[llvm-commits] CVS: llvm/lib/CodeGen/RegAllocBigBlock.cpp

Reid Spencer rspencer at reidspencer.com
Fri Jun 22 03:22:09 PDT 2007


Hi Duraid ..

This looks nifty. Thanks for adding it.  Some minor comments ...

Reid.

Duraid Madina wrote:

>Changes in directory llvm/lib/CodeGen:
>
>RegAllocBigBlock.cpp added (r1.1)
>---
>Log message:
>
>check in the BigBlock local register allocator
>
>
>
>---
>Diffs of the changes:  (+852 -0)
>
> RegAllocBigBlock.cpp |  852 +++++++++++++++++++++++++++++++++++++++++++++++++++
> 1 files changed, 852 insertions(+)
>
>
>Index: llvm/lib/CodeGen/RegAllocBigBlock.cpp
>diff -c /dev/null llvm/lib/CodeGen/RegAllocBigBlock.cpp:1.1
>*** /dev/null	Fri Jun 22 03:27:22 2007
>--- llvm/lib/CodeGen/RegAllocBigBlock.cpp	Fri Jun 22 03:27:12 2007
>***************
>*** 0 ****
>--- 1,852 ----
>+ //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
>+ //
>+ //                     The LLVM Compiler Infrastructure
>+ //
>+ // This file was developed by the LLVM research group and is distributed under
>  
>
Really? Wasn't the author Duraid?

>+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
>+ //
>+ //===----------------------------------------------------------------------===//
>+ //
>+ // This register allocator is derived from RegAllocLocal.cpp. Like it, this
>+ // allocator works on one basic block at a time, oblivious to others.
>+ // However, the algorithm used here is suited for long blocks of
>+ // instructions - registers are spilled by greedily choosing those holding
>+ // values that will not be needed for the longest amount of time. This works
>+ // particularly well for blocks with 10 or more times as many instructions
>+ // as machine registers, but can be used for general code.
>+ //
>+ //===----------------------------------------------------------------------===//
>+ //
>+ // TODO: - automagically invoke linearscan for (groups of) small BBs?
>+ //       - break ties when picking regs? (probably not worth it in a
>+ //         JIT context)
>+ //
>+ //===----------------------------------------------------------------------===//
>  
>
This entire comment block belongs above the RABigBlock class and should 
be a doxygen comment (3 /). At this file level the comment should just 
say "This file implements the RABigBlock class".

>+ 
>+ #define DEBUG_TYPE "regalloc"
>  
>
>+ #include "llvm/BasicBlock.h"
>+ #include "llvm/CodeGen/Passes.h"
>+ #include "llvm/CodeGen/MachineFunctionPass.h"
>+ #include "llvm/CodeGen/MachineInstr.h"
>+ #include "llvm/CodeGen/SSARegMap.h"
>+ #include "llvm/CodeGen/MachineFrameInfo.h"
>+ #include "llvm/CodeGen/LiveVariables.h"
>+ #include "llvm/CodeGen/RegAllocRegistry.h"
>+ #include "llvm/Target/TargetInstrInfo.h"
>+ #include "llvm/Target/TargetMachine.h"
>+ #include "llvm/Support/CommandLine.h"
>+ #include "llvm/Support/Debug.h"
>+ #include "llvm/Support/Compiler.h"
>+ #include "llvm/ADT/IndexedMap.h"
>+ #include "llvm/ADT/DenseMap.h"
>+ #include "llvm/ADT/SmallVector.h"
>+ #include "llvm/ADT/Statistic.h"
>+ #include <algorithm>
>+ using namespace llvm;
>+ 
>+ STATISTIC(NumStores, "Number of stores added");
>+ STATISTIC(NumLoads , "Number of loads added");
>+ STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
>  
>
>+ 
>+ namespace {
>+   static RegisterRegAlloc
>+     bigBlockRegAlloc("bigblock", "  Big-block register allocator",
>+                   createBigBlockRegisterAllocator);
>+ 
>+   struct VRegKeyInfo {
>+     static inline unsigned getEmptyKey() { return -1U; }
>+     static inline unsigned getTombstoneKey() { return -2U; }
>+     static unsigned getHashValue(const unsigned &Key) { return Key; }
>+   };
>  
>
This struct needs a doxygen comment

>+ 
>+   class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
>  
>
This is where you need to move the big comment at the start of the file to.

