadIdInsertPt(CGF);
+      RT.emitSPMDEntryFooter(CGF, EST);
+    }
+  } Action(*this, EST, D);
+  CodeGen.setAction(Action);
+  IsInTTDRegion = true;
+  // Reserve place for the globalized memory.
+  GlobalizedRecords.emplace_back();
+  if (!KernelStaticGlobalized) {
+    KernelStaticGlobalized = new llvm::GlobalVariable(
+        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
+        llvm::GlobalValue::InternalLinkage,
+        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
+        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
+        llvm::GlobalValue::NotThreadLocal,
+        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
+  }
+  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+                                   IsOffloadEntry, CodeGen);
+  IsInTTDRegion = false;
+}
+
+void CGOpenMPRuntimeGPU::emitSPMDEntryHeader(
+    CodeGenFunction &CGF, EntryFunctionState &EST,
+    const OMPExecutableDirective &D) {
+  CGBuilderTy &Bld = CGF.Builder;
+
+  // Setup BBs in entry function.
+  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
+  EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
+                         /*RequiresOMPRuntime=*/
+                         Bld.getInt16(RequiresFullRuntime ? 1 : 0),
+                         /*RequiresDataSharing=*/Bld.getInt16(0)};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
+
+  if (RequiresFullRuntime) {
+    // For data sharing, we need to initialize the stack.
+    CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+        OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd));
+  }
+
+  CGF.EmitBranch(ExecuteBB);
+
+  CGF.EmitBlock(ExecuteBB);
+
+  IsInTargetMasterThreadRegion = true;
+}
+
+void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF,
+                                               EntryFunctionState &EST) {
+  IsInTargetMasterThreadRegion = false;
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  if (!EST.ExitBB)
+    EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
+  CGF.EmitBranch(OMPDeInitBB);
+
+  CGF.EmitBlock(OMPDeInitBB);
+  // DeInitialize the OMP state in the runtime; called by all active threads.
+  llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
+                         CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(
+          OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2), Args);
+  CGF.EmitBranch(EST.ExitBB);
+
+  CGF.EmitBlock(EST.ExitBB);
+  EST.ExitBB = nullptr;
+}
+
+// Create a unique global variable to indicate the execution mode of this target
+// region. The execution mode is either 'generic', or 'spmd' depending on the
+// target directive. This variable is picked up by the offload library to setup
+// the device appropriately before kernel launch. If the execution mode is
+// 'generic', the runtime reserves one warp for the master, otherwise, all
+// warps participate in parallel work.
+static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
+                                     bool Mode) {
+  auto *GVMode =
+      new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+                               llvm::GlobalValue::WeakAnyLinkage,
+                               llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
+                               Twine(Name, "_exec_mode"));
+  CGM.addCompilerUsedGlobal(GVMode);
+}
+
+void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) {
+  ASTContext &Ctx = CGM.getContext();
+
+  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
+                    WST.Loc, WST.Loc);
+  emitWorkerLoop(CGF, WST);
+  CGF.FinishFunction();
+}
+
+void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF,
+                                          WorkerFunctionState &WST) {
+  //
+  // The workers enter this loop and wait for parallel work from the master.
+  // When the master encounters a parallel region it sets up the work + variable
+  // arguments, and wakes up the workers.  The workers first check to see if
+  // they are required for the parallel region, i.e., within the # of requested
+  // parallel threads.  The activated workers load the variable arguments and
+  // execute the parallel work.
+  //
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
+  llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
+  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
+  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
+  llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
+  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+
+  CGF.EmitBranch(AwaitBB);
+
+  // Workers wait for work from master.
+  CGF.EmitBlock(AwaitBB);
+  // Wait for parallel work
+  syncCTAThreads(CGF);
+
+  Address WorkFn =
+      CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
+  Address ExecStatus =
+      CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
+  CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
+  CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
+
+  // TODO: Optimize runtime initialization and pass in correct value.
+  llvm::Value *Args[] = {WorkFn.getPointer()};
+  llvm::Value *Ret = CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
+  Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
+
+  // On termination condition (workid == 0), exit loop.
+  llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
+  llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
+  Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
+
+  // Activate requested workers.
+  CGF.EmitBlock(SelectWorkersBB);
+  llvm::Value *IsActive =
+      Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
+  Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
+
+  // Signal start of parallel region.
+  CGF.EmitBlock(ExecuteBB);
+  // Skip initialization.
+  setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+
+  // Process work items: outlined parallel functions.
+  for (llvm::Function *W : Work) {
+    // Try to match this outlined function.
+    llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
+
+    llvm::Value *WorkFnMatch =
+        Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
+
+    llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
+    llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
+    Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
+
+    // Execute this outlined function.
+    CGF.EmitBlock(ExecuteFNBB);
+
+    // Insert call to work function via shared wrapper. The shared
+    // wrapper takes two arguments:
+    //   - the parallelism level;
+    //   - the thread ID;
+    emitCall(CGF, WST.Loc, W,
+             {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
+
+    // Go to end of parallel region.
+    CGF.EmitBranch(TerminateBB);
+
+    CGF.EmitBlock(CheckNextBB);
+  }
+  // Default case: call to outlined function through pointer if the target
+  // region makes a declare target call that may contain an orphaned parallel
+  // directive.
+  auto *ParallelFnTy =
+      llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
+                              /*isVarArg=*/false);
+  llvm::Value *WorkFnCast =
+      Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo());
+  // Insert call to work function via shared wrapper. The shared
+  // wrapper takes two arguments:
+  //   - the parallelism level;
+  //   - the thread ID;
+  emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast},
+           {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
+  // Go to end of parallel region.
+  CGF.EmitBranch(TerminateBB);
+
+  // Signal end of parallel region.
+  CGF.EmitBlock(TerminateBB);
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
+      llvm::None);
+  CGF.EmitBranch(BarrierBB);
+
+  // All active and inactive workers wait at a barrier after parallel region.
+  CGF.EmitBlock(BarrierBB);
+  // Barrier after parallel region.
+  syncCTAThreads(CGF);
+  CGF.EmitBranch(AwaitBB);
+
+  // Exit target region.
+  CGF.EmitBlock(ExitBB);
+  // Skip initialization.
+  clearLocThreadIdInsertPt(CGF);
+}
+
+/// Returns specified OpenMP runtime function for the current OpenMP
+/// implementation.  Specialized for the NVPTX device.
+/// \param Function OpenMP runtime function.
+/// \return Specified function.
+llvm::FunctionCallee
+CGOpenMPRuntimeGPU::createNVPTXRuntimeFunction(unsigned Function) {
+  llvm::FunctionCallee RTLFn = nullptr;
+  switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
+  case OMPRTL_NVPTX__kmpc_kernel_init: {
+    // Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
+    // RequiresOMPRuntime);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_deinit: {
+    // Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
+    llvm::Type *TypeParams[] = {CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
+    // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
+    // int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2: {
+    // Build void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
+    llvm::Type *TypeParams[] = {CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit_v2");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
+    /// Build void __kmpc_kernel_prepare_parallel(
+    /// void *outlined_function);
+    llvm::Type *TypeParams[] = {CGM.Int8PtrTy};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_parallel: {
+    /// Build bool __kmpc_kernel_parallel(void **outlined_function);
+    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy};
+    llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
+    auto *FnTy =
+        llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
+    /// Build void __kmpc_kernel_end_parallel();
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_serialized_parallel: {
+    // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+    // global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
+    // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+    // global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_shuffle_int32: {
+    // Build int32_t __kmpc_shuffle_int32(int32_t element,
+    // int16_t lane_offset, int16_t warp_size);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_shuffle_int64: {
+    // Build int64_t __kmpc_shuffle_int64(int64_t element,
+    // int16_t lane_offset, int16_t warp_size);
+    llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2: {
+    // Build int32_t kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc,
+    // kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void*
+    // reduce_data, void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t
+    // lane_id, int16_t lane_offset, int16_t Algorithm Version), void
+    // (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
+    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
+                                             CGM.Int16Ty, CGM.Int16Ty};
+    auto *ShuffleReduceFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
+    auto *InterWarpCopyFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+                                CGM.Int32Ty,
+                                CGM.Int32Ty,
+                                CGM.SizeTy,
+                                CGM.VoidPtrTy,
+                                ShuffleReduceFnTy->getPointerTo(),
+                                InterWarpCopyFnTy->getPointerTo()};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait_v2");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
+    // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2: {
+    // Build int32_t __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
+    // global_tid, void *global_buffer, int32_t num_of_records, void*
+    // reduce_data,
+    // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+    // lane_offset, int16_t shortCircuit),
+    // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
+    // (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
+    // void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
+    // void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
+    // int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
+    // *buffer, int idx, void *reduce_data));
+    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
+                                             CGM.Int16Ty, CGM.Int16Ty};
+    auto *ShuffleReduceFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
+    auto *InterWarpCopyFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *GlobalListTypeParams[] = {CGM.VoidPtrTy, CGM.IntTy,
+                                          CGM.VoidPtrTy};
+    auto *GlobalListFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, GlobalListTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+                                CGM.Int32Ty,
+                                CGM.VoidPtrTy,
+                                CGM.Int32Ty,
+                                CGM.VoidPtrTy,
+                                ShuffleReduceFnTy->getPointerTo(),
+                                InterWarpCopyFnTy->getPointerTo(),
+                                GlobalListFnTy->getPointerTo(),
+                                GlobalListFnTy->getPointerTo(),
+                                GlobalListFnTy->getPointerTo(),
+                                GlobalListFnTy->getPointerTo()};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait_v2");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack: {
+    /// Build void __kmpc_data_sharing_init_stack();
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd: {
+    /// Build void __kmpc_data_sharing_init_stack_spmd();
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn =
+        CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack_spmd");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack: {
+    // Build void *__kmpc_data_sharing_coalesced_push_stack(size_t size,
+    // int16_t UseSharedMemory);
+    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_data_sharing_coalesced_push_stack");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_data_sharing_push_stack: {
+    // Build void *__kmpc_data_sharing_push_stack(size_t size, int16_t
+    // UseSharedMemory);
+    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_data_sharing_push_stack");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_data_sharing_pop_stack: {
+    // Build void __kmpc_data_sharing_pop_stack(void *a);
+    llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy,
+                                      /*Name=*/"__kmpc_data_sharing_pop_stack");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_begin_sharing_variables: {
+    /// Build void __kmpc_begin_sharing_variables(void ***args,
+    /// size_t n_args);
+    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo(), CGM.SizeTy};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_begin_sharing_variables");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_end_sharing_variables: {
+    /// Build void __kmpc_end_sharing_variables();
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_sharing_variables");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_get_shared_variables: {
+    /// Build void __kmpc_get_shared_variables(void ***GlobalArgs);
+    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo()};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_shared_variables");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_parallel_level: {
+    // Build uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32 global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.Int16Ty, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_parallel_level");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_is_spmd_exec_mode: {
+    // Build int8_t __kmpc_is_spmd_exec_mode();
+    auto *FnTy = llvm::FunctionType::get(CGM.Int8Ty, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_is_spmd_exec_mode");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_get_team_static_memory: {
+    // Build void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
+    // const void *buf, size_t size, int16_t is_shared, const void **res);
+    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.VoidPtrTy, CGM.SizeTy,
+                                CGM.Int16Ty, CGM.VoidPtrPtrTy};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_team_static_memory");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_restore_team_static_memory: {
+    // Build void __kmpc_restore_team_static_memory(int16_t isSPMDExecutionMode,
+    // int16_t is_shared);
+    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.Int16Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+    RTLFn =
+        CGM.CreateRuntimeFunction(FnTy, "__kmpc_restore_team_static_memory");
+    break;
+  }
+  case OMPRTL__kmpc_barrier: {
+    // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn =
+        CGM.CreateConvergentRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
+    break;
+  }
+  case OMPRTL__kmpc_barrier_simple_spmd: {
+    // Build void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
+    // global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateConvergentRuntimeFunction(
+        FnTy, /*Name*/ "__kmpc_barrier_simple_spmd");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_warp_active_thread_mask: {
+    // Build int32_t __kmpc_warp_active_thread_mask(void);
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, llvm::None, /*isVarArg=*/false);
+    RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_warp_active_thread_mask");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_syncwarp: {
+    // Build void __kmpc_syncwarp(kmp_int32 Mask);
+    auto *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, CGM.Int32Ty, /*isVarArg=*/false);
+    RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_syncwarp");
+    break;
+  }
+  }
+  return RTLFn;
+}
+
+void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
+                                              llvm::Constant *Addr,
+                                              uint64_t Size, int32_t,
+                                              llvm::GlobalValue::LinkageTypes) {
+  // TODO: Add support for global variables on the device after declare target
+  // support.
+  if (!isa<llvm::Function>(Addr))
+    return;
+  llvm::Module &M = CGM.getModule();
+  llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+
+  // Get "nvvm.annotations" metadata node
+  llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
+
+  llvm::Metadata *MDVals[] = {
+      llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
+      llvm::ConstantAsMetadata::get(
+          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
+  // Append metadata to nvvm.annotations
+  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+
+void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
+    const OMPExecutableDirective &D, StringRef ParentName,
+    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+  if (!IsOffloadEntry) // Nothing to do.
+    return;
+
+  assert(!ParentName.empty() && "Invalid target region parent name!");
+
+  bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
+  if (Mode)
+    emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+                   CodeGen);
+  else
+    emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+                      CodeGen);
+
+  setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
+}
+
+namespace {
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+/// Enum for accesseing the reserved_2 field of the ident_t struct.
+enum ModeFlagsTy : unsigned {
+  /// Bit set to 1 when in SPMD mode.
+  KMP_IDENT_SPMD_MODE = 0x01,
+  /// Bit set to 1 when a simplified runtime is used.
+  KMP_IDENT_SIMPLE_RT_MODE = 0x02,
+  LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
+};
+
+/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
+static const ModeFlagsTy UndefinedMode =
+    (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
+} // anonymous namespace
+
+unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
+  switch (getExecutionMode()) {
+  case EM_SPMD:
+    if (requiresFullRuntime())
+      return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
+    return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
+  case EM_NonSPMD:
+    assert(requiresFullRuntime() && "Expected full runtime.");
+    return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
+  case EM_Unknown:
+    return UndefinedMode;
+  }
+  llvm_unreachable("Unknown flags are requested.");
+}
+
+CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
+    : CGOpenMPRuntime(CGM, "_", "$") {
+  if (!CGM.getLangOpts().OpenMPIsDevice)
+    llvm_unreachable("OpenMP NVPTX can only handle device code.");
+}
+
+void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
+                                              ProcBindKind ProcBind,
+                                              SourceLocation Loc) {
+  // Do nothing in case of SPMD mode and L0 parallel.
+  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
+    return;
+
+  CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
+}
+
+void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
+                                                llvm::Value *NumThreads,
+                                                SourceLocation Loc) {
+  // Do nothing in case of SPMD mode and L0 parallel.
+  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
+    return;
+
+  CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
+}
+
+void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
+                                              const Expr *NumTeams,
+                                              const Expr *ThreadLimit,
+                                              SourceLocation Loc) {}
+
+llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
+    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+  // Emit target region as a standalone region.
+  class NVPTXPrePostActionTy : public PrePostActionTy {
+    bool &IsInParallelRegion;
+    bool PrevIsInParallelRegion;
+
+  public:
+    NVPTXPrePostActionTy(bool &IsInParallelRegion)
+        : IsInParallelRegion(IsInParallelRegion) {}
+    void Enter(CodeGenFunction &CGF) override {
+      PrevIsInParallelRegion = IsInParallelRegion;
+      IsInParallelRegion = true;
+    }
+    void Exit(CodeGenFunction &CGF) override {
+      IsInParallelRegion = PrevIsInParallelRegion;
+    }
+  } Action(IsInParallelRegion);
+  CodeGen.setAction(Action);
+  bool PrevIsInTTDRegion = IsInTTDRegion;
+  IsInTTDRegion = false;
+  bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
+  IsInTargetMasterThreadRegion = false;
+  auto *OutlinedFun =
+      cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
+          D, ThreadIDVar, InnermostKind, CodeGen));
+  if (CGM.getLangOpts().Optimize) {
+    OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
+    OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
+    OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
+  }
+  IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
+  IsInTTDRegion = PrevIsInTTDRegion;
+  if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
+      !IsInParallelRegion) {
+    llvm::Function *WrapperFun =
+        createParallelDataSharingWrapper(OutlinedFun, D);
+    WrapperFunctionsMap[OutlinedFun] = WrapperFun;
+  }
+
+  return OutlinedFun;
+}
+
+/// Get list of lastprivate variables from the teams distribute ... or
+/// teams {distribute ...} directives.
+static void
+getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
+                             llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
+  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
+         "expected teams directive.");
+  const OMPExecutableDirective *Dir = &D;
+  if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
+    if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
+            Ctx,
+            D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
+                /*IgnoreCaptured=*/true))) {
+      Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
+      if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
+        Dir = nullptr;
+    }
+  }
+  if (!Dir)
+    return;
+  for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
+    for (const Expr *E : C->getVarRefs())
+      Vars.push_back(getPrivateItem(E));
+  }
+}
+
+/// Get list of reduction variables from the teams ... directives.
+static void
+getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
+                      llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
+  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
+         "expected teams directive.");
+  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
+    for (const Expr *E : C->privates())
+      Vars.push_back(getPrivateItem(E));
+  }
+}
+
+llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
+    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+  SourceLocation Loc = D.getBeginLoc();
+
+  const RecordDecl *GlobalizedRD = nullptr;
+  llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
+  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
+  // Globalize team reductions variable unconditionally in all modes.
+  if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
+    getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
+  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
+    getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
+    if (!LastPrivatesReductions.empty()) {
+      GlobalizedRD = ::buildRecordForGlobalizedVars(
+          CGM.getContext(), llvm::None, LastPrivatesReductions,
+          MappedDeclsFields, WarpSize);
+    }
+  } else if (!LastPrivatesReductions.empty()) {
+    assert(!TeamAndReductions.first &&
+           "Previous team declaration is not expected.");
+    TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
+    std::swap(TeamAndReductions.second, LastPrivatesReductions);
+  }
+
+  // Emit target region as a standalone region.
+  class NVPTXPrePostActionTy : public PrePostActionTy {
+    SourceLocation &Loc;
+    const RecordDecl *GlobalizedRD;
+    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+        &MappedDeclsFields;
+
+  public:
+    NVPTXPrePostActionTy(
+        SourceLocation &Loc, const RecordDecl *GlobalizedRD,
+        llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+            &MappedDeclsFields)
+        : Loc(Loc), GlobalizedRD(GlobalizedRD),
+          MappedDeclsFields(MappedDeclsFields) {}
+    void Enter(CodeGenFunction &CGF) override {
+      auto &Rt =
+          static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+      if (GlobalizedRD) {
+        auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
+        I->getSecond().GlobalRecord = GlobalizedRD;
+        I->getSecond().MappedParams =
+            std::make_unique<CodeGenFunction::OMPMapVars>();
+        DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
+        for (const auto &Pair : MappedDeclsFields) {
+          assert(Pair.getFirst()->isCanonicalDecl() &&
+                 "Expected canonical declaration");
+          Data.insert(std::make_pair(Pair.getFirst(),
+                                     MappedVarData(Pair.getSecond(),
+                                                   /*IsOnePerTeam=*/true)));
+        }
+      }
+      Rt.emitGenericVarsProlog(CGF, Loc);
+    }
+    void Exit(CodeGenFunction &CGF) override {
+      static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
+          .emitGenericVarsEpilog(CGF);
+    }
+  } Action(Loc, GlobalizedRD, MappedDeclsFields);
+  CodeGen.setAction(Action);
+  llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
+      D, ThreadIDVar, InnermostKind, CodeGen);
+  if (CGM.getLangOpts().Optimize) {
+    OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
+    OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
+    OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
+  }
+
+  return OutlinedFun;
+}
+
+void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
+                                                 SourceLocation Loc,
+                                                 bool WithSPMDCheck) {
+  if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
+      getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
+    return;
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+  if (I == FunctionGlobalizedDecls.end())
+    return;
+  if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
+    QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
+    QualType SecGlobalRecTy;
+
+    // Recover pointer to this function's global record. The runtime will
+    // handle the specifics of the allocation of the memory.
+    // Use actual memory size of the record including the padding
+    // for alignment purposes.
+    unsigned Alignment =
+        CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
+    unsigned GlobalRecordSize =
+        CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
+    GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
+
+    llvm::PointerType *GlobalRecPtrTy =
+        CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
+    llvm::Value *GlobalRecCastAddr;
+    llvm::Value *IsTTD = nullptr;
+    if (!IsInTTDRegion &&
+        (WithSPMDCheck ||
+         getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
+      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+      llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
+      llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
+      if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
+        llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+        llvm::Value *ThreadID = getThreadID(CGF, Loc);
+        llvm::Value *PL = CGF.EmitRuntimeCall(
+            createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
+            {RTLoc, ThreadID});
+        IsTTD = Bld.CreateIsNull(PL);
+      }
+      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
+          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
+      Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
+      // There is no need to emit line number for unconditional branch.
+      (void)ApplyDebugLocation::CreateEmpty(CGF);
+      CGF.EmitBlock(SPMDBB);
+      Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
+                               CharUnits::fromQuantity(Alignment));
+      CGF.EmitBranch(ExitBB);
+      // There is no need to emit line number for unconditional branch.
+      (void)ApplyDebugLocation::CreateEmpty(CGF);
+      CGF.EmitBlock(NonSPMDBB);
+      llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
+      if (const RecordDecl *SecGlobalizedVarsRecord =
+              I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
+        SecGlobalRecTy =
+            CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
+
+        // Recover pointer to this function's global record. The runtime will
+        // handle the specifics of the allocation of the memory.
+        // Use actual memory size of the record including the padding
+        // for alignment purposes.
+        unsigned Alignment =
+            CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
+        unsigned GlobalRecordSize =
+            CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
+        GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
+        Size = Bld.CreateSelect(
+            IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
+      }
+      // TODO: allow the usage of shared memory to be controlled by
+      // the user, for now, default to global.
+      llvm::Value *GlobalRecordSizeArg[] = {
+          Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
+      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
+          createNVPTXRuntimeFunction(
+              OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
+          GlobalRecordSizeArg);
+      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+          GlobalRecValue, GlobalRecPtrTy);
+      CGF.EmitBlock(ExitBB);
+      auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
+                                /*NumReservedValues=*/2, "_select_stack");
+      Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
+      Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
+      GlobalRecCastAddr = Phi;
+      I->getSecond().GlobalRecordAddr = Phi;
+      I->getSecond().IsInSPMDModeFlag = IsSPMD;
+    } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
+      assert(GlobalizedRecords.back().Records.size() < 2 &&
+             "Expected less than 2 globalized records: one for target and one "
+             "for teams.");
+      unsigned Offset = 0;
+      for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
+        QualType RDTy = CGM.getContext().getRecordType(RD);
+        unsigned Alignment =
+            CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
+        unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
+        Offset =
+            llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
+      }
+      unsigned Alignment =
+          CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
+      Offset = llvm::alignTo(Offset, Alignment);
+      GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
+      ++GlobalizedRecords.back().RegionCounter;
+      if (GlobalizedRecords.back().Records.size() == 1) {
+        assert(KernelStaticGlobalized &&
+               "Kernel static pointer must be initialized already.");
+        auto *UseSharedMemory = new llvm::GlobalVariable(
+            CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
+            llvm::GlobalValue::InternalLinkage, nullptr,
+            "_openmp_static_kernel$is_shared");
+        UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+        QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
+            /*DestWidth=*/16, /*Signed=*/0);
+        llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
+            Address(UseSharedMemory,
+                    CGM.getContext().getTypeAlignInChars(Int16Ty)),
+            /*Volatile=*/false, Int16Ty, Loc);
+        auto *StaticGlobalized = new llvm::GlobalVariable(
+            CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
+            llvm::GlobalValue::CommonLinkage, nullptr);
+        auto *RecSize = new llvm::GlobalVariable(
+            CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
+            llvm::GlobalValue::InternalLinkage, nullptr,
+            "_openmp_static_kernel$size");
+        RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+        llvm::Value *Ld = CGF.EmitLoadOfScalar(
+            Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
+            CGM.getContext().getSizeType(), Loc);
+        llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+            KernelStaticGlobalized, CGM.VoidPtrPtrTy);
+        llvm::Value *GlobalRecordSizeArg[] = {
+            llvm::ConstantInt::get(
+                CGM.Int16Ty,
+                getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0),
+            StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
+        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+                                OMPRTL_NVPTX__kmpc_get_team_static_memory),
+                            GlobalRecordSizeArg);
+        GlobalizedRecords.back().Buffer = StaticGlobalized;
+        GlobalizedRecords.back().RecSize = RecSize;
+        GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
+        GlobalizedRecords.back().Loc = Loc;
+      }
+      assert(KernelStaticGlobalized && "Global address must be set already.");
+      Address FrameAddr = CGF.EmitLoadOfPointer(
+          Address(KernelStaticGlobalized, CGM.getPointerAlign()),
+          CGM.getContext()
+              .getPointerType(CGM.getContext().VoidPtrTy)
+              .castAs<PointerType>());
+      llvm::Value *GlobalRecValue =
+          Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer();
+      I->getSecond().GlobalRecordAddr = GlobalRecValue;
+      I->getSecond().IsInSPMDModeFlag = nullptr;
+      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+          GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
+    } else {
+      // TODO: allow the usage of shared memory to be controlled by
+      // the user, for now, default to global.
+      bool UseSharedMemory =
+          IsInTTDRegion && GlobalRecordSize <= SharedMemorySize;
+      llvm::Value *GlobalRecordSizeArg[] = {
+          llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
+          CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)};
+      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
+          createNVPTXRuntimeFunction(
+              IsInTTDRegion
+                  ? OMPRTL_NVPTX__kmpc_data_sharing_push_stack
+                  : OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
+          GlobalRecordSizeArg);
+      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+          GlobalRecValue, GlobalRecPtrTy);
+      I->getSecond().GlobalRecordAddr = GlobalRecValue;
+      I->getSecond().IsInSPMDModeFlag = nullptr;
+    }
+    LValue Base =
+        CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
+
+    // Emit the "global alloca" which is a GEP from the global declaration
+    // record using the pointer returned by the runtime.
+    LValue SecBase;
+    decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
+    if (IsTTD) {
+      SecIt = I->getSecond().SecondaryLocalVarData->begin();
+      llvm::PointerType *SecGlobalRecPtrTy =
+          CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
+      SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
+          Bld.CreatePointerBitCastOrAddrSpaceCast(
+              I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
+          SecGlobalRecTy);
+    }
+    for (auto &Rec : I->getSecond().LocalVarData) {
+      bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
+      llvm::Value *ParValue;
+      if (EscapedParam) {
+        const auto *VD = cast<VarDecl>(Rec.first);
+        LValue ParLVal =
+            CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
+        ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
+      }
+      LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
+      // Emit VarAddr basing on lane-id if required.
+      QualType VarTy;
+      if (Rec.second.IsOnePerTeam) {
+        VarTy = Rec.second.FD->getType();
+      } else {
+        llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
+            VarAddr.getAddress(CGF).getPointer(),
+            {Bld.getInt32(0), getNVPTXLaneID(CGF)});
+        VarTy =
+            Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
+        VarAddr = CGF.MakeAddrLValue(
+            Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
+            AlignmentSource::Decl);
+      }
+      Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
+      if (!IsInTTDRegion &&
+          (WithSPMDCheck ||
+           getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
+        assert(I->getSecond().IsInSPMDModeFlag &&
+               "Expected unknown execution mode or required SPMD check.");
+        if (IsTTD) {
+          assert(SecIt->second.IsOnePerTeam &&
+                 "Secondary glob data must be one per team.");
+          LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
+          VarAddr.setAddress(
+              Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF),
+                                       VarAddr.getPointer(CGF)),
+                      VarAddr.getAlignment()));
+          Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
+        }
+        Address GlobalPtr = Rec.second.PrivateAddr;
+        Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
+        Rec.second.PrivateAddr = Address(
+            Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
+                             LocalAddr.getPointer(), GlobalPtr.getPointer()),
+            LocalAddr.getAlignment());
+      }
+      if (EscapedParam) {
+        const auto *VD = cast<VarDecl>(Rec.first);
+        CGF.EmitStoreOfScalar(ParValue, VarAddr);
+        I->getSecond().MappedParams->setVarAddr(CGF, VD,
+                                                VarAddr.getAddress(CGF));
+      }
+      if (IsTTD)
+        ++SecIt;
+    }
+  }
+  for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
+    // Recover pointer to this function's global record. The runtime will
+    // handle the specifics of the allocation of the memory.
+    // Use actual memory size of the record including the padding
+    // for alignment purposes.
+    CGBuilderTy &Bld = CGF.Builder;
+    llvm::Value *Size = CGF.getTypeSize(VD->getType());
+    CharUnits Align = CGM.getContext().getDeclAlign(VD);
+    Size = Bld.CreateNUWAdd(
+        Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
+    llvm::Value *AlignVal =
+        llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
+    Size = Bld.CreateUDiv(Size, AlignVal);
+    Size = Bld.CreateNUWMul(Size, AlignVal);
+    // TODO: allow the usage of shared memory to be controlled by
+    // the user, for now, default to global.
+    llvm::Value *GlobalRecordSizeArg[] = {
+        Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
+    llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(
+            OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
+        GlobalRecordSizeArg);
+    llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+        GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
+    LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
+                                     CGM.getContext().getDeclAlign(VD),
+                                     AlignmentSource::Decl);
+    I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
+                                            Base.getAddress(CGF));
+    I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
+  }
+  I->getSecond().MappedParams->apply(CGF);
+}
+
+void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
+                                                 bool WithSPMDCheck) {
+  if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
+      getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
+    return;
+
+  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+  if (I != FunctionGlobalizedDecls.end()) {
+    I->getSecond().MappedParams->restore(CGF);
+    if (!CGF.HaveInsertPoint())
+      return;
+    for (llvm::Value *Addr :
+         llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
+      CGF.EmitRuntimeCall(
+          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
+          Addr);
+    }
+    if (I->getSecond().GlobalRecordAddr) {
+      if (!IsInTTDRegion &&
+          (WithSPMDCheck ||
+           getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
+        CGBuilderTy &Bld = CGF.Builder;
+        llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+        llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
+        Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
+        // There is no need to emit line number for unconditional branch.
+        (void)ApplyDebugLocation::CreateEmpty(CGF);
+        CGF.EmitBlock(NonSPMDBB);
+        CGF.EmitRuntimeCall(
+            createNVPTXRuntimeFunction(
+                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
+            CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
+        CGF.EmitBlock(ExitBB);
+      } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
+        assert(GlobalizedRecords.back().RegionCounter > 0 &&
+               "region counter must be > 0.");
+        --GlobalizedRecords.back().RegionCounter;
+        // Emit the restore function only in the target region.
+        if (GlobalizedRecords.back().RegionCounter == 0) {
+          QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
+              /*DestWidth=*/16, /*Signed=*/0);
+          llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
+              Address(GlobalizedRecords.back().UseSharedMemory,
+                      CGM.getContext().getTypeAlignInChars(Int16Ty)),
+              /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
+          llvm::Value *Args[] = {
+              llvm::ConstantInt::get(
+                  CGM.Int16Ty,
+                  getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0),
+              IsInSharedMemory};
+          CGF.EmitRuntimeCall(
+              createNVPTXRuntimeFunction(
+                  OMPRTL_NVPTX__kmpc_restore_team_static_memory),
+              Args);
+        }
+      } else {
+        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+                                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
+                            I->getSecond().GlobalRecordAddr);
+      }
+    }
+  }
+}
+
+void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
+                                         const OMPExecutableDirective &D,
+                                         SourceLocation Loc,
+                                         llvm::Function *OutlinedFn,
+                                         ArrayRef<llvm::Value *> CapturedVars) {
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+                                                      /*Name=*/".zero.addr");
+  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+  OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
+  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+  emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
+}
+
+void CGOpenMPRuntimeGPU::emitParallelCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
+    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
+    emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
+  else
+    emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
+}
+
+void CGOpenMPRuntimeGPU::emitNonSPMDParallelCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+  llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
+
+  // Force inline this outlined function at its call site.
+  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
+
+  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+                                                      /*Name=*/".zero.addr");
+  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+  // ThreadId for serialized parallels is 0.
+  Address ThreadIDAddr = ZeroAddr;
+  auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr](
+                       CodeGenFunction &CGF, PrePostActionTy &Action) {
+    Action.Enter(CGF);
+
+    Address ZeroAddr =
+        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+                                         /*Name=*/".bound.zero.addr");
+    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
+    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+    emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
+  };
+  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
+                                        PrePostActionTy &) {
+
+    RegionCodeGenTy RCG(CodeGen);
+    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+    llvm::Value *ThreadID = getThreadID(CGF, Loc);
+    llvm::Value *Args[] = {RTLoc, ThreadID};
+
+    NVPTXActionTy Action(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
+        Args,
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
+        Args);
+    RCG.setAction(Action);
+    RCG(CGF);
+  };
+
+  auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
+                                                  PrePostActionTy &Action) {
+    CGBuilderTy &Bld = CGF.Builder;
+    llvm::Function *WFn = WrapperFunctionsMap[Fn];
+    assert(WFn && "Wrapper function does not exist!");
+    llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
+
+    // Prepare for parallel region. Indicate the outlined function.
+    llvm::Value *Args[] = {ID};
+    CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
+        Args);
+
+    // Create a private scope that will globalize the arguments
+    // passed from the outside of the target region.
+    CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
+
+    // There's something to share.
+    if (!CapturedVars.empty()) {
+      // Prepare for parallel region. Indicate the outlined function.
+      Address SharedArgs =
+          CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
+      llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
+
+      llvm::Value *DataSharingArgs[] = {
+          SharedArgsPtr,
+          llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
+      CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+                              OMPRTL_NVPTX__kmpc_begin_sharing_variables),
+                          DataSharingArgs);
+
+      // Store variable address in a list of references to pass to workers.
+      unsigned Idx = 0;
+      ASTContext &Ctx = CGF.getContext();
+      Address SharedArgListAddress = CGF.EmitLoadOfPointer(
+          SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
+                          .castAs<PointerType>());
+      for (llvm::Value *V : CapturedVars) {
+        Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
+        llvm::Value *PtrV;
+        if (V->getType()->isIntegerTy())
+          PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
+        else
+          PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
+        CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
+                              Ctx.getPointerType(Ctx.VoidPtrTy));
+        ++Idx;
+      }
+    }
+
+    // Activate workers. This barrier is used by the master to signal
+    // work for the workers.
+    syncCTAThreads(CGF);
+
+    // OpenMP [2.5, Parallel Construct, p.49]
+    // There is an implied barrier at the end of a parallel region. After the
+    // end of a parallel region, only the master thread of the team resumes
+    // execution of the enclosing task region.
+    //
+    // The master waits at this barrier until all workers are done.
+    syncCTAThreads(CGF);
+
+    if (!CapturedVars.empty())
+      CGF.EmitRuntimeCall(
+          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_sharing_variables));
+
+    // Remember for post-processing in worker loop.
+    Work.emplace_back(WFn);
+  };
+
+  auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
+                             CodeGenFunction &CGF, PrePostActionTy &Action) {
+    if (IsInParallelRegion) {
+      SeqGen(CGF, Action);
+    } else if (IsInTargetMasterThreadRegion) {
+      L0ParallelGen(CGF, Action);
+    } else {
+      // Check for master and then parallelism:
+      // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
+      //   Serialized execution.
+      // } else {
+      //   Worker call.
+      // }
+      CGBuilderTy &Bld = CGF.Builder;
+      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+      llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
+      llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
+      llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
+      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
+          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
+      Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
+      // There is no need to emit line number for unconditional branch.
+      (void)ApplyDebugLocation::CreateEmpty(CGF);
+      CGF.EmitBlock(ParallelCheckBB);
+      llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+      llvm::Value *ThreadID = getThreadID(CGF, Loc);
+      llvm::Value *PL = CGF.EmitRuntimeCall(
+          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
+          {RTLoc, ThreadID});
+      llvm::Value *Res = Bld.CreateIsNotNull(PL);
+      Bld.CreateCondBr(Res, SeqBB, MasterBB);
+      CGF.EmitBlock(SeqBB);
+      SeqGen(CGF, Action);
+      CGF.EmitBranch(ExitBB);
+      // There is no need to emit line number for unconditional branch.
+      (void)ApplyDebugLocation::CreateEmpty(CGF);
+      CGF.EmitBlock(MasterBB);
+      L0ParallelGen(CGF, Action);
+      CGF.EmitBranch(ExitBB);
+      // There is no need to emit line number for unconditional branch.
+      (void)ApplyDebugLocation::CreateEmpty(CGF);
+      // Emit the continuation block for code after the if.
+      CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+    }
+  };
+
+  if (IfCond) {
+    emitIfClause(CGF, IfCond, LNParallelGen, SeqGen);
+  } else {
+    CodeGenFunction::RunCleanupsScope Scope(CGF);
+    RegionCodeGenTy ThenRCG(LNParallelGen);
+    ThenRCG(CGF);
+  }
+}
+
+void CGOpenMPRuntimeGPU::emitSPMDParallelCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
+    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+  // Just call the outlined function to execute the parallel region.
+  // OutlinedFn(&GTid, &zero, CapturedStruct);
+  //
+  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+
+  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+                                                      /*Name=*/".zero.addr");
+  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+  // ThreadId for serialized parallels is 0.
+  Address ThreadIDAddr = ZeroAddr;
+  auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr](
+                       CodeGenFunction &CGF, PrePostActionTy &Action) {
+    Action.Enter(CGF);
+
+    Address ZeroAddr =
+        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+                                         /*Name=*/".bound.zero.addr");
+    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
+    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+    emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
+  };
+  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
+                                        PrePostActionTy &) {
+
+    RegionCodeGenTy RCG(CodeGen);
+    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+    llvm::Value *ThreadID = getThreadID(CGF, Loc);
+    llvm::Value *Args[] = {RTLoc, ThreadID};
+
+    NVPTXActionTy Action(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
+        Args,
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
+        Args);
+    RCG.setAction(Action);
+    RCG(CGF);
+  };
+
+  if (IsInTargetMasterThreadRegion) {
+    // In the worker need to use the real thread id.
+    ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
+    RegionCodeGenTy RCG(CodeGen);
+    RCG(CGF);
+  } else {
+    // If we are not in the target region, it is definitely L2 parallelism or
+    // more, because for SPMD mode we always has L1 parallel level, sowe don't
+    // need to check for orphaned directives.
+    RegionCodeGenTy RCG(SeqGen);
+    RCG(CGF);
+  }
+}
+
+void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
+  // Always emit simple barriers!
+  if (!CGF.HaveInsertPoint())
+    return;
+  // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
+  // This function does not use parameters, so we can emit just default values.
+  llvm::Value *Args[] = {
+      llvm::ConstantPointerNull::get(
+          cast<llvm::PointerType>(getIdentTyPointerTy())),
+      llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
+  llvm::CallInst *Call = CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier_simple_spmd), Args);
+  Call->setConvergent();
+}
+
+void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
+                                           SourceLocation Loc,
+                                           OpenMPDirectiveKind Kind, bool,
+                                           bool) {
+  // Always emit simple barriers!
+  if (!CGF.HaveInsertPoint())
+    return;
+  // Build call __kmpc_cancel_barrier(loc, thread_id);
+  unsigned Flags = getDefaultFlagsForBarriers(Kind);
+  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
+                         getThreadID(CGF, Loc)};
+  llvm::CallInst *Call = CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier), Args);
+  Call->setConvergent();
+}
+
+void CGOpenMPRuntimeGPU::emitCriticalRegion(
+    CodeGenFunction &CGF, StringRef CriticalName,
+    const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
+    const Expr *Hint) {
+  llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
+  llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
+  llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
+  llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
+  llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
+
+  // Get the mask of active threads in the warp.
+  llvm::Value *Mask = CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_warp_active_thread_mask));
+  // Fetch team-local id of the thread.
+  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
+
+  // Get the width of the team.
+  llvm::Value *TeamWidth = getNVPTXNumThreads(CGF);
+
+  // Initialize the counter variable for the loop.
+  QualType Int32Ty =
+      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
+  Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
+  LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
+  CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
+                        /*isInit=*/true);
+
+  // Block checks if loop counter exceeds upper bound.
+  CGF.EmitBlock(LoopBB);
+  llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
+  llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
+  CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
+
+  // Block tests which single thread should execute region, and which threads
+  // should go straight to synchronisation point.
+  CGF.EmitBlock(TestBB);
+  CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
+  llvm::Value *CmpThreadToCounter =
+      CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
+  CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
+
+  // Block emits the body of the critical region.
+  CGF.EmitBlock(BodyBB);
+
+  // Output the critical statement.
+  CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
+                                      Hint);
+
+  // After the body surrounded by the critical region, the single executing
+  // thread will jump to the synchronisation point.
+  // Block waits for all threads in current team to finish then increments the
+  // counter variable and returns to the loop.
+  CGF.EmitBlock(SyncBB);
+  // Reconverge active threads in the warp.
+  (void)CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_syncwarp), Mask);
+
+  llvm::Value *IncCounterVal =
+      CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
+  CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
+  CGF.EmitBranch(LoopBB);
+
+  // Block that is reached when  all threads in the team complete the region.
+  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+/// Cast value to the specified type.
+static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
+                                    QualType ValTy, QualType CastTy,
+                                    SourceLocation Loc) {
+  assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
+         "Cast type must sized.");
+  assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
+         "Val type must sized.");
+  llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
+  if (ValTy == CastTy)
+    return Val;
+  if (CGF.getContext().getTypeSizeInChars(ValTy) ==
+      CGF.getContext().getTypeSizeInChars(CastTy))
+    return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
+  if (CastTy->isIntegerType() && ValTy->isIntegerType())
+    return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
+                                     CastTy->hasSignedIntegerRepresentation());
+  Address CastItem = CGF.CreateMemTemp(CastTy);
+  Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+      CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
+  CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy);
+  return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc);
+}
+
+/// This function creates calls to one of two shuffle functions to copy
+/// variables between lanes in a warp.
+static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
+                                                 llvm::Value *Elem,
+                                                 QualType ElemType,
+                                                 llvm::Value *Offset,
+                                                 SourceLocation Loc) {
+  CodeGenModule &CGM = CGF.CGM;
+  CGBuilderTy &Bld = CGF.Builder;
+  CGOpenMPRuntimeGPU &RT =
+      *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
+
+  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
+  assert(Size.getQuantity() <= 8 &&
+         "Unsupported bitwidth in shuffle instruction.");
+
+  OpenMPRTLFunctionNVPTX ShuffleFn = Size.getQuantity() <= 4
+                                         ? OMPRTL_NVPTX__kmpc_shuffle_int32
+                                         : OMPRTL_NVPTX__kmpc_shuffle_int64;
+
+  // Cast all types to 32- or 64-bit values before calling shuffle routines.
+  QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
+      Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
+  llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
+  llvm::Value *WarpSize =
+      Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
+
+  llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
+      RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize});
+
+  return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
+}
+
+static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
+                            Address DestAddr, QualType ElemType,
+                            llvm::Value *Offset, SourceLocation Loc) {
+  CGBuilderTy &Bld = CGF.Builder;
+
+  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
+  // Create the loop over the big sized data.
+  // ptr = (void*)Elem;
+  // ptrEnd = (void*) Elem + 1;
+  // Step = 8;
+  // while (ptr + Step < ptrEnd)
+  //   shuffle((int64_t)*ptr);
+  // Step = 4;
+  // while (ptr + Step < ptrEnd)
+  //   shuffle((int32_t)*ptr);
+  // ...
+  Address ElemPtr = DestAddr;
+  Address Ptr = SrcAddr;
+  Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
+  for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
+    if (Size < CharUnits::fromQuantity(IntSize))
+      continue;
+    QualType IntType = CGF.getContext().getIntTypeForBitwidth(
+        CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
+        /*Signed=*/1);
+    llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
+    Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
+    ElemPtr =
+        Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
+    if (Size.getQuantity() / IntSize > 1) {
+      llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
+      llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
+      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
+      llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
+      CGF.EmitBlock(PreCondBB);
+      llvm::PHINode *PhiSrc =
+          Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
+      PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
+      llvm::PHINode *PhiDest =
+          Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
+      PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
+      Ptr = Address(PhiSrc, Ptr.getAlignment());
+      ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
+      llvm::Value *PtrDiff = Bld.CreatePtrDiff(
+          PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
+                                   Ptr.getPointer(), CGF.VoidPtrTy));
+      Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
+                       ThenBB, ExitBB);
+      CGF.EmitBlock(ThenBB);
+      llvm::Value *Res = createRuntimeShuffleFunction(
+          CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
+          IntType, Offset, Loc);
+      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
+      Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
+      Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
+      PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
+      PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
+      CGF.EmitBranch(PreCondBB);
+      CGF.EmitBlock(ExitBB);
+    } else {
+      llvm::Value *Res = createRuntimeShuffleFunction(
+          CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
+          IntType, Offset, Loc);
+      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
+      Ptr = Bld.CreateConstGEP(Ptr, 1);
+      ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
+    }
+    Size = Size % IntSize;
+  }
+}
+
+namespace {
+enum CopyAction : unsigned {
+  // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
+  // the warp using shuffle instructions.
+  RemoteLaneToThread,
+  // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
+  ThreadCopy,
+  // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
+  ThreadToScratchpad,
+  // ScratchpadToThread: Copy from a scratchpad array in global memory
+  // containing team-reduced data to a thread's stack.
+  ScratchpadToThread,
+};
+} // namespace
+
+struct CopyOptionsTy {
+  llvm::Value *RemoteLaneOffset;
+  llvm::Value *ScratchpadIndex;
+  llvm::Value *ScratchpadWidth;
+};
+
+/// Emit instructions to copy a Reduce list, which contains partially
+/// aggregated values, in the specified direction.
+static void emitReductionListCopy(
+    CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
+    ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
+    CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
+
+  CodeGenModule &CGM = CGF.CGM;
+  ASTContext &C = CGM.getContext();
+  CGBuilderTy &Bld = CGF.Builder;
+
+  llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
+  llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
+  llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
+
+  // Iterates, element-by-element, through the source Reduce list and
+  // make a copy.
+  unsigned Idx = 0;
+  unsigned Size = Privates.size();
+  for (const Expr *Private : Privates) {
+    Address SrcElementAddr = Address::invalid();
+    Address DestElementAddr = Address::invalid();
+    Address DestElementPtrAddr = Address::invalid();
+    // Should we shuffle in an element from a remote lane?
+    bool ShuffleInElement = false;
+    // Set to true to update the pointer in the dest Reduce list to a
+    // newly created element.
+    bool UpdateDestListPtr = false;
+    // Increment the src or dest pointer to the scratchpad, for each
+    // new element.
+    bool IncrScratchpadSrc = false;
+    bool IncrScratchpadDest = false;
+
+    switch (Action) {
+    case RemoteLaneToThread: {
+      // Step 1.1: Get the address for the src element in the Reduce list.
+      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
+      SrcElementAddr = CGF.EmitLoadOfPointer(
+          SrcElementPtrAddr,
+          C.getPointerType(Private->getType())->castAs<PointerType>());
+
+      // Step 1.2: Create a temporary to store the element in the destination
+      // Reduce list.
+      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
+      DestElementAddr =
+          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+      ShuffleInElement = true;
+      UpdateDestListPtr = true;
+      break;
+    }
+    case ThreadCopy: {
+      // Step 1.1: Get the address for the src element in the Reduce list.
+      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
+      SrcElementAddr = CGF.EmitLoadOfPointer(
+          SrcElementPtrAddr,
+          C.getPointerType(Private->getType())->castAs<PointerType>());
+
+      // Step 1.2: Get the address for dest element.  The destination
+      // element has already been created on the thread's stack.
+      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
+      DestElementAddr = CGF.EmitLoadOfPointer(
+          DestElementPtrAddr,
+          C.getPointerType(Private->getType())->castAs<PointerType>());
+      break;
+    }
+    case ThreadToScratchpad: {
+      // Step 1.1: Get the address for the src element in the Reduce list.
+      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
+      SrcElementAddr = CGF.EmitLoadOfPointer(
+          SrcElementPtrAddr,
+          C.getPointerType(Private->getType())->castAs<PointerType>());
+
+      // Step 1.2: Get the address for dest element:
+      // address = base + index * ElementSizeInChars.
+      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+      llvm::Value *CurrentOffset =
+          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
+      llvm::Value *ScratchPadElemAbsolutePtrVal =
+          Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
+      ScratchPadElemAbsolutePtrVal =
+          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+      DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+                                C.getTypeAlignInChars(Private->getType()));
+      IncrScratchpadDest = true;
+      break;
+    }
+    case ScratchpadToThread: {
+      // Step 1.1: Get the address for the src element in the scratchpad.
+      // address = base + index * ElementSizeInChars.
+      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+      llvm::Value *CurrentOffset =
+          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
+      llvm::Value *ScratchPadElemAbsolutePtrVal =
+          Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
+      ScratchPadElemAbsolutePtrVal =
+          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+      SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+                               C.getTypeAlignInChars(Private->getType()));
+      IncrScratchpadSrc = true;
+
+      // Step 1.2: Create a temporary to store the element in the destination
+      // Reduce list.
+      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
+      DestElementAddr =
+          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+      UpdateDestListPtr = true;
+      break;
+    }
+    }
+
+    // Regardless of src and dest of copy, we emit the load of src
+    // element as this is required in all directions
+    SrcElementAddr = Bld.CreateElementBitCast(
+        SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
+    DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
+                                               SrcElementAddr.getElementType());
+
+    // Now that all active lanes have read the element in the
+    // Reduce list, shuffle over the value from the remote lane.
+    if (ShuffleInElement) {
+      shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
+                      RemoteLaneOffset, Private->getExprLoc());
+    } else {
+      switch (CGF.getEvaluationKind(Private->getType())) {
+      case TEK_Scalar: {
+        llvm::Value *Elem =
+            CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
+                                 Private->getType(), Private->getExprLoc());
+        // Store the source element value to the dest element address.
+        CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
+                              Private->getType());
+        break;
+      }
+      case TEK_Complex: {
+        CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
+            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
+            Private->getExprLoc());
+        CGF.EmitStoreOfComplex(
+            Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
+            /*isInit=*/false);
+        break;
+      }
+      case TEK_Aggregate:
+        CGF.EmitAggregateCopy(
+            CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
+            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
+            Private->getType(), AggValueSlot::DoesNotOverlap);
+        break;
+      }
+    }
+
+    // Step 3.1: Modify reference in dest Reduce list as needed.
+    // Modifying the reference in Reduce list to point to the newly
+    // created element.  The element is live in the current function
+    // scope and that of functions it invokes (i.e., reduce_function).
+    // RemoteReduceData[i] = (void*)&RemoteElem
+    if (UpdateDestListPtr) {
+      CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
+                                DestElementAddr.getPointer(), CGF.VoidPtrTy),
+                            DestElementPtrAddr, /*Volatile=*/false,
+                            C.VoidPtrTy);
+    }
+
+    // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
+    // address of the next element in scratchpad memory, unless we're currently
+    // processing the last one.  Memory alignment is also taken care of here.
+    if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
+      llvm::Value *ScratchpadBasePtr =
+          IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
+      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+      ScratchpadBasePtr = Bld.CreateNUWAdd(
+          ScratchpadBasePtr,
+          Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
+
+      // Take care of global memory alignment for performance
+      ScratchpadBasePtr = Bld.CreateNUWSub(
+          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
+      ScratchpadBasePtr = Bld.CreateUDiv(
+          ScratchpadBasePtr,
+          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+      ScratchpadBasePtr = Bld.CreateNUWAdd(
+          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
+      ScratchpadBasePtr = Bld.CreateNUWMul(
+          ScratchpadBasePtr,
+          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+
+      if (IncrScratchpadDest)
+        DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+      else /* IncrScratchpadSrc = true */
+        SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+    }
+
+    ++Idx;
+  }
+}
+
+/// This function emits a helper that gathers Reduce lists from the first
+/// lane of every active warp to lanes in the first warp.
+///
+/// void inter_warp_copy_func(void* reduce_data, num_warps)
+///   shared smem[warp_size];
+///   For all data entries D in reduce_data:
+///     sync
+///     If (I am the first lane in each warp)
+///       Copy my local D to smem[warp_id]
+///     sync
+///     if (I am the first warp)
+///       Copy smem[thread_id] to my local D
+static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
+                                              ArrayRef<const Expr *> Privates,
+                                              QualType ReductionArrayTy,
+                                              SourceLocation Loc) {
+  ASTContext &C = CGM.getContext();
+  llvm::Module &M = CGM.getModule();
+
+  // ReduceList: thread local Reduce list.
+  // At the stage of the computation when this function is called, partially
+  // aggregated values reside in the first lane of every active warp.
+  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                  C.VoidPtrTy, ImplicitParamDecl::Other);
+  // NumWarps: number of warps active in the parallel region.  This could
+  // be smaller than 32 (max warps in a CTA) for partial block reduction.
+  ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                C.getIntTypeForBitwidth(32, /* Signed */ true),
+                                ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&ReduceListArg);
+  Args.push_back(&NumWarpsArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
+                                    llvm::GlobalValue::InternalLinkage,
+                                    "_omp_reduction_inter_warp_copy_func", &M);
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setDoesNotRecurse();
+  CodeGenFunction CGF(CGM);
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  // This array is used as a medium to transfer, one reduce element at a time,
+  // the data from the first lane of every warp to lanes in the first warp
+  // in order to perform the final step of a reduction in a parallel region
+  // (reduction across warps).  The array is placed in NVPTX __shared__ memory
+  // for reduced latency, as well as to have a distinct copy for concurrently
+  // executing target regions.  The array is declared with common linkage so
+  // as to be shared across compilation units.
+  StringRef TransferMediumName =
+      "__openmp_nvptx_data_transfer_temporary_storage";
+  llvm::GlobalVariable *TransferMedium =
+      M.getGlobalVariable(TransferMediumName);
+  if (!TransferMedium) {
+    auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
+    unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
+    TransferMedium = new llvm::GlobalVariable(
+        M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
+        llvm::Constant::getNullValue(Ty), TransferMediumName,
+        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
+        SharedAddressSpace);
+    CGM.addCompilerUsedGlobal(TransferMedium);
+  }
+
+  // Get the CUDA thread id of the current OpenMP thread on the GPU.
+  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
+  // nvptx_lane_id = nvptx_id % warpsize
+  llvm::Value *LaneID = getNVPTXLaneID(CGF);
+  // nvptx_warp_id = nvptx_id / warpsize
+  llvm::Value *WarpID = getNVPTXWarpID(CGF);
