[llvm-commits] CVS: llvm/lib/CodeGen/RegAllocBigBlock.cpp

Duraid Madina duraid at octopus.com.au
Fri Jun 22 01:27:41 PDT 2007



Changes in directory llvm/lib/CodeGen:

RegAllocBigBlock.cpp added (r1.1)
---
Log message:

check in the BigBlock local register allocator



---
Diffs of the changes:  (+852 -0)

 RegAllocBigBlock.cpp |  852 +++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 852 insertions(+)


Index: llvm/lib/CodeGen/RegAllocBigBlock.cpp
diff -c /dev/null llvm/lib/CodeGen/RegAllocBigBlock.cpp:1.1
*** /dev/null	Fri Jun 22 03:27:22 2007
--- llvm/lib/CodeGen/RegAllocBigBlock.cpp	Fri Jun 22 03:27:12 2007
***************
*** 0 ****
--- 1,852 ----
+ //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This register allocator is derived from RegAllocLocal.cpp. Like it, this
+ // allocator works on one basic block at a time, oblivious to others.
+ // However, the algorithm used here is suited for long blocks of
+ // instructions - registers are spilled by greedily choosing those holding
+ // values that will not be needed for the longest amount of time. This works
+ // particularly well for blocks with 10 or more times as many instructions
+ // as machine registers, but can be used for general code.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // TODO: - automagically invoke linearscan for (groups of) small BBs?
+ //       - break ties when picking regs? (probably not worth it in a
+ //         JIT context)
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #define DEBUG_TYPE "regalloc"
+ #include "llvm/BasicBlock.h"
+ #include "llvm/CodeGen/Passes.h"
+ #include "llvm/CodeGen/MachineFunctionPass.h"
+ #include "llvm/CodeGen/MachineInstr.h"
+ #include "llvm/CodeGen/SSARegMap.h"
+ #include "llvm/CodeGen/MachineFrameInfo.h"
+ #include "llvm/CodeGen/LiveVariables.h"
+ #include "llvm/CodeGen/RegAllocRegistry.h"
+ #include "llvm/Target/TargetInstrInfo.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Support/CommandLine.h"
+ #include "llvm/Support/Debug.h"
+ #include "llvm/Support/Compiler.h"
+ #include "llvm/ADT/IndexedMap.h"
+ #include "llvm/ADT/DenseMap.h"
+ #include "llvm/ADT/SmallVector.h"
+ #include "llvm/ADT/Statistic.h"
+ #include <algorithm>
+ using namespace llvm;
+ 
+ STATISTIC(NumStores, "Number of stores added");
+ STATISTIC(NumLoads , "Number of loads added");
+ STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
+ 
+ namespace {
+   static RegisterRegAlloc
+     bigBlockRegAlloc("bigblock", "  Big-block register allocator",
+                   createBigBlockRegisterAllocator);
+ 
+   struct VRegKeyInfo {
+     static inline unsigned getEmptyKey() { return -1U; }
+     static inline unsigned getTombstoneKey() { return -2U; }
+     static unsigned getHashValue(const unsigned &Key) { return Key; }
+   };
+ 
+   class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
+   public:
+     static char ID;
+     RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
+   private:
+     const TargetMachine *TM;
+     MachineFunction *MF;
+     const MRegisterInfo *RegInfo;
+     LiveVariables *LV;
+ 
+     // InsnTimes - maps machine instructions to their "execute times"
+     std::map<MachineInstr *, unsigned> InsnTimes;
+     
+     // VRegReadTable - maps VRegs in a BB to the set of times they are read
+     DenseMap<unsigned, SmallVector<unsigned, 2>*, VRegKeyInfo> VRegReadTable;
+ 
+     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
+     // values are spilled.
+     std::map<unsigned, int> StackSlotForVirtReg;
+ 
+     // Virt2PhysRegMap - This map contains entries for each virtual register
+     // that is currently available in a physical register.
+     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
+ 
+     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
+       return Virt2PhysRegMap[VirtReg];
+     }
+ 
+     // PhysRegsUsed - This array is effectively a map, containing entries for
+     // each physical register that currently has a value (ie, it is in
+     // Virt2PhysRegMap).  The value mapped to is the virtual register
+     // corresponding to the physical register (the inverse of the
+     // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
+     // because it is used by a future instruction, and to -2 if it is not
+     // allocatable.  If the entry for a physical register is -1, then the
+     // physical register is "not in the map".