>+   public:
>+     static char ID;
>  
>
Please add a doxygen comment for this variable.

>+     RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
>+   private:
>+     const TargetMachine *TM;
>+     MachineFunction *MF;
>+     const MRegisterInfo *RegInfo;
>+     LiveVariables *LV;
>  
>
Please use a ///< comment to describe each of these member variables 
like you do for the ones that follow.

>+ 
>+     // InsnTimes - maps machine instructions to their "execute times"
>+     std::map<MachineInstr *, unsigned> InsnTimes;
>+     
>+     // VRegReadTable - maps VRegs in a BB to the set of times they are read
>+     DenseMap<unsigned, SmallVector<unsigned, 2>*, VRegKeyInfo> VRegReadTable;
>+ 
>+     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
>+     // values are spilled.
>+     std::map<unsigned, int> StackSlotForVirtReg;
>+ 
>+     // Virt2PhysRegMap - This map contains entries for each virtual register
>+     // that is currently available in a physical register.
>+     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
>  
>
Please make the above comments into doxygen comments by using ///

>+ 
>+     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
>+       return Virt2PhysRegMap[VirtReg];
>+     }
>  
>
This is mis-placed. Please move this function down to where the other 
functions are located.

>+ 
>+     // PhysRegsUsed - This array is effectively a map, containing entries for
>+     // each physical register that currently has a value (ie, it is in
>+     // Virt2PhysRegMap).  The value mapped to is the virtual register
>+     // corresponding to the physical register (the inverse of the
>+     // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
>+     // because it is used by a future instruction, and to -2 if it is not
>+     // allocatable.  If the entry for a physical register is -1, then the
>+     // physical register is "not in the map".
>+     //
>+     std::vector<int> PhysRegsUsed;
>+ 
>+     // PhysRegsUseOrder - This contains a list of the physical registers that
>+     // currently have a virtual register value in them.  This list provides an
>+     // ordering of registers, imposing a reallocation order.  This list is only
>+     // used if all registers are allocated and we have to spill one, in which
>+     // case we spill the least recently used register.  Entries at the front of
>+     // the list are the least recently used registers, entries at the back are
>+     // the most recently used.
>+     //
>+     std::vector<unsigned> PhysRegsUseOrder;
>+ 
>+     // VirtRegModified - This bitset contains information about which virtual
>+     // registers need to be spilled back to memory when their registers are
>+     // scavenged.  If a virtual register has simply been rematerialized, there
>+     // is no reason to spill it to memory when we need the register back.
>+     //
>+     std::vector<bool> VirtRegModified;
>  
>
Again, these member vars need to use /// insead of // in order for these 
comments to be picked up by doxygen.

>+ 
>+     void markVirtRegModified(unsigned Reg, bool Val = true) {
>  
>
This function needs a doxygen comment.

>+       assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
>+       Reg -= MRegisterInfo::FirstVirtualRegister;
>+       if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
>  
>
It helps readability and debugging if you put the body of the if on a 
separate line from the condition.

>+       VirtRegModified[Reg] = Val;
>+     }
>+     
>+     bool isVirtRegModified(unsigned Reg) const {
>  
>
This function needs a doxygen comment

>+       assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
>+       assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
>+              && "Illegal virtual register!");
>+       return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
>+     }
>+ 
>+     void MarkPhysRegRecentlyUsed(unsigned Reg) {
>  
>
This function needs a doxygen comment.

>+       if (PhysRegsUseOrder.empty() ||
>+           PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
>+ 
>+       for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
>+         if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
>+           unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
>+           PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
>+           // Add it to the end of the list
>+           PhysRegsUseOrder.push_back(RegMatch);
>+           if (RegMatch == Reg)
>+             return;    // Found an exact match, exit early
>+         }
>+     }
>+ 
>+   public:
>+     virtual const char *getPassName() const {
>  
>
Doxygen comment.

>+       return "BigBlock Register Allocator";
>+     }
>+ 
>+     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
>  
>
Doxygen comment.

>+       AU.addRequired<LiveVariables>();
>+       AU.addRequiredID(PHIEliminationID);
>+       AU.addRequiredID(TwoAddressInstructionPassID);
>+       MachineFunctionPass::getAnalysisUsage(AU);
>+     }
>+ 
>+   private:
>+     /// runOnMachineFunction - Register allocate the whole function
>  
>
This won't get picked up by doxygen. Either it needs to be 2 lines long 
or you need to use @brief

>+     bool runOnMachineFunction(MachineFunction &Fn);
>+ 
>+     /// AllocateBasicBlock - Register allocate the specified basic block.
>  
>
Same.