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address LocalReduceList(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, Loc),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+
+  unsigned Idx = 0;
+  for (const Expr *Private : Privates) {
+    //
+    // Warp master copies reduce element to transfer medium in __shared__
+    // memory.
+    //
+    unsigned RealTySize =
+        C.getTypeSizeInChars(Private->getType())
+            .alignTo(C.getTypeAlignInChars(Private->getType()))
+            .getQuantity();
+    for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
+      unsigned NumIters = RealTySize / TySize;
+      if (NumIters == 0)
+        continue;
+      QualType CType = C.getIntTypeForBitwidth(
+          C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
+      llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
+      CharUnits Align = CharUnits::fromQuantity(TySize);
+      llvm::Value *Cnt = nullptr;
+      Address CntAddr = Address::invalid();
+      llvm::BasicBlock *PrecondBB = nullptr;
+      llvm::BasicBlock *ExitBB = nullptr;
+      if (NumIters > 1) {
+        CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
+        CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
+                              /*Volatile=*/false, C.IntTy);
+        PrecondBB = CGF.createBasicBlock("precond");
+        ExitBB = CGF.createBasicBlock("exit");
+        llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
+        // There is no need to emit line number for unconditional branch.
+        (void)ApplyDebugLocation::CreateEmpty(CGF);
+        CGF.EmitBlock(PrecondBB);
+        Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
+        llvm::Value *Cmp =
+            Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
+        Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
+        CGF.EmitBlock(BodyBB);
+      }
+      // kmpc_barrier.
+      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
+                                             /*EmitChecks=*/false,
+                                             /*ForceSimpleCall=*/true);
+      llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+      llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+      llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+
+      // if (lane_id == 0)
+      llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
+      Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
+      CGF.EmitBlock(ThenBB);
+
+      // Reduce element = LocalReduceList[i]
+      Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+      llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+          ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+      // elemptr = ((CopyType*)(elemptrptr)) + I
+      Address ElemPtr = Address(ElemPtrPtr, Align);
+      ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
+      if (NumIters > 1) {
+        ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
+                          ElemPtr.getAlignment());
+      }
+
+      // Get pointer to location in transfer medium.
+      // MediumPtr = &medium[warp_id]
+      llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
+          TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
+      Address MediumPtr(MediumPtrVal, Align);
+      // Casting to actual data type.
+      // MediumPtr = (CopyType*)MediumPtrAddr;
+      MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
+
+      // elem = *elemptr
+      //*MediumPtr = elem
+      llvm::Value *Elem =
+          CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false, CType, Loc);
+      // Store the source element value to the dest element address.
+      CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType);
+
+      Bld.CreateBr(MergeBB);
+
+      CGF.EmitBlock(ElseBB);
+      Bld.CreateBr(MergeBB);
+
+      CGF.EmitBlock(MergeBB);
+
+      // kmpc_barrier.
+      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
+                                             /*EmitChecks=*/false,
+                                             /*ForceSimpleCall=*/true);
+
+      //
+      // Warp 0 copies reduce element from transfer medium.
+      //
+      llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
+      llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
+      llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
+
+      Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
+      llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
+          AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
+
+      // Up to 32 threads in warp 0 are active.
+      llvm::Value *IsActiveThread =
+          Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
+      Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
+
+      CGF.EmitBlock(W0ThenBB);
+
+      // SrcMediumPtr = &medium[tid]
+      llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
+          TransferMedium,
+          {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
+      Address SrcMediumPtr(SrcMediumPtrVal, Align);
+      // SrcMediumVal = *SrcMediumPtr;
+      SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
+
+      // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
+      Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+      llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
+          TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
+      Address TargetElemPtr = Address(TargetElemPtrVal, Align);
+      TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
+      if (NumIters > 1) {
+        TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
+                                TargetElemPtr.getAlignment());
+      }
+
+      // *TargetElemPtr = SrcMediumVal;
+      llvm::Value *SrcMediumValue =
+          CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
+      CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
+                            CType);
+      Bld.CreateBr(W0MergeBB);
+
+      CGF.EmitBlock(W0ElseBB);
+      Bld.CreateBr(W0MergeBB);
+
+      CGF.EmitBlock(W0MergeBB);
+
+      if (NumIters > 1) {
+        Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
+        CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
+        CGF.EmitBranch(PrecondBB);
+        (void)ApplyDebugLocation::CreateEmpty(CGF);
+        CGF.EmitBlock(ExitBB);
+      }
+      RealTySize %= TySize;
+    }
+    ++Idx;
+  }
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// Emit a helper that reduces data across two OpenMP threads (lanes)
+/// in the same warp.  It uses shuffle instructions to copy over data from
+/// a remote lane's stack.  The reduction algorithm performed is specified
+/// by the fourth parameter.
+///
+/// Algorithm Versions.
+/// Full Warp Reduce (argument value 0):
+///   This algorithm assumes that all 32 lanes are active and gathers
+///   data from these 32 lanes, producing a single resultant value.
+/// Contiguous Partial Warp Reduce (argument value 1):
+///   This algorithm assumes that only a *contiguous* subset of lanes
+///   are active.  This happens for the last warp in a parallel region
+///   when the user specified num_threads is not an integer multiple of
+///   32.  This contiguous subset always starts with the zeroth lane.
+/// Partial Warp Reduce (argument value 2):
+///   This algorithm gathers data from any number of lanes at any position.
+/// All reduced values are stored in the lowest possible lane.  The set
+/// of problems every algorithm addresses is a super set of those
+/// addressable by algorithms with a lower version number.  Overhead
+/// increases as algorithm version increases.
+///
+/// Terminology
+/// Reduce element:
+///   Reduce element refers to the individual data field with primitive
+///   data types to be combined and reduced across threads.
+/// Reduce list:
+///   Reduce list refers to a collection of local, thread-private
+///   reduce elements.
+/// Remote Reduce list:
+///   Remote Reduce list refers to a collection of remote (relative to
+///   the current thread) reduce elements.
+///
+/// We distinguish between three states of threads that are important to
+/// the implementation of this function.
+/// Alive threads:
+///   Threads in a warp executing the SIMT instruction, as distinguished from
+///   threads that are inactive due to divergent control flow.
+/// Active threads:
+///   The minimal set of threads that has to be alive upon entry to this
+///   function.  The computation is correct iff active threads are alive.
+///   Some threads are alive but they are not active because they do not
+///   contribute to the computation in any useful manner.  Turning them off
+///   may introduce control flow overheads without any tangible benefits.
+/// Effective threads:
+///   In order to comply with the argument requirements of the shuffle
+///   function, we must keep all lanes holding data alive.  But at most
+///   half of them perform value aggregation; we refer to this half of
+///   threads as effective. The other half is simply handing off their
+///   data.
+///
+/// Procedure
+/// Value shuffle:
+///   In this step active threads transfer data from higher lane positions
+///   in the warp to lower lane positions, creating Remote Reduce list.
+/// Value aggregation:
+///   In this step, effective threads combine their thread local Reduce list
+///   with Remote Reduce list and store the result in the thread local
+///   Reduce list.
+/// Value copy:
+///   In this step, we deal with the assumption made by algorithm 2
+///   (i.e. contiguity assumption).  When we have an odd number of lanes
+///   active, say 2k+1, only k threads will be effective and therefore k
+///   new values will be produced.  However, the Reduce list owned by the
+///   (2k+1)th thread is ignored in the value aggregation.  Therefore
+///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
+///   that the contiguity assumption still holds.
+static llvm::Function *emitShuffleAndReduceFunction(
+    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+    QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
+  ASTContext &C = CGM.getContext();
+
+  // Thread local Reduce list used to host the values of data to be reduced.
+  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                  C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Current lane id; could be logical.
+  ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
+                              ImplicitParamDecl::Other);
+  // Offset of the remote source lane relative to the current lane.
+  ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                        C.ShortTy, ImplicitParamDecl::Other);
+  // Algorithm version.  This is expected to be known at compile time.
+  ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                               C.ShortTy, ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&ReduceListArg);
+  Args.push_back(&LaneIDArg);
+  Args.push_back(&RemoteLaneOffsetArg);
+  Args.push_back(&AlgoVerArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setDoesNotRecurse();
+  if (CGM.getLangOpts().Optimize) {
+    Fn->removeFnAttr(llvm::Attribute::NoInline);
+    Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
+    Fn->addFnAttr(llvm::Attribute::AlwaysInline);
+  }
+
+  CodeGenFunction CGF(CGM);
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address LocalReduceList(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, SourceLocation()),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+
+  Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
+  llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
+      AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+  Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
+  llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
+      AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+  Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
+  llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
+      AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+  // Create a local thread-private variable to host the Reduce list
+  // from a remote lane.
+  Address RemoteReduceList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
+
+  // This loop iterates through the list of reduce elements and copies,
+  // element by element, from a remote lane in the warp to RemoteReduceList,
+  // hosted on the thread's stack.
+  emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
+                        LocalReduceList, RemoteReduceList,
+                        {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
+                         /*ScratchpadIndex=*/nullptr,
+                         /*ScratchpadWidth=*/nullptr});
+
+  // The actions to be performed on the Remote Reduce list is dependent
+  // on the algorithm version.
+  //
+  //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
+  //  LaneId % 2 == 0 && Offset > 0):
+  //    do the reduction value aggregation
+  //
+  //  The thread local variable Reduce list is mutated in place to host the
+  //  reduced data, which is the aggregated value produced from local and
+  //  remote lanes.
+  //
+  //  Note that AlgoVer is expected to be a constant integer known at compile
+  //  time.
+  //  When AlgoVer==0, the first conjunction evaluates to true, making
+  //    the entire predicate true during compile time.
+  //  When AlgoVer==1, the second conjunction has only the second part to be
+  //    evaluated during runtime.  Other conjunctions evaluates to false
+  //    during compile time.
+  //  When AlgoVer==2, the third conjunction has only the second part to be
+  //    evaluated during runtime.  Other conjunctions evaluates to false
+  //    during compile time.
+  llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
+
+  llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+  llvm::Value *CondAlgo1 = Bld.CreateAnd(
+      Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+  llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
+  llvm::Value *CondAlgo2 = Bld.CreateAnd(
+      Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
+  CondAlgo2 = Bld.CreateAnd(
+      CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
+
+  llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
+  CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
+
+  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
+
+  CGF.EmitBlock(ThenBB);
+  // reduce_function(LocalReduceList, RemoteReduceList)
+  llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      LocalReduceList.getPointer(), CGF.VoidPtrTy);
+  llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
+  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+      CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
+  Bld.CreateBr(MergeBB);
+
+  CGF.EmitBlock(ElseBB);
+  Bld.CreateBr(MergeBB);
+
+  CGF.EmitBlock(MergeBB);
+
+  // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
+  // Reduce list.
+  Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+  llvm::Value *CondCopy = Bld.CreateAnd(
+      Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+  llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
+  llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
+  llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
+  Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
+
+  CGF.EmitBlock(CpyThenBB);
+  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
+                        RemoteReduceList, LocalReduceList);
+  Bld.CreateBr(CpyMergeBB);
+
+  CGF.EmitBlock(CpyElseBB);
+  Bld.CreateBr(CpyMergeBB);
+
+  CGF.EmitBlock(CpyMergeBB);
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// This function emits a helper that copies all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
+///   For all data entries D in reduce_data:
+///     Copy local D to buffer.D[Idx]
+static llvm::Value *emitListToGlobalCopyFunction(
+    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+    QualType ReductionArrayTy, SourceLocation Loc,
+    const RecordDecl *TeamReductionRec,
+    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+        &VarFieldMap) {
+  ASTContext &C = CGM.getContext();
+
+  // Buffer: global reduction buffer.
+  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                              C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Idx: index of the buffer.
+  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+                           ImplicitParamDecl::Other);
+  // ReduceList: thread local Reduce list.
+  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                  C.VoidPtrTy, ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&BufferArg);
+  Args.push_back(&IdxArg);
+  Args.push_back(&ReduceListArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setDoesNotRecurse();
+  CodeGenFunction CGF(CGM);
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+  Address LocalReduceList(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, Loc),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+  QualType StaticTy = C.getRecordType(TeamReductionRec);
+  llvm::Type *LLVMReductionsBufferTy =
+      CGM.getTypes().ConvertTypeForMem(StaticTy);
+  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+      LLVMReductionsBufferTy->getPointerTo());
+  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+                                              /*Volatile=*/false, C.IntTy,
+                                              Loc)};
+  unsigned Idx = 0;
+  for (const Expr *Private : Privates) {
+    // Reduce element = LocalReduceList[i]
+    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+    // elemptr = ((CopyType*)(elemptrptr)) + I
+    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+        ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
+    Address ElemPtr =
+        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
+    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
+    // Global = Buffer.VD[Idx];
+    const FieldDecl *FD = VarFieldMap.lookup(VD);
+    LValue GlobLVal = CGF.EmitLValueForField(
+        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+    llvm::Value *BufferPtr =
+        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
+    GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
+    switch (CGF.getEvaluationKind(Private->getType())) {
+    case TEK_Scalar: {
+      llvm::Value *V = CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false,
+                                            Private->getType(), Loc);
+      CGF.EmitStoreOfScalar(V, GlobLVal);
+      break;
+    }
+    case TEK_Complex: {
+      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
+          CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
+      CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
+      break;
+    }
+    case TEK_Aggregate:
+      CGF.EmitAggregateCopy(GlobLVal,
+                            CGF.MakeAddrLValue(ElemPtr, Private->getType()),
+                            Private->getType(), AggValueSlot::DoesNotOverlap);
+      break;
+    }
+    ++Idx;
+  }
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// This function emits a helper that reduces all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
+///  void *GlobPtrs[];
+///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
+///  ...
+///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
+///  reduce_function(GlobPtrs, reduce_data);
+static llvm::Value *emitListToGlobalReduceFunction(
+    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+    QualType ReductionArrayTy, SourceLocation Loc,
+    const RecordDecl *TeamReductionRec,
+    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+        &VarFieldMap,
+    llvm::Function *ReduceFn) {
+  ASTContext &C = CGM.getContext();
+
+  // Buffer: global reduction buffer.
+  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                              C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Idx: index of the buffer.
+  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+                           ImplicitParamDecl::Other);
+  // ReduceList: thread local Reduce list.
+  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                  C.VoidPtrTy, ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&BufferArg);
+  Args.push_back(&IdxArg);
+  Args.push_back(&ReduceListArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setDoesNotRecurse();
+  CodeGenFunction CGF(CGM);
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+  QualType StaticTy = C.getRecordType(TeamReductionRec);
+  llvm::Type *LLVMReductionsBufferTy =
+      CGM.getTypes().ConvertTypeForMem(StaticTy);
+  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+      LLVMReductionsBufferTy->getPointerTo());
+
+  // 1. Build a list of reduction variables.
+  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+  Address ReductionList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+  auto IPriv = Privates.begin();
+  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+                                              /*Volatile=*/false, C.IntTy,
+                                              Loc)};
+  unsigned Idx = 0;
+  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
+    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+    // Global = Buffer.VD[Idx];
+    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
+    const FieldDecl *FD = VarFieldMap.lookup(VD);
+    LValue GlobLVal = CGF.EmitLValueForField(
+        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+    llvm::Value *BufferPtr =
+        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
+    llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
+    CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
+    if ((*IPriv)->getType()->isVariablyModifiedType()) {
+      // Store array size.
+      ++Idx;
+      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+      llvm::Value *Size = CGF.Builder.CreateIntCast(
+          CGF.getVLASize(
+                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+              .NumElts,
+          CGF.SizeTy, /*isSigned=*/false);
+      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+                              Elem);
+    }
+  }
+
+  // Call reduce_function(GlobalReduceList, ReduceList)
+  llvm::Value *GlobalReduceList =
+      CGF.EmitCastToVoidPtr(ReductionList.getPointer());
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
+      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
+  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+      CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// This function emits a helper that copies all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
+///   For all data entries D in reduce_data:
+///     Copy buffer.D[Idx] to local D;
+static llvm::Value *emitGlobalToListCopyFunction(
+    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+    QualType ReductionArrayTy, SourceLocation Loc,
+    const RecordDecl *TeamReductionRec,
+    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+        &VarFieldMap) {
+  ASTContext &C = CGM.getContext();
+
+  // Buffer: global reduction buffer.
+  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                              C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Idx: index of the buffer.
+  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+                           ImplicitParamDecl::Other);
+  // ReduceList: thread local Reduce list.
+  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                  C.VoidPtrTy, ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&BufferArg);
+  Args.push_back(&IdxArg);
+  Args.push_back(&ReduceListArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setDoesNotRecurse();
+  CodeGenFunction CGF(CGM);
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+  Address LocalReduceList(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, Loc),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+  QualType StaticTy = C.getRecordType(TeamReductionRec);
+  llvm::Type *LLVMReductionsBufferTy =
+      CGM.getTypes().ConvertTypeForMem(StaticTy);
+  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+      LLVMReductionsBufferTy->getPointerTo());
+
+  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+                                              /*Volatile=*/false, C.IntTy,
+                                              Loc)};
+  unsigned Idx = 0;
+  for (const Expr *Private : Privates) {
+    // Reduce element = LocalReduceList[i]
+    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+    // elemptr = ((CopyType*)(elemptrptr)) + I
+    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+        ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
+    Address ElemPtr =
+        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
+    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
+    // Global = Buffer.VD[Idx];
+    const FieldDecl *FD = VarFieldMap.lookup(VD);
+    LValue GlobLVal = CGF.EmitLValueForField(
+        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+    llvm::Value *BufferPtr =
+        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
+    GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
+    switch (CGF.getEvaluationKind(Private->getType())) {
+    case TEK_Scalar: {
+      llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
+      CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType());
+      break;
+    }
+    case TEK_Complex: {
+      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
+      CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
+                             /*isInit=*/false);
+      break;
+    }
+    case TEK_Aggregate:
+      CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
+                            GlobLVal, Private->getType(),
+                            AggValueSlot::DoesNotOverlap);
+      break;
+    }
+    ++Idx;
+  }
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// This function emits a helper that reduces all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
+///  void *GlobPtrs[];
+///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
+///  ...
+///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
+///  reduce_function(reduce_data, GlobPtrs);
+static llvm::Value *emitGlobalToListReduceFunction(
+    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+    QualType ReductionArrayTy, SourceLocation Loc,
+    const RecordDecl *TeamReductionRec,
+    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+        &VarFieldMap,
+    llvm::Function *ReduceFn) {
+  ASTContext &C = CGM.getContext();
+
+  // Buffer: global reduction buffer.
+  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                              C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Idx: index of the buffer.
+  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+                           ImplicitParamDecl::Other);
+  // ReduceList: thread local Reduce list.
+  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+                                  C.VoidPtrTy, ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&BufferArg);
+  Args.push_back(&IdxArg);
+  Args.push_back(&ReduceListArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setDoesNotRecurse();
+  CodeGenFunction CGF(CGM);
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+  QualType StaticTy = C.getRecordType(TeamReductionRec);
+  llvm::Type *LLVMReductionsBufferTy =
+      CGM.getTypes().ConvertTypeForMem(StaticTy);
+  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+      LLVMReductionsBufferTy->getPointerTo());
+
+  // 1. Build a list of reduction variables.
+  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+  Address ReductionList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+  auto IPriv = Privates.begin();
+  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+                                              /*Volatile=*/false, C.IntTy,
+                                              Loc)};
+  unsigned Idx = 0;
+  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
+    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+    // Global = Buffer.VD[Idx];
+    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
+    const FieldDecl *FD = VarFieldMap.lookup(VD);
+    LValue GlobLVal = CGF.EmitLValueForField(
+        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+    llvm::Value *BufferPtr =
+        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
+    llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
+    CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
+    if ((*IPriv)->getType()->isVariablyModifiedType()) {
+      // Store array size.
+      ++Idx;
+      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+      llvm::Value *Size = CGF.Builder.CreateIntCast(
+          CGF.getVLASize(
+                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+              .NumElts,
+          CGF.SizeTy, /*isSigned=*/false);
+      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+                              Elem);
+    }
+  }
+
+  // Call reduce_function(ReduceList, GlobalReduceList)
+  llvm::Value *GlobalReduceList =
+      CGF.EmitCastToVoidPtr(ReductionList.getPointer());
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
+      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
+  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+      CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
+  CGF.FinishFunction();
+  return Fn;
+}
+
+///
+/// Design of OpenMP reductions on the GPU
+///
+/// Consider a typical OpenMP program with one or more reduction
+/// clauses:
+///
+/// float foo;
+/// double bar;
+/// #pragma omp target teams distribute parallel for \
+///             reduction(+:foo) reduction(*:bar)
+/// for (int i = 0; i < N; i++) {
+///   foo += A[i]; bar *= B[i];
+/// }
+///
+/// where 'foo' and 'bar' are reduced across all OpenMP threads in
+/// all teams.  In our OpenMP implementation on the NVPTX device an
+/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
+/// within a team are mapped to CUDA threads within a threadblock.
+/// Our goal is to efficiently aggregate values across all OpenMP
+/// threads such that:
+///
+///   - the compiler and runtime are logically concise, and
+///   - the reduction is performed efficiently in a hierarchical
+///     manner as follows: within OpenMP threads in the same warp,
+///     across warps in a threadblock, and finally across teams on
+///     the NVPTX device.
+///
+/// Introduction to Decoupling
+///
+/// We would like to decouple the compiler and the runtime so that the
+/// latter is ignorant of the reduction variables (number, data types)
+/// and the reduction operators.  This allows a simpler interface
+/// and implementation while still attaining good performance.
+///
+/// Pseudocode for the aforementioned OpenMP program generated by the
+/// compiler is as follows:
+///
+/// 1. Create private copies of reduction variables on each OpenMP
+///    thread: 'foo_private', 'bar_private'
+/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
+///    to it and writes the result in 'foo_private' and 'bar_private'
+///    respectively.
+/// 3. Call the OpenMP runtime on the GPU to reduce within a team
+///    and store the result on the team master:
+///
+///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
+///        reduceData, shuffleReduceFn, interWarpCpyFn)
+///
+///     where:
+///       struct ReduceData {
+///         double *foo;
+///         double *bar;
+///       } reduceData
+///       reduceData.foo = &foo_private
+///       reduceData.bar = &bar_private
+///
+///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
+///     auxiliary functions generated by the compiler that operate on
+///     variables of type 'ReduceData'.  They aid the runtime perform
+///     algorithmic steps in a data agnostic manner.
+///
+///     'shuffleReduceFn' is a pointer to a function that reduces data
+///     of type 'ReduceData' across two OpenMP threads (lanes) in the
+///     same warp.  It takes the following arguments as input:
+///
+///     a. variable of type 'ReduceData' on the calling lane,
+///     b. its lane_id,
+///     c. an offset relative to the current lane_id to generate a
+///        remote_lane_id.  The remote lane contains the second
+///        variable of type 'ReduceData' that is to be reduced.
+///     d. an algorithm version parameter determining which reduction
+///        algorithm to use.
+///
+///     'shuffleReduceFn' retrieves data from the remote lane using
+///     efficient GPU shuffle intrinsics and reduces, using the
+///     algorithm specified by the 4th parameter, the two operands
+///     element-wise.  The result is written to the first operand.
+///
+///     Different reduction algorithms are implemented in 
diff erent
+///     runtime functions, all calling 'shuffleReduceFn' to perform
+///     the essential reduction step.  Therefore, based on the 4th
+///     parameter, this function behaves slightly 
diff erently to
+///     cooperate with the runtime to ensure correctness under
+///     
diff erent circumstances.
+///
+///     'InterWarpCpyFn' is a pointer to a function that transfers
+///     reduced variables across warps.  It tunnels, through CUDA
+///     shared memory, the thread-private data of type 'ReduceData'
+///     from lane 0 of each warp to a lane in the first warp.
+/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
+///    The last team writes the global reduced value to memory.
+///
+///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
+///             reduceData, shuffleReduceFn, interWarpCpyFn,
+///             scratchpadCopyFn, loadAndReduceFn)
+///
+///     'scratchpadCopyFn' is a helper that stores reduced
+///     data from the team master to a scratchpad array in
+///     global memory.
+///
+///     'loadAndReduceFn' is a helper that loads data from
+///     the scratchpad array and reduces it with the input
+///     operand.
+///
+///     These compiler generated functions hide address
+///     calculation and alignment information from the runtime.
+/// 5. if ret == 1:
+///     The team master of the last team stores the reduced
+///     result to the globals in memory.
+///     foo += reduceData.foo; bar *= reduceData.bar
+///
+///
+/// Warp Reduction Algorithms
+///
+/// On the warp level, we have three algorithms implemented in the
+/// OpenMP runtime depending on the number of active lanes:
+///
+/// Full Warp Reduction
+///
+/// The reduce algorithm within a warp where all lanes are active
+/// is implemented in the runtime as follows:
+///
+/// full_warp_reduce(void *reduce_data,
+///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
+///     ShuffleReduceFn(reduce_data, 0, offset, 0);
+/// }
+///
+/// The algorithm completes in log(2, WARPSIZE) steps.
+///
+/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
+/// not used therefore we save instructions by not retrieving lane_id
+/// from the corresponding special registers.  The 4th parameter, which
+/// represents the version of the algorithm being used, is set to 0 to
+/// signify full warp reduction.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// #reduce_elem refers to an element in the local lane's data structure
+/// #remote_elem is retrieved from a remote lane
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
+///
+/// Contiguous Partial Warp Reduction
+///
+/// This reduce algorithm is used within a warp where only the first
+/// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
+/// number of OpenMP threads in a parallel region is not a multiple of
+/// WARPSIZE.  The algorithm is implemented in the runtime as follows:
+///
+/// void
+/// contiguous_partial_reduce(void *reduce_data,
+///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
+///                           int size, int lane_id) {
+///   int curr_size;
+///   int offset;
+///   curr_size = size;
+///   mask = curr_size/2;
+///   while (offset>0) {
+///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
+///     curr_size = (curr_size+1)/2;
+///     offset = curr_size/2;
+///   }
+/// }
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id < offset)
+///     reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+///     reduce_elem = remote_elem
+///
+/// This algorithm assumes that the data to be reduced are located in a
+/// contiguous subset of lanes starting from the first.  When there is
+/// an odd number of active lanes, the data in the last lane is not
+/// aggregated with any other lane's dat but is instead copied over.
+///
+/// Dispersed Partial Warp Reduction
+///
+/// This algorithm is used within a warp when any discontiguous subset of
+/// lanes are active.  It is used to implement the reduction operation
+/// across lanes in an OpenMP simd region or in a nested parallel region.
+///
+/// void
+/// dispersed_partial_reduce(void *reduce_data,
+///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+///   int size, remote_id;
+///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
+///   do {
+///       remote_id = next_active_lane_id_right_after_me();
+///       # the above function returns 0 of no active lane
+///       # is present right after the current lane.
+///       size = number_of_active_lanes_in_this_warp();
+///       logical_lane_id /= 2;
+///       ShuffleReduceFn(reduce_data, logical_lane_id,
+///                       remote_id-1-threadIdx.x, 2);
+///   } while (logical_lane_id % 2 == 0 && size > 1);
+/// }
+///
+/// There is no assumption made about the initial state of the reduction.
+/// Any number of lanes (>=1) could be active at any position.  The reduction
+/// result is returned in the first active lane.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id % 2 == 0 && offset > 0)
+///     reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+///     reduce_elem = remote_elem
+///
+///
+/// Intra-Team Reduction
+///
+/// This function, as implemented in the runtime call
+/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
+/// threads in a team.  It first reduces within a warp using the
+/// aforementioned algorithms.  We then proceed to gather all such
+/// reduced values at the first warp.
+///
+/// The runtime makes use of the function 'InterWarpCpyFn', which copies
+/// data from each of the "warp master" (zeroth lane of each warp, where
+/// warp-reduced data is held) to the zeroth warp.  This step reduces (in
+/// a mathematical sense) the problem of reduction across warp masters in
+/// a block to the problem of warp reduction.
+///
+///
+/// Inter-Team Reduction
+///
+/// Once a team has reduced its data to a single value, it is stored in
+/// a global scratchpad array.  Since each team has a distinct slot, this
+/// can be done without locking.
+///
+/// The last team to write to the scratchpad array proceeds to reduce the
+/// scratchpad array.  One or more workers in the last team use the helper
+/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
+/// the k'th worker reduces every k'th element.
+///
+/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
+/// reduce across workers and compute a globally reduced value.
+///
+void CGOpenMPRuntimeGPU::emitReduction(
+    CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
+    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+    ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
+#ifndef NDEBUG
+  bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
+#endif
+
+  if (Options.SimpleReduction) {
+    assert(!TeamsReduction && !ParallelReduction &&
+           "Invalid reduction selection in emitReduction.");
+    CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
+                                   ReductionOps, Options);
+    return;
+  }
+
+  assert((TeamsReduction || ParallelReduction) &&
+         "Invalid reduction selection in emitReduction.");
+
+  // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
+  // RedList, shuffle_reduce_func, interwarp_copy_func);
+  // or
+  // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
+  llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+  llvm::Value *ThreadId = getThreadID(CGF, Loc);
+
+  llvm::Value *Res;
+  ASTContext &C = CGM.getContext();
+  // 1. Build a list of reduction variables.
+  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+  auto Size = RHSExprs.size();
+  for (const Expr *E : Privates) {
+    if (E->getType()->isVariablyModifiedType())
+      // Reserve place for array size.
+      ++Size;
+  }
+  llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+  QualType ReductionArrayTy =
+      C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
+                             /*IndexTypeQuals=*/0);
+  Address ReductionList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+  auto IPriv = Privates.begin();
+  unsigned Idx = 0;
+  for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+    CGF.Builder.CreateStore(
+        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+            CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
+        Elem);
+    if ((*IPriv)->getType()->isVariablyModifiedType()) {
+      // Store array size.
+      ++Idx;
+      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+      llvm::Value *Size = CGF.Builder.CreateIntCast(
+          CGF.getVLASize(
+                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+              .NumElts,
+          CGF.SizeTy, /*isSigned=*/false);
+      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+                              Elem);
+    }
+  }
+
+  llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+      ReductionList.getPointer(), CGF.VoidPtrTy);
+  llvm::Function *ReductionFn = emitReductionFunction(
+      Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
+      LHSExprs, RHSExprs, ReductionOps);
+  llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+  llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
+      CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
+  llvm::Value *InterWarpCopyFn =
+      emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
+
+  if (ParallelReduction) {
+    llvm::Value *Args[] = {RTLoc,
+                           ThreadId,
+                           CGF.Builder.getInt32(RHSExprs.size()),
+                           ReductionArrayTySize,
+                           RL,
+                           ShuffleAndReduceFn,
+                           InterWarpCopyFn};
+
+    Res = CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(
+            OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2),
+        Args);
+  } else {
+    assert(TeamsReduction && "expected teams reduction.");
+    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
+    llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
+    int Cnt = 0;
+    for (const Expr *DRE : Privates) {
+      PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
+      ++Cnt;
+    }
+    const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
+        CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
+        C.getLangOpts().OpenMPCUDAReductionBufNum);
+    TeamsReductions.push_back(TeamReductionRec);
+    if (!KernelTeamsReductionPtr) {
+      KernelTeamsReductionPtr = new llvm::GlobalVariable(
+          CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
+          llvm::GlobalValue::InternalLinkage, nullptr,
+          "_openmp_teams_reductions_buffer_$_$ptr");
+    }
+    llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
+        Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
+        /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
+    llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
+        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
+    llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
+        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
+        ReductionFn);
+    llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
+        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
+    llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
+        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
+        ReductionFn);
+
+    llvm::Value *Args[] = {
+        RTLoc,
+        ThreadId,
+        GlobalBufferPtr,
+        CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
+        RL,
+        ShuffleAndReduceFn,
+        InterWarpCopyFn,
+        GlobalToBufferCpyFn,
+        GlobalToBufferRedFn,
+        BufferToGlobalCpyFn,
+        BufferToGlobalRedFn};
+
+    Res = CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(
+            OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2),
+        Args);
+  }
+
+  // 5. Build if (res == 1)
+  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
+  llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
+  llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
+      Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
+  CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
+
+  // 6. Build then branch: where we have reduced values in the master
+  //    thread in each team.
+  //    __kmpc_end_reduce{_nowait}(<gtid>);
+  //    break;
+  CGF.EmitBlock(ThenBB);
+
+  // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
+  auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
+                    this](CodeGenFunction &CGF, PrePostActionTy &Action) {
+    auto IPriv = Privates.begin();
+    auto ILHS = LHSExprs.begin();
+    auto IRHS = RHSExprs.begin();
+    for (const Expr *E : ReductionOps) {
+      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+                                  cast<DeclRefExpr>(*IRHS));
+      ++IPriv;
+      ++ILHS;
+      ++IRHS;
+    }
+  };
+  llvm::Value *EndArgs[] = {ThreadId};
+  RegionCodeGenTy RCG(CodeGen);
+  NVPTXActionTy Action(
+      nullptr, llvm::None,
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
+      EndArgs);
+  RCG.setAction(Action);
+  RCG(CGF);
+  // There is no need to emit line number for unconditional branch.
+  (void)ApplyDebugLocation::CreateEmpty(CGF);
+  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+const VarDecl *
+CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
+                                         const VarDecl *NativeParam) const {
+  if (!NativeParam->getType()->isReferenceType())
+    return NativeParam;
+  QualType ArgType = NativeParam->getType();
+  QualifierCollector QC;
+  const Type *NonQualTy = QC.strip(ArgType);
+  QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
+  if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
+    if (Attr->getCaptureKind() == OMPC_map) {
+      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
+                                                        LangAS::opencl_global);
+    } else if (Attr->getCaptureKind() == OMPC_firstprivate &&
+               PointeeTy.isConstant(CGM.getContext())) {
+      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
+                                                        LangAS::opencl_generic);
+    }
+  }
+  ArgType = CGM.getContext().getPointerType(PointeeTy);
+  QC.addRestrict();
+  enum { NVPTX_local_addr = 5 };
+  QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
+  ArgType = QC.apply(CGM.getContext(), ArgType);
+  if (isa<ImplicitParamDecl>(NativeParam))
+    return ImplicitParamDecl::Create(
+        CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
+        NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
+  return ParmVarDecl::Create(
+      CGM.getContext(),
+      const_cast<DeclContext *>(NativeParam->getDeclContext()),
+      NativeParam->getBeginLoc(), NativeParam->getLocation(),
+      NativeParam->getIdentifier(), ArgType,
+      /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
+}
+
+Address
+CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
+                                          const VarDecl *NativeParam,
+                                          const VarDecl *TargetParam) const {
+  assert(NativeParam != TargetParam &&
+         NativeParam->getType()->isReferenceType() &&
+         "Native arg must not be the same as target arg.");
+  Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
+  QualType NativeParamType = NativeParam->getType();
+  QualifierCollector QC;
+  const Type *NonQualTy = QC.strip(NativeParamType);
+  QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
+  unsigned NativePointeeAddrSpace =
+      CGF.getContext().getTargetAddressSpace(NativePointeeTy);
+  QualType TargetTy = TargetParam->getType();
+  llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
+      LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
+  // First cast to generic.
+  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
+                      /*AddrSpace=*/0));
+  // Cast from generic to native address space.
+  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
+                      NativePointeeAddrSpace));
+  Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
+  CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
+                        NativeParamType);
+  return NativeParamAddr;
+}
+
+void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
+    ArrayRef<llvm::Value *> Args) const {
+  SmallVector<llvm::Value *, 4> TargetArgs;
+  TargetArgs.reserve(Args.size());
+  auto *FnType = OutlinedFn.getFunctionType();
+  for (unsigned I = 0, E = Args.size(); I < E; ++I) {
+    if (FnType->isVarArg() && FnType->getNumParams() <= I) {
+      TargetArgs.append(std::next(Args.begin(), I), Args.end());
+      break;
+    }
+    llvm::Type *TargetType = FnType->getParamType(I);
+    llvm::Value *NativeArg = Args[I];
+    if (!TargetType->isPointerTy()) {
+      TargetArgs.emplace_back(NativeArg);
+      continue;
+    }
+    llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+        NativeArg,
+        NativeArg->getType()->getPointerElementType()->getPointerTo());
+    TargetArgs.emplace_back(
+        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
+  }
+  CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
+}
+
+/// Emit function which wraps the outline parallel region
+/// and controls the arguments which are passed to this function.
+/// The wrapper ensures that the outlined function is called
+/// with the correct arguments when data is shared.
+llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
+    llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
+  ASTContext &Ctx = CGM.getContext();
+  const auto &CS = *D.getCapturedStmt(OMPD_parallel);
+
+  // Create a function that takes as argument the source thread.
+  FunctionArgList WrapperArgs;
+  QualType Int16QTy =
+      Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
+  QualType Int32QTy =
+      Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
+  ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
+                                     /*Id=*/nullptr, Int16QTy,
+                                     ImplicitParamDecl::Other);
+  ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
+                               /*Id=*/nullptr, Int32QTy,
+                               ImplicitParamDecl::Other);
+  WrapperArgs.emplace_back(&ParallelLevelArg);
+  WrapperArgs.emplace_back(&WrapperArg);
+
+  const CGFunctionInfo &CGFI =
+      CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
+
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
+  Fn->setDoesNotRecurse();
+
+  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
+                    D.getBeginLoc(), D.getBeginLoc());
+
+  const auto *RD = CS.getCapturedRecordDecl();
+  auto CurField = RD->field_begin();
+
+  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+                                                      /*Name=*/".zero.addr");
+  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+  // Get the array of arguments.
+  SmallVector<llvm::Value *, 8> Args;
+
+  Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
+  Args.emplace_back(ZeroAddr.getPointer());
+
+  CGBuilderTy &Bld = CGF.Builder;
+  auto CI = CS.capture_begin();
+
+  // Use global memory for data sharing.
+  // Handle passing of global args to workers.
+  Address GlobalArgs =
+      CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
+  llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
+  llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_get_shared_variables),
+      DataSharingArgs);
+
+  // Retrieve the shared variables from the list of references returned
+  // by the runtime. Pass the variables to the outlined function.
+  Address SharedArgListAddress = Address::invalid();
+  if (CS.capture_size() > 0 ||
+      isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
+    SharedArgListAddress = CGF.EmitLoadOfPointer(
+        GlobalArgs, CGF.getContext()
+                        .getPointerType(CGF.getContext().getPointerType(
+                            CGF.getContext().VoidPtrTy))
+                        .castAs<PointerType>());
+  }
+  unsigned Idx = 0;
+  if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
+    Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
+    Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+        Src, CGF.SizeTy->getPointerTo());
+    llvm::Value *LB = CGF.EmitLoadOfScalar(
+        TypedAddress,
+        /*Volatile=*/false,
+        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
+        cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
+    Args.emplace_back(LB);
+    ++Idx;
+    Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
+    TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+        Src, CGF.SizeTy->getPointerTo());
+    llvm::Value *UB = CGF.EmitLoadOfScalar(
+        TypedAddress,
+        /*Volatile=*/false,
+        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
+        cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
+    Args.emplace_back(UB);
+    ++Idx;
+  }
+  if (CS.capture_size() > 0) {
+    ASTContext &CGFContext = CGF.getContext();
+    for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
+      QualType ElemTy = CurField->getType();
+      Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
+      Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+          Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
+      llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
+                                              /*Volatile=*/false,
+                                              CGFContext.getPointerType(ElemTy),
+                                              CI->getLocation());
+      if (CI->capturesVariableByCopy() &&
+          !CI->getCapturedVar()->getType()->isAnyPointerType()) {
+        Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
+                              CI->getLocation());
+      }
+      Args.emplace_back(Arg);
+    }
+  }
+
+  emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
+  CGF.FinishFunction();
+  return Fn;
+}
+
+void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
+                                              const Decl *D) {
+  if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
+    return;
+
+  assert(D && "Expected function or captured|block decl.");
+  assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
+         "Function is registered already.");
+  assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
+         "Team is set but not processed.");
+  const Stmt *Body = nullptr;
+  bool NeedToDelayGlobalization = false;
+  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+    Body = FD->getBody();
+  } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
+    Body = BD->getBody();
+  } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
+    Body = CD->getBody();
+    NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
+    if (NeedToDelayGlobalization &&
+        getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
+      return;
+  }
+  if (!Body)
+    return;
+  CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
+  VarChecker.Visit(Body);
+  const RecordDecl *GlobalizedVarsRecord =
+      VarChecker.getGlobalizedRecord(IsInTTDRegion);
+  TeamAndReductions.first = nullptr;
+  TeamAndReductions.second.clear();
+  ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
+      VarChecker.getEscapedVariableLengthDecls();
+  if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
+    return;
+  auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
+  I->getSecond().MappedParams =
+      std::make_unique<CodeGenFunction::OMPMapVars>();
+  I->getSecond().GlobalRecord = GlobalizedVarsRecord;
+  I->getSecond().EscapedParameters.insert(
+      VarChecker.getEscapedParameters().begin(),
+      VarChecker.getEscapedParameters().end());
+  I->getSecond().EscapedVariableLengthDecls.append(
+      EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
+  DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
+  for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
+    assert(VD->isCanonicalDecl() && "Expected canonical declaration");
+    const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
+    Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
+  }
+  if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
+    CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
+    VarChecker.Visit(Body);
+    I->getSecond().SecondaryGlobalRecord =
+        VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
+    I->getSecond().SecondaryLocalVarData.emplace();
+    DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
+    for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
+      assert(VD->isCanonicalDecl() && "Expected canonical declaration");
+      const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
+      Data.insert(
+          std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
+    }
+  }
+  if (!NeedToDelayGlobalization) {
+    emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
+    struct GlobalizationScope final : EHScopeStack::Cleanup {
+      GlobalizationScope() = default;
+
+      void Emit(CodeGenFunction &CGF, Flags flags) override {
+        static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
+            .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
+      }
+    };
+    CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
+  }
+}
+
+Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
+                                                        const VarDecl *VD) {
+  if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
+    const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
+    auto AS = LangAS::Default;
+    switch (A->getAllocatorType()) {
+      // Use the default allocator here as by default local vars are
+      // threadlocal.
+    case OMPAllocateDeclAttr::OMPNullMemAlloc:
+    case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
+    case OMPAllocateDeclAttr::OMPThreadMemAlloc:
+    case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
+    case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
+      // Follow the user decision - use default allocation.
+      return Address::invalid();
+    case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
+      // TODO: implement aupport for user-defined allocators.
+      return Address::invalid();
+    case OMPAllocateDeclAttr::OMPConstMemAlloc:
+      AS = LangAS::cuda_constant;
+      break;
+    case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
+      AS = LangAS::cuda_shared;
+      break;
+    case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
+    case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
+      break;
+    }
+    llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
+    auto *GV = new llvm::GlobalVariable(
+        CGM.getModule(), VarTy, /*isConstant=*/false,
+        llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
+        VD->getName(),
+        /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
+        CGM.getContext().getTargetAddressSpace(AS));
+    CharUnits Align = CGM.getContext().getDeclAlign(VD);
+    GV->setAlignment(Align.getAsAlign());
+    return Address(
+        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+            GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
+                    VD->getType().getAddressSpace()))),
+        Align);
+  }
+
+  if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
+    return Address::invalid();
+
+  VD = VD->getCanonicalDecl();
+  auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+  if (I == FunctionGlobalizedDecls.end())
+    return Address::invalid();
+  auto VDI = I->getSecond().LocalVarData.find(VD);
+  if (VDI != I->getSecond().LocalVarData.end())
+    return VDI->second.PrivateAddr;
+  if (VD->hasAttrs()) {
+    for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
+         E(VD->attr_end());
+         IT != E; ++IT) {
+      auto VDI = I->getSecond().LocalVarData.find(
+          cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
+              ->getCanonicalDecl());
+      if (VDI != I->getSecond().LocalVarData.end())
+        return VDI->second.PrivateAddr;
+    }
+  }
+
+  return Address::invalid();
+}
+
+void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
+  FunctionGlobalizedDecls.erase(CGF.CurFn);
+  CGOpenMPRuntime::functionFinished(CGF);
+}
+
+void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
+    CodeGenFunction &CGF, const OMPLoopDirective &S,
+    OpenMPDistScheduleClauseKind &ScheduleKind,
+    llvm::Value *&Chunk) const {
+  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
+    ScheduleKind = OMPC_DIST_SCHEDULE_static;
+    Chunk = CGF.EmitScalarConversion(getNVPTXNumThreads(CGF),
+        CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+        S.getIterationVariable()->getType(), S.getBeginLoc());
+    return;
+  }
+  CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
+      CGF, S, ScheduleKind, Chunk);
+}
+
+void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
+    CodeGenFunction &CGF, const OMPLoopDirective &S,
+    OpenMPScheduleClauseKind &ScheduleKind,
+    const Expr *&ChunkExpr) const {
+  ScheduleKind = OMPC_SCHEDULE_static;
+  // Chunk size is 1 in this case.
+  llvm::APInt ChunkSize(32, 1);
+  ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
+      CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+      SourceLocation());
+}
+
+void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
+    CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
+  assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
+         " Expected target-based directive.");
+  const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
+  for (const CapturedStmt::Capture &C : CS->captures()) {
+    // Capture variables captured by reference in lambdas for target-based
+    // directives.
+    if (!C.capturesVariable())
+      continue;
+    const VarDecl *VD = C.getCapturedVar();
+    const auto *RD = VD->getType()
+                         .getCanonicalType()
+                         .getNonReferenceType()
+                         ->getAsCXXRecordDecl();
+    if (!RD || !RD->isLambda())
+      continue;
+    Address VDAddr = CGF.GetAddrOfLocalVar(VD);
+    LValue VDLVal;
+    if (VD->getType().getCanonicalType()->isReferenceType())
+      VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
+    else
+      VDLVal = CGF.MakeAddrLValue(
+          VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
+    llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
+    FieldDecl *ThisCapture = nullptr;
+    RD->getCaptureFields(Captures, ThisCapture);
+    if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
+      LValue ThisLVal =
+          CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
+      llvm::Value *CXXThis = CGF.LoadCXXThis();
+      CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
+    }
+    for (const LambdaCapture &LC : RD->captures()) {
+      if (LC.getCaptureKind() != LCK_ByRef)
+        continue;
+      const VarDecl *VD = LC.getCapturedVar();
+      if (!CS->capturesVariable(VD))
+        continue;
+      auto It = Captures.find(VD);
+      assert(It != Captures.end() && "Found lambda capture without field.");
+      LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
+      Address VDAddr = CGF.GetAddrOfLocalVar(VD);
+      if (VD->getType().getCanonicalType()->isReferenceType())
+        VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
+                                               VD->getType().getCanonicalType())
+                     .getAddress(CGF);
+      CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
+    }
+  }
+}
+
+unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const {
+  return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
+}
+
+bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
+                                                            LangAS &AS) {
+  if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
+    return false;
+  const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
+  switch(A->getAllocatorType()) {
+  case OMPAllocateDeclAttr::OMPNullMemAlloc:
+  case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
+  // Not supported, fallback to the default mem space.
+  case OMPAllocateDeclAttr::OMPThreadMemAlloc:
+  case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
+  case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
+  case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
+  case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
+    AS = LangAS::Default;
+    return true;
+  case OMPAllocateDeclAttr::OMPConstMemAlloc:
+    AS = LangAS::cuda_constant;
+    return true;
+  case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
+    AS = LangAS::cuda_shared;
+    return true;
+  case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
+    llvm_unreachable("Expected predefined allocator for the variables with the "
+                     "static storage.");
+  }
+  return false;
+}
+
+// Get current CudaArch and ignore any unknown values
+static CudaArch getCudaArch(CodeGenModule &CGM) {
+  if (!CGM.getTarget().hasFeature("ptx"))
+    return CudaArch::UNKNOWN;
+  llvm::StringMap<bool> Features;
+  CGM.getTarget().initFeatureMap(Features, CGM.getDiags(),
+                                 CGM.getTarget().getTargetOpts().CPU,
+                                 CGM.getTarget().getTargetOpts().Features);
+  for (const auto &Feature : Features) {
+    if (Feature.getValue()) {
+      CudaArch Arch = StringToCudaArch(Feature.getKey());
+      if (Arch != CudaArch::UNKNOWN)
+        return Arch;
+    }
+  }
+  return CudaArch::UNKNOWN;
+}
+
+/// Check to see if target architecture supports unified addressing which is
+/// a restriction for OpenMP requires clause "unified_shared_memory".
+void CGOpenMPRuntimeGPU::processRequiresDirective(
+    const OMPRequiresDecl *D) {
+  for (const OMPClause *Clause : D->clauselists()) {
+    if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
+      CudaArch Arch = getCudaArch(CGM);
+      switch (Arch) {
+      case CudaArch::SM_20:
+      case CudaArch::SM_21:
+      case CudaArch::SM_30:
+      case CudaArch::SM_32:
+      case CudaArch::SM_35:
+      case CudaArch::SM_37:
+      case CudaArch::SM_50:
+      case CudaArch::SM_52:
+      case CudaArch::SM_53:
+      case CudaArch::SM_60:
+      case CudaArch::SM_61:
+      case CudaArch::SM_62: {
+        SmallString<256> Buffer;
+        llvm::raw_svector_ostream Out(Buffer);
+        Out << "Target architecture " << CudaArchToString(Arch)
+            << " does not support unified addressing";
+        CGM.Error(Clause->getBeginLoc(), Out.str());
+        return;
+      }
+      case CudaArch::SM_70:
+      case CudaArch::SM_72:
+      case CudaArch::SM_75:
+      case CudaArch::SM_80:
+      case CudaArch::GFX600:
+      case CudaArch::GFX601:
+      case CudaArch::GFX700:
+      case CudaArch::GFX701:
+      case CudaArch::GFX702:
+      case CudaArch::GFX703:
+      case CudaArch::GFX704:
+      case CudaArch::GFX801:
+      case CudaArch::GFX802:
+      case CudaArch::GFX803:
+      case CudaArch::GFX810:
+      case CudaArch::GFX900:
+      case CudaArch::GFX902:
+      case CudaArch::GFX904:
+      case CudaArch::GFX906:
+      case CudaArch::GFX908:
+      case CudaArch::GFX909:
+      case CudaArch::GFX1010:
+      case CudaArch::GFX1011:
+      case CudaArch::GFX1012:
+      case CudaArch::GFX1030:
+      case CudaArch::UNKNOWN:
+        break;
+      case CudaArch::LAST:
+        llvm_unreachable("Unexpected Cuda arch.");
+      }
+    }
+  }
+  CGOpenMPRuntime::processRequiresDirective(D);
+}
+
+/// Get number of SMs and number of blocks per SM.
+static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
+  std::pair<unsigned, unsigned> Data;
+  if (CGM.getLangOpts().OpenMPCUDANumSMs)
+    Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
+  if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
+    Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
+  if (Data.first && Data.second)
+    return Data;
+  switch (getCudaArch(CGM)) {
+  case CudaArch::SM_20:
+  case CudaArch::SM_21:
+  case CudaArch::SM_30:
+  case CudaArch::SM_32:
+  case CudaArch::SM_35:
+  case CudaArch::SM_37:
+  case CudaArch::SM_50:
+  case CudaArch::SM_52:
+  case CudaArch::SM_53:
+    return {16, 16};
+  case CudaArch::SM_60:
+  case CudaArch::SM_61:
+  case CudaArch::SM_62:
+    return {56, 32};
+  case CudaArch::SM_70:
+  case CudaArch::SM_72:
+  case CudaArch::SM_75:
+  case CudaArch::SM_80:
+    return {84, 32};
+  case CudaArch::GFX600:
+  case CudaArch::GFX601:
+  case CudaArch::GFX700:
+  case CudaArch::GFX701:
+  case CudaArch::GFX702:
+  case CudaArch::GFX703:
+  case CudaArch::GFX704:
+  case CudaArch::GFX801:
+  case CudaArch::GFX802:
+  case CudaArch::GFX803:
+  case CudaArch::GFX810:
+  case CudaArch::GFX900:
+  case CudaArch::GFX902:
+  case CudaArch::GFX904:
+  case CudaArch::GFX906:
+  case CudaArch::GFX908:
+  case CudaArch::GFX909:
+  case CudaArch::GFX1010:
+  case CudaArch::GFX1011:
+  case CudaArch::GFX1012:
+  case CudaArch::GFX1030:
+  case CudaArch::UNKNOWN:
+    break;
+  case CudaArch::LAST:
+    llvm_unreachable("Unexpected Cuda arch.");
+  }
+  llvm_unreachable("Unexpected NVPTX target without ptx feature.");
+}
+
+void CGOpenMPRuntimeGPU::clear() {
+  if (!GlobalizedRecords.empty() &&
+      !CGM.getLangOpts().OpenMPCUDATargetParallel) {
+    ASTContext &C = CGM.getContext();
+    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
+    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
+    RecordDecl *StaticRD = C.buildImplicitRecord(
+        "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
+    StaticRD->startDefinition();
+    RecordDecl *SharedStaticRD = C.buildImplicitRecord(
+        "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
+    SharedStaticRD->startDefinition();
+    for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
+      if (Records.Records.empty())
+        continue;
+      unsigned Size = 0;
+      unsigned RecAlignment = 0;
+      for (const RecordDecl *RD : Records.Records) {
+        QualType RDTy = C.getRecordType(RD);
+        unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
+        RecAlignment = std::max(RecAlignment, Alignment);
+        unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
+        Size =
+            llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
+      }
+      Size = llvm::alignTo(Size, RecAlignment);
+      llvm::APInt ArySize(/*numBits=*/64, Size);
+      QualType SubTy = C.getConstantArrayType(
+          C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
+      const bool UseSharedMemory = Size <= SharedMemorySize;
+      auto *Field =
+          FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
+                            SourceLocation(), SourceLocation(), nullptr, SubTy,
+                            C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
+                            /*BW=*/nullptr, /*Mutable=*/false,
+                            /*InitStyle=*/ICIS_NoInit);
+      Field->setAccess(AS_public);
+      if (UseSharedMemory) {
+        SharedStaticRD->addDecl(Field);
+        SharedRecs.push_back(&Records);
+      } else {
+        StaticRD->addDecl(Field);
+        GlobalRecs.push_back(&Records);
+      }
+      Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
+      Records.UseSharedMemory->setInitializer(
+          llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
+    }
+    // Allocate SharedMemorySize buffer for the shared memory.
+    // FIXME: nvlink does not handle weak linkage correctly (object with the
+    // 
diff erent size are reported as erroneous).
+    // Restore this code as sson as nvlink is fixed.
+    if (!SharedStaticRD->field_empty()) {
+      llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
+      QualType SubTy = C.getConstantArrayType(
+          C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
+      auto *Field = FieldDecl::Create(
+          C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
+          C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
+          /*BW=*/nullptr, /*Mutable=*/false,
+          /*InitStyle=*/ICIS_NoInit);
+      Field->setAccess(AS_public);
+      SharedStaticRD->addDecl(Field);
+    }
+    SharedStaticRD->completeDefinition();
+    if (!SharedStaticRD->field_empty()) {
+      QualType StaticTy = C.getRecordType(SharedStaticRD);
+      llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
+      auto *GV = new llvm::GlobalVariable(
+          CGM.getModule(), LLVMStaticTy,
+          /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
+          llvm::Constant::getNullValue(LLVMStaticTy),
+          "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
+          llvm::GlobalValue::NotThreadLocal,
+          C.getTargetAddressSpace(LangAS::cuda_shared));
+      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+          GV, CGM.VoidPtrTy);
+      for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
+        Rec->Buffer->replaceAllUsesWith(Replacement);
+        Rec->Buffer->eraseFromParent();
+      }
+    }
+    StaticRD->completeDefinition();
+    if (!StaticRD->field_empty()) {
+      QualType StaticTy = C.getRecordType(StaticRD);
+      std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
+      llvm::APInt Size1(32, SMsBlockPerSM.second);
+      QualType Arr1Ty =
+          C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal,
+                                 /*IndexTypeQuals=*/0);
+      llvm::APInt Size2(32, SMsBlockPerSM.first);
+      QualType Arr2Ty =
+          C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal,
+                                 /*IndexTypeQuals=*/0);
+      llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
+      // FIXME: nvlink does not handle weak linkage correctly (object with the
+      // 
diff erent size are reported as erroneous).
+      // Restore CommonLinkage as soon as nvlink is fixed.
+      auto *GV = new llvm::GlobalVariable(
+          CGM.getModule(), LLVMArr2Ty,
+          /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
+          llvm::Constant::getNullValue(LLVMArr2Ty),
+          "_openmp_static_glob_rd_$_");
+      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+          GV, CGM.VoidPtrTy);
+      for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
+        Rec->Buffer->replaceAllUsesWith(Replacement);
+        Rec->Buffer->eraseFromParent();
+      }
+    }
+  }
+  if (!TeamsReductions.empty()) {
+    ASTContext &C = CGM.getContext();
+    RecordDecl *StaticRD = C.buildImplicitRecord(
+        "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
+    StaticRD->startDefinition();
+    for (const RecordDecl *TeamReductionRec : TeamsReductions) {
+      QualType RecTy = C.getRecordType(TeamReductionRec);
+      auto *Field = FieldDecl::Create(
+          C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
+          C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
+          /*BW=*/nullptr, /*Mutable=*/false,
+          /*InitStyle=*/ICIS_NoInit);
+      Field->setAccess(AS_public);
+      StaticRD->addDecl(Field);
+    }
+    StaticRD->completeDefinition();
+    QualType StaticTy = C.getRecordType(StaticRD);
+    llvm::Type *LLVMReductionsBufferTy =
+        CGM.getTypes().ConvertTypeForMem(StaticTy);
+    // FIXME: nvlink does not handle weak linkage correctly (object with the
+    // 
diff erent size are reported as erroneous).
+    // Restore CommonLinkage as soon as nvlink is fixed.
+    auto *GV = new llvm::GlobalVariable(
+        CGM.getModule(), LLVMReductionsBufferTy,
+        /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
+        llvm::Constant::getNullValue(LLVMReductionsBufferTy),
+        "_openmp_teams_reductions_buffer_$_");
+    KernelTeamsReductionPtr->setInitializer(
+        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
+                                                             CGM.VoidPtrTy));
+  }
+  CGOpenMPRuntime::clear();
+}

