[llvm-commits] CVS: llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp

Jim Laskey jlaskey at apple.com
Mon Sep 26 14:57:15 PDT 2005



Changes in directory llvm/lib/CodeGen/SelectionDAG:

ScheduleDAG.cpp updated: 1.22 -> 1.23
---
Log message:

Addition of a simple two pass scheduler.  This version is currently hacked up
for testing and will require target machine info to do a proper scheduling.
The simple scheduler can be turned on using -sched=simple (defaults
to -sched=none)


---
Diffs of the changes:  (+773 -82)

 ScheduleDAG.cpp |  855 ++++++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 773 insertions(+), 82 deletions(-)


Index: llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
diff -u llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.22 llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.23
--- llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.22	Fri Sep  2 02:09:28 2005
+++ llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp	Mon Sep 26 16:57:04 2005
@@ -7,8 +7,9 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This implements a simple code linearizer for DAGs.  This is not a very good
-// way to emit code, but gets working code quickly.
+// This implements a simple two pass scheduler.  The first pass attempts to push
+// backward any lengthy instructions and critical paths.  The second pass packs
+// instructions into semi-optimal time slots.
 //
 //===----------------------------------------------------------------------===//
 
@@ -22,8 +23,29 @@
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetLowering.h"
 #include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include <iostream>
 using namespace llvm;
 
+namespace {
+  // Style of scheduling to use.
+  enum ScheduleChoices {
+    noScheduling,
+    simpleScheduling,
+  };
+} // namespace
+
+cl::opt<ScheduleChoices> ScheduleStyle("sched",
+  cl::desc("Choose scheduling style"),
+  cl::init(noScheduling),
+  cl::values(
+    clEnumValN(noScheduling, "none",
+              "Trivial emission with no analysis"),
+    clEnumValN(simpleScheduling, "simple",
+              "Minimize critical path and maximize processor utilization"),
+   clEnumValEnd));
+
+
 #ifndef NDEBUG
 static cl::opt<bool>
 ViewDAGs("view-sched-dags", cl::Hidden,
@@ -33,76 +55,681 @@
 #endif
 
 namespace {
-  class SimpleSched {
-    SelectionDAG &DAG;
-    MachineBasicBlock *BB;
-    const TargetMachine &TM;
-    const TargetInstrInfo &TII;
-    const MRegisterInfo &MRI;
-    SSARegMap *RegMap;
-    MachineConstantPool *ConstPool;
-    
-    std::map<SDNode *, unsigned> EmittedOps;
-  public:
-    SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
-      : DAG(D), BB(bb), TM(D.getTarget()), TII(*TM.getInstrInfo()),
-        MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
-        ConstPool(BB->getParent()->getConstantPool()) {
-      assert(&TII && "Target doesn't provide instr info?");
-      assert(&MRI && "Target doesn't provide register info?");
-    }
-    
-    MachineBasicBlock *Run() {
-      Emit(DAG.getRoot());
-      return BB;
+//===----------------------------------------------------------------------===//
+///
+/// BitsIterator - Provides iteration through individual bits in a bit vector.
+///
+template<class T>
+class BitsIterator {
+private:
+  T Bits;                               // Bits left to iterate through
+
+public:
+  /// Ctor.
+  BitsIterator(T Initial) : Bits(Initial) {}
+  
+  /// Next - Returns the next bit set or zero if exhausted.
+  inline T Next() {
+    // Get the rightmost bit set
+    T Result = Bits & -Bits;
+    // Remove from rest
+    Bits &= ~Result;
+    // Return single bit or zero
+    return Result;
+  }
+};
+  
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// ResourceTally - Manages the use of resources over time intervals.  Each
+/// item (slot) in the tally vector represents the resources used at a given
+/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
+/// available.  An assumption is made that the tally is large enough to schedule 
+/// all current instructions (asserts otherwise.)
+///
+template<class T>
+class ResourceTally {
+private:
+  std::vector<T> Tally;                 // Resources used per slot
+  typedef typename std::vector<T>::iterator Iter;
+                                        // Tally iterator 
+  
+  /// AllInUse - Test to see if all of the resources in the slot are busy (set.)
+  inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
+    return (*Cursor & ResourceSet) == ResourceSet;
+  }
+
+  /// Skip - Skip over slots that use all of the specified resource (all are
+  /// set.)
+  Iter Skip(Iter Cursor, unsigned ResourceSet) {
+    assert(ResourceSet && "At least one resource bit needs to bet set");
+    
+    // Continue to the end
+    while (true) {
+      // Break out if one of the resource bits is not set
+      if (!AllInUse(Cursor, ResourceSet)) return Cursor;
+      // Try next slot
+      Cursor++;
+      assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
     }
+  }
+  
+  /// FindSlots - Starting from Begin, locate N consecutive slots where at least 
+  /// one of the resource bits is available.  Returns the address of first slot.
+  Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
+                                         unsigned &Resource) {
+    // Track position      
+    Iter Cursor = Begin;
     