+     //
+     std::vector<int> PhysRegsUsed;
+ 
+     // PhysRegsUseOrder - This contains a list of the physical registers that
+     // currently have a virtual register value in them.  This list provides an
+     // ordering of registers, imposing a reallocation order.  This list is only
+     // used if all registers are allocated and we have to spill one, in which
+     // case we spill the least recently used register.  Entries at the front of
+     // the list are the least recently used registers, entries at the back are
+     // the most recently used.
+     //
+     std::vector<unsigned> PhysRegsUseOrder;
+ 
+     // VirtRegModified - This bitset contains information about which virtual
+     // registers need to be spilled back to memory when their registers are
+     // scavenged.  If a virtual register has simply been rematerialized, there
+     // is no reason to spill it to memory when we need the register back.
+     //
+     std::vector<bool> VirtRegModified;
+ 
+     void markVirtRegModified(unsigned Reg, bool Val = true) {
+       assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+       Reg -= MRegisterInfo::FirstVirtualRegister;
+       if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
+       VirtRegModified[Reg] = Val;
+     }
+     
+     bool isVirtRegModified(unsigned Reg) const {
+       assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+       assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
+              && "Illegal virtual register!");
+       return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
+     }
+ 
+     void MarkPhysRegRecentlyUsed(unsigned Reg) {
+       if (PhysRegsUseOrder.empty() ||
+           PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
+ 
+       for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
+         if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
+           unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
+           PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
+           // Add it to the end of the list
+           PhysRegsUseOrder.push_back(RegMatch);
+           if (RegMatch == Reg)
+             return;    // Found an exact match, exit early
+         }
+     }
+ 
+   public:
+     virtual const char *getPassName() const {
+       return "BigBlock Register Allocator";
+     }
+ 
+     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+       AU.addRequired<LiveVariables>();
+       AU.addRequiredID(PHIEliminationID);
+       AU.addRequiredID(TwoAddressInstructionPassID);
+       MachineFunctionPass::getAnalysisUsage(AU);
+     }
+ 
+   private:
+     /// runOnMachineFunction - Register allocate the whole function
+     bool runOnMachineFunction(MachineFunction &Fn);
+ 
+     /// AllocateBasicBlock - Register allocate the specified basic block.
+     void AllocateBasicBlock(MachineBasicBlock &MBB);
+ 
+     /// FillVRegReadTable - Fill out the table of vreg read times given a BB
+     void FillVRegReadTable(MachineBasicBlock &MBB);
+     
+     /// areRegsEqual - This method returns true if the specified registers are
+     /// related to each other.  To do this, it checks to see if they are equal
+     /// or if the first register is in the alias set of the second register.
+     ///
+     bool areRegsEqual(unsigned R1, unsigned R2) const {
+       if (R1 == R2) return true;
+       for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
+            *AliasSet; ++AliasSet) {
+         if (*AliasSet == R1) return true;
+       }
+       return false;
+     }
+ 
+     /// getStackSpaceFor - This returns the frame index of the specified virtual
+     /// register on the stack, allocating space if necessary.
+     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
+ 
+     /// removePhysReg - This method marks the specified physical register as no
+     /// longer being in use.
+     ///
+     void removePhysReg(unsigned PhysReg);
+ 
+     /// spillVirtReg - This method spills the value specified by PhysReg into
+     /// the virtual register slot specified by VirtReg.  It then updates the RA
+     /// data structures to indicate the fact that PhysReg is now available.
+     ///
+     void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+                       unsigned VirtReg, unsigned PhysReg);
+ 
+     /// spillPhysReg - This method spills the specified physical register into
+     /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
+     /// true, then the request is ignored if the physical register does not
+     /// contain a virtual register.
+     ///
+     void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+                       unsigned PhysReg, bool OnlyVirtRegs = false);
+ 
+     /// assignVirtToPhysReg - This method updates local state so that we know
+     /// that PhysReg is the proper container for VirtReg now.  The physical
+     /// register must not be used for anything else when this is called.
+     ///
+     void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
+ 
+     /// liberatePhysReg - Make sure the specified physical register is available
+     /// for use.  If there is currently a value in it, it is either moved out of
+     /// the way or spilled to memory.