diff  --git a/clang/lib/CodeGen/CGOpenMPRuntimeGPU.h b/clang/lib/CodeGen/CGOpenMPRuntimeGPU.h
new file mode 100644
index 000000000000..316333072c5b
--- /dev/null
+++ b/clang/lib/CodeGen/CGOpenMPRuntimeGPU.h
@@ -0,0 +1,495 @@
+//===------ CGOpenMPRuntimeGPU.h - Interface to OpenMP GPU Runtimes ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a generalized class for OpenMP runtime code generation
+// specialized by GPU target NVPTX.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIMEGPU_H
+#define LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIMEGPU_H
+
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "llvm/Frontend/OpenMP/OMPGridValues.h"
+
+namespace clang {
+namespace CodeGen {
+
+class CGOpenMPRuntimeGPU : public CGOpenMPRuntime {
+public:
+  /// Defines the execution mode.
+  enum ExecutionMode {
+    /// SPMD execution mode (all threads are worker threads).
+    EM_SPMD,
+    /// Non-SPMD execution mode (1 master thread, others are workers).
+    EM_NonSPMD,
+    /// Unknown execution mode (orphaned directive).
+    EM_Unknown,
+  };
+private:
+  /// Parallel outlined function work for workers to execute.
+  llvm::SmallVector<llvm::Function *, 16> Work;
+
+  struct EntryFunctionState {
+    llvm::BasicBlock *ExitBB = nullptr;
+  };
+
+  class WorkerFunctionState {
+  public:
+    llvm::Function *WorkerFn;
+    const CGFunctionInfo &CGFI;
+    SourceLocation Loc;
+
+    WorkerFunctionState(CodeGenModule &CGM, SourceLocation Loc);
+
+  private:
+    void createWorkerFunction(CodeGenModule &CGM);
+  };
+
+  ExecutionMode getExecutionMode() const;
+
+  bool requiresFullRuntime() const { return RequiresFullRuntime; }
+
+  /// Get barrier to synchronize all threads in a block.
+  void syncCTAThreads(CodeGenFunction &CGF);
+
+  /// Emit the worker function for the current target region.
+  void emitWorkerFunction(WorkerFunctionState &WST);
+
+  /// Helper for worker function. Emit body of worker loop.
+  void emitWorkerLoop(CodeGenFunction &CGF, WorkerFunctionState &WST);
+
+  /// Helper for non-SPMD target entry function. Guide the master and
+  /// worker threads to their respective locations.
+  void emitNonSPMDEntryHeader(CodeGenFunction &CGF, EntryFunctionState &EST,
+                              WorkerFunctionState &WST);
+
+  /// Signal termination of OMP execution for non-SPMD target entry
+  /// function.
+  void emitNonSPMDEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST);
+
+  /// Helper for generic variables globalization prolog.
+  void emitGenericVarsProlog(CodeGenFunction &CGF, SourceLocation Loc,
+                             bool WithSPMDCheck = false);
+
+  /// Helper for generic variables globalization epilog.
+  void emitGenericVarsEpilog(CodeGenFunction &CGF, bool WithSPMDCheck = false);
+
+  /// Helper for SPMD mode target directive's entry function.
+  void emitSPMDEntryHeader(CodeGenFunction &CGF, EntryFunctionState &EST,
+                           const OMPExecutableDirective &D);
+
+  /// Signal termination of SPMD mode execution.
+  void emitSPMDEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST);
+
+  //
+  // Base class overrides.
+  //
+
+  /// Creates offloading entry for the provided entry ID \a ID,
+  /// address \a Addr, size \a Size, and flags \a Flags.
+  void createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr,
+                          uint64_t Size, int32_t Flags,
+                          llvm::GlobalValue::LinkageTypes Linkage) override;
+
+  /// Emit outlined function specialized for the Fork-Join
+  /// programming model for applicable target directives on the NVPTX device.
+  /// \param D Directive to emit.
+  /// \param ParentName Name of the function that encloses the target region.
+  /// \param OutlinedFn Outlined function value to be defined by this call.
+  /// \param OutlinedFnID Outlined function ID value to be defined by this call.
+  /// \param IsOffloadEntry True if the outlined function is an offload entry.
+  /// An outlined function may not be an entry if, e.g. the if clause always
+  /// evaluates to false.
+  void emitNonSPMDKernel(const OMPExecutableDirective &D, StringRef ParentName,
+                         llvm::Function *&OutlinedFn,
+                         llvm::Constant *&OutlinedFnID, bool IsOffloadEntry,
+                         const RegionCodeGenTy &CodeGen);
+
+  /// Emit outlined function specialized for the Single Program
+  /// Multiple Data programming model for applicable target directives on the
+  /// NVPTX device.
+  /// \param D Directive to emit.
+  /// \param ParentName Name of the function that encloses the target region.
+  /// \param OutlinedFn Outlined function value to be defined by this call.
+  /// \param OutlinedFnID Outlined function ID value to be defined by this call.
+  /// \param IsOffloadEntry True if the outlined function is an offload entry.
+  /// \param CodeGen Object containing the target statements.
+  /// An outlined function may not be an entry if, e.g. the if clause always
+  /// evaluates to false.
+  void emitSPMDKernel(const OMPExecutableDirective &D, StringRef ParentName,
+                      llvm::Function *&OutlinedFn,
+                      llvm::Constant *&OutlinedFnID, bool IsOffloadEntry,
+                      const RegionCodeGenTy &CodeGen);
+
+  /// Emit outlined function for 'target' directive on the NVPTX
+  /// device.
+  /// \param D Directive to emit.
+  /// \param ParentName Name of the function that encloses the target region.
+  /// \param OutlinedFn Outlined function value to be defined by this call.
+  /// \param OutlinedFnID Outlined function ID value to be defined by this call.
+  /// \param IsOffloadEntry True if the outlined function is an offload entry.
+  /// An outlined function may not be an entry if, e.g. the if clause always
+  /// evaluates to false.
+  void emitTargetOutlinedFunction(const OMPExecutableDirective &D,
+                                  StringRef ParentName,
+                                  llvm::Function *&OutlinedFn,
+                                  llvm::Constant *&OutlinedFnID,
+                                  bool IsOffloadEntry,
+                                  const RegionCodeGenTy &CodeGen) override;
+
+  /// Emits code for parallel or serial call of the \a OutlinedFn with
+  /// variables captured in a record which address is stored in \a
+  /// CapturedStruct.
+  /// This call is for the Non-SPMD Execution Mode.
+  /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
+  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
+  /// \param CapturedVars A pointer to the record with the references to
+  /// variables used in \a OutlinedFn function.
+  /// \param IfCond Condition in the associated 'if' clause, if it was
+  /// specified, nullptr otherwise.
+  void emitNonSPMDParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+                               llvm::Value *OutlinedFn,
+                               ArrayRef<llvm::Value *> CapturedVars,
+                               const Expr *IfCond);
+
+  /// Emits code for parallel or serial call of the \a OutlinedFn with
+  /// variables captured in a record which address is stored in \a
+  /// CapturedStruct.
+  /// This call is for a parallel directive within an SPMD target directive.
+  /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
+  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
+  /// \param CapturedVars A pointer to the record with the references to
+  /// variables used in \a OutlinedFn function.
+  /// \param IfCond Condition in the associated 'if' clause, if it was
+  /// specified, nullptr otherwise.
+  ///
+  void emitSPMDParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+                            llvm::Function *OutlinedFn,
+                            ArrayRef<llvm::Value *> CapturedVars,
+                            const Expr *IfCond);
+
+protected:
+  /// Get the function name of an outlined region.
+  //  The name can be customized depending on the target.
+  //
+  StringRef getOutlinedHelperName() const override {
+    return "__omp_outlined__";
+  }
+
+  /// Check if the default location must be constant.
+  /// Constant for NVPTX for better optimization.
+  bool isDefaultLocationConstant() const override { return true; }
+
+  /// Returns additional flags that can be stored in reserved_2 field of the
+  /// default location.
+  /// For NVPTX target contains data about SPMD/Non-SPMD execution mode +
+  /// Full/Lightweight runtime mode. Used for better optimization.
+  unsigned getDefaultLocationReserved2Flags() const override;
+
+public:
+  explicit CGOpenMPRuntimeGPU(CodeGenModule &CGM);
+  void clear() override;
+
+  /// Declare generalized virtual functions which need to be defined
+  /// by all specializations of OpenMPGPURuntime Targets.
+  virtual llvm::Value *getGPUWarpSize(CodeGenFunction &CGF) = 0;
+
+  /// Emit call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32
+  /// global_tid, int proc_bind) to generate code for 'proc_bind' clause.
+  virtual void emitProcBindClause(CodeGenFunction &CGF,
+                                  llvm::omp::ProcBindKind ProcBind,
+                                  SourceLocation Loc) override;
+
+  /// Emits call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32
+  /// global_tid, kmp_int32 num_threads) to generate code for 'num_threads'
+  /// clause.
+  /// \param NumThreads An integer value of threads.
+  virtual void emitNumThreadsClause(CodeGenFunction &CGF,
+                                    llvm::Value *NumThreads,
+                                    SourceLocation Loc) override;
+
+  /// This function ought to emit, in the general case, a call to
+  // the openmp runtime kmpc_push_num_teams. In NVPTX backend it is not needed
+  // as these numbers are obtained through the PTX grid and block configuration.
+  /// \param NumTeams An integer expression of teams.
+  /// \param ThreadLimit An integer expression of threads.
+  void emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams,
+                          const Expr *ThreadLimit, SourceLocation Loc) override;
+
+  /// Emits inlined function for the specified OpenMP parallel
+  //  directive.
+  /// \a D. This outlined function has type void(*)(kmp_int32 *ThreadID,
+  /// kmp_int32 BoundID, struct context_vars*).
+  /// \param D OpenMP directive.
+  /// \param ThreadIDVar Variable for thread id in the current OpenMP region.
+  /// \param InnermostKind Kind of innermost directive (for simple directives it
+  /// is a directive itself, for combined - its innermost directive).
+  /// \param CodeGen Code generation sequence for the \a D directive.
+  llvm::Function *
+  emitParallelOutlinedFunction(const OMPExecutableDirective &D,
+                               const VarDecl *ThreadIDVar,
+                               OpenMPDirectiveKind InnermostKind,
+                               const RegionCodeGenTy &CodeGen) override;
+
+  /// Emits inlined function for the specified OpenMP teams
+  //  directive.
+  /// \a D. This outlined function has type void(*)(kmp_int32 *ThreadID,
+  /// kmp_int32 BoundID, struct context_vars*).
+  /// \param D OpenMP directive.
+  /// \param ThreadIDVar Variable for thread id in the current OpenMP region.
+  /// \param InnermostKind Kind of innermost directive (for simple directives it
+  /// is a directive itself, for combined - its innermost directive).
+  /// \param CodeGen Code generation sequence for the \a D directive.
+  llvm::Function *
+  emitTeamsOutlinedFunction(const OMPExecutableDirective &D,
+                            const VarDecl *ThreadIDVar,
+                            OpenMPDirectiveKind InnermostKind,
+                            const RegionCodeGenTy &CodeGen) override;
+
+  /// Emits code for teams call of the \a OutlinedFn with
+  /// variables captured in a record which address is stored in \a
+  /// CapturedStruct.
+  /// \param OutlinedFn Outlined function to be run by team masters. Type of
+  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
+  /// \param CapturedVars A pointer to the record with the references to
+  /// variables used in \a OutlinedFn function.
+  ///
+  void emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D,
+                     SourceLocation Loc, llvm::Function *OutlinedFn,
+                     ArrayRef<llvm::Value *> CapturedVars) override;
+
+  /// Emits code for parallel or serial call of the \a OutlinedFn with
+  /// variables captured in a record which address is stored in \a
+  /// CapturedStruct.
+  /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
+  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
+  /// \param CapturedVars A pointer to the record with the references to
+  /// variables used in \a OutlinedFn function.
+  /// \param IfCond Condition in the associated 'if' clause, if it was
+  /// specified, nullptr otherwise.
+  void emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+                        llvm::Function *OutlinedFn,
+                        ArrayRef<llvm::Value *> CapturedVars,
+                        const Expr *IfCond) override;
+
+  /// Emit an implicit/explicit barrier for OpenMP threads.
+  /// \param Kind Directive for which this implicit barrier call must be
+  /// generated. Must be OMPD_barrier for explicit barrier generation.
+  /// \param EmitChecks true if need to emit checks for cancellation barriers.
+  /// \param ForceSimpleCall true simple barrier call must be emitted, false if
+  /// runtime class decides which one to emit (simple or with cancellation
+  /// checks).
+  ///
+  void emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
+                       OpenMPDirectiveKind Kind, bool EmitChecks = true,
+                       bool ForceSimpleCall = false) override;
+
+  /// Emits a critical region.
+  /// \param CriticalName Name of the critical region.
+  /// \param CriticalOpGen Generator for the statement associated with the given
+  /// critical region.
+  /// \param Hint Value of the 'hint' clause (optional).
+  void emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName,
+                          const RegionCodeGenTy &CriticalOpGen,
+                          SourceLocation Loc,
+                          const Expr *Hint = nullptr) override;
+
+  /// Emit a code for reduction clause.
+  ///
+  /// \param Privates List of private copies for original reduction arguments.
+  /// \param LHSExprs List of LHS in \a ReductionOps reduction operations.
+  /// \param RHSExprs List of RHS in \a ReductionOps reduction operations.
+  /// \param ReductionOps List of reduction operations in form 'LHS binop RHS'
+  /// or 'operator binop(LHS, RHS)'.
+  /// \param Options List of options for reduction codegen:
+  ///     WithNowait true if parent directive has also nowait clause, false
+  ///     otherwise.
+  ///     SimpleReduction Emit reduction operation only. Used for omp simd
+  ///     directive on the host.
+  ///     ReductionKind The kind of reduction to perform.
+  virtual void emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
+                             ArrayRef<const Expr *> Privates,
+                             ArrayRef<const Expr *> LHSExprs,
+                             ArrayRef<const Expr *> RHSExprs,
+                             ArrayRef<const Expr *> ReductionOps,
+                             ReductionOptionsTy Options) override;
+
+  /// Returns specified OpenMP runtime function for the current OpenMP
+  /// implementation.  Specialized for the NVPTX device.
+  /// \param Function OpenMP runtime function.
+  /// \return Specified function.
+  llvm::FunctionCallee createNVPTXRuntimeFunction(unsigned Function);
+
+  /// Translates the native parameter of outlined function if this is required
+  /// for target.
+  /// \param FD Field decl from captured record for the parameter.
+  /// \param NativeParam Parameter itself.
+  const VarDecl *translateParameter(const FieldDecl *FD,
+                                    const VarDecl *NativeParam) const override;
+
+  /// Gets the address of the native argument basing on the address of the
+  /// target-specific parameter.
+  /// \param NativeParam Parameter itself.
+  /// \param TargetParam Corresponding target-specific parameter.
+  Address getParameterAddress(CodeGenFunction &CGF, const VarDecl *NativeParam,
+                              const VarDecl *TargetParam) const override;
+
+  /// Emits call of the outlined function with the provided arguments,
+  /// translating these arguments to correct target-specific arguments.
+  void emitOutlinedFunctionCall(
+      CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
+      ArrayRef<llvm::Value *> Args = llvm::None) const override;
+
+  /// Emits OpenMP-specific function prolog.
+  /// Required for device constructs.
+  void emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) override;
+
+  /// Gets the OpenMP-specific address of the local variable.
+  Address getAddressOfLocalVariable(CodeGenFunction &CGF,
+                                    const VarDecl *VD) override;
+
+  /// Target codegen is specialized based on two data-sharing modes: CUDA, in
+  /// which the local variables are actually global threadlocal, and Generic, in
+  /// which the local variables are placed in global memory if they may escape
+  /// their declaration context.
+  enum DataSharingMode {
+    /// CUDA data sharing mode.
+    CUDA,
+    /// Generic data-sharing mode.
+    Generic,
+  };
+
+  /// Cleans up references to the objects in finished function.
+  ///
+  void functionFinished(CodeGenFunction &CGF) override;
+
+  /// Choose a default value for the dist_schedule clause.
+  void getDefaultDistScheduleAndChunk(CodeGenFunction &CGF,
+      const OMPLoopDirective &S, OpenMPDistScheduleClauseKind &ScheduleKind,
+      llvm::Value *&Chunk) const override;
+
+  /// Choose a default value for the schedule clause.
+  void getDefaultScheduleAndChunk(CodeGenFunction &CGF,
+      const OMPLoopDirective &S, OpenMPScheduleClauseKind &ScheduleKind,
+      const Expr *&ChunkExpr) const override;
+
+  /// Adjust some parameters for the target-based directives, like addresses of
+  /// the variables captured by reference in lambdas.
+  void adjustTargetSpecificDataForLambdas(
+      CodeGenFunction &CGF, const OMPExecutableDirective &D) const override;
+
+  /// Perform check on requires decl to ensure that target architecture
+  /// supports unified addressing
+  void processRequiresDirective(const OMPRequiresDecl *D) override;
+
+  /// Returns default address space for the constant firstprivates, __constant__
+  /// address space by default.
+  unsigned getDefaultFirstprivateAddressSpace() const override;
+
+  /// Checks if the variable has associated OMPAllocateDeclAttr attribute with
+  /// the predefined allocator and translates it into the corresponding address
+  /// space.
+  bool hasAllocateAttributeForGlobalVar(const VarDecl *VD, LangAS &AS) override;
+
+private:
+  /// Track the execution mode when codegening directives within a target
+  /// region. The appropriate mode (SPMD/NON-SPMD) is set on entry to the
+  /// target region and used by containing directives such as 'parallel'
+  /// to emit optimized code.
+  ExecutionMode CurrentExecutionMode = EM_Unknown;
+
+  /// Check if the full runtime is required (default - yes).
+  bool RequiresFullRuntime = true;
+
+  /// true if we're emitting the code for the target region and next parallel
+  /// region is L0 for sure.
+  bool IsInTargetMasterThreadRegion = false;
+  /// true if currently emitting code for target/teams/distribute region, false
+  /// - otherwise.
+  bool IsInTTDRegion = false;
+  /// true if we're definitely in the parallel region.
+  bool IsInParallelRegion = false;
+
+  /// Map between an outlined function and its wrapper.
+  llvm::DenseMap<llvm::Function *, llvm::Function *> WrapperFunctionsMap;
+
+  /// Emit function which wraps the outline parallel region
+  /// and controls the parameters which are passed to this function.
+  /// The wrapper ensures that the outlined function is called
+  /// with the correct arguments when data is shared.
+  llvm::Function *createParallelDataSharingWrapper(
+      llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D);
+
+  /// The data for the single globalized variable.
+  struct MappedVarData {
+    /// Corresponding field in the global record.
+    const FieldDecl *FD = nullptr;
+    /// Corresponding address.
+    Address PrivateAddr = Address::invalid();
+    /// true, if only one element is required (for latprivates in SPMD mode),
+    /// false, if need to create based on the warp-size.
+    bool IsOnePerTeam = false;
+    MappedVarData() = delete;
+    MappedVarData(const FieldDecl *FD, bool IsOnePerTeam = false)
+        : FD(FD), IsOnePerTeam(IsOnePerTeam) {}
+  };
+  /// The map of local variables to their addresses in the global memory.
+  using DeclToAddrMapTy = llvm::MapVector<const Decl *, MappedVarData>;
+  /// Set of the parameters passed by value escaping OpenMP context.
+  using EscapedParamsTy = llvm::SmallPtrSet<const Decl *, 4>;
+  struct FunctionData {
+    DeclToAddrMapTy LocalVarData;
+    llvm::Optional<DeclToAddrMapTy> SecondaryLocalVarData = llvm::None;
+    EscapedParamsTy EscapedParameters;
+    llvm::SmallVector<const ValueDecl*, 4> EscapedVariableLengthDecls;
+    llvm::SmallVector<llvm::Value *, 4> EscapedVariableLengthDeclsAddrs;
+    const RecordDecl *GlobalRecord = nullptr;
+    llvm::Optional<const RecordDecl *> SecondaryGlobalRecord = llvm::None;
+    llvm::Value *GlobalRecordAddr = nullptr;
+    llvm::Value *IsInSPMDModeFlag = nullptr;
+    std::unique_ptr<CodeGenFunction::OMPMapVars> MappedParams;
+  };
+  /// Maps the function to the list of the globalized variables with their
+  /// addresses.
+  llvm::SmallDenseMap<llvm::Function *, FunctionData> FunctionGlobalizedDecls;
+  /// List of records for the globalized variables in target/teams/distribute
+  /// contexts. Inner records are going to be joined into the single record,
+  /// while those resulting records are going to be joined into the single
+  /// union. This resulting union (one per CU) is the entry point for the static
+  /// memory management runtime functions.
+  struct GlobalPtrSizeRecsTy {
+    llvm::GlobalVariable *UseSharedMemory = nullptr;
+    llvm::GlobalVariable *RecSize = nullptr;
+    llvm::GlobalVariable *Buffer = nullptr;
+    SourceLocation Loc;
+    llvm::SmallVector<const RecordDecl *, 2> Records;
+    unsigned RegionCounter = 0;
+  };
+  llvm::SmallVector<GlobalPtrSizeRecsTy, 8> GlobalizedRecords;
+  llvm::GlobalVariable *KernelTeamsReductionPtr = nullptr;
+  /// List of the records with the list of fields for the reductions across the
+  /// teams. Used to build the intermediate buffer for the fast teams
+  /// reductions.
+  /// All the records are gathered into a union `union.type` is created.
+  llvm::SmallVector<const RecordDecl *, 4> TeamsReductions;
+  /// Shared pointer for the global memory in the global memory buffer used for
+  /// the given kernel.
+  llvm::GlobalVariable *KernelStaticGlobalized = nullptr;
+  /// Pair of the Non-SPMD team and all reductions variables in this team
+  /// region.
+  std::pair<const Decl *, llvm::SmallVector<const ValueDecl *, 4>>
+      TeamAndReductions;
+};
+
+} // CodeGen namespace.
+} // clang namespace.
+
+#endif // LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIMEGPU_H