>+     void AllocateBasicBlock(MachineBasicBlock &MBB);
>+ 
>+     /// FillVRegReadTable - Fill out the table of vreg read times given a BB
>  
>
Same.

>+     void FillVRegReadTable(MachineBasicBlock &MBB);
>+     
>+     /// areRegsEqual - This method returns true if the specified registers are
>+     /// related to each other.  To do this, it checks to see if they are equal
>+     /// or if the first register is in the alias set of the second register.
>+     ///
>+     bool areRegsEqual(unsigned R1, unsigned R2) const {
>+       if (R1 == R2) return true;
>+       for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
>+            *AliasSet; ++AliasSet) {
>+         if (*AliasSet == R1) return true;
>+       }
>+       return false;
>+     }
>+ 
>+     /// getStackSpaceFor - This returns the frame index of the specified virtual
>+     /// register on the stack, allocating space if necessary.
>+     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
>+ 
>+     /// removePhysReg - This method marks the specified physical register as no
>+     /// longer being in use.
>+     ///
>+     void removePhysReg(unsigned PhysReg);
>+ 
>+     /// spillVirtReg - This method spills the value specified by PhysReg into
>+     /// the virtual register slot specified by VirtReg.  It then updates the RA
>+     /// data structures to indicate the fact that PhysReg is now available.
>+     ///
>+     void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
>+                       unsigned VirtReg, unsigned PhysReg);
>+ 
>+     /// spillPhysReg - This method spills the specified physical register into
>+     /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
>+     /// true, then the request is ignored if the physical register does not
>+     /// contain a virtual register.
>+     ///
>+     void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
>+                       unsigned PhysReg, bool OnlyVirtRegs = false);
>+ 
>+     /// assignVirtToPhysReg - This method updates local state so that we know
>+     /// that PhysReg is the proper container for VirtReg now.  The physical
>+     /// register must not be used for anything else when this is called.
>+     ///
>+     void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
>+ 
>+     /// liberatePhysReg - Make sure the specified physical register is available
>+     /// for use.  If there is currently a value in it, it is either moved out of
>+     /// the way or spilled to memory.
>+     ///
>+     void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
>+                          unsigned PhysReg);
>+ 
>+     /// isPhysRegAvailable - Return true if the specified physical register is
>+     /// free and available for use.  This also includes checking to see if
>+     /// aliased registers are all free...
>+     ///
>+     bool isPhysRegAvailable(unsigned PhysReg) const;
>+ 
>+     /// getFreeReg - Look to see if there is a free register available in the
>+     /// specified register class.  If not, return 0.
>+     ///
>+     unsigned getFreeReg(const TargetRegisterClass *RC);
>+ 
>+     /// chooseReg - Pick a physical register to hold the specified
>+     /// virtual register by choosing the one which will be read furthest
>+     /// in the future.
>+     ///
>+     unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
>+                     unsigned VirtReg);
>+ 
>+     /// reloadVirtReg - This method transforms the specified specified virtual
>+     /// register use to refer to a physical register.  This method may do this
>+     /// in one of several ways: if the register is available in a physical
>+     /// register already, it uses that physical register.  If the value is not
>+     /// in a physical register, and if there are physical registers available,
>+     /// it loads it into a register.  If register pressure is high, and it is
>+     /// possible, it tries to fold the load of the virtual register into the
>+     /// instruction itself.  It avoids doing this if register pressure is low to
>+     /// improve the chance that subsequent instructions can use the reloaded
>+     /// value.  This method returns the modified instruction.
>+     ///
>+     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
>+                                 unsigned OpNum);
>+ 
>+   };
>+   char RABigBlock::ID = 0;
>+ }
>+ 
>+ /// getStackSpaceFor - This allocates space for the specified virtual register
>+ /// to be held on the stack.
>+ int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
>+   // Find the location Reg would belong...
>+   std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
>+ 
>+   if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
>+     return I->second;          // Already has space allocated?
>+ 
>+   // Allocate a new stack object for this spill location...
>+   int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
>+                                                        RC->getAlignment());
>+ 
>+   // Assign the slot...