+     ///
+     void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+                          unsigned PhysReg);
+ 
+     /// isPhysRegAvailable - Return true if the specified physical register is
+     /// free and available for use.  This also includes checking to see if
+     /// aliased registers are all free...
+     ///
+     bool isPhysRegAvailable(unsigned PhysReg) const;
+ 
+     /// getFreeReg - Look to see if there is a free register available in the
+     /// specified register class.  If not, return 0.
+     ///
+     unsigned getFreeReg(const TargetRegisterClass *RC);
+ 
+     /// chooseReg - Pick a physical register to hold the specified
+     /// virtual register by choosing the one which will be read furthest
+     /// in the future.
+     ///
+     unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                     unsigned VirtReg);
+ 
+     /// reloadVirtReg - This method transforms the specified specified virtual
+     /// register use to refer to a physical register.  This method may do this
+     /// in one of several ways: if the register is available in a physical
+     /// register already, it uses that physical register.  If the value is not
+     /// in a physical register, and if there are physical registers available,
+     /// it loads it into a register.  If register pressure is high, and it is
+     /// possible, it tries to fold the load of the virtual register into the
+     /// instruction itself.  It avoids doing this if register pressure is low to
+     /// improve the chance that subsequent instructions can use the reloaded
+     /// value.  This method returns the modified instruction.
+     ///
+     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                                 unsigned OpNum);
+ 
+   };
+   char RABigBlock::ID = 0;
+ }
+ 
+ /// getStackSpaceFor - This allocates space for the specified virtual register
+ /// to be held on the stack.
+ int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
+   // Find the location Reg would belong...
+   std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
+ 
+   if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
+     return I->second;          // Already has space allocated?
+ 
+   // Allocate a new stack object for this spill location...
+   int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
+                                                        RC->getAlignment());
+ 
+   // Assign the slot...
+   StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
+   return FrameIdx;
+ }
+ 
+ 
+ /// removePhysReg - This method marks the specified physical register as no
+ /// longer being in use.
+ ///
+ void RABigBlock::removePhysReg(unsigned PhysReg) {
+   PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
+ 
+   std::vector<unsigned>::iterator It =
+     std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
+   if (It != PhysRegsUseOrder.end())
+     PhysRegsUseOrder.erase(It);
+ }
+ 
+ 
+ /// spillVirtReg - This method spills the value specified by PhysReg into the
+ /// virtual register slot specified by VirtReg.  It then updates the RA data
+ /// structures to indicate the fact that PhysReg is now available.
+ ///
+ void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
+                            MachineBasicBlock::iterator I,
+                            unsigned VirtReg, unsigned PhysReg) {
+   assert(VirtReg && "Spilling a physical register is illegal!"
+          " Must not have appropriate kill for the register or use exists beyond"
+          " the intended one.");
+   DOUT << "  Spilling register " << RegInfo->getName(PhysReg)
+        << " containing %reg" << VirtReg;
+   if (!isVirtRegModified(VirtReg))
+     DOUT << " which has not been modified, so no store necessary!";
+ 
+   // Otherwise, there is a virtual register corresponding to this physical
+   // register.  We only need to spill it into its stack slot if it has been
+   // modified.
+   if (isVirtRegModified(VirtReg)) {
+     const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+     int FrameIndex = getStackSpaceFor(VirtReg, RC);
+     DOUT << " to stack slot #" << FrameIndex;
+     RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
+     ++NumStores;   // Update statistics
+   }
+ 
+   getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
+ 
+   DOUT << "\n";
+   removePhysReg(PhysReg);
+ }
+ 
+ 
+ /// spillPhysReg - This method spills the specified physical register into the
+ /// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
+ /// then the request is ignored if the physical register does not contain a
+ /// virtual register.
+ ///
+ void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+                            unsigned PhysReg, bool OnlyVirtRegs) {
+   if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
+     assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
+     if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
+       spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
+   } else {
+     // If the selected register aliases any other registers, we must make
+     // sure that one of the aliases isn't alive.
+     for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+          *AliasSet; ++AliasSet)
+       if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
+           PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
+         if (PhysRegsUsed[*AliasSet] == 0) {
+           // This must have been a dead def due to something like this:
+           // %EAX :=
+           //      := op %AL
+           // No more use of %EAX, %AH, etc.
+           // %EAX isn't dead upon definition, but %AH is. However %AH isn't
+           // an operand of definition MI so it's not marked as such.