diff  --git a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
index ac6ec742335c..5fefc95ee413 100644
--- a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
+++ b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
@@ -7,11 +7,12 @@
 //===----------------------------------------------------------------------===//
 //
 // This provides a class for OpenMP runtime code generation specialized to NVPTX
-// targets.
+// targets from generalized CGOpenMPRuntimeGPU class.
 //
 //===----------------------------------------------------------------------===//
 
 #include "CGOpenMPRuntimeNVPTX.h"
+#include "CGOpenMPRuntimeGPU.h"
 #include "CodeGenFunction.h"
 #include "clang/AST/Attr.h"
 #include "clang/AST/DeclOpenMP.h"
@@ -25,5212 +26,16 @@ using namespace clang;
 using namespace CodeGen;
 using namespace llvm::omp;
 
-namespace {
-enum OpenMPRTLFunctionNVPTX {
-  /// Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
-  /// int16_t RequiresOMPRuntime);
-  OMPRTL_NVPTX__kmpc_kernel_init,
-  /// Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
-  OMPRTL_NVPTX__kmpc_kernel_deinit,
-  /// Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
-  /// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
-  OMPRTL_NVPTX__kmpc_spmd_kernel_init,
-  /// Call to void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
-  OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2,
-  /// Call to void __kmpc_kernel_prepare_parallel(void
-  /// *outlined_function);
-  OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
-  /// Call to bool __kmpc_kernel_parallel(void **outlined_function);
-  OMPRTL_NVPTX__kmpc_kernel_parallel,
-  /// Call to void __kmpc_kernel_end_parallel();
-  OMPRTL_NVPTX__kmpc_kernel_end_parallel,
-  /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
-  /// global_tid);
-  OMPRTL_NVPTX__kmpc_serialized_parallel,
-  /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
-  /// global_tid);
-  OMPRTL_NVPTX__kmpc_end_serialized_parallel,
-  /// Call to int32_t __kmpc_shuffle_int32(int32_t element,
-  /// int16_t lane_offset, int16_t warp_size);
-  OMPRTL_NVPTX__kmpc_shuffle_int32,
-  /// Call to int64_t __kmpc_shuffle_int64(int64_t element,
-  /// int16_t lane_offset, int16_t warp_size);
-  OMPRTL_NVPTX__kmpc_shuffle_int64,
-  /// Call to __kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc, kmp_int32
-  /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
-  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
-  /// lane_offset, int16_t shortCircuit),
-  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
-  OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2,
-  /// Call to __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
-  /// global_tid, void *global_buffer, int32_t num_of_records, void*
-  /// reduce_data,
-  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
-  /// lane_offset, int16_t shortCircuit),
-  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
-  /// (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
-  /// void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
-  /// void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
-  /// int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
-  /// *buffer, int idx, void *reduce_data));
-  OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2,
-  /// Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
-  OMPRTL_NVPTX__kmpc_end_reduce_nowait,
-  /// Call to void __kmpc_data_sharing_init_stack();
-  OMPRTL_NVPTX__kmpc_data_sharing_init_stack,
-  /// Call to void __kmpc_data_sharing_init_stack_spmd();
-  OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd,
-  /// Call to void* __kmpc_data_sharing_coalesced_push_stack(size_t size,
-  /// int16_t UseSharedMemory);
-  OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack,
-  /// Call to void* __kmpc_data_sharing_push_stack(size_t size, int16_t
-  /// UseSharedMemory);
-  OMPRTL_NVPTX__kmpc_data_sharing_push_stack,
-  /// Call to void __kmpc_data_sharing_pop_stack(void *a);
-  OMPRTL_NVPTX__kmpc_data_sharing_pop_stack,
-  /// Call to void __kmpc_begin_sharing_variables(void ***args,
-  /// size_t n_args);
-  OMPRTL_NVPTX__kmpc_begin_sharing_variables,
-  /// Call to void __kmpc_end_sharing_variables();
-  OMPRTL_NVPTX__kmpc_end_sharing_variables,
-  /// Call to void __kmpc_get_shared_variables(void ***GlobalArgs)
-  OMPRTL_NVPTX__kmpc_get_shared_variables,
-  /// Call to uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32
-  /// global_tid);
-  OMPRTL_NVPTX__kmpc_parallel_level,
-  /// Call to int8_t __kmpc_is_spmd_exec_mode();
-  OMPRTL_NVPTX__kmpc_is_spmd_exec_mode,
-  /// Call to void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
-  /// const void *buf, size_t size, int16_t is_shared, const void **res);
-  OMPRTL_NVPTX__kmpc_get_team_static_memory,
-  /// Call to void __kmpc_restore_team_static_memory(int16_t
-  /// isSPMDExecutionMode, int16_t is_shared);
-  OMPRTL_NVPTX__kmpc_restore_team_static_memory,
-  /// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
-  OMPRTL__kmpc_barrier,
-  /// Call to void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
-  /// global_tid);
-  OMPRTL__kmpc_barrier_simple_spmd,
-  /// Call to int32_t __kmpc_warp_active_thread_mask(void);
-  OMPRTL_NVPTX__kmpc_warp_active_thread_mask,
-  /// Call to void __kmpc_syncwarp(int32_t Mask);
-  OMPRTL_NVPTX__kmpc_syncwarp,
-};
-
-/// Pre(post)-action for 
diff erent OpenMP constructs specialized for NVPTX.
-class NVPTXActionTy final : public PrePostActionTy {
-  llvm::FunctionCallee EnterCallee = nullptr;
-  ArrayRef<llvm::Value *> EnterArgs;
-  llvm::FunctionCallee ExitCallee = nullptr;
-  ArrayRef<llvm::Value *> ExitArgs;
-  bool Conditional = false;
-  llvm::BasicBlock *ContBlock = nullptr;
-
-public:
-  NVPTXActionTy(llvm::FunctionCallee EnterCallee,
-                ArrayRef<llvm::Value *> EnterArgs,
-                llvm::FunctionCallee ExitCallee,
-                ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
-      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
-        ExitArgs(ExitArgs), Conditional(Conditional) {}
-  void Enter(CodeGenFunction &CGF) override {
-    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
-    if (Conditional) {
-      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
-      auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
-      ContBlock = CGF.createBasicBlock("omp_if.end");
-      // Generate the branch (If-stmt)
-      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
-      CGF.EmitBlock(ThenBlock);
-    }
-  }
-  void Done(CodeGenFunction &CGF) {
-    // Emit the rest of blocks/branches
-    CGF.EmitBranch(ContBlock);
-    CGF.EmitBlock(ContBlock, true);
-  }
-  void Exit(CodeGenFunction &CGF) override {
-    CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
-  }
-};
-
-/// A class to track the execution mode when codegening directives within
-/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
-/// to the target region and used by containing directives such as 'parallel'
-/// to emit optimized code.
-class ExecutionRuntimeModesRAII {
-private:
-  CGOpenMPRuntimeNVPTX::ExecutionMode SavedExecMode =
-      CGOpenMPRuntimeNVPTX::EM_Unknown;
-  CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode;
-  bool SavedRuntimeMode = false;
-  bool *RuntimeMode = nullptr;
-
-public:
-  /// Constructor for Non-SPMD mode.
-  ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode)
-      : ExecMode(ExecMode) {
-    SavedExecMode = ExecMode;
-    ExecMode = CGOpenMPRuntimeNVPTX::EM_NonSPMD;
-  }
-  /// Constructor for SPMD mode.
-  ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode,
-                            bool &RuntimeMode, bool FullRuntimeMode)
-      : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
-    SavedExecMode = ExecMode;
-    SavedRuntimeMode = RuntimeMode;
-    ExecMode = CGOpenMPRuntimeNVPTX::EM_SPMD;
-    RuntimeMode = FullRuntimeMode;
-  }
-  ~ExecutionRuntimeModesRAII() {
-    ExecMode = SavedExecMode;
-    if (RuntimeMode)
-      *RuntimeMode = SavedRuntimeMode;
-  }
-};
-
-/// GPU Configuration:  This information can be derived from cuda registers,
-/// however, providing compile time constants helps generate more efficient
-/// code.  For all practical purposes this is fine because the configuration
-/// is the same for all known NVPTX architectures.
-enum MachineConfiguration : unsigned {
-  WarpSize = 32,
-  /// Number of bits required to represent a lane identifier, which is
-  /// computed as log_2(WarpSize).
-  LaneIDBits = 5,
-  LaneIDMask = WarpSize - 1,
-
-  /// Global memory alignment for performance.
-  GlobalMemoryAlignment = 128,
-
-  /// Maximal size of the shared memory buffer.
-  SharedMemorySize = 128,
-};
-
-static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
-  RefExpr = RefExpr->IgnoreParens();
-  if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
-    const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
-    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
-      Base = TempASE->getBase()->IgnoreParenImpCasts();
-    RefExpr = Base;
-  } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
-    const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
-    while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
-      Base = TempOASE->getBase()->IgnoreParenImpCasts();
-    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
-      Base = TempASE->getBase()->IgnoreParenImpCasts();
-    RefExpr = Base;
-  }
-  RefExpr = RefExpr->IgnoreParenImpCasts();
-  if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
-    return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
-  const auto *ME = cast<MemberExpr>(RefExpr);
-  return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
-}
-
-
-static RecordDecl *buildRecordForGlobalizedVars(
-    ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
-    ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
-    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-        &MappedDeclsFields, int BufSize) {
-  using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
-  if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
-    return nullptr;
-  SmallVector<VarsDataTy, 4> GlobalizedVars;
-  for (const ValueDecl *D : EscapedDecls)
-    GlobalizedVars.emplace_back(
-        CharUnits::fromQuantity(std::max(
-            C.getDeclAlign(D).getQuantity(),
-            static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
-        D);
-  for (const ValueDecl *D : EscapedDeclsForTeams)
-    GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
-  llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
-    return L.first > R.first;
-  });
-
-  // Build struct _globalized_locals_ty {
-  //         /*  globalized vars  */[WarSize] align (max(decl_align,
-  //         GlobalMemoryAlignment))
-  //         /*  globalized vars  */ for EscapedDeclsForTeams
-  //       };
-  RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
-  GlobalizedRD->startDefinition();
-  llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
-      EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
-  for (const auto &Pair : GlobalizedVars) {
-    const ValueDecl *VD = Pair.second;
-    QualType Type = VD->getType();
-    if (Type->isLValueReferenceType())
-      Type = C.getPointerType(Type.getNonReferenceType());
-    else
-      Type = Type.getNonReferenceType();
-    SourceLocation Loc = VD->getLocation();
-    FieldDecl *Field;
-    if (SingleEscaped.count(VD)) {
-      Field = FieldDecl::Create(
-          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
-          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
-          /*BW=*/nullptr, /*Mutable=*/false,
-          /*InitStyle=*/ICIS_NoInit);
-      Field->setAccess(AS_public);
-      if (VD->hasAttrs()) {
-        for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
-             E(VD->getAttrs().end());
-             I != E; ++I)
-          Field->addAttr(*I);
-      }
-    } else {
-      llvm::APInt ArraySize(32, BufSize);
-      Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
-                                    0);
-      Field = FieldDecl::Create(
-          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
-          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
-          /*BW=*/nullptr, /*Mutable=*/false,
-          /*InitStyle=*/ICIS_NoInit);
-      Field->setAccess(AS_public);
-      llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
-                                     static_cast<CharUnits::QuantityType>(
-                                         GlobalMemoryAlignment)));
-      Field->addAttr(AlignedAttr::CreateImplicit(
-          C, /*IsAlignmentExpr=*/true,
-          IntegerLiteral::Create(C, Align,
-                                 C.getIntTypeForBitwidth(32, /*Signed=*/0),
-                                 SourceLocation()),
-          {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
-    }
-    GlobalizedRD->addDecl(Field);
-    MappedDeclsFields.try_emplace(VD, Field);
-  }
-  GlobalizedRD->completeDefinition();
-  return GlobalizedRD;
+CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
+    : CGOpenMPRuntimeGPU(CGM) {
+  if (!CGM.getLangOpts().OpenMPIsDevice)
+    llvm_unreachable("OpenMP NVPTX can only handle device code.");
 }
 