-  private:
-    unsigned Emit(SDOperand Op);
+    // Try all possible slots forward
+    while (true) {
+      // Skip full slots
+      Cursor = Skip(Cursor, ResourceSet);
+      // Determine end of interval
+      Iter End = Cursor + N;
+      assert(End <= Tally.end() && "Tally is not large enough for schedule");
+      
+      // Iterate thru each resource
+      BitsIterator<T> Resources(ResourceSet & ~*Cursor);
+      while (unsigned Res = Resources.Next()) {
+        // Check if resource is available for next N slots
+        // Break out if resource is busy
+        Iter Interval = Cursor;
+        for (; Interval < End && !(*Interval & Res); Interval++) {}
+        
+        // If available for interval, return where and which resource
+        if (Interval == End) {
+          Resource = Res;
+          return Cursor;
+        }
+        // Otherwise, check if worth checking other resources
+        if (AllInUse(Interval, ResourceSet)) {
+          // Start looking beyond interval
+          Cursor = Interval;
+          break;
+        }
+      }
+      Cursor++;
+    }
+  }
+  
+  /// Reserve - Mark busy (set) the specified N slots.
+  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+ 
+    // Set resource bit in each slot
+    for (; Begin < End; Begin++)
+      *Begin |= Resource;
+  }
+
+public:
+  /// Initialize - Resize and zero the tally to the specified number of time
+  /// slots.
+  inline void Initialize(unsigned N) {
+    Tally.assign(N, 0);   // Initialize tally to all zeros.
+  }
+  
+  // FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
+  // ResourceSet for choices.
+  unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
+    // Which resource used
+    unsigned Resource;
+    // Find slots for instruction.
+    Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
+    // Reserve the slots
+    Reserve(Where, N, Resource);
+    // Return time slot (index)
+    return Where - Tally.begin();
+  }
+
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// This struct tracks information used to schedule the a node.
+struct ScheduleInfo {
+  SDOperand     Op;                     // Operand information
+  unsigned      Latency;                // Cycles to complete instruction
+  unsigned      ResourceSet;            // Bit vector of usable resources
+  bool          IsBoundary;             // Do not shift passed this instruction.
+  unsigned      Slot;                   // Operand's time slot
+  
+  // Ctor.
+  ScheduleInfo(SDOperand op)
+  : Op(op)
+  , Latency(0)
+  , ResourceSet(0)
+  , IsBoundary(false)
+  , Slot(0)
+  {}
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+class SimpleSched {
+private:
+  // TODO - get ResourceSet from TII
+  enum {
+    RSInteger = 0x3,                    // Two integer units
+    RSFloat = 0xC,                      // Two float units
+    RSLoadStore = 0x30,                 // Two load store units
+    RSOther = 0                         // Processing unit independent
   };
+  
+  MachineBasicBlock *BB;                // Current basic block
+  SelectionDAG &DAG;                    // DAG of the current basic block
+  const TargetMachine &TM;              // Target processor
+  const TargetInstrInfo &TII;           // Target instruction information
+  const MRegisterInfo &MRI;             // Target processor register information
+  SSARegMap *RegMap;                    // Virtual/real register map
+  MachineConstantPool *ConstPool;       // Target constant pool
+  std::vector<ScheduleInfo> Operands;   // All operands to be scheduled
+  std::vector<ScheduleInfo*> Ordering;  // Emit ordering of operands
+  std::map<SDNode *, int> Visited;      // Operands that have been visited
+  ResourceTally<unsigned> Tally;        // Resource usage tally