>+   StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
>+   return FrameIdx;
>+ }
>+ 
>+ 
>+ /// removePhysReg - This method marks the specified physical register as no
>+ /// longer being in use.
>+ ///
>+ void RABigBlock::removePhysReg(unsigned PhysReg) {
>+   PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
>+ 
>+   std::vector<unsigned>::iterator It =
>+     std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
>+   if (It != PhysRegsUseOrder.end())
>+     PhysRegsUseOrder.erase(It);
>+ }
>+ 
>+ 
>+ /// spillVirtReg - This method spills the value specified by PhysReg into the
>+ /// virtual register slot specified by VirtReg.  It then updates the RA data
>+ /// structures to indicate the fact that PhysReg is now available.
>+ ///
>+ void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
>+                            MachineBasicBlock::iterator I,
>+                            unsigned VirtReg, unsigned PhysReg) {
>+   assert(VirtReg && "Spilling a physical register is illegal!"
>+          " Must not have appropriate kill for the register or use exists beyond"
>+          " the intended one.");
>+   DOUT << "  Spilling register " << RegInfo->getName(PhysReg)
>+        << " containing %reg" << VirtReg;
>+   if (!isVirtRegModified(VirtReg))
>+     DOUT << " which has not been modified, so no store necessary!";
>+ 
>+   // Otherwise, there is a virtual register corresponding to this physical
>+   // register.  We only need to spill it into its stack slot if it has been
>+   // modified.
>+   if (isVirtRegModified(VirtReg)) {
>+     const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
>+     int FrameIndex = getStackSpaceFor(VirtReg, RC);
>+     DOUT << " to stack slot #" << FrameIndex;
>+     RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
>+     ++NumStores;   // Update statistics
>+   }
>+ 
>+   getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
>+ 
>+   DOUT << "\n";
>+   removePhysReg(PhysReg);
>+ }
>+ 
>+ 
>+ /// spillPhysReg - This method spills the specified physical register into the
>+ /// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
>+ /// then the request is ignored if the physical register does not contain a
>+ /// virtual register.
>+ ///
>+ void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
>+                            unsigned PhysReg, bool OnlyVirtRegs) {
>+   if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
>+     assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
>+     if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
>+       spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
>+   } else {
>+     // If the selected register aliases any other registers, we must make
>+     // sure that one of the aliases isn't alive.
>+     for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+          *AliasSet; ++AliasSet)
>+       if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
>+           PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
>+         if (PhysRegsUsed[*AliasSet] == 0) {
>+           // This must have been a dead def due to something like this:
>+           // %EAX :=
>+           //      := op %AL
>+           // No more use of %EAX, %AH, etc.
>+           // %EAX isn't dead upon definition, but %AH is. However %AH isn't
>+           // an operand of definition MI so it's not marked as such.
>+           DOUT << "  Register " << RegInfo->getName(*AliasSet)
>+                << " [%reg" << *AliasSet
>+                << "] is never used, removing it frame live list\n";
>+           removePhysReg(*AliasSet);
>+         } else
>+           spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
>+   }
>+ }
>+ 
>+ 
>+ /// assignVirtToPhysReg - This method updates local state so that we know
>+ /// that PhysReg is the proper container for VirtReg now.  The physical
>+ /// register must not be used for anything else when this is called.
>+ ///
>+ void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
>+   assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
>+   // Update information to note the fact that this register was just used, and
>+   // it holds VirtReg.
>+   PhysRegsUsed[PhysReg] = VirtReg;
>+   getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
>+   PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
>+ }
>+ 
>+ 
>+ /// isPhysRegAvailable - Return true if the specified physical register is free
>+ /// and available for use.  This also includes checking to see if aliased
>+ /// registers are all free...
>+ ///
>+ bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
>+   if (PhysRegsUsed[PhysReg] != -1) return false;
>+ 
>+   // If the selected register aliases any other allocated registers, it is
>+   // not free!
>+   for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+        *AliasSet; ++AliasSet)
>+     if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
>+       return false;                    // Can't use this reg then.
>+   return true;
>+ }
>+ 
>+ 
>+ //////// FIX THIS:
>  
>
/// is sufficient.