-/// Get the list of variables that can escape their declaration context.
-class CheckVarsEscapingDeclContext final
-    : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
-  CodeGenFunction &CGF;
-  llvm::SetVector<const ValueDecl *> EscapedDecls;
-  llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
-  llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
-  RecordDecl *GlobalizedRD = nullptr;
-  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
-  bool AllEscaped = false;
-  bool IsForCombinedParallelRegion = false;
-
-  void markAsEscaped(const ValueDecl *VD) {
-    // Do not globalize declare target variables.
-    if (!isa<VarDecl>(VD) ||
-        OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
-      return;
-    VD = cast<ValueDecl>(VD->getCanonicalDecl());
-    // Use user-specified allocation.
-    if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
-      return;
-    // Variables captured by value must be globalized.
-    if (auto *CSI = CGF.CapturedStmtInfo) {
-      if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
-        // Check if need to capture the variable that was already captured by
-        // value in the outer region.
-        if (!IsForCombinedParallelRegion) {
-          if (!FD->hasAttrs())
-            return;
-          const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
-          if (!Attr)
-            return;
-          if (((Attr->getCaptureKind() != OMPC_map) &&
-               !isOpenMPPrivate(Attr->getCaptureKind())) ||
-              ((Attr->getCaptureKind() == OMPC_map) &&
-               !FD->getType()->isAnyPointerType()))
-            return;
-        }
-        if (!FD->getType()->isReferenceType()) {
-          assert(!VD->getType()->isVariablyModifiedType() &&
-                 "Parameter captured by value with variably modified type");
-          EscapedParameters.insert(VD);
-        } else if (!IsForCombinedParallelRegion) {
-          return;
-        }
-      }
-    }
-    if ((!CGF.CapturedStmtInfo ||
-         (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
-        VD->getType()->isReferenceType())
-      // Do not globalize variables with reference type.
-      return;
-    if (VD->getType()->isVariablyModifiedType())
-      EscapedVariableLengthDecls.insert(VD);
-    else
-      EscapedDecls.insert(VD);
-  }
-
-  void VisitValueDecl(const ValueDecl *VD) {
-    if (VD->getType()->isLValueReferenceType())
-      markAsEscaped(VD);
-    if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
-      if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
-        const bool SavedAllEscaped = AllEscaped;
-        AllEscaped = VD->getType()->isLValueReferenceType();
-        Visit(VarD->getInit());
-        AllEscaped = SavedAllEscaped;
-      }
-    }
-  }
-  void VisitOpenMPCapturedStmt(const CapturedStmt *S,
-                               ArrayRef<OMPClause *> Clauses,
-                               bool IsCombinedParallelRegion) {
-    if (!S)
-      return;
-    for (const CapturedStmt::Capture &C : S->captures()) {
-      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
-        const ValueDecl *VD = C.getCapturedVar();
-        bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
-        if (IsCombinedParallelRegion) {
-          // Check if the variable is privatized in the combined construct and
-          // those private copies must be shared in the inner parallel
-          // directive.
-          IsForCombinedParallelRegion = false;
-          for (const OMPClause *C : Clauses) {
-            if (!isOpenMPPrivate(C->getClauseKind()) ||
-                C->getClauseKind() == OMPC_reduction ||
-                C->getClauseKind() == OMPC_linear ||
-                C->getClauseKind() == OMPC_private)
-              continue;
-            ArrayRef<const Expr *> Vars;
-            if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
-              Vars = PC->getVarRefs();
-            else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
-              Vars = PC->getVarRefs();
-            else
-              llvm_unreachable("Unexpected clause.");
-            for (const auto *E : Vars) {
-              const Decl *D =
-                  cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
-              if (D == VD->getCanonicalDecl()) {
-                IsForCombinedParallelRegion = true;
-                break;
-              }
-            }
-            if (IsForCombinedParallelRegion)
-              break;
-          }
-        }
-        markAsEscaped(VD);
-        if (isa<OMPCapturedExprDecl>(VD))
-          VisitValueDecl(VD);
-        IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
-      }
-    }
-  }
-
-  void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
-    assert(!GlobalizedRD &&
-           "Record for globalized variables is built already.");
-    ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
-    if (IsInTTDRegion)
-      EscapedDeclsForTeams = EscapedDecls.getArrayRef();
-    else
-      EscapedDeclsForParallel = EscapedDecls.getArrayRef();
-    GlobalizedRD = ::buildRecordForGlobalizedVars(
-        CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
-        MappedDeclsFields, WarpSize);
-  }
-
-public:
-  CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
-                               ArrayRef<const ValueDecl *> TeamsReductions)
-      : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
-  }
-  virtual ~CheckVarsEscapingDeclContext() = default;
-  void VisitDeclStmt(const DeclStmt *S) {
-    if (!S)
-      return;
-    for (const Decl *D : S->decls())
-      if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
-        VisitValueDecl(VD);
-  }
-  void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
-    if (!D)
-      return;
-    if (!D->hasAssociatedStmt())
-      return;
-    if (const auto *S =
-            dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
-      // Do not analyze directives that do not actually require capturing,
-      // like `omp for` or `omp simd` directives.
-      llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
-      getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
-      if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
-        VisitStmt(S->getCapturedStmt());
-        return;
-      }
-      VisitOpenMPCapturedStmt(
-          S, D->clauses(),
-          CaptureRegions.back() == OMPD_parallel &&
-              isOpenMPDistributeDirective(D->getDirectiveKind()));
-    }
-  }
-  void VisitCapturedStmt(const CapturedStmt *S) {
-    if (!S)
-      return;
-    for (const CapturedStmt::Capture &C : S->captures()) {
-      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
-        const ValueDecl *VD = C.getCapturedVar();
-        markAsEscaped(VD);
-        if (isa<OMPCapturedExprDecl>(VD))
-          VisitValueDecl(VD);
-      }
-    }
-  }
-  void VisitLambdaExpr(const LambdaExpr *E) {
-    if (!E)
-      return;
-    for (const LambdaCapture &C : E->captures()) {
-      if (C.capturesVariable()) {
-        if (C.getCaptureKind() == LCK_ByRef) {
-          const ValueDecl *VD = C.getCapturedVar();
-          markAsEscaped(VD);
-          if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
-            VisitValueDecl(VD);
-        }
-      }
-    }
-  }
-  void VisitBlockExpr(const BlockExpr *E) {
-    if (!E)
-      return;
-    for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
-      if (C.isByRef()) {
-        const VarDecl *VD = C.getVariable();
-        markAsEscaped(VD);
-        if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
-          VisitValueDecl(VD);
-      }
-    }
-  }
-  void VisitCallExpr(const CallExpr *E) {
-    if (!E)
-      return;
-    for (const Expr *Arg : E->arguments()) {
-      if (!Arg)
-        continue;
-      if (Arg->isLValue()) {
-        const bool SavedAllEscaped = AllEscaped;
-        AllEscaped = true;
-        Visit(Arg);
-        AllEscaped = SavedAllEscaped;
-      } else {
-        Visit(Arg);
-      }
-    }
-    Visit(E->getCallee());
-  }
-  void VisitDeclRefExpr(const DeclRefExpr *E) {
-    if (!E)
-      return;
-    const ValueDecl *VD = E->getDecl();
-    if (AllEscaped)
-      markAsEscaped(VD);
-    if (isa<OMPCapturedExprDecl>(VD))
-      VisitValueDecl(VD);
-    else if (const auto *VarD = dyn_cast<VarDecl>(VD))
-      if (VarD->isInitCapture())
-        VisitValueDecl(VD);
-  }
-  void VisitUnaryOperator(const UnaryOperator *E) {
-    if (!E)
-      return;
-    if (E->getOpcode() == UO_AddrOf) {
-      const bool SavedAllEscaped = AllEscaped;
-      AllEscaped = true;
-      Visit(E->getSubExpr());
-      AllEscaped = SavedAllEscaped;
-    } else {
-      Visit(E->getSubExpr());
-    }
-  }
-  void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
-    if (!E)
-      return;
-    if (E->getCastKind() == CK_ArrayToPointerDecay) {
-      const bool SavedAllEscaped = AllEscaped;
-      AllEscaped = true;
-      Visit(E->getSubExpr());
-      AllEscaped = SavedAllEscaped;
-    } else {
-      Visit(E->getSubExpr());
-    }
-  }
-  void VisitExpr(const Expr *E) {
-    if (!E)
-      return;
-    bool SavedAllEscaped = AllEscaped;
-    if (!E->isLValue())
-      AllEscaped = false;
-    for (const Stmt *Child : E->children())
-      if (Child)
-        Visit(Child);
-    AllEscaped = SavedAllEscaped;
-  }
-  void VisitStmt(const Stmt *S) {
-    if (!S)
-      return;
-    for (const Stmt *Child : S->children())
-      if (Child)
-        Visit(Child);
-  }
-
-  /// Returns the record that handles all the escaped local variables and used
-  /// instead of their original storage.
-  const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
-    if (!GlobalizedRD)
-      buildRecordForGlobalizedVars(IsInTTDRegion);
-    return GlobalizedRD;
-  }
-
-  /// Returns the field in the globalized record for the escaped variable.
-  const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
-    assert(GlobalizedRD &&
-           "Record for globalized variables must be generated already.");
-    auto I = MappedDeclsFields.find(VD);
-    if (I == MappedDeclsFields.end())
-      return nullptr;
-    return I->getSecond();
-  }
-
-  /// Returns the list of the escaped local variables/parameters.
-  ArrayRef<const ValueDecl *> getEscapedDecls() const {
-    return EscapedDecls.getArrayRef();
-  }
-
-  /// Checks if the escaped local variable is actually a parameter passed by
-  /// value.
-  const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
-    return EscapedParameters;
-  }
-
-  /// Returns the list of the escaped variables with the variably modified
-  /// types.
-  ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
-    return EscapedVariableLengthDecls.getArrayRef();
-  }
-};
-} // anonymous namespace
-
 /// Get the GPU warp size.
-static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
+llvm::Value *CGOpenMPRuntimeNVPTX::getGPUWarpSize(CodeGenFunction &CGF) {
   return CGF.EmitRuntimeCall(
       llvm::Intrinsic::getDeclaration(
           &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
       "nvptx_warp_size");
 }
-
-/// Get the id of the current thread on the GPU.
-static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
-  return CGF.EmitRuntimeCall(
-      llvm::Intrinsic::getDeclaration(
-          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
-      "nvptx_tid");
-}
-
-/// Get the id of the warp in the block.
-/// We assume that the warp size is 32, which is always the case
-/// on the NVPTX device, to generate more efficient code.
-static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
-  CGBuilderTy &Bld = CGF.Builder;
-  return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
-}
-
-/// Get the id of the current lane in the Warp.
-/// We assume that the warp size is 32, which is always the case
-/// on the NVPTX device, to generate more efficient code.
-static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
-  CGBuilderTy &Bld = CGF.Builder;
-  return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
-                       "nvptx_lane_id");
-}
-
-/// Get the maximum number of threads in a block of the GPU.
-static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
-  return CGF.EmitRuntimeCall(
-      llvm::Intrinsic::getDeclaration(
-          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
-      "nvptx_num_threads");
-}
-
-/// Get the value of the thread_limit clause in the teams directive.
-/// For the 'generic' execution mode, the runtime encodes thread_limit in
-/// the launch parameters, always starting thread_limit+warpSize threads per
-/// CTA. The threads in the last warp are reserved for master execution.
-/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
-static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
-                                   bool IsInSPMDExecutionMode = false) {
-  CGBuilderTy &Bld = CGF.Builder;
-  return IsInSPMDExecutionMode
-             ? getNVPTXNumThreads(CGF)
-             : Bld.CreateNUWSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
-                                "thread_limit");
-}
-
-/// Get the thread id of the OMP master thread.
-/// The master thread id is the first thread (lane) of the last warp in the
-/// GPU block.  Warp size is assumed to be some power of 2.
-/// Thread id is 0 indexed.
-/// E.g: If NumThreads is 33, master id is 32.
-///      If NumThreads is 64, master id is 32.
-///      If NumThreads is 1024, master id is 992.
-static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
-  CGBuilderTy &Bld = CGF.Builder;
-  llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
-
-  // We assume that the warp size is a power of 2.
-  llvm::Value *Mask = Bld.CreateNUWSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
-
-  return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
-                       Bld.CreateNot(Mask), "master_tid");
-}
-
-CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
-    CodeGenModule &CGM, SourceLocation Loc)
-    : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
-      Loc(Loc) {
-  createWorkerFunction(CGM);
-}
-
-void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
-    CodeGenModule &CGM) {
-  // Create an worker function with no arguments.
-
-  WorkerFn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      /*placeholder=*/"_worker", &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
-  WorkerFn->setDoesNotRecurse();
-}
-
-CGOpenMPRuntimeNVPTX::ExecutionMode
-CGOpenMPRuntimeNVPTX::getExecutionMode() const {
-  return CurrentExecutionMode;
-}
-
-static CGOpenMPRuntimeNVPTX::DataSharingMode
-getDataSharingMode(CodeGenModule &CGM) {
-  return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeNVPTX::CUDA
-                                          : CGOpenMPRuntimeNVPTX::Generic;
-}
-
-/// Check for inner (nested) SPMD construct, if any
-static bool hasNestedSPMDDirective(ASTContext &Ctx,
-                                   const OMPExecutableDirective &D) {
-  const auto *CS = D.getInnermostCapturedStmt();
-  const auto *Body =
-      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
-  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-
-  if (const auto *NestedDir =
-          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
-    switch (D.getDirectiveKind()) {
-    case OMPD_target:
-      if (isOpenMPParallelDirective(DKind))
-        return true;
-      if (DKind == OMPD_teams) {
-        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
-            /*IgnoreCaptured=*/true);
-        if (!Body)
-          return false;
-        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-        if (const auto *NND =
-                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-          DKind = NND->getDirectiveKind();
-          if (isOpenMPParallelDirective(DKind))
-            return true;
-        }
-      }
-      return false;
-    case OMPD_target_teams:
-      return isOpenMPParallelDirective(DKind);
-    case OMPD_target_simd:
-    case OMPD_target_parallel:
-    case OMPD_target_parallel_for:
-    case OMPD_target_parallel_for_simd:
-    case OMPD_target_teams_distribute:
-    case OMPD_target_teams_distribute_simd:
-    case OMPD_target_teams_distribute_parallel_for:
-    case OMPD_target_teams_distribute_parallel_for_simd:
-    case OMPD_parallel:
-    case OMPD_for:
-    case OMPD_parallel_for:
-    case OMPD_parallel_master:
-    case OMPD_parallel_sections:
-    case OMPD_for_simd:
-    case OMPD_parallel_for_simd:
-    case OMPD_cancel:
-    case OMPD_cancellation_point:
-    case OMPD_ordered:
-    case OMPD_threadprivate:
-    case OMPD_allocate:
-    case OMPD_task:
-    case OMPD_simd:
-    case OMPD_sections:
-    case OMPD_section:
-    case OMPD_single:
-    case OMPD_master:
-    case OMPD_critical:
-    case OMPD_taskyield:
-    case OMPD_barrier:
-    case OMPD_taskwait:
-    case OMPD_taskgroup:
-    case OMPD_atomic:
-    case OMPD_flush:
-    case OMPD_depobj:
-    case OMPD_scan:
-    case OMPD_teams:
-    case OMPD_target_data:
-    case OMPD_target_exit_data:
-    case OMPD_target_enter_data:
-    case OMPD_distribute:
-    case OMPD_distribute_simd:
-    case OMPD_distribute_parallel_for:
-    case OMPD_distribute_parallel_for_simd:
-    case OMPD_teams_distribute:
-    case OMPD_teams_distribute_simd:
-    case OMPD_teams_distribute_parallel_for:
-    case OMPD_teams_distribute_parallel_for_simd:
-    case OMPD_target_update:
-    case OMPD_declare_simd:
-    case OMPD_declare_variant:
-    case OMPD_begin_declare_variant:
-    case OMPD_end_declare_variant:
-    case OMPD_declare_target:
-    case OMPD_end_declare_target:
-    case OMPD_declare_reduction:
-    case OMPD_declare_mapper:
-    case OMPD_taskloop:
-    case OMPD_taskloop_simd:
-    case OMPD_master_taskloop:
-    case OMPD_master_taskloop_simd:
-    case OMPD_parallel_master_taskloop:
-    case OMPD_parallel_master_taskloop_simd:
-    case OMPD_requires:
-    case OMPD_unknown:
-    default:
-      llvm_unreachable("Unexpected directive.");
-    }
-  }
-
-  return false;
-}
-
-static bool supportsSPMDExecutionMode(ASTContext &Ctx,
-                                      const OMPExecutableDirective &D) {
-  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
-  switch (DirectiveKind) {
-  case OMPD_target:
-  case OMPD_target_teams:
-    return hasNestedSPMDDirective(Ctx, D);
-  case OMPD_target_parallel:
-  case OMPD_target_parallel_for:
-  case OMPD_target_parallel_for_simd:
-  case OMPD_target_teams_distribute_parallel_for:
-  case OMPD_target_teams_distribute_parallel_for_simd:
-  case OMPD_target_simd:
-  case OMPD_target_teams_distribute_simd:
-    return true;
-  case OMPD_target_teams_distribute:
-    return false;
-  case OMPD_parallel:
-  case OMPD_for:
-  case OMPD_parallel_for:
-  case OMPD_parallel_master:
-  case OMPD_parallel_sections:
-  case OMPD_for_simd:
-  case OMPD_parallel_for_simd:
-  case OMPD_cancel:
-  case OMPD_cancellation_point:
-  case OMPD_ordered:
-  case OMPD_threadprivate:
-  case OMPD_allocate:
-  case OMPD_task:
-  case OMPD_simd:
-  case OMPD_sections:
-  case OMPD_section:
-  case OMPD_single:
-  case OMPD_master:
-  case OMPD_critical:
-  case OMPD_taskyield:
-  case OMPD_barrier:
-  case OMPD_taskwait:
-  case OMPD_taskgroup:
-  case OMPD_atomic:
-  case OMPD_flush:
-  case OMPD_depobj:
-  case OMPD_scan:
-  case OMPD_teams:
-  case OMPD_target_data:
-  case OMPD_target_exit_data:
-  case OMPD_target_enter_data:
-  case OMPD_distribute:
-  case OMPD_distribute_simd:
-  case OMPD_distribute_parallel_for:
-  case OMPD_distribute_parallel_for_simd:
-  case OMPD_teams_distribute:
-  case OMPD_teams_distribute_simd:
-  case OMPD_teams_distribute_parallel_for:
-  case OMPD_teams_distribute_parallel_for_simd:
-  case OMPD_target_update:
-  case OMPD_declare_simd:
-  case OMPD_declare_variant:
-  case OMPD_begin_declare_variant:
-  case OMPD_end_declare_variant:
-  case OMPD_declare_target:
-  case OMPD_end_declare_target:
-  case OMPD_declare_reduction:
-  case OMPD_declare_mapper:
-  case OMPD_taskloop:
-  case OMPD_taskloop_simd:
-  case OMPD_master_taskloop:
-  case OMPD_master_taskloop_simd:
-  case OMPD_parallel_master_taskloop:
-  case OMPD_parallel_master_taskloop_simd:
-  case OMPD_requires:
-  case OMPD_unknown:
-  default:
-    break;
-  }
-  llvm_unreachable(
-      "Unknown programming model for OpenMP directive on NVPTX target.");
-}
-
-/// Check if the directive is loops based and has schedule clause at all or has
-/// static scheduling.
-static bool hasStaticScheduling(const OMPExecutableDirective &D) {
-  assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
-         isOpenMPLoopDirective(D.getDirectiveKind()) &&
-         "Expected loop-based directive.");
-  return !D.hasClausesOfKind<OMPOrderedClause>() &&
-         (!D.hasClausesOfKind<OMPScheduleClause>() ||
-          llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
-                       [](const OMPScheduleClause *C) {
-                         return C->getScheduleKind() == OMPC_SCHEDULE_static;
-                       }));
-}
-
-/// Check for inner (nested) lightweight runtime construct, if any
-static bool hasNestedLightweightDirective(ASTContext &Ctx,
-                                          const OMPExecutableDirective &D) {
-  assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
-  const auto *CS = D.getInnermostCapturedStmt();
-  const auto *Body =
-      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
-  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-
-  if (const auto *NestedDir =
-          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
-    switch (D.getDirectiveKind()) {
-    case OMPD_target:
-      if (isOpenMPParallelDirective(DKind) &&
-          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
-          hasStaticScheduling(*NestedDir))
-        return true;
-      if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
-        return true;
-      if (DKind == OMPD_parallel) {
-        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
-            /*IgnoreCaptured=*/true);
-        if (!Body)
-          return false;
-        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-        if (const auto *NND =
-                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-          DKind = NND->getDirectiveKind();
-          if (isOpenMPWorksharingDirective(DKind) &&
-              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
-            return true;
-        }
-      } else if (DKind == OMPD_teams) {
-        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
-            /*IgnoreCaptured=*/true);
-        if (!Body)
-          return false;
-        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-        if (const auto *NND =
-                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-          DKind = NND->getDirectiveKind();
-          if (isOpenMPParallelDirective(DKind) &&
-              isOpenMPWorksharingDirective(DKind) &&
-              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
-            return true;
-          if (DKind == OMPD_parallel) {
-            Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
-                /*IgnoreCaptured=*/true);
-            if (!Body)
-              return false;
-            ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-            if (const auto *NND =
-                    dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-              DKind = NND->getDirectiveKind();
-              if (isOpenMPWorksharingDirective(DKind) &&
-                  isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
-                return true;
-            }
-          }
-        }
-      }
-      return false;
-    case OMPD_target_teams:
-      if (isOpenMPParallelDirective(DKind) &&
-          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
-          hasStaticScheduling(*NestedDir))
-        return true;
-      if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
-        return true;
-      if (DKind == OMPD_parallel) {
-        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
-            /*IgnoreCaptured=*/true);
-        if (!Body)
-          return false;
-        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
-        if (const auto *NND =
-                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
-          DKind = NND->getDirectiveKind();
-          if (isOpenMPWorksharingDirective(DKind) &&
-              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
-            return true;
-        }
-      }
-      return false;
-    case OMPD_target_parallel:
-      if (DKind == OMPD_simd)
-        return true;
-      return isOpenMPWorksharingDirective(DKind) &&
-             isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
-    case OMPD_target_teams_distribute:
-    case OMPD_target_simd:
-    case OMPD_target_parallel_for:
-    case OMPD_target_parallel_for_simd:
-    case OMPD_target_teams_distribute_simd:
-    case OMPD_target_teams_distribute_parallel_for:
-    case OMPD_target_teams_distribute_parallel_for_simd:
-    case OMPD_parallel:
-    case OMPD_for:
-    case OMPD_parallel_for:
-    case OMPD_parallel_master:
-    case OMPD_parallel_sections:
-    case OMPD_for_simd:
-    case OMPD_parallel_for_simd:
-    case OMPD_cancel:
-    case OMPD_cancellation_point:
-    case OMPD_ordered:
-    case OMPD_threadprivate:
-    case OMPD_allocate:
-    case OMPD_task:
-    case OMPD_simd:
-    case OMPD_sections:
-    case OMPD_section:
-    case OMPD_single:
-    case OMPD_master:
-    case OMPD_critical:
-    case OMPD_taskyield:
-    case OMPD_barrier:
-    case OMPD_taskwait:
-    case OMPD_taskgroup:
-    case OMPD_atomic:
-    case OMPD_flush:
-    case OMPD_depobj:
-    case OMPD_scan:
-    case OMPD_teams:
-    case OMPD_target_data:
-    case OMPD_target_exit_data:
-    case OMPD_target_enter_data:
-    case OMPD_distribute:
-    case OMPD_distribute_simd:
-    case OMPD_distribute_parallel_for:
-    case OMPD_distribute_parallel_for_simd:
-    case OMPD_teams_distribute:
-    case OMPD_teams_distribute_simd:
-    case OMPD_teams_distribute_parallel_for:
-    case OMPD_teams_distribute_parallel_for_simd:
-    case OMPD_target_update:
-    case OMPD_declare_simd:
-    case OMPD_declare_variant:
-    case OMPD_begin_declare_variant:
-    case OMPD_end_declare_variant:
-    case OMPD_declare_target:
-    case OMPD_end_declare_target:
-    case OMPD_declare_reduction:
-    case OMPD_declare_mapper:
-    case OMPD_taskloop:
-    case OMPD_taskloop_simd:
-    case OMPD_master_taskloop:
-    case OMPD_master_taskloop_simd:
-    case OMPD_parallel_master_taskloop:
-    case OMPD_parallel_master_taskloop_simd:
-    case OMPD_requires:
-    case OMPD_unknown:
-    default:
-      llvm_unreachable("Unexpected directive.");
-    }
-  }
-
-  return false;
-}
-
-/// Checks if the construct supports lightweight runtime. It must be SPMD
-/// construct + inner loop-based construct with static scheduling.
-static bool supportsLightweightRuntime(ASTContext &Ctx,
-                                       const OMPExecutableDirective &D) {
-  if (!supportsSPMDExecutionMode(Ctx, D))
-    return false;
-  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
-  switch (DirectiveKind) {
-  case OMPD_target:
-  case OMPD_target_teams:
-  case OMPD_target_parallel:
-    return hasNestedLightweightDirective(Ctx, D);
-  case OMPD_target_parallel_for:
-  case OMPD_target_parallel_for_simd:
-  case OMPD_target_teams_distribute_parallel_for:
-  case OMPD_target_teams_distribute_parallel_for_simd:
-    // (Last|First)-privates must be shared in parallel region.
-    return hasStaticScheduling(D);
-  case OMPD_target_simd:
-  case OMPD_target_teams_distribute_simd:
-    return true;
-  case OMPD_target_teams_distribute:
-    return false;
-  case OMPD_parallel:
-  case OMPD_for:
-  case OMPD_parallel_for:
-  case OMPD_parallel_master:
-  case OMPD_parallel_sections:
-  case OMPD_for_simd:
-  case OMPD_parallel_for_simd:
-  case OMPD_cancel:
-  case OMPD_cancellation_point:
-  case OMPD_ordered:
-  case OMPD_threadprivate:
-  case OMPD_allocate:
-  case OMPD_task:
-  case OMPD_simd:
-  case OMPD_sections:
-  case OMPD_section:
-  case OMPD_single:
-  case OMPD_master:
-  case OMPD_critical:
-  case OMPD_taskyield:
-  case OMPD_barrier:
-  case OMPD_taskwait:
-  case OMPD_taskgroup:
-  case OMPD_atomic:
-  case OMPD_flush:
-  case OMPD_depobj:
-  case OMPD_scan:
-  case OMPD_teams:
-  case OMPD_target_data:
-  case OMPD_target_exit_data:
-  case OMPD_target_enter_data:
-  case OMPD_distribute:
-  case OMPD_distribute_simd:
-  case OMPD_distribute_parallel_for:
-  case OMPD_distribute_parallel_for_simd:
-  case OMPD_teams_distribute:
-  case OMPD_teams_distribute_simd:
-  case OMPD_teams_distribute_parallel_for:
-  case OMPD_teams_distribute_parallel_for_simd:
-  case OMPD_target_update:
-  case OMPD_declare_simd:
-  case OMPD_declare_variant:
-  case OMPD_begin_declare_variant:
-  case OMPD_end_declare_variant:
-  case OMPD_declare_target:
-  case OMPD_end_declare_target:
-  case OMPD_declare_reduction:
-  case OMPD_declare_mapper:
-  case OMPD_taskloop:
-  case OMPD_taskloop_simd:
-  case OMPD_master_taskloop:
-  case OMPD_master_taskloop_simd:
-  case OMPD_parallel_master_taskloop:
-  case OMPD_parallel_master_taskloop_simd:
-  case OMPD_requires:
-  case OMPD_unknown:
-  default:
-    break;
-  }
-  llvm_unreachable(
-      "Unknown programming model for OpenMP directive on NVPTX target.");
-}
-
-void CGOpenMPRuntimeNVPTX::emitNonSPMDKernel(const OMPExecutableDirective &D,
-                                             StringRef ParentName,
-                                             llvm::Function *&OutlinedFn,
-                                             llvm::Constant *&OutlinedFnID,
-                                             bool IsOffloadEntry,
-                                             const RegionCodeGenTy &CodeGen) {
-  ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
-  EntryFunctionState EST;
-  WorkerFunctionState WST(CGM, D.getBeginLoc());
-  Work.clear();
-  WrapperFunctionsMap.clear();
-
-  // Emit target region as a standalone region.
-  class NVPTXPrePostActionTy : public PrePostActionTy {
-    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
-    CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
-
-  public:
-    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
-                         CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
-        : EST(EST), WST(WST) {}
-    void Enter(CodeGenFunction &CGF) override {
-      auto &RT =
-          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
-      RT.emitNonSPMDEntryHeader(CGF, EST, WST);
-      // Skip target region initialization.
-      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
-    }
-    void Exit(CodeGenFunction &CGF) override {
-      auto &RT =
-          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
-      RT.clearLocThreadIdInsertPt(CGF);
-      RT.emitNonSPMDEntryFooter(CGF, EST);
-    }
-  } Action(EST, WST);
-  CodeGen.setAction(Action);
-  IsInTTDRegion = true;
-  // Reserve place for the globalized memory.
-  GlobalizedRecords.emplace_back();
-  if (!KernelStaticGlobalized) {
-    KernelStaticGlobalized = new llvm::GlobalVariable(
-        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
-        llvm::GlobalValue::InternalLinkage,
-        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
-        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
-        llvm::GlobalValue::NotThreadLocal,
-        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
-  }
-  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
-                                   IsOffloadEntry, CodeGen);
-  IsInTTDRegion = false;
-
-  // Now change the name of the worker function to correspond to this target
-  // region's entry function.
-  WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
-
-  // Create the worker function
-  emitWorkerFunction(WST);
-}
-
-// Setup NVPTX threads for master-worker OpenMP scheme.
-void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
-                                                  EntryFunctionState &EST,
-                                                  WorkerFunctionState &WST) {
-  CGBuilderTy &Bld = CGF.Builder;
-
-  llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
-  llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
-  llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
-  EST.ExitBB = CGF.createBasicBlock(".exit");
-
-  llvm::Value *IsWorker =
-      Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
-  Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
-
-  CGF.EmitBlock(WorkerBB);
-  emitCall(CGF, WST.Loc, WST.WorkerFn);
-  CGF.EmitBranch(EST.ExitBB);
-
-  CGF.EmitBlock(MasterCheckBB);
-  llvm::Value *IsMaster =
-      Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
-  Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
-
-  CGF.EmitBlock(MasterBB);
-  IsInTargetMasterThreadRegion = true;
-  // SEQUENTIAL (MASTER) REGION START
-  // First action in sequential region:
-  // Initialize the state of the OpenMP runtime library on the GPU.
-  // TODO: Optimize runtime initialization and pass in correct value.
-  llvm::Value *Args[] = {getThreadLimit(CGF),
-                         Bld.getInt16(/*RequiresOMPRuntime=*/1)};
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
-
-  // For data sharing, we need to initialize the stack.
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(
-          OMPRTL_NVPTX__kmpc_data_sharing_init_stack));
-
-  emitGenericVarsProlog(CGF, WST.Loc);
-}
-
-void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
-                                                  EntryFunctionState &EST) {
-  IsInTargetMasterThreadRegion = false;
-  if (!CGF.HaveInsertPoint())
-    return;
-
-  emitGenericVarsEpilog(CGF);
-
-  if (!EST.ExitBB)
-    EST.ExitBB = CGF.createBasicBlock(".exit");
-
-  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
-  CGF.EmitBranch(TerminateBB);
-
-  CGF.EmitBlock(TerminateBB);
-  // Signal termination condition.
-  // TODO: Optimize runtime initialization and pass in correct value.
-  llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
-  // Barrier to terminate worker threads.
-  syncCTAThreads(CGF);
-  // Master thread jumps to exit point.
-  CGF.EmitBranch(EST.ExitBB);
-
-  CGF.EmitBlock(EST.ExitBB);
-  EST.ExitBB = nullptr;
-}
-
-void CGOpenMPRuntimeNVPTX::emitSPMDKernel(const OMPExecutableDirective &D,
-                                          StringRef ParentName,
-                                          llvm::Function *&OutlinedFn,
-                                          llvm::Constant *&OutlinedFnID,
-                                          bool IsOffloadEntry,
-                                          const RegionCodeGenTy &CodeGen) {
-  ExecutionRuntimeModesRAII ModeRAII(
-      CurrentExecutionMode, RequiresFullRuntime,
-      CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
-          !supportsLightweightRuntime(CGM.getContext(), D));
-  EntryFunctionState EST;
-
-  // Emit target region as a standalone region.
-  class NVPTXPrePostActionTy : public PrePostActionTy {
-    CGOpenMPRuntimeNVPTX &RT;
-    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
-    const OMPExecutableDirective &D;
-
-  public:
-    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
-                         CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
-                         const OMPExecutableDirective &D)
-        : RT(RT), EST(EST), D(D) {}
-    void Enter(CodeGenFunction &CGF) override {
-      RT.emitSPMDEntryHeader(CGF, EST, D);
-      // Skip target region initialization.
-      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
-    }
-    void Exit(CodeGenFunction &CGF) override {
-      RT.clearLocThreadIdInsertPt(CGF);
-      RT.emitSPMDEntryFooter(CGF, EST);
-    }
-  } Action(*this, EST, D);
-  CodeGen.setAction(Action);
-  IsInTTDRegion = true;
-  // Reserve place for the globalized memory.
-  GlobalizedRecords.emplace_back();
-  if (!KernelStaticGlobalized) {
-    KernelStaticGlobalized = new llvm::GlobalVariable(
-        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
-        llvm::GlobalValue::InternalLinkage,
-        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
-        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
-        llvm::GlobalValue::NotThreadLocal,
-        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
-  }
-  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
-                                   IsOffloadEntry, CodeGen);
-  IsInTTDRegion = false;
-}
-
-void CGOpenMPRuntimeNVPTX::emitSPMDEntryHeader(
-    CodeGenFunction &CGF, EntryFunctionState &EST,
-    const OMPExecutableDirective &D) {
-  CGBuilderTy &Bld = CGF.Builder;
-
-  // Setup BBs in entry function.
-  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
-  EST.ExitBB = CGF.createBasicBlock(".exit");
-
-  llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
-                         /*RequiresOMPRuntime=*/
-                         Bld.getInt16(RequiresFullRuntime ? 1 : 0),
-                         /*RequiresDataSharing=*/Bld.getInt16(0)};
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
-
-  if (RequiresFullRuntime) {
-    // For data sharing, we need to initialize the stack.
-    CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
-        OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd));
-  }
-
-  CGF.EmitBranch(ExecuteBB);
-
-  CGF.EmitBlock(ExecuteBB);
-
-  IsInTargetMasterThreadRegion = true;
-}
-
-void CGOpenMPRuntimeNVPTX::emitSPMDEntryFooter(CodeGenFunction &CGF,
-                                               EntryFunctionState &EST) {
-  IsInTargetMasterThreadRegion = false;
-  if (!CGF.HaveInsertPoint())
-    return;
-
-  if (!EST.ExitBB)
-    EST.ExitBB = CGF.createBasicBlock(".exit");
-
-  llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
-  CGF.EmitBranch(OMPDeInitBB);
-
-  CGF.EmitBlock(OMPDeInitBB);
-  // DeInitialize the OMP state in the runtime; called by all active threads.
-  llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
-                         CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(
-          OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2), Args);
-  CGF.EmitBranch(EST.ExitBB);
-
-  CGF.EmitBlock(EST.ExitBB);
-  EST.ExitBB = nullptr;
-}
-
-// Create a unique global variable to indicate the execution mode of this target
-// region. The execution mode is either 'generic', or 'spmd' depending on the
-// target directive. This variable is picked up by the offload library to setup
-// the device appropriately before kernel launch. If the execution mode is
-// 'generic', the runtime reserves one warp for the master, otherwise, all
-// warps participate in parallel work.
-static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
-                                     bool Mode) {
-  auto *GVMode =
-      new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
-                               llvm::GlobalValue::WeakAnyLinkage,
-                               llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
-                               Twine(Name, "_exec_mode"));
-  CGM.addCompilerUsedGlobal(GVMode);
-}
-
-void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
-  ASTContext &Ctx = CGM.getContext();
-
-  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
-  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
-                    WST.Loc, WST.Loc);
-  emitWorkerLoop(CGF, WST);
-  CGF.FinishFunction();
-}
-
-void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
-                                          WorkerFunctionState &WST) {
-  //
-  // The workers enter this loop and wait for parallel work from the master.
-  // When the master encounters a parallel region it sets up the work + variable
-  // arguments, and wakes up the workers.  The workers first check to see if
-  // they are required for the parallel region, i.e., within the # of requested
-  // parallel threads.  The activated workers load the variable arguments and
-  // execute the parallel work.
-  //
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
-  llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
-  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
-  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
-  llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
-  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
-
-  CGF.EmitBranch(AwaitBB);
-
-  // Workers wait for work from master.
-  CGF.EmitBlock(AwaitBB);
-  // Wait for parallel work
-  syncCTAThreads(CGF);
-
-  Address WorkFn =
-      CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
-  Address ExecStatus =
-      CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
-  CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
-  CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
-
-  // TODO: Optimize runtime initialization and pass in correct value.
-  llvm::Value *Args[] = {WorkFn.getPointer()};
-  llvm::Value *Ret = CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
-  Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
-
-  // On termination condition (workid == 0), exit loop.
-  llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
-  llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
-  Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
-
-  // Activate requested workers.
-  CGF.EmitBlock(SelectWorkersBB);
-  llvm::Value *IsActive =
-      Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
-  Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
-
-  // Signal start of parallel region.
-  CGF.EmitBlock(ExecuteBB);
-  // Skip initialization.
-  setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
-
-  // Process work items: outlined parallel functions.
-  for (llvm::Function *W : Work) {
-    // Try to match this outlined function.
-    llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
-
-    llvm::Value *WorkFnMatch =
-        Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
-
-    llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
-    llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
-    Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
-
-    // Execute this outlined function.
-    CGF.EmitBlock(ExecuteFNBB);
-
-    // Insert call to work function via shared wrapper. The shared
-    // wrapper takes two arguments:
-    //   - the parallelism level;
-    //   - the thread ID;
-    emitCall(CGF, WST.Loc, W,
-             {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
-
-    // Go to end of parallel region.
-    CGF.EmitBranch(TerminateBB);
-
-    CGF.EmitBlock(CheckNextBB);
-  }
-  // Default case: call to outlined function through pointer if the target
-  // region makes a declare target call that may contain an orphaned parallel
-  // directive.
-  auto *ParallelFnTy =
-      llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
-                              /*isVarArg=*/false);
-  llvm::Value *WorkFnCast =
-      Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo());
-  // Insert call to work function via shared wrapper. The shared
-  // wrapper takes two arguments:
-  //   - the parallelism level;
-  //   - the thread ID;
-  emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast},
-           {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
-  // Go to end of parallel region.
-  CGF.EmitBranch(TerminateBB);
-
-  // Signal end of parallel region.
-  CGF.EmitBlock(TerminateBB);
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
-      llvm::None);
-  CGF.EmitBranch(BarrierBB);
-
-  // All active and inactive workers wait at a barrier after parallel region.
-  CGF.EmitBlock(BarrierBB);
-  // Barrier after parallel region.
-  syncCTAThreads(CGF);
-  CGF.EmitBranch(AwaitBB);
-
-  // Exit target region.
-  CGF.EmitBlock(ExitBB);
-  // Skip initialization.
-  clearLocThreadIdInsertPt(CGF);
-}
-
-/// Returns specified OpenMP runtime function for the current OpenMP
-/// implementation.  Specialized for the NVPTX device.
-/// \param Function OpenMP runtime function.
-/// \return Specified function.
-llvm::FunctionCallee
-CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
-  llvm::FunctionCallee RTLFn = nullptr;
-  switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
-  case OMPRTL_NVPTX__kmpc_kernel_init: {
-    // Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
-    // RequiresOMPRuntime);
-    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_kernel_deinit: {
-    // Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
-    llvm::Type *TypeParams[] = {CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
-    // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
-    // int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
-    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2: {
-    // Build void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
-    llvm::Type *TypeParams[] = {CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit_v2");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
-    /// Build void __kmpc_kernel_prepare_parallel(
-    /// void *outlined_function);
-    llvm::Type *TypeParams[] = {CGM.Int8PtrTy};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_kernel_parallel: {
-    /// Build bool __kmpc_kernel_parallel(void **outlined_function);
-    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy};
-    llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
-    auto *FnTy =
-        llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
-    /// Build void __kmpc_kernel_end_parallel();
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_serialized_parallel: {
-    // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
-    // global_tid);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
-    // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
-    // global_tid);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_shuffle_int32: {
-    // Build int32_t __kmpc_shuffle_int32(int32_t element,
-    // int16_t lane_offset, int16_t warp_size);
-    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_shuffle_int64: {
-    // Build int64_t __kmpc_shuffle_int64(int64_t element,
-    // int16_t lane_offset, int16_t warp_size);
-    llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2: {
-    // Build int32_t kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc,
-    // kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void*
-    // reduce_data, void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t
-    // lane_id, int16_t lane_offset, int16_t Algorithm Version), void
-    // (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
-    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
-                                             CGM.Int16Ty, CGM.Int16Ty};
-    auto *ShuffleReduceFnTy =
-        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
-                                /*isVarArg=*/false);
-    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
-    auto *InterWarpCopyFnTy =
-        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
-                                /*isVarArg=*/false);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
-                                CGM.Int32Ty,
-                                CGM.Int32Ty,
-                                CGM.SizeTy,
-                                CGM.VoidPtrTy,
-                                ShuffleReduceFnTy->getPointerTo(),
-                                InterWarpCopyFnTy->getPointerTo()};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(
-        FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait_v2");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
-    // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
-    llvm::Type *TypeParams[] = {CGM.Int32Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(
-        FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2: {
-    // Build int32_t __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
-    // global_tid, void *global_buffer, int32_t num_of_records, void*
-    // reduce_data,
-    // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
-    // lane_offset, int16_t shortCircuit),
-    // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
-    // (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
-    // void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
-    // void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
-    // int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
-    // *buffer, int idx, void *reduce_data));
-    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
-                                             CGM.Int16Ty, CGM.Int16Ty};
-    auto *ShuffleReduceFnTy =
-        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
-                                /*isVarArg=*/false);
-    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
-    auto *InterWarpCopyFnTy =
-        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
-                                /*isVarArg=*/false);
-    llvm::Type *GlobalListTypeParams[] = {CGM.VoidPtrTy, CGM.IntTy,
-                                          CGM.VoidPtrTy};
-    auto *GlobalListFnTy =
-        llvm::FunctionType::get(CGM.VoidTy, GlobalListTypeParams,
-                                /*isVarArg=*/false);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
-                                CGM.Int32Ty,
-                                CGM.VoidPtrTy,
-                                CGM.Int32Ty,
-                                CGM.VoidPtrTy,
-                                ShuffleReduceFnTy->getPointerTo(),
-                                InterWarpCopyFnTy->getPointerTo(),
-                                GlobalListFnTy->getPointerTo(),
-                                GlobalListFnTy->getPointerTo(),
-                                GlobalListFnTy->getPointerTo(),
-                                GlobalListFnTy->getPointerTo()};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(
-        FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait_v2");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack: {
-    /// Build void __kmpc_data_sharing_init_stack();
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd: {
-    /// Build void __kmpc_data_sharing_init_stack_spmd();
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
-    RTLFn =
-        CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack_spmd");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack: {
-    // Build void *__kmpc_data_sharing_coalesced_push_stack(size_t size,
-    // int16_t UseSharedMemory);
-    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(
-        FnTy, /*Name=*/"__kmpc_data_sharing_coalesced_push_stack");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_data_sharing_push_stack: {
-    // Build void *__kmpc_data_sharing_push_stack(size_t size, int16_t
-    // UseSharedMemory);
-    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(
-        FnTy, /*Name=*/"__kmpc_data_sharing_push_stack");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_data_sharing_pop_stack: {
-    // Build void __kmpc_data_sharing_pop_stack(void *a);
-    llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy,
-                                      /*Name=*/"__kmpc_data_sharing_pop_stack");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_begin_sharing_variables: {
-    /// Build void __kmpc_begin_sharing_variables(void ***args,
-    /// size_t n_args);
-    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo(), CGM.SizeTy};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_begin_sharing_variables");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_end_sharing_variables: {
-    /// Build void __kmpc_end_sharing_variables();
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_sharing_variables");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_get_shared_variables: {
-    /// Build void __kmpc_get_shared_variables(void ***GlobalArgs);
-    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo()};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_shared_variables");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_parallel_level: {
-    // Build uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32 global_tid);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.Int16Ty, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_parallel_level");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_is_spmd_exec_mode: {
-    // Build int8_t __kmpc_is_spmd_exec_mode();
-    auto *FnTy = llvm::FunctionType::get(CGM.Int8Ty, /*isVarArg=*/false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_is_spmd_exec_mode");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_get_team_static_memory: {
-    // Build void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
-    // const void *buf, size_t size, int16_t is_shared, const void **res);
-    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.VoidPtrTy, CGM.SizeTy,
-                                CGM.Int16Ty, CGM.VoidPtrPtrTy};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_team_static_memory");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_restore_team_static_memory: {
-    // Build void __kmpc_restore_team_static_memory(int16_t isSPMDExecutionMode,
-    // int16_t is_shared);
-    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.Int16Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
-    RTLFn =
-        CGM.CreateRuntimeFunction(FnTy, "__kmpc_restore_team_static_memory");
-    break;
-  }
-  case OMPRTL__kmpc_barrier: {
-    // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn =
-        CGM.CreateConvergentRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
-    break;
-  }
-  case OMPRTL__kmpc_barrier_simple_spmd: {
-    // Build void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
-    // global_tid);
-    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
-    RTLFn = CGM.CreateConvergentRuntimeFunction(
-        FnTy, /*Name*/ "__kmpc_barrier_simple_spmd");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_warp_active_thread_mask: {
-    // Build int32_t __kmpc_warp_active_thread_mask(void);
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.Int32Ty, llvm::None, /*isVarArg=*/false);
-    RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_warp_active_thread_mask");
-    break;
-  }
-  case OMPRTL_NVPTX__kmpc_syncwarp: {
-    // Build void __kmpc_syncwarp(kmp_int32 Mask);
-    auto *FnTy =
-        llvm::FunctionType::get(CGM.VoidTy, CGM.Int32Ty, /*isVarArg=*/false);
-    RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_syncwarp");
-    break;
-  }
-  }
-  return RTLFn;
-}
-
-void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
-                                              llvm::Constant *Addr,
-                                              uint64_t Size, int32_t,
-                                              llvm::GlobalValue::LinkageTypes) {
-  // TODO: Add support for global variables on the device after declare target
-  // support.
-  if (!isa<llvm::Function>(Addr))
-    return;
-  llvm::Module &M = CGM.getModule();
-  llvm::LLVMContext &Ctx = CGM.getLLVMContext();
-
-  // Get "nvvm.annotations" metadata node
-  llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
-
-  llvm::Metadata *MDVals[] = {
-      llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
-      llvm::ConstantAsMetadata::get(
-          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
-  // Append metadata to nvvm.annotations
-  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
-}
-
-void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
-    const OMPExecutableDirective &D, StringRef ParentName,
-    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
-    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
-  if (!IsOffloadEntry) // Nothing to do.
-    return;
-
-  assert(!ParentName.empty() && "Invalid target region parent name!");
-
-  bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
-  if (Mode)
-    emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
-                   CodeGen);
-  else
-    emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
-                      CodeGen);
-
-  setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
-}
-
-namespace {
-LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
-/// Enum for accesseing the reserved_2 field of the ident_t struct.
-enum ModeFlagsTy : unsigned {
-  /// Bit set to 1 when in SPMD mode.
-  KMP_IDENT_SPMD_MODE = 0x01,
-  /// Bit set to 1 when a simplified runtime is used.
-  KMP_IDENT_SIMPLE_RT_MODE = 0x02,
-  LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
-};
-
-/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
-static const ModeFlagsTy UndefinedMode =
-    (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
-} // anonymous namespace
-
-unsigned CGOpenMPRuntimeNVPTX::getDefaultLocationReserved2Flags() const {
-  switch (getExecutionMode()) {
-  case EM_SPMD:
-    if (requiresFullRuntime())
-      return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
-    return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
-  case EM_NonSPMD:
-    assert(requiresFullRuntime() && "Expected full runtime.");
-    return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
-  case EM_Unknown:
-    return UndefinedMode;
-  }
-  llvm_unreachable("Unknown flags are requested.");
-}
-
-CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
-    : CGOpenMPRuntime(CGM, "_", "$") {
-  if (!CGM.getLangOpts().OpenMPIsDevice)
-    llvm_unreachable("OpenMP NVPTX can only handle device code.");
-}
-
-void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
-                                              ProcBindKind ProcBind,
-                                              SourceLocation Loc) {
-  // Do nothing in case of SPMD mode and L0 parallel.
-  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
-    return;
-
-  CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
-}
-
-void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
-                                                llvm::Value *NumThreads,
-                                                SourceLocation Loc) {
-  // Do nothing in case of SPMD mode and L0 parallel.
-  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
-    return;
-
-  CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
-}
-
-void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
-                                              const Expr *NumTeams,
-                                              const Expr *ThreadLimit,
-                                              SourceLocation Loc) {}
-
-llvm::Function *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
-    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
-    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
-  // Emit target region as a standalone region.
-  class NVPTXPrePostActionTy : public PrePostActionTy {
-    bool &IsInParallelRegion;
-    bool PrevIsInParallelRegion;
-
-  public:
-    NVPTXPrePostActionTy(bool &IsInParallelRegion)
-        : IsInParallelRegion(IsInParallelRegion) {}
-    void Enter(CodeGenFunction &CGF) override {
-      PrevIsInParallelRegion = IsInParallelRegion;
-      IsInParallelRegion = true;
-    }
-    void Exit(CodeGenFunction &CGF) override {
-      IsInParallelRegion = PrevIsInParallelRegion;
-    }
-  } Action(IsInParallelRegion);
-  CodeGen.setAction(Action);
-  bool PrevIsInTTDRegion = IsInTTDRegion;
-  IsInTTDRegion = false;
-  bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
-  IsInTargetMasterThreadRegion = false;
-  auto *OutlinedFun =
-      cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
-          D, ThreadIDVar, InnermostKind, CodeGen));
-  if (CGM.getLangOpts().Optimize) {
-    OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
-    OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
-    OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
-  }
-  IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
-  IsInTTDRegion = PrevIsInTTDRegion;
-  if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD &&
-      !IsInParallelRegion) {
-    llvm::Function *WrapperFun =
-        createParallelDataSharingWrapper(OutlinedFun, D);
-    WrapperFunctionsMap[OutlinedFun] = WrapperFun;
-  }
-
-  return OutlinedFun;
-}
-
-/// Get list of lastprivate variables from the teams distribute ... or
-/// teams {distribute ...} directives.
-static void
-getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
-                             llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
-  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
-         "expected teams directive.");
-  const OMPExecutableDirective *Dir = &D;
-  if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
-    if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
-            Ctx,
-            D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
-                /*IgnoreCaptured=*/true))) {
-      Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
-      if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
-        Dir = nullptr;
-    }
-  }
-  if (!Dir)
-    return;
-  for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
-    for (const Expr *E : C->getVarRefs())
-      Vars.push_back(getPrivateItem(E));
-  }
-}
-
-/// Get list of reduction variables from the teams ... directives.
-static void
-getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
-                      llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
-  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
-         "expected teams directive.");
-  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
-    for (const Expr *E : C->privates())
-      Vars.push_back(getPrivateItem(E));
-  }
-}
-
-llvm::Function *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
-    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
-    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
-  SourceLocation Loc = D.getBeginLoc();
-
-  const RecordDecl *GlobalizedRD = nullptr;
-  llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
-  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
-  // Globalize team reductions variable unconditionally in all modes.
-  if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
-    getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
-  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
-    getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
-    if (!LastPrivatesReductions.empty()) {
-      GlobalizedRD = ::buildRecordForGlobalizedVars(
-          CGM.getContext(), llvm::None, LastPrivatesReductions,
-          MappedDeclsFields, WarpSize);
-    }
-  } else if (!LastPrivatesReductions.empty()) {
-    assert(!TeamAndReductions.first &&
-           "Previous team declaration is not expected.");
-    TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
-    std::swap(TeamAndReductions.second, LastPrivatesReductions);
-  }
-
-  // Emit target region as a standalone region.
-  class NVPTXPrePostActionTy : public PrePostActionTy {
-    SourceLocation &Loc;
-    const RecordDecl *GlobalizedRD;
-    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-        &MappedDeclsFields;
-
-  public:
-    NVPTXPrePostActionTy(
-        SourceLocation &Loc, const RecordDecl *GlobalizedRD,
-        llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-            &MappedDeclsFields)
-        : Loc(Loc), GlobalizedRD(GlobalizedRD),
-          MappedDeclsFields(MappedDeclsFields) {}
-    void Enter(CodeGenFunction &CGF) override {
-      auto &Rt =
-          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
-      if (GlobalizedRD) {
-        auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
-        I->getSecond().GlobalRecord = GlobalizedRD;
-        I->getSecond().MappedParams =
-            std::make_unique<CodeGenFunction::OMPMapVars>();
-        DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
-        for (const auto &Pair : MappedDeclsFields) {
-          assert(Pair.getFirst()->isCanonicalDecl() &&
-                 "Expected canonical declaration");
-          Data.insert(std::make_pair(Pair.getFirst(),
-                                     MappedVarData(Pair.getSecond(),
-                                                   /*IsOnePerTeam=*/true)));
-        }
-      }
-      Rt.emitGenericVarsProlog(CGF, Loc);
-    }
-    void Exit(CodeGenFunction &CGF) override {
-      static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
-          .emitGenericVarsEpilog(CGF);
-    }
-  } Action(Loc, GlobalizedRD, MappedDeclsFields);
-  CodeGen.setAction(Action);
-  llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
-      D, ThreadIDVar, InnermostKind, CodeGen);
-  if (CGM.getLangOpts().Optimize) {
-    OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
-    OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
-    OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
-  }
-
-  return OutlinedFun;
-}
-
-void CGOpenMPRuntimeNVPTX::emitGenericVarsProlog(CodeGenFunction &CGF,
-                                                 SourceLocation Loc,