+  unsigned NSlots;                      // Total latency
+  std::map<SDNode *, unsigned>VRMap;    // Operand to VR map
+  static const unsigned NotFound = ~0U; // Search marker
+  
+public:
+
+  // Ctor.
+  SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
+    : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
+      MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
+      ConstPool(BB->getParent()->getConstantPool()),
+      NSlots(0) {
+    assert(&TII && "Target doesn't provide instr info?");
+    assert(&MRI && "Target doesn't provide register info?");
+  }
+  
+  // Run - perform scheduling.
+  MachineBasicBlock *Run() {
+    Schedule();
+    return BB;
+  }
+  
+private:
+  static bool isFlagDefiner(SDOperand Op) { return isFlagDefiner(Op.Val); }
+  static bool isFlagUser(SDOperand Op) { return isFlagUser(Op.Val); }
+  static bool isFlagDefiner(SDNode *A);
+  static bool isFlagUser(SDNode *A);
+  static bool isDefiner(SDNode *A, SDNode *B);
+  static bool isPassiveOperand(SDOperand Op);
+  void IncludeOperand(SDOperand Op);
+  void VisitAll();
+  void Schedule();
+  void GatherOperandInfo();
+  bool isStrongDependency(SDOperand A, SDOperand B) {
+    return isStrongDependency(A.Val, B.Val);
+  }
+  bool isWeakDependency(SDOperand A, SDOperand B) {
+    return isWeakDependency(A.Val, B.Val);
+  }
+  static bool isStrongDependency(SDNode *A, SDNode *B);
+  static bool isWeakDependency(SDNode *A, SDNode *B);
+  void ScheduleBackward();
+  void ScheduleForward();
+  void EmitAll();
+  void EmitFlagUsers(SDOperand Op);
+  static unsigned CountResults(SDOperand Op);
+  static unsigned CountOperands(SDOperand Op);
+  unsigned CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
+                                  unsigned NumResults,
+                                  const TargetInstrDescriptor &II);
+  unsigned Emit(SDOperand A);
+
+  void printSI(std::ostream &O, ScheduleInfo *SI) const ;
+  void print(std::ostream &O) const ;
+  inline void dump(const char *tag) const { std::cerr << tag; dump(); }
+  void dump() const;
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+class FlagUserIterator {
+private:
+  SDNode               *Definer;        // Node defining flag
+  SDNode::use_iterator UI;              // User node iterator
+  SDNode::use_iterator E;               // End of user nodes
+  unsigned             MinRes;          // Minimum flag result
+
+public:
+  // Ctor.
+  FlagUserIterator(SDNode *D)
+  : Definer(D)
+  , UI(D->use_begin())
+  , E(D->use_end())
+  , MinRes(D->getNumValues()) {
+    // Find minimum flag result.
+    while (MinRes && D->getValueType(MinRes - 1) == MVT::Flag) --MinRes;
+  }
+  
+  /// isFlagUser - Return true if  node uses definer's flag.
+  bool isFlagUser(SDNode *U) {
+    // For each operand (in reverse to only look at flags)
+    for (unsigned N = U->getNumOperands(); 0 < N--;) {
+      // Get operand
+      SDOperand Op = U->getOperand(N);
+      // Not user if there are no flags
+      if (Op.getValueType() != MVT::Flag) return false;
+      // Return true if it is one of the flag results 
+      if (Op.Val == Definer && Op.ResNo >= MinRes) return true;
+    }
+    // Not a flag user
+    return false;
+  }
+  
+  SDNode *next() {
+    // Continue to next user
+    while (UI != E) {
+      // Next user node
+      SDNode *User = *UI++;
+      // Return true if is a flag user
+      if (isFlagUser(User)) return User;
+    }
+    
+    // No more user nodes
+    return NULL;
+  }
+};
+
+} // namespace
+
+
+//===----------------------------------------------------------------------===//
+/// isFlagDefiner - Returns true if the operand defines a flag result.
+bool SimpleSched::isFlagDefiner(SDNode *A) {
+  unsigned N = A->getNumValues();
+  return N && A->getValueType(N - 1) == MVT::Flag;
 }
 