+           DOUT << "  Register " << RegInfo->getName(*AliasSet)
+                << " [%reg" << *AliasSet
+                << "] is never used, removing it frame live list\n";
+           removePhysReg(*AliasSet);
+         } else
+           spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
+   }
+ }
+ 
+ 
+ /// assignVirtToPhysReg - This method updates local state so that we know
+ /// that PhysReg is the proper container for VirtReg now.  The physical
+ /// register must not be used for anything else when this is called.
+ ///
+ void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
+   assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
+   // Update information to note the fact that this register was just used, and
+   // it holds VirtReg.
+   PhysRegsUsed[PhysReg] = VirtReg;
+   getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
+   PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
+ }
+ 
+ 
+ /// isPhysRegAvailable - Return true if the specified physical register is free
+ /// and available for use.  This also includes checking to see if aliased
+ /// registers are all free...
+ ///
+ bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
+   if (PhysRegsUsed[PhysReg] != -1) return false;
+ 
+   // If the selected register aliases any other allocated registers, it is
+   // not free!
+   for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+        *AliasSet; ++AliasSet)
+     if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
+       return false;                    // Can't use this reg then.
+   return true;
+ }
+ 
+ 
+ //////// FIX THIS:
+ /// getFreeReg - Look to see if there is a free register available in the
+ /// specified register class.  If not, return 0.
+ ///
+ unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
+   // Get iterators defining the range of registers that are valid to allocate in
+   // this class, which also specifies the preferred allocation order.
+   TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
+   TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
+ 
+   for (; RI != RE; ++RI)
+     if (isPhysRegAvailable(*RI)) {       // Is reg unused?
+       assert(*RI != 0 && "Cannot use register!");
+       return *RI; // Found an unused register!
+     }
+   return 0;
+ }
+ 
+ 
+ /// liberatePhysReg - Make sure the specified physical register is available for
+ /// use.  If there is currently a value in it, it is either moved out of the way
+ /// or spilled to memory.
+ ///
+ void RABigBlock::liberatePhysReg(MachineBasicBlock &MBB,
+                               MachineBasicBlock::iterator &I,
+                               unsigned PhysReg) {
+   spillPhysReg(MBB, I, PhysReg);
+ }
+ 
+ /// chooseReg - Pick a physical register to hold the specified
+ /// virtual register by choosing the one whose value will be read
+ /// furthest in the future.
+ ///
+ unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
+                          unsigned VirtReg) {
+   const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+   // First check to see if we have a free register of the requested type...
+   unsigned PhysReg = getFreeReg(RC);
+ 
+   // If we didn't find an unused register, find the one which will be
+   // read at the most distant point in time.
+   if (PhysReg == 0) {
+     unsigned delay=0, longest_delay=0;
+     SmallVector<unsigned, 2> *ReadTimes;
+ 
+     unsigned curTime = InsnTimes[I];
+ 
+     // for all physical regs in the RC,
+     for(TargetRegisterClass::iterator pReg = RC->begin(); 
+                                       pReg != RC->end();  ++pReg) {
+       // how long until they're read?
+       if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
+         ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
+ 	SmallVector<unsigned, 2>::iterator pt = 
+                                          std::lower_bound(ReadTimes->begin(),
+                                                           ReadTimes->end(),
+                                                           curTime);
+         delay = *pt - curTime;
+         
+         if(delay > longest_delay) {
+           longest_delay = delay;
+           PhysReg = *pReg;
+         }
+       }
+     }
+     
+     assert(PhysReg && "couldn't grab a register from the table?");
+     // TODO: assert that RC->contains(PhysReg) / handle aliased registers
+ 
+     // since we needed to look in the table we need to spill this register.
+     spillPhysReg(MBB, I, PhysReg);
+   }
+ 
+   // assign the vreg to our chosen physical register
+   assignVirtToPhysReg(VirtReg, PhysReg);
+   return PhysReg; // and return it
+ }
+ 
+ 
+ /// reloadVirtReg - This method transforms an instruction with a virtual
+ /// register use to one that references a physical register. It does this as
+ /// follows:
+ ///
+ ///   1) If the register is already in a physical register, it uses it.
+ ///   2) Otherwise, if there is a free physical register, it uses that.
+ ///   3) Otherwise, it calls chooseReg() to get the physical register
+ ///      holding the most distantly needed value, generating a spill in
+ ///      the process.
+ ///
+ /// This method returns the modified instruction.
+ MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                                      unsigned OpNum) {
+   unsigned VirtReg = MI->getOperand(OpNum).getReg();
+ 
+   // If the virtual register is already available in a physical register,
+   // just update the instruction and return.
+   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
+     MI->getOperand(OpNum).setReg(PR);
+     return MI;
+   }
+ 
+   // Otherwise, if we have free physical registers available to hold the
+   // value, use them.
+   const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+   unsigned PhysReg = getFreeReg(RC);
+   int FrameIndex = getStackSpaceFor(VirtReg, RC);
+ 
+   if (PhysReg) {   // we have a free register, so use it.
+     assignVirtToPhysReg(VirtReg, PhysReg);
+   } else {  // no free registers available.
+     // try to fold the spill into the instruction
+     if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) {
+       ++NumFolded;
+       // Since we changed the address of MI, make sure to update live variables
+       // to know that the new instruction has the properties of the old one.
+       LV->instructionChanged(MI, FMI);
+       return MBB.insert(MBB.erase(MI), FMI);
+     }
+     
+     // determine which of the physical registers we'll kill off, since we
+     // couldn't fold.
+     PhysReg = chooseReg(MBB, MI, VirtReg);
+   }
+ 
+   // this virtual register is now unmodified (since we just reloaded it)
+   markVirtRegModified(VirtReg, false);
+ 
+   DOUT << "  Reloading %reg" << VirtReg << " into "
+        << RegInfo->getName(PhysReg) << "\n";
+ 
+   // Add move instruction(s)
+   RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
+   ++NumLoads;    // Update statistics
+ 
+   MF->setPhysRegUsed(PhysReg);
+   MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
+   return MI;
+ }
+ 
+ /// Fill out the vreg read timetable. Since ReadTime increases
+ /// monotonically, the individual readtime sets will be sorted
+ /// in ascending order.
+ void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
+   // loop over each instruction
+   MachineBasicBlock::iterator MII;
+   unsigned ReadTime;
+   
+   for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
+     MachineInstr *MI = MII;
+     
+     InsnTimes[MI] = ReadTime;
+     
+     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+       MachineOperand& MO = MI->getOperand(i);
+       // look for vreg reads..
+       if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
+           MRegisterInfo::isVirtualRegister(MO.getReg())) {
+         // ..and add them to the read table.
+         if(!VRegReadTable[MO.getReg()])
+           VRegReadTable[MO.getReg()] = new SmallVector<unsigned, 2>;
+           
+         VRegReadTable[MO.getReg()]->push_back(ReadTime);
+       }
+     }
+ 
+   }  
+ 
+ }
+ 
+ void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
+   // loop over each instruction
+   MachineBasicBlock::iterator MII = MBB.begin();
+   const TargetInstrInfo &TII = *TM->getInstrInfo();
+   
+   DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
+         if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
+ 
+   // If this is the first basic block in the machine function, add live-in
+   // registers as active.
+   if (&MBB == &*MF->begin()) {
+     for (MachineFunction::livein_iterator I = MF->livein_begin(),
+          E = MF->livein_end(); I != E; ++I) {
+       unsigned Reg = I->first;
+       MF->setPhysRegUsed(Reg);
+       PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+       PhysRegsUseOrder.push_back(Reg);
+       for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+            *AliasSet; ++AliasSet) {
+         if (PhysRegsUsed[*AliasSet] != -2) {
+           PhysRegsUseOrder.push_back(*AliasSet);
+           PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+           MF->setPhysRegUsed(*AliasSet);
+         }
+       }
+     }    
+   }
+   
+   // Otherwise, sequentially allocate each instruction in the MBB.
+   while (MII != MBB.end()) {
+     MachineInstr *MI = MII++;
+     const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
+     DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
+           DOUT << "  Regs have values: ";
+           for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
+             if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+                DOUT << "[" << RegInfo->getName(i)
+                     << ",%reg" << PhysRegsUsed[i] << "] ";
+           DOUT << "\n");
+ 
+     // Loop over the implicit uses, making sure that they are at the head of the
+     // use order list, so they don't get reallocated.