-                                                 bool WithSPMDCheck) {
-  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
-      getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
-    return;
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
-  if (I == FunctionGlobalizedDecls.end())
-    return;
-  if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
-    QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
-    QualType SecGlobalRecTy;
-
-    // Recover pointer to this function's global record. The runtime will
-    // handle the specifics of the allocation of the memory.
-    // Use actual memory size of the record including the padding
-    // for alignment purposes.
-    unsigned Alignment =
-        CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
-    unsigned GlobalRecordSize =
-        CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
-    GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
-
-    llvm::PointerType *GlobalRecPtrTy =
-        CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
-    llvm::Value *GlobalRecCastAddr;
-    llvm::Value *IsTTD = nullptr;
-    if (!IsInTTDRegion &&
-        (WithSPMDCheck ||
-         getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
-      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
-      llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
-      llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
-      if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
-        llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
-        llvm::Value *ThreadID = getThreadID(CGF, Loc);
-        llvm::Value *PL = CGF.EmitRuntimeCall(
-            createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
-            {RTLoc, ThreadID});
-        IsTTD = Bld.CreateIsNull(PL);
-      }
-      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
-          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
-      Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
-      // There is no need to emit line number for unconditional branch.
-      (void)ApplyDebugLocation::CreateEmpty(CGF);
-      CGF.EmitBlock(SPMDBB);
-      Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
-                               CharUnits::fromQuantity(Alignment));
-      CGF.EmitBranch(ExitBB);
-      // There is no need to emit line number for unconditional branch.
-      (void)ApplyDebugLocation::CreateEmpty(CGF);
-      CGF.EmitBlock(NonSPMDBB);
-      llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
-      if (const RecordDecl *SecGlobalizedVarsRecord =
-              I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
-        SecGlobalRecTy =
-            CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
-
-        // Recover pointer to this function's global record. The runtime will
-        // handle the specifics of the allocation of the memory.
-        // Use actual memory size of the record including the padding
-        // for alignment purposes.
-        unsigned Alignment =
-            CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
-        unsigned GlobalRecordSize =
-            CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
-        GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
-        Size = Bld.CreateSelect(
-            IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
-      }
-      // TODO: allow the usage of shared memory to be controlled by
-      // the user, for now, default to global.
-      llvm::Value *GlobalRecordSizeArg[] = {
-          Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
-      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
-          createNVPTXRuntimeFunction(
-              OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
-          GlobalRecordSizeArg);
-      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-          GlobalRecValue, GlobalRecPtrTy);
-      CGF.EmitBlock(ExitBB);
-      auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
-                                /*NumReservedValues=*/2, "_select_stack");
-      Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
-      Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
-      GlobalRecCastAddr = Phi;
-      I->getSecond().GlobalRecordAddr = Phi;
-      I->getSecond().IsInSPMDModeFlag = IsSPMD;
-    } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
-      assert(GlobalizedRecords.back().Records.size() < 2 &&
-             "Expected less than 2 globalized records: one for target and one "
-             "for teams.");
-      unsigned Offset = 0;
-      for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
-        QualType RDTy = CGM.getContext().getRecordType(RD);
-        unsigned Alignment =
-            CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
-        unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
-        Offset =
-            llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
-      }
-      unsigned Alignment =
-          CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
-      Offset = llvm::alignTo(Offset, Alignment);
-      GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
-      ++GlobalizedRecords.back().RegionCounter;
-      if (GlobalizedRecords.back().Records.size() == 1) {
-        assert(KernelStaticGlobalized &&
-               "Kernel static pointer must be initialized already.");
-        auto *UseSharedMemory = new llvm::GlobalVariable(
-            CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
-            llvm::GlobalValue::InternalLinkage, nullptr,
-            "_openmp_static_kernel$is_shared");
-        UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
-        QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
-            /*DestWidth=*/16, /*Signed=*/0);
-        llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
-            Address(UseSharedMemory,
-                    CGM.getContext().getTypeAlignInChars(Int16Ty)),
-            /*Volatile=*/false, Int16Ty, Loc);
-        auto *StaticGlobalized = new llvm::GlobalVariable(
-            CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
-            llvm::GlobalValue::CommonLinkage, nullptr);
-        auto *RecSize = new llvm::GlobalVariable(
-            CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
-            llvm::GlobalValue::InternalLinkage, nullptr,
-            "_openmp_static_kernel$size");
-        RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
-        llvm::Value *Ld = CGF.EmitLoadOfScalar(
-            Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
-            CGM.getContext().getSizeType(), Loc);
-        llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-            KernelStaticGlobalized, CGM.VoidPtrPtrTy);
-        llvm::Value *GlobalRecordSizeArg[] = {
-            llvm::ConstantInt::get(
-                CGM.Int16Ty,
-                getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
-            StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
-        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
-                                OMPRTL_NVPTX__kmpc_get_team_static_memory),
-                            GlobalRecordSizeArg);
-        GlobalizedRecords.back().Buffer = StaticGlobalized;
-        GlobalizedRecords.back().RecSize = RecSize;
-        GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
-        GlobalizedRecords.back().Loc = Loc;
-      }
-      assert(KernelStaticGlobalized && "Global address must be set already.");
-      Address FrameAddr = CGF.EmitLoadOfPointer(
-          Address(KernelStaticGlobalized, CGM.getPointerAlign()),
-          CGM.getContext()
-              .getPointerType(CGM.getContext().VoidPtrTy)
-              .castAs<PointerType>());
-      llvm::Value *GlobalRecValue =
-          Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer();
-      I->getSecond().GlobalRecordAddr = GlobalRecValue;
-      I->getSecond().IsInSPMDModeFlag = nullptr;
-      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-          GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
-    } else {
-      // TODO: allow the usage of shared memory to be controlled by
-      // the user, for now, default to global.
-      bool UseSharedMemory =
-          IsInTTDRegion && GlobalRecordSize <= SharedMemorySize;
-      llvm::Value *GlobalRecordSizeArg[] = {
-          llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
-          CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)};
-      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
-          createNVPTXRuntimeFunction(
-              IsInTTDRegion
-                  ? OMPRTL_NVPTX__kmpc_data_sharing_push_stack
-                  : OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
-          GlobalRecordSizeArg);
-      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-          GlobalRecValue, GlobalRecPtrTy);
-      I->getSecond().GlobalRecordAddr = GlobalRecValue;
-      I->getSecond().IsInSPMDModeFlag = nullptr;
-    }
-    LValue Base =
-        CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
-
-    // Emit the "global alloca" which is a GEP from the global declaration
-    // record using the pointer returned by the runtime.
-    LValue SecBase;
-    decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
-    if (IsTTD) {
-      SecIt = I->getSecond().SecondaryLocalVarData->begin();
-      llvm::PointerType *SecGlobalRecPtrTy =
-          CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
-      SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
-          Bld.CreatePointerBitCastOrAddrSpaceCast(
-              I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
-          SecGlobalRecTy);
-    }
-    for (auto &Rec : I->getSecond().LocalVarData) {
-      bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
-      llvm::Value *ParValue;
-      if (EscapedParam) {
-        const auto *VD = cast<VarDecl>(Rec.first);
-        LValue ParLVal =
-            CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
-        ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
-      }
-      LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
-      // Emit VarAddr basing on lane-id if required.
-      QualType VarTy;
-      if (Rec.second.IsOnePerTeam) {
-        VarTy = Rec.second.FD->getType();
-      } else {
-        llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
-            VarAddr.getAddress(CGF).getPointer(),
-            {Bld.getInt32(0), getNVPTXLaneID(CGF)});
-        VarTy =
-            Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
-        VarAddr = CGF.MakeAddrLValue(
-            Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
-            AlignmentSource::Decl);
-      }
-      Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
-      if (!IsInTTDRegion &&
-          (WithSPMDCheck ||
-           getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
-        assert(I->getSecond().IsInSPMDModeFlag &&
-               "Expected unknown execution mode or required SPMD check.");
-        if (IsTTD) {
-          assert(SecIt->second.IsOnePerTeam &&
-                 "Secondary glob data must be one per team.");
-          LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
-          VarAddr.setAddress(
-              Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF),
-                                       VarAddr.getPointer(CGF)),
-                      VarAddr.getAlignment()));
-          Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
-        }
-        Address GlobalPtr = Rec.second.PrivateAddr;
-        Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
-        Rec.second.PrivateAddr = Address(
-            Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
-                             LocalAddr.getPointer(), GlobalPtr.getPointer()),
-            LocalAddr.getAlignment());
-      }
-      if (EscapedParam) {
-        const auto *VD = cast<VarDecl>(Rec.first);
-        CGF.EmitStoreOfScalar(ParValue, VarAddr);
-        I->getSecond().MappedParams->setVarAddr(CGF, VD,
-                                                VarAddr.getAddress(CGF));
-      }
-      if (IsTTD)
-        ++SecIt;
-    }
-  }
-  for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
-    // Recover pointer to this function's global record. The runtime will
-    // handle the specifics of the allocation of the memory.
-    // Use actual memory size of the record including the padding
-    // for alignment purposes.
-    CGBuilderTy &Bld = CGF.Builder;
-    llvm::Value *Size = CGF.getTypeSize(VD->getType());
-    CharUnits Align = CGM.getContext().getDeclAlign(VD);
-    Size = Bld.CreateNUWAdd(
-        Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
-    llvm::Value *AlignVal =
-        llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
-    Size = Bld.CreateUDiv(Size, AlignVal);
-    Size = Bld.CreateNUWMul(Size, AlignVal);
-    // TODO: allow the usage of shared memory to be controlled by
-    // the user, for now, default to global.
-    llvm::Value *GlobalRecordSizeArg[] = {
-        Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
-    llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
-        createNVPTXRuntimeFunction(
-            OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
-        GlobalRecordSizeArg);
-    llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-        GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
-    LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
-                                     CGM.getContext().getDeclAlign(VD),
-                                     AlignmentSource::Decl);
-    I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
-                                            Base.getAddress(CGF));
-    I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
-  }
-  I->getSecond().MappedParams->apply(CGF);
-}
-
-void CGOpenMPRuntimeNVPTX::emitGenericVarsEpilog(CodeGenFunction &CGF,
-                                                 bool WithSPMDCheck) {
-  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
-      getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
-    return;
-
-  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
-  if (I != FunctionGlobalizedDecls.end()) {
-    I->getSecond().MappedParams->restore(CGF);
-    if (!CGF.HaveInsertPoint())
-      return;
-    for (llvm::Value *Addr :
-         llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
-      CGF.EmitRuntimeCall(
-          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
-          Addr);
-    }
-    if (I->getSecond().GlobalRecordAddr) {
-      if (!IsInTTDRegion &&
-          (WithSPMDCheck ||
-           getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
-        CGBuilderTy &Bld = CGF.Builder;
-        llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
-        llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
-        Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
-        // There is no need to emit line number for unconditional branch.
-        (void)ApplyDebugLocation::CreateEmpty(CGF);
-        CGF.EmitBlock(NonSPMDBB);
-        CGF.EmitRuntimeCall(
-            createNVPTXRuntimeFunction(
-                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
-            CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
-        CGF.EmitBlock(ExitBB);
-      } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
-        assert(GlobalizedRecords.back().RegionCounter > 0 &&
-               "region counter must be > 0.");
-        --GlobalizedRecords.back().RegionCounter;
-        // Emit the restore function only in the target region.
-        if (GlobalizedRecords.back().RegionCounter == 0) {
-          QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
-              /*DestWidth=*/16, /*Signed=*/0);
-          llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
-              Address(GlobalizedRecords.back().UseSharedMemory,
-                      CGM.getContext().getTypeAlignInChars(Int16Ty)),
-              /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
-          llvm::Value *Args[] = {
-              llvm::ConstantInt::get(
-                  CGM.Int16Ty,
-                  getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
-              IsInSharedMemory};
-          CGF.EmitRuntimeCall(
-              createNVPTXRuntimeFunction(
-                  OMPRTL_NVPTX__kmpc_restore_team_static_memory),
-              Args);
-        }
-      } else {
-        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
-                                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
-                            I->getSecond().GlobalRecordAddr);
-      }
-    }
-  }
-}
-
-void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
-                                         const OMPExecutableDirective &D,
-                                         SourceLocation Loc,
-                                         llvm::Function *OutlinedFn,
-                                         ArrayRef<llvm::Value *> CapturedVars) {
-  if (!CGF.HaveInsertPoint())
-    return;
-
-  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
-                                                      /*Name=*/".zero.addr");
-  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
-  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
-  OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
-  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
-  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
-  emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
-}
-
-void CGOpenMPRuntimeNVPTX::emitParallelCall(
-    CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
-    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
-  if (!CGF.HaveInsertPoint())
-    return;
-
-  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
-    emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
-  else
-    emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
-}
-
-void CGOpenMPRuntimeNVPTX::emitNonSPMDParallelCall(
-    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
-    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
-  llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
-
-  // Force inline this outlined function at its call site.
-  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
-
-  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
-                                                      /*Name=*/".zero.addr");
-  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
-  // ThreadId for serialized parallels is 0.
-  Address ThreadIDAddr = ZeroAddr;
-  auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr](
-                       CodeGenFunction &CGF, PrePostActionTy &Action) {
-    Action.Enter(CGF);
-
-    Address ZeroAddr =
-        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
-                                         /*Name=*/".bound.zero.addr");
-    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
-    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
-    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
-    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
-    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
-    emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
-  };
-  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
-                                        PrePostActionTy &) {
-
-    RegionCodeGenTy RCG(CodeGen);
-    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
-    llvm::Value *ThreadID = getThreadID(CGF, Loc);
-    llvm::Value *Args[] = {RTLoc, ThreadID};
-
-    NVPTXActionTy Action(
-        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
-        Args,
-        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
-        Args);
-    RCG.setAction(Action);
-    RCG(CGF);
-  };
-
-  auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
-                                                  PrePostActionTy &Action) {
-    CGBuilderTy &Bld = CGF.Builder;
-    llvm::Function *WFn = WrapperFunctionsMap[Fn];
-    assert(WFn && "Wrapper function does not exist!");
-    llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
-
-    // Prepare for parallel region. Indicate the outlined function.
-    llvm::Value *Args[] = {ID};
-    CGF.EmitRuntimeCall(
-        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
-        Args);
-
-    // Create a private scope that will globalize the arguments
-    // passed from the outside of the target region.
-    CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
-
-    // There's something to share.
-    if (!CapturedVars.empty()) {
-      // Prepare for parallel region. Indicate the outlined function.
-      Address SharedArgs =
-          CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
-      llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
-
-      llvm::Value *DataSharingArgs[] = {
-          SharedArgsPtr,
-          llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
-      CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
-                              OMPRTL_NVPTX__kmpc_begin_sharing_variables),
-                          DataSharingArgs);
-
-      // Store variable address in a list of references to pass to workers.
-      unsigned Idx = 0;
-      ASTContext &Ctx = CGF.getContext();
-      Address SharedArgListAddress = CGF.EmitLoadOfPointer(
-          SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
-                          .castAs<PointerType>());
-      for (llvm::Value *V : CapturedVars) {
-        Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
-        llvm::Value *PtrV;
-        if (V->getType()->isIntegerTy())
-          PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
-        else
-          PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
-        CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
-                              Ctx.getPointerType(Ctx.VoidPtrTy));
-        ++Idx;
-      }
-    }
-
-    // Activate workers. This barrier is used by the master to signal
-    // work for the workers.
-    syncCTAThreads(CGF);
-
-    // OpenMP [2.5, Parallel Construct, p.49]
-    // There is an implied barrier at the end of a parallel region. After the
-    // end of a parallel region, only the master thread of the team resumes
-    // execution of the enclosing task region.
-    //
-    // The master waits at this barrier until all workers are done.
-    syncCTAThreads(CGF);
-
-    if (!CapturedVars.empty())
-      CGF.EmitRuntimeCall(
-          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_sharing_variables));
-
-    // Remember for post-processing in worker loop.
-    Work.emplace_back(WFn);
-  };
-
-  auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
-                             CodeGenFunction &CGF, PrePostActionTy &Action) {
-    if (IsInParallelRegion) {
-      SeqGen(CGF, Action);
-    } else if (IsInTargetMasterThreadRegion) {
-      L0ParallelGen(CGF, Action);
-    } else {
-      // Check for master and then parallelism:
-      // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
-      //   Serialized execution.
-      // } else {
-      //   Worker call.
-      // }
-      CGBuilderTy &Bld = CGF.Builder;
-      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
-      llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
-      llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
-      llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
-      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
-          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
-      Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
-      // There is no need to emit line number for unconditional branch.
-      (void)ApplyDebugLocation::CreateEmpty(CGF);
-      CGF.EmitBlock(ParallelCheckBB);
-      llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
-      llvm::Value *ThreadID = getThreadID(CGF, Loc);
-      llvm::Value *PL = CGF.EmitRuntimeCall(
-          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
-          {RTLoc, ThreadID});
-      llvm::Value *Res = Bld.CreateIsNotNull(PL);
-      Bld.CreateCondBr(Res, SeqBB, MasterBB);
-      CGF.EmitBlock(SeqBB);
-      SeqGen(CGF, Action);
-      CGF.EmitBranch(ExitBB);
-      // There is no need to emit line number for unconditional branch.
-      (void)ApplyDebugLocation::CreateEmpty(CGF);
-      CGF.EmitBlock(MasterBB);
-      L0ParallelGen(CGF, Action);
-      CGF.EmitBranch(ExitBB);
-      // There is no need to emit line number for unconditional branch.
-      (void)ApplyDebugLocation::CreateEmpty(CGF);
-      // Emit the continuation block for code after the if.
-      CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
-    }
-  };
-
-  if (IfCond) {
-    emitIfClause(CGF, IfCond, LNParallelGen, SeqGen);
-  } else {
-    CodeGenFunction::RunCleanupsScope Scope(CGF);
-    RegionCodeGenTy ThenRCG(LNParallelGen);
-    ThenRCG(CGF);
-  }
-}
-
-void CGOpenMPRuntimeNVPTX::emitSPMDParallelCall(
-    CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
-    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
-  // Just call the outlined function to execute the parallel region.
-  // OutlinedFn(&GTid, &zero, CapturedStruct);
-  //
-  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
-
-  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
-                                                      /*Name=*/".zero.addr");
-  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
-  // ThreadId for serialized parallels is 0.
-  Address ThreadIDAddr = ZeroAddr;
-  auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr](
-                       CodeGenFunction &CGF, PrePostActionTy &Action) {
-    Action.Enter(CGF);
-
-    Address ZeroAddr =
-        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
-                                         /*Name=*/".bound.zero.addr");
-    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
-    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
-    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
-    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
-    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
-    emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
-  };
-  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
-                                        PrePostActionTy &) {
-
-    RegionCodeGenTy RCG(CodeGen);
-    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
-    llvm::Value *ThreadID = getThreadID(CGF, Loc);
-    llvm::Value *Args[] = {RTLoc, ThreadID};
-
-    NVPTXActionTy Action(
-        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
-        Args,
-        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
-        Args);
-    RCG.setAction(Action);
-    RCG(CGF);
-  };
-
-  if (IsInTargetMasterThreadRegion) {
-    // In the worker need to use the real thread id.
-    ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
-    RegionCodeGenTy RCG(CodeGen);
-    RCG(CGF);
-  } else {
-    // If we are not in the target region, it is definitely L2 parallelism or
-    // more, because for SPMD mode we always has L1 parallel level, sowe don't
-    // need to check for orphaned directives.
-    RegionCodeGenTy RCG(SeqGen);
-    RCG(CGF);
-  }
-}
-
-void CGOpenMPRuntimeNVPTX::syncCTAThreads(CodeGenFunction &CGF) {
-  // Always emit simple barriers!
-  if (!CGF.HaveInsertPoint())
-    return;
-  // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
-  // This function does not use parameters, so we can emit just default values.
-  llvm::Value *Args[] = {
-      llvm::ConstantPointerNull::get(
-          cast<llvm::PointerType>(getIdentTyPointerTy())),
-      llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
-  llvm::CallInst *Call = CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier_simple_spmd), Args);
-  Call->setConvergent();
-}
-
-void CGOpenMPRuntimeNVPTX::emitBarrierCall(CodeGenFunction &CGF,
-                                           SourceLocation Loc,
-                                           OpenMPDirectiveKind Kind, bool,
-                                           bool) {
-  // Always emit simple barriers!
-  if (!CGF.HaveInsertPoint())
-    return;
-  // Build call __kmpc_cancel_barrier(loc, thread_id);
-  unsigned Flags = getDefaultFlagsForBarriers(Kind);
-  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
-                         getThreadID(CGF, Loc)};
-  llvm::CallInst *Call = CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier), Args);
-  Call->setConvergent();
-}
-
-void CGOpenMPRuntimeNVPTX::emitCriticalRegion(
-    CodeGenFunction &CGF, StringRef CriticalName,
-    const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
-    const Expr *Hint) {
-  llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
-  llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
-  llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
-  llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
-  llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
-
-  // Get the mask of active threads in the warp.
-  llvm::Value *Mask = CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_warp_active_thread_mask));
-  // Fetch team-local id of the thread.
-  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
-
-  // Get the width of the team.
-  llvm::Value *TeamWidth = getNVPTXNumThreads(CGF);
-
-  // Initialize the counter variable for the loop.
-  QualType Int32Ty =
-      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
-  Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
-  LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
-  CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
-                        /*isInit=*/true);
-
-  // Block checks if loop counter exceeds upper bound.
-  CGF.EmitBlock(LoopBB);
-  llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
-  llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
-  CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
-
-  // Block tests which single thread should execute region, and which threads
-  // should go straight to synchronisation point.
-  CGF.EmitBlock(TestBB);
-  CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
-  llvm::Value *CmpThreadToCounter =
-      CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
-  CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
-
-  // Block emits the body of the critical region.
-  CGF.EmitBlock(BodyBB);
-
-  // Output the critical statement.
-  CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
-                                      Hint);
-
-  // After the body surrounded by the critical region, the single executing
-  // thread will jump to the synchronisation point.
-  // Block waits for all threads in current team to finish then increments the
-  // counter variable and returns to the loop.
-  CGF.EmitBlock(SyncBB);
-  // Reconverge active threads in the warp.
-  (void)CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_syncwarp), Mask);
-
-  llvm::Value *IncCounterVal =
-      CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
-  CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
-  CGF.EmitBranch(LoopBB);
-
-  // Block that is reached when  all threads in the team complete the region.
-  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
-}
-
-/// Cast value to the specified type.
-static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
-                                    QualType ValTy, QualType CastTy,
-                                    SourceLocation Loc) {
-  assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
-         "Cast type must sized.");
-  assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
-         "Val type must sized.");
-  llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
-  if (ValTy == CastTy)
-    return Val;
-  if (CGF.getContext().getTypeSizeInChars(ValTy) ==
-      CGF.getContext().getTypeSizeInChars(CastTy))
-    return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
-  if (CastTy->isIntegerType() && ValTy->isIntegerType())
-    return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
-                                     CastTy->hasSignedIntegerRepresentation());
-  Address CastItem = CGF.CreateMemTemp(CastTy);
-  Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-      CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
-  CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy);
-  return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc);
-}
-
-/// This function creates calls to one of two shuffle functions to copy
-/// variables between lanes in a warp.
-static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
-                                                 llvm::Value *Elem,
-                                                 QualType ElemType,
-                                                 llvm::Value *Offset,
-                                                 SourceLocation Loc) {
-  CodeGenModule &CGM = CGF.CGM;
-  CGBuilderTy &Bld = CGF.Builder;
-  CGOpenMPRuntimeNVPTX &RT =
-      *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
-
-  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
-  assert(Size.getQuantity() <= 8 &&
-         "Unsupported bitwidth in shuffle instruction.");
-
-  OpenMPRTLFunctionNVPTX ShuffleFn = Size.getQuantity() <= 4
-                                         ? OMPRTL_NVPTX__kmpc_shuffle_int32
-                                         : OMPRTL_NVPTX__kmpc_shuffle_int64;
-
-  // Cast all types to 32- or 64-bit values before calling shuffle routines.
-  QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
-      Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
-  llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
-  llvm::Value *WarpSize =
-      Bld.CreateIntCast(getNVPTXWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
-
-  llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
-      RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize});
-
-  return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
-}
-
-static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
-                            Address DestAddr, QualType ElemType,
-                            llvm::Value *Offset, SourceLocation Loc) {
-  CGBuilderTy &Bld = CGF.Builder;
-
-  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
-  // Create the loop over the big sized data.
-  // ptr = (void*)Elem;
-  // ptrEnd = (void*) Elem + 1;
-  // Step = 8;
-  // while (ptr + Step < ptrEnd)
-  //   shuffle((int64_t)*ptr);
-  // Step = 4;
-  // while (ptr + Step < ptrEnd)
-  //   shuffle((int32_t)*ptr);
-  // ...
-  Address ElemPtr = DestAddr;
-  Address Ptr = SrcAddr;
-  Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
-  for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
-    if (Size < CharUnits::fromQuantity(IntSize))
-      continue;
-    QualType IntType = CGF.getContext().getIntTypeForBitwidth(
-        CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
-        /*Signed=*/1);
-    llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
-    Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
-    ElemPtr =
-        Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
-    if (Size.getQuantity() / IntSize > 1) {
-      llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
-      llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
-      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
-      llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
-      CGF.EmitBlock(PreCondBB);
-      llvm::PHINode *PhiSrc =
-          Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
-      PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
-      llvm::PHINode *PhiDest =
-          Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
-      PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
-      Ptr = Address(PhiSrc, Ptr.getAlignment());
-      ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
-      llvm::Value *PtrDiff = Bld.CreatePtrDiff(
-          PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
-                                   Ptr.getPointer(), CGF.VoidPtrTy));
-      Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
-                       ThenBB, ExitBB);
-      CGF.EmitBlock(ThenBB);
-      llvm::Value *Res = createRuntimeShuffleFunction(
-          CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
-          IntType, Offset, Loc);
-      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
-      Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
-      Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
-      PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
-      PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
-      CGF.EmitBranch(PreCondBB);
-      CGF.EmitBlock(ExitBB);
-    } else {
-      llvm::Value *Res = createRuntimeShuffleFunction(
-          CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
-          IntType, Offset, Loc);
-      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
-      Ptr = Bld.CreateConstGEP(Ptr, 1);
-      ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
-    }
-    Size = Size % IntSize;
-  }
-}
-
-namespace {
-enum CopyAction : unsigned {
-  // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
-  // the warp using shuffle instructions.
-  RemoteLaneToThread,
-  // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
-  ThreadCopy,
-  // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
-  ThreadToScratchpad,
-  // ScratchpadToThread: Copy from a scratchpad array in global memory
-  // containing team-reduced data to a thread's stack.
-  ScratchpadToThread,
-};
-} // namespace
-
-struct CopyOptionsTy {
-  llvm::Value *RemoteLaneOffset;
-  llvm::Value *ScratchpadIndex;
-  llvm::Value *ScratchpadWidth;
-};
-
-/// Emit instructions to copy a Reduce list, which contains partially
-/// aggregated values, in the specified direction.
-static void emitReductionListCopy(
-    CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
-    ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
-    CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
-
-  CodeGenModule &CGM = CGF.CGM;
-  ASTContext &C = CGM.getContext();
-  CGBuilderTy &Bld = CGF.Builder;
-
-  llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
-  llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
-  llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
-
-  // Iterates, element-by-element, through the source Reduce list and
-  // make a copy.
-  unsigned Idx = 0;
-  unsigned Size = Privates.size();
-  for (const Expr *Private : Privates) {
-    Address SrcElementAddr = Address::invalid();
-    Address DestElementAddr = Address::invalid();
-    Address DestElementPtrAddr = Address::invalid();
-    // Should we shuffle in an element from a remote lane?
-    bool ShuffleInElement = false;
-    // Set to true to update the pointer in the dest Reduce list to a
-    // newly created element.
-    bool UpdateDestListPtr = false;
-    // Increment the src or dest pointer to the scratchpad, for each
-    // new element.
-    bool IncrScratchpadSrc = false;
-    bool IncrScratchpadDest = false;
-
-    switch (Action) {
-    case RemoteLaneToThread: {
-      // Step 1.1: Get the address for the src element in the Reduce list.
-      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
-      SrcElementAddr = CGF.EmitLoadOfPointer(
-          SrcElementPtrAddr,
-          C.getPointerType(Private->getType())->castAs<PointerType>());
-
-      // Step 1.2: Create a temporary to store the element in the destination
-      // Reduce list.
-      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
-      DestElementAddr =
-          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
-      ShuffleInElement = true;
-      UpdateDestListPtr = true;
-      break;
-    }
-    case ThreadCopy: {
-      // Step 1.1: Get the address for the src element in the Reduce list.
-      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
-      SrcElementAddr = CGF.EmitLoadOfPointer(
-          SrcElementPtrAddr,
-          C.getPointerType(Private->getType())->castAs<PointerType>());
-
-      // Step 1.2: Get the address for dest element.  The destination
-      // element has already been created on the thread's stack.
-      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
-      DestElementAddr = CGF.EmitLoadOfPointer(
-          DestElementPtrAddr,
-          C.getPointerType(Private->getType())->castAs<PointerType>());
-      break;
-    }
-    case ThreadToScratchpad: {
-      // Step 1.1: Get the address for the src element in the Reduce list.
-      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
-      SrcElementAddr = CGF.EmitLoadOfPointer(
-          SrcElementPtrAddr,
-          C.getPointerType(Private->getType())->castAs<PointerType>());
-
-      // Step 1.2: Get the address for dest element:
-      // address = base + index * ElementSizeInChars.
-      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
-      llvm::Value *CurrentOffset =
-          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
-      llvm::Value *ScratchPadElemAbsolutePtrVal =
-          Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
-      ScratchPadElemAbsolutePtrVal =
-          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
-      DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
-                                C.getTypeAlignInChars(Private->getType()));
-      IncrScratchpadDest = true;
-      break;
-    }
-    case ScratchpadToThread: {
-      // Step 1.1: Get the address for the src element in the scratchpad.
-      // address = base + index * ElementSizeInChars.
-      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
-      llvm::Value *CurrentOffset =
-          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
-      llvm::Value *ScratchPadElemAbsolutePtrVal =
-          Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
-      ScratchPadElemAbsolutePtrVal =
-          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
-      SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
-                               C.getTypeAlignInChars(Private->getType()));
-      IncrScratchpadSrc = true;
-
-      // Step 1.2: Create a temporary to store the element in the destination
-      // Reduce list.
-      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
-      DestElementAddr =
-          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
-      UpdateDestListPtr = true;
-      break;
-    }
-    }
-
-    // Regardless of src and dest of copy, we emit the load of src
-    // element as this is required in all directions
-    SrcElementAddr = Bld.CreateElementBitCast(
-        SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
-    DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
-                                               SrcElementAddr.getElementType());
-
-    // Now that all active lanes have read the element in the
-    // Reduce list, shuffle over the value from the remote lane.
-    if (ShuffleInElement) {
-      shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
-                      RemoteLaneOffset, Private->getExprLoc());
-    } else {
-      switch (CGF.getEvaluationKind(Private->getType())) {
-      case TEK_Scalar: {
-        llvm::Value *Elem =
-            CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
-                                 Private->getType(), Private->getExprLoc());
-        // Store the source element value to the dest element address.
-        CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
-                              Private->getType());
-        break;
-      }
-      case TEK_Complex: {
-        CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
-            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
-            Private->getExprLoc());
-        CGF.EmitStoreOfComplex(
-            Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
-            /*isInit=*/false);
-        break;
-      }
-      case TEK_Aggregate:
-        CGF.EmitAggregateCopy(
-            CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
-            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
-            Private->getType(), AggValueSlot::DoesNotOverlap);
-        break;
-      }
-    }
-
-    // Step 3.1: Modify reference in dest Reduce list as needed.
-    // Modifying the reference in Reduce list to point to the newly
-    // created element.  The element is live in the current function
-    // scope and that of functions it invokes (i.e., reduce_function).
-    // RemoteReduceData[i] = (void*)&RemoteElem
-    if (UpdateDestListPtr) {
-      CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
-                                DestElementAddr.getPointer(), CGF.VoidPtrTy),
-                            DestElementPtrAddr, /*Volatile=*/false,
-                            C.VoidPtrTy);
-    }
-
-    // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
-    // address of the next element in scratchpad memory, unless we're currently
-    // processing the last one.  Memory alignment is also taken care of here.
-    if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
-      llvm::Value *ScratchpadBasePtr =
-          IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
-      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
-      ScratchpadBasePtr = Bld.CreateNUWAdd(
-          ScratchpadBasePtr,
-          Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
-
-      // Take care of global memory alignment for performance
-      ScratchpadBasePtr = Bld.CreateNUWSub(
-          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
-      ScratchpadBasePtr = Bld.CreateUDiv(
-          ScratchpadBasePtr,
-          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
-      ScratchpadBasePtr = Bld.CreateNUWAdd(
-          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
-      ScratchpadBasePtr = Bld.CreateNUWMul(
-          ScratchpadBasePtr,
-          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
-
-      if (IncrScratchpadDest)
-        DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
-      else /* IncrScratchpadSrc = true */
-        SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
-    }
-
-    ++Idx;
-  }
-}
-
-/// This function emits a helper that gathers Reduce lists from the first
-/// lane of every active warp to lanes in the first warp.
-///
-/// void inter_warp_copy_func(void* reduce_data, num_warps)
-///   shared smem[warp_size];
-///   For all data entries D in reduce_data:
-///     sync
-///     If (I am the first lane in each warp)
-///       Copy my local D to smem[warp_id]
-///     sync
-///     if (I am the first warp)
-///       Copy smem[thread_id] to my local D
-static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
-                                              ArrayRef<const Expr *> Privates,
-                                              QualType ReductionArrayTy,
-                                              SourceLocation Loc) {
-  ASTContext &C = CGM.getContext();
-  llvm::Module &M = CGM.getModule();
-
-  // ReduceList: thread local Reduce list.
-  // At the stage of the computation when this function is called, partially
-  // aggregated values reside in the first lane of every active warp.
-  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                  C.VoidPtrTy, ImplicitParamDecl::Other);
-  // NumWarps: number of warps active in the parallel region.  This could
-  // be smaller than 32 (max warps in a CTA) for partial block reduction.
-  ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                C.getIntTypeForBitwidth(32, /* Signed */ true),
-                                ImplicitParamDecl::Other);
-  FunctionArgList Args;
-  Args.push_back(&ReduceListArg);
-  Args.push_back(&NumWarpsArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
-  auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
-                                    llvm::GlobalValue::InternalLinkage,
-                                    "_omp_reduction_inter_warp_copy_func", &M);
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setDoesNotRecurse();
-  CodeGenFunction CGF(CGM);
-  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  // This array is used as a medium to transfer, one reduce element at a time,
-  // the data from the first lane of every warp to lanes in the first warp
-  // in order to perform the final step of a reduction in a parallel region
-  // (reduction across warps).  The array is placed in NVPTX __shared__ memory
-  // for reduced latency, as well as to have a distinct copy for concurrently
-  // executing target regions.  The array is declared with common linkage so
-  // as to be shared across compilation units.
-  StringRef TransferMediumName =
-      "__openmp_nvptx_data_transfer_temporary_storage";
-  llvm::GlobalVariable *TransferMedium =
-      M.getGlobalVariable(TransferMediumName);
-  if (!TransferMedium) {
-    auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
-    unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
-    TransferMedium = new llvm::GlobalVariable(
-        M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
-        llvm::Constant::getNullValue(Ty), TransferMediumName,
-        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
-        SharedAddressSpace);
-    CGM.addCompilerUsedGlobal(TransferMedium);
-  }
-
-  // Get the CUDA thread id of the current OpenMP thread on the GPU.
-  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
-  // nvptx_lane_id = nvptx_id % warpsize
-  llvm::Value *LaneID = getNVPTXLaneID(CGF);
-  // nvptx_warp_id = nvptx_id / warpsize
-  llvm::Value *WarpID = getNVPTXWarpID(CGF);
-
-  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
-  Address LocalReduceList(
-      Bld.CreatePointerBitCastOrAddrSpaceCast(
-          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
-                               C.VoidPtrTy, Loc),
-          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
-      CGF.getPointerAlign());
-
-  unsigned Idx = 0;
-  for (const Expr *Private : Privates) {
-    //
-    // Warp master copies reduce element to transfer medium in __shared__
-    // memory.
-    //
-    unsigned RealTySize =
-        C.getTypeSizeInChars(Private->getType())
-            .alignTo(C.getTypeAlignInChars(Private->getType()))
-            .getQuantity();
-    for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
-      unsigned NumIters = RealTySize / TySize;
-      if (NumIters == 0)
-        continue;
-      QualType CType = C.getIntTypeForBitwidth(
-          C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
-      llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
-      CharUnits Align = CharUnits::fromQuantity(TySize);
-      llvm::Value *Cnt = nullptr;
-      Address CntAddr = Address::invalid();
-      llvm::BasicBlock *PrecondBB = nullptr;
-      llvm::BasicBlock *ExitBB = nullptr;
-      if (NumIters > 1) {
-        CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
-        CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
-                              /*Volatile=*/false, C.IntTy);
-        PrecondBB = CGF.createBasicBlock("precond");
-        ExitBB = CGF.createBasicBlock("exit");
-        llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
-        // There is no need to emit line number for unconditional branch.
-        (void)ApplyDebugLocation::CreateEmpty(CGF);
-        CGF.EmitBlock(PrecondBB);
-        Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
-        llvm::Value *Cmp =
-            Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
-        Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
-        CGF.EmitBlock(BodyBB);
-      }
-      // kmpc_barrier.
-      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
-                                             /*EmitChecks=*/false,
-                                             /*ForceSimpleCall=*/true);
-      llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
-      llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
-      llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
-
-      // if (lane_id == 0)
-      llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
-      Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
-      CGF.EmitBlock(ThenBB);
-
-      // Reduce element = LocalReduceList[i]
-      Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
-      llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
-          ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
-      // elemptr = ((CopyType*)(elemptrptr)) + I
-      Address ElemPtr = Address(ElemPtrPtr, Align);
-      ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
-      if (NumIters > 1) {
-        ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
-                          ElemPtr.getAlignment());
-      }
-
-      // Get pointer to location in transfer medium.
-      // MediumPtr = &medium[warp_id]
-      llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
-          TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
-      Address MediumPtr(MediumPtrVal, Align);
-      // Casting to actual data type.
-      // MediumPtr = (CopyType*)MediumPtrAddr;
-      MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
-
-      // elem = *elemptr
-      //*MediumPtr = elem
-      llvm::Value *Elem =
-          CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false, CType, Loc);
-      // Store the source element value to the dest element address.
-      CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType);
-
-      Bld.CreateBr(MergeBB);
-
-      CGF.EmitBlock(ElseBB);
-      Bld.CreateBr(MergeBB);
-
-      CGF.EmitBlock(MergeBB);
-
-      // kmpc_barrier.
-      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
-                                             /*EmitChecks=*/false,
-                                             /*ForceSimpleCall=*/true);
-
-      //
-      // Warp 0 copies reduce element from transfer medium.
-      //
-      llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
-      llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
-      llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
-
-      Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
-      llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
-          AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
-
-      // Up to 32 threads in warp 0 are active.
-      llvm::Value *IsActiveThread =
-          Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
-      Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
-
-      CGF.EmitBlock(W0ThenBB);
-
-      // SrcMediumPtr = &medium[tid]
-      llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
-          TransferMedium,
-          {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
-      Address SrcMediumPtr(SrcMediumPtrVal, Align);
-      // SrcMediumVal = *SrcMediumPtr;
-      SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
-
-      // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
-      Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
-      llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
-          TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
-      Address TargetElemPtr = Address(TargetElemPtrVal, Align);
-      TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
-      if (NumIters > 1) {
-        TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
-                                TargetElemPtr.getAlignment());
-      }
-
-      // *TargetElemPtr = SrcMediumVal;
-      llvm::Value *SrcMediumValue =
-          CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
-      CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
-                            CType);
-      Bld.CreateBr(W0MergeBB);
-
-      CGF.EmitBlock(W0ElseBB);
-      Bld.CreateBr(W0MergeBB);
-
-      CGF.EmitBlock(W0MergeBB);
-
-      if (NumIters > 1) {
-        Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
-        CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
-        CGF.EmitBranch(PrecondBB);
-        (void)ApplyDebugLocation::CreateEmpty(CGF);
-        CGF.EmitBlock(ExitBB);
-      }
-      RealTySize %= TySize;
-    }
-    ++Idx;
-  }
-
-  CGF.FinishFunction();
-  return Fn;
-}
-
-/// Emit a helper that reduces data across two OpenMP threads (lanes)
-/// in the same warp.  It uses shuffle instructions to copy over data from
-/// a remote lane's stack.  The reduction algorithm performed is specified
-/// by the fourth parameter.
-///
-/// Algorithm Versions.
-/// Full Warp Reduce (argument value 0):
-///   This algorithm assumes that all 32 lanes are active and gathers
-///   data from these 32 lanes, producing a single resultant value.
-/// Contiguous Partial Warp Reduce (argument value 1):
-///   This algorithm assumes that only a *contiguous* subset of lanes
-///   are active.  This happens for the last warp in a parallel region
-///   when the user specified num_threads is not an integer multiple of
-///   32.  This contiguous subset always starts with the zeroth lane.
-/// Partial Warp Reduce (argument value 2):
-///   This algorithm gathers data from any number of lanes at any position.
-/// All reduced values are stored in the lowest possible lane.  The set
-/// of problems every algorithm addresses is a super set of those
-/// addressable by algorithms with a lower version number.  Overhead
-/// increases as algorithm version increases.
-///
-/// Terminology
-/// Reduce element:
-///   Reduce element refers to the individual data field with primitive
-///   data types to be combined and reduced across threads.
-/// Reduce list:
-///   Reduce list refers to a collection of local, thread-private
-///   reduce elements.
-/// Remote Reduce list:
-///   Remote Reduce list refers to a collection of remote (relative to
-///   the current thread) reduce elements.
-///
-/// We distinguish between three states of threads that are important to
-/// the implementation of this function.
-/// Alive threads:
-///   Threads in a warp executing the SIMT instruction, as distinguished from
-///   threads that are inactive due to divergent control flow.
-/// Active threads:
-///   The minimal set of threads that has to be alive upon entry to this
-///   function.  The computation is correct iff active threads are alive.
-///   Some threads are alive but they are not active because they do not
-///   contribute to the computation in any useful manner.  Turning them off
-///   may introduce control flow overheads without any tangible benefits.
-/// Effective threads:
-///   In order to comply with the argument requirements of the shuffle
-///   function, we must keep all lanes holding data alive.  But at most
-///   half of them perform value aggregation; we refer to this half of
-///   threads as effective. The other half is simply handing off their
-///   data.
-///
-/// Procedure
-/// Value shuffle:
-///   In this step active threads transfer data from higher lane positions
-///   in the warp to lower lane positions, creating Remote Reduce list.
-/// Value aggregation:
-///   In this step, effective threads combine their thread local Reduce list
-///   with Remote Reduce list and store the result in the thread local
-///   Reduce list.
-/// Value copy:
-///   In this step, we deal with the assumption made by algorithm 2
-///   (i.e. contiguity assumption).  When we have an odd number of lanes
-///   active, say 2k+1, only k threads will be effective and therefore k
-///   new values will be produced.  However, the Reduce list owned by the
-///   (2k+1)th thread is ignored in the value aggregation.  Therefore
-///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
-///   that the contiguity assumption still holds.
-static llvm::Function *emitShuffleAndReduceFunction(
-    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
-    QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
-  ASTContext &C = CGM.getContext();
-
-  // Thread local Reduce list used to host the values of data to be reduced.
-  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                  C.VoidPtrTy, ImplicitParamDecl::Other);
-  // Current lane id; could be logical.
-  ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
-                              ImplicitParamDecl::Other);
-  // Offset of the remote source lane relative to the current lane.
-  ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                        C.ShortTy, ImplicitParamDecl::Other);
-  // Algorithm version.  This is expected to be known at compile time.
-  ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                               C.ShortTy, ImplicitParamDecl::Other);
-  FunctionArgList Args;
-  Args.push_back(&ReduceListArg);
-  Args.push_back(&LaneIDArg);
-  Args.push_back(&RemoteLaneOffsetArg);
-  Args.push_back(&AlgoVerArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
-  auto *Fn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setDoesNotRecurse();
-  if (CGM.getLangOpts().Optimize) {
-    Fn->removeFnAttr(llvm::Attribute::NoInline);
-    Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
-    Fn->addFnAttr(llvm::Attribute::AlwaysInline);
-  }
-
-  CodeGenFunction CGF(CGM);
-  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
-  Address LocalReduceList(
-      Bld.CreatePointerBitCastOrAddrSpaceCast(
-          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
-                               C.VoidPtrTy, SourceLocation()),
-          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
-      CGF.getPointerAlign());
-
-  Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
-  llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
-      AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
-
-  Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
-  llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
-      AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
-
-  Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
-  llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
-      AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
-
-  // Create a local thread-private variable to host the Reduce list
-  // from a remote lane.
-  Address RemoteReduceList =
-      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
-
-  // This loop iterates through the list of reduce elements and copies,
-  // element by element, from a remote lane in the warp to RemoteReduceList,
-  // hosted on the thread's stack.
-  emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
-                        LocalReduceList, RemoteReduceList,
-                        {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
-                         /*ScratchpadIndex=*/nullptr,
-                         /*ScratchpadWidth=*/nullptr});
-
-  // The actions to be performed on the Remote Reduce list is dependent
-  // on the algorithm version.
-  //
-  //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
-  //  LaneId % 2 == 0 && Offset > 0):
-  //    do the reduction value aggregation
-  //
-  //  The thread local variable Reduce list is mutated in place to host the
-  //  reduced data, which is the aggregated value produced from local and
-  //  remote lanes.
-  //
-  //  Note that AlgoVer is expected to be a constant integer known at compile
-  //  time.
-  //  When AlgoVer==0, the first conjunction evaluates to true, making
-  //    the entire predicate true during compile time.
-  //  When AlgoVer==1, the second conjunction has only the second part to be
-  //    evaluated during runtime.  Other conjunctions evaluates to false
-  //    during compile time.
-  //  When AlgoVer==2, the third conjunction has only the second part to be
-  //    evaluated during runtime.  Other conjunctions evaluates to false
-  //    during compile time.
-  llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
-
-  llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
-  llvm::Value *CondAlgo1 = Bld.CreateAnd(
-      Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
-
-  llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
-  llvm::Value *CondAlgo2 = Bld.CreateAnd(
-      Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
-  CondAlgo2 = Bld.CreateAnd(
-      CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
-
-  llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
-  CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
-
-  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
-  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
-  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
-  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
-
-  CGF.EmitBlock(ThenBB);
-  // reduce_function(LocalReduceList, RemoteReduceList)
-  llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      LocalReduceList.getPointer(), CGF.VoidPtrTy);
-  llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
-  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
-      CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
-  Bld.CreateBr(MergeBB);
-
-  CGF.EmitBlock(ElseBB);
-  Bld.CreateBr(MergeBB);