-unsigned SimpleSched::Emit(SDOperand Op) {
-  // Check to see if we have already emitted this.  If so, return the value
-  // already emitted.  Note that if a node has a single use it cannot be
-  // revisited, so don't bother putting it in the map.
-  unsigned *OpSlot;
-  if (Op.Val->hasOneUse()) {
-    OpSlot = 0;  // No reuse possible.
-  } else {
-    std::map<SDNode *, unsigned>::iterator OpI = EmittedOps.lower_bound(Op.Val);
-    if (OpI != EmittedOps.end() && OpI->first == Op.Val)
-      return OpI->second + Op.ResNo;
-    OpSlot = &EmittedOps.insert(OpI, std::make_pair(Op.Val, 0))->second;
+/// isFlagUser - Returns true if the operand uses a flag result.
+///
+bool SimpleSched::isFlagUser(SDNode *A) {
+  unsigned N = A->getNumOperands();
+  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
+}
+
+/// isDefiner - Return true if Node A is a definder for B.
+///
+bool SimpleSched::isDefiner(SDNode *A, SDNode *B) {
+  for (unsigned i = 0, N = B->getNumOperands(); i < N; i++) {
+    if (B->getOperand(i).Val == A) return true;
+  }
+  return false;
+}
+
+/// isPassiveOperand - Return true if the operand is a non-scheduled leaf
+/// operand.
+bool SimpleSched::isPassiveOperand(SDOperand Op) {
+  if (isa<ConstantSDNode>(Op))       return true;
+  if (isa<RegisterSDNode>(Op))       return true;
+  if (isa<GlobalAddressSDNode>(Op))  return true;
+  if (isa<BasicBlockSDNode>(Op))     return true;
+  if (isa<FrameIndexSDNode>(Op))     return true;
+  if (isa<ConstantPoolSDNode>(Op))   return true;
+  if (isa<ExternalSymbolSDNode>(Op)) return true;
+  return false;
+}
+
+/// IncludeOperand - Add operand to ScheduleInfo vector.
+///
+void SimpleSched::IncludeOperand(SDOperand Op) {
+  // Ignore entry node
+  if (Op.getOpcode() == ISD::EntryToken) return;
+  // Check current count for operand
+  int Count = Visited[Op.Val];
+  // If the operand is already in list
+  if (Count < 0) return;
+  // If this the first time then get count 
+  if (!Count) Count = Op.Val->use_size();
+  // Decrement count to indicate a visit
+  Count--;
+  // If count has gone to zero then add operand to list
+  if (!Count) {
+    // Add operand
+    Operands.push_back(ScheduleInfo(Op));
+    // indicate operand has been added
+    Count--;
   }
+  // Mark as visited with new count 
+  Visited[Op.Val] = Count;
+}
+
+/// VisitAll - Visit each operand breadth-wise to produce an initial ordering.
+/// Note that the ordering in the Operands vector is reversed.
+void SimpleSched::VisitAll() {
+  // Add first element to list
+  Operands.push_back(DAG.getRoot());
+  for (unsigned i = 0; i < Operands.size(); i++) { // note: size() varies
+    // Get next operand. Need copy because Operands vector is growing and
+    // addresses can be ScheduleInfo changing.
+    SDOperand Op = Operands[i].Op;
+    // Get the number of real operands
+    unsigned NodeOperands = CountOperands(Op);
+    // Get the total number of operands
+    unsigned NumOperands = Op.getNumOperands();
+
+    // Visit all operands skipping the Other operand if present
+    for (unsigned i = NumOperands; 0 < i--;) {
+      SDOperand OpI = Op.getOperand(i);
+      // Ignore passive operands
+      if (isPassiveOperand(OpI)) continue;
+      // Check out operand
+      IncludeOperand(OpI);
+    }
+  }
+
+  // Add entry node last (IncludeOperand filters entry nodes)
+  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
+    Operands.push_back(DAG.getEntryNode());
+}
+
+/// GatherOperandInfo - Get latency and resource information about each operand.
+///
+void SimpleSched::GatherOperandInfo() {
+  // Add addresses of operand info to ordering vector
+  // Get number of operands
+  unsigned N = Operands.size();
+  // FIXME: This is an ugly (but temporary!) hack to test the scheduler before
+  // we have real target info.
+  
+  // For each operand being scheduled
+  for (unsigned i = 0; i < N; i++) {
+    ScheduleInfo* SI = &Operands[N - i - 1];
+    SDOperand Op = SI->Op;
+    MVT::ValueType VT = Op.Val->getValueType(0);
+    if (Op.isTargetOpcode()) {
+      MachineOpCode TOpc = Op.getTargetOpcode();
+      // FIXME SI->Latency = std::max(1, TII.maxLatency(TOpc));
+      // FIXME SI->ResourceSet = TII.resources(TOpc);
+      // There is a cost for keeping values across a call.
+      SI->IsBoundary = TII.isCall(TOpc);
+      
+      if (TII.isLoad(TOpc)) {
+        SI->ResourceSet = RSLoadStore;
+        SI->Latency = 5;
+      } else if (TII.isStore(TOpc)) {