Also, please use "FIXME" or "TODO" as they are more standard for 
searches and IDE highlighting.

>+ /// getFreeReg - Look to see if there is a free register available in the
>+ /// specified register class.  If not, return 0.
>+ ///
>+ unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
>+   // Get iterators defining the range of registers that are valid to allocate in
>+   // this class, which also specifies the preferred allocation order.
>+   TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
>+   TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
>+ 
>+   for (; RI != RE; ++RI)
>+     if (isPhysRegAvailable(*RI)) {       // Is reg unused?
>+       assert(*RI != 0 && "Cannot use register!");
>+       return *RI; // Found an unused register!
>+     }
>+   return 0;
>+ }
>+ 
>+ 
>+ /// liberatePhysReg - Make sure the specified physical register is available for
>+ /// use.  If there is currently a value in it, it is either moved out of the way
>+ /// or spilled to memory.
>+ ///
>+ void RABigBlock::liberatePhysReg(MachineBasicBlock &MBB,
>+                               MachineBasicBlock::iterator &I,
>+                               unsigned PhysReg) {
>+   spillPhysReg(MBB, I, PhysReg);
>+ }
>+ 
>+ /// chooseReg - Pick a physical register to hold the specified
>+ /// virtual register by choosing the one whose value will be read
>+ /// furthest in the future.
>+ ///
>+ unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
>+                          unsigned VirtReg) {
>+   const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
>+   // First check to see if we have a free register of the requested type...
>+   unsigned PhysReg = getFreeReg(RC);
>+ 
>+   // If we didn't find an unused register, find the one which will be
>+   // read at the most distant point in time.
>+   if (PhysReg == 0) {
>+     unsigned delay=0, longest_delay=0;
>+     SmallVector<unsigned, 2> *ReadTimes;
>+ 
>+     unsigned curTime = InsnTimes[I];
>+ 
>+     // for all physical regs in the RC,
>+     for(TargetRegisterClass::iterator pReg = RC->begin(); 
>+                                       pReg != RC->end();  ++pReg) {
>+       // how long until they're read?
>+       if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
>+         ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
>+ 	SmallVector<unsigned, 2>::iterator pt = 
>+                                          std::lower_bound(ReadTimes->begin(),
>+                                                           ReadTimes->end(),
>+                                                           curTime);
>  
>
>+         delay = *pt - curTime;
>+         
>+         if(delay > longest_delay) {
>+           longest_delay = delay;
>+           PhysReg = *pReg;
>+         }
>+       }
>+     }
>+     
>+     assert(PhysReg && "couldn't grab a register from the table?");
>+     // TODO: assert that RC->contains(PhysReg) / handle aliased registers
>+ 
>+     // since we needed to look in the table we need to spill this register.
>+     spillPhysReg(MBB, I, PhysReg);
>+   }
>+ 
>+   // assign the vreg to our chosen physical register
>+   assignVirtToPhysReg(VirtReg, PhysReg);
>+   return PhysReg; // and return it
>+ }
>+ 
>+ 
>+ /// reloadVirtReg - This method transforms an instruction with a virtual
>+ /// register use to one that references a physical register. It does this as
>+ /// follows:
>+ ///
>+ ///   1) If the register is already in a physical register, it uses it.
>+ ///   2) Otherwise, if there is a free physical register, it uses that.
>+ ///   3) Otherwise, it calls chooseReg() to get the physical register
>+ ///      holding the most distantly needed value, generating a spill in
>+ ///      the process.
>+ ///
>+ /// This method returns the modified instruction.
>+ MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
>+                                      unsigned OpNum) {
>+   unsigned VirtReg = MI->getOperand(OpNum).getReg();
>+ 
>+   // If the virtual register is already available in a physical register,
>+   // just update the instruction and return.
>+   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
>+     MI->getOperand(OpNum).setReg(PR);
>+     return MI;
>+   }
>+ 
>+   // Otherwise, if we have free physical registers available to hold the
>+   // value, use them.
>+   const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
>+   unsigned PhysReg = getFreeReg(RC);
>+   int FrameIndex = getStackSpaceFor(VirtReg, RC);
>+ 
>+   if (PhysReg) {   // we have a free register, so use it.
>+     assignVirtToPhysReg(VirtReg, PhysReg);
>+   } else {  // no free registers available.
>+     // try to fold the spill into the instruction
>+     if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) {
>+       ++NumFolded;
>+       // Since we changed the address of MI, make sure to update live variables
>+       // to know that the new instruction has the properties of the old one.
>+       LV->instructionChanged(MI, FMI);
>+       return MBB.insert(MBB.erase(MI), FMI);
>+     }
>+     
>+     // determine which of the physical registers we'll kill off, since we
>+     // couldn't fold.
>+     PhysReg = chooseReg(MBB, MI, VirtReg);
>+   }
>+ 
>+   // this virtual register is now unmodified (since we just reloaded it)
>+   markVirtRegModified(VirtReg, false);
>+ 
>+   DOUT << "  Reloading %reg" << VirtReg << " into "
>+        << RegInfo->getName(PhysReg) << "\n";
>+ 
>+   // Add move instruction(s)
>+   RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
>+   ++NumLoads;    // Update statistics
>+ 
>+   MF->setPhysRegUsed(PhysReg);
>+   MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
>+   return MI;