-
-  CGF.EmitBlock(MergeBB);
-
-  // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
-  // Reduce list.
-  Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
-  llvm::Value *CondCopy = Bld.CreateAnd(
-      Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
-
-  llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
-  llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
-  llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
-  Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
-
-  CGF.EmitBlock(CpyThenBB);
-  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
-                        RemoteReduceList, LocalReduceList);
-  Bld.CreateBr(CpyMergeBB);
-
-  CGF.EmitBlock(CpyElseBB);
-  Bld.CreateBr(CpyMergeBB);
-
-  CGF.EmitBlock(CpyMergeBB);
-
-  CGF.FinishFunction();
-  return Fn;
-}
-
-/// This function emits a helper that copies all the reduction variables from
-/// the team into the provided global buffer for the reduction variables.
-///
-/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
-///   For all data entries D in reduce_data:
-///     Copy local D to buffer.D[Idx]
-static llvm::Value *emitListToGlobalCopyFunction(
-    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
-    QualType ReductionArrayTy, SourceLocation Loc,
-    const RecordDecl *TeamReductionRec,
-    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-        &VarFieldMap) {
-  ASTContext &C = CGM.getContext();
-
-  // Buffer: global reduction buffer.
-  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                              C.VoidPtrTy, ImplicitParamDecl::Other);
-  // Idx: index of the buffer.
-  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
-                           ImplicitParamDecl::Other);
-  // ReduceList: thread local Reduce list.
-  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                  C.VoidPtrTy, ImplicitParamDecl::Other);
-  FunctionArgList Args;
-  Args.push_back(&BufferArg);
-  Args.push_back(&IdxArg);
-  Args.push_back(&ReduceListArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
-  auto *Fn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setDoesNotRecurse();
-  CodeGenFunction CGF(CGM);
-  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
-  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
-  Address LocalReduceList(
-      Bld.CreatePointerBitCastOrAddrSpaceCast(
-          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
-                               C.VoidPtrTy, Loc),
-          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
-      CGF.getPointerAlign());
-  QualType StaticTy = C.getRecordType(TeamReductionRec);
-  llvm::Type *LLVMReductionsBufferTy =
-      CGM.getTypes().ConvertTypeForMem(StaticTy);
-  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
-      LLVMReductionsBufferTy->getPointerTo());
-  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
-                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
-                                              /*Volatile=*/false, C.IntTy,
-                                              Loc)};
-  unsigned Idx = 0;
-  for (const Expr *Private : Privates) {
-    // Reduce element = LocalReduceList[i]
-    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
-    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
-        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
-    // elemptr = ((CopyType*)(elemptrptr)) + I
-    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-        ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
-    Address ElemPtr =
-        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
-    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
-    // Global = Buffer.VD[Idx];
-    const FieldDecl *FD = VarFieldMap.lookup(VD);
-    LValue GlobLVal = CGF.EmitLValueForField(
-        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
-    llvm::Value *BufferPtr =
-        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
-    GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
-    switch (CGF.getEvaluationKind(Private->getType())) {
-    case TEK_Scalar: {
-      llvm::Value *V = CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false,
-                                            Private->getType(), Loc);
-      CGF.EmitStoreOfScalar(V, GlobLVal);
-      break;
-    }
-    case TEK_Complex: {
-      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
-          CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
-      CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
-      break;
-    }
-    case TEK_Aggregate:
-      CGF.EmitAggregateCopy(GlobLVal,
-                            CGF.MakeAddrLValue(ElemPtr, Private->getType()),
-                            Private->getType(), AggValueSlot::DoesNotOverlap);
-      break;
-    }
-    ++Idx;
-  }
-
-  CGF.FinishFunction();
-  return Fn;
-}
-
-/// This function emits a helper that reduces all the reduction variables from
-/// the team into the provided global buffer for the reduction variables.
-///
-/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
-///  void *GlobPtrs[];
-///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
-///  ...
-///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
-///  reduce_function(GlobPtrs, reduce_data);
-static llvm::Value *emitListToGlobalReduceFunction(
-    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
-    QualType ReductionArrayTy, SourceLocation Loc,
-    const RecordDecl *TeamReductionRec,
-    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-        &VarFieldMap,
-    llvm::Function *ReduceFn) {
-  ASTContext &C = CGM.getContext();
-
-  // Buffer: global reduction buffer.
-  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                              C.VoidPtrTy, ImplicitParamDecl::Other);
-  // Idx: index of the buffer.
-  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
-                           ImplicitParamDecl::Other);
-  // ReduceList: thread local Reduce list.
-  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                  C.VoidPtrTy, ImplicitParamDecl::Other);
-  FunctionArgList Args;
-  Args.push_back(&BufferArg);
-  Args.push_back(&IdxArg);
-  Args.push_back(&ReduceListArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
-  auto *Fn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setDoesNotRecurse();
-  CodeGenFunction CGF(CGM);
-  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
-  QualType StaticTy = C.getRecordType(TeamReductionRec);
-  llvm::Type *LLVMReductionsBufferTy =
-      CGM.getTypes().ConvertTypeForMem(StaticTy);
-  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
-      LLVMReductionsBufferTy->getPointerTo());
-
-  // 1. Build a list of reduction variables.
-  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
-  Address ReductionList =
-      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
-  auto IPriv = Privates.begin();
-  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
-                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
-                                              /*Volatile=*/false, C.IntTy,
-                                              Loc)};
-  unsigned Idx = 0;
-  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
-    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
-    // Global = Buffer.VD[Idx];
-    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
-    const FieldDecl *FD = VarFieldMap.lookup(VD);
-    LValue GlobLVal = CGF.EmitLValueForField(
-        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
-    llvm::Value *BufferPtr =
-        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
-    llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
-    CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
-    if ((*IPriv)->getType()->isVariablyModifiedType()) {
-      // Store array size.
-      ++Idx;
-      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
-      llvm::Value *Size = CGF.Builder.CreateIntCast(
-          CGF.getVLASize(
-                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
-              .NumElts,
-          CGF.SizeTy, /*isSigned=*/false);
-      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
-                              Elem);
-    }
-  }
-
-  // Call reduce_function(GlobalReduceList, ReduceList)
-  llvm::Value *GlobalReduceList =
-      CGF.EmitCastToVoidPtr(ReductionList.getPointer());
-  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
-  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
-      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
-  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
-      CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
-  CGF.FinishFunction();
-  return Fn;
-}
-
-/// This function emits a helper that copies all the reduction variables from
-/// the team into the provided global buffer for the reduction variables.
-///
-/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
-///   For all data entries D in reduce_data:
-///     Copy buffer.D[Idx] to local D;
-static llvm::Value *emitGlobalToListCopyFunction(
-    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
-    QualType ReductionArrayTy, SourceLocation Loc,
-    const RecordDecl *TeamReductionRec,
-    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-        &VarFieldMap) {
-  ASTContext &C = CGM.getContext();
-
-  // Buffer: global reduction buffer.
-  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                              C.VoidPtrTy, ImplicitParamDecl::Other);
-  // Idx: index of the buffer.
-  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
-                           ImplicitParamDecl::Other);
-  // ReduceList: thread local Reduce list.
-  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                  C.VoidPtrTy, ImplicitParamDecl::Other);
-  FunctionArgList Args;
-  Args.push_back(&BufferArg);
-  Args.push_back(&IdxArg);
-  Args.push_back(&ReduceListArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
-  auto *Fn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setDoesNotRecurse();
-  CodeGenFunction CGF(CGM);
-  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
-  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
-  Address LocalReduceList(
-      Bld.CreatePointerBitCastOrAddrSpaceCast(
-          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
-                               C.VoidPtrTy, Loc),
-          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
-      CGF.getPointerAlign());
-  QualType StaticTy = C.getRecordType(TeamReductionRec);
-  llvm::Type *LLVMReductionsBufferTy =
-      CGM.getTypes().ConvertTypeForMem(StaticTy);
-  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
-      LLVMReductionsBufferTy->getPointerTo());
-
-  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
-                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
-                                              /*Volatile=*/false, C.IntTy,
-                                              Loc)};
-  unsigned Idx = 0;
-  for (const Expr *Private : Privates) {
-    // Reduce element = LocalReduceList[i]
-    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
-    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
-        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
-    // elemptr = ((CopyType*)(elemptrptr)) + I
-    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-        ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
-    Address ElemPtr =
-        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
-    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
-    // Global = Buffer.VD[Idx];
-    const FieldDecl *FD = VarFieldMap.lookup(VD);
-    LValue GlobLVal = CGF.EmitLValueForField(
-        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
-    llvm::Value *BufferPtr =
-        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
-    GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
-    switch (CGF.getEvaluationKind(Private->getType())) {
-    case TEK_Scalar: {
-      llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
-      CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType());
-      break;
-    }
-    case TEK_Complex: {
-      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
-      CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
-                             /*isInit=*/false);
-      break;
-    }
-    case TEK_Aggregate:
-      CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
-                            GlobLVal, Private->getType(),
-                            AggValueSlot::DoesNotOverlap);
-      break;
-    }
-    ++Idx;
-  }
-
-  CGF.FinishFunction();
-  return Fn;
-}
-
-/// This function emits a helper that reduces all the reduction variables from
-/// the team into the provided global buffer for the reduction variables.
-///
-/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
-///  void *GlobPtrs[];
-///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
-///  ...
-///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
-///  reduce_function(reduce_data, GlobPtrs);
-static llvm::Value *emitGlobalToListReduceFunction(
-    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
-    QualType ReductionArrayTy, SourceLocation Loc,
-    const RecordDecl *TeamReductionRec,
-    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
-        &VarFieldMap,
-    llvm::Function *ReduceFn) {
-  ASTContext &C = CGM.getContext();
-
-  // Buffer: global reduction buffer.
-  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                              C.VoidPtrTy, ImplicitParamDecl::Other);
-  // Idx: index of the buffer.
-  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
-                           ImplicitParamDecl::Other);
-  // ReduceList: thread local Reduce list.
-  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
-                                  C.VoidPtrTy, ImplicitParamDecl::Other);
-  FunctionArgList Args;
-  Args.push_back(&BufferArg);
-  Args.push_back(&IdxArg);
-  Args.push_back(&ReduceListArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
-  auto *Fn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setDoesNotRecurse();
-  CodeGenFunction CGF(CGM);
-  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
-
-  CGBuilderTy &Bld = CGF.Builder;
-
-  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
-  QualType StaticTy = C.getRecordType(TeamReductionRec);
-  llvm::Type *LLVMReductionsBufferTy =
-      CGM.getTypes().ConvertTypeForMem(StaticTy);
-  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
-      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
-      LLVMReductionsBufferTy->getPointerTo());
-
-  // 1. Build a list of reduction variables.
-  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
-  Address ReductionList =
-      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
-  auto IPriv = Privates.begin();
-  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
-                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
-                                              /*Volatile=*/false, C.IntTy,
-                                              Loc)};
-  unsigned Idx = 0;
-  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
-    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
-    // Global = Buffer.VD[Idx];
-    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
-    const FieldDecl *FD = VarFieldMap.lookup(VD);
-    LValue GlobLVal = CGF.EmitLValueForField(
-        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
-    llvm::Value *BufferPtr =
-        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
-    llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
-    CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
-    if ((*IPriv)->getType()->isVariablyModifiedType()) {
-      // Store array size.
-      ++Idx;
-      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
-      llvm::Value *Size = CGF.Builder.CreateIntCast(
-          CGF.getVLASize(
-                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
-              .NumElts,
-          CGF.SizeTy, /*isSigned=*/false);
-      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
-                              Elem);
-    }
-  }
-
-  // Call reduce_function(ReduceList, GlobalReduceList)
-  llvm::Value *GlobalReduceList =
-      CGF.EmitCastToVoidPtr(ReductionList.getPointer());
-  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
-  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
-      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
-  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
-      CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
-  CGF.FinishFunction();
-  return Fn;
-}
-
-///
-/// Design of OpenMP reductions on the GPU
-///
-/// Consider a typical OpenMP program with one or more reduction
-/// clauses:
-///
-/// float foo;
-/// double bar;
-/// #pragma omp target teams distribute parallel for \
-///             reduction(+:foo) reduction(*:bar)
-/// for (int i = 0; i < N; i++) {
-///   foo += A[i]; bar *= B[i];
-/// }
-///
-/// where 'foo' and 'bar' are reduced across all OpenMP threads in
-/// all teams.  In our OpenMP implementation on the NVPTX device an
-/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
-/// within a team are mapped to CUDA threads within a threadblock.
-/// Our goal is to efficiently aggregate values across all OpenMP
-/// threads such that:
-///
-///   - the compiler and runtime are logically concise, and
-///   - the reduction is performed efficiently in a hierarchical
-///     manner as follows: within OpenMP threads in the same warp,
-///     across warps in a threadblock, and finally across teams on
-///     the NVPTX device.
-///
-/// Introduction to Decoupling
-///
-/// We would like to decouple the compiler and the runtime so that the
-/// latter is ignorant of the reduction variables (number, data types)
-/// and the reduction operators.  This allows a simpler interface
-/// and implementation while still attaining good performance.
-///
-/// Pseudocode for the aforementioned OpenMP program generated by the
-/// compiler is as follows:
-///
-/// 1. Create private copies of reduction variables on each OpenMP
-///    thread: 'foo_private', 'bar_private'
-/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
-///    to it and writes the result in 'foo_private' and 'bar_private'
-///    respectively.
-/// 3. Call the OpenMP runtime on the GPU to reduce within a team
-///    and store the result on the team master:
-///
-///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
-///        reduceData, shuffleReduceFn, interWarpCpyFn)
-///
-///     where:
-///       struct ReduceData {
-///         double *foo;
-///         double *bar;
-///       } reduceData
-///       reduceData.foo = &foo_private
-///       reduceData.bar = &bar_private
-///
-///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
-///     auxiliary functions generated by the compiler that operate on
-///     variables of type 'ReduceData'.  They aid the runtime perform
-///     algorithmic steps in a data agnostic manner.
-///
-///     'shuffleReduceFn' is a pointer to a function that reduces data
-///     of type 'ReduceData' across two OpenMP threads (lanes) in the
-///     same warp.  It takes the following arguments as input:
-///
-///     a. variable of type 'ReduceData' on the calling lane,
-///     b. its lane_id,
-///     c. an offset relative to the current lane_id to generate a
-///        remote_lane_id.  The remote lane contains the second
-///        variable of type 'ReduceData' that is to be reduced.
-///     d. an algorithm version parameter determining which reduction
-///        algorithm to use.
-///
-///     'shuffleReduceFn' retrieves data from the remote lane using
-///     efficient GPU shuffle intrinsics and reduces, using the
-///     algorithm specified by the 4th parameter, the two operands
-///     element-wise.  The result is written to the first operand.
-///
-///     Different reduction algorithms are implemented in 
diff erent
-///     runtime functions, all calling 'shuffleReduceFn' to perform
-///     the essential reduction step.  Therefore, based on the 4th
-///     parameter, this function behaves slightly 
diff erently to
-///     cooperate with the runtime to ensure correctness under
-///     
diff erent circumstances.
-///
-///     'InterWarpCpyFn' is a pointer to a function that transfers
-///     reduced variables across warps.  It tunnels, through CUDA
-///     shared memory, the thread-private data of type 'ReduceData'
-///     from lane 0 of each warp to a lane in the first warp.
-/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
-///    The last team writes the global reduced value to memory.
-///
-///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
-///             reduceData, shuffleReduceFn, interWarpCpyFn,
-///             scratchpadCopyFn, loadAndReduceFn)
-///
-///     'scratchpadCopyFn' is a helper that stores reduced
-///     data from the team master to a scratchpad array in
-///     global memory.
-///
-///     'loadAndReduceFn' is a helper that loads data from
-///     the scratchpad array and reduces it with the input
-///     operand.
-///
-///     These compiler generated functions hide address
-///     calculation and alignment information from the runtime.
-/// 5. if ret == 1:
-///     The team master of the last team stores the reduced
-///     result to the globals in memory.
-///     foo += reduceData.foo; bar *= reduceData.bar
-///
-///
-/// Warp Reduction Algorithms
-///
-/// On the warp level, we have three algorithms implemented in the
-/// OpenMP runtime depending on the number of active lanes:
-///
-/// Full Warp Reduction
-///
-/// The reduce algorithm within a warp where all lanes are active
-/// is implemented in the runtime as follows:
-///
-/// full_warp_reduce(void *reduce_data,
-///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
-///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
-///     ShuffleReduceFn(reduce_data, 0, offset, 0);
-/// }
-///
-/// The algorithm completes in log(2, WARPSIZE) steps.
-///
-/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
-/// not used therefore we save instructions by not retrieving lane_id
-/// from the corresponding special registers.  The 4th parameter, which
-/// represents the version of the algorithm being used, is set to 0 to
-/// signify full warp reduction.
-///
-/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
-///
-/// #reduce_elem refers to an element in the local lane's data structure
-/// #remote_elem is retrieved from a remote lane
-/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
-/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
-///
-/// Contiguous Partial Warp Reduction
-///
-/// This reduce algorithm is used within a warp where only the first
-/// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
-/// number of OpenMP threads in a parallel region is not a multiple of
-/// WARPSIZE.  The algorithm is implemented in the runtime as follows:
-///
-/// void
-/// contiguous_partial_reduce(void *reduce_data,
-///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
-///                           int size, int lane_id) {
-///   int curr_size;
-///   int offset;
-///   curr_size = size;
-///   mask = curr_size/2;
-///   while (offset>0) {
-///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
-///     curr_size = (curr_size+1)/2;
-///     offset = curr_size/2;
-///   }
-/// }
-///
-/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
-///
-/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
-/// if (lane_id < offset)
-///     reduce_elem = reduce_elem REDUCE_OP remote_elem
-/// else
-///     reduce_elem = remote_elem
-///
-/// This algorithm assumes that the data to be reduced are located in a
-/// contiguous subset of lanes starting from the first.  When there is
-/// an odd number of active lanes, the data in the last lane is not
-/// aggregated with any other lane's dat but is instead copied over.
-///
-/// Dispersed Partial Warp Reduction
-///
-/// This algorithm is used within a warp when any discontiguous subset of
-/// lanes are active.  It is used to implement the reduction operation
-/// across lanes in an OpenMP simd region or in a nested parallel region.
-///
-/// void
-/// dispersed_partial_reduce(void *reduce_data,
-///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
-///   int size, remote_id;
-///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
-///   do {
-///       remote_id = next_active_lane_id_right_after_me();
-///       # the above function returns 0 of no active lane
-///       # is present right after the current lane.
-///       size = number_of_active_lanes_in_this_warp();
-///       logical_lane_id /= 2;
-///       ShuffleReduceFn(reduce_data, logical_lane_id,
-///                       remote_id-1-threadIdx.x, 2);
-///   } while (logical_lane_id % 2 == 0 && size > 1);
-/// }
-///
-/// There is no assumption made about the initial state of the reduction.
-/// Any number of lanes (>=1) could be active at any position.  The reduction
-/// result is returned in the first active lane.
-///
-/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
-///
-/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
-/// if (lane_id % 2 == 0 && offset > 0)
-///     reduce_elem = reduce_elem REDUCE_OP remote_elem
-/// else
-///     reduce_elem = remote_elem
-///
-///
-/// Intra-Team Reduction
-///
-/// This function, as implemented in the runtime call
-/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
-/// threads in a team.  It first reduces within a warp using the
-/// aforementioned algorithms.  We then proceed to gather all such
-/// reduced values at the first warp.
-///
-/// The runtime makes use of the function 'InterWarpCpyFn', which copies
-/// data from each of the "warp master" (zeroth lane of each warp, where
-/// warp-reduced data is held) to the zeroth warp.  This step reduces (in
-/// a mathematical sense) the problem of reduction across warp masters in
-/// a block to the problem of warp reduction.
-///
-///
-/// Inter-Team Reduction
-///
-/// Once a team has reduced its data to a single value, it is stored in
-/// a global scratchpad array.  Since each team has a distinct slot, this
-/// can be done without locking.
-///
-/// The last team to write to the scratchpad array proceeds to reduce the
-/// scratchpad array.  One or more workers in the last team use the helper
-/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
-/// the k'th worker reduces every k'th element.
-///
-/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
-/// reduce across workers and compute a globally reduced value.
-///
-void CGOpenMPRuntimeNVPTX::emitReduction(
-    CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
-    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
-    ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
-  if (!CGF.HaveInsertPoint())
-    return;
-
-  bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
-#ifndef NDEBUG
-  bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
-#endif
-
-  if (Options.SimpleReduction) {
-    assert(!TeamsReduction && !ParallelReduction &&
-           "Invalid reduction selection in emitReduction.");
-    CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
-                                   ReductionOps, Options);
-    return;
-  }
-
-  assert((TeamsReduction || ParallelReduction) &&
-         "Invalid reduction selection in emitReduction.");
-
-  // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
-  // RedList, shuffle_reduce_func, interwarp_copy_func);
-  // or
-  // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
-  llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
-  llvm::Value *ThreadId = getThreadID(CGF, Loc);
-
-  llvm::Value *Res;
-  ASTContext &C = CGM.getContext();
-  // 1. Build a list of reduction variables.
-  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
-  auto Size = RHSExprs.size();
-  for (const Expr *E : Privates) {
-    if (E->getType()->isVariablyModifiedType())
-      // Reserve place for array size.
-      ++Size;
-  }
-  llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
-  QualType ReductionArrayTy =
-      C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
-                             /*IndexTypeQuals=*/0);
-  Address ReductionList =
-      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
-  auto IPriv = Privates.begin();
-  unsigned Idx = 0;
-  for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
-    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
-    CGF.Builder.CreateStore(
-        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-            CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
-        Elem);
-    if ((*IPriv)->getType()->isVariablyModifiedType()) {
-      // Store array size.
-      ++Idx;
-      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
-      llvm::Value *Size = CGF.Builder.CreateIntCast(
-          CGF.getVLASize(
-                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
-              .NumElts,
-          CGF.SizeTy, /*isSigned=*/false);
-      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
-                              Elem);
-    }
-  }
-
-  llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-      ReductionList.getPointer(), CGF.VoidPtrTy);
-  llvm::Function *ReductionFn = emitReductionFunction(
-      Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
-      LHSExprs, RHSExprs, ReductionOps);
-  llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
-  llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
-      CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
-  llvm::Value *InterWarpCopyFn =
-      emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
-
-  if (ParallelReduction) {
-    llvm::Value *Args[] = {RTLoc,
-                           ThreadId,
-                           CGF.Builder.getInt32(RHSExprs.size()),
-                           ReductionArrayTySize,
-                           RL,
-                           ShuffleAndReduceFn,
-                           InterWarpCopyFn};
-
-    Res = CGF.EmitRuntimeCall(
-        createNVPTXRuntimeFunction(
-            OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2),
-        Args);
-  } else {
-    assert(TeamsReduction && "expected teams reduction.");
-    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
-    llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
-    int Cnt = 0;
-    for (const Expr *DRE : Privates) {
-      PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
-      ++Cnt;
-    }
-    const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
-        CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
-        C.getLangOpts().OpenMPCUDAReductionBufNum);
-    TeamsReductions.push_back(TeamReductionRec);
-    if (!KernelTeamsReductionPtr) {
-      KernelTeamsReductionPtr = new llvm::GlobalVariable(
-          CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
-          llvm::GlobalValue::InternalLinkage, nullptr,
-          "_openmp_teams_reductions_buffer_$_$ptr");
-    }
-    llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
-        Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
-        /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
-    llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
-        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
-    llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
-        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
-        ReductionFn);
-    llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
-        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
-    llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
-        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
-        ReductionFn);
-
-    llvm::Value *Args[] = {
-        RTLoc,
-        ThreadId,
-        GlobalBufferPtr,
-        CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
-        RL,
-        ShuffleAndReduceFn,
-        InterWarpCopyFn,
-        GlobalToBufferCpyFn,
-        GlobalToBufferRedFn,
-        BufferToGlobalCpyFn,
-        BufferToGlobalRedFn};
-
-    Res = CGF.EmitRuntimeCall(
-        createNVPTXRuntimeFunction(
-            OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2),
-        Args);
-  }
-
-  // 5. Build if (res == 1)
-  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
-  llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
-  llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
-      Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
-  CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
-
-  // 6. Build then branch: where we have reduced values in the master
-  //    thread in each team.
-  //    __kmpc_end_reduce{_nowait}(<gtid>);
-  //    break;
-  CGF.EmitBlock(ThenBB);
-
-  // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
-  auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
-                    this](CodeGenFunction &CGF, PrePostActionTy &Action) {
-    auto IPriv = Privates.begin();
-    auto ILHS = LHSExprs.begin();
-    auto IRHS = RHSExprs.begin();
-    for (const Expr *E : ReductionOps) {
-      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
-                                  cast<DeclRefExpr>(*IRHS));
-      ++IPriv;
-      ++ILHS;
-      ++IRHS;
-    }
-  };
-  llvm::Value *EndArgs[] = {ThreadId};
-  RegionCodeGenTy RCG(CodeGen);
-  NVPTXActionTy Action(
-      nullptr, llvm::None,
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
-      EndArgs);
-  RCG.setAction(Action);
-  RCG(CGF);
-  // There is no need to emit line number for unconditional branch.
-  (void)ApplyDebugLocation::CreateEmpty(CGF);
-  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
-}
-
-const VarDecl *
-CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD,
-                                         const VarDecl *NativeParam) const {
-  if (!NativeParam->getType()->isReferenceType())
-    return NativeParam;
-  QualType ArgType = NativeParam->getType();
-  QualifierCollector QC;
-  const Type *NonQualTy = QC.strip(ArgType);
-  QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
-  if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
-    if (Attr->getCaptureKind() == OMPC_map) {
-      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
-                                                        LangAS::opencl_global);
-    } else if (Attr->getCaptureKind() == OMPC_firstprivate &&
-               PointeeTy.isConstant(CGM.getContext())) {
-      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
-                                                        LangAS::opencl_generic);
-    }
-  }
-  ArgType = CGM.getContext().getPointerType(PointeeTy);
-  QC.addRestrict();
-  enum { NVPTX_local_addr = 5 };
-  QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
-  ArgType = QC.apply(CGM.getContext(), ArgType);
-  if (isa<ImplicitParamDecl>(NativeParam))
-    return ImplicitParamDecl::Create(
-        CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
-        NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
-  return ParmVarDecl::Create(
-      CGM.getContext(),
-      const_cast<DeclContext *>(NativeParam->getDeclContext()),
-      NativeParam->getBeginLoc(), NativeParam->getLocation(),
-      NativeParam->getIdentifier(), ArgType,
-      /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
-}
-
-Address
-CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF,
-                                          const VarDecl *NativeParam,
-                                          const VarDecl *TargetParam) const {
-  assert(NativeParam != TargetParam &&
-         NativeParam->getType()->isReferenceType() &&
-         "Native arg must not be the same as target arg.");
-  Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
-  QualType NativeParamType = NativeParam->getType();
-  QualifierCollector QC;
-  const Type *NonQualTy = QC.strip(NativeParamType);
-  QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
-  unsigned NativePointeeAddrSpace =
-      CGF.getContext().getTargetAddressSpace(NativePointeeTy);
-  QualType TargetTy = TargetParam->getType();
-  llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
-      LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
-  // First cast to generic.
-  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
-                      /*AddrSpace=*/0));
-  // Cast from generic to native address space.
-  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
-                      NativePointeeAddrSpace));
-  Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
-  CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
-                        NativeParamType);
-  return NativeParamAddr;
-}
-
-void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall(
-    CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
-    ArrayRef<llvm::Value *> Args) const {
-  SmallVector<llvm::Value *, 4> TargetArgs;
-  TargetArgs.reserve(Args.size());
-  auto *FnType = OutlinedFn.getFunctionType();
-  for (unsigned I = 0, E = Args.size(); I < E; ++I) {
-    if (FnType->isVarArg() && FnType->getNumParams() <= I) {
-      TargetArgs.append(std::next(Args.begin(), I), Args.end());
-      break;
-    }
-    llvm::Type *TargetType = FnType->getParamType(I);
-    llvm::Value *NativeArg = Args[I];
-    if (!TargetType->isPointerTy()) {
-      TargetArgs.emplace_back(NativeArg);
-      continue;
-    }
-    llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-        NativeArg,
-        NativeArg->getType()->getPointerElementType()->getPointerTo());
-    TargetArgs.emplace_back(
-        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
-  }
-  CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
-}
-
-/// Emit function which wraps the outline parallel region
-/// and controls the arguments which are passed to this function.
-/// The wrapper ensures that the outlined function is called
-/// with the correct arguments when data is shared.
-llvm::Function *CGOpenMPRuntimeNVPTX::createParallelDataSharingWrapper(
-    llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
-  ASTContext &Ctx = CGM.getContext();
-  const auto &CS = *D.getCapturedStmt(OMPD_parallel);
-
-  // Create a function that takes as argument the source thread.
-  FunctionArgList WrapperArgs;
-  QualType Int16QTy =
-      Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
-  QualType Int32QTy =
-      Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
-  ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
-                                     /*Id=*/nullptr, Int16QTy,
-                                     ImplicitParamDecl::Other);
-  ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
-                               /*Id=*/nullptr, Int32QTy,
-                               ImplicitParamDecl::Other);
-  WrapperArgs.emplace_back(&ParallelLevelArg);
-  WrapperArgs.emplace_back(&WrapperArg);
-
-  const CGFunctionInfo &CGFI =
-      CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
-
-  auto *Fn = llvm::Function::Create(
-      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
-      Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
-  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
-  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
-  Fn->setDoesNotRecurse();
-
-  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
-  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
-                    D.getBeginLoc(), D.getBeginLoc());
-
-  const auto *RD = CS.getCapturedRecordDecl();
-  auto CurField = RD->field_begin();
-
-  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
-                                                      /*Name=*/".zero.addr");
-  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
-  // Get the array of arguments.
-  SmallVector<llvm::Value *, 8> Args;
-
-  Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
-  Args.emplace_back(ZeroAddr.getPointer());
-
-  CGBuilderTy &Bld = CGF.Builder;
-  auto CI = CS.capture_begin();
-
-  // Use global memory for data sharing.
-  // Handle passing of global args to workers.
-  Address GlobalArgs =
-      CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
-  llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
-  llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
-  CGF.EmitRuntimeCall(
-      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_get_shared_variables),
-      DataSharingArgs);
-
-  // Retrieve the shared variables from the list of references returned
-  // by the runtime. Pass the variables to the outlined function.
-  Address SharedArgListAddress = Address::invalid();
-  if (CS.capture_size() > 0 ||
-      isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
-    SharedArgListAddress = CGF.EmitLoadOfPointer(
-        GlobalArgs, CGF.getContext()
-                        .getPointerType(CGF.getContext().getPointerType(
-                            CGF.getContext().VoidPtrTy))
-                        .castAs<PointerType>());
-  }
-  unsigned Idx = 0;
-  if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
-    Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
-    Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
-        Src, CGF.SizeTy->getPointerTo());
-    llvm::Value *LB = CGF.EmitLoadOfScalar(
-        TypedAddress,
-        /*Volatile=*/false,
-        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
-        cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
-    Args.emplace_back(LB);
-    ++Idx;
-    Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
-    TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
-        Src, CGF.SizeTy->getPointerTo());
-    llvm::Value *UB = CGF.EmitLoadOfScalar(
-        TypedAddress,
-        /*Volatile=*/false,
-        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
-        cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
-    Args.emplace_back(UB);
-    ++Idx;
-  }
-  if (CS.capture_size() > 0) {
-    ASTContext &CGFContext = CGF.getContext();
-    for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
-      QualType ElemTy = CurField->getType();
-      Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
-      Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
-          Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
-      llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
-                                              /*Volatile=*/false,
-                                              CGFContext.getPointerType(ElemTy),
-                                              CI->getLocation());
-      if (CI->capturesVariableByCopy() &&
-          !CI->getCapturedVar()->getType()->isAnyPointerType()) {
-        Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
-                              CI->getLocation());
-      }
-      Args.emplace_back(Arg);
-    }
-  }
-
-  emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
-  CGF.FinishFunction();
-  return Fn;
-}
-
-void CGOpenMPRuntimeNVPTX::emitFunctionProlog(CodeGenFunction &CGF,
-                                              const Decl *D) {
-  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
-    return;
-
-  assert(D && "Expected function or captured|block decl.");
-  assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
-         "Function is registered already.");
-  assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
-         "Team is set but not processed.");
-  const Stmt *Body = nullptr;
-  bool NeedToDelayGlobalization = false;
-  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
-    Body = FD->getBody();
-  } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
-    Body = BD->getBody();
-  } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
-    Body = CD->getBody();
-    NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
-    if (NeedToDelayGlobalization &&
-        getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
-      return;
-  }
-  if (!Body)
-    return;
-  CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
-  VarChecker.Visit(Body);
-  const RecordDecl *GlobalizedVarsRecord =
-      VarChecker.getGlobalizedRecord(IsInTTDRegion);
-  TeamAndReductions.first = nullptr;
-  TeamAndReductions.second.clear();
-  ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
-      VarChecker.getEscapedVariableLengthDecls();
-  if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
-    return;
-  auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
-  I->getSecond().MappedParams =
-      std::make_unique<CodeGenFunction::OMPMapVars>();
-  I->getSecond().GlobalRecord = GlobalizedVarsRecord;
-  I->getSecond().EscapedParameters.insert(
-      VarChecker.getEscapedParameters().begin(),
-      VarChecker.getEscapedParameters().end());
-  I->getSecond().EscapedVariableLengthDecls.append(
-      EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
-  DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
-  for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
-    assert(VD->isCanonicalDecl() && "Expected canonical declaration");
-    const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
-    Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
-  }
-  if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
-    CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
-    VarChecker.Visit(Body);
-    I->getSecond().SecondaryGlobalRecord =
-        VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
-    I->getSecond().SecondaryLocalVarData.emplace();
-    DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
-    for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
-      assert(VD->isCanonicalDecl() && "Expected canonical declaration");
-      const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
-      Data.insert(
-          std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
-    }
-  }
-  if (!NeedToDelayGlobalization) {
-    emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
-    struct GlobalizationScope final : EHScopeStack::Cleanup {
-      GlobalizationScope() = default;
-
-      void Emit(CodeGenFunction &CGF, Flags flags) override {
-        static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
-            .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
-      }
-    };
-    CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
-  }
-}
-
-Address CGOpenMPRuntimeNVPTX::getAddressOfLocalVariable(CodeGenFunction &CGF,
-                                                        const VarDecl *VD) {
-  if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
-    const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
-    auto AS = LangAS::Default;
-    switch (A->getAllocatorType()) {
-      // Use the default allocator here as by default local vars are
-      // threadlocal.
-    case OMPAllocateDeclAttr::OMPNullMemAlloc:
-    case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
-    case OMPAllocateDeclAttr::OMPThreadMemAlloc:
-    case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
-    case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
-      // Follow the user decision - use default allocation.
-      return Address::invalid();
-    case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
-      // TODO: implement aupport for user-defined allocators.
-      return Address::invalid();
-    case OMPAllocateDeclAttr::OMPConstMemAlloc:
-      AS = LangAS::cuda_constant;
-      break;
-    case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
-      AS = LangAS::cuda_shared;
-      break;
-    case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
-    case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
-      break;
-    }
-    llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
-    auto *GV = new llvm::GlobalVariable(
-        CGM.getModule(), VarTy, /*isConstant=*/false,
-        llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
-        VD->getName(),
-        /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
-        CGM.getContext().getTargetAddressSpace(AS));
-    CharUnits Align = CGM.getContext().getDeclAlign(VD);
-    GV->setAlignment(Align.getAsAlign());
-    return Address(
-        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
-            GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
-                    VD->getType().getAddressSpace()))),
-        Align);
-  }
-
-  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
-    return Address::invalid();
-
-  VD = VD->getCanonicalDecl();
-  auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
-  if (I == FunctionGlobalizedDecls.end())
-    return Address::invalid();
-  auto VDI = I->getSecond().LocalVarData.find(VD);
-  if (VDI != I->getSecond().LocalVarData.end())
-    return VDI->second.PrivateAddr;
-  if (VD->hasAttrs()) {
-    for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
-         E(VD->attr_end());
-         IT != E; ++IT) {
-      auto VDI = I->getSecond().LocalVarData.find(
-          cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
-              ->getCanonicalDecl());
-      if (VDI != I->getSecond().LocalVarData.end())
-        return VDI->second.PrivateAddr;
-    }
-  }
-
-  return Address::invalid();
-}
-
-void CGOpenMPRuntimeNVPTX::functionFinished(CodeGenFunction &CGF) {
-  FunctionGlobalizedDecls.erase(CGF.CurFn);
-  CGOpenMPRuntime::functionFinished(CGF);
-}
-
-void CGOpenMPRuntimeNVPTX::getDefaultDistScheduleAndChunk(
-    CodeGenFunction &CGF, const OMPLoopDirective &S,
-    OpenMPDistScheduleClauseKind &ScheduleKind,
-    llvm::Value *&Chunk) const {
-  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
-    ScheduleKind = OMPC_DIST_SCHEDULE_static;
-    Chunk = CGF.EmitScalarConversion(getNVPTXNumThreads(CGF),
-        CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
-        S.getIterationVariable()->getType(), S.getBeginLoc());
-    return;
-  }
-  CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
-      CGF, S, ScheduleKind, Chunk);
-}
-
-void CGOpenMPRuntimeNVPTX::getDefaultScheduleAndChunk(
-    CodeGenFunction &CGF, const OMPLoopDirective &S,
-    OpenMPScheduleClauseKind &ScheduleKind,
-    const Expr *&ChunkExpr) const {
-  ScheduleKind = OMPC_SCHEDULE_static;
-  // Chunk size is 1 in this case.
-  llvm::APInt ChunkSize(32, 1);
-  ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
-      CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
-      SourceLocation());
-}
-
-void CGOpenMPRuntimeNVPTX::adjustTargetSpecificDataForLambdas(
-    CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
-  assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
-         " Expected target-based directive.");
-  const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
-  for (const CapturedStmt::Capture &C : CS->captures()) {
-    // Capture variables captured by reference in lambdas for target-based
-    // directives.
-    if (!C.capturesVariable())
-      continue;
-    const VarDecl *VD = C.getCapturedVar();
-    const auto *RD = VD->getType()
-                         .getCanonicalType()
-                         .getNonReferenceType()
-                         ->getAsCXXRecordDecl();
-    if (!RD || !RD->isLambda())
-      continue;
-    Address VDAddr = CGF.GetAddrOfLocalVar(VD);
-    LValue VDLVal;
-    if (VD->getType().getCanonicalType()->isReferenceType())
-      VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
-    else
-      VDLVal = CGF.MakeAddrLValue(
-          VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
-    llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
-    FieldDecl *ThisCapture = nullptr;
-    RD->getCaptureFields(Captures, ThisCapture);
-    if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
-      LValue ThisLVal =
-          CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
-      llvm::Value *CXXThis = CGF.LoadCXXThis();
-      CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
-    }
-    for (const LambdaCapture &LC : RD->captures()) {
-      if (LC.getCaptureKind() != LCK_ByRef)
-        continue;
-      const VarDecl *VD = LC.getCapturedVar();
-      if (!CS->capturesVariable(VD))
-        continue;
-      auto It = Captures.find(VD);
-      assert(It != Captures.end() && "Found lambda capture without field.");
-      LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
-      Address VDAddr = CGF.GetAddrOfLocalVar(VD);
-      if (VD->getType().getCanonicalType()->isReferenceType())
-        VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
-                                               VD->getType().getCanonicalType())
-                     .getAddress(CGF);
-      CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
-    }
-  }
-}
-
-unsigned CGOpenMPRuntimeNVPTX::getDefaultFirstprivateAddressSpace() const {
-  return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
-}
-
-bool CGOpenMPRuntimeNVPTX::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
-                                                            LangAS &AS) {
-  if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
-    return false;
-  const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
-  switch(A->getAllocatorType()) {
-  case OMPAllocateDeclAttr::OMPNullMemAlloc:
-  case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
-  // Not supported, fallback to the default mem space.
-  case OMPAllocateDeclAttr::OMPThreadMemAlloc:
-  case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
-  case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
-  case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
-  case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
-    AS = LangAS::Default;
-    return true;
-  case OMPAllocateDeclAttr::OMPConstMemAlloc:
-    AS = LangAS::cuda_constant;
-    return true;
-  case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
-    AS = LangAS::cuda_shared;
-    return true;
-  case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
-    llvm_unreachable("Expected predefined allocator for the variables with the "
-                     "static storage.");
-  }
-  return false;
-}
-
-// Get current CudaArch and ignore any unknown values
-static CudaArch getCudaArch(CodeGenModule &CGM) {
-  if (!CGM.getTarget().hasFeature("ptx"))
-    return CudaArch::UNKNOWN;
-  llvm::StringMap<bool> Features;
-  CGM.getTarget().initFeatureMap(Features, CGM.getDiags(),
-                                 CGM.getTarget().getTargetOpts().CPU,
-                                 CGM.getTarget().getTargetOpts().Features);
-  for (const auto &Feature : Features) {
-    if (Feature.getValue()) {
-      CudaArch Arch = StringToCudaArch(Feature.getKey());
-      if (Arch != CudaArch::UNKNOWN)
-        return Arch;
-    }
-  }
-  return CudaArch::UNKNOWN;
-}
-
-/// Check to see if target architecture supports unified addressing which is
-/// a restriction for OpenMP requires clause "unified_shared_memory".
-void CGOpenMPRuntimeNVPTX::processRequiresDirective(
-    const OMPRequiresDecl *D) {
-  for (const OMPClause *Clause : D->clauselists()) {
-    if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
-      CudaArch Arch = getCudaArch(CGM);
-      switch (Arch) {
-      case CudaArch::SM_20:
-      case CudaArch::SM_21:
-      case CudaArch::SM_30:
-      case CudaArch::SM_32:
-      case CudaArch::SM_35:
-      case CudaArch::SM_37:
-      case CudaArch::SM_50:
-      case CudaArch::SM_52:
-      case CudaArch::SM_53:
-      case CudaArch::SM_60:
-      case CudaArch::SM_61:
-      case CudaArch::SM_62: {
-        SmallString<256> Buffer;
-        llvm::raw_svector_ostream Out(Buffer);
-        Out << "Target architecture " << CudaArchToString(Arch)
-            << " does not support unified addressing";
-        CGM.Error(Clause->getBeginLoc(), Out.str());
-        return;
-      }
-      case CudaArch::SM_70:
-      case CudaArch::SM_72:
-      case CudaArch::SM_75:
-      case CudaArch::SM_80:
-      case CudaArch::GFX600:
-      case CudaArch::GFX601:
-      case CudaArch::GFX700:
-      case CudaArch::GFX701:
-      case CudaArch::GFX702:
-      case CudaArch::GFX703:
-      case CudaArch::GFX704:
-      case CudaArch::GFX801:
-      case CudaArch::GFX802:
-      case CudaArch::GFX803:
-      case CudaArch::GFX810:
-      case CudaArch::GFX900:
-      case CudaArch::GFX902:
-      case CudaArch::GFX904:
-      case CudaArch::GFX906:
-      case CudaArch::GFX908:
-      case CudaArch::GFX909:
-      case CudaArch::GFX1010:
-      case CudaArch::GFX1011:
-      case CudaArch::GFX1012:
-      case CudaArch::GFX1030:
-      case CudaArch::UNKNOWN:
-        break;
-      case CudaArch::LAST:
-        llvm_unreachable("Unexpected Cuda arch.");
-      }
-    }
-  }
-  CGOpenMPRuntime::processRequiresDirective(D);
-}
-
-/// Get number of SMs and number of blocks per SM.
-static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
-  std::pair<unsigned, unsigned> Data;
-  if (CGM.getLangOpts().OpenMPCUDANumSMs)
-    Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
-  if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
-    Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
-  if (Data.first && Data.second)
-    return Data;
-  switch (getCudaArch(CGM)) {
-  case CudaArch::SM_20:
-  case CudaArch::SM_21:
-  case CudaArch::SM_30:
-  case CudaArch::SM_32:
-  case CudaArch::SM_35:
-  case CudaArch::SM_37:
-  case CudaArch::SM_50:
-  case CudaArch::SM_52:
-  case CudaArch::SM_53:
-    return {16, 16};
-  case CudaArch::SM_60:
-  case CudaArch::SM_61:
-  case CudaArch::SM_62:
-    return {56, 32};
-  case CudaArch::SM_70:
-  case CudaArch::SM_72:
-  case CudaArch::SM_75:
-  case CudaArch::SM_80:
-    return {84, 32};
-  case CudaArch::GFX600:
-  case CudaArch::GFX601:
-  case CudaArch::GFX700:
-  case CudaArch::GFX701:
-  case CudaArch::GFX702:
-  case CudaArch::GFX703:
-  case CudaArch::GFX704:
-  case CudaArch::GFX801:
-  case CudaArch::GFX802:
-  case CudaArch::GFX803:
-  case CudaArch::GFX810:
-  case CudaArch::GFX900:
-  case CudaArch::GFX902:
-  case CudaArch::GFX904:
-  case CudaArch::GFX906:
-  case CudaArch::GFX908:
-  case CudaArch::GFX909:
-  case CudaArch::GFX1010:
-  case CudaArch::GFX1011:
-  case CudaArch::GFX1012:
-  case CudaArch::GFX1030:
-  case CudaArch::UNKNOWN:
-    break;
-  case CudaArch::LAST:
-    llvm_unreachable("Unexpected Cuda arch.");
-  }
-  llvm_unreachable("Unexpected NVPTX target without ptx feature.");
-}
-
-void CGOpenMPRuntimeNVPTX::clear() {
-  if (!GlobalizedRecords.empty() &&
-      !CGM.getLangOpts().OpenMPCUDATargetParallel) {
-    ASTContext &C = CGM.getContext();
-    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
-    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
-    RecordDecl *StaticRD = C.buildImplicitRecord(
-        "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
-    StaticRD->startDefinition();
-    RecordDecl *SharedStaticRD = C.buildImplicitRecord(
-        "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
-    SharedStaticRD->startDefinition();
-    for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
-      if (Records.Records.empty())
-        continue;
-      unsigned Size = 0;
-      unsigned RecAlignment = 0;
-      for (const RecordDecl *RD : Records.Records) {
-        QualType RDTy = C.getRecordType(RD);
-        unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
-        RecAlignment = std::max(RecAlignment, Alignment);
-        unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
-        Size =
-            llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
-      }
-      Size = llvm::alignTo(Size, RecAlignment);
-      llvm::APInt ArySize(/*numBits=*/64, Size);
-      QualType SubTy = C.getConstantArrayType(
-          C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
-      const bool UseSharedMemory = Size <= SharedMemorySize;
-      auto *Field =
-          FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
-                            SourceLocation(), SourceLocation(), nullptr, SubTy,
-                            C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
-                            /*BW=*/nullptr, /*Mutable=*/false,
-                            /*InitStyle=*/ICIS_NoInit);
-      Field->setAccess(AS_public);
-      if (UseSharedMemory) {
-        SharedStaticRD->addDecl(Field);
-        SharedRecs.push_back(&Records);
-      } else {
-        StaticRD->addDecl(Field);
-        GlobalRecs.push_back(&Records);
-      }
-      Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
-      Records.UseSharedMemory->setInitializer(
-          llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
-    }
-    // Allocate SharedMemorySize buffer for the shared memory.
-    // FIXME: nvlink does not handle weak linkage correctly (object with the
-    // 
diff erent size are reported as erroneous).
-    // Restore this code as sson as nvlink is fixed.
-    if (!SharedStaticRD->field_empty()) {
-      llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
-      QualType SubTy = C.getConstantArrayType(
-          C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
-      auto *Field = FieldDecl::Create(
-          C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
-          C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
-          /*BW=*/nullptr, /*Mutable=*/false,
-          /*InitStyle=*/ICIS_NoInit);
-      Field->setAccess(AS_public);
-      SharedStaticRD->addDecl(Field);
-    }
-    SharedStaticRD->completeDefinition();
-    if (!SharedStaticRD->field_empty()) {
-      QualType StaticTy = C.getRecordType(SharedStaticRD);
-      llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
-      auto *GV = new llvm::GlobalVariable(
-          CGM.getModule(), LLVMStaticTy,
-          /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
-          llvm::Constant::getNullValue(LLVMStaticTy),
-          "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
-          llvm::GlobalValue::NotThreadLocal,
-          C.getTargetAddressSpace(LangAS::cuda_shared));
-      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
-          GV, CGM.VoidPtrTy);
-      for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
-        Rec->Buffer->replaceAllUsesWith(Replacement);
-        Rec->Buffer->eraseFromParent();
-      }
-    }
-    StaticRD->completeDefinition();
-    if (!StaticRD->field_empty()) {
-      QualType StaticTy = C.getRecordType(StaticRD);
-      std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
-      llvm::APInt Size1(32, SMsBlockPerSM.second);
-      QualType Arr1Ty =
-          C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal,
-                                 /*IndexTypeQuals=*/0);
-      llvm::APInt Size2(32, SMsBlockPerSM.first);
-      QualType Arr2Ty =
-          C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal,
-                                 /*IndexTypeQuals=*/0);
-      llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
-      // FIXME: nvlink does not handle weak linkage correctly (object with the
-      // 
diff erent size are reported as erroneous).
-      // Restore CommonLinkage as soon as nvlink is fixed.
-      auto *GV = new llvm::GlobalVariable(
-          CGM.getModule(), LLVMArr2Ty,
-          /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
-          llvm::Constant::getNullValue(LLVMArr2Ty),
-          "_openmp_static_glob_rd_$_");
-      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
-          GV, CGM.VoidPtrTy);
-      for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
-        Rec->Buffer->replaceAllUsesWith(Replacement);
-        Rec->Buffer->eraseFromParent();
-      }
-    }
-  }
-  if (!TeamsReductions.empty()) {
-    ASTContext &C = CGM.getContext();
-    RecordDecl *StaticRD = C.buildImplicitRecord(
-        "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
-    StaticRD->startDefinition();
-    for (const RecordDecl *TeamReductionRec : TeamsReductions) {
-      QualType RecTy = C.getRecordType(TeamReductionRec);
-      auto *Field = FieldDecl::Create(
-          C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
-          C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
-          /*BW=*/nullptr, /*Mutable=*/false,
-          /*InitStyle=*/ICIS_NoInit);
-      Field->setAccess(AS_public);
-      StaticRD->addDecl(Field);
-    }
-    StaticRD->completeDefinition();
-    QualType StaticTy = C.getRecordType(StaticRD);
-    llvm::Type *LLVMReductionsBufferTy =
-        CGM.getTypes().ConvertTypeForMem(StaticTy);
-    // FIXME: nvlink does not handle weak linkage correctly (object with the
-    // 
diff erent size are reported as erroneous).
-    // Restore CommonLinkage as soon as nvlink is fixed.
-    auto *GV = new llvm::GlobalVariable(
-        CGM.getModule(), LLVMReductionsBufferTy,
-        /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
-        llvm::Constant::getNullValue(LLVMReductionsBufferTy),
-        "_openmp_teams_reductions_buffer_$_");
-    KernelTeamsReductionPtr->setInitializer(
-        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
-                                                             CGM.VoidPtrTy));
-  }
-  CGOpenMPRuntime::clear();
-}