+        SI->ResourceSet = RSLoadStore;
+        SI->Latency = 2;
+      } else if (MVT::isInteger(VT)) {
+        SI->ResourceSet = RSInteger;
+        SI->Latency = 2;
+      } else if (MVT::isFloatingPoint(VT)) {
+        SI->ResourceSet = RSFloat;
+        SI->Latency = 3;
+      } else {
+        SI->ResourceSet = RSOther;
+        SI->Latency = 0;
+      }
+    } else {
+      if (MVT::isInteger(VT)) {
+        SI->ResourceSet = RSInteger;
+        SI->Latency = 2;
+      } else if (MVT::isFloatingPoint(VT)) {
+        SI->ResourceSet = RSFloat;
+        SI->Latency = 3;
+      } else {
+        SI->ResourceSet = RSOther;
+        SI->Latency = 0;
+      }
+    }
+    
+    // Add one slot for the instruction itself
+    SI->Latency++;
+    
+    // Sum up all the latencies for max tally size
+    NSlots += SI->Latency;
+    
+    // Place in initial sorted order
+    // FIXME - PUNT - ignore flag users 
+    if (!isFlagUser(Op)) Ordering.push_back(SI);
+  }
+}
+
+/// isStrongDependency - Return true if operand A has results used by operand B. 
+/// I.E., B must wait for latency of A.
+bool SimpleSched::isStrongDependency(SDNode *A, SDNode *B) {
+  // If A defines for B then it's a strong dependency
+  if (isDefiner(A, B)) return true;
+  // If A defines a flag then it's users are part of the dependency
+  if (isFlagDefiner(A)) {
+    // Check each flag user
+    FlagUserIterator FI(A);
+    while (SDNode *User = FI.next()) {
+      // If flag user has strong dependency so does B
+      if (isStrongDependency(User, B)) return true;
+    }
+  }
+  // If B defines a flag then it's users are part of the dependency
+  if (isFlagDefiner(B)) {
+    // Check each flag user
+    FlagUserIterator FI(B);
+    while (SDNode *User = FI.next()) {
+      // If flag user has strong dependency so does B
+      if (isStrongDependency(A, User)) return true;
+    }
+  }
+  return false;
+}
+
+/// isWeakDependency Return true if operand A produces a result that will
+/// conflict with operands of B.
+bool SimpleSched::isWeakDependency(SDNode *A, SDNode *B) {
+  // TODO check for conflicting real registers and aliases
+  return A->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
+}
+
+/// ScheduleBackward - Schedule instructions so that any long latency
+/// instructions and the critical path get pushed back in time. Time is run in
+/// reverse to allow code reuse of the Tally and eliminate the overhead of
+/// biasing every slot indices against NSlots.
+void SimpleSched::ScheduleBackward() {
+  // Size and clear the resource tally
+  Tally.Initialize(NSlots);
+  // Get number of operands to schedule
+  unsigned N = Ordering.size();
+  
+  // For each operand being scheduled
+  for (unsigned i = N; 0 < i--;) {
+    ScheduleInfo *SI = Ordering[i];
+    // Track insertion
+    unsigned Slot = NotFound;
+    
+    // Compare against those previously scheduled operands
+    for (unsigned j = i + 1; j < N; j++) {
+      // Get following instruction
+      ScheduleInfo *Other = Ordering[j];
+      
+      // Check dependency against previously inserted operands
+      if (isStrongDependency(SI->Op, Other->Op)) {
+        Slot = Other->Slot + Other->Latency;
+        break;
+      } else if (SI->IsBoundary || Other->IsBoundary ||
+                 isWeakDependency(SI->Op, Other->Op)) {
+        Slot = Other->Slot;
+        break;
+      }
+    }
+    
+    // If independent of others (or first entry)
+    if (Slot == NotFound) Slot = 0;
+    
+    // Find a slot where the needed resources are available
+    if (SI->ResourceSet)
+      Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
+      
+    // Set operand slot
+    SI->Slot = Slot;
+    
+    // Insert sort based on slot
+    unsigned j = i + 1;
+    for (; j < N; j++) {
+      // Get following instruction
+      ScheduleInfo *Other = Ordering[j];
+      // Should we look further
+      if (Slot >= Other->Slot) break;
+      // Shuffle other into ordering
+      Ordering[j - 1] = Other;
+    }
+    // Insert operand in proper slot
+    if (j != i + 1) Ordering[j - 1] = SI;
+  }
+}
+
+/// ScheduleForward - Schedule instructions to maximize packing.
+///
+void SimpleSched::ScheduleForward() {
+  // Size and clear the resource tally
+  Tally.Initialize(NSlots);
+  // Get number of operands to schedule
+  unsigned N = Ordering.size();
+  
+  // For each operand being scheduled
+  for (unsigned i = 0; i < N; i++) {