+     if (TID.ImplicitUses) {
+       for (const unsigned *ImplicitUses = TID.ImplicitUses;
+            *ImplicitUses; ++ImplicitUses)
+         MarkPhysRegRecentlyUsed(*ImplicitUses);
+     }
+ 
+     SmallVector<unsigned, 8> Kills;
+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+       MachineOperand& MO = MI->getOperand(i);
+       if (MO.isRegister() && MO.isKill())
+         Kills.push_back(MO.getReg());
+     }
+ 
+     // Get the used operands into registers.  This has the potential to spill
+     // incoming values if we are out of registers.  Note that we completely
+     // ignore physical register uses here.  We assume that if an explicit
+     // physical register is referenced by the instruction, that it is guaranteed
+     // to be live-in, or the input is badly hosed.
+     //
+     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+       MachineOperand& MO = MI->getOperand(i);
+       // here we are looking for only used operands (never def&use)
+       if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
+           MRegisterInfo::isVirtualRegister(MO.getReg()))
+         MI = reloadVirtReg(MBB, MI, i);
+     }
+ 
+     // If this instruction is the last user of this register, kill the
+     // value, freeing the register being used, so it doesn't need to be
+     // spilled to memory.
+     //
+     for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+       unsigned VirtReg = Kills[i];
+       unsigned PhysReg = VirtReg;
+       if (MRegisterInfo::isVirtualRegister(VirtReg)) {
+         // If the virtual register was never materialized into a register, it
+         // might not be in the map, but it won't hurt to zero it out anyway.
+         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
+         PhysReg = PhysRegSlot;
+         PhysRegSlot = 0;
+       } else if (PhysRegsUsed[PhysReg] == -2) {
+         // Unallocatable register dead, ignore.
+         continue;
+       }
+ 
+       if (PhysReg) {
+         DOUT << "  Last use of " << RegInfo->getName(PhysReg)
+              << "[%reg" << VirtReg <<"], removing it from live set\n";
+         removePhysReg(PhysReg);
+         for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+              *AliasSet; ++AliasSet) {
+           if (PhysRegsUsed[*AliasSet] != -2) {
+             DOUT  << "  Last use of "
+                   << RegInfo->getName(*AliasSet)
+                   << "[%reg" << VirtReg <<"], removing it from live set\n";
+             removePhysReg(*AliasSet);
+           }
+         }
+       }
+     }
+ 
+     // Loop over all of the operands of the instruction, spilling registers that
+     // are defined, and marking explicit destinations in the PhysRegsUsed map.
+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+       MachineOperand& MO = MI->getOperand(i);
+       if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
+           MRegisterInfo::isPhysicalRegister(MO.getReg())) {
+         unsigned Reg = MO.getReg();
+         if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
+             
+         MF->setPhysRegUsed(Reg);
+         spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
+         PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+         PhysRegsUseOrder.push_back(Reg);
+         for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+              *AliasSet; ++AliasSet) {
+           if (PhysRegsUsed[*AliasSet] != -2) {
+             PhysRegsUseOrder.push_back(*AliasSet);
+             PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+             MF->setPhysRegUsed(*AliasSet);
+           }
+         }
+       }
+     }
+ 
+     // Loop over the implicit defs, spilling them as well.
+     if (TID.ImplicitDefs) {
+       for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
+            *ImplicitDefs; ++ImplicitDefs) {
+         unsigned Reg = *ImplicitDefs;
+         bool IsNonAllocatable = PhysRegsUsed[Reg] == -2;
+         if (!IsNonAllocatable) {
+           spillPhysReg(MBB, MI, Reg, true);
+           PhysRegsUseOrder.push_back(Reg);
+           PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+         }
+         MF->setPhysRegUsed(Reg);
+ 
+         for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+              *AliasSet; ++AliasSet) {
+           if (PhysRegsUsed[*AliasSet] != -2) {
+             if (!IsNonAllocatable) {
+               PhysRegsUseOrder.push_back(*AliasSet);
+               PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+             }
+             MF->setPhysRegUsed(*AliasSet);
+           }
+         }
+       }
+     }
+ 
+     SmallVector<unsigned, 8> DeadDefs;
+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+       MachineOperand& MO = MI->getOperand(i);
+       if (MO.isRegister() && MO.isDead())
+         DeadDefs.push_back(MO.getReg());
+     }
+ 
+     // Okay, we have allocated all of the source operands and spilled any values
+     // that would be destroyed by defs of this instruction.  Loop over the
+     // explicit defs and assign them to a register, spilling incoming values if
+     // we need to scavenge a register.