>+ }
>+ 
>+ /// Fill out the vreg read timetable. Since ReadTime increases
>+ /// monotonically, the individual readtime sets will be sorted
>+ /// in ascending order.
>+ void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
>+   // loop over each instruction
>+   MachineBasicBlock::iterator MII;
>+   unsigned ReadTime;
>+   
>+   for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
>+     MachineInstr *MI = MII;
>+     
>+     InsnTimes[MI] = ReadTime;
>+     
>+     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
>+       MachineOperand& MO = MI->getOperand(i);
>+       // look for vreg reads..
>+       if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
>+           MRegisterInfo::isVirtualRegister(MO.getReg())) {
>+         // ..and add them to the read table.
>+         if(!VRegReadTable[MO.getReg()])
>+           VRegReadTable[MO.getReg()] = new SmallVector<unsigned, 2>;
>+           
>+         VRegReadTable[MO.getReg()]->push_back(ReadTime);
>+       }
>+     }
>+ 
>+   }  
>+ 
>+ }
>+ 
>+ void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
>+   // loop over each instruction
>+   MachineBasicBlock::iterator MII = MBB.begin();
>+   const TargetInstrInfo &TII = *TM->getInstrInfo();
>+   
>+   DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
>+         if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
>+ 
>+   // If this is the first basic block in the machine function, add live-in
>+   // registers as active.
>+   if (&MBB == &*MF->begin()) {
>+     for (MachineFunction::livein_iterator I = MF->livein_begin(),
>+          E = MF->livein_end(); I != E; ++I) {
>+       unsigned Reg = I->first;
>+       MF->setPhysRegUsed(Reg);
>+       PhysRegsUsed[Reg] = 0;            // It is free and reserved now
>+       PhysRegsUseOrder.push_back(Reg);
>+       for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
>+            *AliasSet; ++AliasSet) {
>+         if (PhysRegsUsed[*AliasSet] != -2) {
>+           PhysRegsUseOrder.push_back(*AliasSet);
>+           PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
>+           MF->setPhysRegUsed(*AliasSet);
>+         }
>+       }
>+     }    
>+   }
>+   
>+   // Otherwise, sequentially allocate each instruction in the MBB.
>+   while (MII != MBB.end()) {
>+     MachineInstr *MI = MII++;
>+     const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
>+     DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
>+           DOUT << "  Regs have values: ";
>+           for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
>+             if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
>+                DOUT << "[" << RegInfo->getName(i)
>+                     << ",%reg" << PhysRegsUsed[i] << "] ";
>+           DOUT << "\n");
>+ 
>+     // Loop over the implicit uses, making sure that they are at the head of the
>+     // use order list, so they don't get reallocated.
>+     if (TID.ImplicitUses) {
>+       for (const unsigned *ImplicitUses = TID.ImplicitUses;
>+            *ImplicitUses; ++ImplicitUses)
>+         MarkPhysRegRecentlyUsed(*ImplicitUses);
>+     }
>+ 
>+     SmallVector<unsigned, 8> Kills;
>+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+       MachineOperand& MO = MI->getOperand(i);
>+       if (MO.isRegister() && MO.isKill())
>+         Kills.push_back(MO.getReg());
>+     }
>+ 
>+     // Get the used operands into registers.  This has the potential to spill
>+     // incoming values if we are out of registers.  Note that we completely
>+     // ignore physical register uses here.  We assume that if an explicit
>+     // physical register is referenced by the instruction, that it is guaranteed
>+     // to be live-in, or the input is badly hosed.
>+     //
>+     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
>+       MachineOperand& MO = MI->getOperand(i);
>+       // here we are looking for only used operands (never def&use)
>+       if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
>+           MRegisterInfo::isVirtualRegister(MO.getReg()))
>+         MI = reloadVirtReg(MBB, MI, i);
>+     }
>+ 
>+     // If this instruction is the last user of this register, kill the
>+     // value, freeing the register being used, so it doesn't need to be
>+     // spilled to memory.
>+     //
>+     for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
>+       unsigned VirtReg = Kills[i];
>+       unsigned PhysReg = VirtReg;
>+       if (MRegisterInfo::isVirtualRegister(VirtReg)) {
>+         // If the virtual register was never materialized into a register, it
>+         // might not be in the map, but it won't hurt to zero it out anyway.
>+         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
>+         PhysReg = PhysRegSlot;
>+         PhysRegSlot = 0;
>+       } else if (PhysRegsUsed[PhysReg] == -2) {
>+         // Unallocatable register dead, ignore.
>+         continue;
>+       }
>+ 
>+       if (PhysReg) {
>+         DOUT << "  Last use of " << RegInfo->getName(PhysReg)
>+              << "[%reg" << VirtReg <<"], removing it from live set\n";
>+         removePhysReg(PhysReg);
>+         for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+              *AliasSet; ++AliasSet) {
>+           if (PhysRegsUsed[*AliasSet] != -2) {
>+             DOUT  << "  Last use of "
>+                   << RegInfo->getName(*AliasSet)
>+                   << "[%reg" << VirtReg <<"], removing it from live set\n";
>+             removePhysReg(*AliasSet);
>+           }
>+         }
>+       }
>+     }
>+ 
>+     // Loop over all of the operands of the instruction, spilling registers that
>+     // are defined, and marking explicit destinations in the PhysRegsUsed map.