+    ScheduleInfo *SI = Ordering[i];
+    // Track insertion
+    unsigned Slot = NotFound;
+    
+    // Compare against those previously scheduled operands
+    for (unsigned j = i; 0 < j--;) {
+      // Get following instruction
+      ScheduleInfo *Other = Ordering[j];
+      
+      // Check dependency against previously inserted operands
+      if (isStrongDependency(Other->Op, SI->Op)) {
+        Slot = Other->Slot + Other->Latency;
+        break;
+      } else if (SI->IsBoundary || Other->IsBoundary ||
+                 isWeakDependency(Other->Op, SI->Op)) {
+        Slot = Other->Slot;
+        break;
+      }
+    }
+    
+    // If independent of others (or first entry)
+    if (Slot == NotFound) Slot = 0;
+    
+    // Find a slot where the needed resources are available
+    if (SI->ResourceSet)
+      Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
+      
+    // Set operand slot
+    SI->Slot = Slot;
+    
+    // Insert sort based on slot
+    unsigned j = i;
+    for (; 0 < j--;) {
+      // Get following instruction
+      ScheduleInfo *Other = Ordering[j];
+      // Should we look further
+      if (Slot >= Other->Slot) break;
+      // Shuffle other into ordering
+      Ordering[j + 1] = Other;
+    }
+    // Insert operand in proper slot
+    if (j != i) Ordering[j + 1] = SI;
+  }
+}
+
+/// EmitAll - Emit all operands in schedule sorted order.
+///
+void SimpleSched::EmitAll() {
+  // For each operand in the ordering
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    // Get the scheduling info
+    ScheduleInfo *SI = Ordering[i];
+    // Get the operand
+    SDOperand Op = SI->Op;
+    // Emit the operand
+    Emit(Op);
+    // FIXME - PUNT - If Op defines a flag then it's users need to be emitted now
+    if (isFlagDefiner(Op)) EmitFlagUsers(Op);
+  }
+}
+
+/// EmitFlagUsers - Emit users of operands flag.
+///
+void SimpleSched::EmitFlagUsers(SDOperand Op) {
+  // Check each flag user
+  FlagUserIterator FI(Op.Val);
+  while (SDNode *User = FI.next()) {
+    // Construct user node as operand
+    SDOperand OpU(User, 0);
+    // Emit  user node
+    Emit(OpU);
+    // If user defines a flag then it's users need to be emitted now
+    if (isFlagDefiner(User)) EmitFlagUsers(OpU);
+  }
+}
+
+/// CountResults - The results of target nodes have register or immediate
+/// operands first, then an optional chain, and optional flag operands (which do
+/// not go into the machine instrs.)
+unsigned SimpleSched::CountResults(SDOperand Op) {
+  unsigned N = Op.Val->getNumValues();
+  while (N && Op.Val->getValueType(N - 1) == MVT::Flag)
+    --N;
+  if (N && Op.Val->getValueType(N - 1) == MVT::Other)
+    --N;    // Skip over chain result.
+  return N;
+}
+
+/// CountOperands  The inputs to target nodes have any actual inputs first,
+/// followed by an optional chain operand, then flag operands.  Compute the
+/// number of actual operands that  will go into the machine instr.
+unsigned SimpleSched::CountOperands(SDOperand Op) {
+  unsigned N = Op.getNumOperands();
+  while (N && Op.getOperand(N - 1).getValueType() == MVT::Flag)
+    --N;
+  if (N && Op.getOperand(N - 1).getValueType() == MVT::Other)
+    --N; // Ignore chain if it exists.
+  return N;
+}
+
+/// CreateVirtualRegisters - Add result register values for things that are
+/// defined by this instruction.
+unsigned SimpleSched::CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
+                                             unsigned NumResults,
+                                             const TargetInstrDescriptor &II) {
+  // Create the result registers for this node and add the result regs to
+  // the machine instruction.
+  const TargetOperandInfo *OpInfo = II.OpInfo;
+  unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
+  MI->addRegOperand(ResultReg, MachineOperand::Def);
+  for (unsigned i = 1; i != NumResults; ++i) {
+    assert(OpInfo[i].RegClass && "Isn't a register operand!");
+    MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass),
+                      MachineOperand::Def);
+  }
+  return ResultReg;
+}
+
+/// Emit - Generate machine code for an operand and needed dependencies.
+///
+unsigned SimpleSched::Emit(SDOperand Op) {
+  std::map<SDNode *, unsigned>::iterator OpI = VRMap.lower_bound(Op.Val);
+  if (OpI != VRMap.end() && OpI->first == Op.Val)
+    return OpI->second + Op.ResNo;
+  unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second;
   