+     //
+     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+       MachineOperand& MO = MI->getOperand(i);
+       if (MO.isRegister() && MO.isDef() && MO.getReg() &&
+           MRegisterInfo::isVirtualRegister(MO.getReg())) {
+         unsigned DestVirtReg = MO.getReg();
+         unsigned DestPhysReg;
+ 
+         // If DestVirtReg already has a value, use it.
+         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
+           DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
+         MF->setPhysRegUsed(DestPhysReg);
+         markVirtRegModified(DestVirtReg);
+         MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register
+       }
+     }
+ 
+     // If this instruction defines any registers that are immediately dead,
+     // kill them now.
+     //
+     for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
+       unsigned VirtReg = DeadDefs[i];
+       unsigned PhysReg = VirtReg;
+       if (MRegisterInfo::isVirtualRegister(VirtReg)) {
+         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
+         PhysReg = PhysRegSlot;
+         assert(PhysReg != 0);
+         PhysRegSlot = 0;
+       } else if (PhysRegsUsed[PhysReg] == -2) {
+         // Unallocatable register dead, ignore.
+         continue;
+       }
+ 
+       if (PhysReg) {
+         DOUT  << "  Register " << RegInfo->getName(PhysReg)
+               << " [%reg" << VirtReg
+               << "] is never used, removing it frame live list\n";
+         removePhysReg(PhysReg);
+         for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+              *AliasSet; ++AliasSet) {
+           if (PhysRegsUsed[*AliasSet] != -2) {
+             DOUT  << "  Register " << RegInfo->getName(*AliasSet)
+                   << " [%reg" << *AliasSet
+                   << "] is never used, removing it frame live list\n";
+             removePhysReg(*AliasSet);
+           }
+         }
+       }
+     }
+     
+     // Finally, if this is a noop copy instruction, zap it.
+     unsigned SrcReg, DstReg;
+     if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
+       LV->removeVirtualRegistersKilled(MI);
+       LV->removeVirtualRegistersDead(MI);
+       MBB.erase(MI);
+     }
+   }
+ 
+   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
+ 
+   // Spill all physical registers holding virtual registers now.
+   for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
+     if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+       if (unsigned VirtReg = PhysRegsUsed[i])
+         spillVirtReg(MBB, MI, VirtReg, i);
+       else
+         removePhysReg(i);
+ 
+ #if 0
+   // This checking code is very expensive.
+   bool AllOk = true;
+   for (unsigned i = MRegisterInfo::FirstVirtualRegister,
+            e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
+     if (unsigned PR = Virt2PhysRegMap[i]) {
+       cerr << "Register still mapped: " << i << " -> " << PR << "\n";
+       AllOk = false;
+     }
+   assert(AllOk && "Virtual registers still in phys regs?");
+ #endif
+ 
+   // Clear any physical register which appear live at the end of the basic
+   // block, but which do not hold any virtual registers.  e.g., the stack
+   // pointer.
+   PhysRegsUseOrder.clear();
+ }
+ 
+ /// runOnMachineFunction - Register allocate the whole function
+ ///
+ bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
+   DOUT << "Machine Function " << "\n";
+   MF = &Fn;
+   TM = &Fn.getTarget();
+   RegInfo = TM->getRegisterInfo();
+   LV = &getAnalysis<LiveVariables>();
+ 
+   PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
+   
+   // At various places we want to efficiently check to see whether a register
+   // is allocatable.  To handle this, we mark all unallocatable registers as
+   // being pinned down, permanently.
+   {
+     BitVector Allocable = RegInfo->getAllocatableSet(Fn);
+     for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
+       if (!Allocable[i])
+         PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
+   }
+ 
+   // initialize the virtual->physical register map to have a 'null'
+   // mapping for all virtual registers
+   Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
+ 
+   // Loop over all of the basic blocks, eliminating virtual register references
+   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+        MBB != MBBe; ++MBB) {
+     // fill out the read timetable 
+     FillVRegReadTable(*MBB);
+     // use it to allocate the BB
+     AllocateBasicBlock(*MBB);
+     // clear it
+     VRegReadTable.clear();
+   }
+   
+   StackSlotForVirtReg.clear();
+   PhysRegsUsed.clear();
+   VirtRegModified.clear();
+   Virt2PhysRegMap.clear();
+   return true;
+ }
+ 
+ FunctionPass *llvm::createBigBlockRegisterAllocator() {
+   return new RABigBlock();
+ }
+ 






More information about the llvm-commits mailing list