>+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+       MachineOperand& MO = MI->getOperand(i);
>+       if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
>+           MRegisterInfo::isPhysicalRegister(MO.getReg())) {
>+         unsigned Reg = MO.getReg();
>+         if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
>+             
>+         MF->setPhysRegUsed(Reg);
>+         spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
>+         PhysRegsUsed[Reg] = 0;            // It is free and reserved now
>+         PhysRegsUseOrder.push_back(Reg);
>+         for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
>+              *AliasSet; ++AliasSet) {
>+           if (PhysRegsUsed[*AliasSet] != -2) {
>+             PhysRegsUseOrder.push_back(*AliasSet);
>+             PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
>+             MF->setPhysRegUsed(*AliasSet);
>+           }
>+         }
>+       }
>+     }
>+ 
>+     // Loop over the implicit defs, spilling them as well.
>+     if (TID.ImplicitDefs) {
>+       for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
>+            *ImplicitDefs; ++ImplicitDefs) {
>+         unsigned Reg = *ImplicitDefs;
>+         bool IsNonAllocatable = PhysRegsUsed[Reg] == -2;
>+         if (!IsNonAllocatable) {
>+           spillPhysReg(MBB, MI, Reg, true);
>+           PhysRegsUseOrder.push_back(Reg);
>+           PhysRegsUsed[Reg] = 0;            // It is free and reserved now
>+         }
>+         MF->setPhysRegUsed(Reg);
>+ 
>+         for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
>+              *AliasSet; ++AliasSet) {
>+           if (PhysRegsUsed[*AliasSet] != -2) {
>+             if (!IsNonAllocatable) {
>+               PhysRegsUseOrder.push_back(*AliasSet);
>+               PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
>+             }
>+             MF->setPhysRegUsed(*AliasSet);
>+           }
>+         }
>+       }
>+     }
>+ 
>+     SmallVector<unsigned, 8> DeadDefs;
>+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+       MachineOperand& MO = MI->getOperand(i);
>+       if (MO.isRegister() && MO.isDead())
>+         DeadDefs.push_back(MO.getReg());
>+     }
>+ 
>+     // Okay, we have allocated all of the source operands and spilled any values
>+     // that would be destroyed by defs of this instruction.  Loop over the
>+     // explicit defs and assign them to a register, spilling incoming values if
>+     // we need to scavenge a register.
>+     //
>+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+       MachineOperand& MO = MI->getOperand(i);
>+       if (MO.isRegister() && MO.isDef() && MO.getReg() &&
>+           MRegisterInfo::isVirtualRegister(MO.getReg())) {
>+         unsigned DestVirtReg = MO.getReg();
>+         unsigned DestPhysReg;
>+ 
>+         // If DestVirtReg already has a value, use it.
>+         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
>+           DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
>+         MF->setPhysRegUsed(DestPhysReg);
>+         markVirtRegModified(DestVirtReg);
>+         MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register
>+       }
>+     }
>+ 
>+     // If this instruction defines any registers that are immediately dead,
>+     // kill them now.
>+     //
>+     for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
>+       unsigned VirtReg = DeadDefs[i];
>+       unsigned PhysReg = VirtReg;
>+       if (MRegisterInfo::isVirtualRegister(VirtReg)) {
>+         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
>+         PhysReg = PhysRegSlot;
>+         assert(PhysReg != 0);
>+         PhysRegSlot = 0;
>+       } else if (PhysRegsUsed[PhysReg] == -2) {
>+         // Unallocatable register dead, ignore.
>+         continue;
>+       }
>+ 
>+       if (PhysReg) {
>+         DOUT  << "  Register " << RegInfo->getName(PhysReg)
>+               << " [%reg" << VirtReg
>+               << "] is never used, removing it frame live list\n";
>+         removePhysReg(PhysReg);
>+         for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+              *AliasSet; ++AliasSet) {
>+           if (PhysRegsUsed[*AliasSet] != -2) {
>+             DOUT  << "  Register " << RegInfo->getName(*AliasSet)
>+                   << " [%reg" << *AliasSet
>+                   << "] is never used, removing it frame live list\n";
>+             removePhysReg(*AliasSet);
>+           }
>+         }
>+       }
>+     }
>+     
>+     // Finally, if this is a noop copy instruction, zap it.
>+     unsigned SrcReg, DstReg;
>+     if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
>+       LV->removeVirtualRegistersKilled(MI);
>+       LV->removeVirtualRegistersDead(MI);
>+       MBB.erase(MI);
>+     }
>+   }
>+ 
>+   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
>+ 
>+   // Spill all physical registers holding virtual registers now.
>+   for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
>+     if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
>+       if (unsigned VirtReg = PhysRegsUsed[i])
>+         spillVirtReg(MBB, MI, VirtReg, i);
>+       else
>+         removePhysReg(i);
>+ 
>+ #if 0
>+   // This checking code is very expensive.
>+   bool AllOk = true;
>+   for (unsigned i = MRegisterInfo::FirstVirtualRegister,
>+            e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
>+     if (unsigned PR = Virt2PhysRegMap[i]) {
>+       cerr << "Register still mapped: " << i << " -> " << PR << "\n";
>+       AllOk = false;
>+     }
>+   assert(AllOk && "Virtual registers still in phys regs?");
>+ #endif
>  
>
Really need to keep this #if 0 section?