   unsigned ResultReg = 0;
   if (Op.isTargetOpcode()) {
     unsigned Opc = Op.getTargetOpcode();
     const TargetInstrDescriptor &II = TII.get(Opc);
 
-    // The results of target nodes have register or immediate operands first,
-    // then an optional chain, and optional flag operands (which do not go into
-    // the machine instrs).
-    unsigned NumResults = Op.Val->getNumValues();
-    while (NumResults && Op.Val->getValueType(NumResults-1) == MVT::Flag)
-      --NumResults;
-    if (NumResults && Op.Val->getValueType(NumResults-1) == MVT::Other)
-      --NumResults;    // Skip over chain result.
-
-    // The inputs to target nodes have any actual inputs first, followed by an
-    // optional chain operand, then flag operands.  Compute the number of actual
-    // operands that  will go into the machine instr.
-    unsigned NodeOperands = Op.getNumOperands();
-    while (NodeOperands &&
-           Op.getOperand(NodeOperands-1).getValueType() == MVT::Flag)
-      --NodeOperands;
-    
-    if (NodeOperands &&    // Ignore chain if it exists.
-        Op.getOperand(NodeOperands-1).getValueType() == MVT::Other)
-      --NodeOperands;
-   
-    unsigned NumMIOperands = NodeOperands+NumResults;
+    unsigned NumResults = CountResults(Op);
+    unsigned NodeOperands = CountOperands(Op);
+    unsigned NumMIOperands = NodeOperands + NumResults;
 #ifndef NDEBUG
     assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
            "#operands for dag node doesn't match .td file!"); 
@@ -113,24 +740,14 @@
     