diff  --git a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.h b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.h
index c52ae43817c7..40679f9143b9 100644
--- a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.h
+++ b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.h
@@ -7,7 +7,7 @@
 //===----------------------------------------------------------------------===//
 //
 // This provides a class for OpenMP runtime code generation specialized to NVPTX
-// targets.
+// targets from generalized CGOpenMPRuntimeGPU class.
 //
 //===----------------------------------------------------------------------===//
 
@@ -15,473 +15,18 @@
 #define LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIMENVPTX_H
 
 #include "CGOpenMPRuntime.h"
+#include "CGOpenMPRuntimeGPU.h"
 #include "CodeGenFunction.h"
 #include "clang/AST/StmtOpenMP.h"
 
 namespace clang {
 namespace CodeGen {
 
-class CGOpenMPRuntimeNVPTX : public CGOpenMPRuntime {
-public:
-  /// Defines the execution mode.
-  enum ExecutionMode {
-    /// SPMD execution mode (all threads are worker threads).
-    EM_SPMD,
-    /// Non-SPMD execution mode (1 master thread, others are workers).
-    EM_NonSPMD,
-    /// Unknown execution mode (orphaned directive).
-    EM_Unknown,
-  };
-private:
-  /// Parallel outlined function work for workers to execute.
-  llvm::SmallVector<llvm::Function *, 16> Work;
-
-  struct EntryFunctionState {
-    llvm::BasicBlock *ExitBB = nullptr;
-  };
-
-  class WorkerFunctionState {
-  public:
-    llvm::Function *WorkerFn;
-    const CGFunctionInfo &CGFI;
-    SourceLocation Loc;
-
-    WorkerFunctionState(CodeGenModule &CGM, SourceLocation Loc);
-
-  private:
-    void createWorkerFunction(CodeGenModule &CGM);
-  };
-
-  ExecutionMode getExecutionMode() const;
-
-  bool requiresFullRuntime() const { return RequiresFullRuntime; }
-
-  /// Get barrier to synchronize all threads in a block.
-  void syncCTAThreads(CodeGenFunction &CGF);
-
-  /// Emit the worker function for the current target region.
-  void emitWorkerFunction(WorkerFunctionState &WST);
-
-  /// Helper for worker function. Emit body of worker loop.
-  void emitWorkerLoop(CodeGenFunction &CGF, WorkerFunctionState &WST);
-
-  /// Helper for non-SPMD target entry function. Guide the master and
-  /// worker threads to their respective locations.
-  void emitNonSPMDEntryHeader(CodeGenFunction &CGF, EntryFunctionState &EST,
-                              WorkerFunctionState &WST);
-
-  /// Signal termination of OMP execution for non-SPMD target entry
-  /// function.
-  void emitNonSPMDEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST);
-
-  /// Helper for generic variables globalization prolog.
-  void emitGenericVarsProlog(CodeGenFunction &CGF, SourceLocation Loc,
-                             bool WithSPMDCheck = false);
-
-  /// Helper for generic variables globalization epilog.
-  void emitGenericVarsEpilog(CodeGenFunction &CGF, bool WithSPMDCheck = false);
-
-  /// Helper for SPMD mode target directive's entry function.
-  void emitSPMDEntryHeader(CodeGenFunction &CGF, EntryFunctionState &EST,
-                           const OMPExecutableDirective &D);
-
-  /// Signal termination of SPMD mode execution.
-  void emitSPMDEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST);
-
-  //
-  // Base class overrides.
-  //
-
-  /// Creates offloading entry for the provided entry ID \a ID,
-  /// address \a Addr, size \a Size, and flags \a Flags.
-  void createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr,
-                          uint64_t Size, int32_t Flags,
-                          llvm::GlobalValue::LinkageTypes Linkage) override;
-
-  /// Emit outlined function specialized for the Fork-Join
-  /// programming model for applicable target directives on the NVPTX device.
-  /// \param D Directive to emit.
-  /// \param ParentName Name of the function that encloses the target region.
-  /// \param OutlinedFn Outlined function value to be defined by this call.
-  /// \param OutlinedFnID Outlined function ID value to be defined by this call.
-  /// \param IsOffloadEntry True if the outlined function is an offload entry.
-  /// An outlined function may not be an entry if, e.g. the if clause always
-  /// evaluates to false.
-  void emitNonSPMDKernel(const OMPExecutableDirective &D, StringRef ParentName,
-                         llvm::Function *&OutlinedFn,
-                         llvm::Constant *&OutlinedFnID, bool IsOffloadEntry,
-                         const RegionCodeGenTy &CodeGen);
-
-  /// Emit outlined function specialized for the Single Program
-  /// Multiple Data programming model for applicable target directives on the
-  /// NVPTX device.
-  /// \param D Directive to emit.
-  /// \param ParentName Name of the function that encloses the target region.
-  /// \param OutlinedFn Outlined function value to be defined by this call.
-  /// \param OutlinedFnID Outlined function ID value to be defined by this call.
-  /// \param IsOffloadEntry True if the outlined function is an offload entry.
-  /// \param CodeGen Object containing the target statements.
-  /// An outlined function may not be an entry if, e.g. the if clause always
-  /// evaluates to false.
-  void emitSPMDKernel(const OMPExecutableDirective &D, StringRef ParentName,
-                      llvm::Function *&OutlinedFn,
-                      llvm::Constant *&OutlinedFnID, bool IsOffloadEntry,
-                      const RegionCodeGenTy &CodeGen);
-
-  /// Emit outlined function for 'target' directive on the NVPTX
-  /// device.
-  /// \param D Directive to emit.
-  /// \param ParentName Name of the function that encloses the target region.
-  /// \param OutlinedFn Outlined function value to be defined by this call.
-  /// \param OutlinedFnID Outlined function ID value to be defined by this call.
-  /// \param IsOffloadEntry True if the outlined function is an offload entry.
-  /// An outlined function may not be an entry if, e.g. the if clause always
-  /// evaluates to false.
-  void emitTargetOutlinedFunction(const OMPExecutableDirective &D,
-                                  StringRef ParentName,
-                                  llvm::Function *&OutlinedFn,
-                                  llvm::Constant *&OutlinedFnID,
-                                  bool IsOffloadEntry,
-                                  const RegionCodeGenTy &CodeGen) override;
-
-  /// Emits code for parallel or serial call of the \a OutlinedFn with
-  /// variables captured in a record which address is stored in \a
-  /// CapturedStruct.
-  /// This call is for the Non-SPMD Execution Mode.
-  /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
-  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
-  /// \param CapturedVars A pointer to the record with the references to
-  /// variables used in \a OutlinedFn function.
-  /// \param IfCond Condition in the associated 'if' clause, if it was
-  /// specified, nullptr otherwise.
-  void emitNonSPMDParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
-                               llvm::Value *OutlinedFn,
-                               ArrayRef<llvm::Value *> CapturedVars,
-                               const Expr *IfCond);
-
-  /// Emits code for parallel or serial call of the \a OutlinedFn with
-  /// variables captured in a record which address is stored in \a
-  /// CapturedStruct.
-  /// This call is for a parallel directive within an SPMD target directive.
-  /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
-  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
-  /// \param CapturedVars A pointer to the record with the references to
-  /// variables used in \a OutlinedFn function.
-  /// \param IfCond Condition in the associated 'if' clause, if it was
-  /// specified, nullptr otherwise.
-  ///
-  void emitSPMDParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
-                            llvm::Function *OutlinedFn,
-                            ArrayRef<llvm::Value *> CapturedVars,
-                            const Expr *IfCond);
-
-protected:
-  /// Get the function name of an outlined region.
-  //  The name can be customized depending on the target.
-  //
-  StringRef getOutlinedHelperName() const override {
-    return "__omp_outlined__";
-  }
-
-  /// Check if the default location must be constant.
-  /// Constant for NVPTX for better optimization.
-  bool isDefaultLocationConstant() const override { return true; }
-
-  /// Returns additional flags that can be stored in reserved_2 field of the
-  /// default location.
-  /// For NVPTX target contains data about SPMD/Non-SPMD execution mode +
-  /// Full/Lightweight runtime mode. Used for better optimization.
-  unsigned getDefaultLocationReserved2Flags() const override;
+class CGOpenMPRuntimeNVPTX : public CGOpenMPRuntimeGPU {
 
 public:
   explicit CGOpenMPRuntimeNVPTX(CodeGenModule &CGM);
-  void clear() override;
-
-  /// Emit call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32
-  /// global_tid, int proc_bind) to generate code for 'proc_bind' clause.
-  virtual void emitProcBindClause(CodeGenFunction &CGF,
-                                  llvm::omp::ProcBindKind ProcBind,
-                                  SourceLocation Loc) override;
-
-  /// Emits call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32
-  /// global_tid, kmp_int32 num_threads) to generate code for 'num_threads'
-  /// clause.
-  /// \param NumThreads An integer value of threads.
-  virtual void emitNumThreadsClause(CodeGenFunction &CGF,
-                                    llvm::Value *NumThreads,
-                                    SourceLocation Loc) override;
-
-  /// This function ought to emit, in the general case, a call to
-  // the openmp runtime kmpc_push_num_teams. In NVPTX backend it is not needed
-  // as these numbers are obtained through the PTX grid and block configuration.
-  /// \param NumTeams An integer expression of teams.
-  /// \param ThreadLimit An integer expression of threads.
-  void emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams,
-                          const Expr *ThreadLimit, SourceLocation Loc) override;
-
-  /// Emits inlined function for the specified OpenMP parallel
-  //  directive.
-  /// \a D. This outlined function has type void(*)(kmp_int32 *ThreadID,
-  /// kmp_int32 BoundID, struct context_vars*).
-  /// \param D OpenMP directive.
-  /// \param ThreadIDVar Variable for thread id in the current OpenMP region.
-  /// \param InnermostKind Kind of innermost directive (for simple directives it
-  /// is a directive itself, for combined - its innermost directive).
-  /// \param CodeGen Code generation sequence for the \a D directive.
-  llvm::Function *
-  emitParallelOutlinedFunction(const OMPExecutableDirective &D,
-                               const VarDecl *ThreadIDVar,
-                               OpenMPDirectiveKind InnermostKind,
-                               const RegionCodeGenTy &CodeGen) override;
-
-  /// Emits inlined function for the specified OpenMP teams
-  //  directive.
-  /// \a D. This outlined function has type void(*)(kmp_int32 *ThreadID,
-  /// kmp_int32 BoundID, struct context_vars*).
-  /// \param D OpenMP directive.
-  /// \param ThreadIDVar Variable for thread id in the current OpenMP region.
-  /// \param InnermostKind Kind of innermost directive (for simple directives it
-  /// is a directive itself, for combined - its innermost directive).
-  /// \param CodeGen Code generation sequence for the \a D directive.
-  llvm::Function *
-  emitTeamsOutlinedFunction(const OMPExecutableDirective &D,
-                            const VarDecl *ThreadIDVar,
-                            OpenMPDirectiveKind InnermostKind,
-                            const RegionCodeGenTy &CodeGen) override;
-
-  /// Emits code for teams call of the \a OutlinedFn with
-  /// variables captured in a record which address is stored in \a
-  /// CapturedStruct.
-  /// \param OutlinedFn Outlined function to be run by team masters. Type of
-  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
-  /// \param CapturedVars A pointer to the record with the references to
-  /// variables used in \a OutlinedFn function.
-  ///
-  void emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D,
-                     SourceLocation Loc, llvm::Function *OutlinedFn,
-                     ArrayRef<llvm::Value *> CapturedVars) override;
-
-  /// Emits code for parallel or serial call of the \a OutlinedFn with
-  /// variables captured in a record which address is stored in \a
-  /// CapturedStruct.
-  /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
-  /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
-  /// \param CapturedVars A pointer to the record with the references to
-  /// variables used in \a OutlinedFn function.
-  /// \param IfCond Condition in the associated 'if' clause, if it was
-  /// specified, nullptr otherwise.
-  void emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
-                        llvm::Function *OutlinedFn,
-                        ArrayRef<llvm::Value *> CapturedVars,
-                        const Expr *IfCond) override;
-
-  /// Emit an implicit/explicit barrier for OpenMP threads.
-  /// \param Kind Directive for which this implicit barrier call must be
-  /// generated. Must be OMPD_barrier for explicit barrier generation.
-  /// \param EmitChecks true if need to emit checks for cancellation barriers.
-  /// \param ForceSimpleCall true simple barrier call must be emitted, false if
-  /// runtime class decides which one to emit (simple or with cancellation
-  /// checks).
-  ///
-  void emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
-                       OpenMPDirectiveKind Kind, bool EmitChecks = true,
-                       bool ForceSimpleCall = false) override;
-
-  /// Emits a critical region.
-  /// \param CriticalName Name of the critical region.
-  /// \param CriticalOpGen Generator for the statement associated with the given
-  /// critical region.
-  /// \param Hint Value of the 'hint' clause (optional).
-  void emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName,
-                          const RegionCodeGenTy &CriticalOpGen,
-                          SourceLocation Loc,
-                          const Expr *Hint = nullptr) override;
-
-  /// Emit a code for reduction clause.
-  ///
-  /// \param Privates List of private copies for original reduction arguments.
-  /// \param LHSExprs List of LHS in \a ReductionOps reduction operations.
-  /// \param RHSExprs List of RHS in \a ReductionOps reduction operations.
-  /// \param ReductionOps List of reduction operations in form 'LHS binop RHS'
-  /// or 'operator binop(LHS, RHS)'.
-  /// \param Options List of options for reduction codegen:
-  ///     WithNowait true if parent directive has also nowait clause, false
-  ///     otherwise.
-  ///     SimpleReduction Emit reduction operation only. Used for omp simd
-  ///     directive on the host.
-  ///     ReductionKind The kind of reduction to perform.
-  virtual void emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
-                             ArrayRef<const Expr *> Privates,
-                             ArrayRef<const Expr *> LHSExprs,
-                             ArrayRef<const Expr *> RHSExprs,
-                             ArrayRef<const Expr *> ReductionOps,
-                             ReductionOptionsTy Options) override;
-
-  /// Returns specified OpenMP runtime function for the current OpenMP
-  /// implementation.  Specialized for the NVPTX device.
-  /// \param Function OpenMP runtime function.
-  /// \return Specified function.
-  llvm::FunctionCallee createNVPTXRuntimeFunction(unsigned Function);
-
-  /// Translates the native parameter of outlined function if this is required
-  /// for target.
-  /// \param FD Field decl from captured record for the parameter.
-  /// \param NativeParam Parameter itself.
-  const VarDecl *translateParameter(const FieldDecl *FD,
-                                    const VarDecl *NativeParam) const override;
-
-  /// Gets the address of the native argument basing on the address of the
-  /// target-specific parameter.
-  /// \param NativeParam Parameter itself.
-  /// \param TargetParam Corresponding target-specific parameter.
-  Address getParameterAddress(CodeGenFunction &CGF, const VarDecl *NativeParam,
-                              const VarDecl *TargetParam) const override;
-
-  /// Emits call of the outlined function with the provided arguments,
-  /// translating these arguments to correct target-specific arguments.
-  void emitOutlinedFunctionCall(
-      CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
-      ArrayRef<llvm::Value *> Args = llvm::None) const override;
-
-  /// Emits OpenMP-specific function prolog.
-  /// Required for device constructs.
-  void emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) override;
-
-  /// Gets the OpenMP-specific address of the local variable.
-  Address getAddressOfLocalVariable(CodeGenFunction &CGF,
-                                    const VarDecl *VD) override;
-
-  /// Target codegen is specialized based on two data-sharing modes: CUDA, in
-  /// which the local variables are actually global threadlocal, and Generic, in
-  /// which the local variables are placed in global memory if they may escape
-  /// their declaration context.
-  enum DataSharingMode {
-    /// CUDA data sharing mode.
-    CUDA,
-    /// Generic data-sharing mode.
-    Generic,
-  };
-
-  /// Cleans up references to the objects in finished function.
-  ///
-  void functionFinished(CodeGenFunction &CGF) override;
-
-  /// Choose a default value for the dist_schedule clause.
-  void getDefaultDistScheduleAndChunk(CodeGenFunction &CGF,
-      const OMPLoopDirective &S, OpenMPDistScheduleClauseKind &ScheduleKind,
-      llvm::Value *&Chunk) const override;
-
-  /// Choose a default value for the schedule clause.
-  void getDefaultScheduleAndChunk(CodeGenFunction &CGF,
-      const OMPLoopDirective &S, OpenMPScheduleClauseKind &ScheduleKind,
-      const Expr *&ChunkExpr) const override;
-
-  /// Adjust some parameters for the target-based directives, like addresses of
-  /// the variables captured by reference in lambdas.
-  void adjustTargetSpecificDataForLambdas(
-      CodeGenFunction &CGF, const OMPExecutableDirective &D) const override;
-
-  /// Perform check on requires decl to ensure that target architecture
-  /// supports unified addressing
-  void processRequiresDirective(const OMPRequiresDecl *D) override;
-
-  /// Returns default address space for the constant firstprivates, __constant__
-  /// address space by default.
-  unsigned getDefaultFirstprivateAddressSpace() const override;
-
-  /// Checks if the variable has associated OMPAllocateDeclAttr attribute with
-  /// the predefined allocator and translates it into the corresponding address
-  /// space.
-  bool hasAllocateAttributeForGlobalVar(const VarDecl *VD, LangAS &AS) override;
-
-private:
-  /// Track the execution mode when codegening directives within a target
-  /// region. The appropriate mode (SPMD/NON-SPMD) is set on entry to the
-  /// target region and used by containing directives such as 'parallel'
-  /// to emit optimized code.
-  ExecutionMode CurrentExecutionMode = EM_Unknown;
-
-  /// Check if the full runtime is required (default - yes).
-  bool RequiresFullRuntime = true;
-
-  /// true if we're emitting the code for the target region and next parallel
-  /// region is L0 for sure.
-  bool IsInTargetMasterThreadRegion = false;
-  /// true if currently emitting code for target/teams/distribute region, false
-  /// - otherwise.
-  bool IsInTTDRegion = false;
-  /// true if we're definitely in the parallel region.
-  bool IsInParallelRegion = false;
-
-  /// Map between an outlined function and its wrapper.
-  llvm::DenseMap<llvm::Function *, llvm::Function *> WrapperFunctionsMap;
-
-  /// Emit function which wraps the outline parallel region
-  /// and controls the parameters which are passed to this function.
-  /// The wrapper ensures that the outlined function is called
-  /// with the correct arguments when data is shared.
-  llvm::Function *createParallelDataSharingWrapper(
-      llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D);
-
-  /// The data for the single globalized variable.
-  struct MappedVarData {
-    /// Corresponding field in the global record.
-    const FieldDecl *FD = nullptr;
-    /// Corresponding address.
-    Address PrivateAddr = Address::invalid();
-    /// true, if only one element is required (for latprivates in SPMD mode),
-    /// false, if need to create based on the warp-size.
-    bool IsOnePerTeam = false;
-    MappedVarData() = delete;
-    MappedVarData(const FieldDecl *FD, bool IsOnePerTeam = false)
-        : FD(FD), IsOnePerTeam(IsOnePerTeam) {}
-  };
-  /// The map of local variables to their addresses in the global memory.
-  using DeclToAddrMapTy = llvm::MapVector<const Decl *, MappedVarData>;
-  /// Set of the parameters passed by value escaping OpenMP context.
-  using EscapedParamsTy = llvm::SmallPtrSet<const Decl *, 4>;
-  struct FunctionData {
-    DeclToAddrMapTy LocalVarData;
-    llvm::Optional<DeclToAddrMapTy> SecondaryLocalVarData = llvm::None;
-    EscapedParamsTy EscapedParameters;
-    llvm::SmallVector<const ValueDecl*, 4> EscapedVariableLengthDecls;
-    llvm::SmallVector<llvm::Value *, 4> EscapedVariableLengthDeclsAddrs;
-    const RecordDecl *GlobalRecord = nullptr;
-    llvm::Optional<const RecordDecl *> SecondaryGlobalRecord = llvm::None;
-    llvm::Value *GlobalRecordAddr = nullptr;
-    llvm::Value *IsInSPMDModeFlag = nullptr;
-    std::unique_ptr<CodeGenFunction::OMPMapVars> MappedParams;
-  };
-  /// Maps the function to the list of the globalized variables with their
-  /// addresses.
-  llvm::SmallDenseMap<llvm::Function *, FunctionData> FunctionGlobalizedDecls;
-  /// List of records for the globalized variables in target/teams/distribute
-  /// contexts. Inner records are going to be joined into the single record,
-  /// while those resulting records are going to be joined into the single
-  /// union. This resulting union (one per CU) is the entry point for the static
-  /// memory management runtime functions.
-  struct GlobalPtrSizeRecsTy {
-    llvm::GlobalVariable *UseSharedMemory = nullptr;
-    llvm::GlobalVariable *RecSize = nullptr;
-    llvm::GlobalVariable *Buffer = nullptr;
-    SourceLocation Loc;
-    llvm::SmallVector<const RecordDecl *, 2> Records;
-    unsigned RegionCounter = 0;
-  };
-  llvm::SmallVector<GlobalPtrSizeRecsTy, 8> GlobalizedRecords;
-  llvm::GlobalVariable *KernelTeamsReductionPtr = nullptr;
-  /// List of the records with the list of fields for the reductions across the
-  /// teams. Used to build the intermediate buffer for the fast teams
-  /// reductions.
-  /// All the records are gathered into a union `union.type` is created.
-  llvm::SmallVector<const RecordDecl *, 4> TeamsReductions;
-  /// Shared pointer for the global memory in the global memory buffer used for
-  /// the given kernel.
-  llvm::GlobalVariable *KernelStaticGlobalized = nullptr;
-  /// Pair of the Non-SPMD team and all reductions variables in this team
-  /// region.
-  std::pair<const Decl *, llvm::SmallVector<const ValueDecl *, 4>>
-      TeamAndReductions;
+  llvm::Value *getGPUWarpSize(CodeGenFunction &CGF);
 };
 
 } // CodeGen namespace.

diff  --git a/clang/lib/CodeGen/CMakeLists.txt b/clang/lib/CodeGen/CMakeLists.txt
index c300c1b021f3..c4bedf34921c 100644
--- a/clang/lib/CodeGen/CMakeLists.txt
+++ b/clang/lib/CodeGen/CMakeLists.txt
@@ -71,6 +71,7 @@ add_clang_library(clangCodeGen
   CGObjCRuntime.cpp
   CGOpenCLRuntime.cpp
   CGOpenMPRuntime.cpp
+  CGOpenMPRuntimeGPU.cpp
   CGOpenMPRuntimeNVPTX.cpp
   CGRecordLayoutBuilder.cpp
   CGStmt.cpp


        


More information about the cfe-commits mailing list