>+ 
>+   // Clear any physical register which appear live at the end of the basic
>+   // block, but which do not hold any virtual registers.  e.g., the stack
>+   // pointer.
>+   PhysRegsUseOrder.clear();
>+ }
>+ 
>+ /// runOnMachineFunction - Register allocate the whole function
>+ ///
>+ bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
>+   DOUT << "Machine Function " << "\n";
>+   MF = &Fn;
>+   TM = &Fn.getTarget();
>+   RegInfo = TM->getRegisterInfo();
>+   LV = &getAnalysis<LiveVariables>();
>+ 
>+   PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
>+   
>+   // At various places we want to efficiently check to see whether a register
>+   // is allocatable.  To handle this, we mark all unallocatable registers as
>+   // being pinned down, permanently.
>+   {
>+     BitVector Allocable = RegInfo->getAllocatableSet(Fn);
>+     for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
>+       if (!Allocable[i])
>+         PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
>+   }
>+ 
>+   // initialize the virtual->physical register map to have a 'null'
>+   // mapping for all virtual registers
>+   Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
>+ 
>+   // Loop over all of the basic blocks, eliminating virtual register references
>+   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
>+        MBB != MBBe; ++MBB) {
>+     // fill out the read timetable 
>+     FillVRegReadTable(*MBB);
>+     // use it to allocate the BB
>+     AllocateBasicBlock(*MBB);
>+     // clear it
>+     VRegReadTable.clear();
>+   }
>+   
>+   StackSlotForVirtReg.clear();
>+   PhysRegsUsed.clear();
>+   VirtRegModified.clear();
>+   Virt2PhysRegMap.clear();
>+   return true;
>+ }
>+ 
>+ FunctionPass *llvm::createBigBlockRegisterAllocator() {
>+   return new RABigBlock();
>+ }
>+ 
>
>
>
>_______________________________________________
>llvm-commits mailing list
>llvm-commits at cs.uiuc.edu
>http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
>  
>




More information about the llvm-commits mailing list