     // Add result register values for things that are defined by this
     // instruction.
-    if (NumResults) {
-      // Create the result registers for this node and add the result regs to
-      // the machine instruction.
-      const TargetOperandInfo *OpInfo = II.OpInfo;
-      ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
-      MI->addRegOperand(ResultReg, MachineOperand::Def);
-      for (unsigned i = 1; i != NumResults; ++i) {
-        assert(OpInfo[i].RegClass && "Isn't a register operand!");
-        MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass),
-                          MachineOperand::Def);
-      }
-    }
+    if (NumResults) ResultReg = CreateVirtualRegisters(Op, MI, NumResults, II);
     
     // If there is a token chain operand, emit it first, as a hack to get avoid
     // really bad cases.
     if (Op.getNumOperands() > NodeOperands &&
-        Op.getOperand(NodeOperands).getValueType() == MVT::Other)
+        Op.getOperand(NodeOperands).getValueType() == MVT::Other) {
       Emit(Op.getOperand(NodeOperands));
+    }
     
     // Emit all of the actual operands of this instruction, adding them to the
     // instruction as appropriate.
@@ -179,7 +796,7 @@
       unsigned i = NodeOperands;
       if (Op.getOperand(i).getValueType() == MVT::Other)
         ++i;  // the chain is already selected.
-      for (; i != Op.getNumOperands(); ++i) {
+      for (unsigned N = Op.getNumOperands(); i < N; i++) {
         assert(Op.getOperand(i).getValueType() == MVT::Flag &&
                "Must be flag operands!");
         Emit(Op.getOperand(i));
@@ -201,17 +818,22 @@
       assert(0 && "This target-independent node should have been selected!");
     case ISD::EntryToken: break;
     case ISD::TokenFactor:
-      for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
+      for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) {
         Emit(Op.getOperand(i));
+      }
       break;
     case ISD::CopyToReg: {
       SDOperand FlagOp;
-      if (Op.getNumOperands() == 4)
+      if (Op.getNumOperands() == 4) {
         FlagOp = Op.getOperand(3);
-      if (Op.getOperand(0).Val != FlagOp.Val)
+      }
+      if (Op.getOperand(0).Val != FlagOp.Val) {
         Emit(Op.getOperand(0));   // Emit the chain.
+      }
       unsigned Val = Emit(Op.getOperand(2));
-      if (FlagOp.Val) Emit(FlagOp);
+      if (FlagOp.Val) {
+        Emit(FlagOp);
+      }
       MRI.copyRegToReg(*BB, BB->end(),
                        cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val,
                        RegMap->getRegClass(Val));
@@ -244,14 +866,83 @@
     }
     }
   }
-  
-  if (OpSlot) *OpSlot = ResultReg;
+
+  OpSlot = ResultReg;
   return ResultReg+Op.ResNo;
 }
 
+/// Schedule - Order operands according to selected style.
+///
+void SimpleSched::Schedule() {
+  switch (ScheduleStyle) {
+  case simpleScheduling:
+    // Breadth first walk of DAG
+    VisitAll();
+    // Get latency and resource requirements
+    GatherOperandInfo();
+    // Don't waste time if is only entry and return
+    if (Operands.size() > 2) {
+      DEBUG(dump("Pre-"));
+      // Push back long instructions and critical path
+      ScheduleBackward();
+      DEBUG(dump("Mid-"));
+      // Pack instructions to maximize resource utilization
+      ScheduleForward();
+      DEBUG(dump("Post-"));
+      // Emit in scheduled order
+      EmitAll();
+      break;
+    } // fall thru
+  case noScheduling:
+    // Emit instructions in using a DFS from the exit root
+    Emit(DAG.getRoot());
+    break;
+  }
+}
+
+/// printSI - Print schedule info.
+///
+void SimpleSched::printSI(std::ostream &O, ScheduleInfo *SI) const {
+#ifndef NDEBUG
+  using namespace std;
+  SDOperand Op = SI->Op;
+  O << " "
+    << hex << Op.Val
+    << ", RS=" << SI->ResourceSet
+    << ", Lat=" << SI->Latency
+    << ", Slot=" << SI->Slot
+    << ", ARITY=(" << Op.getNumOperands() << ","
+                   << Op.Val->getNumValues() << ")"
+    << " " << Op.Val->getOperationName(&DAG);
+  if (isFlagDefiner(Op)) O << "<#";
+  if (isFlagUser(Op)) O << ">#";
+#endif
+}
 
-/// Pick a safe ordering and emit instructions for each target node in the
-/// graph.
+/// print - Print ordering to specified output stream.
+///
+void SimpleSched::print(std::ostream &O) const {
+#ifndef NDEBUG
+  using namespace std;
+  O << "Ordering\n";
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    printSI(O, Ordering[i]);
+    O << "\n";
+  }
+#endif
+}
+
+/// dump - Print ordering to std::cerr.
+///
+void SimpleSched::dump() const {
+  print(std::cerr);
+}
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
+/// target node in the graph.
 void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
   if (ViewDAGs) SD.viewGraph();
   BB = SimpleSched(SD, BB).Run();  






More information about the llvm-commits mailing list