[all-commits] [llvm/llvm-project] 7d246e: [mlir][linalg] Implement Conv2D using Winograd Con...

Hsiangkai Wang via All-commits all-commits at lists.llvm.org
Tue Jul 9 23:31:06 PDT 2024


  Branch: refs/heads/main
  Home:   https://github.com/llvm/llvm-project
  Commit: 7d246e84a412449f00c0489705336d120983bb5c
      https://github.com/llvm/llvm-project/commit/7d246e84a412449f00c0489705336d120983bb5c
  Author: Hsiangkai Wang <hsiangkai.wang at arm.com>
  Date:   2024-07-10 (Wed, 10 Jul 2024)

  Changed paths:
    M mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
    M mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
    M mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
    M mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
    A mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
    M mlir/test/Dialect/Linalg/invalid.mlir
    M mlir/test/Dialect/Linalg/roundtrip.mlir
    A mlir/test/Dialect/Linalg/winograd-conv2d.mlir
    M mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp

  Log Message:
  -----------
  [mlir][linalg] Implement Conv2D using Winograd Conv2D algorithm (#96181)

Define high level winograd operators and convert conv_2d_nhwc_fhwc into
winograd operators. According to Winograd Conv2D algorithm, we need
three transform operators for input, filter, and output transformation.

The formula of Winograd Conv2D algorithm is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

filter transform: G x g x G^T
input transform: B^T x d x B
output transform: A^T x y x A

The implementation is based on the paper, Fast Algorithm for
Convolutional Neural Networks. (https://arxiv.org/abs/1509.09308)

Reviewers: stellaraccident, ftynse, Max191, GeorgeARM, cxy-1993, nicolasvasilache, MaheshRavishankar, dcaballe, rengolin

Reviewed By: ftynse, Max191, stellaraccident

Pull Request: https://github.com/llvm/llvm-project/pull/96181



To unsubscribe from these emails, change your notification settings at https://github.com/llvm/llvm-project/settings/notifications


More information about the All-commits mailing list